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Abstract

 The complexity of system also has increased and the clue of attacking simultaneously 

increased. Malware is rapidly spreading in the Internet and attacking the system which 

has sensitive data. Although anti-virus software detects and prevents malware from 

exploiting the target's system, there are some of malwares that may pass though the 

detection. Because the main force of anti-virus software to detect them is based on the 

signature method. Only with this signature based method, anti-virus software is thought 

as it is impossible to detect malware for sure. Today the heuristic method that detects 

malware by monitoring its own behavior is being developing and implemented on 

realistic product.

 In this thesis, I studied about classification of goodwares and malwares by using 

machine learning. I focused on statical and dynamical analysis by extracting the 

characteristic quantities. I applied perceptron and AROW algorithm for calculating the 

similarity in the learning machine. Characteristics quantities that I extracted on our 

experiments were rank of appearance frequency for operation code, instruction code 

combined with N-gram, list of API stored in IAT and API call sequences obtained from 

Cuckoo Sandbox. In taking API call sequence as characteristic quantities with 2-gram of 

word unit, I could confirm that machine learning perform classification with the high 

accuracy rate.
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1 Introduction

 The malware's target had been personal and a large indefinite number of people before 

Internet was popular. However some specific person and company is recently targeted by 

the hacker. The purpose for generating malware has been shifted to the monetary one. 

According to the quarterly report of PandaLab in 2009, 71.32% among the new kinds of 

malware was Trojan [1]. These malwares are specialized in remote control. The way to 

send malware to the target is of via email combined with social engineering [2]. Even if 

the company train the employee for security issues, it may happen that they may be 

tricked the email contents. Finally they would open a file attached in email or click the 

URL putting on it. Once malware is executed, malware hide in a system process by 

process injection and silently work around. Some malware which is called rootkit 

disables anti-virus detection [3]. To intrude the target's system for certain, hacker 

implements 0-day exploits into malware. In this way, the more malware's detection is 

delay, the scale of damage would expand over the network.

 In this thesis, I classified applications of PE format by machine learning which 

implemented the perceptron [5] and AROW [25] as algorithms. I focused on 

characteristic quantities included in operation codes, instructions, API lists in import 

address table. The number of learning dataset for goodware is 500 and for malware is 

500. The number of testing dataset is 300 for goodware, 300 for malware. Analysis 

objects are limited to Win32 executable files which are PE format. I excluded the packed 
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executable files in experiments of statical analysis. Because this packed ones hide the 

original code which might contain malicious code by compressing it. If I included them, 

it would indicate that we classify whether the packed-ware or not.

 In the first experiment with statical approach, I ranked appearance frequency for 

operation codes as characteristic quantities. Then I provided them to the learning machine

which calculated similarity and classified them. In conclusion, the machine could classify

them with around 0.7 of accuracy rate.

 In the second experiment with statical approach, I provided the instruction code which is 

evaluated by 2-gram and 3-gram extracting characteristic quantities to the learning 

machine. In conclusion, the machine could classify them with around 0.8 of accuracy 

rate.

 In the third experiment with statical approach, I provided lists of API stored in IAT with 

the learning machine. In conclusion, the machine could classify them with around 0.83 of

accuracy rate.

 In last experiment with dynamical approach, I took the API call sequences which was 

obtained from Cuckoo Sandbox [41]. As characteristic quantities, I took arguments for 

some specific API. In addition, I cut high and low appearance frequency that were 

commonly seen between goodware and malware. As a result, the accuracy rate was 

around 0.90 on average.
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2 Background

　There are some reasons that it has been difficult for signature based method to detect 

malwares. According to McAfee, One reason is that malwares are automatically 

generated by some tools. 100,000 of subspecies are generated day by day [4] all over the 

world and it is thought that it will be more difficult for signature based method to detect 

malwares in the future. Also McAfee reported that the rates of increasing new malware 

samples grows year by year [4]. To fight back against unknown malwares, heuristic 

engine that can detect them by analyzing the behavior based on some characteristics was 

developed and implemented on some realistic anti-virus products. And further research 

for heuristic engines are proceeding as ever. 

 I expected that malware's behavior might be characteristic compared with goodware's 

one. As the view of functions of malware, for example, malware download the extension 

module from Internet to add new functions to itself [6]. Some malwares often register 

themselves into startup of Windows registry. Not to be killed themselves easily from task 

manager and not to be discovered with process monitoring tools, they tend to hide into 

system process by process injection [7]. To prevent an analyst from peeking the logic, 

they detect debugger and kill themselves [8]. These activities are not normally seen in the

goodware. I thought that these special activities might make the potential bias among 

them. Therefore I expected that the similarity for the group of malware was seen even in 

the level of operation code, instruction, imported API and API call sequences. 
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 3 Approach

 We have mainly two approaches (statical approach and dynamical approach) to extract 

characteristic quantities for goodwares and malwares. In this paper, I took three statical 

approaches and one dynamical approach. The reason why I took place classifications by 

static analysis is because it does not need to run malware on the real or virtual machine 

and analysis would be done quickly. Also it is needed to use samples as much to calculate

more accurate rates. However I have some issues to disassemble some dataset. Because, 

in statical approach, it was not reasonable to use packed executable files. Malwares 

themselves are compressed by some packers and malware's behavior is almost invisible. I

considered that operation codes related for packing would cause the noises and be 

disturbed classifications. So I skipped files that were recognized as packed executable 

files by pefile module [9] which detects packed-ware with signature database [28] when 

the Jubatus client extracts characteristic quantities. In addition, this detection of packware

is not perfect way and it pass through packed-ware not contained in the database. 

However I did not skip packed file when I implemented on the classification by API call 

sequences which is categorized into the dynamical approach. Because unpacking process 

is executed by a packer in the virtual machine. That is the advantage for the dynamic 

analysis.

 I used the Jubatus framework as a classifier [10]. Because the usage of classifier is 

simple and I can concentrate to write the client code which provides the learning and 

testing data for it.
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3.1 Experiment procedure

 I show a flow chart of experiment step for statical approach in Figure 3-1. Firstly I 

prepare learning datasets for both classifying goodware and malware which are Win32 

executable files. So I did not include the pdf, doc, xls, jpg, avi and the other format style. 

Although some malwares were often seen that they were embedded in the pdf file which 

exploits Adobe Reader [11], I focused on the windows executable files.

 I scanned them with ClamAV [12] and checked not to immix datasets of malware with 

datasets of goodware. Next I gave learning dataset to the analyzer to extract characteristic

quantity. Analyzer extracts appearance frequency from disassemble code and ranks 

operation codes. So I treat with ranked data as characteristic quantity. When getting 

classifier to learn characteristic quantities, I evenly have to give them for classifier. After 

I gave all learning datasets of malwares for classifier, then I gave all learning datasets of 

goodware for the learning machine. After getting the machine to learn all datasets, the 

classifier could not classify the test datasets correctly at all. So I noticed that it was 

important to learn each data for classifier alternately such as learning goodware, malware,

goodware, malware and repeating. Finally I input test datasets to classifier which judge 

malware or not.

 I evaluated each rates of FP(False Positive), TN(True Negative), TP(True Positive), 

False Negative(False Negative) as results. These rates are represent from 0 to 1.0. I 

summarized each meaning in Table 3-1.

10



FP Judging goodware as malware

TN Judging goodware as goodware

TP Judging malware as malware

FN Judging malware as goodware

Table 3-1: four rates for evaluating classifications. These rates were calculated 

throughout all of the experiments.
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3.2 Machine learning

 I introduced perceptron algorithm as machine learning. Perceptron algorithm was 

published in 1957 by Frank Rosenblatt who was psychologist as well as computer 

scientist. He suggested that perceptron algorithm was the model of information 

processing with neural network (Figure 3-2). Multiplying corresponding weight with 

each inputs which are calculated as sums. Finally machine judges the results with binary 

value (Yes or No). Nowadays perceptron algorithm has been utilized as linear classifier in

a wide range of area although it had been thought as importance for brain science field in 

the past.

3.2.1 learning method

 I show learning algorithm in Equation 3-1 [13]. T are learning data and are distributed in 

2 dimensional coordinate. The learning step is following.

1. I decides hyperplane with properly. (To decide constant values a, b and c )
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Figure 3-2: a classification model of perceptron



2.  I get the machine to learn data with discriminant function f(x,y). From the result 

of it, the machine improves the hyperplane with gradient and intercepts by 

following the equation. This step means rotation and parallel movement for 

hyperplane on 2 dimensional plane.

3. Repeat step 2.

 

Equation 3-1: learning algorithm

Obeying learning step 1, as an example, I let a = 0, b =1, in initial stage, it becomes in 

Figure 3-3. Circle and triangle shape represents learning data. I label 1 or -1 for each 

group that we want to classify. For example, Let goodware to be 1, malware to be -1. One

of triangle data is not classified correctly as a first circumstance. When wrong data is 

input the discriminant function f(x,y), f(x,y) outputs negative value. Then gradient and 

intercept would be improved. Repeating this process, machine calculates the final 

optimum hyperplane.
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If T (k ) f ( x , y)>0 then do nothing
else T (k ) f ( x , y)≤0 update weight

f ( x , y)=ax+by+c
f :discriminant function

T : learning data , k : index for learning data



  

I draw the image of the final stage for classification with 2-dimensional coordinate in 

Figure 3-4. 
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Figure 3-3: initial stage for classification in perceptron 

algorithm

Figure 3-4: final stage in classification for perceptron 

algorithm



 This figure represents the final discriminant function which had been updated by 

perceptron algorithm. We can understand that the accurate hyperplane to classify the data 

is drawing. In this way, the thing that can be classified completely is called linear 

separable. However succeeding in classifying the data always does not happen. Because 

some noise are usually included in realistic cases. For example, we have to consider 

about the goodware's sample that behave as if it is malware. In perceptron algorithm, we 

ignore such a noise. This problem could be mitigated in Adaptive Regularization of 

Weight Vectors (AROW) [25]. This algorithm is of improvement for Confidence 

Weighted Linear Classification (CW) [24]. CW method could deliver higher performance

in case that the characteristic dimension number is big. But that tends to be weak for 

noise, while AROW method improved the weakness.

 Lastly I summarize the general expression in N-dimensional plane for perceptron 

algorithm in Equation 3-2.

Equation 3-2: perceptron algorithm in 

N-dimention
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y=wT x
if y>0 then do nothing

if y≤0doupdate weight vector
update withwnew=wold+μ x

y : classificationresults
w :weight vector
x : input vector

μ : learning constant



3.2.2 Creating learning data

 First of all, I disassembled executable files and took appearance frequency for operation 

codes. Operation codes which represent machine code as mnemonic are stored in 

executable file as PE format. Mnemonic for assembly code is replaced to machine code 

for readability. And it corresponds with machine code on 1-to-1 level. 

 As the first step of taking characteristic quantities, I looked for code section and 

disassembled with libdasm [14] when selecting files in jubatus client. I sorted them by 

ranking for each operation code. Operational code is basically extracted from .text section

(code section). To understand the structure of windows executable files, I show the PE 

header structure in Figure 3-5. 
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DOS MZ header is first area in the structure of the PE file. It is defined as 

IMAGE_DOS_HEADER [15] defined in winnt.h. The first member e_magic is 2 bytes. 

In the case of Windows executable files, character string “MZ” is set as a signature. Last 

member e_elfnew is offset to the PE header region stored as Little-endian. This offset 

means offset used for the file not used for the memory loaded . 

 In DOS stub region, it can work only on MS-DOS. Normally the code that may show the

message “This program cannot be run in DOS mode” is written in. 

 PE header is defined as IMAGE_NT_HEADERS [16] in winnt.h. It has 3 members, 

Signature, FileHeader, Optional_Header. Moreover Optional_Header has important 

members to calculate the address of some section. First we need to know 

AddressOfEntryPoint and ImageBase. AddressOfEntryPoint is the address to start the 

program as RVA (Relative Virtual Address) which indicates the relative offset when the 

program has loaded. ImageBase represents ideal starting address when the program has 

loaded. Normally address loaded in the memory for executable file is 0x00400000 and 

for DLL file is 0x10000000. However it always wont be loaded on the same address 

since memory relocation might be taken place. Therefore we can calculate address of the 

entry point by adding AddressOfEntryPoint with ImageBase (Equation 3-3). 

FILE_HEADER has NUMBEROFSECTIONS member which represents the number of 

sections.

Equation 3-3: getting staring address of section
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EntryPoint=AddressOfEntryPoint+ ImageBase



 Section table is defined as IMAGE_SECTION_HEADER [17] in winnt.h. There are 

Name, VirtualSize, VirtualAddress, SizeOfRawData, Characteristics as interesting 

member. We can know the code section from Name member. Basically code section is 

named as “.text”. When I disassembled the executable file, I found the string “.text” and 

took frequency for operation codes. VirtualSize represents RVA for the starting address 

when the program has loaded. SizeOfRawData represents section size on the disk. 

Actually We can calculate the end of section by adding VirtualAddress + 

SizeOfRawData. However insignificant codes are included at the end of code section as 

padding or something for some reasons. I thought this would affect taking the appearance

frequency. That's why I calculated with the end of section as VirtualAddress + 

VirtualSize.

 Packer compresses real code section and has the special section for unpacking. For 

example typical packer UPX (Ultimate Packer for executable) [18] creates UPX0 and 

UPX1 section during packing an application. I show the packer's unpacking image in 

Figure 3-6 [19].
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Figure 3-6: Unpacking process by a packer



 I explain how the unpacking step takes place. As the first step, packer jump to subroutine

for extracting. After extracting original code, packer sets the EIP register to OEP 

(Original Entry Point) pointing original code. Then the original code correctly is 

executed. In statical analysis, original codes are compressed and are invisible. However 

some of solutions is being suggested. 

 One of the way is to unpack them on the virtual machines by dumping memory image. 

The good point is that it does not depend on kinds of packer's algorithm. However some 

malware is able to detect that it is being running on virtual machine and will change 

behavior. So the countermeasure to pretend the realistic machine is recommended for 

additional treatment. 

 In particular, it is thought as effective way to detect the execution for protected page. 

When packer finished extracting original codes, packer would attempt to jump and 

execute the head of original code. If we use memory-breakpoint, it observes execution, 

read and write on the memory. OllyBoneE [20] changes page table entry to prohibit 

access from user mode. When reading and writing for page memory are taken place, page

fault exception is triggered on the page where breakpoint is set. After page fault 

exception, it judges whether accessing memory is for execution or for reading or for 

writing. If memory accessing is for execution, it calls exception handler for step 

execution (INT 1). When detecting execution for protected page, it dumps all memory 

image including original codes. This software that utilize the technique is famous for 

OllyBonE which works as OllyDbg [21] plugin. 

 In the case of applying it on Vmware, OllyBoneE is needed to modify and rebuild the 

source codes. Because the way to treat with TLB (Translation Lookaside Buffer) on is 

different from realistic machine. TLB exists for both read and write independently [22].
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3.2.3 Jubatus framework

 Jubatus framework provides learning machine which implements classification, 

regression, recommendation, graph mining, anomaly detection, clustering. In my thesis, 

although I focused on classification, it is also helpful to find malware having similar 

habitats by recommendation. 

 Perceptron algorithm is categorized into classifier. Jubutus framework supports another 

classification algorithm such as PA [23], CW [24], AROW [25], NHERD [26]. In the case

of choosing these algorithm, we can specify the sensitivity parameter for learning as 

constant value. After deciding on implementation, I give a type of algorithm for Jubatus 

server as configuration file which are written in JSON format. When starting Jubatus 

server, It must provide configuration file as mandatory argument. Then Jubatus server 

works and waits on TCP port 9199.

 The client application sends learning datasets to Jubatus server. At this moment, learning 

datasets must be set as associative array. Associative array consists of label and value. For

example, If label is “mov”, value is 1, associative array becomes {“mov”, 1}. In addition,

it needs to convert it to Datum data format [30]. Client application sends correct label and

Datum data as tuple to get the Jubatus server to learn. After completing to learn, the client

send the test dataset to the server and server start the classification.

 During classifying an application, it gives testing data in Datum format to server. Server 

answers as a label which is either goodware or malware and the corresponding score. 

Client treat with the label which has higher score than the other label's one as correct 

answer. Lastly comparing correct label with the label server answered, the client 

calculates rates of FP, TP, TN and FN.

20



4 Classification by ranking appearance frequencies

 I used 500 samples for learning and 300 for testing dataset in Table 4-1. I prepared 

sample malwares as datasets from VirusSignList [27]. I excluded packed executable files 

from goodware and malware. As a signature database file, I used Bob /Team PEiD 

Signature [28]. I prepared a set of goodwares by independent way such as copying from 

“Program Files” folder in Windows XP and collected some softwares from Internet  

randomly. 

Malware Goodware

Learning datasets 500 500

Testing datasets 300 300

Table 4-1: dataset used in classification

 I took only operation code for ranking appearance frequency. For example, if 

disassembled code is “xor eax, eax”, I pick up only “xor” and count as +1 for operation 

code xor. Operation code always does not appear in the head of the instruction. In the 

case that segment over ride prefix and data segment over ride prefix include in instruction

code, those prefix would appear in the head of instruction. So I skipped those code and 

searched operation code from the instruction and extracted as characteristic quantity.

4.1 Classification results by ranking appearance frequencies

 I show the results of FP, TP, TN and FN rates for classification by ranking appearance 

frequency of operation codes in Table 4-2. This rank represents the maximum rank 

number when ranking appearance frequency for each datasets. In the case of rank 10, I 

took the rank of operation code up to 10 as characteristic quantity. As looking at column 

of rank 37, both TN and TP rates were the highest number among all ranking. This 

indicates the machine could classify malware and goodware with approximately 74% of 

accuracy. In rank 30, difference between TP and TN rates were big. This classification 
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was unstable. Because the way to cut noises was wrong. I had to exclude the quantities 

that commonly highly seen in goodware and malware. As increasing ranking from 10 to 

20, TN and TP rates were equal a little by little. From rank 50 to 200, TN and TP rates 

gradually became bigger difference. From the results, as comparing bias for operation 

code between goodware and malware, it is thought that it is the most effective that we 

take rank 20 to 50. But it cannot be applied to realistic heuristic detection with this rate. 

In the security field, detection rates must always keep the high accuracy more than 90%. 

Because the risk of false negative is quite serious in security field. However I could see 

bias for some operation codes through this experiment and relevance between frequency 

of operation code and malware.

Rank FP rate TN rate TP rate FN rate

10 0.34 0.66 0.63 0.36

20 0.29 0.70 0.78 0.21

30 0.12 0.88 0.55 0.45

37 0.25 0.75 0.74 0.26

40 0.12 0.88 0.54 0.46

50 0.22 0.78 0.69 0.31

60 0.12 0.87 0.55 0.45

70 0.06 0.93 0.44 0.56

80 0.21 0.78 0.68 0.31

90 0.89 0.50 0.5 0.5

100 0.07 0.93 0.34 0.65

200 0.08 0.92 0.37 0.63

Table 4-2: rates categorized in rank by perceptron algorithm

 Next I changed the algorithm from perceptron to AROW under same condition of Table 

4-1. AROW takes an advantage against noises when learning the dataset. I show the 
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results for AROW in Table 4-3. As we look in the most effective rank, it is rank 41 at 0.73

and 0.70 for TN and TP respectively. Compared with perceptron algorithm, it was not 

seen big difference among methods. The more the rank increases, however, the difference

for TN and TP rate in perceptron algorithm was extremely bigger where the biggest 

difference for TN and TP rate was approximately 0.55. In contrast with that, the 

difference in AROW was more stable where the biggest difference for TN and TP rate 

was about 0.36. Therefore AROW method could provide the stable results than 

perceptron algorithm.

I took the average of ranking for learning data within top 50 and compared the average 

ranking for goodware and malware in Table 4-4. Note that I extracted only operation code

which had big difference. Average ranking was calculated for each goodware and 

malware respectively and took difference with them. If ranking of one operation code 

become same as another one, I recognized them as same rank. Negative values represents

that ranking of corresponding operation code is lower than goodware' rank, positive 

values are above than goodware's rank. 

 I analyzed that difference of these ranking affected classification. Malware used 

operation code treating with floating point than goodware. Especially fcmovne, fbstp and 

fsave operation codes had quite big difference and were often used by malware because 

difference value is negative value. Probally malware's code would tend to hold floating 

point operation. Otherwise the packeware not included in the signature database might 

have been used as normal executable files. 

 In addition, pcmpqtd, pmulhw and pandn also had showed big difference at rank 3, 7 and

25 respectively. The common point with them is operation for MMX which is SIMD 

extended operation. This difference affected greatly to classify malware and goodware.

 Nop code is comparatively often seen at rank 10. 

 In the view of heuristic detection, this accuracy 70 % does not achieve to a practical 

level overall. There are various kinds of malwares as realistic problem. For example, 
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malwares must be categorized into some groups such as trojan, warm, rootkit, backdoor 

(RAT), downloader, fishing, botnet, spyware and so on. This time the machine classified 

them in a comprehensive manner. So malware's bias as characteristic function was not 

revealed dominantly because of mixing up all kinds of malware. I analyzed that I should 

classify them after malwares were categorized by their function and characteristic.

 Although I detected packedwares to skip them with the method based on signature, some

of packed applications might be minor and pass the detection with signature. They might 

be included in the datasets. To solve the packer's problem, it needs to implement 

automated unpacking system.

Rank FP rate TN rate TP rate FN rate

10 0.31 0.69 0.7 0.3

20 0.21 0.79 0.64 0.36

30 0.38 0.62 0.76 0.24

40 0.30 0.69 0.79 0.20

41 0.27 0.73 0.70 0.29

50 0.45 0.54 0.83 0.17

60 0.49 0.51 0.82 0.18

70 0.5 0.5 0.86 0.14

80 0.50 0.49 0.83 0.16

90 0.53 0.47 0.82 0.18

100 0.49 0.51 0.78 0.22

200 0.46 0.54 0.76 0.24

Table 4-3: rates categorized by rank by AROW algorithm
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Operation code Malware's ranking Goodware's ranking

pcmpqtd 3 98

adc 7 39

pandn 7 114

popa 10 44

nop 10 41

movaps 12 50

xchg 13 53

fbstp 15 74

fist 15 51

into 15 70

insb 16 53

pushf 18 60

insv 18 51

scasd 19 74

bswap 19 63

pusha 20 61

jno 24 63

loop 24 64

lock 24 73

fcmovne 24 107

fsave 25 98

pmuhw 25 94

Table 4-4: Average ranking for goodware and malware.
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5 Classification by using N-gram

 N-gram is a kind of the way to take characteristics quantity from text. N-gram model is 

the language model that counts the combination of N length character string in some text 

message. Claude Elwood Shannon who was known as the father of information theory 

invented as the language model of N-gram. There are mainly 1-gram, 2-gram and 3-gram 

which depend on taking minimum unit of character. As problem to attribute to take N, if 

we make N bigger, it would tend to lower accuracy and the combination of co-occurrence

rise exponentially. In the case of 1-gram, it creates an index which is based on 1 

character. In the case of bi-gram, it creates index for sequence of 2 characters. N-gram is 

practically implemented in Google search engine to find some word since when the word 

had been used and how much of the appearance frequency on each year [29]. 

 I explain how the N-gram works with following example sentences.

Example sentence1:  This is an apple.

Example sentence2: That is an apple

Now we consider how the sentence is separated when I apply the 2-gram to this sentence.

I separate them on each 2 characters for each sentence. And I assign the sentence ID for 

separated characters. I show the 2-gram table for both sentence1 and 2 in Table 5-1  

respectively. Next I combined the sentence1 applied 2-gram with of sentence 2 in Table 

5-2. In the table, under score (_) represents space. Now we think of an example sentence 

“An apple is eaten by that boy” to classify it. First of all, We divide the string apple into 

“ap”, “pp”, “pl” and “le”. As we refer to Table 5-2, these strings have ID 1 and 2. 

Secondly we search “that”. As same way, “that” is taken part in “th”, “ha” and “at”. As 

narrowing a search from the Table 5-2, we can find that sentence 2 is possibly candidate. 

In this way, N-gram would be useful to calculate the degree of similarity of the text 

message. I would apply N-gram to classify goodwares and malwares by a machine 

learning. 
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Sentence1 Sentence 2

2-gram Sentence ID 2-gram Sentence ID

th 1 th 2

hi 1 ha 2

is 1 at 2

s_ 1 t_ 2

_i 1 _i 2

is 1 is 2

s_ 1 s_ 2

_a 1 _a 2

an 1 an 2

n_ 1 n_ 2

_a 1 _a 2

ap 1 ap 2

pp 1 pp 2

pl 1 pl 2

le 1 le 2

Table 5-1: a piece of characters applied 2-gram for sentence 1 and 2
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2-gram Sentence ID

th 1,2

hi 1

is 1,2

s_ 1,2

_i 1,2

is 1,2

s_ 1,2

_a 1,2

an 1,2

n_ 1,2

_a 1,2

ap 1,2

pp 1,2

pl 1,2

le 1,2

ha 2

at 2

t_ 2

Table 5-2: Two sentences applied 2-gram are merged

5.1 Applying N-gram 

 Although it is effective to classify the similarity of some documents, I considered it was 

not good to apply N-gram with character unit in the disassembled code. Moreover there 

are some similar operation code for example mov, movs and movsx. So I would suggest 

N-gram with word unit. For example, assemble code “push dword [ebp+0x18]”. I divide 

them into 2-gram of word unit. Then it becomes “push dword”, “dword [ebp+0x18]” and 

“[ebp+0x18]”. In this way, similar operation codes such as “mozx”, “movl”, “movsx” are
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treated as independent operation code. I expect that N-gram with word unit could classify

malware better than character unit. Because characteristics of assembly structure might 

be more emphasized if we consider as word unit. I used the plug-in of word unit for 

N-gram from github of Jubatus [31].

5.2 Classification by N-gram

As same as the experiment by ranking, I prepared 500 samples for learning dataset, 300 

for testing dataset (Table 5-3).

Malware Goodware

Learning datasets 500 500

Testing datasets 300 300

Table 5-3: dataset used in classification

This time I implemented experiment with perceptron and AROW algorithm combined 

with 2-gram and 3-gram for character unit and word unit. AROW has sensitivity 

parameter for learning data. This time I set sensitivity parameter as constant value 1. In 

addition, I changed the way to treat with weight for characteristic quantity on Jubatus 

configuration of the server. Jubatus's configuration is JSON formatting. There are two 

kinds of weight configuration [30], sample_weight and global_weight. Sample_weight is 

related to pair of key and value uniquely. Global_weight is calculated from current 

results. About “bin” as one of an option, weight is always constant value 1 and I set 

sample_weight and global_weight as string “bin”. 
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5.3 Classification results by N-gram

I show the classification results by 2-gram and 3-gram in Table 5-4. In N-gram column, 

2(word) represents that 2-gram implemented by word unit. Otherwise it is N-gram with 

character unit.

Method N-gram FP rate TN rate TP rate FN rate

perceptron 2 0.7 0.3 0.96 0.03

perceptron 3 0.87 0.12 0.98 0.01

perceptron 2(word) 0.19 0.8 0.86 0.14

perceptron 3(word) 0.15 0.85 0.81 0.18

AROW 2 0.77 0.22 0.97 0.02

AROW 3 0.31 0.69 0.85 0.15

AROW 2(word) 0.23 0.76 0.89 0.11

AROW 3(word) 0.25 0.74 0.91 0.09

Table 5-4: N-gram classification results for perceptron and AROW algorithm

From the result, we can see that the perceptron with both 2 and 3 grams recorded high 

accuracy rate for TN and TP at (0.8, 0.86) and (0.85, 0.81) respectively. In contrast with 

2-gram and 3-gram with character unit both for perceptron and AROW algorithms, the 

gap of TN and TP was large. This indicates the classification by N-gram with character 

unit did not work well. Therefore n-gram for word unit is said to be effective for 

classification based on disassemble code. AROW with 2 and 3 word gram showed the 

lower accuracy than perceptron for TN and TP rates.
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6 Classification by using Import Address Table

 Import Address Table (IAT) is stored to call API which exists in DLL in PE format file. 

For example, MessageBox function is registered in User32.dll. Windows application call 

it by importing API into IAT. Win32 API is involved in a wide range of function, 

controlling process, hardware device, file system, creating process, drawing the picture, 

synchronizing thread and so on.

As seen the behavior on malware, API to register malicious executable files to startup is 

also imported in IAT when loading application. It is not always malware import API 

which is related to registry. In addition, some goodwares also import such kind of API. 

However what malware would like to achieve must be different from goodware's one. So 

I expected that the bias could be seen when comparing imported API with goodware. I 

treated with list of API as characteristic quantity to classify them with.

6.1 IAT

 To obtain the list of IAT, we need to access IAT which is stored in PE format file. I show 

the IAT structure in Figure 6-1 [32]. 

 First of all, start point to access IAT is to examine at DataDirectory[1] which is member 

of Optional Header in PE header. DataDirectory[0] is for export table. DataDirectory[1] 

is for import table, pointing to structure IMAGE_IMPORT_DESCRIPTOR in import 

table. In IMAGE_IMPORT_DESCRIPTOR, member OriginalFirstThunk is a pointer to 

IMAGE_THUNK_DATA in import-lookup-table and FirstThunk is a pointer to 

IMAGE_THUNK_DATA in IAT. The member Name represents the name of DLL. So 

IMAGE_IMPORT_DESCRIPTOR exists for each imported DLL. If we import the API 

of LoadLibraryA and MessageBox, the number of IMAGE_IMPORT_DESCRIPTOR 

would be 2, each member Name in IMAGE_IMPORT_DESCRIPTOR are Kernel32.dll 

and User32.dll.
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Figure 6-1: IAT structure



 IMAGE_THUNK_DATA is pointer to structure IMAGE_IMPORT_BY_NAME which 

has member hint and API's name. Before loading application, IAT and ILT points to same

IMAGE_IMPORT_BY_NAME. After an application has been loaded by a loader, API 

address is resolved and IAT rebuild with actual virtual address for it. However it is not 

always that IAT and ILT point to same structure for each API. Because Bound-import 

method should be considered as resolving the address of API before loading application. 

The method is to replace IAT's value with actual address of API beforehand. In instance, 

cmd.exe and calc.exe are implemented bound-import method [32].

6.2 Classification results with IAT

 I basically took only API name imported in IAT. Because it is not always that import  

address pointed to thunk value is not same even if the same API is imported in each 

applications. So I used API name imported in IAT as characteristic quantity. Finally I 

recognized DLL name as key for learning data and API name concatenated character 

space with next API name in same DLL name as value. In some application, the size of 

import address table is zero or the number of API in IAT is zero. I skipped to classify 

such a file. Also I did not include packed file as data.

 Classification method was implemented with perceptron and AROW algorithms. I 

applied 2-gram to extract characteristic quantity. Text message is divided by space 

character and treat with lists of divided character as characteristic quantity. I show the 

result in Table 6-2.

Algorithm FP rate TP rate TN rate FN rate 

Perceptron 0.17 0.82 0.85 0.15

AROW 0.23 0.77 0.92 0.08

Table 6-2: classification result with API name
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As we can see the table, TN and TP were 0,82, 0.85 respectively. It suggested that it 

could possibly classify malware only with API name. I analyze that a set of API could be 

different and biased between goodware and malware.

 To obtain the clue for the result, I took the appearance frequency for API stored in IAT 

for malware and goodware in Table 6-3. I focused on API which was higher frequency 

than goodware's frequency. 

The way to read the table is ,for example, about ExitProcess. 285 in 500 malwares 

imported the API and goodware's appearance frequency was 275.

 Now we consider about the reason ExitProcess function is often called. I analyzed that 

malware immediately terminates itself if detecting malware is attached by debugger. If 

not, malware tends to process injection to hide itself. At the time, I expected that 

ExitProcess would be called.

 About appearance frequency of LoadLibraryA is 273, while goodware was 291. The rate 

of usage was 55 % in average in malware. It indicates that malware's behavior is strongly 

tied up with external DLL file than goodware. I believe that the function must be surely 

meaningful classification level even if the number of samples increases.

 GetStartupInfoA was seen in malware name Generic.BackDoor.U which stole the system

information of the created process [33]. As seen in malware name Generic.Fake.Alert.lw 

as well [34], GetStartupInfoA could be thought as possibly being abused even in another 

malware. The rate of appearance frequency was 34% and showed high value.

VirtualFree and HeapCreate are API related to control memory. VirtualFree was called 

after VirtualAlloc to release the reserved memory. Although it seemed to be same 

frequency with VirtualAlloc both in goodware and malware, VirtualFree imported with 

simgle was often seen in malware. The rate of appearance frequency was 33%.
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API Rank Mal's freq(x/500) Good's freq(x/500)

ExitProcess 2 279 269

LoadLibraryA 3 273 255

VirtualFree 7 208 191

GetStartupInfoA 12 169 152

HeapCreate 23 144 114

GetStringTypeA 39 124 120

LCMapStringA 68 99 82

FreeEnvironmentStringsA 82 87 70

__vbaExceptHandler 97 77 4

ShellExecuteA 107 74 63

CopyFIleA 112 72 41

GetSystemDirectoryA 190 51 38

SetFileAttributesA 197 50 35

UuidCreate 287 36 10

__vbaFreeStrList 425 28 3

__vbaVarMove 466 22 2

OpenSCManagerA 512 19 8

InternetReadFile 527 18 8

OpenMutexA 547 17 5

OpenServiceA 594 15 5

InternetOpenA 600 15 2

ControlService 614 15 8

WriteProcessMemory 624 14 9

CreateServiceA 865 9 3

CreateRemoteThread 915 8 3

Table 6-3: Average ranking for malware and appearance frequency for both malware and 

malware by API imported in IAT
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CopyFileA would be called when malware copy itself and resources to the disk space. 

GetSystemDirectoryA is to obtain the path of system directory. It would be considered 

that malware duplicates itself to the system directory. According to analysis report of new

threat by IPA in 2009, GetSystemDirectoryA was identified to be called [35]. After 

copied itself, SetFileAttributesA would be called to change it to hidden attribute.

 InternetOpenA and InternetReadFile are a set of API to download files with HTTP and 

FTP protocol from Internet. Malware can download a malicious file encrypted with 

SSL/TLS because InternetOpenA supports SSL flag as an argument.

 OpenSCManagerA, OpenServiceA, ControlService and CreateServiceA are to control 

service in windows. By registering malicious service on windows, malware can invoke its

activity every system booting. These APIs are called with a bunch of processing service. 

At first, malware open service controller with OpenSCMManagerA. Then it can access to

the service by OpenServiceA. ControlService is called at restarting and stopping service.

 __vbaExceptHandler, __vbaFreeStrList and __vbaVarMove are imported in  

VBRuntime.dll. One could argue that malware developed in Visual Basic showed the 

characteristic is disposed to call these functions. The rate of use frequency was 

approximately 8%. However it does not work on the target machine that is not being 

installed VBRuntime library. As malware developer, they are supposed to develop 

malware which does not depend on the machine environment. My expectation attributes 

on the ease of development.

 WriteProcessMemory is for process injection which is the technique to inject the 

malicious code to another process. For instance, malware inject malicious code into 

system process. Therefore we feel that it would not appear to be malicious only if we 

monitor process list in task manager. It is said to be great malware if as long as to hide 

and stay in the target system. CreateRemoteThread is called to execute the code copied 

by WriteProcessMemory. In addition, CreateRemoteThread is combinated with API 

LoadLibrary as DLL injection technique that force to inject malicious code into another 

process. The rate of frequency in use for these function were 2 % in malware. Despite  
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invisibility is malware's important element, these function are implemented in minor 

ones. 

 ShellExecuteA is API for lunching another application and the percentage of appearance 

frequency was 17 % in total malware. In case of Worm/Conflicker, it would be used to 

execute another malware copied to temporary folder [36].

 I analyzed the bias of API by appearance frequency affected the classification.

 Next I show the list of API name which was used only for malware in Table 6-4.

API name Rank Frequency(x/500)

WSCEnumProtocols 308 34

DllUnregisterServer 546 17

GetProcessVersion 743 11

InternetCrackUrlA 827 9

GetVolumePathNameA 833 9

ExcludeUpdateRgn 875 9

DllGetClassObject 906 8

CopyFileExA 912 8

DebugSetMute 920 8

UpdateResourceA 944 8

CreateMailslotW 1036 6

InternetOpenUrlA 1053 6

EnumServicesStatusA 1109 6

CreateDesktopA 1139 5

URLDownloadToFileA 1172 5

WNetGetUserA 1635 3

Table 6-4: API list seen only in malware
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WSCEnumProtocols is API in Ws2_32.dll to enumerate protocol that is available in the 

system. WnetGetUserA is to enumerate user account for establishing connection. 

GetProcessVersion is to get major and minor version for windows. These API could be 

helpful to steal information of target system.

 InternetCrackUrlA, InternetOpenUrlA and URLDownloadToFileA are related to 

download another malware from Internet. InternetOpenUrlA supports protocol SSL/TLS 

and there are some malware that would bypass the sniffing by network administrator.

 CreateMailslotW is used for communication with another process. I expect that the API 

is helpful for malware to communicate the other malware created by parent malware. In 

stuxnet 0.5, communication among malware process was established by a mailslot [37].

 Although API name showed in Table 6-4 was low in appearance frequency in malware, it

had never seen in goodware. It reflects the characteristics of minor malware. Almost of 

malware consists of subspecies generated by tool automatically. So I think that the this 

analysis would be helpful to find new species of malware. 
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7 Classification by using API call sequence

 In this chapter, I classified the goodware and malware by API call sequences as 

characteristic quantities. API call sequences are obtained from dynamic analysis not from

static analysis. As good point of dynamic analysis, it is possible to find activities of 

malwares in detail. For example, we can discover how, when, which files, registries and 

services the malwares access, write and read. Also we can trace procedures of generating 

child processes and injecting them. As first bad point of dynamic analysis, time to spend 

for analysis could be relatively longer than static analysis. For treating with more 

malwares, there are some ways to shape the method by parallelizing machines to save 

time or by sharing the analysis results in several machines. As second negative point, 

some malwares has the competence to detect that a malware itself is running on the 

virtual machines [38]. In the case of Virtual Box, it is quite easy for malwares to detect an

execution environment by enumerating the process lists. Because windows operating 

system installed guest additions has the VboxService.exe as a process name. In the case 

of VMware, it is possible to detect an execution environment for malwares by sending 

some command to a backdoor port. If running on the virtual machine, it should response 

to malwares over the port. However it is avoidable to change the configuration of a guest 

machine [39]. Note that this way is not perfect way to avoid malware's detection. Because

an exception should be caused at realistic machine when it is detected. By patching codes

checking 'VMXh' with NOP codes, it is able to emulate the exception even on the virtual 

machine [40].

7.1 Cuckoo Sandbox

 I introduced Cuckoo Sandbox as a tool of dynamical analysis [41]. It outputs the results 

formated JSON after analyzing executable files. The pros is that we can discover the lists 

of all API name imported and exported by malwares even if executable files are packed. 

In static analysis, the list of API name imported by a malware is hidden by a packer and 
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actual API called by malware is restored after unpacking original code and rebuilding 

IAT. So we can skip the procedure of unpacking with Cuckoo Sandbox. A disadvantage 

point is that it takes more time to analysis compared with static analysis. In addition, I 

would like to recommend to divide the server of the Cuckoo Sandbox for goodwares and 

malwares to manage logs easily and to save time for dynamic analysis.

 Cuckoo Sandbox supports to capture the network traffic. We can check the lists of hosts 

that malwares accessed and what kind of traffic malware sent with servers. I believe that 

it could be possible to use characteristic quantity from network traffic.

 Next we move to the log of API call sequences output by Cuckoo Sandbox. I show the 

log structure of calls field in the result obtained from Cuckoo Sandbox in Table 7-1.

Field Description

category Either file system or system or network or registry or process or  

service or misc or synchronization

status True(Success) or false(Fail)

timestamp Timestamp when the API was called

thread_id Id of thread

repeated Times to be called repeatedly

api API name

arguments Stored as sets of argument name and the value

Table 7-1: structure of call filed in the result formated in JSON file from Cuckoo 

Sandbox

From the table, I took API name as a characteristic quantity for classification. For some 

specific API, I took some argument to clarify the different activities among goodwares 

and malwares (Table 7-2). API VirtualProtectEx is supposed to change an attribute of the 
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memory region into executable attributes by malware. APIs RegSetValueExW, 

RegCreateKeyExW, RegOpenKeyExW, RegOpenKeyExA could be often used both by  

goodware and malwares. I thought that it was good to take Subkey's value because 

Subkey indicates the path of some registry key. I expected to make the difference 

malwares often access. API FindWindowA is used when controlling window belong to 

another applications. For example it is called when checking whether particular 

application is running or not. In some case, malware lists up the list of processes in the 

task bar and be sure the existence of anti-virus and network firewall. API 

LdrGetProcedureAddress is called to resolve address of API imported from DLL. I 

thought that this API could be useful to trace beginning of malicious activity. In 

LdrGetDllHandle and LdrLoadDll, we can identify which DLL and the exported function

has been loaded in the application. LookupPrivilegeValueW would be used to check what

the range of activities malwares can do. In NtCreateFile, we can monitor files and 

directories created by a process. However I filtered file handle and file name because it 

depends on every process. I believed that DesiredAccess indicated the wish of an 

application to operate file system.

 When I was taking categories, I filtered for a misc category. Because most of API are 

GetSystemMetrics function in a misc category. I thought it would affect to the accuracy 

of classification as noises and the function would not be important to classify malwares. 
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API name arguments

VirtualProtectEx Protection

RegSetValueExW ValueName, Type

RegCreateKeyExW SubKey

RegOpenKeyExW SubKey

RegOpenKeyExA SubKey

FindWindowA ClassName

LdrGetProcedureAddress FunctionName

LdrGetDllHandle FileName

LdrLoadDll Flags, FileName

LookupPrivilegeValueW PrivilegeName

NtCreateFile DesiredAccess

NtFreeVirtualMemory FreeType

OpenServiceW ServiceName, Desired Access

OpenSCManager MachineName, DatabaseName, DesiredAccess

Table 7-2: sets of API and arguments took as characteristic quantity

7.2 Experiment of the classification with API call sequences

 I show the dataset used in the classification in Table 7-3. A virtual machine for executing

datasets is Windows XP SP2 32bits.

 In this time, I targeted at unpacked file as well as packed file. Because it does not need to

unpack it manually and packer automatically unpack a file and extract original code. 

That's why I included packed files.
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Malware Goodware

Learning dataset 500 500

Testing dataset 300 300

Table 7-3: dataset used in the classification

I show the flow chart of the experiment in Figure 7-1. Firstly I gave all datasets for 

Cuckoo Sandbox and Cuckoo Sandbox outputs result files formatted JSON. Secondly I 

provided them for Jubatus client. Jubatus client eliminates the noise which is high 

frequency among all datasets [42]. Because it is able to make classification more stable. 

Jubatus client extracts the characteristic quantities from output file formatted in JSON.

 Finally Jubatus client sends characteristic quantities to Jubatus server which responses 

with classification results to the client. Finally Jubatus server classify datasets with 

perceptron algorithm combined with 2-gram. 
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 The rate for filtering noise is set to 0.90 as cutting high frequency. So the noise should be

recognized to be cut off if appearance frequency is more than 0.90. The reason why I 

chosen those number is because they were the most stable among the experiments 

changed from 0.75 to 0.90 as high frequency.

 While classifying datasets with string character which has long length, sometimes 

memory error happened on Jubatus server. So I dynamically assigned hexadecimal 

number with each fields to shrink the data length. (Figure 7-2). It could mitigate the risk 

for the memory error on Jubatus server.

7.3 Classification results of API call sequences

 Firstly I took only API name excluding its arguments as characteristic quantities. In 

addition, the process cutting noise was not implemented. I show the result in Table 7-4.

44

Figure 7-2: Convert API name to hexadecimal number



FP rate TN rate TP rate FN rate

Average 0.08 0.92 0.94 0.06

Minimum 0.15 0.85 0.98 0.02

Maximum 0.05 0.95 0.93 0.07

Table 7-4. Classification result for extracting only API name. The process cutting noise 

was not implemented. I experimented 20 times in total by randomizing the order of 

learning datasets.

 I show the classification results in the case of including API's arguments in Table 7-5. I 

experimented 20 times in total and obtained the each accuracy rates. Comparing the result

in Table 7-4, rates for an average and the gap for minimum are same. However we found 

that higher accuracy was obtained when including API's argument.

FP rate TN rate TP rate FN rate

Average 0.08 0.92 0.94 0.06

Minimum 0.15 0.84 0.96 0.04

Maximum 0.04 0.96 0.96 0.04

Table 7-5: classification result by API call sequence. Average, minimum and maximum 

rates are for 20 times of experiment randomizing the order of reading files.

 As the evaluation from the results, I evaluated the average value, maximum value and 

minimum value among those experiments. On the average rate, TN rate was 0.92 and TP 

rate was 0.94. The gap for TN and TP at minimum rate were 0.12 . So the result became 

unstable in some case. In maximum rate, both TN and TP were 0.96 and it showed high 

accuracy and stable. We can see that the gap was not seen in TN and TP rates and the 

result indicates that the machine could classify correctly. If we always kept the maximum

accuracy stable, we could implement it on realistic anti-virus products as heuristic engine.
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 However the result depending on the order of learning datasets are negative points for 

machine learning. To fill in this gap, this classification method should not work alone. It 

might be better to classify malware by corporating with another classification algorithm. 

As an example of an open source classification tool, Adobe malware classifier 

implements 4 classification algorithms (J48, J48 Graft, PART, and Ridor) and classifies 

them by collegiate system [43]. Adobe malware classifier classifies them with 

characteristic quantities obtained from statical analysis. When judging it, the classifier 

returns 1 as malware if all classification algorithms answers that the file must be malware

in a unanimous. If classifier vote to goodware in a unanimous, then it returns 0 as 

goodware. Otherwise, it returns string value “UNKNOWN”.
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8 Summary

 In summary, I summarized the findings about machine learning. I list up the key point, 

suggestions, improvement and reflections throughout my experiments.

1. In the classification testing by ranking of operation code, the rate of accuracy 

marked approximately 74% in maximum. To make the classification stable, I 

implemented to filter noise by taking top rank of appearance frequency for 

operation code. However evaluating about which upper ranking is best accuracy 

depends on the datasets that we use. By filtering from the top rank 30 to 50, it 

showed stable accuracy for both AROW and perceptron algorithm. In addition we

have to implement another way to cut noise. Because the result was unstable 

though the experiments. I should have cut noise by excluding the high and low 

appearance frequency commonly used in goodware and malware. 

2. In the classification testing using perceptron and AROW algorithm of 2-gram and

3-gram with word unit, the accuracy rate was approximately 0.83 in a maximum. 

The accuracy rate from n-gram with word unit showed higher rates than n-gram 

with character unit. Therefore I would suggest that implementation for N-gram 

should be word unit.

3. In the classification testing using perceptron and AROW algorithm of API 

imported into IAT, the accuracy was approximately 0.83 for perceptron. In this 

time, AROW algorithm did not show the stable results. However I believe that I 

have to evaluate more accurate results by randomizing reading files and 

increasing the number of datasets. Because the sequence of learning files affects 

the accuracy of classification. This can be said on all experiments of machine 

learning. Also we could not implement the automatic unpack for packed file. As 

an agenda, I am going to investigate the automated unpacking system. In 
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addition, by evaluating frequency of API, we can find the clues about what kind 

of activity that malwares prefer and what kind of the minor function that they 

have. We might find the new species of malwares by machine learning.

4. In the classification testing using perceptron algorithm taking API call sequence 

as characteristic quantity. As our agenda, we have to review more which 

arguments of API should be taken as characteristic quantity. And process for 

cutting noise should be improved. I cut the noise from only API name. But I 

noticed that I should cut it from API name and its arguments.

5. I could not prepare enough datasets of goodwares. So it is required to collect 

more goodwares to calculate more accurate rate. In this time, installer file 

formatted in win32 executable was included in goodware. I think that it is not 

recommended to include an installer. Because we purely need to extract the 

characteristic of goodware. Therefore it is highly required to install goodwares on

the victim's virtual machine in advance that does not work alone or only submit 

the executable file that can work with single to Cuckoo Sandbox.

6. Jubatus framework supports some kinds of algorithm for classification. In this 

time, I implemented perceptron and AROW algorithm. However there are 

another possibility to try PA [23], CW [24], NHERD [26]. I have to evaluate the 

results with those algorithms. In addition, among these algorithm, it is interesting 

for us to take collegiate system for classifying malware.

7. From the results of my experiments, I think that it is still difficult to apply in 

realistic malware detection. Because the rates of the accuracy are unstable and 

getting rid of noise by screening and filtering should correctly be applied in my 

experiments. In addition, we should consider about how to unpack packed 

application. 
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