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1 Introduction

Without vision, it could have been extremely difficult for humans and animals to thrive.
Similarly, computer vision plays a significant role in providing vision input for industrial
robots. So does Autonomous Ground Vehicles (AGVs). All the cutting-edge driverless
vehicles’ autonomous systems heavily depend upon their vision sensors to perceive the
environment for its autonomy apart from other sensor modalities. Some vehicle
manufacturers solely rely on computer vision for self-driving [1, 2]. It was not technically
feasible to achieve such a feat of self-driving without the latest developments in Artificial
Intelligence (Al). The advancements in Al made it possible to solve highly complicated
computer vision problems such as object detection and recognition. The AGVs are not
only for passenger transportation, but also they are disrupting various application
domains in transportation and logistics. Numerous research institutes, private companies,
are working on developing AGVs in recent years. These autonomous mobile robots are
meant to accomplish various tasks such as transportation of passengers, search and
rescue operations, seeding, weeding, and harvesting in agriculture, parcels, and grocery
delivery in the logistics sector, etc. Growing demand for different kinds of driverless
vehicles fuelling the research and development of autonomy makes it one of the most
active research areas today. Figure 1 shows different autonomous ground vehicles which
are commercially available and in research these days.

Figure 1. (a) Military UGV developed by Rheinmetall AG[3), (b) agriculture robot weeding on a
farm land[4], (c) Starship parcel delivery robot running on snow([5], (d) driverless shuttle bus in
Japan for rural public transport [6].
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Typically, AGVs can self-steer, self-regulate, avoid obstacles, and navigate without
any human intervention. The first known research effort to develop an autonomous
vehicle dates back to 1984 with the introduction of the Autonomous Land Vehicle (ALV)
project by NavLab at Carnegie Mellon University [7]. It laid the groundwork to identify
the main challenges of autonomous vehicle systems development, such as required
sensing and computing capabilities.

Whether autonomous on-road vehicles or off-road vehicles, the fundamental
technical problem is the environment perception. Perception is the ability of the
autonomous system to collect information about its surroundings and extract relevant
data [8]. The objective of a perception system is to enable the autonomous vehicle to
navigate safely and efficiently. In contrast to the on-road autonomous vehicles, off-road
AGVs face many more challenges in traversable terrain perception. The off-road
environments are unstructured where it is not clear the traversable areas and
non-traversable areas. Below, Figure 2 shows structured and unstructured terrains.
The levels of hazards are often unpredictable, and constraints on mobility make it difficult
for off-road navigation compared to on-road scenarios. Thus, off-road navigation demands
a sophisticated perception system to realise complete autonomy, which is level 5 based
on the vehicle autonomy levels classification proposed by the Society of Automotive
Engineers (SAE). The levels of autonomy for road vehicles are not described here, which
can be found on the SAE J3016 standard [9], and it is harmonised with I1SO standards as
ISO-PAS 22736 [10].

@ | (b)

Figure 2. (a) A structured terrain where traversable and non-traversable areas can be easily
distinguished. (Tallinn University of Technology parking lot) (b) Unstructured terrain where the
traversable terrain is ambiguous (Location near Lasnamde, Estonia).

The perception problem is currently being addressed by using various sensing
modalities and processing methods. Nowadays, most AGVs depend upon Light Detection
and Ranging sensors (LiDARs) and RGB colour cameras for localisation and environment
perception [8, 11, 12]. Even the first autonomous vehicle, ALV, has used a TV camera and
a laser scanner for terrain perception [7]. Different sensor modalities such as ultrasound
sensors and radars are also used in specific applications to detect specific obstacles
without being restricted to the RGB and LiDAR sensors mentioned above. Comprehensive
details about sensors and measurements used on various unmanned systems are available
in the reference [13]. Each of these sensors has its advantages and drawbacks. And some
of them are prohibitively expensive for commercial applications.
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Various terrain surfaces and conditions make it difficult for an off-road AGV to
navigate with LiDAR sensors and RGB cameras alone. One of such limitations with LiDAR
sensor-based perception is its inability to distinguish navigable obstacles such as grass
and non-navigable obstacles like rocks and other hard objects [14]. The visual similarities
between different terrain objects like construction rubble with painted objects may lead
to false object detections, affecting path planning. In industrial vision applications,
the Hue, Saturation and Values (HSV) colour model is used to overcome the issues such
as illumination variations, shadows, reflections, etc. [15]. The HSV colour model has been
used to detect traffic signs[16] and drivable roads[17] due to the advantages mentioned
above.

Not only monocular RGB cameras but also various other imaging technologies are in
use with mobile robots. Stereo cameras, infra-red cameras, omnidirectional cameras,
and event cameras are examples of them [13]. Besides RGB and monochrome vision
sensing technologies, spectral imaging is an advanced vision technology that combines
both imaging and spectroscopy [18]. The spectral sensor collects image data on
numerous spectral bands across the electromagnetic spectrum. Depending on the number
of spectral bands present in the image, spectral imaging is classified into different classes.
They are mainly Multispectral imaging (MSI), Hyperspectral imaging (HSI), and Ultraspectral
Imaging (USI) methods. MSI and HSI are the widely used spectral imaging methods in the
industry. Typically, MSI contains tens of spectral bands while HSI contains hundreds of
spectral bands of narrow bandwidths [19]. Each pixel of such image is a high-dimensional
vector that contains spectral reflectance in tens or hundreds of contiguous wavelength
bands within a specific wavelength range. This technology can provide more information
about the objects in the scene as it captures the reflectance on numerous spectral bands
or image channels.

Combined spectra of the reflectance variation in each spectral band form a
characteristic signature for each material which is the spectral signature. Such spectral
characteristics can distinguish various terrain objects with better accuracy than RGB
images. The spectral imaging technology initially appeared in the early 1970s with the
Landsat satellite program, where it used a multispectral scanning system (MSS)
comprised of visible and near-infrared spectral bands [20]. Spectral imaging is not limited
to the visible light range in the electromagnetic spectrum compared with the RGB vision
systems. Using appropriate wavelength ranges such as visible light, Near Infrared (NIR),
Short Wave Infrared (SWIR), and Medium Wave Infrared (MWIR), it is possible to capture
images that cannot be done using RGB cameras. Even though spectral imaging is widely
used in precision agriculture, remote sensing, and various other industrial domains, it still
finds little presence in AGV sensor suits used in mobile robotics.

1.1 Background and motivation

Multiple AGVs were introduced to the world from Estonia for package delivery [21, 22]
military and civilian applications [23]. And Tallinn University of Technology is actively
involved in research and development activities related to AGVs and UGVs. Ground
vehicle autonomy is one of the hottest research topics in robotics. Therefore,
improvements for the UGV perception based on hyperspectral imaging methods could
be a valuable contribution.

Hyperspectral/multispectral imaging systems for autonomous driving has appeared
in a few studies. Mainly for detecting a certain kind of obstacle that cannot be done
otherwise. It is due to the abundance of information contained in the hyperspectral
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image datacube. Typically, a hyperspectral datacube can be well over ~100MB in file size.
Pedestrian detection for self-driving vehicles is one such application where it uses a
multispectral camera [24]. Based on terrain classification research by Winkers et al., HSI
could be used for terrain perception by combining machine learning methods for image
analysis [25]. Ice, mud, and loose gravel are often challenging terrain conditions for
UGVs. In the reference [26], various imaging techniques were tried for mud detection.
It has been concluded that the wettest regions of the terrain can be identified using SWIR
wavelength range images, where wet mud from dry surroundings can be detected with
RGB colour cameras.

In hyperspectral imaging, the image datacube, also called a hypercube, contain
hundreds of spectral bands. These hypercubes often contain redundant data in most of
the spectral bands. Thus, it requires selecting an optimal number of image bands from
the datacube. Such band selection for terrain surfaces detection in various outdoor
environments is still a challenging task.

The purpose of computer vision in AGVs is for scene understanding. Thus, a smart
algorithm labels each pixel of an image, whether an RGB image or spectral image
hypercube, with a terrain class. Such pixel-wise image labelling is called Semantic
Segmentation [27]. Most of the existing scene understanding models in autonomous
driving use RGB image semantic segmentation. Since current research has drawn
significant attention for on-road autonomy, object detection and classification in
structured environments have been thoroughly explored. Thus, there are a significant
number of research publications on man-made object detection and semantic
segmentation. They cover both unimodal approaches with single sensor input and
multi-modal approaches by fusing multiple sensor inputs [28-30]. Hence, man-made
object detection is not the primary objective for this thesis and instead, it focuses on
detecting natural obstacles as they appear in their native environment. In contrast to 2D
image classification, a combination of spectral-spatial feature-based classification could
paint a more accurate picture of the terrain.

Self-driving vehicle manufacturers like Tesla, Inc already harnessing the power of
modern machine learning methods such as deep neural networks for object detection,
lane marking detection, etc. With state-of-the-art algorithms such as convolutional
neural networks (CNN), it has been possible to extract the essential visual features crucial
for autonomous navigation. Similarly, deep learning is becoming widely popular in HSI
processing in various application domains [31].

1.2 Problem statement and research objectives

Hyperspectral imaging has excellent potential in terrain object detection, thus improving
UGV perception, as explained in the previous section. Here are the research gaps found
out in current research related to HSI for terrain perception.

e Most of the feature selection and feature extraction methods for HSI are
developed based on various use cases. However, there has not been any such
feature selection/ extraction methods developed for terrain classification.
As autonomous vehicles have limitations in computational capabilities in their
computing hardware resources, the methods should be efficient. Therefore,
it requires developing a simple and effective feature selection algorithm for HSI
terrain classification applications. The computation power for the perception
system could be reduced by reducing the number of spectral bands in the images.
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The RGB imaging sensors work as the primary vision input in most of the ground
vehicles available nowadays. These RGB images are used in semantic
segmentation algorithms to classify various terrain objects, and these
algorithms require large amounts of accurately labelled image data. Manual
image labelling is a time-consuming and labour-intensive process, which hinders
large scale dataset creation. There is a need for an efficient method to minimise
the cost and effort of manual labelling.

Although hyperspectral imaging is a novel technology in computer vision, still it
finds little research effort put into spectral imaging to use this technology as a
visual input for terrain perception in ground vehicles by the research
community. There is a gap in terrain perception research to investigate the
possibilities to use HSI segmentation to augment RGB image segmentation.
Multispectral image semantic segmentation shows profound advantages over
RGB image semantic segmentation in biomedical applications. The use of
spectral images in the spectral-spatial classification method has not been
validated for unstructured terrain segmentation. And there is no data to assess
the effectiveness of spectral image based semantic segmentation accuracy over
RGB for unstructured terrains.

There are challenging environmental conditions such as black ice on driving
terrain or wet soil encountered by both on-road and off-road vehicles. Driving
on such terrain conditions poses a danger to both vehicles and operators.
Whether there is a possibility to detect such challenging environments using
spectral images should be explored.

Below are the main research objectives which will cover in this thesis.

1. Develop an effective band selection method to distinguish various terrain classes
in unstructured environments. The method should be computationally simpler
and efficient, thus enabling the outcome to implement on embedded computing
hardware platforms with low computing capabilities often used in mobile robots.

2. Introduce an efficient method for image dataset generation using HSI.

a.

Hyperspectral image pixel-wise classification in the spectral domain could be
used as labels for image datasets.

RGB images could be created from HSI.

Thus, compare the effectiveness of such segmentation vs manually labelled
image datasets.

3. Investigate state-of-the-art spectral-spatial HSI semantic segmentation networks
based on deep convolution neural networks for terrain semantic segmentation.
Draw necessary comparisons with RGB semantic segmentations.
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1.3 Thesis contributions

This thesis made the following contributions to address above mentioned research
questions.

1. One of the contributions of this thesis is an unsupervised band selection method
to extract a few spectral bands from a hypercube. The proposed method can
efficiently identify the most significant spectral bands for terrain image
classification. The method was validated by classifying various terrain object
classes found in off-road terrain scenarios (Publication I).

2. HSI pixel-wise classification using spectral data have been compared with RGB
semantic segmentation, which shows that HSI pixel-wise classification is more
accurate than that of the RGB semantic segmentation for terrain classes.
Therefore, it can be summarised as the HSI pixel-wise classification can be used
as ground truth labels for further semantic segmentation CNNs (Publication I1).

3. The capabilities of HSI imaging were demonstrated as an alternative way to
minimise manual image annotation for RGB image dataset preparation. The RGB
images generated from 9-band HSI datacubes using manifold alignment
methods proves that those images have a higher correlation to the actual RGB
images captured from the same scene. The results show that the approach can
be used effectively to train CNNs for RGB vision.

4. Demonstrated the effectiveness of HSI semantic segmentation in spectral-spatial
domains for terrain classification scenarios. Introduced encoder-decoder based
CNN architectures are highly effective in classifying such images trained with
small image datasets.

The scope and boundaries of this thesis are as follows. Even though the work mainly
focuses on ground vehicle application in off-road scenarios, it is not focused on a specific
vehicle platform. The HSI processing and classification methods proposed in this thesis
are not limited to ground vehicle navigation applications but equally can be applied to
various other application domains.

This study was carried out at Tallinn University of Technology from 2017 to 2021.
The outcomes of this doctoral research have been published in several IEEE conference
proceedings, including MSM2020 and REM2019. And they are available on IEEE Xplore.
The most relevant articles to the thesis are attached in the Appendix.

1.4 Research methods

The end goal of the thesis is to produce research outcomes that are feasible and viable
to implement in real-world robotic applications. And the cost of the components used in
the research is an important factor for future commercial viability. The hyperspectral
cameras in the VNIR wavelength range are commercially cheaper than other cameras
beyond the VNIR range. Although beyond the VNIR range, SWIR might provide more
information of the scenes that cannot be captured in the VNIR range, it would limit the
viability of real-life implementation. The hyperspectral imaging sensors in VNIR spectral
range are based on silicon semiconductors, while the SWIR range is made of expensive
semiconductors such as InGaAs, making those SWIR sensors pricey [32]. Therefore, this
study focuses on hyperspectral imaging cameras in the VNIR wavelength range, which
spans 400 — 1000 nm.
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Following cameras were used in this research for HSI datacube acquisition:
e Ximea xiQ MQ022HG-IM-LS150-VISNIR camera from Ximea GmbH [33]
e Specim IQ mobile hyperspectral camera from Specim Spectral imaging Ltd
(34]
e Resonon Pika Il VNIR hyperspectral cameras from Resonon Inc [35]

Hyperspectral images captured using a portable camera tripod and mounting the
hyperspectral camera at around 1,0 m height mimic the camera position of an actual
AGV. The hyperspectral imaging sensor calibration was performed in-situ before taking
images using the white reference calibration target provided by the camera
manufacturer. The HSI hypercubes containing off-road terrain scenarios were captured
at various locations in Estonia.

The RGB colour space will be used to compare the HSI perception methods.

All the algorithms, program codes, software test tools for this research were
developed by the author. Furthermore, the experiments were carried out using the
captured hyperspectral datacubes. MATLAB 2020b and its libraries were used as the
primary programming tool, while Python and Visual C# programming languages have
been used to develop software tools for various experiments.

The main processing computer is an HP Z4 workstation with Intel Xeon W-2123
3.6GHz Central Processing Unit (CPU), 32GB Random Access Memory RAM, and Nvidia
P4000 GPU with 4GB RAM as hardware configuration.

1.5 Thesis structure

Chapter two of this thesis covers the existing literature review regarding state-of-the-art
of terrain perception and spectral imaging. The same review further covers hyperspectral
band selection approaches, classification methods, and semantic segmentation
approaches on autonomous vehicle perception. The novel band selection method
describes in the third chapter, where it presents experimental results and comparison
results of image classification with existing methods. Hyperspectral images could be
visualised in RGB colours to use on RGB semantic segmentation. The fifth chapter contains
terrain segmentation using developed band selection methods and a comparison of RGB
image semantic segmentation for off-road scenarios. The seventh chapter concludes the
thesis with a summary of each contribution. The future research directions are also
presented included in this chapter.
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2 Literature Review

2.1 Terrain perception

Terrain perception is the core technical challenge for autonomy, and this topic has been
in research for several decades. From early experimental autonomous vehicles, imaging
and laser scanning were integral to terrain perception [7]. The RGB images and LiDAR
point clouds are the most dominant inputs for terrain perception [36—39]. In addition to
RGB imaging, several studies have explored the advantages of RGB-D imaging methods
[30, 40, 41]. The majority of them focused on structured-environment perception, while
a few studies went into unstructured environment perception.

On the contrary, an unstructured terrain object recognition method that has been
presented by Erkan et al. [42] is purely based on vision sensors. As opposed to the impact
of depth-sensing for off-road scene classification, Holder et al. suggest that RGB-D does
not provide a significant advantage for detecting hazardous off-road terrains by taking
several off-road datasets, including water puddles [43]. Alternatively, stereo vision for
off-road object detection has been in multiple studies, including Defence Advanced
Research Project Agency’s Grand Challenge competition in 2005 [44], in agricultural
environments [45] and a few other off-road autonomous driving projects [46]. Moreover,
several studies have dived into beyond the visible light wavelength range imaging such
as SWIR, MWIR and Long-Wave Infrared (LWIR) [26, 47, 48]. Objectives of such
investigations were to detect various hazardous objects, hazardous terrains, safely
navigate under adverse weather conditions and achieve passive terrain perception for
sensitive applications.

The MSI/HSI based perception research attracted less attention than the RGB
imaging-based perception research over the years. Here is a summary of recent
developments in spectral imaging in terrain perception for autonomous navigation of
ground vehicles.

One of the early research work into spectroscopic imaging for terrain perception had
been realised using Acousto-optic tunable filters (AOTF) along with a Charge Coupled
Device (CCD) camera in the late ‘90s [49]. Apart from the AOTF, polarising filters have
been used in the same research to detect road hazards such as wet and icy roads.

For a natural terrain classification task, a multispectral imaging-based technique with
machine learning has been used by Namin et al. [50]. The authors have used VNIR
spectral range multispectral camera with seven spectral bands where they achieved a
classification accuracy of 92 % and 89 % with SVM and Adaboost classification methods.
The number of terrain classes used for the classification was ten which include natural
and man-made terrain objects. Winkens et al. have proposed an HSI approach using a
snapshot hyperspectral camera with 16 spectral image bands for drivable and un-drivable
terrain detection. Even though the camera spectral range is limited to 470 — 620 nm,
the authors presented successful results for a terrain classification of four classes using
the Random Forest algorithm [51]. A four-channel multispectral camera has been used
in vegetation and bare soli detection within the visible light wavelength range.
The authors suggest that the Normalised Difference Vegetation Index (NDVI) index is
successful vegetation and soil differentiation measure [26]. The research works
mentioned above fulfil the needs for scene understanding further ahead of the vehicle,
which would improve long-range path planning.

Long-range path planning, and nearby ground analysis for the traversability around
the vehicle, are both important tasks in autonomous driving. The ground surface texture
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around a vehicle captured using a mosaic hyperspectral camera with 25 image bands
organised in a 5x5 mosaic pattern has been used to project the texture to the ground
surface height map created using 3D LiDAR. Using the method suggested by Fuchs et al.,
the navigation system can map the terrain around the vehicle. The proposed approach
suggests that semantic analysis of the environment can help detect and avoid risks posed
by terrain right ahead of the vehicle [52].

2.2 Semantic segmentation of terrains

2.2.1 Overview of semantic segmentation

For AGV navigation, drivable and undrivable terrain should be identified by the
perception systems, which typically comprised of RGB cameras and LiDAR sensors,
as mentioned before. Scene understanding based on images is the objective of semantic
segmentation. Assigning each image pixel with a certain category (class) label or semantic
label is called semantic segmentation in computer vision. Semantic segmentation helps to
locate the specific objects in their exact spatial locations in the image. In terrain semantic
segmentation, the classes or categories are different terrain types such as gravel, dirt,
mud, grass, etc. Such image segmentation is a common classification type problem in
computer vision. State-of-the-art semantic segmentation methods are mostly CNN
algorithms based on deep learning. The deep neural networks require a large number of
images and labels as inputs.

With the introduction of Fully Convolutional Networks (FCN), the deep learning
models revolutionised semantic segmentation with remarkable accuracy for RGB images
[53]. During the past several years, deep learning methods evolved rapidly. As a result,
there are numerous architectures introduced with various features. A deeper comparison
between major network architectures, such as VGG, ReNet, ResNet, DenseNet, ResNeXt,
and MobileNet, is discussed in a review article published by Hao et al. [54]. The same
article discusses various novel methods based on the above CNN backbones, real-time
methods, weakly supervised methods, popular public datasets, evaluation matrices of
semantic segmentation, etc. A comprehensive description of the DCNN constituents such
as convolution layers, pooling layers, fully connected layers, activation functions is
presented by Kaymak et al. in their semantic segmentation review article, which is
oriented towards autonomous driving applications [27].

The “2.6 Hyperspectral image classification methods” section will discuss the
multi-layered image semantic segmentation methods.

Fully supervised learning methods proven to produce the highest accuracy in semantic
segmentation, which requires accurately annotated image data labels. Even though
there are software tools for image labelling, manually annotated images are the most
accurate. Instead of strongly annotated label images, semantic segmentation accuracy
has been investigated using a large number of weakly labelled and a small number of
strongly labelled images showing 69 % loU for the PASCAL VOC 2012 benchmark.
Compared to a strongly annotated image dataset that yielded 70,3 % loU, the weakly
annotated fell short by a 1,3 % margin [55]. In this case, the weakly annotation was
locating the objects on the image with bounding boxes that shows the coarse object
locations.
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2.2.2 Unstructured terrain semantic segmentation

Semantic segmentation of unstructured terrains is a complex task using RGB images due
to numerous classes in the scene, which are of a mixture. When it comes to on-road
terrain semantic segmentation, most of the classes, objects are man-made, such as
roads, road signs, buildings, lamp posts, other road vehicles, etc. In terrain perception,
most scene understanding models are developed for structured terrains or regular urban
driving environments.

In contrast to the structured terrains, literature for unstructured terrain semantic
segmentation is rather sparse. As a result, this review is based on three research articles
published based on unstructured terrains [56-58]. There are different types of
unstructured terrains. They are either urban driving environments that lack the structure
or fully off-road terrains. Most developing countries have less structured driving roads,
even in urban areas, which resembles unstructured terrains. Those unstructured terrains
comprise gravel roads, gravel sidewalks, muddy spots, and water puddles, etc. Semantic
segmentation of such terrains has been introduced with modified DeeplabV3+ DCNN by
Baheti et al. and has been tested with India Driving Dataset (IDD), achieving 68,61 mean
Intersection over Union (loU) [56]. The same authors proposed another DCNN
architecture called Eff-UNet for the same task, tested on the above mentioned IDD [57].
The Eff-UNet architecture is based on EfficientNet[59] encoder and UNet [60] decoder
forming encoder-decoder architecture. With this architecture, the authors have achieved
an accuracy of 62.76 mean loU for IDD. The encoder-decoder architectures manifest that
they are the most outstanding DCNN architectures so far to perform semantic
segmentation. Following encoder-decoder architectures, Sgibnez et al. have proposed a
lightweight DCNN architecture for an off-road terrain semantic segmentation [58].
The authors have experimented with multiple DCNN options as backbones for their
encoder-decoder architecture based on ResNet, MobileNetV2, ShuffleNetV2 and
EfficientNet-BO. All the reviewed articles above are based on RGB images as inputs.

There are several challenges for semantic segmentation performance when those
classification algorithms run in real-time in real-world applications. The variation of
environment lighting conditions, weather, camera parameters and shadows can greatly
influence the classification outcome [61, 62]. A robustness assessment method for
semantic segmentation was proposed by Wen Zhou et al., which uses a LiDAR. However,
the proposed method has been validated on structured terrain conditions, where they
validated road class under various environmental conditions [61].

U-Net Architecture

The U-Net architecture was introduced to biomedical image segmentation in 2015 [60].
A higher semantic segmentation accuracy with a smaller dataset is the most significant
advantage of this architecture. Data augmentation has helped achieve the claimed
accuracy level, which the authors have demonstrated the network accuracy of 92% and
77.6% using two biomedical image datasets containing 35 and 20 annotated training
images, respectively.

The U-Net architecture has been built with a contracting encoder branch and an
expanding decoder branch. Two convolution operations with Relu activation are used in
every layer of the network. Convolution input layers are not padded where every
convolution reduces the size of the output. Since it uses 2 x 2 max pooling and
up-convolutions, the input images should have even X and Y dimensions. The skip
connections help recover some of the fine details while decoding. The U-Net architecture
is illustrated in Figure 3.
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Figure 3. U-Net architecture for biomedical image segmentation [60].

2.2.3 Image annotation

Various tools have been developed to minimise the effort it takes for semantic image
annotation, such as Supervisely [63], SuperAnnotate [64], MATLAB Image Labeller [65],
LabelBox [66], LabelMe [67], and Microsoft Visual Object Tagging Tool (VoTT) [68]. These
applications offer various shape matching tools such as circles, triangles, rectangles, and
other polygons to define the object’s boundaries in the image. The polygon-based
methods do not accurately define the object boundaries.

Image boundary-based semi-automated annotation tool proposed by Qin et al. claims
that it reduces manual clicks to select image boundary points by 73%. The authors use
edge detection and splitting algorithms to cluster the image regions, followed by a few
manual selection clicks to annotate the image. This approach does not depend on any other
input to assist annotation [69]. A semi-automated annotation tool called “EasyLabel” was
proposed by Suchi et al. for an indoor object dataset [70]. Their method is based on
RGB-D vision and is suitable for pixel and object-wise labelling of indoor objects. With
the help of an object detector model and 3D layout estimator, Reza et al. have proposed
a video data automatic annotation method. Their application is also focused on indoor
scene labelling [71].

Based on the existing literature, the outdoor scene annotation methods have not
gained enough attention.

2.3 Spectral imaging

Hyperspectral imaging technology is being successfully used in various industrial
application areas such as precision agriculture [72, 73], food quality inspection [74-76],
pharmaceutical production [77, 78], crime investigation [79, 80], waste sorting [81, 82]
and so on. However, it is still finding little presence in autonomous driving.
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In contrast to RGB imaging methods, MSI and HSI methods offer more information
about the objects in the scene. The RGB imaging method provides only the spatial
information of the scene in comparison to MSI or HSI. Moreover, RGB imaging only
provides information within the visible light wavelength range, 400 — 760 nm. On the
contrary, the MSI and HSI methods provide both spatial information and spectral
information. These two methods are used within and beyond the visible light wavelength
range. Below Table 1 summarises the capabilities of each image acquisition method
based on the information available in the image relative to each other.

Table 1. Main differences between HSI, MSI, Spectroscopy and RGB imaging. Classification bullet
rate (1-3) is a relative representation of the information available in each acquisition method [83].

Imaging method Spectral information Spatial information
Hyperspectral imaging | eee eee

Multispectral imaging o0 oo

Spectroscopy eoo °

RGB imaging ° YY)

Based on the number of spectral bands in the sensor, the constructions of MSI and
HSI sensors and the spectral cameras is different. So do the image acquisition methods.
Most MSI sensors are constructed with bandpass filter deposition in a mosaic
pattern[84](85] for single-sensor cameras. There are multi-sensor cameras built using
several single band sensors combined as an array [86]. The HSI cameras can be based on
tunable filters, line scan sensors, snapshot imaging sensors. Line scan with push-broom
method is widely used for HSI image acquisition, which differs from the area scan method
used in RGB imaging and MSI. Line scanning is a slow process compared to the area scan
that restricts the capture of images of dynamic objects. Different spectral image
acquisition modes are discussed by Li et al. in their spectral imaging review article for
biomedical imaging [87]. Even though HSI and MSI provide more information about the
scene, both technologies have characteristic issues.

2.4 Dimensionality reduction in hyperspectral images

The HSI data cubes contain a large amount of spectral data in hundreds of contiguous
spectral bands. Therefore, it provides high-resolution spectral characteristics of the
object under investigation than other imaging methods. Even though there are
advantages of high-resolution spectral characteristics, there are drawbacks as well.
A large amount of data makes datacube processing computationally expensive.
Moreover, the spectral data in contiguous bands are often redundant and correlated.
Such a large amount of data causes the Hughes phenomenon. The Hughes phenomenon
is when the classification accuracy increases by increasing the number of spectral and
then drastically drops when it reaches a certain number of features in small sample size
[88, 89].

Due to these reasons, there is a need for selecting optimum spectral bands which
contains sufficient information to characterise the objects under investigation. This process
is called dimensionality reduction, which transforms high dimensional data into low
dimensional space. There are two different approaches to address this problem. One is
feature extraction, while the other is feature selection or band selection [90]. The two
methods are significantly different from each other. Feature extraction methods will not
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contain original spectral information after the dimensionality reduction due to data
transformation during the process [91].

On the other hand, the feature selection approach does not alter the original pixel
data in the hyperspectral data cube, thus preserving the intrinsic information [91].
So that, one of the goals of this thesis is to find out the most suitable band
selection/feature selection method for a terrain classification task. By selecting a limited
number of spectral bands, it would be possible to develop an optimised multispectral
sensor for UGV imaging applications, eventually enhancing the classification speed.
The feature extraction methods are not suitable for this thesis work as they will not
maintain the correlation between original spectral bands and the transformed data.

For autonomous ground vehicle applications, CNN training using numerous wavelength
band groups according to terrain classes is a complex, labour, and time-intensive task.
Mainly due to a large number of terrain classes available in unstructured terrain
environments. The objective of band selection or feature selection is to identify the
optimum spectral bands which provide the most distinctive and informative spectral
characteristics to achieve the highest classification accuracy [92]. Numerous band
selection methods have been introduced by the research community based on various
applications and imaging conditions. These band selection methods are categorised into
six different groups as ranking-based, searching-based, clustering-based, sparsity-based,
embedding learning-based, and hybrid-scheme based methods [93].

The supervised band selection methods perform superior to the unsupervised
methods [94]. However, in the case of terrain classification for unknown environments,
supervised methods require retraining for new terrain object classes, which makes it less
desirable over unsupervised band selection methods. Therefore, the ideal band selection
method should be either an unsupervised or a semi-supervised method that uses less
labelled data. Nevertheless, supervised methods are widely used in HSI band selection.

Most band selection methods are benchmarked with widely popular public datasets
such as the Indian Pines dataset [95], Salinas valley dataset, and Pavia University dataset
[96]. These datasets are mostly used in remote sensing research. Indian Pines dataset
has been collected by AVIRIS sensor over North-western Indiana, which contains 224
spectral bands in visible/near-infrared wavelength range of 400 — 2500 nm. The dataset
contains 16 classes [95]. Salinas valley scene also collected by AVIRIS sensor with 224
spectral bands spanning from visible —infrared wavelength range. The image contains 16
different classes [97]. Pavia dataset has collected over University of Pavia, Northern Italy
by ROSIS — 3 sensor which contains nine different classes. The dataset contains 103
spectral bands in the 430 — 860 nm visible light wavelength range.

Unsupervised dimensionality reduction methods
Unsupervised band selection methods are developed based on different criteria. Mostly
used criterion is the correlation between different spectral bands.

The Principal Component Analysis (PCA) methods transform data from a high
dimensional space into a lower-dimensional space [98]. The first few dimensions of the
resultant PCA conversion contains most of the information. However, the resultant
image keeps the important characteristics of the dataset while dimensionally reducing
PCA datacube. After PCA, the resultant image does not reveal its original intrinsic image
band structure. This method is older and widely used in hyperspectral image dimensionality
reduction as a benchmark.

Manifold learning is another non-linear dimensionality reduction approach.
The spectral-spatial manifold reconstruction preserving embedding method has been
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proposed by Huang et al., a novel manifold learning method. Their method proposes a
novel distance criterion called spectral-spatial combined distance as the distance
matrice. In this method, the HSI data is filtered using a weighted mean filter as the first
step. Then, it uses spectral-spatial combined distance matric to select spectral-spatial
neighbours. A spectral-spatial adjacency graph is constructed using graph embedding in
this method. This method would reveal the intrinsic manifold structure [99].

The similarity measure is one of the criteria for band selection, where it uses mutual
information of spectral band and a reference band to select the most suitable spectral
bands.

Supervised learning-based band selection methods

There are numerous band selection techniques based on the supervised learning
method. Some of them use state-of-the-art CNN algorithms, which outperform most of
the classical methods.

Band selection based on band-wise independent convolution and hard thresholding
technique has been incorporated into CNN by Feng et al. The proposed method
comprises band selection, feature extraction and classification [100].

A CNN based band selection method has been presented by Rui C et al. called
CM-CNN, in which they propose a new structure in the neural network called
contribution map. This method allows the extraction of discriminative spectral bands
from the dataset. However, according to the published experimental results, the proposed
CM-CNN method yields higher classification accuracy when selecting more than 40
spectral bands for the Indian Pines dataset and more than 30 spectral bands for the Pavia
University dataset [14]. Unlike the other NN based methods, this method gives the most
discriminative spectral bands while it cannot achieve higher classification accuracy for
fewer number of (< 20) spectral bands.

Attention-based CNN method for HSI band selection could achieve comparable

classification results with SVM. The attention-based CNN algorithm has been tested and
validated on the Salinas valley dataset and Pavia university dataset. In that study,
the researchers have compared the classification accuracy of three different CNN
models, which did not show any statistical significance [101].
Band selection based on CNN with distance density proposed by Zhan, Y et al. show
a better classification accuracy with a higher number of spectral bands. Especially the
proposed BSCNN+ DA, which uses data augmentation with distance density calculation,
outperforms all the other methods in their research. The most significant achievement
in their study is that the method initially uses all the spectral bands in the datacube to
train CNN. Then use distance density-based bands reduced datacube using Rectified
Linear Unit (ReLU) activation function to iteratively select bands classifying the image and
estimate the precision of each method to extract most significant spectral bands without
retraining the CNN for every iteration. As the authors mentioned in their publication,
their method is not effective when the number of selected spectral bands is less than 30.
The other traditional methods can easily outperform the BSCNN+DA method if the
selected spectral band count is less than 30. However, their method has other significant
drawbacks as it needs to test all possible band combinations for every band partition in
the datacube until it finds the optimum bands set. In other words, it requires a large
number of iterations to identify the suitable bands, which makes their method
computationally expensive [91].
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2.5 Hyperspectral image visualisation

In order to train RGB semantic segmentation neural networks, it is required to prepare
image datasets with RGB images and their ground truth. The ground truth is the actual
pixel class which comes from image pixel-wise classification. The RGB image needs to be
generated from the HSI datacube. The goals of such an RGB image generation method
should be consistent rendering, edge preservation, computational ease, and natural
colour palette, which are the most relevant in this research context [102].

Selecting three image bands from red, green, and blue wavelength ranges and
mapping them to RGB channels is the simplest method to generate RGB images from HSI
[103].

The hyperspectral image visualisation method proposed by Su et al. is based on
visualisation orientated band selection followed by band similarity computation. In this
case, they select three bands to produce trichromatic visualisation from three
wavelength ranges for red, green, and blue, respectively. They use a band selection
method that gives fewer spectral bands for each colour wavelength range, which is
subsequently used to calculate the correlation coefficient to determine the similarity
between the bands in the same wavelength range to choose one image band. Also,
it looks for the dissimilarities between the selected bands in the other colour wavelength
range, which can add most of the information into the final visual representation [104].

Several methods have been developed on filtering techniques [105, 106]. One of them
is a most recent method based on PCA with edge-preserving filtering, which claimed to
have better image contrast and original details of the image [105]. Similarly, using PCA
and edge-preserving filtering, the bilateral filtering-based image fusion method has been
proposed by Kotwal and others. Their method uses band weights at each pixel for image
fusion [106].

Another image visualisation approach is the manifold alignment technique. In this
case, the RGB images captured from the same or semantically similar site to the location
where HSI images capture, the manifold alignment approach can transfer colour
information from RGB images to HSI visualisations. Fusing the hyperspectral image with
a high-resolution colour image using manifold alignment needs a few matching pixel
pairs that present the same object in the scene [103].

2.6 Hyperspectral image classification methods

In hyperspectral imaging, achieving the highest classification accuracy is the main
objective. There are various methods have been developed for hyperspectral image
classification in various application domains. One of the challenges in HSI classification is
the difficulty to extract of endmembers. The endmember is the pure signature of a
particular material (object) class [107], often discussed in chemical/mineral analysis and
other fields. The objects found in nature do not occur in their pure state, which adversely
impacts classification accuracy.

2.6.1 Pixel-wise classification
Most of the HSI classification methods are developed for pixel-wise classification. From
statistical methods to modern DCNN methods developed in the context of spectral
signature-based discrimination.

Multilayer perceptron (MLP) networks are the simplest and the basis of artificial
neural networks, which has been in use with diverse applications. These feed-forward
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NNs were introduced for HSI classification decades ago. Even though they are simple,
they can achieve high accuracy in hyperspectral image classification [108]. After the band
selection, the hypercubes contain fewer spectral bands, which can efficiently classify the
image despite some inherent pitfalls with the method.

Various CNN based classifiers have been developed in recent years. There are several
feature extraction CNN architectures proposed in the reference [109]. The authors of the
publication have proposed 1-D CNN, 2-D CNN and 3-D CNN for feature extraction and
image classification.

The 1-D CNN is a single-pixel hyperspectral image classification network. The depth
dimension of the datacube is the spectral distribution, which is 1-D image input for the
NN [110]. These networks also contain convolution layers, activation function layers,
and pooling layers. As mentioned before in the supervised band selection methods
section, the distance density based band selection method uses 1-D CNN for classification
[91]. Furthermore, the 2-D CNNs look into spatial features of each layer while 3-D CNNs
learn both spectral-spatial features [109].

2.6.2 Spectral-spatial classification

Hyperspectral image classification based on both spectral-spatial features is the most
appropriate classification approach for terrain perception. As it is mentioned before,
the endmember identification for terrain object classes is not a viable solution. Since
image pixels in the hypercube may have mixed with noise and neighbouring spectral data
cause spectral mixing, the classification result based on spectral signature may not
always be accurate. A combination of spectral-spatial features can overcome such
complications. In contrast to the classical methods based on pixel-wise spectral data
classification, the spectral-spatial combination looks at both spatial image features on
two spatial dimensions and spectral image features on the third dimension. Therefore
spectral-spatial combined classifiers perform better than pixel-wise spectral image
classifiers [111]. There are numerous spectral-spatial HSI classification methods have
been published so far. The earliest spectral-spatial joint classification of HSI was
researched several decades ago, where Landsat imagery data were classified using
neighbouring pixel patterns and the Markov approach [112].

However, HSI classifications related to terrain perception for autonomous navigation
applications is nearly non-existent compared to remote sensing applications.
The spectral-spatial classification methods reviewed in this state-of-the-art review are
based on the methods developed for remote sensing applications and other multi-band
image classification applications such as medical image classification. The key criterion
for the optimal image segmentation is the computational time, and classification
accuracy of the method benchmarked on each domain’s popular datasets.

The state-of-the-art classification architectures are mostly DNN architectures.
In the remote sensing application domain, the classification methods are mostly
benchmarked on popular remote sensing datasets such as Indian Pines, Pavia University,
KSC, and Salinas datasets. The most efficient models in remote sensing are 3D CNNs
which achieved the highest classification accuracies, well over 95% for popular datasets
and with the lowest processing times [113-115]. These architectures use image
patches or smaller windows of the image as inputs to the classification network. Thus,
the resultant is a pixel class that gives the centre pixel class of the input patch as the
outcome.
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2.7 Chapter summary

There are various band selection methods available for HSI. However, they are optimised
for various applications. Those methods were developed without aiming to use
embedded computing hardware, which can be used on an AGV. Therefore, it is needed
to develop an efficient band selection method aimed at discriminating terrain surface
classes. Based on the research, the data sparsity-based methods are simpler yet effective
for band selection. Thus, novel band selection should be based on the data sparsity-based
method.

The RGB image ground truth labelling is still being done by manually using various
labelling software tools. However, it is a costly process to generate a large image dataset.
The possibilities to use hyperspectral imaging to assist in identifying the ground truth has
not been explored. In the situation of HSI use in terrain segmentation, most of the
perception might still be dependent on RGB imaging due to faster classification speed.
Under such conditions, there will be a need for RGB semantic segmentation CNN training
for unstructured terrain classification cases. Due to the difference in spatial resolutions
of HSI and RGB images, there might be a need for image labels for both cases separately.
As some CNN models will not work with varying spatial resolutions, creating two image
datasets would be difficult due to the intensive manual work required for such operation.
There has not been any research on that area to utilise HSI based CNN model for RGB
classification. Such development needs to make RGB images from HSI datacubes.
The RGB image generation from HSI in unstructured terrain context also has not been
explored before.

The U-Net DCNN architecture has proven successful in semantic segmentation with a
limited number of training samples. Furthermore, the U-Net architecture accommodates
multi-channel images, which resembles HSI datacubes. Since the hyperspectral dataset
in this research is not a large image dataset, the U-Net architecture would be the most
appropriate solution for HSI classification. There are spectral-spatial segmentation
models that have been developed for multi-layered images. Still, those techniques have
not been widely applied in HSI image classification for autonomous vehicle terrain
perception scenarios.
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3 Band Selection Method for Terrain Hyperspectral Imaging

3.1 Overview

One of the objectives of this thesis is to investigate band selection methods that can be
used to reduce the number of spectral bands of HSI datacubes while preserving intrinsic
characteristics. The suitability of the method should be evaluated based on its performance
in unstructured terrain classification applications. According to the literature review in the
preceding chapter, numerous band selection techniques are available for various
applications. The method proposed in this chapter is similar to the pooling operation
commonly used in CNN algorithms.

The experimental unstructured terrain datasets were acquired using Specim 1Q mobile
hyperspectral camera. These datasets represent off-road terrain in Estonia as this
research focused on off-road terrain classification.

Figure 4. The RGB image of the terrain HSI dataset.

3.2 Methodology

The concept of the band selection method is to use the pooling operation in the spectral
axis. Thus, detect the most significant peaks from each pooling kernel and extract distinct
spectral bands.

The dataset was calibrated for relative reflectance using white and dark references
taken while capturing the image. The data cube contains 12-bit resolution reflectance
data for each band. Therefore, the calibrated image was kept with the same resolution.
In (1) I; denotes the calibrated reflection intensity at i" band while I,; is the reflectance
of the original image at i*" wavelength band. Similarly, W; and D; denote the white
reference reflectance and dark reference reflectance at the respective band.

I. = 4095 X (M) (1)
' W;— D,
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The objective of band selection is to extract a certain number of spectral bands which
characterise the objects in the scene to define spectral bands for a multispectral sensor.
As the first step, it is required to define the desired number of spectral bands, i.e. 9, 16
or 25 bands.

The number of pooling iterations is calculated based on the desired bands count,
together with the size of the pooling window for each iteration. A hyperspectral image is
a 3D datacube with height (h) and width (w) as spatial dimensions while the number of
bands on the third dimension or spectral dimension. Since band selection is performed
on the spectral axis, it is required to unfold the image. If the image contains only a few
classes that are necessary to distinguish, then the entire datacube could be unfolded and
used to find out the characteristic spectral bands. On the other hand, if the datacube
contains various objects which do not need to be distinguished, then the classes of
interest should be selected from the images.

After unfolding, it is a stack of pixels with spectral distributions. The HSI images used
in this chapter have 204 spectral bands, and each pixel’s spectral distribution shows the
reflectance intensities for all 204 bands.

The original data cube columns are converted into rows of the modified image as in
Figure 5. The purpose of unfolding is to perform pooling operations only on spectral data

instead of spatial data.
,V

7

hxw

Figure 5. Spectral data cube unfolding.

Max Pooling
This method finds the largest feature in the pooling kernel. The kernels are chosen as
non- overlapping. Max reflectance of the filter is calculated using (2).

Yinax = maXi—o,. n,j=0,.w Xi,j (2)
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Min - Max Pooling (Proposed method)

In contrast to the max-pooling method, the min-max pooling method involves searching
for the local minima and maxima (local extremum) in the pooling kernel. Peaks and
valleys or the significant changes in the reflectance characteristic curves are the most
useful spectral features for band selection. Therefore minimum points in the curve or
valleys need to be taken into consideration too. This method searches for both minima
and maxima in the current nt" kernel. The minima are calculated using (3).

Yinin = MiNi=o,hj=0,..w Xij (3)

nt | (nt+1)n

Spatial axis

Spectral axis ——»

»
>

n* kernel (m+1)* kernel

Reflectance

L.

Band mrmi;ar
Figure 6. Min-max pooling method.

Similarly, maxima and minima for the (n + 1) kernel will be calculated using the
same equations (2) and (3). Find the maxima and minima coordinates in the spectral axis,
which are the band numbers. The adjacent gradients are calculated between three
consecutive extreme locations. Depending on the calculated gradient differences between
extreme points, the band of either maxima or minima will be selected from the partition.

In this algorithm, let the consecutive points be p1, p2 and p3 and the gradients of
plp2 as ml, p2p3 as m2. Figure 6 shows how these points are located on the spectral
axis. If the gradient difference is more than 0.15, which was obtained empirically, the
point p2 will be more significant in the kernel: otherwise, pl is more significant.
The vector B is taken from (4). Below coefficient, € is obtained empirically and depending
on the classification accuracy for chosen classes. For the terrain classification, the € was
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chosen as 0,15. After obtaining band vectors for all n number of samples which is the

number of pixels in the image, the maximum occurrence bands will be taken as the final
band set.

2, ifm2—ml>¢

B = {p f . (a)

rl, otherwise

This gradient search technique ignores the band with low reflectance intensity if two
similar points lie on consecutive bands. Even though it can catch subtle points in the
spectral signature, it has a downside over max pooling. This method takes considerable
computing time as it requires calculating gradients in each iteration.

Single hyperspectral datacube often does not contain all the terrain classes. Therefore
multiple datacubes are used to extract training data. Instead of using entire datacubes,
a few image patches representing each class are selected and implemented the
above-explained method. The spectra of two selected terrain classes, trees and
water, are illustrated below in Figure 7 with different band counts. The thick blue line
corresponds to the average spectrain 9, 16 and 25 bands characteristic curves, while the
thick black line shows average spectra for the 204 bands characteristic curve of the
terrain class.
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Reflectance characteristics of Tree class.
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Figure 7. Spectral characteristics of Tree and Water terrain classes.

Apart from the proposed method, another method introduced by different group
researchers is used in the experiments for comparison. It is the Distance density + CNN
method [91]. The selected spectral wavelength bands for each method are in Table 2.

The selection of 9, 16 and 25 spectral bands is based on the possibility to develop a
custom multispectral sensor. When constructing such a multispectral sensor, the
bandpass filters are deposited in a mosaic pattern, a square matrix. The HSI acquisition
uses the line scan method, while the MSI acquisition uses a much faster area scan
technique. MSI classification is faster than HSI due to the fewer spectral bands in the

image that can be used in AGV applications for faster processing, which leads to achieving

real-time terrain scene classification.
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Table 2. Selected spectral bands from various band selection methods.

Number of bands | Method Spectral bands
9 Min-Max Pooling 2,26,46,70,96,117, 139, 162, 190
16 Min-Max Pooling 2,15,27,38,50,63,76,87,99, 111, 124,
137, 148, 160, 173, 189
25 Min-Max Pooling 2,11, 19, 27, 34, 42, 50, 58, 67, 75, 83,
91, 98, 107, 114, 123, 131, 139, 147,
155, 163, 172, 180, 188, 198
9 Distance density + 2261127134162 168 174 184 192 195
CNN
16 Distance density + 2654114121 125 149 154 158 166 180
CNN 186 191 192 196 197 199
25 Distance density + 1517 57 71 112 118 123 125 136 143
CNN 154 163 164 169 171 172 175 180 183
184 185 187 188 191 192 200

3.3 Classification method

A supervised machine learning method is used for HSI classification. The HSI classifier in
this task is a spectral-spatial CNN model, and it will be referred to as SS_CNN throughout
this thesis. The classifier is as follows. The image input layer accepts 5 x 5 pixels spatial
resolution and d number of channels. It is a 5 x 5 pixels window sliding over the image and
classifying the centre pixel of the sliding window. After the input image layer, there are two
convolution and Relu layers. Both convolution layers contain 3 x 3 kernels and 16 filters.
The second Relu layer is followed by a fully connected layer and a softmax layer, classifying
the pixels according to the number of classes. The architecture is described in Table 3.

Table 3. CNN classifier architecture for HSI pixel-wise classification.

CNN architecture
Layer In cl rl c2 r2 fc softmax | out
Kernel size, | 5x5 | 3x3, 16 3x3, 16 d
Filters filters filters

In this pixel-wise classification method, the training data are individual image pixels,
and all the training pixels are collected from the same image. As shown in Figure 8,
the small patches of pixels are extracted for training and validation.

Figure 8. Places of the image where training sample pixels captured.
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3.4 Results

Below, Figure 9 shows the classification results for the terrain data set in Figure 4 using
SS_CNN classification. The presented test image contains nine terrain classes. Three
different band counts are used to create minimum band images and perform image
classification. According to Figure 9 classification image results, the three different band
variants show similar visual outcomes. Same image patch coordinates are used to extract

training data in all the test cases.

RGB colour composite image of HSI
terrain dataset

e )2 Sl
Classification result for 9 bands using
Min-Max Pooling

Classification result for 25 bands using

Min-Max Pooling

— N
.
[ j

Ground truth of the dataset

A o g
Classification result for 16 bands using
Min-Max Pooling

Figure 9. Ground truth and classification results for each band set.
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Table 4. Classification pixel accuracy for different numbers of spectral bands.

Terrain 9 bands 16 bands 25 bands Legend
class Precision | Recall | Precision | Recall | Precision | Recall
Undefined | O 0 0 0,02 0 0
Grass 0,46 0,81 0,47 0,83 0,46 0,77
Trees 0,95 0,63 0,95 0,65 0,94 0,67
Rocks 0,28 0,65 0,31 0,49 0,25 0,50
Water 0,98 0,66 0,94 0,65 0,99 0,66
Sky 0,94 0,97 0,95 0,97 0,96 0,98
Gravel 0,17 0,88 0,13 0,84 0,11 0,91
Dirt 0,97 0,79 0,97 0,76 0,98 0,71
Mud 0,28 0,55 0,25 0,52 0,28 0,54
Macro avg | 0,56 0,66 0,55 0,64 0,55 0,64

The classification accuracy matrices were calculated using the below equations (5) and
(6). The class-wise pixel accuracies and overall pixel accuracy are presented in Table 4.
The overall accuracy of the dataset is affected by the class imbalance.

o True positives (5)
Precision = — —
(True positives + False positives )
True positives
Recall = P (6)

(True positives + False negatives )

One important fact is, ground truth labels for the selected dataset are not accurate
for “dirt” and “mud” classes. Since these two classes are visually similar and the only
difference between “dirt” and “mud” is that dirt is a dry terrain and mud is a wet terrain,
it is indistinguishable for the human eyes by looking at RGB images. Considering both
terrain classes are drivable terrains, the classification accuracy difference is acceptable.

The chosen dataset is classified using the SS_CNN method by selecting 16 spectral
bands from two different band selection methods. The classification accuracy for the
selected dataset using the min-max pooling and the distance density method is
presented in Table 5.

Table 5. Classification pixel accuracy using different band selection methods.

Terrain class Distance density method [91] | 16 bands Min-max pooling
Precision Recall Precision Recall
Undefined 0 0 0 0,02
Grass 0,28 0,61 0,47 0,83
Trees 0,82 0,44 0,95 0,65
Rocks 0,64 0,26 0,31 0,49
Water 0,98 0,63 0,94 0,65
Sky 0,94 0,98 0,95 0,97
Gravel 0,14 0,91 0,13 0,84
Dirt 0,95 0,79 0,97 0,76
Mud 0,35 0,42 0,25 0,52
Macro avg 0,56 0,56 0,55 0,64

34



The classification results for different band selection methods are shown in below
Figure 10.

X
oy

16 Bands from Distance density + Cnn method | 16 Bands from min-max

pooling method

Figure 10. Classification results for different band selection methods.

The proposed band selection method gives a slightly better recall value than the other
method. Most importantly, it gives higher classification average results for all the classes,
even with fewer spectral bands. The objective of the method is to distinguish spectral
signatures of closely correlated classes along with band selection, and this objective has
been achieved with the above results.

3.5 Comparison with benchmark datasets from remote sensing

Popular remote sensing datasets, such as the Indian Pines dataset, are often used to
compare the performance of different dimensionality reduction methods. The proposed
pooling method in this study was used for the Indian Pines dataset dimensionality
reduction [116], thus evaluating classification capabilities. The corrected Indian Pines
dataset contains 145 x 145 pixels with 200 spectral bands, which exclude spectral bands
containing water absorption spectral signature. The false colour representation of the
dataset is shown in Figure 11.

Figure 11.The false colour representation of the Indian pines dataset.
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Due to the low resolution of the dataset, the amount of training data for all 17 classes
were not sufficient in the original image. In order to minimise the impact of limited
training data on the classification, the top nine classes are selected based on the number
of spatial pixels available in each class. Table 6 gives the details of the classes in the Indian
pines dataset. A batch of 144 pixels from each class are selected for band selection and
classification. An equal pixel count from each class creates a balanced dataset. Training and
validation samples are taken by splitting the above sample dataset. The ground truth for
both the original image and with selected classes are shown in Figure 12. The non-selected
classes are grouped with the “Background” class.

a. Ground truth of all the classes b. With selected classes
B Background B Background
Alfalfa B Corn-notill
B Comn-notill M Corn-mintill
B Com-mintill M Grass-pasture
B Com M Crass-trees
M Grass-pasture Hay-windrowed
B Grass-trees Soybean-notill
Grass—pasture-mowed Sovbean-mintill
Hay-windrowed M soybean-clean
Dats Woods
Soybean-notill
Soybean-mintill
M sSgybean-clean
Wheat
Woods

. Buildings=Grass=Trees=Drives
M Srone-Steel-Towers
a. All the classes b. Selected classes

Figure 12. Ground truth of AVIRIS Indian Pines dataset from Purdue University [116].

Selected spectral bands for the Indian Pines dataset using Min-max pooling are as
below in Table 7.
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Table 6. Indian Pines dataset classes and the number of samples for classification.

# Class Total no of No of training
samples samples

1 Alfalfa 46 -

2 Corn-notill 1428 144

3 Corn-mintill 830 144

4 Corn 237 -

5 Grass-pasture 483 144

6 Grass-trees 730 144

7 Grass-pasture-mowed 28 -

8 Hay-windrowed 478 144

9 Oats 20 -

10 Soybean-notill 972 144

11 Soybean-mintill 2455 144

12 Soybean-clean 593 144

13 Wheat 205 -

14 Woods 1265 144

15 Buildings-Grass-Trees-Drives 386 -

16 Stone-Steel-Towers 93 -

Table 7. Selected spectral bands from the Indian Pines dataset.

No of bands -d | Selected bands
1 9 9, 23,48,67,90, 111, 133, 155, 177
2 16 7,13,29,39,51,62,74,87,98,111,123, 133, 152,158, 170,
184
3 25 2,11,17, 26, 35, 43,50, 58, 66, 75, 81,91, 97, 105, 118, 122,
129, 137, 149, 153, 163, 170, 178, 181, 188

The training dataset shuffles at every epoch during CNN training. Classification results
are shown in Table 8.

Table 8. The HSI classification with a different number of image bands.

(a) 9 bands (b) 16 bands (c) 25 bands
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Table 9. Classification pixel-wise accuracy for the Indian Pines dataset based on a different
number of bands.

Class 9 bands % 16 bands % 25 bands %
Corn-notill 23.24 34.35 27.57
Corn-mintill 28.70 29.21 26.51
Grass-pasture 38.67 47.22 33.97
Grass-trees 64.38 70.41 75.61
Hay-windrowed 38.28 44.35 75.10
Soybean-notill 36.60 46.84 60.80
Soybean-mintill 34.56 36.26 31.58
Soybean-clean 35.24 31.87 32.88
Woods 20.94 19.52 26.72

Above Table 9 presents the pixel-wise classification accuracy for each class in the
dataset. The neural network methods require an enormous amount of labelled data
which impacts the classification outcome. It is evident that classification accuracies are
low due to the lack of samples taken for training and validation. The lower pixel
resolution of the image is the reason for the smaller training dataset. It is noticeable that
the classification accuracy increases along with the number of spectral bands for some
terrain classes. However, it is not the same pattern for all the classes.

Furthermore, several classes are highly correlated with each other. Figure 13 shows
the spectral signatures of all the terrain classes. Plot legend in Figure 13 follows the label
colours in Figure 12 ground truth. In the case of less correlating spectral signatures, the
proposed method is effective but not effective for highly correlating spectral signatures.
The Min-max pooling method took 2.7 milliseconds to obtain the spectral bands.

Spectral signatures of each class

1 . :
0.9 F . 1
0.8

0vr

Reflectance
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0 20 40 60 80 100 120 140 160 1B0 200
Band number

Figure 13. Spectral signatures of Indian Pines dataset classes.
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3.6 Chapter summary

In this chapter, a simple yet effective band selection method is proposed for hyperspectral
images. In contrast to various existing band selection methods, the proposed method is
mathematically simple to implement. This method will ease the computation burden on
the processing computer and thus be helpful for the deployment of an embedded
computer with lower computing power. According to experiment results, the band
selection method could identify the optimum spectral bands in 2.7 milliseconds.
The effectiveness of the proposed method was presented for both terrain hyperspectral
images and a remote sensing dataset.
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4 RGB Image Generation from Hyperspectral Datacubes

One of the objectives of this work is to investigate the possibilities of using the
hyperspectral imaging method to prepare training inputs to train RGB semantic
segmentation networks, which can eliminate labour intensive image annotation
processes. Even though the HSI camera used in this research can produce RGB images
using its built-in RGB camera, they are not in the same spatial resolution. Moreover,
there can be vertical and horizontal alignment mismatches between the hyperspectral
image and the RGB image. Therefore, it is necessary to generate RGB images from the
HSI datacube. Below, Figure 14 illustrates the concept of using HSI classification as an
input for the RGB perception systems.

HSI datacube

HSI Classification as
Labeled data for RGB

RGB Image

RGB Semantic seementation

- - - - - - — - — - ———

1
I
I
I
1
I
I
I
I
I
1
I
I
I
I
I
1
I
I
I
I
I
1
I
I
/

RGB Image Perception

Figure 14. HSI classification as an input for the RGB semantic segmentation.

4.1 Methodology

Several trichromatic image visualization methods based on HSI datacubes were explored.
One method was the manifold alignment technique, which uses HSI datacube and RGB
images are captured from the same environment to transfer colour characteristics from
RGB to HSI. The RGB image generation method uses band selection to form a smaller
datacube. Subsequently, the manifold alighment method is used to create an RGB image.
In this study, the min-max pooling method was used for band selection. Several other
methods are also used in this research to determine which band selection performs
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sufficiently close to the RGB representation of the scene. Several other RGB image
generation methods have been implemented for the comparison of the chosen method.

Below, Figure 15 a and b show the test images used to implement the manifold
alignment technique.

Figure 15 a. RGB image taken from the same Figure 15 b. HSI datacube visualized using
site. three image bands.

As in the above images, Figure 15 a. and Figure 15 b, the RGB image and HSI datacube
coming from the Specim camera are not accurately aligned vertically and horizontally.
The resolution of the RGB images is 645 x 645 pixels, while HSI datacube spatial
resolution is 512 x 512 pixels. Therefore, the HSI classification result and RGB image from
the Specim camera cannot implement the above proposed unsupervised image labelling
due to the difference in resolution.

4.1.1 Manifold alignment RGB image generation method

The manifold alignment method for RGB image visualization from the hyperspectral
image is based on reference [103]. This method use pixel pairs from HSI datacube and
RGB image. The RGB image should have been taken from the same or semantically
similar environments as the HSI datacube.

The concept of manifold alignment is projecting both image data to a shared
embedding space with lower dimensions than the original data. This concept is illustrated
in Figure 16. There are several methods to obtain the manifold structure of the
underlying data. In this task, the natural colour image was obtained by using Locality
Preserving Projections (LPP) method [117]. Here, it has been implemented feature-level
manifold alignment with semi-supervised pixel-groups selection.

41



F.:RP — R4 Shared Fr:Rt - R4
H embedding

X=F"'xF" x Xy

Figure 16. Manifold alignment for HSI and RGB images.

The explanation of the algorithm is as follows. The HSI dataset is represented as a
matrix X, where X; € RP*™, p is the number of selected hyperspectral image bands,
and n is the number of samples. The RGB image is represented as a matrix X; where
Xr € RY™, tis the number of colour channels which is three, and n is the number of
samples. Since the pixels are selected as pairs from each image, the numbers of HSI
samples ng and ny are equal to n. The objective of the LPP is to find two projection
functions Fy : R? - R? and Fy : Rt —» R? where q is low dimensional space.

The locality preserving projections method keeps local neighbourhood relationships
in each image. The adjacency graphs for each image Gy and Gy are constructed and
obtained the weighted adjacency matrices for each image as Wy (i,j), and Wr(i, )
respectively. The weighted adjacency matrices’ distance measures follow k-nearest
neighbour. The hyperspectral image pixel distances are calculated as spectral angle (SA),
while RGB image pixel distances were obtained using Euclidean distance.

The spectral angle between two hyperspectral pixels is calculated using (7). The it"
and j" pixels of hyperspectral image datacube are denoted as x (i) and x (j).

[ Shm® w
VEE 2 @DZ - [0y xu())? /

SA(y (@), xu(p) = 0™} (7)

The weight coefficient matrix for the HSI image is

Xy (D), XH(j))> ®)

<—SA(
wy(i,)) = e ”
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The weighted adjacency matrix is a n X n matrix. The spectral angle cosine between

two pixels in hyperspectral is the highest (= 1) when the two pixels are similar to each
other.

1, maxwy (i, j)

Wi (L.j) = { 0, Otherwise

9)

For the RGB image, i'" and j'* pixel colour vectors are denoted as x;(i) and
x7(j) distance measures calculated using the below equation (10).

dij= | Y (er@® = ()’ (10)
i,j=0

The weight coefficients are calculated as

wrj) = e (1)
Then the weighted adjacency matrix is obtained as follows.
o~ _ (1, minwr(,j)
Wr(0.j) = { 0, Otherwise (12)

Similar to the HSI image weighted adjacency matrix, the RGB image weighted
adjacency matrix is also an n X n matrix. In the case of RGB images, the smaller the
Euclidean distance, the similar the pixels to each other. Therefore, the minimum distance
is used to obtain the weighted adjacency matrix.

The correspondence matrix Wy represents matching pairs between two images.
If the selected pixels from each image space form a matching pair, the correspondence
is 1, otherwise 0. The correspondence matrix is obtained from the below expression (13).

Wi (i, ) = {(1), if X, (i) and X;(i) forms a matching pair (13)

X Otherwise

Since an equal number of pixels were selected from both images, the correspondence
matrix Wy is also an n X n matrix.
The objective function to calculate the projection functions can be derived as below.

n
E(Fy, Fr) = Z |Fe" 2" = Fy" xHj”Z X ay Wy (i, ))

i,j=0
n
+ Z ||FTT xp™— Fpl xT””2 X a,Wp(m,n) (14)
mn=0
n
+ Z ”FHT xy' = Fr' meHZ X a;Wyr (i, m)
im=0
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The joint weighted matrix W is obtained below to minimize the objective function.

a, W, a, W,
W = [ 1 HT 2 HT] (15)
a;Wyr a,Wr
Then, the objective function becomes (16).
n
EE) = ) [[F7xt = FT P x Wi j) (16)
i,j=0
The diagonal matrix D is defined as (17).
n
Dy = Y Wi j) (17)

i=0

Then, L is the Laplacian matrix which is L = D-W. The minimization of the above (16)
has been proved in [103] to be equivalent to (18). Thus, it can be solved as a generalized
eigenvalue problem.

argmin trace(FTXLXTF) (18)
XLXTF = AXDX"F (19)

Joint projection matrix F is (20)

_ [Fu
F = FT] (20)
And X is defined as (21)
XH 0
= 21
X=[ X, (21)

The smallest Eigenvalues A matrix provide the optimum manifold projection functions.
For the shared low dimensional embedding space, the number of dimensions q is
selected as 3, which is for three RGB channels.

The pixels were selected from the same regions of both images as below Figure 17.
Regions were defined from several parts of the image and randomly extracted N number
of samples from each region.
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(a) Selected pixels from RGB imge (b) Selected pixels from HSI image
Figure 17. Pixel-pair regions for both RGB and HSI.

4.2 Results for RGB image generation

For the image generation, only visible light wavelength range HSI bands can be used. The
below RGB image was generated using a few spectral bands selected using band
selection methods described in the previous chapter. Moreover, it further narrowed
down to 9 spectral bands in the visible light wavelength range.

Figure 18. RGB representation using manifold alignment method.

Several methods other than manifold alignment have been experimented with to
compare the RGB image visualization accuracy for the HSI datacube. The compared HSI
visualization methods are bilateral filtering, using band selection with correlation
measure, and three spectral bands representing the highest intensities in RGB space.

The colour representation has been evaluated using two comparison matrices. They
are root mean square error (RMSE) and correlation coefficients between each colour
plane.
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RGB image captured from the same Bilateral filtering method.
location.

Manifold alignhment method using nine RGB image generated from three spectral
spectral bands. bands where each colour channel has
peak intensity.

Figure 19. Generated RGB visualization images from various methods.

One colour representation accuracy evaluation technique is each colour channel's
root mean square error [118]. The RMSE between the generated RGB image and the
original RGB image captured from the same location has been calculated using equation
(22). The img1 and img2 are RGB images with [m, n] spatial resolution. The lower the
RMSE value, the similar the image colour channel of both images.

1 M,N
2
RMSE = |+ ZO[XW1 — Ximg2] (22)

mn=

The RMSE estimates for each colour channel are tabulated in Table 10.
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Table 10. RMSE for each image generation method.

RMSE Three image bands | Manifold alignment Bilateral filter
from the HSI cube

R 0.0098 0.0508 0.0156

G 0.0605 0.0117 0.0684

B 0.0137 0.0117 0.0254

Average 0.0280 0.0247 0.0365

Even though the red colour channel of the RGB image generated using the manifold
alignment method shows the highest RMSE than the others, the average RMSE for all
three colour channels is smaller. Thus, the manifold alignment method gives better visual
representation over the other two methods.

The second evaluation criterion is Pearson’s correlation coefficient of the two images.
The Pearson’s correlation coefficient is calculated using the below equation (23).

_ IX-DE-1
VX -D2R( - 172

(23)

The two images are denoted as X and Y where X and ¥ represent the mean values of
the images. Pearson’s Correlation coefficient for each colour channel between visualized
image and RGB image captured from the same site is presented in Table 11 below.

Table 11. Pearson’s correlation coefficients for each colour channel.

Correlation Three image bands | Manifold Bilateral filter
Coefficient from the HSI cube alignment

R 0.7226 0.7326 0.7167

G 0.7494 0.7848 0.7430

B 0.7944 0.8419 0.8028

The Pearson’s correlation coefficient is an indication of similarities between two
different datasets. The higher the correlation coefficient, the similar the images.
The value of the correlation coefficient can be within the range of -1 to 1. The above
analysis for the selected image confirms that the manifold alignment method gives the
highest correlation coefficient for all three image channels in the RGB image inputs.

The optimum number of HSI bands for the manifold alignhment method

The HSI datacube contains 204 spectral bands, and the RGB image contains three colour
channels. The number of image bands used for the manifold alignment algorithm
influences the clarity of the RGB visualization from the HSI image. Several spectral band
combinations were used to investigate the appropriate band count to form an RGB image
reflecting natural colours. The min-max pooling method has been used for spectral band
selection, which was a part of this research. All the image bands in the datacube, then 9,
16, and 25 spectral bands constituting the entire wavelength range, were used for the
experiments. Furthermore, those image bands within the visible light wavelength range
are used to determine the suitability of VNIR (400 — 1000 nm) or VIS (400 — 750 nm)
wavelength range for the RGB generation. Below, Figure 20 shows several combinations
of HSI to RGB image formation with various spectral band options.
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25 spectral bands 204 spectral bands (entire datacube)
Figure 20. RGB visualization of HSI datacube in VNIR range bands.

The above images were generated by taking the spectral bands within the

400 — 1000 nm wavelength range. With all 204 image bands, the manifold learning

method cannot successfully reconstruct an RGB image because Eigenvector
decomposition yields complex and negative Eigenvalues for the optimization function.

Table 12. Pearson’s correlation coefficient of RGB images based on the number of spectral bands.

Correlation Coefficient 9 bands 16 bands 25 bands
R 0.7326 0.6710 0.6673
G 0.7848 0.7343 0.7288
B 0.8419 0.8228 0.8252
Average 0.7864 0.7427 0.7404

Above Pearson’s correlation coefficients imply that the images with the lowest
spectral band counts provide the most similar RGB image representation.
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The influence of NIR image bands on RGB visualization has been made by extracting
only visible light spectral bands and forming RGB images using those bands. The visible
light wavelength ranges from 380 — 750 nm, and hence, spectral bands within 400 — 750
nm have been used to form below RGB images in Figure 21.

25 bands in the visible rng o 204 bands in the visible range 7

Figure 21. RGB image generation from the visible light range bands.

Table 13. Pearson’s correlation coefficient for the RGB images generated by using visible light
spectral bands.

Correlation Coefficient 9 bands 16 bands 25 bands
R 0.6994 0.6576 0.6528
G 0.7746 0.7387 0.7373
B 0.8314 0.8163 0.8146
Average 0.7685 0.7375 0.7349
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Comparing Table 12 and Table 13 shows that the entire VNIR spectral range image
bands carry more information than visible light wavelength bands alone for manifold
alignment.

Pearson correlation coefficient for number of HSI bands to form RGB image
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Figure 22. Pearson’s correlation coefficient for each colour channel between original RGB and
generated RGB from HSI.

Based on above Figure 22, it is evident that the optimum number of spectral bands
from the HSI datacube should be nine bands for the manifold alignment method. Below
Table 14 consists of RGB images generated using the chosen nine-band HSI datacubes of
off-road terrain scenes. The correlation coefficients for the generated RGB images are
presented in Table 15.
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Table 14. Unstructured terrain HSI datacubes visualized in RGB using manifold alignment.

Image RGB image from the
location using three
bands
1
2
3
4

HSI visualized in RGB
image

HSI visualized in RGB
using

manifold

Table 15. Correlation coefficients for above Table 10 image set.

alignment

Correlation coefficient
Image Red channel Green channel | Blue channel Average
1 0,1209 0,2706 0,5707 0,3207
2 0,4691 0,5825 0,7041 0,5852
3 0,4930 0,5894 0,7396 0,6073
4 0,6458 0,7280 0,7702 0,7147
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4.3 Chapter summary

Several different methods were explored to generate RGB images from HSI datacubes.
The objective of this RGB image generation was to use them with RGB semantic
segmentation CNN networks instead of high-resolution RGB images captured from the
same locations.

The techniques for RGB image generation are bilateral filtering, selecting three
different channels from each R, G and B region from the visible light wavelength range
and manifold alignment. Among those three methods, the manifold alignment method
using locality preserving projections yields the optimum similarity for HSI visualization as
an RGB image. The experiment results show that the optimum number of spectral bands
for RGB image generation was nine spectral image bands. The Person’s correlation
coefficient for the 9bands image set was 0.7685.

The datacube contains 204 spectral bands, which contain all the information about
the scene. However, 204 image bands show that it cannot project all the data points to
a common embedding. The use of the entire hypercube resulted in poor image quality
compared to a lower number of spectral bands. Furthermore, it is evident that including
the NIR range spectral bands of HSI datacube for the manifold projection gives a better
correlation than the images generated from image bands taken from visible light
wavelength range alone. A lesser number of image bands requires less time to process
the image and hence improves the overall efficiency of the image generation process.

The average correlation coefficient could be further improved by increasing the number
of pixel pairs from both images.
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5 Unstructured Terrain Semantic Segmentation
5.1 Methods

The problem of scene understanding has been addressed using various methods from
the beginning of computer vision. Starting from colour threshold methods in the early
’90s to modern DCNNs, semantic segmentation methods improved gradually. Most of
these DCNNs are developed for a specific application. For instance, the U-Net
architecture was proposed for biomedical image segmentation with a few training
images in the dataset [60]. The RefineNet was proposed by Lin et al. from the University
of Adelaide, which improved a common drawback resulting from previous semantic
segmentation DCNNs with output image blur [119]. Even though they perform well with
one type of segmentation problem, the same network may perform poorly with another
classification task area, such as terrain segmentation.

This comparison study selects several state-of-the-art semantic segmentation
networks. They are SegNet, U-Net and DeeplLabv3+ with Resnet18. The Deeplab V3+
DCNN architecture uses an encode-decoder structure to extract object boundaries while
recovering most spatial features. With atrous separable convolution operation, this
architecture can capture information from a larger field of view [120]. Since Deeplab V3+
is one of the most effective DCNN architectures in semantic segmentation, it has been
chosen to perform terrain image semantic segmentation for RGB cases.

The overall deep learning-based image segmentation will comprise four different
combinations.

e RGB images 645 x 645 px resolution with manually annotated labels

e RGB images generated from hyperspectral image datacubes and manually
annotated labels

e RGB images generated from hyperspectral datacubes with hyperspectral
image classification result as labels. HSI classification has been done with
spectral data alone

e Spectral-Spatial classification with manually annotated labels

5.2 Performance matrices

Several accuracy matrices were used to quantify the accuracy of semantic segmentation.
The accuracy matrices are pixel-wise accuracy, intersection over union (loU) and F1
score.

TP-true positive, TN — true negative, FP — false positive and FN-false negative

TP+TN

_ 24
Overall accuracy TP+ TN + FP + FN (24)

F1 . ar (25)
SCOTe = 5TP + FN + FP
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loU =

Intersection Union

Overlap
IoU = ——
Union

TP

oV = 45 PN+ FP

(26)

5.3 Image datasets

For semantic labelling, twelve terrain classes were selected. In comparison to existing
similar public off-road RGB datasets, a similar number of classes were used in this
research. The man-made objects are grouped into the “objects” class. Moreover, the
terrains with very few occurrences are categorized as “undefined” along with the other
unknown classes. The shadows of various constructions and trees are also annotated as
“undefined”.

The complete list of terrain classes used in this research with label colours is shown in
Table 16.

Table 16. List of terrain classes.

Class Red Green | Blue Hex code Label
Colour

1 Undefined 0 0 0 #000000
2 Grass 0 102 0 #006600
3 Concrete 170 170 170 #aaaaaa
4 Asphalt 64 64 64 #404040
5 Trees 0 255 0 #00ff00

6 Rocks 110 22 138 #6e168a
7 Water 68 187 170 #44bbaa
8 Sky 0 0 255 #0000ff

9 Gravel 187 136 51 #bb8833
10 Object 192 64 64 #c04040
11 Dirt 108 64 20 #ebeble
12 Mud 99 66 34 #634222
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Approximately 500 images were captured during the study. Since extensive manual
work was required for labelling, 152 images were initially labelled for HSI and RGB datasets,
respectively. The development of the dataset continues in order to improve semantic
segmentation accuracy.

The entire dataset contains carefully annotated hyperspectral images of terrain
scenes. For DCNN training, validation and testing, the dataset was split into three parts.
The number of training images was 122, which is 80 % of the image dataset, while 15
images were used for testing and 15 used for validation which constitutes 10 % for each
set. Since the number of images in the dataset is small for DCNN training, the dataset
was augmented to increase the number of images for training. Figure 23 represents the
constitution of each terrain class in the dataset. Since DCNN models require a large
dataset for training, the dataset is augmented by transformations.

Terrain classes in the dataset

10% L%

23%
12%
1%
2%
2%
5%
11%
2% 30%
1%
B 'undefined' M 'grass’ ‘concrete’ M 'asphalt’
H 'trees' M 'rocks' | 'water' W 'sky'
H 'gravel' M 'objects’ 'dirt' H 'mud’

Figure 23. The composition of the terrain dataset.

5.4 Terrain segmentation using RGB images and manually labelled
ground truth

State-of-the-art RGB image semantic segmentation networks were employed to compare
the terrain segmentation results of the HSI classification with the RGB dataset derived from
the HSI. The semantic segmentation DCNNs were trained using hand-annotated labels and
RGB images, followed by an evaluation of the classification accuracy. The images were
taken from Specim 1Q camera with 645 x 645 pixels resolution in RGB colour space. These
images were simultaneously captured while acquiring the HSI datacubes from the terrain
scene.
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Three different most popular semantic segmentation architectures were chosen
for the experiments. They are Deeplab V3+ with ResNetl8, SegNet and U-Net with
three colour channels. The DCNN architectures were used with a depth of three
(3 colour channels) in the input layer. The input images were resized to 640 x 640 pixels
for the U-Net network while other networks were fed with 645 x 645 pixels resolution
three-channel images.

Table 17. Sample images from the RGB image dataset and classification results.

Image 1 _ Image 2 Image 3 Image 4

Input RGB

Ground truth

Deep lab V3+
Resnet18

SegNet

U-Net

The validation accuracy for the dataset yielded 80,7 % using the ResNet18 model,
while other models gave much worse results. Table 18 summarizes the classification
accuracy for each model, while Table 17 shows a part of the dataset classification results.
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Table 18. Segmentation accuracy for higher resolution RGB images.

Model Mean loU Mean F1 | Mean Global accuracy
score accuracy

Deep lab V3+ 0,5112 0,4832 0,6985 0,8068

Resnet18

Segnet 0,1340 0,2196 0,2010 0,4412

U-Net 0,0999 0,1756 0,0891 0,2501

With the above results, it is evident that the Deeplab v3+ ResNet18 model has higher
accuracy compared to the other CNN architectures.

5.5 Terrain segmentation with RGB images generated using HSI
datacubes and manual labels

In this section, terrain semantic segmentation based on the RGB image dataset
generated using HSI datacubes will be discussed. As explained in the previous chapter,
RGB image semantic segmentation DCNNs are faster than multi-band spectral image
classification. Therefore, RGB based segmentation along with HSI segmentation can
achieve better efficiency in developing such classification pipelines.

Training RGB image dataset was generated using the manifold alignment method,
which uses spectral images and high-resolution RGB images captured from the same
location. The number of bands used in this research is nine spectral bands. As mentioned
in the preceding chapter, the nine bands provide the highest correlation to the RGB
images. Manually annotated labels were used for training.

Table 19. Segmentation accuracy matrices.

Model Mean loU | Mean F1 | Mean Global accuracy
score Accuracy

Deeplab V3+ 0,3313 0,4013 0,4488 0,7057

resnetl8

Segnet 0,2812 0,2156 0,1869 0,4448

U-Net 0,2784 0,2179 0,1875 0,4784

Table 20 shows the input image set and the classification results. Overall validation
accuracy for the RGB image dataset generated using HSI achieved 70.6 % with the
Deeplab v3+ with ResNet18 model. Table 19 shows the accuracy of the segmentation.

The segmentation accuracy is considerably low for the SegNet and U-Net models.
However, the overall pixel accuracy of this classification is slightly higher than the RGB
image classification in the previous section for the SegNet model. Moreover, U-Net gives
better overall pixel accuracy. Due to class imbalance in the terrain dataset is so significant
that the overall pixel accuracy matrix does not paint a correct picture of the classification
performance. The above sample images prove that the mean loU gives a better overview
of the segmentation accuracy.
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Table 20. Sample images from the dataset and results.

Image 1 Image Image 3 Image 4

Input RGB

Ground truth

Deeplab V3+
ResNet 18

SegNet

U-Net

5.6 Terrain semantic segmentation based on the RGB images generated
from the HSI visualization and pixel-wise classification

The pixel-wise HSI image classification is the key component of this experimentation to
evaluate its effectiveness as an image annotation tool to reduce the effort for labelling.
A single image of 512x512pixels annotation takes more than an hour as an average for
dataset preparation, making it laborious work.

Similar to the image classification in chapter three, the SS_CNN method is employed
to classify the image pixels. The training data was captured from each hyperspectral
image in the same fashion as explained in chapter three. Compared to RGB image
semantic segmentation, the pixel-wise classification displays significant details in the
output. According to Figure 24, the input RGB image is a complex terrain scene containing
a water stream with muddy surroundings and floating algae on the water surface.
The pixel-wise classification captured the classes in the image with higher contrast than
RGB semantic segmentation.
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5 ik
RGB image Ground truth RGB image HSI pixel-wise
segmentation classification

Figure 24. Pixel-wise classification and RGB semantic segmentation comparison.

However, the pixel-wise classification resulted in misclassifications as well. By applying
careful manual corrections, the classification can be further refined to be used as an input
for CNN training. As mentioned before, it is expected to reduce the human effort for
dataset preparation by minimising labelling. The pixel-wise classification takes an
average of 9.2 minutes to classify a 512x512px HSI datacube using the aforementioned
SS_CNN method. And it is needed to denote the training pixel patches in the image, which
takes approximately three minutes. After pixel-wise classification, it takes approximately
six minutes for manual corrections. The proposed HSI-based method can complete image
annotation in less than 20 minutes, which is 60% time saving for image annotation.

To validate the hypothesis, semantic segmentation CNN training and testing was
performed in two ways. One of them by taking the pixel-wise classification result as
image labels without refining them further. The second experiment was by using the
manually refined pixel-wise classification result for CNN training. The RGB images were
obtained from the manifold alignment method by using the HSI datacubes. The number
of spectral bands for the manifold alignment method was nine, and the optimum bands
were selected using the min-max pooling technique.

Even though RGB image generation was achieved with nine bands, the pixel-wise
classification used 25 band HSI images. The same band selection method was used to
create 25 band images, and it was observed that increasing the number of bands
increased the pixel-wise classification accuracy.

Deeplab V3+ network with Resnetl8 backbone used for semantic segmentation
evaluation. The third row of Table 21 shows the pixel-wise classification results. The fourth
row of the same table shows the semantic segmentation results when the pixel-wise
classification is used as labels for CNN training. Because the pixel-wise classification result
was used as training labels without further refinement for the semantic segmentation
CNN, the overall segmentation output has been affected similarly. The last row of the
same table shows the semantic segmentation outcome when it uses refined pixel-wise
classifications. It is evident that from Table 22, the manual touch-up for pixel-wise
classification could greatly enhance the semantic segmentation results. With this
dataset, it was a 6% improvement over un-refined pixel-wise classifications.

As mentioned previously, this result was obtained from a small dataset. By increasing
the number of images in the dataset, the result could be further improved.
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Table 21. Sample images from the dataset and results.

Image 1 Image Image 3 . Image 4

Input RGB

Ground truth

Spectral-spatial
CNN pixel-wise
classification

Deeplab V3+
Resnet18
segmentation —
Before touch-up |¥

Deeplab V3+
Resnet18
segmentation —
After touch-up

Table 22. The classification performance of HSI generated images and annotations.

Model Mean loU | Mean F1 | Mean Global accuracy
score Accuracy

Without touch-up | 0,2733 0,2968 0,4363 0,6206

After touch-up 0.3301 0,3073 0,4733 0,6688

5.7 Spectral-spatial image classification

In contrast to the spatial images for semantic segmentation, the spectral images contain
more information, classifying the images with higher accuracy than the RGB input
images. Since spectral-spatial combination can extract the spectral signature, object
shapes, colours, etc., the classification could yield higher accuracy. Therefore, in this
section, several spectral image datasets were used by selecting different numbers of
spectral bands and used for DCNN semantic segmentation. The spectral band counts of
the created datasets were 9, 16 and 25. The selection was according to the previously
mentioned criteria, where the band count forms a square matrix. Such a square matrix
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can help construct a multi-spectral sensor with band-pass filters deposited in a mosaic
pattern for future development. The band selection method was the min-max pooling
method proposed by this thesis.

5.7.1 Classification method

The U-Net architecture has been modified to accommodate the different spectral bands
in the input layer, such as 9, 16 and 25. The chosen U-Net architecture has been
developed for biomedical image classification with multi-layer images, appropriate for
this task.

In contrast to the RGB image datasets, spectral image datasets are not widespread
and not widely available as open-sourced datasets. Therefore spectral dataset used in
this study has been collected and annotated by the author. The hyperspectral datasets
containing off-road terrain scenes were snapped in multiple locations of Estonia.
The dataset was captured under sunlight. In some instances, the sunlight intensity was
considerably high, which caused image saturation. The reason was the integration time
limitation of the camera, which is limited to a minimum of 1 ms, thus reducing further
the integration was not an option. A neutral density filter was used to solve the light
intensity issue. The used ND filter was ND3 — 400 variable neutral density filter. Colour
casting appeared on the image due to this filter use, which was not corrected as it is an
additional pre-processing step. The objective of the classification is to use DCNN to
reduce additional pre-processing steps.

5.7.2 Results of spectral-spatial classification
Here are the classification results for 4 test datacubes selected from the test dataset.
The hyperparameters for the DCNN training were, learning rate 0,001, mini-batch size of
4 and the stochastic gradient descent method was used as the optimizer. Due to the large
size of the images and limited memory capacity of the processing hardware, smaller
mini-batch size was selected.

The spectral image classification results are presented in Table 23 and Table 24.
Validation accuracy for the nine bands image dataset was 70,85 %, 16 bands dataset with
73,2 % and 25 bands dataset classification accuracy resulted in 67,35 %.
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Table 23. Sample images from three different datasets of 9, 16 and 25 bands HSI images with

classification results.

Image 1

|Image 3

Image 4

Input Image in
RGB

Ground truth

HSI 9 Bands

HSI 16 bands

HSI 25 bands

_ Image 2

With U-Net architecture, the pixel classification accuracy is lower for the spectral
images than the RGB images semantic segmentation using Deeplab v3+ ResNet18.
The highest classification accuracy for the spectral dataset was 70,00 % for the nine
bands dataset, while Deeplab v3+ Resnet18 for RGB images achieved 80,6 %. However,
the mean loU is higher for HSI images of 25 band DCNN, which achieved 62,6 % accuracy,
and this is approximately 6 % higher than the next highest performing HSI DCNN model.

Table 24. Semantic segmentation accuracy for different numbers of image bands.

No of Bands Mean loU Mean F1 | Mean Global accuracy
score accuracy

9 0,5613 0,4650 0,3739 0,7085

16 0,3065 0,4532 0,3911 0,7315

25 0,6226 0,4981 0,3875 0,7574
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Hyperspectral imaging is highly vulnerable to environment light variations. In off-road
conditions, the sunlight variation due to weather and the time of the day can result in
poor image quality.

5.8 Chapter summary

In this chapter, various methods for HSI classification have been explored along
with RGB segmentation. Comparing RGB segmentation using Deeplab V3+ ResNet18
to spectral-spatial classification with U-Net architecture demonstrates that HSI
classification is 5 % higher accurate than RGB in terms of mean loU. One of the challenges
in DCNNs is gradient vanishing with deeper layers.

The segmentation experiments based on RGB images generated from HSI datacubes
show that the classification accuracy is approximately 17 % inferior to the RGB
counterpart.

However, RGB semantic segmentation still shows better pixel accuracy than HSI based
methods. The demonstrated classification results were achieved using a few hundred
training pixels from a few HSI data cubes. The HSI pixel classification takes very little time
compared to the manual pixel-wise annotation of an RGB image. Thus the use of HSI
pixel-wise classification results as labelled data shows significant improvement in dataset
preparation. Some classes mixed up with others, such as grass detected on the top edges
of the tree line and wet-fallen leaves mixed up with dry grass, which degraded the
classification of those terrain classes. These artefacts can be removed by post-processing.
However, for more complex terrains, the classification method needs to be improved in
future. The obtained HSI classification result can be used as pixel-wise annotated label
images for neural networks. The training images for the neural network can be obtained
from HSI data cube as false-RGB images. Overall image classification results are
summarised in Table 25. In conclusion, with the help of hyperspectral imaging, pixel-wise
classification can be used to reduce the manual labelling process.

Table 25. Overall classification results comparison.

Dataset Mean loU Mean F1 | Mean Global
score accuracy accuracy

RGB images + manual labels | 0,5112 0,4832 0,6985 0,8068

Generated images + manual | 0,3313 0,4013 0,4488 0,7057

labels

Generated Without 0,2733 0,2968 0,4363 0,6206

images + | touch-up

pixelwise After touch | 0.3301 0,3073 0,4733 0,6688

classification | up

HSI HSI 9 bands | 0,5613 0,4650 0,3739 0,7085
HSI 16 bands | 0,3065 0,4532 0,3911 0,7315
HSI 25 bands | 0,6226 0,4981 0,3875 0,7574

63




6 Conclusion

The overall objective of this work was to investigate the capabilities of hyperspectral
imaging methods to enhance the performance of perception systems used in
autonomous ground vehicles. The emphasis was on unstructured terrain scenarios,
which is a highly active research area in mechatronics. The same methods could apply to
any unknown terrain perception scenario as well. All the proposed methods were
validated using hyperspectral data acquired in unstructured terrain environments in
Estonia.

One of the main aims of the work was to develop a band selection method for
unstructured terrain classification applications for autonomous vehicle perception.
The min-max pooling band selection was introduced in Chapter three to select the most
effective spectral bands from hyperspectral datacubes. This method takes significantly
less time compared to information density-based methods. According to the experiment
results, the proposed methods showed 8% better classification accuracy over
comparable band selection methods. The proposed method is mathematically simpler to
implement on low power computing hardware used in autonomous vehicles.

Another objective was to use the hyperspectral dataset to prepare image training
datasets for RGB image semantic segmentation to minimize manual labelling. Manual
semantic labelling of a single 512 x 512 px terrain image takes approximately 2 hours.
The HSI classification was able to produce the classification result in a minute. HSI
classification result with further post-processing, the image annotation was significantly
reduced. Chapter 4 discusses the manifold alignment-based method for RGB image
generation from HSI. These RGB images, generated from HSI datacubes, were used for
DCNN training as a dataset. This HSI generated RGB image dataset resulted in
approximately 17% less accurate than high resolution original RGB images. It was an
expected result because the conversion process from HSI to RGB brings the loss of
information and the addition of noise. However, increasing the pixel pairs from both HSI
datacube and high-resolution RGB images taken from the same location could enhance
the generated RGB image quality by reducing the noise and other artefacts.

The pixel-wise HSI classification has been presented in Chapter 5. HSI pixel-wise
classification using spectral data is compared with RGB semantic segmentation. The results
show that the HSI pixel-wise classification is more accurate in certain terrain classes than
the RGB image semantic segmentation.

The unstructured terrain semantic segmentation is a much more complex task than
that of structured terrains. Since one of the objectives was to demonstrate hyperspectral
image segmentation accuracy for terrain classification in terms of spectral and spatial
classification, several image datasets containing a different number of image bands were
used to train classification DCNNs. The result from those classifications was compared
against RGB image segmentation. The loU performance matrix showed that the
hyperspectral images yielded 11% better classification accuracy over RGB images. In this
case, hypercubes with 25 bands yield the highest classification accuracy compared with
9 and 16 bands using the same DCNN model. The model was based on UNet architecture
which is an encode-decoder model with skip connections.

Here is a summary of the results of this research.

e A simple band selection method developed and demonstrated the
effectiveness in the classification of terrain HSI datacubes.
e  Pixel-wise classification achieved high accuracy for the tested datasets.
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e Use of classification as labels improved image annotation time. (Manual
annotation 1 hrs per image, HSI classification takes ~9 min + corrections)

e RGB image generation based on the manifold alignment method resulted in
a higher correlation to the RGB images taken from the same location.

e HSI spectral-spatial classification can achieve higher classification accuracy
over RGB semantic segmentation for unstructured environments

e Unstructured terrain hyperspectral dataset can be used for further research.

This thesis work demonstrated the benefits of hyperspectral imaging methods to
improve autonomous vehicle perception systems.

6.1 Future works

In this study, one of the outcomes was band selection for hyperspectral imagery in
off-road terrain conditions. A push broom mobile hyperspectral camera was used for the
experiments that used the line scan method for image acquisition. However,
manufacturers can fabricate a custom hyperspectral imaging sensor based on specific
wavelength filters with fewer bands. Therefore, one of the future directions could be a
fabrication of a multi-spectral imaging sensor for AGV perception that can use the area
scan method to acquire images. The proposed band selection method could be used to
select a suitable number of spectral bands. Such a custom snapshot hyperspectral
imaging sensor could provide all the necessary spectral information to classify off-road
terrain scenarios. In this case, it is necessary to consider that geographic location
influences the terrain classes in those regions, affecting classification.

Developing dedicated convolutional neural network models for efficient and accurate
terrain spectral image classification is another research direction. Such improvements
could bring spectral imaging into real-life UGV applications.

The results presented in this thesis work shows that the hyperspectral imaging-based
classification performs better than the RGB imaging methods. Currently, some companies
are working on developing video-rate hyperspectral cameras. With such a development,
there is a possibility to use video-rate hyperspectral imaging in real-time scene
segmentation and object detection for unmanned ground vehicle applications.

For short-range depth perception, stereo vision RGB is used as an additional visual
input in some applications. Similarly, stereo hyperspectral imaging can enhance
short-range depth perception better than stereo RGB imaging.
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Abstract

Smart Terrain Perception Using Hyperspectral Imaging

Hyperspectral imaging gives a huge advantage over RGB images in terms of information
abundance. This technology has yielded higher success in various application domains of
machine vision. However, its uses in autonomous vehicle perception are rather
unexplored. This thesis investigates various possibilities of HSI offering for perception
improvement in autonomous vehicles. The emphasis was on unstructured terrain
conditions where there has been limited research conducted.

Even though hyperspectral images contain a large amount of data, it has both
advantages and drawbacks too. The computing power needed to process those images
are enormous as one image could contain hundreds of image bands. Various feature
selection and feature extraction methods have been developed to reduce the computing
burden while maximising the classification outcome. However, in most cases, they have
been developed for certain applications. In this thesis, the prime focus is on unstructured
or off-road terrain segmentation, a simplified band selection method is proposed.
The accuracy of the band selection method has been compared with other comparable
bands selection methods, where it showed approximately 3% better classification
accuracy with experimental results.

Semantic segmentation models need images with labels to train them. When multiple
imaging technologies are involved with different resolutions, they need to prepare
multiple image datasets. Such a demand for too many datasets increases the effort
needed to prepare the datasets. In the case of HSI and RGB, if it is possible to share the
same image labels with RGB and HSI, it could help to reduce the labelling effort needed.
Since the RGB images contain lesser data compared to HSI datacubes, the RGB images
processing is faster. The cost-effectiveness of RGB imaging for scene understanding
makes it an essential part of the perception system. Therefore, HSI could only enhance
the perception system with its capabilities rather than replacing RGB imaging. The RGB
images generated from HSI datacubes were used for the semantic segmentation
experiments to evaluate the possibilities to share some part of the dataset with HSI.

As previously mentioned, the RGB image generation method from HSI was introduced.
Three different approaches were investigated to find the optimal correlation between
the RGB images generated from HSI and original RGB images captured from RGB imaging
cameras. The methods are bilateral filtering, selecting three image bands from each red,
green and blue region of visible light wavelength range and manifold alighment method.
The manifold alignment proved to be the optimal method for the RGB image generation
from HSI datacubes. The highest correlation to the original RGB images was achieved
with nine band HSI datacubes. With deep convolutional neural networks, semantic
segmentation accuracy of the image dataset created from the RGB images generated
from HSI was compared to the original RGB images captured using RGB cameras.
The semantic segmentation accuracy of RGB images generated from HSI datacubes is
slightly lower compared to original RGB images.

Spectral images are typically classified using spectral data in pixel-wise. However,
combining spectral-spatial features could achieve better classification accuracy
compared to pixel-wise HSI classification and three-channel RGB classification.
Therefore, the HSI dataset has been used for semantic segmentation with the
spectral-spatial combination. The results showed that the segmentation is much higher
with spectral-spatial combination, which stands at 11% higher than RGB semantic
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segmentation with state-of-the-art classification networks. The segmentation accuracy
was evaluated with three different datasets prepared based on the number of spectral
bands. They were 9, 16 and 25 bands. The 25-band dataset yielded the highest
classification accuracy. Even though the nine-band HSI classification accuracy was lower
than the 25-band dataset, still nine bands classification showed higher accuracy than RGB
semantic segmentation.

All in all, the hyperspectral imaging method could enhance the perception system
accuracy for autonomous vehicles running on unstructured terrains or off-road
conditions. In terms of real-life implementation of a spectral imaging method for
autonomous driving vehicles, it is possible to develop a multispectral imaging sensor with
fewer spectral bands, which is most efficient for scene classification. Together with such
an optimized spectral imaging camera, the images can capture in the area scan mode.
Developing DCNN models tailored for spectral imaging-based scene understanding,
spectral imaging for perception can become a reality.
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Lihikokkuvote

Hiperspektraal-pilditehnika maastiku nutikaks tajumiseks

Hiiperspektraalne pildistamine annab RGB-kujutistele tohutu eelise teabe rohkuse osas.
See tehnoloogia on andnud suuremat edu erinevates masinandgemise
rakendusvaldkondades. Siiski on selle kasutamine autonoomse tajumise puhul Usna
uurimata. Selles vaitekirjas uuritakse erinevaid véimalusi HSI pakub taju parandamiseks
autonoomsete sdidukite. RGhuasetus oli struktureerimata maastikutingimustel, kus
uuringud on olnud piiratud.

Kuigi hiiperspektraalsed pildid sisaldavad suurt hulka andmeid, on sellel nii eelised kui
ka puudused. Nende piltide to6tlemiseks vajalik andmetdotlusvéimsus on tohutu, sest
liks pilt voib sisaldada sadu pildiribasid. Andmet66tluskoormuse vahendamiseks on vilja
tootatud erinevad funktsioonide valimise ja eraldamise meetodid, maksimeerides samal
ajal klassifitseerimise tulemust. Enamikul juhtudel on need siiski valja to6tatud teatavate
rakenduste jaoks. Selles vditekirjas keskendutakse peamiselt struktureerimata voi
maastikuldigule, tehakse ettepanek kasutada lihtsustatud ribavaliku meetodit.
Ribavaliku meetodi tdpsust on vérreldud teiste vorreldavate ribade valikumeetoditega,
kus see nditas ligikaudu 3 % paremat klassifitseerimistdpsust katsetulemustega.

Semantiline segmenteerimismudelid vajavad pilte siltidega, et neid treenida. Kui mitu
pilditootlustehnoloogiat on seotud erinevate resolutsioonidega, peavad nad ette
valmistama mitu pildiandmestikku. Selline ndudlus liiga paljude andmekogumite jarele
suurendab andmekogumite ettevalmistamiseks vajalikke joupingutusi. Kui HSI ja RGB
puhul on véimalik jagada samu kujutismarke RGB ja HSI-ga, vOib see aidata vdhendada
vajalikku margistamiskoormust. Kuna RGB pildid sisaldavad vdhem andmeid kui
HSIl-andmekuubikud, siis RGB piltide tootlemine on kiirem. RGB pildistamise kulutdhusus
stseeni maistmiseks muudab selle tajustisteemi oluliseks osaks. Seetdttu v&is HSI vaid
parandada tajusiisteemi oma vGimetega, selle asemel et asendada RGB pildit66tlust. HSI
andmekuubikutest saadud RGB-pilte kasutati semantilistes segmenteerimiskatsetes, et
hinnata vdimalusi jagada osa andmekogumist HSI-ga.

Nagu eespool mainitud, vGeti kasutusele RGB pildi genereerimise meetod HSI-st.
Uuriti kolme erinevat ldhenemisviisi, et leida optimaalne korrelatsioon HSI-st saadud RGB
piltide ja RGB-kaameratest pildistatud algsete RGB piltide vahel. Meetodid on
kahepoolne filtreerimine, valides igast ndhtava valguse lainepikkuse vahemikus olevast
punasest, rohelisest ja sinisest piirkonnast kolm kujutisriba ja kollektori joondamise
meetod. Kollektori joondamine osutus optimaalseks meetodiks RGB pildi
genereerimiseks HSI-andmekuubikutest. Suurim korrelatsioon algsete RGB piltidega
saavutati (lheksa sagedusala HSI andmekuubiga. Sigavate konvolutsiooniliste
narvivorkude puhul vérreldi HSI loodud RGB piltide semantilist segmenteerimistapsust
RGB kaamerate abil salvestatud algsete RGB piltidega. HSI andmekuubikutest
genereeritud RGB-kujutiste semantiline segmenteerimistapsus on vorreldes algsete RGB
piltidega veidi vaiksem.

Spektraalsed kujutised klassifitseeritakse tavaliselt spektraalandmete abil piksli jargi.
Spektraalsete ja ruumiliste omaduste kombineerimine vdib aga saavutada parema
klassifitseerimistapsuse vorreldes pikslite HSI klassifikatsiooniga ja kolmekanalilise RGB
klassifikatsiooniga. Seetdottu on HSI  andmekogumit kasutatud semantiliseks
segmenteerimiseks spektraal-ruumilise kombinatsiooniga. Tulemused néitasid, et
segmenteerimine on palju suurem spektraal-ruumilise kombinatsiooni puhul, mison 11 %
suurem kui RGB semantiline segmenteerimine tipptasemel klassifikatsioonivérkudega.
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Segmenteerimistdapsust hinnati kolme erineva andmekogumiga, mis koostati
spektriribade arvu pdhjal. Nad olid 9, 16 ja 25 bandi. 25-ribaline andmestik andis
korgeima klassifitseerimistapsuse. Kuigi iheksaribaline HSI klassifikatsiooni tapsus oli
vaiksem kui 25-ribaline andmestik, nditas (iheksa sagedusala klassifikatsioon siiski
suuremat tapsust kui RGB semantiline segmenteerimine.

Kokkuvottes vGib hiiperspektraalne pildistamise meetod suurendada autonoomsete
sidukite tajuslisteemi tdpsust, mis to66tab struktureerimata maastikul véi maastikul.
Autonoomsete soéidukite spektraalse pildistamise meetodi tegeliku rakendamise
seisukohast on voimalik valja todtada vahem spektriribadega multispektraalne
pildiandur, mis on stseeni liigitamiseks kdige t6husam. Koos sellise optimeeritud
spektraalkaameraga voivad pildid jaddvustada ala skaneerimisreziimis. DCNN-mudelite
valjatédtamine, mis on kohandatud spektraalse pildistamise alusel stseeni mdistmiseks,
vBib muutuda reaalsuseks.
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ABSTRACT

Product quality assurance is a vital component in any manufacturing process. With the advancement
of machine vision, product quality inspection has been vastly improved. It could not be achieved with
human inspection otherwise regarding consistency, accuracy, and speed. Emerging modern sensor
technologies and image processing algorithms ensure product and process quality in various modern
industries, including pharmaceutical manufacturing, food production, agriculture, and waste sorting.
Hyperspectral and multispectral imaging are among those novel technologies which find their uses in
the quality inspection domain. Due to a spectral image comprising numerous spectral bands, a
spectral image contains more information than an RGB image. With the help of spectral and spatial
information in spectral images, it is possible to discriminate the quality indices of various products
with higher accuracy than RGB imaging methods. This chapter looks into recent developments in
product quality evaluation using spectral imaging methods. The literature review covers food
production, the textile industry, pharmaceuticals manufacturing applications.

Keywords: Inspection, Manufacturing, Machine Vision, Product Quality, Spectral Imaging,
Spectroscopy, Food Quality, Agriculture, Textiles, Pharmaceuticals

INTRODUCTION

According to Crosby, the quality of a product is defined as its conformity to the specification (Crosby,
1979). There are various processes employed in production environments to assure product
compliance to its specifications. Visual product inspection is one of such methods used in production
environments to assure the absence of defects in products. Mostly, the product quality inspection is
done by human operators visually on factory floors. However, human inspection is unreliable as there
are various factors affecting product quality determination. Different human operators may have
different judgements in their product quality inspection due to work experience, conditions at the
work environment, level of understanding of the product, psychological factors, fatigue, biological
factors of the worker. Products with more than one type of defect take a longer time for visual
inspection. When the acceptance criterion of defects changes, it complicates visual inspection. The
human inspection has more downfalls with qualitative measurements as results for the qualitative
measurements are varying and difficult to compare. Moreover, human perception can easily accept
false positives (Kerkeni et al., 2016). As a result, human inspection is inconsistent, subjective, and
slow.

Furthermore, the visual inspection is incapable of determining physicochemical characteristics of the
product, such as moisture content, presence of various microorganisms, texture, etc. The
physicochemical characteristics estimations are vital to ensure the quality of different products such as
pharmaceuticals, food, and beverages. There are various analytical methods used in production floors
to estimate those physicochemical parameters of products.

The process control methods can be distinguished into four categories: in-line, on-line, at-line, and
off-line methods. In-line methods are directly immersed into the process flow, while on-line methods
use a bypass channel from the main process flow. The at-line methods analyse the samples next to the
process flow by sample extraction and off-line methods process analysis separately from the process
flow by withdrawing some samples (Boldrini et al., 2012). Even though some manufacturing
processes can employ off-line quality evaluation methods by taking random samples, they are not
suitable for quality critical production processes. The food and beverages manufacturing,
pharmaceuticals manufacturing industries require a complete quality inspection prior to human



consumption, requiring in-line quality checks. Again, in some cases, random sample testing is not
suitable as it may destroy the product. In such cases, non-destructive in-line process control is a vital
requirement in ensuring product quality.

Therefore, it is proved that the industry needs consistent, accurate, fast, cost-effective and in-line
automated inspection methods to increase the effectiveness of visual inspection. With the recent
developments in imaging and computer technology, machine vision solves most quality inspection
and control needs in production environments.

Machine vision for quality inspection and control

A machine vision system combines image acquisition cameras, illumination sources, processing
computers and analysing algorithms to produce accurate decisions to assure various visible
characteristics of the products (Du & Sun, 2006). These systems are used to detect product defects,
make visual measurements and check various product markings as part of the quality control process
in various industries. Detection of scratches on the visible area of acrosol metal-can production,
dimension check of mechanical parts in the automobile industry, identifying the electronic
components’ location and orientation, identifying the types of the components in electronics assembly
lines are a few examples of machine vision-based quality inspection using RGB (Red, Green, Blue)
and monochrome imaging cameras.

Even though machine vision based on RGB sensors solves a significant part of visual quality
inspection problems, it has some drawbacks too. The RGB and monochrome vision systems can only
detect the objects’ colour and shape properties. It does not help industrial problems where product
quality cannot be assured using colour, shape, detecting specific patterns or checking dimensions, i.e.
meat freshness, quantitative determination of various chemical presence in fruits and vegetables.
Moreover, the products like fruits and vegetables of the same kind and variety do not have the same
shape and colour in all the items, making it more complex to analyse using RGB imaging methods. In
order to cover those needs, there should be a method that can acquire more information than RGB
sensors can do. Spectral imaging is an advanced imaging technology that captures spectral and spatial
information of the product under inspection.

Spectral imaging

Spectroscopy gives light absorption or reflectance characteristics of a point on the object under
inspection (Wallace et al., 2009). The imaging spectroscopy or spectral imaging method combines
spectroscopy and imaging, first introduced in the 1970s for remote sensing applications with the
Landsat program (Wulder et al., 2019). The technology has evolved into other application domains
such as agriculture, food, pharmaceuticals, etc. Over recent decades, steady development in spectral
imaging technologies has been happening in image acquisition hardware, software, and analysis
methods.

The computer vision-based inspection systems have advanced with the introduction of imaging
sensors capable of seeing beyond the visible light range, which is 400 — 700 nm wavelength range in
the electromagnetic spectrum. Now they can take advantage of ultraviolet (UV) and infrared (IR)
regions of the electromagnetic spectrum for machine vision applications.

Unlike monochrome or RGB colour imaging methods, spectral imaging or imaging spectroscopy is a
technology that acquires tens or hundreds of images in various contiguous wavelengths in the
electromagnetic spectrum. In the monochrome imaging method, the image contains a single grayscale



colour channel. In contrast, RGB colour images contain Red, Green and Blue as three separate
channels within the visible light spectrum. Spectral imaging is classified into two categories according
to the number of images bands contained in a spectral image cube. Multispectral Imaging (MSI) and
Hyperspectral Imaging (HSI) are the two main branches. The difference between those two branches
is that the multispectral image consists of tens of spectral bands, where the hyperspectral image
contains hundreds of spectral bands. Below, Figure 1 illustrates the differences between each imaging

technology.
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Figure 1. Different imaging methods and their characteristics

Due to their unique design in sensor construction, spectral imaging technology uses various image
acquisition techniques to capture image data. These methods are whisk-broom, push-broom and
tunable filter techniques, where each method is used in point-scanning, line-scanning and area-
scanning, respectively (Igbal et al., 2014). The point scan method, which is the whisk broom
technique, can acquire spectral data of one pixel at a time. Hence, the whisk broom method scans the
object in lateral (X) and longitude (Y) directions. With line scanning, the imaging sensor can acquire
a wider strip of pixels. Therefore, it is needed to sweep the sensor across the object under inspection
to record a complete image. Most hyperspectral imaging sensors are line scan sensors, as it is
technically challenging to embed hundreds of light filters on top of neighbouring pixels to create an
area scanning sensor. Area scan captures the image in either one wavelength or a few wavelengths
simultaneously. Therefore, the area-scan method is standard with multispectral sensors. In
multispectral imaging, either a few light bandpass filters are deposited on top of the sensor or external
filters use to capture the images in several wavelength bands. More about the construction of spectral
imaging sensors and other relevant hardware is discussed in “Hyperspectral and multispectral imaging
for evaluating safety and quality” journal article (Qin et al., 2013).

Together with different image acquisition methods, spectral imaging uses different electromagnetic
wavelength ranges for machine vision applications. They are mainly Visible Near Infrared (VNIR),
Short-Wave Infrared (SWIR), Medium-Wave InfraRed (MWIR) and Long-Wave Infrared (LWIR).
The VNIR is in the 400 — 1000 nm wavelength range, SWIR spans 1000 — 2500 nm, MWIR spans 3 —
5 um and LWIR spans 8 — 12 um (Edmund Optics Inc, n.d.). Figure 2 illustrates the electromagnetic
wavelength spectrum with all the above wavelength range classifications.
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Figure 2. Electromagnetic spectrum

A Hyperspectral or multispectral image is a series of images captured at different wavelength bands in
a continuous spectrum that forms an image data cube (Amigo, 2020). These datacubes are also called
hypercubes. Spectral signatures of the subjects are the essential characteristics to extract from the
hypercube. Every material, substance, or compound has unique spectral reflectance, transmittance
characteristics which is the spectral signature of the same. Below Figure 3 shows an example of
spectral reflectance characteristics or spectral signature of a plant leaf. With the help of hyperspectral
signature, it has been possible to detect various infections, diseases to crops (Yuan et al., 2019),
(ElMasry et al., 2012), and defects in vegetables and fruits (EIMasry et al., 2007), (EIMasry et al.,
2008), (Xing et al., 2005). There has also been a considerable number of researches on the use of HSI
for meat production industry for meat quality analysis (Qiao et al., 2007), (Elmasry, Barbin, et al.,
2012), (Kamruzzaman et al., 2012). Waste sorting and recycling is also one of the research areas

where HSI is used (Serranti et al., 2015).
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Figure 3. The reflectance spectrum of one pixel is the spectral signature of the object in the pixel. X
and Y are spatial dimensions, while lambda is the wavelength



Hyperspectral image acquisition hardware set-up

Typical hyperspectral imaging camera imaging acquisition follows push-broom technique as those
cameras are mostly line scan cameras. Thus, it uses a linear or rotary motion mechanism for scanning
the object under inspection. These systems use special lighting to illuminate the object depending on
the wavelength range of the camera. The most suitable lighting option in the visible light (VNIR)
range is incandescent lights (Zahavi et al., 2019). In HSI, the image acquisition control, storing and
analysing are done by a computer in the same set-up. A typical set-up for hyperspectral imaging is
shown in Figure 4. Unlike hyperspectral cameras, the simultaneous spatial and spectral data
acquisition ability eliminates the need for a moving table. Therefore, multispectral cameras can grab
images faster than hyperspectral counterparts.

Hyperspectral camera

Processing computer

[ -

Objects under inspection , \ |

Lights

Conveyor

Figure 4. A typical hyperspectral imaging system

This chapter surveys product quality assessment methods based on HSI/MSI technologies in various
industrial sectors. The article covers the research literature published in recent years related to quality
assurance. Moreover, various image processing, analysis methods are presented as well.



INDUSTRIAL APPLICATIONS OF HYPERSPECTRAL / MULTISPECTRAL IMAGING
METHODS FOR QUALITY EVALUATION

Hyperspectral and multispectral imaging methods have a wide range of applications in the food,
agriculture, pharmaceuticals, material inspection and waste recycling industries. However, product
quality inspection in the food and agriculture industry is the most dominant application area compared
to other industrial sectors. In this section, the applications and analytical methods are discussed

according to those industrial sectors.
Textile Industry

The textile industry finds various applications for hyperspectral imaging as it is possible to
discriminate various textile materials and chemical coatings based on their spectral characteristics.
Evaluations of several textile quality indices have been published by Mirschel et al., related to the
application of various chemicals on textiles. One of their studies proposed a method to monitor the
thickness and homogeneity of hot melt adhesive layers in the laminates made of black polyester
textiles. The authors have used partial least squares regression (PLSR) for thickness estimation of the
adhesive layer in the near-infrared (NIR) spectral range. The importance of this study is that the
laminate adhesive layer covered by the top black textile layer and NIR wavelength range penetrates to
a sufficient depth until the adhesive layer. This research revealed that it could estimate the thickness
and homogeneity of the adhesive layer with sufficient precision to carry out process control. The
proposed method showed the Root Mean Square Error of Prediction (RMSEP) 6 gm™? (Mirschel et al.,
2019). The same authors proposed a method to quantitatively estimate the application weight and
homogeneity of finishing chemicals in textiles. In this study, the researchers have used the NIR
wavelength range (1320 — 1900 nm). The chemical agents used in this research were colourless,
which cannot be detected with machine vision methods in the visible light wavelength range. PLS
model has been employed to determine the application weight, which yielded results with predicted
precision of the chemical for a flame retardant RSMEP 2 gm™! and stiffening agent with RMSEP 1,6
gm’ (Mirschel et al., 2018) (Mirschel et al., 2017).

Another crucial task in the textile industry is Fibre fabric identification, which demands a fast, non-
destructive method to identify the fibres. The classification of eight different such woven fabric fibres
was achieved in the SWIR wavelength range. The k-nearest neighbour (kNN) method yielded 80% or
more accuracy in classification for cotton, polyester, polyethene, wool, PVC, nylon and linen fabrics
where Locally Preserving Projection (LPP) method used for band reduction (Li et al., 2019). Jin and
others also proposed a method to discriminate synthetic fibres in textile production using NIR spectral
range. This study covers six types of synthetic fibres such as polyethene, para-aramid, polypropylene,
polyester, polyamide, acrylic fibres. The hyperspectral images were pre-processed before performing
classification by averaging spectra pixels and applying the Savitzky-Golay filtering method. Pre-
processed images of fabric samples were analysed using Principal Component Analysis — Linear
Discriminant Analysis (PCA-LDA) model with discrimination accuracy of 100% (Jin et al., 2017). In
contrast to the first research on fibre identification which uses a mix of natural and synthetic fibres,
the second research was entirely based on synthetic fibres. Another remark is that the PCA-LDA
method can achieve better classification accuracy over kNN for synthetic fibres.

Detection of foreign objects in products or contamination is an essential part of the manufacturing
sector. In cotton production, there are possibilities to contaminate the cotton lint from various sources.
During the ginning process of cotton, the cotton seeds and other foreign objects filtered out. However,
there can be some foreign matter that remains with the lint affecting the cotton quality. Detection of



foreign matter in cotton using fluorescence hyperspectral imaging has been explored by Mustafic et

al. They were using UV lights of 365 nm at the peak intensity, and the chosen wavelength range was

425 — 700 nm in visible light range. The authors have used 19 spectral bands for the classification,

where the dimensionality reduction has been done with PCA. A 90% average classification rate has

been achieved using linear discriminant analysis, and they claim that the method is suitable to detect

foreign matter with a higher amount of fluorophores (Mustafic et al., 2016).

In waste sorting applications, the objective is to classify various materials into separate groups for

recycling. For textile waste sorting, E. Herrala et al. researched the possibilities of using NIR

hyperspectral imaging methods for various natural and synthetic textile materials sorting. The

research showed successful classification of cotton, polyester, linen, wool materials. However, the

mixed fabric materials with tiny amounts of natural or synthetic material content were difficult to

classify (Herrala & Oy, 2020). Similarly, Makela and others proposed a method to determine the

polyester content of man-made and natural cellulose and polyester blends. They have used Principal

Component Analysis (PCA) for the identification of characteristic wavelengths, and the estimation of

polyester content was achieved by using the PLSR method with a prediction error of 4.5% within a
range of 0 -100 % polyester (Mékeli et al., 2020).
Below Table 1 summarises hyperspectral imaging-based quality indices evaluation methods in the

textile industry.

Table 1. Textile quality parameters evaluation using hyperspectral imaging methods

cotton

nm)

Application Spectral range Methods Reference
Polyester content estimation in NIR PCA, PLSR (Mikeld et al.,
natural and man-made cellulose and 2020)
polyester blends
Fibre discrimination in woven SWIR LPP, kNN (Lietal., 2019)
fabrics
Synthetic fibres discrimination SWIR (900 — PCA-LDA (Jinetal., 2017)

2500 nm)

Adhesive layer thickness and NIR PLSR (Mirschel et al.,
homogeneity estimation of textile 2019)
laminates
Quantitative analysis of application | NIR (1320 — 1900 | PLS, PCA (Mirschel et al.,
weight s of chemical additives in nm) 2018), (Mirschel et
textile production. (Flame al., 2017)
retardants and stiffening agents)
Detection of foreign matter in VIS (425 -1700 LDA (Mustafic et al.,

2016)

Impact of HSI in Food Production Quality Assurance

Most of the HSI and MSI based quality inspection efforts have been made into food and agriculture-

related areas. In food quality assurance, it is essential to use non-destructive methods that need a

thorough quality inspection for the entire production. However, the non-destructive tests are not that

important for batch quality checking scenarios as it is only required to test a small sample randomly

taken from a batch. In agriculture, in-situ monitoring of the plants is essential to minimise the risk of




poor harvest caused by the poor nutrient in plants. Timely estimation of plant nutrients can
significantly enhance the yield. Therefore, it is obvious the necessity of optical methods for quality
assurance over any other methods.

Agriculture Industry

As most of the applications for spectral imaging can be found in the agricultural sector, a detailed
description of the vital quality indices evaluation for each crop can provide a greater understanding of
the uses of the technology.

Strawberry serves as one of the main ingredients for various food products, including cakes, jams,
flavoured juices, milk products, etc. The internal quality attributes of strawberries which are moisture
content (MC), total soluble solids (TSS), acidity estimation of strawberries, have been done using HSI
methods. Visible Near Infrared (VNIR) wavelength range has been used for capturing the
hyperspectral data cubes. The data cubes were pre-processed using mean centring and automatic
baseline correction before using the Partial Least Squares (PLS) method for the analysis. The optimal
wavelength bands have been selected using the highest absolute values of regression coefficients - §
from the PLS model (EIMasry et al., 2007). Visual detection of bruises on Mcintosh apples is a
difficult task for colour imaging methods. Mainly due to different background colours where imaging
takes place and different ages of bruises. However, using the HSI method, the early detection (< 12 h)
of apple bruises has been achieved using spectral imaging in the VNIR wavelength range. Three
spectral bands in NIR region 750, 820, and 960 nm have been identified as the most influential
spectral bands based on stepwise discrimination analysis along with VIP scores from the PLS method.
With a limited number of spectral bands, it is possible to implement a multispectral imaging system to
in-line monitoring of apple bruises on the field. The multilevel adaptive thresholding method proved
that the apple bruises could be detected, from as new as lhour to as old as 3days (EIMasry et al.,
2008). Like those strawberry internal quality parameters evaluation, mango fruit internal quality
parameters prediction has been experimented with using HSI. The selected quality parameters were
firmness, total soluble solids, and titrable acidity. Even though the PLSR prediction model has been
developed for VNIR spectral range imaging, excessive prediction errors in the PLSR model restricted
its use only for early screening. As a result, the authors claim that titrable acidity and total soluble
solids estimation need further improvements (Rungpichayapichet et al., 2017). An on-line quality
assessment method for pomegranate fruits using the MSI system has been proposed by
Khodabakhshian et al. to predict pH, total soluble solids, and titrable acidity. In this application, four
significant wavelength bands were selected as 700, 800, 900, 1000 nm, and multiple linear regression
models have been used to estimate the internal quality parameters (Khodabakhshian et al., 2017).
Bruise detection or mechanical damage detection method for pickling cucumber has been proposed
using HSI. In this research, the hyperspectral images were acquired within NIR / SWIR spectral
range. The research suggests that the best wavelength range for mechanical damage detection lies
within 950 - 1350 nm. Band ratio and band differences in selected wavelength bands were used as
classification methods where 988, 1085 nm was used for the band ratio, and 1346 and 1425 nm were
used for the band difference method. The results show that both methods achieved more than 80%
classification accuracy (Ariana et al., 20006).

Crop growth status is an essential factor in industrial agriculture to reduce the risk of poor harvest. In
rice cultivation, the nitrogen content estimation of the rice plant during the panicle initiation stage
helps to calculate optimum nitrogen fertiliser requirement. Using VNIR hyperspectral imaging,
Onoyama and others estimated the nitrogen content of rice plants in their panicle initiation stage. The



reflectance intensities have been extracted using the difference of GreenNDVI-NDVI with three
selected spectral bands in near-infrared, green and red bands at 845 nm, 564 nm and 668 nm,
respectively. The nitrogen estimation models have been developed using the partial least squares
regression method with 0.95 gm-2 of RMSE (Onoyama et al., 2013).

Food quality can deteriorate during its storage under different climate conditions. Freeze damages
during storage of white button mushrooms before they are visually evident could be identified using
HSI. Their research suggests that ice formation causes structural damage in mushrooms, which results
in reflectance characteristics change. The research has been conducted within the 400 — 1000 nm
wavelength range and was analysed using PCA and LDA methods. According to the authors, Gowen
et al., the classification results yielded 97.9 % accuracy of freeze damage detection (Aoife A. Gowen
et al., 2009).

HSI has been used to detect mycotoxins and mycotoxigenic fungi in cereal grain sorting such as
wheat, maise and barley. One such application is Deoxynivalenol (DON) detection in cereals. Since
prolonged DON exposure can cause health hazards to humans and farm animals, it is vital to identify
such mycotoxins. The most significant wavelength bands for this task were found in 750 — 1650 nm,
the near-infrared wavelength range. Various studies have been conducted about DON detection using
different analytical / classification methods such as PLSR, PLS-DA, SVM to determine the
concentration. A comprehensive review of fungi assessment on cereals has been published by
Femenias et al. (Femenias et al., 2020).

Dried vegetable quality inspection is possible with multispectral imaging, according to numerous
studies. Primarily it has a large number of use cases in moisture content prediction. The real-time
quality inspection is possible due to the limited number of wavelength bands used from multispectral
imaging in the range of 675-975 nm with 25 bands. Prediction of moisture content and shrinkage ratio
has been achieved using PLSR and LS-SVM in dried carrot slices with a coefficient of determination
for the shrinkage ratio as 0.942 while 0.953 for the moisture content (Yu et al., 2020).

Tomato paste is a highly consumed vegetable product globally. The viscosity of tomato paste can vary
according to Sucrose content, affecting the taste and negatively impacting the industry. An MSI based
method for sucrose adulteration detection in tomato paste has been proposed by Liu et al. The
research suggests PLSR, LS-SVM, BPNN models for quantitative and qualitative assessments within
the wavelength range of 405 — 970 nm. Their study reveals LS-SVM model has achieved a 1%
accuracy level in the quantitative estimation of adulterated sucrose content (Liu et al., 2017).

HSI and MSI have numerous applications in the agricultural sector for product quality assurance as it
provides a non-destructive solution to the industry. Agriculture crops related quality parameters
evaluation and the used methods are summarised in Table 2.

Table 2. Summary of agriculture crops/products quality parameters prediction using HSI

Product Quality Indices Wavelength Range | Analysis Methods Reference
Strawberry | MC, TSS, Acidity VNIR (400 — PLS (ElMasry et
1000 nm) al., 2007)
Rice Nitrogen VNIR (400 — PLSR (Onoyama et
1000 nm) al., 2013)
Apple Bruise detection VNIR (400 — Multilevel (ElMasry et
1000 nm) adaptive al., 2008)
thresholding of
selected bands




White Freeze damage detection | VNIR (400 — PCA, LDA (Aoife A.
button 1000 nm) Gowen et al.,
Mushrooms 2009)
Cereals Mycotoxins detection NIR (Femenias et
(Wheat, al., 2020)
Maise,
Barley)
Pickling Bruise detection NIR (900 — 1700 | PCA, Band ratio, | (Ariana et
cucumber nm) Band difference al., 2006)
Dried VNIR (675-975 PLSR and LS- (Yuetal,
carrot nm) Multispectral | SVM 2020)
— 25 bands
Mango Firmness, Total Soluble | VNIR (450-998 PLSR (Rungpichay
Solids (TSS), Titrable nm) apichet et al.,
Acidity (TA) 2017)
Pomegranat | Total Soluble Solids VNIR (400-1100 | MLR (Khodabakhs
e fruits (TSS), Titrable Acidity | nm) hian et al.,
(TA), pH 2017)
Seafood Production

The quality evaluation in fish and other seafood is primarily about the consistency of the meat, visual
aspects, and odour. An instrumental method for fish quality estimation is freshness based on chemical
spoilage assessment caused by microbiological bacteria presence (Menesatti et al., 2010).

The moisture content is one of the quality parameters which determines prawns’ taste, shelf life and
price. Prawns are dehydrated to extend the shelf life. However, it is essential to maintain a certain
amount of moisture within prawns as too high moisture can cause microorganism growth while too
low moisture can destroy nutrition content. Dehydrated prawns’ moisture content and distribution
were determined in the spectral range of 380 — 1100 nm by Di Wu et al. The research suggests the
Successive Projections Algorithm (SPA) as hyperspectral band selection algorithm, which selected 12
spectral bands for moisture determinations in the VNIR range (428 — 999 nm). The proposed MLR
algorithm yielded a coefficient of determination of 0.962, proving the suitability of the method for
moisture estimation (Wu et al., 2012).

The freshness and safety of fish are determined by quality parameters such as Thiobarbituric Acid
Reactive Substances (TBARS), Total Volatile Basic Nitrogen (TVB_N) and total viable counts
(TVC). These parameters prediction for rainbow trout fillets have been developed using multispectral
imaging in the spectral range of 430- 1010 nm. The most significant six wavelength bands have been
identified to predict the above quality indices. The prediction models have been developed using the
PLSR method, and the best prediction results were achieved for TVC while TBARS prediction was
poor (Khoshnoudi-Nia & Moosavi-Nasab, 2019a). The same authors have extended the research to
optimise the method to conduct a quality evaluation using multispectral imaging for the additional
parameters such as Psychrotrophic Plate Count (PPC) and sensory score. The authors have identified
nine optimal spectral bands using a genetic algorithm for their proposed method (Khoshnoudi-Nia &
Moosavi-Nasab, 2019b).

Fish product freshness assessment was conducted to find the possibilities to assess the freshness as
storage of days for fresh and frozen-thawed cod fillets using HSI. The authors claim that their



proposed VNIR hyperspectral imaging method can determine the storage duration of cod fillets on
ice. They achieved a prediction accuracy of 1.6 days as the product storage duration on ice. Also, this
method can be used as an on-line quality inspection technique as it can process one fillet per second
(Sivertsen et al., 2011).

Meat Production

The quality of fresh meat largely depends on its water holding capacity. For beef water holding
capacity, estimation has been investigated by using NIR hyperspectral imaging. In this research, six
wavelengths were identified as crucial wavelengths for the PLS model, and they were 940, 997, 1144,
1214, 1342, and 1443 nm. The authors, EIMastry et al., have used PCA and PLS methods to quantify
the water holding capacity, producing prediction accuracy with 0.87 as the coefficient of
determination (EIMasry et al., 2011). Tenderness prediction of cooked beef has been proposed using
VNIR (400 — 1000 nm) hyperspectral imaging method by Govindarajan et al. The proposed model
predicts tenderness of cooked beef in three tenderness categories with 96.4 % accuracy (Naganathan
et al., 2008). The fresh beef quality indices prediction ElMasry, G et al. have proposed a PLSR model
to predict colour, pH and tenderness in a separate study. This method has been done in the NIR
wavelength range of 900 — 1700 nm (Elmasry, Sun, et al., 2012).

Pork quality evaluation in terms of colour, texture (firmness), and exudation (drip loss) characteristics
have been carried out by Qiao. J et al. in the spectral range of 430 — 1000 nm. In the proposed method,
they have used PCA for dimensionality reduction. Artificial Neural Networks (ANN) based classifier
has been able to classify the samples by 85 % with 10 PCs (Qiao et al., 2007). Water holding capacity
estimation and tenderness sensing method of pork has been proposed using three wavebands using
NIR multispectral imaging. The three wavebands used to estimate those parameters were 1280, 1440
and 1660 nm, where a backpropagation neural network has been used as an analytical model (Huang
etal., 2015). Likewise, lamb meat quality evaluation for four different sheep breeds has been
investigated by Kamruzzaman et al. using a NIR spectral imaging-based method. They have
developed a prediction model for quality indices evaluations. Their approach aimed to estimate the
lamb meat’s pH, colour and drip loss (Kamruzzaman et al., 2012).

The bacterias such as Listeria monocytogenes growing in ready-to-eat meat and fish can be a severe
health threat, especially for pregnant women, newborns, and adults with weak immune systems
(Centre for Disease Prevention & Food Safety Authority, 2019). Some studies have used VNIR HSI
methods for the rapid identification of bacteria. Several bacteria strains of Cronobacter, Salmonella,
Escherichia Coli, Staphylococcus, and Listeria monocytogenes, have been analysed using PCA and
K- Nearest Neighbor (k-NN) classification method. The Listeria was detected with 100% accuracy
(Michael et al., 2019). A detailed review of microorganisms on food until 2017 was published by
Wang et al. (K. Wang et al., 2018). Agglutination detection in fried minced meat during initial frying
is important for ready-to-eat fast food production, and this has been investigated in minced beef and
diced turkey. The proposed classification method is canonical discriminant analysis or Fisher’s
discriminant analysis. Also, the most informative spectral bands have been identified as 470, 700, 850
and 970nm for the classification (Daugaard et al., 2010).

The Aerobic Plate Count (APC) is considered a microbiological indicator for porks’ sanitary quality
and food safety. The APC count of cooked pork sausages has been investigated in VNIR spectral
range using a multispectral camera with 19 bands. The primary wavelengths which are significant for
APC detection have been identified within 570 — 850 nm. A PLSR model has been proposed to detect
APC with a coefficient of determination of 0.89 (Ma et al., 2014). Multispectral imaging system for



industrial-scale poultry quality assessment has been suggested for the microbial level, which can be
used to obtain Total Viable Counts (TVC) and Pseudomonas spp. Chicken breast fillets, thigh fillets,
marinated souvlaki and burgers were used in the experiments (Spyrelli et al., 2020).

Below Table 3 summarises the quality indices estimation and prediction methods proposed by various
researchers on meat quality.

Table 3. Summary of meat quality parameters prediction using HSI

Product Quality Indices Wavelength Analysis Reference
Range Methods
Fresh beef | pH, Tenderness, Color NIR (900-1700 PLSR (Elmasry,
nm) Sun, et al.,
2012)
Cooked Tenderness VNIR (400-1000 (Naganathan
beef nm) et al., 2008)
Pork Colour, Texture, VNIR (430-1000 (Qiao et al.,
Exudation nm) 2007)
Pork Water holding capacity, | 1280 nm, 1440 BPNN (Huang et al.,
Tenderness nm and 1660 nm 2015)
MSI
Lamb pH, Tenderness, Color NIR (900 - 1700 | PLSR (Kamruzzam
nm) an et al.,
2012)
Read-to-eat | Listeria bacteria VNIR (400 — k-NN (Michael et
meat and 1000 nm) al., 2019),
fish
Ready-to- | Agglutination on VNIR (430-970 FDA (Daugaard et
eat meat minced meat frying nm) multispectral al., 2010)
— 18 bands
Cooked Aerobic Plate Count VNIR (400-970 (Maetal.,
pork nm) Multispectral 2014)
sausages — 19 bands
Poultry Total Viable Counts, VNIR 18 bands PLSR (Spyrelli et
products Pseudomonas spp (405 — 970 nm) al., 2020)
(microbial level
assessment)

Beverage Production Industry

Hyperspectral imaging has been in use for foliar disease detection in tea plants which is known as

anthracnose. The researchers have identified three spectral bands which are instrumental in detecting

afore mentioned foliar disease as 542, 686 and 754 nm in the visible light wavelength range. Their

classification method was based on unsupervised learning and adaptive two-dimensional thresholding.

The results of the proposed method proved that they could detect the disease with 98 % accuracy

(Yuan et al., 2019). Mishra et al. suggest that near-infrared hyperspectral imaging could be used for

green teas classification according to the country of origin. The study has been conducted wavelength




range is 950 — 1760 nm. Even though there are some misclassifications, the authors suggest that the
HSI and machine learning could achieve successful results for tea quality assessment (Mishra &
Nordon, 2020). The amount of Free Amino Acids (FAA) indicates the freshness, taste and aroma of
yellow tea. Yang et al. have used spectral image pre-processing and band selection to identify the
most significant wavelength bands for FAAcontent detection in yellow tea. The pre-processing
method was Savitzky-Golay filtering, while band selection was done using SPA. The authors have
proposed a Genetic Algorithm-Support Vector Regression (GA_SVR) algorithm for predicting FAA
with the selected five characteristic wavelength bands in the NIR region of the electromagnetic
spectrum(Yang et al., 2019).

In dairy production, melamine is used to boost protein content which causes health problems.
Therefore, a research group has investigated the detection of melamine concentration using HSI in
milk powders using different approaches. One of their research methods used NIR spectral range HSI
0f 990 — 1700 nm. Their PLSR model was successfully used to evaluate melamine-milk samples of
concentration 0.02 % - 1% (Lim et al., 2016). For the other approach, they have employed spectral
similarity analysis (Fu et al., 2014).

Pharmaceutical Industry

The pharmaceutical production process requires an in-line monitoring method for Active
Pharmaceutical Ingredients (API) in micro tablets for quality assessment. The API could monitor
within VNIR and SWIR wavelengths regions of the electromagnetic spectrum. The prediction model
developed using the PLSR achieved a coefficient of determination of more than 0.90, suggesting that
the proposed HSI-based rapid in-line quality inspection method is suitable for pharmaceutical
production (Kandpal et al., 2016). In earlier research, Franch-Lage et al. have proposed a Multivariate
Curve Resolution (MCR) technique for Lorazepam surface homogeneity assessment (Franch-Lage et
al., 2011). Franch-Lage et al. suggested that the VNIR spectral range is sufficient for the
pharmaceutical surface homogeneity inspection. Moreover, some researchers suggest that UV
multispectral imaging could be used for pharmaceutical tablet coating defect identification (Klukkert
et al., 2016).

Other Application Areas

Apart from the above applications, there are a few other areas where hyperspectral imaging is used for
quality assurance. Confectionaries, food ingredients, various chemical coatings, and coated materials
production are some of those applications.

The quality assessment of butter cookies based on surface browning and water content has been
proposed by Andresen et al. using multispectral imaging. In this study, the authors found that surface
browning can be detected within the visible light wavelength range while water content can be
determined in the near-infrared spectrum. The authors have identified two wavelengths to determine
the browning score of cookies as 395 and 525 nm. Moreover, the authors suggest that the NIR region
is suitable for water content determination and evaluated using a PLSR model (Andresen et al., 2013).
The HSI could use of as a replacement for analytical methods to classify flavoured and unflavored
olive oil. According to Romaniello et al.’s findings, the 400 — 570 nm and 695 nm spectral bands
gives characteristic signatures for oils (Romaniello & Baiano, 2018).

Assessment of heavy metal contamination of water sources is usually done in laboratories. However,
Rostom et al. suggest an HSI based method for heavy metal concentration estimation in water bodies



such as Mn, Co, Cu, Cd, Pb, Ni, Cr, Fe, and Zn using a portable spectroradiometer. They have
conducted their experiments in Mariut Lake in Egypt. Moreover, the authors have used Chlorophyll
absorption wavelengths which are 450 nm and 675 nm, for the detection of algae. For heavy metal
detection, they have proposed spectral bands ranging from 350 nm to 1200 nm. The authors have used
Linear Regression Analysis for developing the heavy metal estimation model (Rostom et al., 2017).
Wang et al. have used an airborne panchromatic-multispectral imaging system to detect pollutants on
large water bodies. The work was focused on detecting aquatic vegetation, algae and other pollutants
such as garbage, sewage, etc. (Z. Wang et al., 2019).

Photographic papers are coated with a light-sensitive chemical layer. A nine-band LED multispectral
imaging method presented by Lalonde et al. suggests density measurements of colourants in
photographic paper manufacturing is feasible (Lalonde et al., 2015). However, the authors claim their
current results are inferior for certain photographic paper products, which could be improved by fine-
tuning the inspection apparatus.

A coefficient independent scattering model could be used for coating thickness determination
applications using VIS-NIR HSI. Dingemans et al.’s novel approach could measure coating of 250
pm with 11 um accuracy according to the published results. In this study, the coating material was a
semitransparent film-forming low-gloss wood lacquer for outdoor usage (Dingemans et al., 2017).
Thickness estimation of thin aluminium oxide (A1203) layers on stainless steel foil was an example
presented by Gruber et al. for HSI thin film imaging. The research has been conducted in VIS-NIR
spectral range, where principal component regression (PCR) with a PLSR method has been used for
layer thickness prediction. The alumina coating process is a part of single-wall carbon nanotubes
(SW-CNT) production for battery applications (Gruber et al., 2016).

Polymer packaging materials hinder the quality inspection of food and pharmaceuticals. Even though
they are transparent, the quality inspection can only be possible before packaging or after removing
the packaging. The feasibility of HSI for packaged goods inspection and the influences of PVC and
PET packaging for hyperspectral imaging have been published by Gowen et al. Their research
confirms that combined with image and spectral processing of HSI data, it is possible to inspect
packaged products (A. A. Gowen et al., 2010).



DISCUSSION

The literature survey was conducted by referring to the widely popular and high impact scientific
research journals. The survey covered significant research publications during the past 15 years.
However, this may not contain all the research articles published during the period. It is a
prohibitively tedious task to cover all the articles published, and there are restrictions to access all the
journals published worldwide. Figure 5 shows the distribution of the articles in this survey from each
industrial sector from 2006 to 2020. The majority of the HSI based quality assessment has happened
in food production during the above mentioned period.

Quality assessment related publications from 2006 - 2020

m Other mPharmaceuticals mBeverage = Food mAgriculture mTextile

Figure 5. Selected article from 2006 to2020 according to the industry

The number of publications is growing in hyperspectral imaging methods for quality assessment for
the surveyed period. Even though early research literature related to the agriculture sector, the other
industrial sectors find spectral imaging methods provide feasible solutions for quality evaluations.
According to Figure 6, the food industry has a broader spread of research with spectral imaging. All
the quality evaluation methods were conducted in VNIR, NIR or SWIR wavelength regions.
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Figure 6. Number of publications per each year throughout the survey



CONCLUSION

The objective of the chapter was to present an in-depth overview of the current developments in
hyperspectral and multispectral imaging for product quality assessments. Spectral imaging is still an
emerging technology, where novel processing methods, hardware and applications rapidly
developing.

The article presented numerous examples of hyperspectral imaging use cases in agriculture,
pharmaceutical production, the textile industry, etc. Some studies suggest that the product quality
inspection could be feasible using hyperspectral imaging, even the goods are packaged using polymer
materials. At the same time, research evidence shows that hyperspectral remote sensing technology is
a suitable method to determine the water quality on large water bodies. Such examples prove that
spectral imaging could perform machine inspection, which could not do otherwise.

The survey revealed that most spectral imaging inspection methods are conducted within visible and
near-infrared wavelength regions.

As a non-destructive, fast, in-situ quality inspection method, spectral imaging could benefit many
industries.
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KEY TERMS AND DEFINITIONS

At-line — The measurement task is carried out near the production process. However, they are
physically separate processes.

In-situ — The necessary measurements or analysis of the process are conducted on-site and directly
integrated into the main production flow.

In-line — The measurement process is directly integrated into the main production process.

On-line — Same as in-situ. The measurement or analysis is done in the exact location where the

process occurs.
Off-line — The measurement samples are taken from the process and further analyses separately.
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Abstract—Hyperspectral images contain hundreds of spectral
bands. These bands contain abundant information and more
often redundant information. This article presents an unsuper-
vised band selection method to choose most significant spectral
image bands from hyperspectral datacube which maximize the
relavance and minimize redundancy. The outcome of the research
can be used for two purposes. One of them is to fabricate
multispectral sensor which is more effective in identifying the
subjects of interest. The other purpose is to enhance computa-
tional efficiency in classification of the hyperspectral image by
processing only the selected spectral bands. Proposed method
is based on spectral pooling of hyperspectral data cube. Since
spectral pooling methods cause information loss which reduces
the discrimination of material classes. This article suggests a
novel approach which can minimize the loss while improving
material classes discrimination. The proposed technique uses
min-max pooling together with reflectance intensity gradient of
neighboring pixels of hyperspectral image in spectral data axis.
Experiment results of classifying terrain hyperspectral datasets
are presented to validate the consistency of image classification
which contains several material classes. A comparative analysis
has been conducted between max pooling, principle component
analysis and the proposed min-max pooling.

Index Terms—hyperspectral imaging, pooling, feature selec-
tion, band selection, dimensionality reduction, spectral image
classification

I. INTRODUCTION

Hyperspectral images contain hundreds of spectral bands
within a single image data cube. These images contain con-
tiguous spectral distributions of the pixels related to the
objects in the scene. This gives abundant information about the
subjects under inspection. The higher the number of spectral
bands, the higher the computational cost for process and
classify the hyperspectral image. Most of these spectral bands
contain redundant data and also higly correlated [1]. Even
though having higher number of spectral bands increases the
classification accuracy, it fails and drastically decrease accu-
racy when it reaches certain band count. This phenomenon is
called Hughes phenomenon which demands careful selection
of appropriate spectral bands [1]. This is one of the problems
in hyperspectral imaging (HSI) tackled as dimensionality
reduction [1] [2]. In certain industrial applications such as
product quality inspection in production lines, it is required
to process the spectral image in real time. Classification
of objects based on large number of spectral bands which
contains redundant and correlated data with smaller number
of training samples causes decrease in classification accuracy.
On the otherhand, extracting the most informative bands from

the data cube which are unique to the subject of interest and
post process the chosen bands will yield better classification
accuracy and computational efficiency.Therefore, the objective
of this study is to develop a band selection method which
minimizes the redundant and correlated data while taking
unique spectral characteristics into consideration.

There are various band selection methods have been pro-
posed by various authors during past decades [3]—[8]. Principle
component analysis (PCA) has been widely used for dimen-
sionality reduction and for analysis of HSI images. There have
been previous studies on band selection (feature selection)
methods based on different techniques. Some of them PCA
based variations such as selective principle component analysis
based on genetic algorithms [3], Fisher linear discriminants
[4], Independent Component Analysis (ICA) [5S], statistical
methods with skewness — kurtosis parameters [6], convolution
neural networks some additional functions such as attention
mechanism [7] distance density [8], etc.

In state-of-the-art image recognition algorithms, spatial
pooling is one of the typical steps where it uses convolution
neural networks (CNN). The pooling operation is used to
group a subset of features in a selected region of the image
which intends to preserve important feature while discarding
irrelevant features. Pooling operation summarizes the outputs
of neighboring neuron groups in the same kernel [9]. Various
pooling operations are in use for that purpose. These methods
can be maximum, average, minimum, stochastic or mixed
pooling. In this study, novel gradient based min-max pooling
method will be introduced in selecting hyperspectral image
bands. The max pooling method with reference to band
selection also presented as it is the basis of novel method.
Both band selection methods are described, experiment results
presented and compared based on selected data set for terrain
classification and Indian Pines data set which is widely used
in remote sensing research. Even thought the proposed band
selection (feature selection) method tested in visible and near
infrared spectrum for hyperspectral imaging, the same method
can be used for the other light wavelength ranges as well.

II. RELATED WORK

Spectral band selection based on mean pooling has been
carried out for remote sensing image analysis. This particular
research was used support vector machines for classification
[10]. Maximin distance algorithm based band selection method
proposed by Ganesan and Vasuki. In this method, they estimate
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virtual dimentionality of the spectral data cube which defines
how many bands needed for class descrimination. According
to the maximum length of the band which is maximum
normalized reflectance, it selects the characteristic bands [14].
Shape similarity based approach presented by Shijin Li and
others in which they propose spectral clustering followed
extraction of key points in time series data. Then conditional
filtering of mutual information to obtain fewer number of
bands [15]. In contrast to these methods, proposed minmax
pooling method works on clustering the datacube according to
kernals and then searching for extremes of pooling operation.

III. PREPARATION OF DATA SETS

Hyperspectral images were acquired using Specim IQ hy-
perspectral camera (Specim Spectral Imaging Ltd, Finland)
which has spectral range of 400-1000 nm [11]. The camera
has spectral resolution of 7 nm and has 204 spectral bands.
The hyperspectral data cubes were captured under sunlight.
The data cubes were processed, analyzed using MATLAB.

The below Fig. 1 scene was captured to classify terrains
with gravel, asphalt and grass. There are different materials
such as dry tree trunks, dry leaves, mud and sand present in
the image too. Due to complexity of labeling, dry matter, mud
and sand considered as one class. In total, the image contains
five classes.

Fig. 1. Dataset with asphalt, gravel, grass in a terrain image.

The dataset was calibrated using white and dark references
taken while capturing the image. The data cube contains
12-bit resolution reflection data for each band. Therefore,
calibrated image kept with the same resolution. In (1) /;
denotes the calibrated reflection intensity at i band while Iy;
is the reflectance of original image at that wavelength band.
Similarly, W; and D; denote the white reference reflectance
and dark reference reflectance at respective band.

I; = 4096 x (Im*D*)

WD, (O]

IV. BAND SELECTION METHOD

Since, the objective of band selection is to extract certain
number of spectral bands which characterize the objects in
the scene to define spectral bands for a multispectral sensor,
initially it is required to define the number of spectral bands
desired. Depending on this, the number of pooling iterations
calculated together with the size of pooling window for
each iteration. To extract the max pooling values from the
spectral bands, it is required to re-organize the image where
primary axis spatial pixels while secondary axis gives spectral
distribution for the given pixel. To do that, the spectral image
needs to be converted to 2-D image from 3-D data cube. In the
original data cube columns converted into rows of modified
image as in the Fig. 2. Purpose of the above transform is
to perform pooling operation only on spectral data instead of

spatial data.
,V
y

hxw

Fig. 2. Unfolding spectral data cube.

A. Max Pooling

This method sequentially finds the largest feature in
the spectral bands kernel. The spectral kernels are non-
overlapping. Max reflectance of the filter is calculated using
@.
(@)

Ymax = maziy i
B. Min - Max Pooling (Proposed method)

In contrast to max pooling method, min-max pooling
method involves searching for the local minima and maxima
(local extremum) in the pooling kernel. In the pooling kernel,
there can be significant local minima which doesn’t taken into
consideration when it is only choose with max pooling. To
take such a situation into account, this method searches for
minima and maxima in the current n kernel. The minima
calculated using (3).
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Fig. 3. Min-max pooling.

Similarly, maxima and minima for (n + D™ kernel will
be calculated using the same equations (2) and (3). Find
the maxima and minima coordinates in the spectral axis
which are the band numbers. The adjacent gradients calculated
between three conscutive extreme locations. Depending on the
calculated gradient differences between extreme points, the
band of either maxima or minima will be selected from the
filter.

In this algorithm, let the consecutive points to be p;, p» and
ps and the gradients of p;p, as my, pop; as my. The Fig. 3
shows how these points located in spectral axis. If the gradient
difference is more than 0.15 which was obtained empirically,
the point p, will be more significant in the kernel and the else
pPi1-

The band number B taken from (4). Below 0.15 taken em-
pirically and depending on the variation of spectral signature,
this value can be changed.

B=— {Pz,

pi,

In this geometric technique, if two consecutive points lie on
consecutive bands, then the band with low reflectance intensity
will be ignored. Eventhough it can catch subtle points in the
spectral signature, it has downside over max pooling. This

method takes considerable computing time as it requires to
calculate gradient in each iteration.

if my —m; > 0.15
otherwise

“

V. CLASSIFICATION METHOD

For HSI classification, deep feed forward neural network
(DNN) has been used. The network comprised on input layer,
output layer and four hidden layers. In the input layer, there
were 20 neurons. This was according to chosen number of
spectral bands. First hidden layer has 20 neurons, second layer
with 50 neurons, third layer with 25 neurons and the fourth
layer was 5 neurons. Last layer of the network used ‘softmax’
as activation function where all the other layers were ‘purelin’.
The output layer has 5 neurons which is based on number of
classes in the image.

Training data classes extracted from the same image which
corresponds to different materials in the HSI data cube.
Therefore, training data labelled according to material in the
data cube.

VI. RESULTS

HSI classification performance for the proposed methods
are presented in below I. Results include two pooling based
methods and widely used PCA method for the chosen data
set. Number of bands denoted in N, while detection accuracy
for each class presented as a percentage based on its ground
truth. Classes named as follows, AP - Asphalt (green), GV -
Gravel (red), GR - Grass (blue), DM - Dry matter (black) and
SK - Sky (white). Below Fig.4 show the ground thruth of the
terrain dataset and Fig. 5 shows the classification result for 15
bands using min-max pooling method.

Fig. 4. Ground truth of the dataset.

A. Max Pooling

With max pooling method, the classification accuracy de-
creases with large number of image bands. However, in overall
it gives 86 — 87 % classification accuracy.

B. Min-Max Pooling (Proposed method)

This method gives slightly better accuracy over other meth-
ods in overall. Most importantly, it gives higher classification
average results for all across the classes even with lower
number of spectral bands. The objective of the method is
to distinguish spectral signatures of closely correlated classes
along with band selection. This objective has been achieved
with above results.



Fig. 5. Classification result for 15 bands using Min-Max Pooling.

TABLE I
TERRAIN HSI DATASET CLASSIFICATION RESULTS

Classification accuracy %
Method N AP GV GR | DM | SK | Overall

S 81.5 | 942 0 96.9 | 97.5 86.2
10 | 83.0 | 954 | 83.6 | 743 | 98.7 89.6
Max Pooling 15 | 785 | 91.2 | 842 | 69.7 | 983 86.1
20 | 83.1 | 90.5 | 84.7 | 70.3 | 985 86.7
25 | 839 | 89.5 | 85.6 | 69.2 [ 98.0 86.0

Avg | 82.1 | 922 | 67.6 | 76.1 | 98.2
5 739 [ 868 | 78.8 | 772 | 981 838
10 | 82.1 | 96.1 | 779 | 77.8 | 97.7 89.7
Min-Max Pooling 15 86.0 | 96.0 | 83.6 | 76.0 | 989 90.6
20 | 85.6 | 86.1 | 86.1 | 80.0 [ 97.8 86.5
25 | 83.0 | 904 | 79.3 | 76.6 | 97.9 87.1

Avg | 82.1 | 91.1 | 81.1 | 77.5 | 98.1
5 709 [ 79271 665 0 95.3 67.7
10 | 78.7 | 81.5 | 70.9 0 98.5 70.9
PCA 15 | 79.7 | 81.7 | 68.0 0 97.9 71.0
20 | 78.6 | 78.9 | 70.6 0 95.9 69.4
25 | 825 | 89.2 | 81.8 0 97.3 75.9

Avg | 82.1 | 91.1 | 81.1 0 98.1

C. Comparison with other methods

Principle component analysis (PCA) method also used to
extract spectral bands from the hyperspectral dataset. PCA
methods gave lower overall classification accuracy compared
to the pooling methods. It couldn’t classify dry matter against
grass with PCA based spectral bands. Below Fig. 6 shows the
overall accuracy of each method.

VII. REMOTE SENSING IMAGE CLASSIFICATION

There are popular remote sensing datasets such as Indian
Pines dataset used in most of the researches to compare
performance of proposed methods. In this study, the proposed
pooling methods also tried out using Indian Pines data set
[12]. The corrected dataset contains 145 x 145 pixels with
200 spectral bands which excludes spectral bands containing
water absorption spectral signature [13]. The ground truth of
the dataset shown in Fig. 7.

The classifier was modified by changing the number of neu-
rons in the last layer to 9. Due to low resolution of the dataset,
there weren’t sufficient amount of training data for all the 17
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Fig. 6. Comparison of overall accuracy of band selection methods.

classes in the original image. In order to minimize the impact
of limited training data on the classification, 9 classes were
selected based on number of spatial pixels available in each
class sorted in descending order. The classification outcome
is shown in Fig. 8 for the chosen 9 classes. Those classes
weren’t included in the training, were detected according to
highest probable class. Even though it has been used as a
benchmark, neural network methods require large amount of
data for accurate classification.
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Fig. 7. Ground truth of AVIRIS Indian Pines dataset from Purdue University
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TABLE 11
INDIAN PINES DATASET CLASSIFICATION RESULTS

Method
Max Pooling
Min-Max Polling
PCA

Overall accuracy %
62.39 %
64.92 %
56.18 %

Above II, shows the classification results for the Indian
Pines dataset. Based on classification results, the pooling
methods are performing better than PCA method. Among the



Fig. 8. The HSI classification result for the Indian Pines dataset. Number of
classes has reduced.

pooling methods, proposed min —max pooling method shows
slightly better classification accuracy. Since number of samples
were low, the accuracy of each class has not been investigated.

VIII. EARTH MINERAL MATERIAL CLASSIFICATION

This methd was used to classify two earth mineral materials
which are Apatite and Tourmaline. The materials have similar
visual appearance Fig. 9. The spectral characteristics for
each material plotted after obtaining from min-max pooling
operation which are shown in Fig. 10 and Fig. 11. The
material classification result is shown in Fig. 12. According
to the classification result, the materials have been detected
with reasonable accuracy. However, earth minerals are mostly
contaminated with several other minerals, it might need to ex-
periment with relavant light wavelength ranges which provide
information on other contaminants.

Fig. 9. Earth mineral samples. Left: Tourmaline and Right: Apatite. White
reference in the center.

IX. CONCLUSION

Hyperspectral band selection method based on max pooling
and min-max pooling has presented in this article. Both
pooling methods delivered better classification accuracy com-
pared to PCA method. Experiments has been conducted on
terrain image classification and remote sensing public dataset
classification with all three methods. Among pooling methods,
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Fig. 10. Spectral signature of Apatite with 25 bands taken from pooling
operation .
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Fig. 11. Spectral signature of Tourmaline with 25 bands taken from pooling
operation.

Fig. 12. HSI image classification result showing Tourmaline in cyan and
Apatite in red.



the proposed min-max pooling technique shows better classifi-
cation accuracy among all the classes. The proposed min-max
pooling method is capable of capturing distinct characteristics
of different classes quite well.

In general, the min-max pooling takes more computing time
over max pooling method. However, band selection performed
for identifying suitable spectral bands to classify the scene
which doesn’t affect much for overall classification process.

The only pre-processing step was spectral calibration with
white and dark references.
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Abstract—Terrain recognition for off-road unmanned ground
vehicles driven on unstructured terrains are far complex in
contrast to terrain recognition for road vehicles which are driven
on structured terrains. Large number of terrain classes mixed-up
in unstructured terrains make it difficult to classify using convolu-
tion neural networks based on RGB images. Partly it is attributed
to lack of sufficiently annotated training data for neural network,
and partly it is difficult to label such a large number of object
classes which shows visual similarities. Introducing additional
details about the scene with hyperspectral or multispectral
cameras, the scene classification can be greatly improved for
annotation of training data for neural network training. Using
spectral signatures of different materials, hyperspectral imaging
can detect different materials in the scene. This article discusses
a method to annotate RGB i and tic seg| tation
for autonomous driving on unstructured terrain applications by
using hyperspectral imaging. The RGB images will be generated
using same hyperspectral data cube by extracting certain spectral
bands in the visible light spectrum. Using semantic segmentation
network ResNet18, manually annotated training data will be
compared with hyperspectral method assisted annotated data by
classifying terrain scenarios.

Index Terms—Image annotation, hyperspectral, unstructured
terrain recognition, UGV

I. INTRODUCTION

Machine vision for autonomous ground vehicle navigation is
one of the rapidly evolving research area in the recent years.
In those applications, recognition of different terrains, road
surfaces and objects are done by using Deep Convolutional
Neural Networks (DCNN) based on RGB images. Object
detection accuracy highly depends on the labelled training
image data given to the network. These labelled training data
coming from assigning class label to pixels in the image.
Semantic labeling can be done by manually or by using
annotation tools. Manual labeling is a time consuming and
expensive task done by human labellers. On the otherhand,
there are various commercial tools and research work to
automate image labeling process to reduce labour cost for
manual labeling [1] [2] [3] [4]. The annotation can be either
strong-annotation which involved labelling every pixel in the
image or weak-annotation which is defining bounding box
around the object.

However, researchers claim that state-of-the-art segmenta-
tion acuracy can be achieved in image semantic segmentation
using fully-supervised methods. Modern weakly supervised
networks produce inferior results while combining weakly-
annotated images with small number of strongly-annotated
images can produce comparative results [5]. Therefore it is
necessary to have fully supervised strongly-annotated images
for state-of-the-art segmentation. There are various CNNs
developed over the time to improve semantic segmentation
[6], [7]. Several other researches indicate use of multi-modal
approaches to enhance semantic segmentation [8], [9], [10].
Using RGB-D images and four-stage CNN for classification,
Nico and others have used depth maps to improve segmen-
tation accuracy [8]. Transforming 3D LiDAR point clouds to
spherical image, PointSeg network [10] has been developed
for semantic segmentation even though it suffers small object
detection performance.

Off-road autonomous navigation is far more complex than
urban road navigation due to complexity of the terrain. Differ-
ent terrain classes such as swamps, water puddles, wetlands,
mud, etc. have close visual appearance which reduces the de-
tection using RGB images [11]. For off-road terrain semantic
segmentation, it has been proved that additional 3D Lidar
fusion with images can help segmenting roads and muddy
water puddles which is rather complex terrain scenario [11].
Fusing additional sensors such as LiDARs, depth-cameras,
the terrain detection can be enhanced even under low light
conditions [12].

Using Hyperspectral Imaging (HSI) method, this article in-
vestigates an alternative approach for image labelling. Hyper-
spectral image comprises of hundreds of contiguous spectral
bands in a single data cube. The reflectance characteristics
at different wavelength bands for different materials produce
unique signature. Based on this so called spectral signature,
image pixels of similar materials can be identified. Similar
approach has been used in remote sensing using Multispectral
images (MSI) in visible Near infrared (VNIR) wavelength
range [13]. Since HSI contains more spectral bands than MSI,
the aforementioned HSI method can provide higher accuracy
in image classification with the help of suitable band selection.

978-1-7281-6956-9/20/$31.00 ©2020 IEEE



Therefore, scene labeling can be improved by combining HSI
classification with RGB annotation which reduces the manual
segmentation operation.

Objective of this study is to investigate HSI image classi-
fication possibilities to assist annotation of RGB images as
training data for neural networks. This study involves shallow
neural network for HSI classification. For the segmentation re-
sults comparison, in addition to HSI images, RGB images were
used with semantic segmentation network called ‘resnetl8°.

II. RELATED WORK

Since the focus of this work is to investigate RGB scene
labeling with the help of HSI, object labeling with spectral-
spatial data were explored. Use of hyperspectral images for
terrain classification in UGV applications has been researched
using snapshot hyperspectral cameras by C. Winkens and
others [14]. Their study was based on random forest classifier
where the authors claim that VNIR camera based method ca-
pable of destinguishing drivable areas from non-drivable areas
[14]. Instead of vehicle mounted or ground based sensors,
using aerial sensor platform which comprises of HSI, RGB
camera and Lidar, urban scene labeling has been investigated
and presented in reference [15]. Similar research has been
done by Eslami and others with hyperspectral thermal infrared
imagery and visible imagery for urban object detection such
as roofs, trees, vegetation and soil [16]]. Instead of single
multispectral camera, Valada and others have used two RGB
cameras and removing Near InfraRed (NIR) filter from one
of the cameras to capture RGB + NIR images for semantic
segmentation. The authors claimed that their NIR wavelengths
fusion with RGB provide more accurate segmentation in
forested environments [17].

With the findings of all these studies, it is a valid hypotheses
to investigate the semantic segmentation capabilities of HSI in
order to reduce labour involved in pixel-wise labeling of RGB
images.

III. EXPERIMENTS

The experiments were conducted including HSI classifica-
tion using shallow neural networks and comparing the results
with best performing semantic segmentation deep neural net-
work results for RGB images.

A. Image dataset

Hyperspectral images were captured by using Specim IQ
mobile hyperspectral camera in VNIR range of 400 — 1000
nm. The camera captures hyperspectral data cube with 204
spectral bands, 7 nm spectral resolution. The spatial resolution
of the hyperspectral sensor is 512 px x 512 px and it provide
RGB image with 1200 px x 720 px resolution from viewfinder
camera [18]. The images were acquired under sunlight. Specim
1Q camera uses push-broom image acquisition technique as it
comprises of line scan imaging sensor [19].

The data sets were captured in Estonia covering different
terrain classes which includes muddy areas, water puddles,

grass, gravel roads, stone roads, paved roads and various nat-
ural objects. The captured hyperspectral images were weakly
annotated for each terrain class in order to perform spectral
image classification. Below Fig 1 shows the spectral data
samples taken for grass, mud, trees, sky and calibration object
classes.

Fig. 1. Training data taken for spectral classifier training. Terrain classes
are, Blue: trees, Green: sky, Light green: mud, Red: grass and Light brown:
calibration object.

Several HSI data cubes have been used to extract training
data samples in a similar fashion which covers all the above
mentioned unstructured terrain surface classes.

B. Band reduction

The terrain surface classes in spectral images need to be able
to use as general signature for the same object type available
in anywhere else. Since HSI datacubes contain hundreds of
bands, band selection has been carried out in order to eliminate
redundant data from the spectral image while preserving
characteristic information pertaining to a particular terrain
surface class. The Min-Max pooling method has been used
for band selection which was proposed by us [20]. These
expeiments have been conducted by using 25 spectral bands
taken from the HSI data cube.

C. HSI image classification

For HSI classification, 4 layered neural network has been
used. The network comprised on input layer, output layer and
two hidden layers. In the input layer, there were 25 neurons.
This was according to chosen number of spectral bands. First
hidden layer has 50 neurons, second hidden layer with 25
neurons,and output layer was comprized of 7 neurons. Last
layer of the network used ‘softmax’ as activation function
where all the other layers were ‘purelin’. The output layer has
7 neurons which is based on number of classes considered for
the classification. The neural network training was done by
using graphics processing unit (GPU).

D. Comparison with RGB image segmentation

For RGB image semantic segmentation, the training RGB
images were taken from the specim IQ mobile hyperspectral



camera which provides false-RGB image corresponds to HSI
data cube. Considerable number of those false-RGB images
were pixel-wise annotated and used as training data. And
also false-RGB image brighness was manually altered as a
pre-processing step before used in segmentation. Since the
number of training images were insufficient, camvid open
source dataset has been added by cropping the images into
512 px x 512 px resolution.

The ‘resnetl8‘ deep neural network has been used for the
image semantic segmentation for comparative analysis. This
network contains fewer number of classes compared to state-
of-the-art ResNet101. Since the network with less number of
parameters can be trained with fewer number of images in
comparison to the large networks which have large number of
parameters.

However, it is required to generate false-RGB images from
the algorithm by adjusting the image brightness dynamically.
This will be covered as part of future work.

IV. RESULTS

The test scenes were selected with muddy unstructured
terrain which has grass, trees and water puddles Fig 2 which
is scene 1 and more complex terrain with water stream which
filled with dry leaves fallen from nearby trees as scene 2
shown in Fig 3. The ground truth shown in Fig 4 which is
the actual semantic segmentation needs to obtain from the
classification. The obtained classification results are shown in
Fig 5 which resulted in 81.9% overall pixel level accuracy.
The classification accuracy for each class presented in Table I.
Grass area has been detected with 98% accuracy while water
puddles were not detected with considerable accuracy which
stands at 34%. However, by considering overall classification
result, the resultant classification images can be used as
labelled data for semantic segmentation network training.

The corresponding false-RGB image was tested using
‘resnt18° network. The segmentation result is poor compared
to hyperspectral image classification. One of the reason is
small number of annotated training images were used for
train the network. This was due to unavailability of annotated
unstructured terrain RGB image datasets. Large amount of
training data require to achieve better segmentation result. For
the scene 1, corresponding ‘resnet18° RGB image segmenta-
tion result shown in Fig 6.

However, for the more complex scene (scene 2) which
has multiple classes mixed together, the overall classification
accuracy stands at 77.3%. The accuracy for each class shown
in Table II. Ground truth for the scene and HSI result shown in
Fig 7 and Fig 8 respectively. Similar to the scene 1, the scene 2
also suffers from poor classification accuracy for water bodies.
Grass patch wasn’t differentiated from wet fallen leaves on the
stream in HSI classification. Muddy and water stream areas
of the scenes also contains considerable amount of dry leaves
which affected the result. In the case of unstructured terrains,
it will never be a clean homogeneous terrain with one terrain
surface class. Therefore additional processing methods need
to be incorporated to improve the results. On the otherhand,

different wavelength range can help improve the classification
such as short wave infrared (SWIR). The RGB image classi-
fication comparison using ‘resnetl18° gave poor result for the
scene 2 as well. In contrast, HSI classification performs better
than RGB semantic segmentation.

Fig. 3. Scene 2 - false RGB image of HSI datacube which contains water
stream full of dry leaves.

TABLE I
SCENE | - HYPERSPECTRAL IMAGE CLASSIFICATION RESULTS

Object type Label color Accuracy %
Muddy terrain Blue 85.4%
Grass Red 98.1%
Trees Yellow 82.1%
‘Water Light green 34.3%
Calibration target Grey 54.4%
Sky Dark green T1.0%

All the neural network classification experiments have been
performed using MATLAB r2019b.



Fi% 4. Scene | - Ground truth of the muddy terrain. Refer Table I for label  Fjg 7. Scene 2 - Ground truth of the complex terrain containing water stream.
colors.

Fig. 5. Scene 1 - HSI classification for the muddy terrain. Refer Table I for Fig. 8. Scene 2 - HSI classification result. Refer Table II for label colors.
label colors.

Fig. 6. RGB image semantic segmentation using resnet18. Purple color shows ~ Fig- 9. RGB image semantic segmentation using resnet18. Purple color shows
the muddy ground, yellow color shows the trees and grey indicates sky. Red  the muddy ground, yellow color shows the trees and grey indicates sky. Red
color stands for objects like buildings which resulted in wrong segmentation. color stands for objects like buildings which resulted in wrong segmentation.



TABLE II
SCENE 2 - HYPERSPECTRAL IMAGE CLASSIFICATION RESULTS

Object type Label color Accuracy %
Muddy terrain Blue 65.7%
Grass Red 33.7%
Trees Yellow 89.7%
‘Water Light green 2.4%
Wet leaves on stream Grey 74.4%
Sky Dark green 77.1%

V. CONCLUSION

In this artice we proposed HSI based approach for pixel-
wise image annotation to reduce workload of human an-
notation. With shallow neural network based hyperspectral
image classification gives considerably accurate pixel-wise
classification in certain scenarios. The demonstrated clas-
sification results were achieved by using few hundreds of
training pixels from few HSI data cubes. Considering manual
pixelwise labeling of a RGB image, such HSI training pixel
extraction takes very little time. There were some classes
mixed up with others such as grass detected on the top edges
of tree line and wet-fallen leaves mixed up with dry grass
which degraded classification of those terrain classes. These
artefacts can be removed by post processing. However, for
more complex terrains, the classification method need to be
improved. The obtained HSI classification result can be used
as pixel-wise annotated label images for neural networks. The
training images for the neural network can be obtained from
HSI data cube as false-RGB images. In conclusion, with the
help of hyperspectral imaging, pixel-wise labeling can be used
to reduce manual labelling process.

VI. FUTURE WORK

This research is currently on-going in order to develop
effcient pixel-wise labeling method for training deep neural
networks for semantic segmentation. One of the future task
is to use pixel-wise classification images taken from HSI
classification as the ground truth along with false-RGB images
to train semantic segmentation neural network and measure its
segmentation performance.

The false-RGB images are required to automatically gen-
erate from HSI datacubes according to CIE color matching
functions. Due to ambient light variation during HSI acquisi-
tion, it is essential to compensate illumination with dynamic
image brighness adjustment.

The comparison neural network which was ‘resnetl8° for
the RGB image segmentation was not performing upto its
highest accuracy which needs to be trained with large number
of strongly-annotated data.
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Abstract—This paper discusses the influence of different
illumination sources on hyperspectral imaging. In order to find the
best illumination source for hyperspectral image acquisition, sun,
fluorescent, light-emitting diodes (LED) and incandescent light
sources have been used. The hyperspectral images were acquired
using two hyperspectral cameras, Resonon Pika II in the range of
400-1000 nm and Resonon Near Infrared camera in the range of
1000-1700 nm. Then, the results have been compared with the
literature. This chapter of the paper suggests the incandescent
lights as the best illumination source in HSI. The second part of
the paper presents light absorption spectra of different materials
including Aluminium Oxide (Al203), Aluminium Oxide plus Cubic
Boron Nitride (¢cBN), Wood and unknown Metal Disk by using two
hyperspectral cameras, Resonon Pika II and Resonon Near
Infrared by the presence of incandescent lights as the illumination
source. All experiments have been done in Mechatronics and
Autonomous Systems Centre of Tallinn University of Technology.

Keywords— Hyperspectral imaging; Illumination sources;
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I. INTRODUCTION

Hyperspectral Imaging (HSI), similar to other spectral
imaging, processes the information from the electromagnetic
spectrum in order to find or identify different materials or
objects by obtaining the spectrum of each pixel in the image of
a scene [1][2].

Like other Machine Vision’s applications, illumination
source plays a vital role in the validity of extracted data. As a
practice, we experimented HSI by the presence of different
illumination sources including sun, fluorescent, LED and
incandescent to find the best light source for hyperspectral image
acquisition.

After finding the best illumination source for HSI, we did
some experiments to obtain light absorption spectra graphs of
different materials in the visible range and near-infrared (NIR).

II. INVESTIGATING THE INFLUENCE OF ILLUMINATION SOURCE

A. Sun

In the literature, it has been investigated (Fig.1) the Solar
Spectrum Distribution entering the lower part of the atmosphere
[3]. As one can see, the intensity is highest in the light blue
region, around 460 nm.
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Fig. 1. Solar spectral distribution entering the lower parts of the atmosphere

In a HSI intensity distribution graph of an object (having
some has extra peaks or depths), we will be able to state that
probably these peaks or depths belong to a material or object
absorption. The certain statement needs more experiments with
different lighting sources. If the peaks or depths remain in all the
graphs for different illumination sources, we certainly can say
they belong to the material or object.

The simple spectral distribution of the illumination source
will help to distinguish peaks or depths related to the material
absorption from the illumination source. From this aspect, the
sun seems good for being as a test example the illumination
source. However, many factors may affect the above graph
(Fig.1) such as geographical location, air pollution and etc.

B. Fluorescent

A typical fluorescent lamp consists of a low-pressure
mixture of mercury and a rare gas like Argon. Next figure (Fig.
2) shows the Fluorescent lamp spectral distribution. As one can
see in the graph, the fluorescent light spectrum is full of peaks
and depths. It means this illumination source will emit different
amount of energy in different wavelengths. It is recommended
not to use the fluorescent light for hyperspectral image
acquisition because it will be hard to distinguish if peaks or
depths belong to this source from the peaks for material
absorption. Also, there are two major peaks for this light source
around 540 nm and 620 nm which mean in these two
wavelengths, fluorescent light source emits a large amount of
energy to the environment.
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Fig. 2. Fluorescent Spectral Distribution

C. Light-Emitting Diodes (LED)

These days LEDs are known as an efficient illumination
source in the industry because they are often more efficient in
term of luminous and more durable than traditional incandescent
lights [4]. In the following figure, one can find LED light
spectral distribution (Fig.3). As can be seen in the graph, there
is only one peak around 450 nm (Blue) which means this source
will emit a large amount of energy in this wavelength. Because
unlike incandescent bulbs, LEDs emit light over a narrow range
of wavelengths, we can state that LED light seems good enough
for the visible range of spectrum and we can distinguish the
peaks for the light source from peaks or depths belong to
material (object) absorption. However, from the experiment that
we have done with hyperspectral cameras in the range of 400 nm
to 1000 nm, it seems that beyond 750 nm, LED spectrum will
have many peaks and depths (recognized as noise). Therefore, it
is suggested to use LED light only in the range of 380 nm to 700
nm.
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Fig. 3. LED Spectral Distribution

D. Incandescent

An incandescent light bulb has a tungsten filament which is
heated when the current is conducted through it. In the following
figure (Fig. 4), one can find the incandescent lamp spectral
distribution. Although it is for an ideal incandescent light, we
can understand that if we see some depths during HSI in the
visible range, it can be interpreted as material (object)
absorption.
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Fig. 4. Incandescent Bulb Spectral Distribution

III. BEST ILLUMINATION SOURCE

As it is mentioned before in this paper, simple light source
spectral distribution will help to distinguish peaks or depths
related to material absorption from illumination source. From
this aspect, all typical light sources except fluorescent seem
good for different machine vision applications such as HSI in
the visible range. Also, LED emits light in a narrow range of
wavelength which causes to be good for visible range, not NIR.
Furthermore, as it is discussed, many factors will have an effect
on the amount of sun’s energy which is entering the lower part
of the atmosphere. Therefore, incandescent light bulb has chosen
as the best light source for the different machine vision
application such as HSI. In the following table (Table.1), one
can find the best operational range of each illumination source.

TABLE L COMPARISON OF LIGHT SOURCES
Light sources 380-700nm 400-1000nm
Sun v v
Incandescent v v
Fluorescent x x

LED v x

IV. EXPERIMENTS

All the experiments have been performed in a dark room
with only the presence of incandescent light as the illumination
source without any external light interference. In the following
figure (Fig. 5) presented the measurement setup.
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Fig. 5. Measurment setup, 1. Camera 2. Optic lens 3. light-absorbing material
4. Incandescent light 5. Material or Object



The camera was located directly above the investigated
material, and the light sources were located to the left and right
of the object. The material is located on the surface covered with
light-absorbing material.

For each material, a series of images with two hyperspectral
cameras were acquired and the best results have been selected
for analyzing. The graphs represent the average value of the
spectral distribution on the part of a surface of the material.

Abbreviation NIR is short for the camera that operating in
the near infrared range (Resonon Near Infrared), and VR for the
camera operating in the visible range (Resonon Pika II).

Three vertical lines on VR graph is related to RGB colour
spectra. The first one is for blue, the second is for green and the
last is for red.

Below presented experiment results for aluminium oxide,
aluminium oxide with cubic boron nitride, wood and metal.

A. Aluminium oxide (41203)

In the next figure (Fig.6), taken by NIR, the spectrum of
aluminium is almost flat over the entire range. We do not see the
characteristic peaks of aluminium because they are outside [5]
of the NIR camera range [6].

However, we can see from this graph that when using an
incandescent lamp, we minimize the effect of the light source on
the absorption of the material due to the fact that the light source
emission spectrum is almost uniform over the entire considered
range.
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Fig. 6. NIR image of AL203

The next graph (Fig.7) shows an image taken by VR camera
in the range 0of 400 — 1000 nm and it is very close to the reference
incandescent light bulb graph (Fig.4). Its brightness increases
from 300 nm to 900 nm on the whole interval.

In the experiment, incandescent light was used, and the
illumination of the material was uneven, for this reason, we can
observe small fluctuations that slightly affect the intensity of
light absorption by the material.
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Fig. 7. VR image of AL203

B. Aluminium oxide (41203) plus cubic boron nitride (cBN)

To further explore the possibility of working with the
material, we took aluminium oxide interspersed with a cubic
form of boron nitride (cBN) [7].

The below figure (Fig.8) is different from what was seen
when we examined the hyperspectral image of pure aluminium
oxide. The reason for the change in the amount of light
absorption is that the position of the material relative to the light
source has been changed. We can observe similar oscillations of
about 1380 nm and the graph is similar to the previous one. The
difference is only in the amount of light on the surface.
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Fig. 8. NIR image of AI203 + 10% cBN

Similar results have been seen when considering a
hyperspectral image taken in the visible range (Fig.9). Light
absorption changes in the same way as the incandescent light
bulb spectrum. The change in the amount of ¢BN in aluminium
had no significant effect on the spectrum.
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Fig. 9. VR image of AI203 +20% cBN

An increase in the amount of ¢BN in aluminium oxide did
not affect the infrared range either (Fig.10). The spectrum is
almost the same as that of pure aluminium oxide.
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Fig. 10. NIR image of A1203 +20% cBN

The absorption spectrum peaks for aluminium oxide and
cBN are outside the operating range of our cameras. Changes in
the composition of the material also had no effect on the spectra
captured by cameras. However, we can clearly see that
incandescent light source do not add any significant peaks to the
result and we can easily suppress its influence in any
calculations.

C. Metal Disc

In the hyperspectral image of the metal disk (Fig.11) made
in the infrared spectrum range, we see that the reflection level is
much higher and in near-infrared range, the brightness starts
from 9000 and goes up to 14000. The graph shows small peaks
at 1060 nm and 1330 nm, but on their basis, it is impossible to
determine the exact composition of this material.
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Fig. 11. NIR image of the metal disc

The graph in the next figure (Fig.12) is almost flat and there
are no peaks on it. In this case, the light source also does not
distort the data.
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Fig. 12. VR image of the metal disc

D. Wood

The last material that we took for experiments is wooden
chips consisting of different wood. Unlike previous materials,
part of the absorption spectrum of wood chips is in the field of
view of the infrared camera (Fig.13). Peaks on the chart clearly
indicate the presence of water in the tested material [8].
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Fig. 13. NIR image of wood

The last spectrum (Fig.14) contains data about the wood in
the visible range. It is similar to incandescent bulb spectra. There
is no data about the material in this range.
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Fig. 14. VR image of wood

V. CONCLUSION

Graphs of light absorption of all these materials show us that
the use of incandescent lamps for hyperspectral imaging is
optimal from the point of view of covering a wide spectral range
of light. This light source adds no significant peaks throughout
the operating spectrum. This makes it easy to neutralize its
influence in the analysis of the results of hyperspectral imaging
and further calculations.

Furthermore, significant peaks belong to water have been
observed in the NIR range, although other tested material did not
show any peaks neither in visible range nor near- infrared. In
other words, identifying pure aluminium oxide, aluminium
oxide with ¢cBN and the tested metal disk in the range of 400-
1700 by using hyperspectral imaging was impossible, because
no peaks or depths belong to these materials have been observed.

ACKNOWLEDGMENT

This research was supported by "Mobilitas Pluss ERA-
NET", ETAG 18012, Durable ceramic composites with
superhard particles for wear-resistant cutting tools, Tallinn
University of Technology.

REFERENCES

[1] C.-I. Chang, “Hyperspectral imaging: techniques for spectral detection
and classification”, Springer Science & Business Media LLC, 2003.

[2] H. Grahn, P. Geladi, “Techniques and applications of hyperspectral image
analysis”, John Wiley & Sons, 2007.

[3] “Environmental decision making”, Science and Technology, 2019.
[Online]. Available: http://environ.andrew.cmu.edu/m3/s2/02sun.shtml .

[4] D. Smith, “Calculating the Emission Spectra from Common Light
Sources”, COMSOL Multiphysics, 2016. [Online]. Available:
https://www.comsol.com/blogs/calculating-the-emission-spectra-from-
common-light-sources/

[5] “ATR-FT-IR spectra of Aluminium oxide (A1203)”, Database of ATR-
FT-IR spectra of various materials, 2019. [Online]. Available:
http:/lisa.chem.ut.ee/IR _spectra/paint/fillers/aluminium-oxide/

[6] “RESONON hyperspectral imaging cameras”, Laser 2000, 2018.
[Online]. Auvailable: https://www.laser2000.fr/en/hyperspectral-
imaging/48082-pika-nir-near-infrared-hyperspectral-imaging-
camera.html#download_anker_link

[71 M.-M. Attallah, “Boron in Materials Technology”, biotsavart.tripod.com,
2019. [Online]. Available: http:/biotsavart.tripod.com/bci.htm

[8] M. Chaplin, “Water absorption spectrum”, 2019. [Online]. Available:
http://www1.Isbu.ac.uk/water/water_vibrational spectrum.html



Curriculum Vitae

Personal data

Name: Dhanushka Chamara Liyanage
Date of birth: 21.01.1983
Place of birth: Colombo (Sri Lanka)
Citizenship: Sri Lanka
Contact data
E-mail: dhanushka.liyanage@taltech.ee / liyanagedc@gmail.com
Education
2017-2021 Tallinn University of Technology, Estonia — PhD
2014-2016 Tallinn University of Technology, Estonia — MSc (Mechatronics)
(Cum Laude)
2003-2008 University of Moratuwa, Sri Lanka — BSc Hons (Mechanical
Engineering)
1993-2002 Mahanama College, Colombo, Sri Lanka, Secondary education

Language competence
English Fluent
Sinhalese Native

Professional employment
2014—Present Engineer (Projects Eng., Supervisor of master theses and
teacher for MSc and BSc degree courses), Tallinn University of
Technology, Estonia

2010-2014 Mechanical Design Engineer, Toshiba Tec Singapore Pte Ltd,
Singapore
2008-2010 Mechanical Engineer, Imperial Tea Exports (Pvt) Ltd, Sri Lanka

132


mailto:dhanushka.liyanage@taltech.ee
mailto:liyanagedc@gmail.com

Elulookirjeldus

Isikuandmed
Nimi:
Slnniaeg:
Stinnikoht:
Kodakondsus:

Kontaktandmed
E-post:

Hariduskaik
2017-2021
2014-2016
2003-2008
1993-2002

Keelteoskus
Inglise keel

Sinhala keel

Teenistuskaik
2014-

2010-2014

2008-2010

Dhanushka Chamara Liyanage
21.01.1983

Colombo (Sri Lanka)

Sri Lanka

dhanushka.liyanage@taltech.ee / liyanagedc@gmail.com

Tallinna Tehnikatlikool, Eesti — doktorantuur, PhD
Tallinna Tehnikailikool, Eesti — magistrantuur, MSc
(mehhatroonika) (Cum Laude)

Moratuwa Ulikool, Sri Lanka — bakalaureusedpe, BSc
(Mehaanika)

Mahanama kolleegium, Colombo, Sri Lanka, keskharidus

Kdrgtase
Emakeel

Insener (projekti insener, magistritddde juhendaja ja BSc ning
MSc kursuste Sppejoud), Tallinna Tehnikatlikool, Eesti
Mehaanika tootearenduse insener, Toshiba Tec Singapore
Pte Ltd, Singapur

Mehaanika insener, Imperial Tea Exports (Pvt) Ltd, Sri Lanka

133


mailto:dhanushka.liyanage@taltech.ee
mailto:liyanagedc@gmail.com

ISSN 2585-6901 (PDF)
ISBN 978-9949-83-766-3 (PDF)



	List of Publications
	Author’s Contribution to the Publications
	Abbreviations
	1 Introduction
	1.1 Background and motivation
	1.2 Problem statement and research objectives
	1.3 Thesis contributions
	1.4 Research methods
	1.5 Thesis structure

	2 Literature Review
	2.1 Terrain perception
	2.2 Semantic segmentation of terrains
	2.2.1 Overview of semantic segmentation
	2.2.2 Unstructured terrain semantic segmentation
	2.2.3 Image annotation

	2.3 Spectral imaging
	2.4 Dimensionality reduction in hyperspectral images
	2.5 Hyperspectral image visualisation
	2.6 Hyperspectral image classification methods
	2.6.1 Pixel-wise classification
	2.6.2 Spectral-spatial classification

	2.7 Chapter summary

	3 Band Selection Method for Terrain Hyperspectral Imaging
	3.1 Overview
	3.2 Methodology
	Max Pooling
	Min - Max Pooling (Proposed method)

	3.3 Classification method
	3.4 Results
	3.5 Comparison with benchmark datasets from remote sensing
	3.6 Chapter summary

	4 RGB Image Generation from Hyperspectral Datacubes
	4.1 Methodology
	4.1.1 Manifold alignment RGB image generation method

	4.2 Results for RGB image generation
	4.3 Chapter summary

	5 Unstructured Terrain Semantic Segmentation
	5.1 Methods
	5.2 Performance matrices
	5.3 Image datasets
	5.4 Terrain segmentation using RGB images and manually labelled ground truth
	5.5 Terrain segmentation with RGB images generated using HSI datacubes and manual labels
	5.6 Terrain semantic segmentation based on the RGB images generated from the HSI visualization and pixel-wise classification
	5.7 Spectral-spatial image classification
	5.7.1 Classification method
	5.7.2 Results of spectral-spatial classification

	5.8 Chapter summary

	6 Conclusion
	6.1 Future works

	List of Figures
	List of Tables
	References
	Acknowledgements
	Abstract
	Lühikokkuvõte
	Appendix
	Curriculum Vitae
	Elulookirjeldus
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page




TALLINN UNIVERSITY OF TECHNOLOGY

DOCTORAL THESIS

58/2021























Smart Terrain Perception Using Hyperspectral Imaging



















DHANUSHKA CHAMARA  LIYANAGE











[image: ]



Tallinn University of Technology

School of Engineering

Department of Electrical Power Engineering and Mechatronics

This dissertation was accepted for the defence of the degree on 14/11/2021



Supervisor:			Prof. Mart Tamre

				School of Engineering

Tallinn University of Technology

Tallinn, Estonia



Co-supervisor:			Robert Hudjakov, Ph.D

				School of Engineering

				Tallinn University of Technology

				Tallinn, Estonia



Opponents:			Prof. Tomasz Piotr Kucner, Ph.D 

Aalto University

Espoo, Finland



Prof. G. Anbarjafari, Ph.D

University of Tartu 

Tartu, Estonia











Defence of the Thesis: 14/12/2021, Tallinn



Declaration:

Hereby I declare that this doctoral thesis, my original investigation and achievement, submitted for the doctoral degree at Tallinn University of Technology, has not been submitted for doctoral or equivalent academic degree.





Dhanushka Chamara Liyanage											……………………………………………………………….

							Signature







Copyright: Dhanushka Chamara Liyanage, 2021

ISSN 2585-6898 (publication)

ISBN 978-9949-83-765-6 (publication)

ISSN 2585-6901 (PDF)

ISBN 978-9949-83-766-3 (PDF)

Printed by Koopia Niini & Rauam


TALLINNA TEHNIKAÜLIKOOL

DOKTORITÖÖ

58/2021























Hüperspektraal-pilditehnika maastiku nutikaks tajumiseks



















DHANUSHKA CHAMARA  LIYANAGE















[image: ]




Contents
List of Publications	7
Author’s Contribution to the Publications	8
Abbreviations	9
1 Introduction	10
1.1 Background and motivation	12
1.2 Problem statement and research objectives	13
1.3 Thesis contributions	15
1.4 Research methods	15
1.5 Thesis structure	16
2 Literature Review	17
2.1 Terrain perception	17
2.2 Semantic segmentation of terrains	18
2.2.1 Overview of semantic segmentation	18
2.2.2 Unstructured terrain semantic segmentation	19
2.2.3 Image annotation	20
2.3 Spectral imaging	20
2.4 Dimensionality reduction in hyperspectral images	21
2.5 Hyperspectral image visualisation	24
2.6 Hyperspectral image classification methods	24
2.6.1 Pixel-wise classification	24
2.6.2 Spectral-spatial classification	25
2.7 Chapter summary	26
3 Band Selection Method for Terrain Hyperspectral Imaging	27
3.1 Overview	27
3.2 Methodology	27
3.3 Classification method	32
3.4 Results	33
3.5 Comparison with benchmark datasets from remote sensing	35
3.6 Chapter summary	39
4 RGB Image Generation from Hyperspectral Datacubes	40
4.1 Methodology	40
4.1.1 Manifold alignment RGB image generation method	41
4.2 Results for RGB image generation	45
4.3 Chapter summary	52
5 Unstructured Terrain Semantic Segmentation	53
5.1 Methods	53
5.2 Performance matrices	53
5.3 Image datasets	54
5.4 Terrain segmentation using RGB images and manually labelled ground truth	55
5.5 Terrain segmentation with RGB images generated using HSI datacubes and manual labels	57
5.6 Terrain semantic segmentation based on the RGB images generated from the HSI visualization and pixel-wise classification	58
5.7 Spectral-spatial image classification	60
5.7.1 Classification method	61
5.7.2 Results of spectral-spatial classification	61
5.8 Chapter summary	63
6 Conclusion	64
6.1 Future works	65
List of Figures	66
List of Tables	67
References	68
Acknowledgements	76
Abstract	77
Lühikokkuvõte	79
Appendix	81
Curriculum Vitae	132
Elulookirjeldus	133


[bookmark: _Toc87864505]List of Publications

D. C. Liyanage, R. Hudjakov, M. Tamre, “Hyperspectral / Multispectral imaging methods for quality control” as a chapter of the book titled “Handbook of Research on New Investigations in Artificial Life, AI, and Machine Learning” by IGI global publisher, pp. 1–33, 2021, doi.org/10.4018/978-1-7998-8686-0. 

D. C. Liyanage, R. Hudjakov, and M. Tamre, “Hyperspectral Image Band Selection Using Pooling,” in 2020 International Conference Mechatronic Systems and Materials (MSM), 2020, pp. 1–6.

D. C. Liyanage, R. Hudjakov, and M. Tamre, “Hyperspectral Imaging Methods Improve RGB Image Semantic Segmentation of Unstructured Terrains,” in 2020 International Conference Mechatronic Systems and Materials (MSM), 2020, pp. 1–5.

A. Zahavi, A. Palshin, D. C. Liyanage, and M. Tamre, ”Influence of illumination sources on hyperspectral imaging,” Proc. 2019 20th Int. Conf. Res. Educ. Mechatronics, REM 2019, vol. 5, pp. 1–5, 2019.





Other publications:

Zahavi, A.; Najafi Haeri, S.; Chamara Liyanage, D.; Tamre, M. (2020). “A Dual-Arm Robot for Collaborative Vision-Based Object Classification”. Proceedings of 17th Biennial Baltic Electronics Conference held in Tallinn, Estonia 2020. (BEC2020): 2020 17th Biennial Baltic Electronics Conference (BEC), Tallinn, Estonia, 6-8 Oct. 2020. IEEE. DOI: 10.1109/BEC49624.2020.9277067.

Zahavi, A.; Al Afrange, F.; Najafi Haeri, S.; Ajeevan, U.; Chamara Liyanage, D. (2018). “ABB YuMi high-speed pick and place game in action”. Proceedings of the 29th DAAAM International Symposium on Intelligent Manufacturing and Automation: 29th DAAAM International Symposium on Intelligent Manufacturing and Automation, Zadar, Croatia, EU, 24h-27th October 2018. Ed. Katalinic B. DAAAM International Vienna, 1216−1221. DOI: 10.2507/29th.daaam.proceedings.176.

Dhanushka, Chamara Liyanage; Mart, Tamre; Indrek, Kivi (2017). Modelling and synthesis of belt-driven ship model testing carriage system. Proc. of 16th International Symp. Topical problems in the field of electrical and power engineering: Topical problems in the field of electrical and power engineering. Ed. Janis Zakis. Tallinn: TTÜ Dept. of Electrical Power Engineering and Mechatronics, 167−170.






[bookmark: _Toc87864506]Author’s Contribution to the Publications

Dhanushka Liyanage is the primary author of the book chapter. The article discusses the hyperspectral and multispectral imaging methods in industrial applications for quality assessment. As the primary author of the chapter, Dhanushka carried out the literature review and furnished the article.

Dhanushka Liyanage is the primary author of the article who gathered test data, conducted experiments and compiled the article. The article proposes a novel method of band selection for hyperspectral images.

Dhanushka Liyanage is the principal author of the article. He created the concept of the work, gathered data and conducted experiments together with writing the article. The article discusses using hyperspectral image classification results as the ground truth for the RGB image semantic segmentation.

Dhanushka Liyanage is one of the authors of this article who contributed to the work as a supervisor while conducting MHK0040 Machine Vision course as a teaching assistant.




[bookmark: _Toc87864507]Abbreviations

AI	- Artificial Intelligence

ALV	- Autonomous Land Vehicle

AGV	- Autonomous Ground Vehicle

CNN	- Convolutional Neural Network

DCNN	- Deep Convolutional Neural Network

DR	- Dimensionality Reduction

HSI	- Hyperspectral Imaging

IoU	- Intersection over Union

kNN	- k Nearest Neighbour

LiDAR	- Light Detection and Ranging

LPP	- Locality Preserving Projections

LWIR	- Long Wave InfraRed

MLP	- Multi-Layer Perceptron

MSI	- Multispectral Imaging

MWIR	- Medium Wave InfraRed

NIR	- Near InfraRed

PCA	- Principal Component Analysis

RCNN	- Recurrent Convolutional Neural Networks

ReLU	- Rectified Linear Unit

RGB	- Red Green Blue

SVM	- Support Vector Machines

SWIR	- Short Wave InfraRed

UGV	- Unmanned Ground Vehicle

VIS	- Visible Light

VNIR 	- Visible Near InfraRed




[bookmark: _Toc87864508]Introduction

Without vision, it could have been extremely difficult for humans and animals to thrive. Similarly, computer vision plays a significant role in providing vision input for industrial robots. So does Autonomous Ground Vehicles (AGVs). All the cutting-edge driverless vehicles’ autonomous systems heavily depend upon their vision sensors to perceive the environment for its autonomy apart from other sensor modalities. Some vehicle manufacturers solely rely on computer vision for self-driving [1, 2]. It was not technically feasible to achieve such a feat of self-driving without the latest developments in Artificial Intelligence (AI). The advancements in AI made it possible to solve highly complicated computer vision problems such as object detection and recognition. The AGVs are not only for passenger transportation, but also they are disrupting various application domains in transportation and logistics. Numerous research institutes, private companies, are working on developing AGVs in recent years. These autonomous mobile robots are meant to accomplish various tasks such as transportation of passengers, search and rescue operations, seeding, weeding, and harvesting in agriculture, parcels, and grocery delivery in the logistics sector, etc. Growing demand for different kinds of driverless vehicles fuelling the research and development of autonomy makes it one of the most active research areas today. Figure 1 shows different autonomous ground vehicles which are commercially available and in research these days.  
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[bookmark: _Ref84085674][bookmark: _Toc87864261]Figure 1. (a) Military UGV developed by Rheinmetall AG[3], (b) agriculture robot weeding on a farm land[4], (c) Starship parcel delivery robot running on snow[5], (d) driverless shuttle bus in Japan for rural public transport [6].



Typically, AGVs can self-steer, self-regulate, avoid obstacles, and navigate without any human intervention. The first known research effort to develop an autonomous vehicle dates back to 1984 with the introduction of the Autonomous Land Vehicle (ALV) project by NavLab at Carnegie Mellon University [7]. It laid the groundwork to identify the main challenges of autonomous vehicle systems development, such as required sensing and computing capabilities. 

Whether autonomous on-road vehicles or off-road vehicles, the fundamental technical problem is the environment perception. Perception is the ability of the autonomous system to collect information about its surroundings and extract relevant data [8]. The objective of a perception system is to enable the autonomous vehicle to navigate safely and efficiently. In contrast to the on-road autonomous vehicles, off-road AGVs face many more challenges in traversable terrain perception. The off-road environments are unstructured where it is not clear the traversable areas and 
non-traversable areas. Below, Figure 2 shows structured and unstructured terrains. 
The levels of hazards are often unpredictable, and constraints on mobility make it difficult for off-road navigation compared to on-road scenarios. Thus, off-road navigation demands a sophisticated perception system to realise complete autonomy, which is level 5 based on the vehicle autonomy levels classification proposed by the Society of Automotive Engineers (SAE). The levels of autonomy for road vehicles are not described here, which can be found on the SAE J3016 standard [9], and it is harmonised with ISO standards as ISO-PAS 22736 [10].

[image: ]                    [image: ]
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[bookmark: _Ref84016135][bookmark: _Toc87864262]Figure 2. (a) A structured terrain where traversable and non-traversable areas can be easily distinguished. (Tallinn University of Technology parking lot) (b) Unstructured terrain where the traversable terrain is ambiguous (Location near Lasnamäe, Estonia).

The perception problem is currently being addressed by using various sensing modalities and processing methods. Nowadays, most AGVs depend upon Light Detection and Ranging sensors (LiDARs) and RGB colour cameras for localisation and environment perception [8, 11, 12]. Even the first autonomous vehicle, ALV, has used a TV camera and a laser scanner for terrain perception [7]. Different sensor modalities such as ultrasound sensors and radars are also used in specific applications to detect specific obstacles without being restricted to the RGB and LiDAR sensors mentioned above. Comprehensive details about sensors and measurements used on various unmanned systems are available in the reference [13]. Each of these sensors has its advantages and drawbacks. And some of them are prohibitively expensive for commercial applications.

Various terrain surfaces and conditions make it difficult for an off-road AGV to navigate with LiDAR sensors and RGB cameras alone. One of such limitations with LiDAR sensor-based perception is its inability to distinguish navigable obstacles such as grass and non-navigable obstacles like rocks and other hard objects [14]. The visual similarities between different terrain objects like construction rubble with painted objects may lead to false object detections, affecting path planning.  In industrial vision applications, 
the Hue, Saturation and Values (HSV) colour model is used to overcome the issues such as illumination variations, shadows, reflections, etc. [15]. The HSV colour model has been used to detect traffic signs[16] and drivable roads[17] due to the advantages mentioned above. 

Not only monocular RGB cameras but also various other imaging technologies are in use with mobile robots. Stereo cameras, infra-red cameras, omnidirectional cameras, and event cameras are examples of them [13]. Besides RGB and monochrome vision sensing technologies, spectral imaging is an advanced vision technology that combines both imaging and spectroscopy [18]. The spectral sensor collects image data on numerous spectral bands across the electromagnetic spectrum. Depending on the number of spectral bands present in the image, spectral imaging is classified into different classes. They are mainly Multispectral imaging (MSI), Hyperspectral imaging (HSI), and Ultraspectral Imaging (USI) methods. MSI and HSI are the widely used spectral imaging methods in the industry. Typically, MSI contains tens of spectral bands while HSI contains hundreds of spectral bands of narrow bandwidths [19]. Each pixel of such image is a high-dimensional vector that contains spectral reflectance in tens or hundreds of contiguous wavelength bands within a specific wavelength range.  This technology can provide more information about the objects in the scene as it captures the reflectance on numerous spectral bands or image channels.

Combined spectra of the reflectance variation in each spectral band form a characteristic signature for each material which is the spectral signature. Such spectral characteristics can distinguish various terrain objects with better accuracy than RGB images. The spectral imaging technology initially appeared in the early 1970s with the Landsat satellite program, where it used a multispectral scanning system (MSS) comprised of visible and near-infrared spectral bands [20]. Spectral imaging is not limited to the visible light range in the electromagnetic spectrum compared with the RGB vision systems.  Using appropriate wavelength ranges such as visible light, Near Infrared (NIR), Short Wave Infrared (SWIR), and Medium Wave Infrared (MWIR), it is possible to capture images that cannot be done using RGB cameras. Even though spectral imaging is widely used in precision agriculture, remote sensing, and various other industrial domains, it still finds little presence in AGV sensor suits used in mobile robotics.

[bookmark: _Toc87864509]Background and motivation

Multiple AGVs were introduced to the world from Estonia for package delivery  [21, 22] military and civilian applications [23]. And Tallinn University of Technology is actively involved in research and development activities related to AGVs and UGVs. Ground vehicle autonomy is one of the hottest research topics in robotics. Therefore, improvements for the UGV perception based on hyperspectral imaging methods could be a valuable contribution. 

Hyperspectral/multispectral imaging systems for autonomous driving has appeared in a few studies. Mainly for detecting a certain kind of obstacle that cannot be done otherwise. It is due to the abundance of information contained in the hyperspectral image datacube. Typically, a hyperspectral datacube can be well over ~100MB in file size. Pedestrian detection for self-driving vehicles is one such application where it uses a multispectral camera [24]. Based on terrain classification research by Winkers et al., HSI could be used for terrain perception by combining machine learning methods for image analysis [25]. Ice, mud, and loose gravel are often challenging terrain conditions for UGVs. In the reference [26],  various imaging techniques were tried for mud detection. 
It has been concluded that the wettest regions of the terrain can be identified using SWIR wavelength range images, where wet mud from dry surroundings can be detected with RGB colour cameras.

In hyperspectral imaging, the image datacube, also called a hypercube, contain hundreds of spectral bands. These hypercubes often contain redundant data in most of the spectral bands. Thus, it requires selecting an optimal number of image bands from the datacube. Such band selection for terrain surfaces detection in various outdoor environments is still a challenging task. 

The purpose of computer vision in AGVs is for scene understanding. Thus, a smart algorithm labels each pixel of an image, whether an RGB image or spectral image hypercube, with a terrain class. Such pixel-wise image labelling is called Semantic Segmentation [27]. Most of the existing scene understanding models in autonomous driving use RGB image semantic segmentation.  Since current research has drawn significant attention for on-road autonomy, object detection and classification in structured environments have been thoroughly explored. Thus, there are a significant number of research publications on man-made object detection and semantic segmentation. They cover both unimodal approaches with single sensor input and 
multi-modal approaches by fusing multiple sensor inputs [28–30]. Hence, man-made object detection is not the primary objective for this thesis and instead, it focuses on detecting natural obstacles as they appear in their native environment. In contrast to 2D image classification, a combination of spectral-spatial feature-based classification could paint a more accurate picture of the terrain.

Self-driving vehicle manufacturers like Tesla, Inc already harnessing the power of modern machine learning methods such as deep neural networks for object detection, lane marking detection, etc. With state-of-the-art algorithms such as convolutional neural networks (CNN), it has been possible to extract the essential visual features crucial for autonomous navigation. Similarly, deep learning is becoming widely popular in HSI processing in various application domains [31].

[bookmark: _Toc87864510]Problem statement and research objectives

Hyperspectral imaging has excellent potential in terrain object detection, thus improving UGV perception, as explained in the previous section. Here are the research gaps found out in current research related to HSI for terrain perception.

· Most of the feature selection and feature extraction methods for HSI are developed based on various use cases. However, there has not been any such feature selection/ extraction methods developed for terrain classification. 
As autonomous vehicles have limitations in computational capabilities in their computing hardware resources, the methods should be efficient. Therefore, 
it requires developing a simple and effective feature selection algorithm for HSI terrain classification applications. The computation power for the perception system could be reduced by reducing the number of spectral bands in the images.

· The RGB imaging sensors work as the primary vision input in most of the ground vehicles available nowadays. These RGB images are used in semantic segmentation algorithms to classify various terrain objects, and these algorithms require large amounts of accurately labelled image data. Manual image labelling is a time-consuming and labour-intensive process, which hinders large scale dataset creation. There is a need for an efficient method to minimise the cost and effort of manual labelling.

· Although hyperspectral imaging is a novel technology in computer vision, still it finds little research effort put into spectral imaging to use this technology as a visual input for terrain perception in ground vehicles by the research community. There is a gap in terrain perception research to investigate the possibilities to use HSI segmentation to augment RGB image segmentation. 

· Multispectral image semantic segmentation shows profound advantages over RGB image semantic segmentation in biomedical applications. The use of spectral images in the spectral-spatial classification method has not been validated for unstructured terrain segmentation. And there is no data to assess the effectiveness of spectral image based semantic segmentation accuracy over RGB for unstructured terrains.

· There are challenging environmental conditions such as black ice on driving terrain or wet soil encountered by both on-road and off-road vehicles. Driving on such terrain conditions poses a danger to both vehicles and operators. Whether there is a possibility to detect such challenging environments using spectral images should be explored.

 

Below are the main research objectives which will cover in this thesis.



Develop an effective band selection method to distinguish various terrain classes in unstructured environments. The method should be computationally simpler and efficient, thus enabling the outcome to implement on embedded computing hardware platforms with low computing capabilities often used in mobile robots.

Introduce an efficient method for image dataset generation using HSI.

a. Hyperspectral image pixel-wise classification in the spectral domain could be used as labels for image datasets.

b. RGB images could be created from HSI.  

c. Thus, compare the effectiveness of such segmentation vs manually labelled image datasets.

Investigate state-of-the-art spectral-spatial HSI semantic segmentation networks based on deep convolution neural networks for terrain semantic segmentation. Draw necessary comparisons with RGB semantic segmentations.




[bookmark: _Toc87864511]Thesis contributions

This thesis made the following contributions to address above mentioned research questions.



1. One of the contributions of this thesis is an unsupervised band selection method to extract a few spectral bands from a hypercube. The proposed method can efficiently identify the most significant spectral bands for terrain image classification. The method was validated by classifying various terrain object classes found in off-road terrain scenarios (Publication I).

2. HSI pixel-wise classification using spectral data have been compared with RGB semantic segmentation, which shows that HSI pixel-wise classification is more accurate than that of the RGB semantic segmentation for terrain classes. Therefore, it can be summarised as the HSI pixel-wise classification can be used as ground truth labels for further semantic segmentation CNNs (Publication II). 

3. The capabilities of HSI imaging were demonstrated as an alternative way to minimise manual image annotation for RGB image dataset preparation. The RGB images generated from 9-band HSI datacubes using manifold alignment methods proves that those images have a higher correlation to the actual RGB images captured from the same scene. The results show that the approach can be used effectively to train CNNs for RGB vision.

4. Demonstrated the effectiveness of HSI semantic segmentation in spectral-spatial domains for terrain classification scenarios. Introduced encoder-decoder based CNN architectures are highly effective in classifying such images trained with small image datasets. 



The scope and boundaries of this thesis are as follows. Even though the work mainly focuses on ground vehicle application in off-road scenarios, it is not focused on a specific vehicle platform.  The HSI processing and classification methods proposed in this thesis are not limited to ground vehicle navigation applications but equally can be applied to various other application domains. 

This study was carried out at Tallinn University of Technology from 2017 to 2021. 
The outcomes of this doctoral research have been published in several IEEE conference proceedings, including MSM2020 and REM2019. And they are available on IEEE Xplore. The most relevant articles to the thesis are attached in the Appendix.

[bookmark: _Toc87864512]Research methods

The end goal of the thesis is to produce research outcomes that are feasible and viable to implement in real-world robotic applications. And the cost of the components used in the research is an important factor for future commercial viability. The hyperspectral cameras in the VNIR wavelength range are commercially cheaper than other cameras beyond the VNIR range. Although beyond the VNIR range, SWIR might provide more information of the scenes that cannot be captured in the VNIR range, it would limit the viability of real-life implementation. The hyperspectral imaging sensors in VNIR spectral range are based on silicon semiconductors, while the SWIR range is made of expensive semiconductors such as InGaAs, making those SWIR sensors pricey [32].  Therefore, this study focuses on hyperspectral imaging cameras in the VNIR wavelength range, which spans 400 – 1000 nm.

Following cameras were used in this research for HSI datacube acquisition:

· Ximea xiQ MQ022HG-IM-LS150-VISNIR camera from Ximea GmbH [33]

· Specim IQ mobile hyperspectral camera from Specim Spectral imaging Ltd [34] 

· Resonon Pika II VNIR hyperspectral cameras from Resonon Inc [35]



Hyperspectral images captured using a portable camera tripod and mounting the hyperspectral camera at around 1,0 m height mimic the camera position of an actual AGV. The hyperspectral imaging sensor calibration was performed in-situ before taking images using the white reference calibration target provided by the camera manufacturer. The HSI hypercubes containing off-road terrain scenarios were captured at various locations in Estonia. 

The RGB colour space will be used to compare the HSI perception methods.

All the algorithms, program codes, software test tools for this research were developed by the author. Furthermore, the experiments were carried out using the captured hyperspectral datacubes. MATLAB 2020b and its libraries were used as the primary programming tool, while Python and Visual C# programming languages have been used to develop software tools for various experiments.

The main processing computer is an HP Z4 workstation with Intel Xeon W-2123 3.6GHz Central Processing Unit (CPU), 32GB Random Access Memory RAM, and Nvidia P4000 GPU with 4GB RAM as hardware configuration.

[bookmark: _Toc87864513]Thesis structure

Chapter two of this thesis covers the existing literature review regarding state-of-the-art of terrain perception and spectral imaging. The same review further covers hyperspectral band selection approaches, classification methods, and semantic segmentation approaches on autonomous vehicle perception. The novel band selection method describes in the third chapter, where it presents experimental results and comparison results of image classification with existing methods. Hyperspectral images could be visualised in RGB colours to use on RGB semantic segmentation. The fifth chapter contains terrain segmentation using developed band selection methods and a comparison of RGB image semantic segmentation for off-road scenarios. The seventh chapter concludes the thesis with a summary of each contribution. The future research directions are also presented included in this chapter.
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[bookmark: _Toc87864515]Terrain perception

Terrain perception is the core technical challenge for autonomy, and this topic has been in research for several decades. From early experimental autonomous vehicles, imaging and laser scanning were integral to terrain perception [7]. The RGB images and LiDAR point clouds are the most dominant inputs for terrain perception [36–39]. In addition to RGB imaging, several studies have explored the advantages of RGB-D imaging methods [30, 40, 41]. The majority of them focused on structured-environment perception, while a few studies went into unstructured environment perception.

On the contrary, an unstructured terrain object recognition method that has been presented by Erkan et al. [42] is purely based on vision sensors. As opposed to the impact of depth-sensing for off-road scene classification, Holder et al. suggest that RGB-D does not provide a significant advantage for detecting hazardous off-road terrains by taking several off-road datasets, including water puddles [43].  Alternatively, stereo vision for off-road object detection has been in multiple studies, including Defence Advanced Research Project Agency’s Grand Challenge competition in 2005 [44], in agricultural environments [45] and a few other off-road autonomous driving projects [46]. Moreover, several studies have dived into beyond the visible light wavelength range imaging such as SWIR, MWIR and Long-Wave Infrared (LWIR) [26, 47, 48]. Objectives of such investigations were to detect various hazardous objects, hazardous terrains, safely navigate under adverse weather conditions and achieve passive terrain perception for sensitive applications.

The MSI/HSI based perception research attracted less attention than the RGB 
imaging-based perception research over the years. Here is a summary of recent developments in spectral imaging in terrain perception for autonomous navigation of ground vehicles.

One of the early research work into spectroscopic imaging for terrain perception had been realised using Acousto-optic tunable filters (AOTF) along with a Charge Coupled Device (CCD) camera in the late ‘90s [49]. Apart from the AOTF, polarising filters have been used in the same research to detect road hazards such as wet and icy roads. 

For a natural terrain classification task, a multispectral imaging-based technique with machine learning has been used by Namin et al. [50]. The authors have used VNIR spectral range multispectral camera with seven spectral bands where they achieved a classification accuracy of 92 % and 89 % with SVM and Adaboost classification methods. The number of terrain classes used for the classification was ten which include natural and man-made terrain objects. Winkens et al. have proposed an HSI approach using a snapshot hyperspectral camera with 16 spectral image bands for drivable and un-drivable terrain detection. Even though the camera spectral range is limited to 470 – 620 nm, 
the authors presented successful results for a terrain classification of four classes using the Random Forest algorithm [51]. A four-channel multispectral camera has been used in vegetation and bare soli detection within the visible light wavelength range. 
The authors suggest that the Normalised Difference Vegetation Index (NDVI) index is successful vegetation and soil differentiation measure [26]. The research works mentioned above fulfil the needs for scene understanding further ahead of the vehicle, which would improve long-range path planning.

Long-range path planning, and nearby ground analysis for the traversability around the vehicle, are both important tasks in autonomous driving. The ground surface texture around a vehicle captured using a mosaic hyperspectral camera with 25 image bands organised in a 5x5 mosaic pattern has been used to project the texture to the ground surface height map created using 3D LiDAR. Using the method suggested by Fuchs et al., the navigation system can map the terrain around the vehicle. The proposed approach suggests that semantic analysis of the environment can help detect and avoid risks posed by terrain right ahead of the vehicle [52].

[bookmark: _Toc87864516]Semantic segmentation of terrains

[bookmark: _Toc87864517]Overview of semantic segmentation

For AGV navigation, drivable and undrivable terrain should be identified by the perception systems, which typically comprised of RGB cameras and LiDAR sensors, 
as mentioned before. Scene understanding based on images is the objective of semantic segmentation. Assigning each image pixel with a certain category (class) label or semantic label is called semantic segmentation in computer vision. Semantic segmentation helps to locate the specific objects in their exact spatial locations in the image. In terrain semantic segmentation, the classes or categories are different terrain types such as gravel, dirt, mud, grass, etc. Such image segmentation is a common classification type problem in computer vision. State-of-the-art semantic segmentation methods are mostly CNN algorithms based on deep learning. The deep neural networks require a large number of images and labels as inputs. 

With the introduction of Fully Convolutional Networks (FCN), the deep learning models revolutionised semantic segmentation with remarkable accuracy for RGB images [53]. During the past several years, deep learning methods evolved rapidly. As a result, there are numerous architectures introduced with various features. A deeper comparison between major network architectures, such as VGG, ReNet, ResNet, DenseNet, ResNeXt, and MobileNet, is discussed in a review article published by Hao et al. [54]. The same article discusses various novel methods based on the above CNN backbones, real-time methods, weakly supervised methods, popular public datasets, evaluation matrices of semantic segmentation, etc. A comprehensive description of the DCNN constituents such as convolution layers, pooling layers, fully connected layers, activation functions is presented by Kaymak et al. in their semantic segmentation review article, which is oriented towards autonomous driving applications [27].  

The “2.6 Hyperspectral image classification methods” section will discuss the 
multi-layered image semantic segmentation methods.

Fully supervised learning methods proven to produce the highest accuracy in semantic segmentation, which requires accurately annotated image data labels. Even though there are software tools for image labelling, manually annotated images are the most accurate. Instead of strongly annotated label images, semantic segmentation accuracy has been investigated using a large number of weakly labelled and a small number of strongly labelled images showing 69 % IoU for the PASCAL VOC 2012 benchmark. Compared to a strongly annotated image dataset that yielded 70,3 % IoU, the weakly annotated fell short by a 1,3 % margin  [55]. In this case, the weakly annotation was locating the objects on the image with bounding boxes that shows the coarse object locations.



[bookmark: _Toc87864518]Unstructured terrain semantic segmentation

Semantic segmentation of unstructured terrains is a complex task using RGB images due to numerous classes in the scene, which are of a mixture. When it comes to on-road terrain semantic segmentation, most of the classes, objects are man-made, such as roads, road signs, buildings, lamp posts, other road vehicles, etc. In terrain perception, most scene understanding models are developed for structured terrains or regular urban driving environments.

In contrast to the structured terrains, literature for unstructured terrain semantic segmentation is rather sparse. As a result, this review is based on three research articles published based on unstructured terrains [56–58]. There are different types of unstructured terrains. They are either urban driving environments that lack the structure or fully off-road terrains. Most developing countries have less structured driving roads, even in urban areas, which resembles unstructured terrains. Those unstructured terrains comprise gravel roads, gravel sidewalks, muddy spots, and water puddles, etc. Semantic segmentation of such terrains has been introduced with modified DeeplabV3+ DCNN by Baheti et al. and has been tested with India Driving Dataset (IDD), achieving 68,61 mean Intersection over Union (IoU) [56]. The same authors proposed another DCNN architecture called Eff-UNet for the same task, tested on the above mentioned IDD [57]. The Eff-UNet architecture is based on EfficientNet[59] encoder and UNet [60] decoder forming encoder-decoder architecture. With this architecture, the authors have achieved an accuracy of 62.76 mean IoU for IDD. The encoder-decoder architectures manifest that they are the most outstanding DCNN architectures so far to perform semantic segmentation. Following encoder-decoder architectures, Sgibnez et al. have proposed a lightweight DCNN architecture for an off-road terrain semantic segmentation [58]. 
The authors have experimented with multiple DCNN options as backbones for their encoder-decoder architecture based on ResNet, MobileNetV2, ShuffleNetV2 and EfficientNet-B0. All the reviewed articles above are based on RGB images as inputs.

There are several challenges for semantic segmentation performance when those classification algorithms run in real-time in real-world applications. The variation of environment lighting conditions, weather, camera parameters and shadows can greatly influence the classification outcome [61, 62]. A robustness assessment method for semantic segmentation was proposed by Wen Zhou et al., which uses a LiDAR. However, the proposed method has been validated on structured terrain conditions, where they validated road class under various environmental conditions [61].

U-Net Architecture

The U-Net architecture was introduced to biomedical image segmentation in 2015 [60]. A higher semantic segmentation accuracy with a smaller dataset is the most significant advantage of this architecture. Data augmentation has helped achieve the claimed accuracy level, which the authors have demonstrated the network accuracy of 92% and 77.6% using two biomedical image datasets containing 35 and 20 annotated training images, respectively. 

The U-Net architecture has been built with a contracting encoder branch and an expanding decoder branch. Two convolution operations with Relu activation are used in every layer of the network. Convolution input layers are not padded where every convolution reduces the size of the output. Since it uses 2 x 2 max pooling and 
up-convolutions, the input images should have even X and Y dimensions. The skip connections help recover some of the fine details while decoding. The U-Net architecture is illustrated in Figure 3.
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[bookmark: _Ref87705483][bookmark: _Toc87864263]Figure 3. U-Net architecture for biomedical image segmentation [60].

[bookmark: _Toc87864519]Image annotation

Various tools have been developed to minimise the effort it takes for semantic image annotation, such as Supervisely [63], SuperAnnotate [64], MATLAB Image Labeller [65], LabelBox [66], LabelMe [67], and Microsoft Visual Object Tagging Tool (VoTT) [68]. These applications offer various shape matching tools such as circles, triangles, rectangles, and other polygons to define the object’s boundaries in the image. The polygon-based methods do not accurately define the object boundaries.

Image boundary-based semi-automated annotation tool proposed by Qin et al. claims that it reduces manual clicks to select image boundary points by 73%. The authors use edge detection and splitting algorithms to cluster the image regions, followed by a few manual selection clicks to annotate the image. This approach does not depend on any other input to assist annotation [69]. A semi-automated annotation tool called “EasyLabel” was proposed by Suchi et al. for an indoor object dataset [70]. Their method is based on 
RGB-D vision and is suitable for pixel and object-wise labelling of indoor objects. With the help of an object detector model and 3D layout estimator, Reza et al. have proposed a video data automatic annotation method. Their application is also focused on indoor scene labelling [71].

Based on the existing literature, the outdoor scene annotation methods have not gained enough attention.

[bookmark: _Toc87864520]Spectral imaging

Hyperspectral imaging technology is being successfully used in various industrial application areas such as precision agriculture [72, 73], food quality inspection [74–76], pharmaceutical production [77, 78], crime investigation [79, 80], waste sorting [81, 82] and so on. However, it is still finding little presence in autonomous driving. 

In contrast to RGB imaging methods, MSI and HSI methods offer more information about the objects in the scene. The RGB imaging method provides only the spatial information of the scene in comparison to MSI or HSI. Moreover, RGB imaging only provides information within the visible light wavelength range, 400 – 760 nm. On the contrary, the MSI and HSI methods provide both spatial information and spectral information. These two methods are used within and beyond the visible light wavelength range. Below Table 1 summarises the capabilities of each image acquisition method based on the information available in the image relative to each other.

[bookmark: _Ref67563540][bookmark: _Toc87864285]Table 1. Main differences between HSI, MSI, Spectroscopy and RGB imaging. Classification bullet rate (1-3) is a relative representation of the information available in each acquisition method [83].

		Imaging method

		Spectral information

		Spatial information



		Hyperspectral imaging

		●●●

		●●●



		Multispectral imaging

		●●

		●●●



		Spectroscopy

		●●●

		●



		RGB imaging

		●

		●●●







Based on the number of spectral bands in the sensor, the constructions of MSI and HSI sensors and the spectral cameras is different. So do the image acquisition methods. Most MSI sensors are constructed with bandpass filter deposition in a mosaic pattern[84][85] for single-sensor cameras. There are multi-sensor cameras built using several single band sensors combined as an array [86]. The HSI cameras can be based on tunable filters, line scan sensors, snapshot imaging sensors. Line scan with push-broom method is widely used for HSI image acquisition, which differs from the area scan method used in RGB imaging and MSI. Line scanning is a slow process compared to the area scan that restricts the capture of images of dynamic objects. Different spectral image acquisition modes are discussed by Li et al. in their spectral imaging review article for biomedical imaging [87]. Even though HSI and MSI provide more information about the scene, both technologies have characteristic issues. 

[bookmark: _Toc87864521]Dimensionality reduction in hyperspectral images

The HSI data cubes contain a large amount of spectral data in hundreds of contiguous spectral bands. Therefore, it provides high-resolution spectral characteristics of the object under investigation than other imaging methods. Even though there are advantages of high-resolution spectral characteristics, there are drawbacks as well. 
A large amount of data makes datacube processing computationally expensive.  Moreover, the spectral data in contiguous bands are often redundant and correlated. Such a large amount of data causes the Hughes phenomenon. The Hughes phenomenon is when the classification accuracy increases by increasing the number of spectral and then drastically drops when it reaches a certain number of features in small sample size [88, 89]. 

Due to these reasons, there is a need for selecting optimum spectral bands which contains sufficient information to characterise the objects under investigation. This process is called dimensionality reduction, which transforms high dimensional data into low dimensional space. There are two different approaches to address this problem. One is feature extraction, while the other is feature selection or band selection [90]. The two methods are significantly different from each other. Feature extraction methods will not contain original spectral information after the dimensionality reduction due to data transformation during the process [91].

On the other hand, the feature selection approach does not alter the original pixel data in the hyperspectral data cube, thus preserving the intrinsic information [91]. 
So that, one of the goals of this thesis is to find out the most suitable band selection/feature selection method for a terrain classification task. By selecting a limited number of spectral bands, it would be possible to develop an optimised multispectral sensor for UGV imaging applications, eventually enhancing the classification speed. 
The feature extraction methods are not suitable for this thesis work as they will not maintain the correlation between original spectral bands and the transformed data.

For autonomous ground vehicle applications, CNN training using numerous wavelength band groups according to terrain classes is a complex, labour, and time-intensive task. Mainly due to a large number of terrain classes available in unstructured terrain environments. The objective of band selection or feature selection is to identify the optimum spectral bands which provide the most distinctive and informative spectral characteristics to achieve the highest classification accuracy [92]. Numerous band selection methods have been introduced by the research community based on various applications and imaging conditions. These band selection methods are categorised into six different groups as ranking-based, searching-based, clustering-based, sparsity-based, embedding learning-based, and hybrid-scheme based methods [93]. 

The supervised band selection methods perform superior to the unsupervised methods [94]. However, in the case of terrain classification for unknown environments, supervised methods require retraining for new terrain object classes, which makes it less desirable over unsupervised band selection methods. Therefore, the ideal band selection method should be either an unsupervised or a semi-supervised method that uses less labelled data. Nevertheless, supervised methods are widely used in HSI band selection. 

Most band selection methods are benchmarked with widely popular public datasets such as the Indian Pines dataset [95], Salinas valley dataset, and Pavia University dataset [96]. These datasets are mostly used in remote sensing research. Indian Pines dataset has been collected by AVIRIS sensor over North-western Indiana, which contains 224 spectral bands in visible/near-infrared wavelength range of 400 – 2500 nm. The dataset contains 16 classes [95]. Salinas valley scene also collected by AVIRIS sensor with 224 spectral bands spanning from visible – infrared wavelength range. The image contains 16 different classes [97]. Pavia dataset has collected over University of Pavia, Northern Italy by ROSIS – 3 sensor which contains nine different classes. The dataset contains 103 spectral bands in the 430 – 860 nm visible light wavelength range. 

Unsupervised dimensionality reduction methods

Unsupervised band selection methods are developed based on different criteria. Mostly used criterion is the correlation between different spectral bands. 

The Principal Component Analysis (PCA) methods transform data from a high dimensional space into a lower-dimensional space [98]. The first few dimensions of the resultant PCA conversion contains most of the information. However, the resultant image keeps the important characteristics of the dataset while dimensionally reducing PCA datacube.  After PCA, the resultant image does not reveal its original intrinsic image band structure. This method is older and widely used in hyperspectral image dimensionality reduction as a benchmark.

Manifold learning is another non-linear dimensionality reduction approach. 
The spectral-spatial manifold reconstruction preserving embedding method has been proposed by Huang et al., a novel manifold learning method. Their method proposes a novel distance criterion called spectral-spatial combined distance as the distance matrice. In this method, the HSI data is filtered using a weighted mean filter as the first step. Then, it uses spectral-spatial combined distance matric to select spectral-spatial neighbours. A spectral-spatial adjacency graph is constructed using graph embedding in this method. This method would reveal the intrinsic manifold structure [99].

The similarity measure is one of the criteria for band selection, where it uses mutual information of spectral band and a reference band to select the most suitable spectral bands. 

Supervised learning-based band selection methods 

There are numerous band selection techniques based on the supervised learning method. Some of them use state-of-the-art CNN algorithms, which outperform most of the classical methods.

Band selection based on band-wise independent convolution and hard thresholding technique has been incorporated into CNN by Feng et al. The proposed method comprises band selection, feature extraction and classification [100]. 

A CNN based band selection method has been presented by Rui C et al. called 
CM-CNN, in which they propose a new structure in the neural network called contribution map. This method allows the extraction of discriminative spectral bands from the dataset. However, according to the published experimental results, the proposed CM-CNN method yields higher classification accuracy when selecting more than 40 spectral bands for the Indian Pines dataset and more than 30 spectral bands for the Pavia University dataset [14]. Unlike the other NN based methods, this method gives the most discriminative spectral bands while it cannot achieve higher classification accuracy for fewer number of (< 20) spectral bands.

Attention-based CNN method for HSI band selection could achieve comparable classification results with SVM. The attention-based CNN algorithm has been tested and validated on the Salinas valley dataset and Pavia university dataset. In that study, 
the researchers have compared the classification accuracy of three different CNN models, which did not show any statistical significance [101].

Band selection based on CNN with distance density proposed by Zhan, Y et al. show 
a better classification accuracy with a higher number of spectral bands. Especially the proposed BSCNN+ DA, which uses data augmentation with distance density calculation, outperforms all the other methods in their research. The most significant achievement in their study is that the method initially uses all the spectral bands in the datacube to train CNN. Then use distance density-based bands reduced datacube using Rectified Linear Unit (ReLU) activation function to iteratively select bands classifying the image and estimate the precision of each method to extract most significant spectral bands without retraining the CNN for every iteration. As the authors mentioned in their publication, their method is not effective when the number of selected spectral bands is less than 30.  The other traditional methods can easily outperform the BSCNN+DA method if the selected spectral band count is less than 30. However, their method has other significant drawbacks as it needs to test all possible band combinations for every band partition in the datacube until it finds the optimum bands set. In other words, it requires a large number of iterations to identify the suitable bands, which makes their method computationally expensive [91]. 

[bookmark: _Toc87864522]Hyperspectral image visualisation

In order to train RGB semantic segmentation neural networks, it is required to prepare image datasets with RGB images and their ground truth. The ground truth is the actual pixel class which comes from image pixel-wise classification. The RGB image needs to be generated from the HSI datacube. The goals of such an RGB image generation method should be consistent rendering, edge preservation, computational ease, and natural colour palette, which are the most relevant in this research context [102].

Selecting three image bands from red, green, and blue wavelength ranges and mapping them to RGB channels is the simplest method to generate RGB images from HSI [103]. 

The hyperspectral image visualisation method proposed by Su et al. is based on visualisation orientated band selection followed by band similarity computation. In this case, they select three bands to produce trichromatic visualisation from three wavelength ranges for red, green, and blue, respectively. They use a band selection method that gives fewer spectral bands for each colour wavelength range, which is subsequently used to calculate the correlation coefficient to determine the similarity between the bands in the same wavelength range to choose one image band. Also, 
it looks for the dissimilarities between the selected bands in the other colour wavelength range, which can add most of the information into the final visual representation [104]. 

Several methods have been developed on filtering techniques [105, 106]. One of them is a most recent method based on PCA with edge-preserving filtering, which claimed to have better image contrast and original details of the image [105]. Similarly, using PCA and edge-preserving filtering, the bilateral filtering-based image fusion method has been proposed by Kotwal and others. Their method uses band weights at each pixel for image fusion [106]. 

[bookmark: _Toc80864962]Another image visualisation approach is the manifold alignment technique. In this case, the RGB images captured from the same or semantically similar site to the location where HSI images capture, the manifold alignment approach can transfer colour information from RGB images to HSI visualisations. Fusing the hyperspectral image with a high-resolution colour image using manifold alignment needs a few matching pixel pairs that present the same object in the scene [103].

[bookmark: _Toc87864523]Hyperspectral image classification methods 

In hyperspectral imaging, achieving the highest classification accuracy is the main objective. There are various methods have been developed for hyperspectral image classification in various application domains. One of the challenges in HSI classification is the difficulty to extract of endmembers. The endmember is the pure signature of a particular material (object) class [107], often discussed in chemical/mineral analysis and other fields. The objects found in nature do not occur in their pure state, which adversely impacts classification accuracy.

[bookmark: _Toc87864524]Pixel-wise classification 

Most of the HSI classification methods are developed for pixel-wise classification. From statistical methods to modern DCNN methods developed in the context of spectral signature-based discrimination.

Multilayer perceptron (MLP) networks are the simplest and the basis of artificial neural networks, which has been in use with diverse applications. These feed-forward NNs were introduced for HSI classification decades ago. Even though they are simple, they can achieve high accuracy in hyperspectral image classification [108]. After the band selection, the hypercubes contain fewer spectral bands, which can efficiently classify the image despite some inherent pitfalls with the method.

Various CNN based classifiers have been developed in recent years. There are several feature extraction CNN architectures proposed in the reference [109]. The authors of the publication have proposed 1-D CNN, 2-D CNN and 3-D CNN for feature extraction and image classification. 

The 1-D CNN is a single-pixel hyperspectral image classification network. The depth dimension of the datacube is the spectral distribution, which is 1-D image input for the NN [110]. These networks also contain convolution layers, activation function layers, 
and pooling layers. As mentioned before in the supervised band selection methods section, the distance density based band selection method uses 1-D CNN for classification [91]. Furthermore, the 2-D CNNs look into spatial features of each layer while 3-D CNNs learn both spectral-spatial features [109]. 

[bookmark: _Toc87864525]Spectral-spatial classification 

Hyperspectral image classification based on both spectral-spatial features is the most appropriate classification approach for terrain perception. As it is mentioned before, 
the endmember identification for terrain object classes is not a viable solution. Since image pixels in the hypercube may have mixed with noise and neighbouring spectral data cause spectral mixing, the classification result based on spectral signature may not always be accurate. A combination of spectral-spatial features can overcome such complications. In contrast to the classical methods based on pixel-wise spectral data classification, the spectral-spatial combination looks at both spatial image features on two spatial dimensions and spectral image features on the third dimension.  Therefore spectral-spatial combined classifiers perform better than pixel-wise spectral image classifiers [111]. There are numerous spectral-spatial HSI classification methods have been published so far. The earliest spectral-spatial joint classification of HSI was researched several decades ago, where Landsat imagery data were classified using neighbouring pixel patterns and the Markov approach [112]. 

However, HSI classifications related to terrain perception for autonomous navigation applications is nearly non-existent compared to remote sensing applications. 
The spectral-spatial classification methods reviewed in this state-of-the-art review are based on the methods developed for remote sensing applications and other multi-band image classification applications such as medical image classification. The key criterion for the optimal image segmentation is the computational time, and classification accuracy of the method benchmarked on each domain’s popular datasets.

The state-of-the-art classification architectures are mostly DNN architectures. 
In the remote sensing application domain, the classification methods are mostly benchmarked on popular remote sensing datasets such as Indian Pines, Pavia University, KSC, and Salinas datasets. The most efficient models in remote sensing are 3D CNNs which achieved the highest classification accuracies, well over 95% for popular datasets and with the lowest processing times [113–115]. These architectures use image 
patches or smaller windows of the image as inputs to the classification network. Thus, 
the resultant is a pixel class that gives the centre pixel class of the input patch as the outcome.



[bookmark: _Toc87864526]Chapter summary

There are various band selection methods available for HSI. However, they are optimised for various applications. Those methods were developed without aiming to use embedded computing hardware, which can be used on an AGV. Therefore, it is needed to develop an efficient band selection method aimed at discriminating terrain surface classes. Based on the research, the data sparsity-based methods are simpler yet effective for band selection. Thus, novel band selection should be based on the data sparsity-based method.

The RGB image ground truth labelling is still being done by manually using various labelling software tools. However, it is a costly process to generate a large image dataset. The possibilities to use hyperspectral imaging to assist in identifying the ground truth has not been explored. In the situation of HSI use in terrain segmentation, most of the perception might still be dependent on RGB imaging due to faster classification speed. Under such conditions, there will be a need for RGB semantic segmentation CNN training for unstructured terrain classification cases. Due to the difference in spatial resolutions of HSI and RGB images, there might be a need for image labels for both cases separately. As some CNN models will not work with varying spatial resolutions, creating two image datasets would be difficult due to the intensive manual work required for such operation. There has not been any research on that area to utilise HSI based CNN model for RGB classification. Such development needs to make RGB images from HSI datacubes. 
The RGB image generation from HSI in unstructured terrain context also has not been explored before.

The U-Net DCNN architecture has proven successful in semantic segmentation with a limited number of training samples. Furthermore, the U-Net architecture accommodates multi-channel images, which resembles HSI datacubes. Since the hyperspectral dataset in this research is not a large image dataset, the U-Net architecture would be the most appropriate solution for HSI classification. There are spectral-spatial segmentation models that have been developed for multi-layered images. Still, those techniques have not been widely applied in HSI image classification for autonomous vehicle terrain perception scenarios.












[bookmark: _Toc87864527]Band Selection Method for Terrain Hyperspectral Imaging

[bookmark: _Toc87864528]Overview

One of the objectives of this thesis is to investigate band selection methods that can be used to reduce the number of spectral bands of HSI datacubes while preserving intrinsic characteristics. The suitability of the method should be evaluated based on its performance in unstructured terrain classification applications. According to the literature review in the preceding chapter, numerous band selection techniques are available for various applications. The method proposed in this chapter is similar to the pooling operation commonly used in CNN algorithms. 

[bookmark: _Toc71106440][bookmark: _Toc71106476][bookmark: _Toc63084236][bookmark: _Toc63084274][bookmark: _Toc63084318][bookmark: _Toc63084356][bookmark: _Toc63091215][bookmark: _Toc63091605][bookmark: _Toc63440747][bookmark: _Toc66701674]The experimental unstructured terrain datasets were acquired using Specim IQ mobile hyperspectral camera. These datasets represent off-road terrain in Estonia as this research focused on off-road terrain classification.
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[bookmark: _Ref73952278][bookmark: _Toc87864264]Figure 4. The RGB image of the terrain HSI dataset.

[bookmark: _Toc87864529]Methodology

The concept of the band selection method is to use the pooling operation in the spectral axis. Thus, detect the most significant peaks from each pooling kernel and extract distinct spectral bands. 

The dataset was calibrated for relative reflectance using white and dark references taken while capturing the image. The data cube contains 12-bit resolution reflectance data for each band. Therefore, the calibrated image was kept with the same resolution. In (1)  denotes the calibrated reflection intensity at  band while  is the reflectance of the original image at wavelength band. Similarly,  and  denote the white reference reflectance and dark reference reflectance at the respective band.



		

		

		(1)







The objective of band selection is to extract a certain number of spectral bands which characterise the objects in the scene to define spectral bands for a multispectral sensor. As the first step, it is required to define the desired number of spectral bands, i.e. 9, 16 or 25 bands. 

The number of pooling iterations is calculated based on the desired bands count, together with the size of the pooling window for each iteration. A hyperspectral image is a 3D datacube with height (h) and width (w) as spatial dimensions while the number of bands on the third dimension or spectral dimension. Since band selection is performed on the spectral axis, it is required to unfold the image. If the image contains only a few classes that are necessary to distinguish, then the entire datacube could be unfolded and used to find out the characteristic spectral bands. On the other hand, if the datacube contains various objects which do not need to be distinguished, then the classes of interest should be selected from the images. 

After unfolding, it is a stack of pixels with spectral distributions. The HSI images used in this chapter have 204 spectral bands, and each pixel’s spectral distribution shows the reflectance intensities for all 204 bands.

The original data cube columns are converted into rows of the modified image as in Figure 5. The purpose of unfolding is to perform pooling operations only on spectral data instead of spatial data.
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[bookmark: _Ref72834780][bookmark: _Toc87864265]Figure 5. Spectral data cube unfolding.



[bookmark: _Toc61225419]Max Pooling 

This method finds the largest feature in the pooling kernel. The kernels are chosen as non- overlapping. Max reflectance of the filter is calculated using (2).



		

		

		(2)









Min - Max Pooling (Proposed method) 

In contrast to the max-pooling method, the min-max pooling method involves searching for the local minima and maxima (local extremum) in the pooling kernel. Peaks and valleys or the significant changes in the reflectance characteristic curves are the most useful spectral features for band selection. Therefore minimum points in the curve or valleys need to be taken into consideration too. This method searches for both minima and maxima in the current  kernel. The minima are calculated using (3).
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[bookmark: _Ref73809050][bookmark: _Toc87864266]Figure 6. Min-max pooling method.

Similarly, maxima and minima for the  kernel will be calculated using the same equations (2) and (3). Find the maxima and minima coordinates in the spectral axis, which are the band numbers. The adjacent gradients are calculated between three consecutive extreme locations. Depending on the calculated gradient differences between extreme points, the band of either maxima or minima will be selected from the partition.

In this algorithm, let the consecutive points be ,  and  and the gradients of  as ,  as . Figure 6 shows how these points are located on the spectral axis. If the gradient difference is more than 0.15, which was obtained empirically, the point  will be more significant in the kernel: otherwise,  is more significant. 
The vector  is taken from (4). Below coefficient, ε is obtained empirically and depending on the classification accuracy for chosen classes. For the terrain classification, the ε was chosen as 0,15. After obtaining band vectors for all  number of samples which is the number of pixels in the image, the maximum occurrence bands will be taken as the final band set. 
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This gradient search technique ignores the band with low reflectance intensity if two similar points lie on consecutive bands. Even though it can catch subtle points in the spectral signature, it has a downside over max pooling. This method takes considerable computing time as it requires calculating gradients in each iteration.

Single hyperspectral datacube often does not contain all the terrain classes. Therefore multiple datacubes are used to extract training data.  Instead of using entire datacubes, a few image patches representing each class are selected and implemented the 
above-explained method. The spectra of two selected terrain classes, trees and 
water, are illustrated below in Figure 7 with different band counts. The thick blue line corresponds to the average spectra in 9, 16 and 25 bands characteristic curves, while the thick black line shows average spectra for the 204 bands characteristic curve of the terrain class.



		[image: ]

(a) Tree class with 9 bands
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(b) Water class with 9 bands.
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(c) Tree class with 16 bands. 
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(d) Water class with 16 bands
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(e) Tree class with 25 bands.
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(f) Water class with 25 bands.
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(g) Tree class with 204 bands (all the bands).
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(h) Water class with 204 bands (all the bands).





[bookmark: _Ref87818211][bookmark: _Toc87864267]Figure 7. Spectral characteristics of Tree and Water terrain classes.

Apart from the proposed method, another method introduced by different group researchers is used in the experiments for comparison. It is the Distance density + CNN method [91]. The selected spectral wavelength bands for each method are in Table 2. 

The selection of 9, 16 and 25 spectral bands is based on the possibility to develop a custom multispectral sensor. When constructing such a multispectral sensor, the bandpass filters are deposited in a mosaic pattern, a square matrix. The HSI acquisition uses the line scan method, while the MSI acquisition uses a much faster area scan technique. MSI classification is faster than HSI due to the fewer spectral bands in the image that can be used in AGV applications for faster processing, which leads to achieving real-time terrain scene classification.



















[bookmark: _Ref72153066][bookmark: _Toc87864286]Table 2. Selected spectral bands from various band selection methods.

		Number of bands

		Method 

		Spectral bands



		9

		Min-Max Pooling

		2, 26, 46, 70, 96, 117, 139, 162, 190



		16

		Min-Max Pooling

		2, 15, 27, 38, 50, 63, 76, 87, 99, 111, 124, 137, 148, 160, 173, 189



		25

		Min-Max Pooling

		2, 11, 19, 27, 34, 42, 50, 58, 67, 75, 83, 91, 98, 107, 114, 123, 131, 139, 147, 155, 163, 172, 180, 188, 198 



		9

		Distance density + CNN

		22 61 127 134 162 168 174 184 192 195



		16

		Distance density + CNN

		26 54 114 121 125 149 154 158 166 180 186 191 192 196 197 199



		25

		Distance density + CNN

		15 17 57 71 112 118 123 125 136 143 154 163 164 169 171 172 175 180 183 184 185 187 188 191 192 200





[bookmark: _Toc87864530]Classification method

A supervised machine learning method is used for HSI classification. The HSI classifier in this task is a spectral-spatial CNN model, and it will be referred to as SS_CNN throughout this thesis. The classifier is as follows. The image input layer accepts 5 x 5 pixels spatial resolution and  number of channels. It is a 5 x 5 pixels window sliding over the image and classifying the centre pixel of the sliding window. After the input image layer, there are two convolution and Relu layers. Both convolution layers contain 3 x 3 kernels and 16 filters. The second Relu layer is followed by a fully connected layer and a softmax layer, classifying the pixels according to the number of classes. The architecture is described in Table 3.

[bookmark: _Ref87537717][bookmark: _Toc87864287]Table 3. CNN classifier architecture for HSI pixel-wise classification.

		

		CNN architecture



		Layer

		In 

		c1 

		r1 

		c2 

		r2

		fc

		softmax

		out



		Kernel size, Filters

		5x5

		3x3, 16 filters

		

		3x3, 16 filters

		

		d

		

		







In this pixel-wise classification method, the training data are individual image pixels, and all the training pixels are collected from the same image. As shown in Figure 8, 
the small patches of pixels are extracted for training and validation.
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[bookmark: _Ref87820796][bookmark: _Toc87864268]Figure 8. Places of the image where training sample pixels captured.

[bookmark: _Toc87864531]Results 

Below, Figure 9 shows the classification results for the terrain data set in Figure 4 using SS_CNN classification. The presented test image contains nine terrain classes. Three different band counts are used to create minimum band images and perform image classification. According to Figure 9 classification image results, the three different band variants show similar visual outcomes. Same image patch coordinates are used to extract training data in all the test cases. 
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		RGB colour composite image of HSI 
terrain dataset

		Ground truth of the dataset
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		Classification result for 9 bands using 
Min-Max Pooling

		Classification result for 16 bands using 
Min-Max Pooling
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		Classification result for 25 bands using 
Min-Max Pooling

		





[bookmark: _Ref73952238][bookmark: _Toc87864269]Figure 9. Ground truth and classification results for each band set.

[bookmark: _Ref84976468][bookmark: _Toc87864288]Table 4. Classification pixel accuracy for different numbers of spectral bands.

		Terrain class

		9 bands

		16 bands

		25 bands

		Legend



		

		Precision

		Recall

		Precision

		Recall

		Precision

		Recall

		



		Undefined

		0

		0

		0

		0,02

		0

		0

		



		Grass

		0,46

		0,81

		0,47

		0,83

		0,46

		0,77

		



		Trees

		0,95

		0,63

		0,95

		0,65

		0,94

		0,67

		



		Rocks

		0,28

		0,65

		0,31

		0,49

		0,25

		0,50

		



		Water

		0,98

		0,66

		0,94

		0,65

		0,99

		0,66

		



		Sky

		0,94

		0,97

		0,95

		0,97

		0,96

		0,98

		



		Gravel

		0,17

		0,88

		0,13

		0,84

		0,11

		0,91

		



		Dirt

		0,97

		0,79

		0,97

		0,76

		0,98

		0,71

		



		Mud

		0,28

		0,55

		0,25

		0,52

		0,28

		0,54

		



		Macro avg

		0,56

		0,66

		0,55

		0,64

		0,55

		0,64

		







The classification accuracy matrices were calculated using the below equations (5) and (6). The class-wise pixel accuracies and overall pixel accuracy are presented in Table 4. The overall accuracy of the dataset is affected by the class imbalance. 

		

		

		(5)



		

		

		



		

		

		(6)





One important fact is, ground truth labels for the selected dataset are not accurate for “dirt” and “mud” classes. Since these two classes are visually similar and the only difference between “dirt” and “mud” is that dirt is a dry terrain and mud is a wet terrain, it is indistinguishable for the human eyes by looking at RGB images. Considering both terrain classes are drivable terrains, the classification accuracy difference is acceptable.

The chosen dataset is classified using the SS_CNN method by selecting 16 spectral bands from two different band selection methods. The classification accuracy for the selected dataset using the min-max pooling and the distance density method is presented in Table 5.

[bookmark: _Ref73968377][bookmark: _Toc87864289]Table 5. Classification pixel accuracy using different band selection methods.

		Terrain class

		Distance density method [91]

		16 bands Min-max pooling



		

		Precision

		Recall

		Precision

		Recall



		Undefined

		0

		0

		0

		0,02



		Grass

		0,28

		0,61

		0,47

		0,83



		Trees

		0,82

		0,44

		0,95

		0,65



		Rocks

		0,64

		0,26

		0,31

		0,49



		Water

		0,98

		0,63

		0,94

		0,65



		Sky

		0,94

		0,98

		0,95

		0,97



		Gravel

		0,14

		0,91

		0,13

		0,84



		Dirt

		0,95

		0,79

		0,97

		0,76



		Mud

		0,35

		0,42

		0,25

		0,52



		Macro avg

		0,56

		0,56

		0,55

		0,64





The classification results for different band selection methods are shown in below Figure 10.
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		16 Bands from Distance density + Cnn method

		16 Bands from min-max pooling method





[bookmark: _Ref73971078][bookmark: _Toc87864270]Figure 10. Classification results for different band selection methods.

The proposed band selection method gives a slightly better recall value than the other method. Most importantly, it gives higher classification average results for all the classes, even with fewer spectral bands. The objective of the method is to distinguish spectral signatures of closely correlated classes along with band selection, and this objective has been achieved with the above results.

[bookmark: _Toc87864532]Comparison with benchmark datasets from remote sensing

Popular remote sensing datasets, such as the Indian Pines dataset, are often used to compare the performance of different dimensionality reduction methods. The proposed pooling method in this study was used for the Indian Pines dataset dimensionality reduction [116], thus evaluating classification capabilities. The corrected Indian Pines dataset contains 145 x 145 pixels with 200 spectral bands, which exclude spectral bands containing water absorption spectral signature. The false colour representation of the dataset is shown in Figure 11.

[bookmark: _Ref87299424][bookmark: _Toc87864271]Figure 11.The false colour representation of the Indian pines dataset.
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Due to the low resolution of the dataset, the amount of training data for all 17 classes were not sufficient in the original image. In order to minimise the impact of limited training data on the classification, the top nine classes are selected based on the number of spatial pixels available in each class. Table 6 gives the details of the classes in the Indian pines dataset. A batch of 144 pixels from each class are selected for band selection and classification. An equal pixel count from each class creates a balanced dataset. Training and validation samples are taken by splitting the above sample dataset. The ground truth for both the original image and with selected classes are shown in Figure 12. The non-selected classes are grouped with the “Background” class.
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[bookmark: _Ref84974692][bookmark: _Toc87864272]Figure 12. Ground truth of AVIRIS Indian Pines dataset from Purdue University [116].

Selected spectral bands for the Indian Pines dataset using Min-max pooling are as below in Table 7. 

















[bookmark: _Ref87301290][bookmark: _Toc87864290]Table 6. Indian Pines dataset classes and the number of samples for classification.

		#

		Class

		Total no of samples

		No of training samples



		1

		Alfalfa

		46

		-



		2

		Corn-notill

		1428

		144



		3

		Corn-mintill

		830

		144



		4

		Corn

		237

		-



		5

		Grass-pasture

		483

		144



		6

		Grass-trees

		730

		144



		7

		Grass-pasture-mowed

		28

		-



		8

		Hay-windrowed

		478

		144



		9

		Oats

		20

		-



		10

		Soybean-notill

		972

		144



		11

		Soybean-mintill

		2455

		144



		12

		Soybean-clean

		593

		144



		13

		Wheat

		205

		-



		14

		Woods

		1265

		144



		15

		Buildings-Grass-Trees-Drives

		386

		-



		16

		Stone-Steel-Towers

		93

		-







[bookmark: _Ref87304272][bookmark: _Toc87864291]Table 7. Selected spectral bands from the Indian Pines dataset.

		

		No of bands - 

		Selected bands



		1

		9

		9, 23, 48, 67, 90, 111, 133, 155, 177



		2

		16

		7, 13, 29, 39, 51, 62, 74, 87, 98, 111, 123, 133, 152, 158, 170, 184



		3

		25

		2, 11, 17, 26, 35, 43, 50, 58, 66, 75, 81, 91, 97, 105, 118, 122, 129, 137, 149, 153, 163, 170, 178, 181, 188







The training dataset shuffles at every epoch during CNN training.  Classification results are shown in Table 8.



[bookmark: _Ref87364268][bookmark: _Toc87864292]Table 8. The HSI classification with a different number of image bands.
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		(a) 9 bands

		(b) 16 bands

		(c) 25 bands









[bookmark: _Ref87361159][bookmark: _Ref84974503][bookmark: _Toc87864293]Table 9. Classification pixel-wise accuracy for the Indian Pines dataset based on a different number of bands.

		Class

		9 bands %

		16 bands %

		25 bands %



		Corn-notill

		23.24

		34.35

		27.57



		Corn-mintill

		28.70

		29.21

		26.51



		Grass-pasture

		38.67

		47.22

		33.97



		Grass-trees

		64.38

		70.41

		75.61



		Hay-windrowed

		38.28

		44.35

		75.10



		Soybean-notill

		36.60

		46.84

		60.80



		Soybean-mintill

		34.56

		36.26

		31.58



		Soybean-clean

		35.24

		31.87

		32.88



		Woods

		20.94

		19.52

		26.72







Above Table 9 presents the pixel-wise classification accuracy for each class in the dataset. The neural network methods require an enormous amount of labelled data which impacts the classification outcome. It is evident that classification accuracies are low due to the lack of samples taken for training and validation. The lower pixel resolution of the image is the reason for the smaller training dataset. It is noticeable that the classification accuracy increases along with the number of spectral bands for some terrain classes. However, it is not the same pattern for all the classes. 

Furthermore, several classes are highly correlated with each other. Figure 13 shows the spectral signatures of all the terrain classes. Plot legend in Figure 13 follows the label colours in Figure 12 ground truth. In the case of less correlating spectral signatures, the proposed method is effective but not effective for highly correlating spectral signatures. The Min-max pooling method took 2.7 milliseconds to obtain the spectral bands.
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[bookmark: _Ref87365009][bookmark: _Toc87864273]Figure 13. Spectral signatures of Indian Pines dataset classes.

[bookmark: _Toc87864533]Chapter summary

In this chapter, a simple yet effective band selection method is proposed for hyperspectral images. In contrast to various existing band selection methods, the proposed method is mathematically simple to implement. This method will ease the computation burden on the processing computer and thus be helpful for the deployment of an embedded computer with lower computing power. According to experiment results, the band selection method could identify the optimum spectral bands in 2.7 milliseconds. 
The effectiveness of the proposed method was presented for both terrain hyperspectral images and a remote sensing dataset. 










[bookmark: _Toc87864534]RGB Image Generation from Hyperspectral Datacubes

One of the objectives of this work is to investigate the possibilities of using the hyperspectral imaging method to prepare training inputs to train RGB semantic segmentation networks, which can eliminate labour intensive image annotation processes. Even though the HSI camera used in this research can produce RGB images using its built-in RGB camera, they are not in the same spatial resolution. Moreover, there can be vertical and horizontal alignment mismatches between the hyperspectral image and the RGB image. Therefore, it is necessary to generate RGB images from the HSI datacube. Below, Figure 14 illustrates the concept of using HSI classification as an input for the RGB perception systems.





HSI datacube

HSI CNN

RGB Image
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Labeled data for RGB

RGB Semantic segmentation
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[bookmark: _Ref71803204][bookmark: _Toc87864274]Figure 14. HSI classification as an input for the RGB semantic segmentation.

[bookmark: _Toc87864535]Methodology

Several trichromatic image visualization methods based on HSI datacubes were explored. One method was the manifold alignment technique, which uses HSI datacube and RGB images are captured from the same environment to transfer colour characteristics from RGB to HSI. The RGB image generation method uses band selection to form a smaller datacube. Subsequently, the manifold alignment method is used to create an RGB image. In this study, the min-max pooling method was used for band selection. Several other methods are also used in this research to determine which band selection performs sufficiently close to the RGB representation of the scene. Several other RGB image generation methods have been implemented for the comparison of the chosen method.

Below, Figure 15 a and b show the test images used to implement the manifold alignment technique.



		[image: ]

		[image: ]



		[bookmark: _Ref83842163][bookmark: _Toc87864275]Figure 15 a. RGB image taken from the same site.

		Figure 15 b. HSI datacube visualized using three image bands.







As in the above images, Figure 15 a. and Figure 15 b, the RGB image and HSI datacube coming from the Specim camera are not accurately aligned vertically and horizontally. The resolution of the RGB images is 645 x 645 pixels, while HSI datacube spatial resolution is 512 x 512 pixels. Therefore, the HSI classification result and RGB image from the Specim camera cannot implement the above proposed unsupervised image labelling due to the difference in resolution.

[bookmark: _Toc87864536]Manifold alignment RGB image generation method

The manifold alignment method for RGB image visualization from the hyperspectral image is based on reference [103]. This method use pixel pairs from HSI datacube and RGB image.  The RGB image should have been taken from the same or semantically similar environments as the HSI datacube. 

The concept of manifold alignment is projecting both image data to a shared embedding space with lower dimensions than the original data. This concept is illustrated in Figure 16. There are several methods to obtain the manifold structure of the underlying data. In this task, the natural colour image was obtained by using Locality Preserving Projections (LPP) method [117]. Here, it has been implemented feature-level manifold alignment with semi-supervised pixel-groups selection. 















Shared embedding





[bookmark: _Ref87823973][bookmark: _Toc87864276]Figure 16. Manifold alignment for HSI and RGB images.



The explanation of the algorithm is as follows. The HSI dataset is represented as a matrix  where ,  is the number of selected hyperspectral image bands, and n is the number of samples. The RGB image is represented as a matrix  where ,  is the number of colour channels which is three, and  is the number of samples. Since the pixels are selected as pairs from each image, the numbers of HSI samples  and  are equal to . The objective of the LPP is to find two projection functions  :   and  :  where  is low dimensional space. 

The locality preserving projections method keeps local neighbourhood relationships in each image. The adjacency graphs for each image  and  are constructed and obtained the weighted adjacency matrices for each image as , and  respectively. The weighted adjacency matrices’ distance measures follow k-nearest neighbour. The hyperspectral image pixel distances are calculated as spectral angle (SA), while RGB image pixel distances were obtained using Euclidean distance.

The spectral angle between two hyperspectral pixels is calculated using (7). The  and  pixels of hyperspectral image datacube are denoted as  and .



		

		

		(7)







The weight coefficient matrix for the HSI image is



		

		

		(8)







The weighted adjacency matrix is a  matrix. The spectral angle cosine between two pixels in hyperspectral is the highest  when the two pixels are similar to each other.



		

		

		(9)







For the RGB image,  and  pixel colour vectors are denoted as  and distance measures calculated using the below equation (10).
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The weight coefficients are calculated as



		

		

		(11)







Then the weighted adjacency matrix is obtained as follows.



		

		

		(12)







Similar to the HSI image weighted adjacency matrix, the RGB image weighted adjacency matrix is also an  matrix. In the case of RGB images, the smaller the Euclidean distance, the similar the pixels to each other. Therefore, the minimum distance is used to obtain the weighted adjacency matrix.

The correspondence matrix represents matching pairs between two images. 
If the selected pixels from each image space form a matching pair, the correspondence is 1, otherwise 0. The correspondence matrix is obtained from the below expression (13).



		

		

		(13)









Since an equal number of pixels were selected from both images, the correspondence matrix  is also an  matrix.

The objective function to calculate the projection functions can be derived as below.
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The joint weighted matrix  is obtained below to minimize the objective function.



		

		

		(15)









Then, the objective function becomes (16).



		

		

		(16)







The diagonal matrix D is defined as (17).



		

		

		(17)







Then, L is the Laplacian matrix which is L = D-W. The minimization of the above (16) has been proved in [103] to be equivalent to (18). Thus, it can be solved as a generalized eigenvalue problem.
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 Joint projection matrix  is (20)



		

		

		(20)







And X is defined as (21)



		

		

		(21)







The smallest Eigenvalues λ matrix provide the optimum manifold projection functions. For the shared low dimensional embedding space, the number of dimensions  is selected as 3, which is for three RGB channels.  

The pixels were selected from the same regions of both images as below Figure 17. Regions were defined from several parts of the image and randomly extracted N number of samples from each region.



		[image: ]

		[image: ]



		(a) Selected pixels from RGB image

		(b) Selected pixels from HSI image





[bookmark: _Ref87826926][bookmark: _Toc87864277]Figure 17. Pixel-pair regions for both RGB and HSI.

[bookmark: _Toc87864537]Results for RGB image generation

For the image generation, only visible light wavelength range HSI bands can be used. The below RGB image was generated using a few spectral bands selected using band selection methods described in the previous chapter. Moreover, it further narrowed down to 9 spectral bands in the visible light wavelength range. 



[image: ]

[bookmark: _Toc87864278]Figure 18. RGB representation using manifold alignment method.

Several methods other than manifold alignment have been experimented with to compare the RGB image visualization accuracy for the HSI datacube. The compared HSI visualization methods are bilateral filtering, using band selection with correlation measure, and three spectral bands representing the highest intensities in RGB space. 

The colour representation has been evaluated using two comparison matrices. They are root mean square error (RMSE) and correlation coefficients between each colour plane.

		[image: ]

		[image: ]



		RGB image captured from the same location.

		Bilateral filtering method.



		[image: A dirt road with trees on either side of it

Description automatically generated with low confidence]

		[image: ]



		Manifold alignment method using nine spectral bands.

		RGB image generated from three spectral bands where each colour channel has peak intensity.





[bookmark: _Toc87864279]Figure 19. Generated RGB visualization images from various methods.

One colour representation accuracy evaluation technique is each colour channel's root mean square error [118]. The RMSE between the generated RGB image and the original RGB image captured from the same location has been calculated using equation (22). The  and  are RGB images with  spatial resolution. The lower the RMSE value, the similar the image colour channel of both images. 



		

		

		(22)







 The RMSE estimates for each colour channel are tabulated in Table 10.



[bookmark: _Ref83842384][bookmark: _Toc87864294]Table 10. RMSE for each image generation method.

		RMSE

		Three image bands from the HSI cube

		Manifold alignment

		Bilateral filter



		R

		0.0098

		0.0508

		0.0156



		G

		0.0605

		0.0117

		0.0684



		B

		0.0137

		0.0117

		0.0254



		Average

		0.0280

		0.0247

		0.0365







Even though the red colour channel of the RGB image generated using the manifold alignment method shows the highest RMSE than the others, the average RMSE for all three colour channels is smaller. Thus, the manifold alignment method gives better visual representation over the other two methods.

The second evaluation criterion is Pearson’s correlation coefficient of the two images. The Pearson’s correlation coefficient is calculated using the below equation (23).



		

		

		(23)







The two images are denoted as X and Y where and  represent the mean values of the images. Pearson’s Correlation coefficient for each colour channel between visualized image and RGB image captured from the same site is presented in Table 11 below.

[bookmark: _Ref87827180][bookmark: _Toc87864295]Table 11. Pearson’s correlation coefficients for each colour channel.

		Correlation Coefficient

		Three image bands from the HSI cube

		Manifold alignment

		Bilateral filter



		R

		0.7226

		0.7326

		0.7167



		G

		0.7494

		0.7848

		0.7430



		B

		0.7944

		0.8419

		0.8028







The Pearson’s correlation coefficient is an indication of similarities between two different datasets. The higher the correlation coefficient, the similar the images. 
The value of the correlation coefficient can be within the range of -1 to 1. The above analysis for the selected image confirms that the manifold alignment method gives the highest correlation coefficient for all three image channels in the RGB image inputs.

The optimum number of HSI bands for the manifold alignment method

The HSI datacube contains 204 spectral bands, and the RGB image contains three colour channels. The number of image bands used for the manifold alignment algorithm influences the clarity of the RGB visualization from the HSI image. Several spectral band combinations were used to investigate the appropriate band count to form an RGB image reflecting natural colours. The min-max pooling method has been used for spectral band selection, which was a part of this research. All the image bands in the datacube, then 9, 16, and 25 spectral bands constituting the entire wavelength range, were used for the experiments. Furthermore, those image bands within the visible light wavelength range are used to determine the suitability of VNIR (400 – 1000 nm) or VIS (400 – 750 nm) wavelength range for the RGB generation. Below, Figure 20 shows several combinations of HSI to RGB image formation with various spectral band options.

		[image: A dirt road with trees on either side of it

Description automatically generated with low confidence]

		[image: A dirt road with trees on either side of it

Description automatically generated with low confidence]



		9 spectral bands

		16 spectral bands



		[image: A picture containing grass, outdoor, tree, nature

Description automatically generated]

		[image: A close up of a wood surface

Description automatically generated with medium confidence]



		25 spectral bands

		204 spectral bands (entire datacube)





[bookmark: _Ref84800103][bookmark: _Toc87864280]Figure 20. RGB visualization of HSI datacube in VNIR range bands.

The above images were generated by taking the spectral bands within the 
400 – 1000 nm wavelength range. With all 204 image bands, the manifold learning method cannot successfully reconstruct an RGB image because Eigenvector decomposition yields complex and negative Eigenvalues for the optimization function. 

[bookmark: _Ref72766775][bookmark: _Toc87864296]Table 12. Pearson’s correlation coefficient of RGB images based on the number of spectral bands.

		Correlation Coefficient

		9 bands

		16 bands

		25 bands



		R

		0.7326

		0.6710

		0.6673



		G

		0.7848

		0.7343

		0.7288



		B

		0.8419

		0.8228

		0.8252



		Average

		0.7864

		0.7427

		0.7404







Above Pearson’s correlation coefficients imply that the images with the lowest spectral band counts provide the most similar RGB image representation.



The influence of NIR image bands on RGB visualization has been made by extracting only visible light spectral bands and forming RGB images using those bands. The visible light wavelength ranges from 380 – 750 nm, and hence, spectral bands within 400 – 750 nm have been used to form below RGB images in Figure 21.



		[image: A picture containing outdoor, tree, grass, nature

Description automatically generated]

		[image: A dirt road with trees on either side of it

Description automatically generated with low confidence]



		9 bands in the visible range

		16 bands in the visible range



		[image: A picture containing outdoor, grass, nature, river

Description automatically generated]

		[image: Background pattern

Description automatically generated]



		25 bands in the visible range

		204 bands in the visible range





[bookmark: _Ref87827375][bookmark: _Toc87864281]Figure 21. RGB image generation from the visible light range bands.

[bookmark: _Ref72766783][bookmark: _Toc87864297]Table 13. Pearson’s correlation coefficient for the RGB images generated by using visible light spectral bands.

		Correlation Coefficient

		9 bands

		16 bands

		25 bands



		R

		0.6994

		0.6576

		0.6528



		G

		0.7746

		0.7387

		0.7373



		B

		0.8314

		0.8163

		0.8146



		Average

		0.7685

		0.7375

		0.7349









Comparing Table 12 and Table 13 shows that the entire VNIR spectral range image bands carry more information than visible light wavelength bands alone for manifold alignment. 

[image: ]

[bookmark: _Ref74047631][bookmark: _Toc87864282]Figure 22. Pearson’s correlation coefficient for each colour channel between original RGB and generated RGB from HSI.

Based on above Figure 22, it is evident that the optimum number of spectral bands from the HSI datacube should be nine bands for the manifold alignment method. Below Table 14 consists of RGB images generated using the chosen nine-band HSI datacubes of off-road terrain scenes. The correlation coefficients for the generated RGB images are presented in Table 15.

[bookmark: _Ref81046661][bookmark: _Toc87864298]



















Table 14. Unstructured terrain HSI datacubes visualized in RGB using manifold alignment.

		Image

		RGB image from the location

		HSI visualized in RGB using three image bands

		HSI visualized in RGB using manifold alignment



		1

		[image: A picture containing grass, outdoor, tree, field

Description automatically generated]

		[image: ]

		[image: ]



		2

		[image: A road with signs on it

Description automatically generated with low confidence]

		[image: ]

		[image: ]



		3

		[image: A picture containing sky, outdoor, grass, nature

Description automatically generated]

		[image: ]

		[image: ]



		4

		[image: A body of water with grass and trees around it

Description automatically generated with low confidence]

		[image: ]

		[image: ]







[bookmark: _Ref81046980][bookmark: _Toc87864299]Table 15. Correlation coefficients for above Table 10 image set.

		

		Correlation coefficient



		Image

		Red channel

		Green channel

		Blue channel

		Average



		1

		0,1209

		0,2706

		0,5707

		0,3207



		2

		0,4691

		0,5825

		0,7041

		0,5852



		3

		0,4930

		0,5894

		0,7396

		0,6073



		4

		0,6458

		0,7280

		0,7702

		0,7147











[bookmark: _Toc87864538]Chapter summary

Several different methods were explored to generate RGB images from HSI datacubes. The objective of this RGB image generation was to use them with RGB semantic segmentation CNN networks instead of high-resolution RGB images captured from the same locations. 

The techniques for RGB image generation are bilateral filtering, selecting three different channels from each R, G and B region from the visible light wavelength range and manifold alignment. Among those three methods, the manifold alignment method using locality preserving projections yields the optimum similarity for HSI visualization as an RGB image. The experiment results show that the optimum number of spectral bands for RGB image generation was nine spectral image bands. The Person’s correlation coefficient for the 9bands image set was 0.7685. 

The datacube contains 204 spectral bands, which contain all the information about the scene. However, 204 image bands show that it cannot project all the data points to a common embedding. The use of the entire hypercube resulted in poor image quality compared to a lower number of spectral bands. Furthermore, it is evident that including the NIR range spectral bands of HSI datacube for the manifold projection gives a better correlation than the images generated from image bands taken from visible light wavelength range alone. A lesser number of image bands requires less time to process the image and hence improves the overall efficiency of the image generation process. 

The average correlation coefficient could be further improved by increasing the number of pixel pairs from both images.






[bookmark: _Toc87864539]Unstructured Terrain Semantic Segmentation

[bookmark: _Toc87864540]Methods

The problem of scene understanding has been addressed using various methods from the beginning of computer vision. Starting from colour threshold methods in the early ’90s to modern DCNNs, semantic segmentation methods improved gradually. Most of these DCNNs are developed for a specific application. For instance, the U-Net architecture was proposed for biomedical image segmentation with a few training images in the dataset [60]. The RefineNet was proposed by Lin et al. from the University of Adelaide, which improved a common drawback resulting from previous semantic segmentation DCNNs with output image blur [119]. Even though they perform well with one type of segmentation problem, the same network may perform poorly with another classification task area, such as terrain segmentation.

This comparison study selects several state-of-the-art semantic segmentation networks. They are SegNet, U-Net and DeepLabv3+ with Resnet18. The DeepLab V3+ DCNN architecture uses an encode-decoder structure to extract object boundaries while recovering most spatial features. With atrous separable convolution operation, this architecture can capture information from a larger field of view [120]. Since DeepLab V3+ is one of the most effective DCNN architectures in semantic segmentation, it has been chosen to perform terrain image semantic segmentation for RGB cases. 

The overall deep learning-based image segmentation will comprise four different combinations.

· RGB images 645 x 645 px resolution with manually annotated labels

· RGB images generated from hyperspectral image datacubes and manually annotated labels

· RGB images generated from hyperspectral datacubes with hyperspectral image classification result as labels. HSI classification has been done with spectral data alone

· Spectral-Spatial classification with manually annotated labels

[bookmark: _Toc87864541]Performance matrices

Several accuracy matrices were used to quantify the accuracy of semantic segmentation. The accuracy matrices are pixel-wise accuracy, intersection over union (IoU) and F1 score. 

 

TP-true positive, TN – true negative, FP – false positive and FN-false negative
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[bookmark: _Toc87864542]Image datasets

For semantic labelling, twelve terrain classes were selected. In comparison to existing similar public off-road RGB datasets, a similar number of classes were used in this research. The man-made objects are grouped into the “objects” class. Moreover, the terrains with very few occurrences are categorized as “undefined” along with the other unknown classes. The shadows of various constructions and trees are also annotated as “undefined”. 

The complete list of terrain classes used in this research with label colours is shown in Table 16. 

[bookmark: _Ref84798739][bookmark: _Toc87864300]Table 16. List of terrain classes.

		 

		Class

		Red 

		Green

		Blue

		Hex code

		Label Colour 



		1

		Undefined

		0

		0

		0

		#000000

		 



		2

		Grass

		0

		102

		0

		#006600

		 



		3

		Concrete

		170

		170

		170

		#aaaaaa

		 



		4

		Asphalt

		64

		64

		64

		#404040

		 



		5

		Trees

		0

		255

		0

		#00ff00

		 



		6

		Rocks

		110

		22

		138

		#6e168a

		 



		7

		Water

		68

		187

		170

		#44bbaa

		 



		8

		Sky

		0

		0

		255

		#0000ff

		 



		9

		Gravel

		187

		136

		51

		#bb8833

		 



		10

		Object

		192

		64

		64

		#c04040

		 



		11

		Dirt

		108

		64

		20

		#e6e61e

		 



		12

		Mud

		99

		66

		34

		#634222

		









Approximately 500 images were captured during the study. Since extensive manual work was required for labelling, 152 images were initially labelled for HSI and RGB datasets, respectively. The development of the dataset continues in order to improve semantic segmentation accuracy.

The entire dataset contains carefully annotated hyperspectral images of terrain scenes. For DCNN training, validation and testing, the dataset was split into three parts. The number of training images was 122, which is 80 % of the image dataset, while 15 images were used for testing and 15 used for validation which constitutes 10 % for each set. Since the number of images in the dataset is small for DCNN training, the dataset was augmented to increase the number of images for training. Figure 23 represents the constitution of each terrain class in the dataset. Since DCNN models require a large dataset for training, the dataset is augmented by transformations.





[bookmark: _Ref87718624][bookmark: _Toc87864283]Figure 23. The composition of the terrain dataset.

[bookmark: _Toc87864543]Terrain segmentation using RGB images and manually labelled ground truth

State-of-the-art RGB image semantic segmentation networks were employed to compare the terrain segmentation results of the HSI classification with the RGB dataset derived from the HSI.  The semantic segmentation DCNNs were trained using hand-annotated labels and RGB images, followed by an evaluation of the classification accuracy. The images were taken from Specim IQ camera with 645 x 645 pixels resolution in RGB colour space. These images were simultaneously captured while acquiring the HSI datacubes from the terrain scene. 

Three different most popular semantic segmentation architectures were chosen 
for the experiments. They are Deeplab V3+ with ResNet18, SegNet and U-Net with 
three colour channels. The DCNN architectures were used with a depth of three 
(3 colour channels) in the input layer. The input images were resized to 640 x 640 pixels for the U-Net network while other networks were fed with 645 x 645 pixels resolution three-channel images. 

[bookmark: _Ref87718682][bookmark: _Toc87864301]Table 17. Sample images from the RGB image dataset and classification results.

		

		Image 1

		Image 2

		Image 3

		Image 4



		Input RGB

		[image: ]

		[image: ]

		[image: ]

		[image: ]



		Ground truth

		[image: ]

		[image: Map

Description automatically generated]

		[image: ]

		[image: ]



		Deep lab V3+ Resnet18

		[image: ]

		[image: ]

		[image: ]

		[image: ]



		SegNet

		[image: A body of water with trees in the background

Description automatically generated with medium confidence]

		[image: A picture containing grass, nature, plant, surrounded

Description automatically generated]

		[image: A picture containing plant, ocean floor

Description automatically generated]

		[image: A picture containing grass, outdoor, field, plant

Description automatically generated]



		U-Net

		[image: ]

		[image: ]

		[image: ]

		[image: ]







The validation accuracy for the dataset yielded 80,7 % using the ResNet18 model, while other models gave much worse results. Table 18 summarizes the classification accuracy for each model, while Table 17 shows a part of the dataset classification results.









[bookmark: _Ref81177365][bookmark: _Toc87864302]Table 18. Segmentation accuracy for higher resolution RGB images.

		Model

		Mean IoU

		Mean F1 score

		Mean accuracy

		Global accuracy



		Deep lab V3+ Resnet18 

		0,5112

		0,4832

		0,6985

		0,8068



		Segnet

		0,1340

		0,2196

		0,2010

		0,4412



		U-Net

		0,0999

		0,1756

		0,0891

		0,2501 







With the above results, it is evident that the Deeplab v3+ ResNet18 model has higher accuracy compared to the other CNN architectures.

[bookmark: _Toc87864544]Terrain segmentation with RGB images generated using HSI datacubes and manual labels

In this section, terrain semantic segmentation based on the RGB image dataset generated using HSI datacubes will be discussed. As explained in the previous chapter, RGB image semantic segmentation DCNNs are faster than multi-band spectral image classification. Therefore, RGB based segmentation along with HSI segmentation can achieve better efficiency in developing such classification pipelines.

Training RGB image dataset was generated using the manifold alignment method, which uses spectral images and high-resolution RGB images captured from the same location. The number of bands used in this research is nine spectral bands. As mentioned in the preceding chapter, the nine bands provide the highest correlation to the RGB images. Manually annotated labels were used for training. 

[bookmark: _Ref81072710][bookmark: _Toc87864303]Table 19. Segmentation accuracy matrices.

		Model

		Mean IoU

		Mean F1 score

		Mean Accuracy

		Global accuracy



		Deeplab V3+ resnet18 

		0,3313

		0,4013

		0,4488

		0,7057



		Segnet

		0,2812

		0,2156

		0,1869

		0,4448



		U-Net

		0,2784

		0,2179

		0,1875

		0,4784







 Table 20 shows the input image set and the classification results. Overall validation accuracy for the RGB image dataset generated using HSI achieved 70.6 % with the Deeplab v3+ with ResNet18 model. Table 19 shows the accuracy of the segmentation.

The segmentation accuracy is considerably low for the SegNet and U-Net models. However, the overall pixel accuracy of this classification is slightly higher than the RGB image classification in the previous section for the SegNet model. Moreover, U-Net gives better overall pixel accuracy. Due to class imbalance in the terrain dataset is so significant that the overall pixel accuracy matrix does not paint a correct picture of the classification performance. The above sample images prove that the mean IoU gives a better overview of the segmentation accuracy.







[bookmark: _Ref81177409][bookmark: _Toc87864304]Table 20. Sample images from the dataset and results.

		

		Image 1

		Image 2

		Image 3

		Image 4



		Input RGB

		[image: A picture containing grass, outdoor, highway

Description automatically generated]

		[image: ]

		[image: ]

		[image: A picture containing grass, outdoor, field, nature

Description automatically generated]



		Ground truth

		[image: A picture containing map

Description automatically generated]

		[image: Map

Description automatically generated]

		[image: ]

		[image: Background pattern

Description automatically generated with low confidence]



		Deeplab V3+ ResNet 18

		[image: ]

		[image: ]

		[image: ]

		[image: ]



		SegNet

		[image: A picture containing nature, plant, field

Description automatically generated]

		[image: A picture containing plant, field

Description automatically generated]

		[image: Chart

Description automatically generated]

		[image: Background pattern

Description automatically generated]



		U-Net

		[image: Chart

Description automatically generated]

		[image: Map

Description automatically generated with medium confidence]

		[image: Map

Description automatically generated]

		[image: Chart

Description automatically generated]





[bookmark: _Toc87864545]Terrain semantic segmentation based on the RGB images generated from the HSI visualization and pixel-wise classification 

The pixel-wise HSI image classification is the key component of this experimentation to evaluate its effectiveness as an image annotation tool to reduce the effort for labelling. A single image of 512x512pixels annotation takes more than an hour as an average for dataset preparation, making it laborious work.

Similar to the image classification in chapter three, the SS_CNN method is employed to classify the image pixels. The training data was captured from each hyperspectral image in the same fashion as explained in chapter three. Compared to RGB image semantic segmentation, the pixel-wise classification displays significant details in the output. According to Figure 24, the input RGB image is a complex terrain scene containing a water stream with muddy surroundings and floating algae on the water surface. 
The pixel-wise classification captured the classes in the image with higher contrast than RGB semantic segmentation. 



		[image: ]

		[image: ]

		[image: ]

		[image: Map

Description automatically generated with medium confidence]



		 RGB image

		 Ground truth

		 RGB image segmentation

		 HSI pixel-wise classification





[bookmark: _Ref87860925][bookmark: _Toc87864284]Figure 24. Pixel-wise classification and RGB semantic segmentation comparison.

However, the pixel-wise classification resulted in misclassifications as well. By applying careful manual corrections, the classification can be further refined to be used as an input for CNN training. As mentioned before, it is expected to reduce the human effort for dataset preparation by minimising labelling. The pixel-wise classification takes an average of 9.2 minutes to classify a 512x512px HSI datacube using the aforementioned SS_CNN method. And it is needed to denote the training pixel patches in the image, which takes approximately three minutes. After pixel-wise classification, it takes approximately six minutes for manual corrections. The proposed HSI-based method can complete image annotation in less than 20 minutes, which is 60% time saving for image annotation.

To validate the hypothesis, semantic segmentation CNN training and testing was performed in two ways. One of them by taking the pixel-wise classification result as image labels without refining them further. The second experiment was by using the manually refined pixel-wise classification result for CNN training. The RGB images were obtained from the manifold alignment method by using the HSI datacubes. The number of spectral bands for the manifold alignment method was nine, and the optimum bands were selected using the min-max pooling technique.

Even though RGB image generation was achieved with nine bands, the pixel-wise classification used 25 band HSI images. The same band selection method was used to create 25 band images, and it was observed that increasing the number of bands increased the pixel-wise classification accuracy.

Deeplab V3+ network with Resnet18 backbone used for semantic segmentation evaluation. The third row of Table 21 shows the pixel-wise classification results. The fourth row of the same table shows the semantic segmentation results when the pixel-wise classification is used as labels for CNN training. Because the pixel-wise classification result was used as training labels without further refinement for the semantic segmentation CNN, the overall segmentation output has been affected similarly. The last row of the same table shows the semantic segmentation outcome when it uses refined pixel-wise classifications. It is evident that from Table 22, the manual touch-up for pixel-wise classification could greatly enhance the semantic segmentation results. With this dataset, it was a 6% improvement over un-refined pixel-wise classifications.

As mentioned previously, this result was obtained from a small dataset. By increasing the number of images in the dataset, the result could be further improved.







[bookmark: _Ref87862443][bookmark: _Toc87864305]Table 21. Sample images from the dataset and results.

		

		Image 1

		Image 2

		Image 3

		Image 4



		Input RGB

		[image: A picture containing grass, outdoor, highway

Description automatically generated]

		[image: A picture containing grass, outdoor

Description automatically generated]

		[image: A picture containing tree, outdoor, plant, forest

Description automatically generated]

		[image: A picture containing grass, outdoor, field, nature

Description automatically generated]



		Ground truth

		[image: A picture containing map

Description automatically generated]

		[image: Map

Description automatically generated]

		[image: Map

Description automatically generated]

		[image: Background pattern

Description automatically generated with low confidence]



		Spectral-spatial CNN pixel-wise classification

		[image: Map

Description automatically generated]

		[image: Map

Description automatically generated]

		[image: Map

Description automatically generated with medium confidence]

		[image: Map

Description automatically generated with medium confidence]



		Deeplab V3+ Resnet18 segmentation – Before touch-up

		[image: ]

		[image: ]

		[image: ]

		[image: ]



		Deeplab V3+ Resnet18 segmentation – After touch-up

		[image: ]

		[image: ]

		[image: ]

		[image: ]







[bookmark: _Ref87862849][bookmark: _Toc87864306]Table 22. The classification performance of HSI generated images and annotations.

		Model

		Mean IoU

		Mean F1 score

		Mean Accuracy

		Global accuracy



		Without touch-up 

		0,2733

		0,2968

		0,4363

		0,6206



		After touch-up

		0.3301

		0,3073

		0,4733

		0,6688





[bookmark: _Toc87864546]Spectral-spatial image classification

In contrast to the spatial images for semantic segmentation, the spectral images contain more information, classifying the images with higher accuracy than the RGB input images. Since spectral-spatial combination can extract the spectral signature, object shapes, colours, etc., the classification could yield higher accuracy. Therefore, in this section, several spectral image datasets were used by selecting different numbers of spectral bands and used for DCNN semantic segmentation. The spectral band counts of the created datasets were 9, 16 and 25. The selection was according to the previously mentioned criteria, where the band count forms a square matrix. Such a square matrix can help construct a multi-spectral sensor with band-pass filters deposited in a mosaic pattern for future development. The band selection method was the min-max pooling method proposed by this thesis. 

[bookmark: _Toc87864547]Classification method

The U-Net architecture has been modified to accommodate the different spectral bands in the input layer, such as 9, 16 and 25. The chosen U-Net architecture has been developed for biomedical image classification with multi-layer images, appropriate for this task. 

In contrast to the RGB image datasets, spectral image datasets are not widespread and not widely available as open-sourced datasets. Therefore spectral dataset used in this study has been collected and annotated by the author. The hyperspectral datasets containing off-road terrain scenes were snapped in multiple locations of Estonia. 
The dataset was captured under sunlight. In some instances, the sunlight intensity was considerably high, which caused image saturation. The reason was the integration time limitation of the camera, which is limited to a minimum of 1 ms, thus reducing further the integration was not an option. A neutral density filter was used to solve the light intensity issue. The used ND filter was ND3 – 400 variable neutral density filter. Colour casting appeared on the image due to this filter use, which was not corrected as it is an additional pre-processing step. The objective of the classification is to use DCNN to reduce additional pre-processing steps.

[bookmark: _Toc87864548]Results of spectral-spatial classification

Here are the classification results for 4 test datacubes selected from the test dataset. 
The hyperparameters for the DCNN training were, learning rate 0,001, mini-batch size of 4 and the stochastic gradient descent method was used as the optimizer. Due to the large size of the images and limited memory capacity of the processing hardware, smaller 
mini-batch size was selected.

The spectral image classification results are presented in Table 23 and Table 24. Validation accuracy for the nine bands image dataset was 70,85 %, 16 bands dataset with 73,2 % and 25 bands dataset classification accuracy resulted in 67,35 %. 































[bookmark: _Ref87863891][bookmark: _Toc87864307]Table 23. Sample images from three different datasets of 9, 16 and 25 bands HSI images with classification results.

		

		Image 1

		Image 2

		Image 3

		Image 4



		Input Image in RGB

		[image: A dirt road with trees on either side of it

Description automatically generated with low confidence]

		[image: A dirt road with trees on either side of it

Description automatically generated with low confidence]

		[image: A dirt road with trees on either side of it

Description automatically generated with low confidence]

		[image: A dirt road with trees on either side of it

Description automatically generated with low confidence]



		Ground truth

		[image: Map

Description automatically generated]

		[image: Map

Description automatically generated]

		[image: Chart

Description automatically generated]

		[image: Map

Description automatically generated]



		HSI 9 Bands

		[image: ]

		[image: Map

Description automatically generated]

		[image: Chart

Description automatically generated]

		[image: Map

Description automatically generated]



		HSI 16 bands

		[image: Map

Description automatically generated]

		[image: Chart

Description automatically generated]

		[image: Chart

Description automatically generated]

		[image: Map

Description automatically generated]



		HSI 25 bands

		[image: A picture containing plant

Description automatically generated]

		[image: ]

		[image: ]

		[image: A body of water with trees in the background

Description automatically generated with low confidence]







With U-Net architecture, the pixel classification accuracy is lower for the spectral images than the RGB images semantic segmentation using Deeplab v3+ ResNet18. 
The highest classification accuracy for the spectral dataset was 70,00 % for the nine bands dataset, while Deeplab v3+ Resnet18 for RGB images achieved 80,6 %. However, the mean IoU is higher for HSI images of 25 band DCNN, which achieved 62,6 % accuracy, and this is approximately 6 % higher than the next highest performing HSI DCNN model. 

[bookmark: _Ref87863904][bookmark: _Toc87864308]Table 24. Semantic segmentation accuracy for different numbers of image bands.

		No of Bands

		Mean IoU

		Mean F1 score

		Mean accuracy

		Global accuracy



		9

		0,5613

		0,4650

		0,3739

		0,7085



		16

		0,3065

		0,4532

		0,3911

		0,7315



		25

		0,6226

		0,4981

		0,3875

		0,7574







Hyperspectral imaging is highly vulnerable to environment light variations. In off-road conditions, the sunlight variation due to weather and the time of the day can result in poor image quality.

[bookmark: _Toc87864549]Chapter summary

In this chapter, various methods for HSI classification have been explored along 
with RGB segmentation. Comparing RGB segmentation using Deeplab V3+ ResNet18 
to spectral-spatial classification with U-Net architecture demonstrates that HSI classification is 5 % higher accurate than RGB in terms of mean IoU. One of the challenges in DCNNs is gradient vanishing with deeper layers. 

The segmentation experiments based on RGB images generated from HSI datacubes show that the classification accuracy is approximately 17 % inferior to the RGB counterpart. 

However, RGB semantic segmentation still shows better pixel accuracy than HSI based methods. The demonstrated classification results were achieved using a few hundred training pixels from a few HSI data cubes. The HSI pixel classification takes very little time compared to the manual pixel-wise annotation of an RGB image. Thus the use of HSI pixel-wise classification results as labelled data shows significant improvement in dataset preparation. Some classes mixed up with others, such as grass detected on the top edges of the tree line and wet-fallen leaves mixed up with dry grass, which degraded the classification of those terrain classes. These artefacts can be removed by post-processing. However, for more complex terrains, the classification method needs to be improved in future. The obtained HSI classification result can be used as pixel-wise annotated label images for neural networks. The training images for the neural network can be obtained from HSI data cube as false-RGB images. Overall image classification results are summarised in Table 25. In conclusion, with the help of hyperspectral imaging, pixel-wise classification can be used to reduce the manual labelling process.

[bookmark: _Ref87714620][bookmark: _Toc87864309]Table 25. Overall classification results comparison.

		Dataset

		Mean IoU

		Mean F1 score

		Mean accuracy

		Global accuracy



		RGB images + manual labels

		0,5112

		0,4832

		0,6985

		0,8068



		Generated images + manual labels

		0,3313

		0,4013

		0,4488

		0,7057



		Generated images + pixelwise classification

		Without touch-up 

		0,2733

		0,2968

		0,4363

		0,6206



		

		After touch up

		0.3301

		0,3073

		0,4733

		0,6688



		HSI

		HSI 9 bands

		0,5613

		0,4650

		0,3739

		0,7085



		

		HSI 16 bands

		0,3065

		0,4532

		0,3911

		0,7315



		

		HSI 25 bands

		0,6226

		0,4981

		0,3875

		0,7574















[bookmark: _Toc87864550]Conclusion

The overall objective of this work was to investigate the capabilities of hyperspectral imaging methods to enhance the performance of perception systems used in autonomous ground vehicles. The emphasis was on unstructured terrain scenarios, which is a highly active research area in mechatronics. The same methods could apply to any unknown terrain perception scenario as well. All the proposed methods were validated using hyperspectral data acquired in unstructured terrain environments in Estonia.

One of the main aims of the work was to develop a band selection method for unstructured terrain classification applications for autonomous vehicle perception. 
The min-max pooling band selection was introduced in Chapter three to select the most effective spectral bands from hyperspectral datacubes. This method takes significantly less time compared to information density-based methods. According to the experiment results, the proposed methods showed 8% better classification accuracy over comparable band selection methods. The proposed method is mathematically simpler to implement on low power computing hardware used in autonomous vehicles. 

Another objective was to use the hyperspectral dataset to prepare image training datasets for RGB image semantic segmentation to minimize manual labelling. Manual semantic labelling of a single 512 x  512 px terrain image takes approximately 2 hours. The HSI classification was able to produce the classification result in a minute. HSI classification result with further post-processing, the image annotation was significantly reduced. Chapter 4 discusses the manifold alignment-based method for RGB image generation from HSI.  These RGB images, generated from HSI datacubes, were used for DCNN training as a dataset. This HSI generated RGB image dataset resulted in approximately 17% less accurate than high resolution original RGB images. It was an expected result because the conversion process from HSI to RGB brings the loss of information and the addition of noise. However, increasing the pixel pairs from both HSI datacube and high-resolution RGB images taken from the same location could enhance the generated RGB image quality by reducing the noise and other artefacts.

The pixel-wise HSI classification has been presented in Chapter 5. HSI pixel-wise classification using spectral data is compared with RGB semantic segmentation. The results show that the HSI pixel-wise classification is more accurate in certain terrain classes than the RGB image semantic segmentation. 

The unstructured terrain semantic segmentation is a much more complex task than that of structured terrains. Since one of the objectives was to demonstrate hyperspectral image segmentation accuracy for terrain classification in terms of spectral and spatial classification, several image datasets containing a different number of image bands were used to train classification DCNNs.  The result from those classifications was compared against RGB image segmentation. The IoU performance matrix showed that the hyperspectral images yielded 11% better classification accuracy over RGB images. In this case, hypercubes with 25 bands yield the highest classification accuracy compared with 9 and 16 bands using the same DCNN model. The model was based on UNet architecture which is an encode-decoder model with skip connections.

Here is a summary of the results of this research.

· A simple band selection method developed and demonstrated the effectiveness in the classification of terrain HSI datacubes. 

· Pixel-wise classification achieved high accuracy for the tested datasets.

· Use of classification as labels improved image annotation time. (Manual annotation 1 hrs per image, HSI classification takes ~9 min + corrections)

· RGB image generation based on the manifold alignment method resulted in a higher correlation to the RGB images taken from the same location. 

· HSI spectral-spatial classification can achieve higher classification accuracy over RGB semantic segmentation for unstructured environments 

· Unstructured terrain hyperspectral dataset can be used for further research.



This thesis work demonstrated the benefits of hyperspectral imaging methods to improve autonomous vehicle perception systems.

[bookmark: _Toc87864551]Future works

In this study, one of the outcomes was band selection for hyperspectral imagery in 
off-road terrain conditions. A push broom mobile hyperspectral camera was used for the experiments that used the line scan method for image acquisition. However, manufacturers can fabricate a custom hyperspectral imaging sensor based on specific wavelength filters with fewer bands. Therefore, one of the future directions could be a fabrication of a multi-spectral imaging sensor for AGV perception that can use the area scan method to acquire images. The proposed band selection method could be used to select a suitable number of spectral bands. Such a custom snapshot hyperspectral imaging sensor could provide all the necessary spectral information to classify off-road terrain scenarios. In this case, it is necessary to consider that geographic location influences the terrain classes in those regions, affecting classification.

Developing dedicated convolutional neural network models for efficient and accurate terrain spectral image classification is another research direction. Such improvements could bring spectral imaging into real-life UGV applications. 

The results presented in this thesis work shows that the hyperspectral imaging-based classification performs better than the RGB imaging methods. Currently, some companies are working on developing video-rate hyperspectral cameras. With such a development, there is a possibility to use video-rate hyperspectral imaging in real-time scene segmentation and object detection for unmanned ground vehicle applications.

For short-range depth perception, stereo vision RGB is used as an additional visual input in some applications. Similarly, stereo hyperspectral imaging can enhance 
short-range depth perception better than stereo RGB imaging. 
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Smart Terrain Perception Using Hyperspectral Imaging

Hyperspectral imaging gives a huge advantage over RGB images in terms of information abundance. This technology has yielded higher success in various application domains of machine vision. However, its uses in autonomous vehicle perception are rather unexplored. This thesis investigates various possibilities of HSI offering for perception improvement in autonomous vehicles. The emphasis was on unstructured terrain conditions where there has been limited research conducted. 

Even though hyperspectral images contain a large amount of data, it has both advantages and drawbacks too. The computing power needed to process those images are enormous as one image could contain hundreds of image bands. Various feature selection and feature extraction methods have been developed to reduce the computing burden while maximising the classification outcome. However, in most cases, they have been developed for certain applications. In this thesis, the prime focus is on unstructured or off-road terrain segmentation, a simplified band selection method is proposed. 
The accuracy of the band selection method has been compared with other comparable bands selection methods, where it showed approximately 3% better classification accuracy with experimental results.

Semantic segmentation models need images with labels to train them. When multiple imaging technologies are involved with different resolutions, they need to prepare multiple image datasets. Such a demand for too many datasets increases the effort needed to prepare the datasets. In the case of HSI and RGB, if it is possible to share the same image labels with RGB and HSI, it could help to reduce the labelling effort needed. Since the RGB images contain lesser data compared to HSI datacubes, the RGB images processing is faster. The cost-effectiveness of RGB imaging for scene understanding makes it an essential part of the perception system. Therefore, HSI could only enhance the perception system with its capabilities rather than replacing RGB imaging. The RGB images generated from HSI datacubes were used for the semantic segmentation experiments to evaluate the possibilities to share some part of the dataset with HSI. 

As previously mentioned, the RGB image generation method from HSI was introduced. Three different approaches were investigated to find the optimal correlation between the RGB images generated from HSI and original RGB images captured from RGB imaging cameras. The methods are bilateral filtering, selecting three image bands from each red, green and blue region of visible light wavelength range and manifold alignment method. The manifold alignment proved to be the optimal method for the RGB image generation from HSI datacubes. The highest correlation to the original RGB images was achieved with nine band HSI datacubes. With deep convolutional neural networks, semantic segmentation accuracy of the image dataset created from the RGB images generated from HSI was compared to the original RGB images captured using RGB cameras. 
The semantic segmentation accuracy of RGB images generated from HSI datacubes is slightly lower compared to original RGB images. 

Spectral images are typically classified using spectral data in pixel-wise. However, combining spectral-spatial features could achieve better classification accuracy compared to pixel-wise HSI classification and three-channel RGB classification. Therefore, the HSI dataset has been used for semantic segmentation with the 
spectral-spatial combination. The results showed that the segmentation is much higher with spectral-spatial combination, which stands at 11% higher than RGB semantic segmentation with state-of-the-art classification networks. The segmentation accuracy was evaluated with three different datasets prepared based on the number of spectral bands. They were 9, 16 and 25 bands. The 25-band dataset yielded the highest classification accuracy. Even though the nine-band HSI classification accuracy was lower than the 25-band dataset, still nine bands classification showed higher accuracy than RGB semantic segmentation.

All in all, the hyperspectral imaging method could enhance the perception system accuracy for autonomous vehicles running on unstructured terrains or off-road conditions. In terms of real-life implementation of a spectral imaging method for autonomous driving vehicles, it is possible to develop a multispectral imaging sensor with fewer spectral bands, which is most efficient for scene classification. Together with such an optimized spectral imaging camera, the images can capture in the area scan mode.  Developing DCNN models tailored for spectral imaging-based scene understanding, spectral imaging for perception can become a reality.



 




[bookmark: _Toc87864557]Lühikokkuvõte

Hüperspektraal-pilditehnika maastiku nutikaks tajumiseks

Hüperspektraalne pildistamine annab RGB-kujutistele tohutu eelise teabe rohkuse osas. See tehnoloogia on andnud suuremat edu erinevates masinanägemise rakendusvaldkondades. Siiski on selle kasutamine autonoomse tajumise puhul üsna uurimata. Selles väitekirjas uuritakse erinevaid võimalusi HSI pakub taju parandamiseks autonoomsete sõidukite. Rõhuasetus oli struktureerimata maastikutingimustel, kus uuringud on olnud piiratud. 

Kuigi hüperspektraalsed pildid sisaldavad suurt hulka andmeid, on sellel nii eelised kui ka puudused. Nende piltide töötlemiseks vajalik andmetöötlusvõimsus on tohutu, sest üks pilt võib sisaldada sadu pildiribasid. Andmetöötluskoormuse vähendamiseks on välja töötatud erinevad funktsioonide valimise ja eraldamise meetodid, maksimeerides samal ajal klassifitseerimise tulemust. Enamikul juhtudel on need siiski välja töötatud teatavate rakenduste jaoks. Selles väitekirjas keskendutakse peamiselt struktureerimata või maastikulõigule, tehakse ettepanek kasutada lihtsustatud ribavaliku meetodit. Ribavaliku meetodi täpsust on võrreldud teiste võrreldavate ribade valikumeetoditega, kus see näitas ligikaudu 3 % paremat klassifitseerimistäpsust katsetulemustega.

Semantiline segmenteerimismudelid vajavad pilte siltidega, et neid treenida. Kui mitu pilditöötlustehnoloogiat on seotud erinevate resolutsioonidega, peavad nad ette valmistama mitu pildiandmestikku. Selline nõudlus liiga paljude andmekogumite järele suurendab andmekogumite ettevalmistamiseks vajalikke jõupingutusi. Kui HSI ja RGB puhul on võimalik jagada samu kujutismärke RGB ja HSI-ga, võib see aidata vähendada vajalikku märgistamiskoormust. Kuna RGB pildid sisaldavad vähem andmeid kui 
HSI-andmekuubikud, siis RGB piltide töötlemine on kiirem. RGB pildistamise kulutõhusus stseeni mõistmiseks muudab selle tajusüsteemi oluliseks osaks. Seetõttu võis HSI vaid parandada tajusüsteemi oma võimetega, selle asemel et asendada RGB pilditöötlust. HSI andmekuubikutest saadud RGB-pilte kasutati semantilistes segmenteerimiskatsetes, et hinnata võimalusi jagada osa andmekogumist HSI-ga. 

Nagu eespool mainitud, võeti kasutusele RGB pildi genereerimise meetod HSI-st. Uuriti kolme erinevat lähenemisviisi, et leida optimaalne korrelatsioon HSI-st saadud RGB piltide ja RGB-kaameratest pildistatud algsete RGB piltide vahel. Meetodid on kahepoolne filtreerimine, valides igast nähtava valguse lainepikkuse vahemikus olevast punasest, rohelisest ja sinisest piirkonnast kolm kujutisriba ja kollektori joondamise meetod. Kollektori joondamine osutus optimaalseks meetodiks RGB pildi genereerimiseks HSI-andmekuubikutest. Suurim korrelatsioon algsete RGB piltidega saavutati üheksa sagedusala HSI andmekuubiga. Sügavate konvolutsiooniliste närvivõrkude puhul võrreldi HSI loodud RGB piltide semantilist segmenteerimistäpsust RGB kaamerate abil salvestatud algsete RGB piltidega. HSI andmekuubikutest genereeritud RGB-kujutiste semantiline segmenteerimistäpsus on võrreldes algsete RGB piltidega veidi väiksem. 

Spektraalsed kujutised klassifitseeritakse tavaliselt spektraalandmete abil piksli järgi. Spektraalsete ja ruumiliste omaduste kombineerimine võib aga saavutada parema klassifitseerimistäpsuse võrreldes pikslite HSI klassifikatsiooniga ja kolmekanalilise RGB klassifikatsiooniga. Seetõttu on HSI andmekogumit kasutatud semantiliseks segmenteerimiseks spektraal-ruumilise kombinatsiooniga. Tulemused näitasid, et segmenteerimine on palju suurem spektraal-ruumilise kombinatsiooni puhul, mis on 11 % suurem kui RGB semantiline segmenteerimine tipptasemel klassifikatsioonivõrkudega. Segmenteerimistäpsust hinnati kolme erineva andmekogumiga, mis koostati spektriribade arvu põhjal. Nad olid 9, 16 ja 25 bändi. 25-ribaline andmestik andis kõrgeima klassifitseerimistäpsuse. Kuigi üheksaribaline HSI klassifikatsiooni täpsus oli väiksem kui 25-ribaline andmestik, näitas üheksa sagedusala klassifikatsioon siiski suuremat täpsust kui RGB semantiline segmenteerimine.

Kokkuvõttes võib hüperspektraalne pildistamise meetod suurendada autonoomsete sõidukite tajusüsteemi täpsust, mis töötab struktureerimata maastikul või maastikul. Autonoomsete sõidukite spektraalse pildistamise meetodi tegeliku rakendamise seisukohast on võimalik välja töötada vähem spektriribadega multispektraalne pildiandur, mis on stseeni liigitamiseks kõige tõhusam. Koos sellise optimeeritud spektraalkaameraga võivad pildid jäädvustada ala skaneerimisrežiimis.  DCNN-mudelite väljatöötamine, mis on kohandatud spektraalse pildistamise alusel stseeni mõistmiseks, võib muutuda reaalsuseks.
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