
 TALLINN UNIVERSITY OF TECHONLOGY

Faculty of Information Technology

 Department of Computer Science

Chair of Network Software

ITI70LT

Kazuaki Tsuchimoto 121728

DETECTING MALWARE BY MACHINE LEARNING

Master's thesis

Supervisors:

Toomas Lepik

Master of Science in Engineering

 Malware lecturer

 TALLINN 2014

Declaration

I hereby certify that this master thesis is entirely the result of my work and I have

faithfully and properly cited all sources in thesis.

….. …...

(Date) (Author's signature)

2

Abstract

 The complexity of system also has increased and the clue of attacking simultaneously

increased. Malware is rapidly spreading in the Internet and attacking the system which

has sensitive data. Although anti-virus software detects and prevents malware from

exploiting the target's system, there are some of malwares that may pass though the

detection. Because the main force of anti-virus software to detect them is based on the

signature method. Only with this signature based method, anti-virus software is thought

as it is impossible to detect malware for sure. Today the heuristic method that detects

malware by monitoring its own behavior is being developing and implemented on

realistic product.

 In this thesis, I studied about classification of goodwares and malwares by using

machine learning. I focused on statical and dynamical analysis by extracting the

characteristic quantities. I applied perceptron and AROW algorithm for calculating the

similarity in the learning machine. Characteristics quantities that I extracted on our

experiments were rank of appearance frequency for operation code, instruction code

combined with N-gram, list of API stored in IAT and API call sequences obtained from

Cuckoo Sandbox. In taking API call sequence as characteristic quantities with 2-gram of

word unit, I could confirm that machine learning perform classification with the high

accuracy rate.

3

CONTENTS

1. Introduction..6

2. Background..8

3. Approach..9

3.1 Experiment procedure..10

3.2 Machine learning...12

3.2.1 Learning method...12

3.2.2 Creating learning data...16

 3.2.3 Jubatus framework..20

4. Classification by ranking appearance frequencies...21

4.1 Classification results by ranking appearance frequencies...............................21

5. Classification by using N-gram..26

5.1 Applying N-gram...28

5.2 Classification by N-gram...29

5.3 Classification results by N-gram..30

6. Classification by using Import Address Table..31

6.1 IAT...31

6.2 Classification results with IAT...33

4

7. Classification by using API call sequence..39

7.1 Cuckoo Sandbox..39

 7.2 Experiment of the classification with API call sequence...........................42

 7.3 Classification results of API call sequence..44

8. Summary...47

References..49

5

1 Introduction

 The malware's target had been personal and a large indefinite number of people before

Internet was popular. However some specific person and company is recently targeted by

the hacker. The purpose for generating malware has been shifted to the monetary one.

According to the quarterly report of PandaLab in 2009, 71.32% among the new kinds of

malware was Trojan [1]. These malwares are specialized in remote control. The way to

send malware to the target is of via email combined with social engineering [2]. Even if

the company train the employee for security issues, it may happen that they may be

tricked the email contents. Finally they would open a file attached in email or click the

URL putting on it. Once malware is executed, malware hide in a system process by

process injection and silently work around. Some malware which is called rootkit

disables anti-virus detection [3]. To intrude the target's system for certain, hacker

implements 0-day exploits into malware. In this way, the more malware's detection is

delay, the scale of damage would expand over the network.

 In this thesis, I classified applications of PE format by machine learning which

implemented the perceptron [5] and AROW [25] as algorithms. I focused on

characteristic quantities included in operation codes, instructions, API lists in import

address table. The number of learning dataset for goodware is 500 and for malware is

500. The number of testing dataset is 300 for goodware, 300 for malware. Analysis

objects are limited to Win32 executable files which are PE format. I excluded the packed

6

executable files in experiments of statical analysis. Because this packed ones hide the

original code which might contain malicious code by compressing it. If I included them,

it would indicate that we classify whether the packed-ware or not.

 In the first experiment with statical approach, I ranked appearance frequency for

operation codes as characteristic quantities. Then I provided them to the learning machine

which calculated similarity and classified them. In conclusion, the machine could classify

them with around 0.7 of accuracy rate.

 In the second experiment with statical approach, I provided the instruction code which is

evaluated by 2-gram and 3-gram extracting characteristic quantities to the learning

machine. In conclusion, the machine could classify them with around 0.8 of accuracy

rate.

 In the third experiment with statical approach, I provided lists of API stored in IAT with

the learning machine. In conclusion, the machine could classify them with around 0.83 of

accuracy rate.

 In last experiment with dynamical approach, I took the API call sequences which was

obtained from Cuckoo Sandbox [41]. As characteristic quantities, I took arguments for

some specific API. In addition, I cut high and low appearance frequency that were

commonly seen between goodware and malware. As a result, the accuracy rate was

around 0.90 on average.

7

2 Background

　There are some reasons that it has been difficult for signature based method to detect

malwares. According to McAfee, One reason is that malwares are automatically

generated by some tools. 100,000 of subspecies are generated day by day [4] all over the

world and it is thought that it will be more difficult for signature based method to detect

malwares in the future. Also McAfee reported that the rates of increasing new malware

samples grows year by year [4]. To fight back against unknown malwares, heuristic

engine that can detect them by analyzing the behavior based on some characteristics was

developed and implemented on some realistic anti-virus products. And further research

for heuristic engines are proceeding as ever.

 I expected that malware's behavior might be characteristic compared with goodware's

one. As the view of functions of malware, for example, malware download the extension

module from Internet to add new functions to itself [6]. Some malwares often register

themselves into startup of Windows registry. Not to be killed themselves easily from task

manager and not to be discovered with process monitoring tools, they tend to hide into

system process by process injection [7]. To prevent an analyst from peeking the logic,

they detect debugger and kill themselves [8]. These activities are not normally seen in the

goodware. I thought that these special activities might make the potential bias among

them. Therefore I expected that the similarity for the group of malware was seen even in

the level of operation code, instruction, imported API and API call sequences.

8

 3 Approach

 We have mainly two approaches (statical approach and dynamical approach) to extract

characteristic quantities for goodwares and malwares. In this paper, I took three statical

approaches and one dynamical approach. The reason why I took place classifications by

static analysis is because it does not need to run malware on the real or virtual machine

and analysis would be done quickly. Also it is needed to use samples as much to calculate

more accurate rates. However I have some issues to disassemble some dataset. Because,

in statical approach, it was not reasonable to use packed executable files. Malwares

themselves are compressed by some packers and malware's behavior is almost invisible. I

considered that operation codes related for packing would cause the noises and be

disturbed classifications. So I skipped files that were recognized as packed executable

files by pefile module [9] which detects packed-ware with signature database [28] when

the Jubatus client extracts characteristic quantities. In addition, this detection of packware

is not perfect way and it pass through packed-ware not contained in the database.

However I did not skip packed file when I implemented on the classification by API call

sequences which is categorized into the dynamical approach. Because unpacking process

is executed by a packer in the virtual machine. That is the advantage for the dynamic

analysis.

 I used the Jubatus framework as a classifier [10]. Because the usage of classifier is

simple and I can concentrate to write the client code which provides the learning and

testing data for it.

9

3.1 Experiment procedure

 I show a flow chart of experiment step for statical approach in Figure 3-1. Firstly I

prepare learning datasets for both classifying goodware and malware which are Win32

executable files. So I did not include the pdf, doc, xls, jpg, avi and the other format style.

Although some malwares were often seen that they were embedded in the pdf file which

exploits Adobe Reader [11], I focused on the windows executable files.

 I scanned them with ClamAV [12] and checked not to immix datasets of malware with

datasets of goodware. Next I gave learning dataset to the analyzer to extract characteristic

quantity. Analyzer extracts appearance frequency from disassemble code and ranks

operation codes. So I treat with ranked data as characteristic quantity. When getting

classifier to learn characteristic quantities, I evenly have to give them for classifier. After

I gave all learning datasets of malwares for classifier, then I gave all learning datasets of

goodware for the learning machine. After getting the machine to learn all datasets, the

classifier could not classify the test datasets correctly at all. So I noticed that it was

important to learn each data for classifier alternately such as learning goodware, malware,

goodware, malware and repeating. Finally I input test datasets to classifier which judge

malware or not.

 I evaluated each rates of FP(False Positive), TN(True Negative), TP(True Positive),

False Negative(False Negative) as results. These rates are represent from 0 to 1.0. I

summarized each meaning in Table 3-1.

10

FP Judging goodware as malware

TN Judging goodware as goodware

TP Judging malware as malware

FN Judging malware as goodware

Table 3-1: four rates for evaluating classifications. These rates were calculated

throughout all of the experiments.

11

Figure 3-1: flow chart for experiment in statical approach

3.2 Machine learning

 I introduced perceptron algorithm as machine learning. Perceptron algorithm was

published in 1957 by Frank Rosenblatt who was psychologist as well as computer

scientist. He suggested that perceptron algorithm was the model of information

processing with neural network (Figure 3-2). Multiplying corresponding weight with

each inputs which are calculated as sums. Finally machine judges the results with binary

value (Yes or No). Nowadays perceptron algorithm has been utilized as linear classifier in

a wide range of area although it had been thought as importance for brain science field in

the past.

3.2.1 learning method

 I show learning algorithm in Equation 3-1 [13]. T are learning data and are distributed in

2 dimensional coordinate. The learning step is following.

1. I decides hyperplane with properly. (To decide constant values a, b and c)

12

Figure 3-2: a classification model of perceptron

2. I get the machine to learn data with discriminant function f(x,y). From the result

of it, the machine improves the hyperplane with gradient and intercepts by

following the equation. This step means rotation and parallel movement for

hyperplane on 2 dimensional plane.

3. Repeat step 2.

Equation 3-1: learning algorithm

Obeying learning step 1, as an example, I let a = 0, b =1, in initial stage, it becomes in

Figure 3-3. Circle and triangle shape represents learning data. I label 1 or -1 for each

group that we want to classify. For example, Let goodware to be 1, malware to be -1. One

of triangle data is not classified correctly as a first circumstance. When wrong data is

input the discriminant function f(x,y), f(x,y) outputs negative value. Then gradient and

intercept would be improved. Repeating this process, machine calculates the final

optimum hyperplane.

13

If T (k) f (x , y)>0 then do nothing
else T (k) f (x , y)≤0 update weight

f (x , y)=ax+by+c
f :discriminant function

T : learning data , k : index for learning data

I draw the image of the final stage for classification with 2-dimensional coordinate in

Figure 3-4.

14

Figure 3-3: initial stage for classification in perceptron

algorithm

Figure 3-4: final stage in classification for perceptron

algorithm

 This figure represents the final discriminant function which had been updated by

perceptron algorithm. We can understand that the accurate hyperplane to classify the data

is drawing. In this way, the thing that can be classified completely is called linear

separable. However succeeding in classifying the data always does not happen. Because

some noise are usually included in realistic cases. For example, we have to consider

about the goodware's sample that behave as if it is malware. In perceptron algorithm, we

ignore such a noise. This problem could be mitigated in Adaptive Regularization of

Weight Vectors (AROW) [25]. This algorithm is of improvement for Confidence

Weighted Linear Classification (CW) [24]. CW method could deliver higher performance

in case that the characteristic dimension number is big. But that tends to be weak for

noise, while AROW method improved the weakness.

 Lastly I summarize the general expression in N-dimensional plane for perceptron

algorithm in Equation 3-2.

Equation 3-2: perceptron algorithm in

N-dimention

15

y=wT x
if y>0 then do nothing

if y≤0doupdate weight vector
update withwnew=wold+μ x

y : classificationresults
w :weight vector
x : input vector

μ : learning constant

3.2.2 Creating learning data

 First of all, I disassembled executable files and took appearance frequency for operation

codes. Operation codes which represent machine code as mnemonic are stored in

executable file as PE format. Mnemonic for assembly code is replaced to machine code

for readability. And it corresponds with machine code on 1-to-1 level.

 As the first step of taking characteristic quantities, I looked for code section and

disassembled with libdasm [14] when selecting files in jubatus client. I sorted them by

ranking for each operation code. Operational code is basically extracted from .text section

(code section). To understand the structure of windows executable files, I show the PE

header structure in Figure 3-5.

16

Figure 3-5: The structure of

PE header

DOS MZ header
DOS stub
PE header

Section table

Section 1

Section 2

…

DOS MZ header is first area in the structure of the PE file. It is defined as

IMAGE_DOS_HEADER [15] defined in winnt.h. The first member e_magic is 2 bytes.

In the case of Windows executable files, character string “MZ” is set as a signature. Last

member e_elfnew is offset to the PE header region stored as Little-endian. This offset

means offset used for the file not used for the memory loaded .

 In DOS stub region, it can work only on MS-DOS. Normally the code that may show the

message “This program cannot be run in DOS mode” is written in.

 PE header is defined as IMAGE_NT_HEADERS [16] in winnt.h. It has 3 members,

Signature, FileHeader, Optional_Header. Moreover Optional_Header has important

members to calculate the address of some section. First we need to know

AddressOfEntryPoint and ImageBase. AddressOfEntryPoint is the address to start the

program as RVA (Relative Virtual Address) which indicates the relative offset when the

program has loaded. ImageBase represents ideal starting address when the program has

loaded. Normally address loaded in the memory for executable file is 0x00400000 and

for DLL file is 0x10000000. However it always wont be loaded on the same address

since memory relocation might be taken place. Therefore we can calculate address of the

entry point by adding AddressOfEntryPoint with ImageBase (Equation 3-3).

FILE_HEADER has NUMBEROFSECTIONS member which represents the number of

sections.

Equation 3-3: getting staring address of section

17

EntryPoint=AddressOfEntryPoint+ ImageBase

 Section table is defined as IMAGE_SECTION_HEADER [17] in winnt.h. There are

Name, VirtualSize, VirtualAddress, SizeOfRawData, Characteristics as interesting

member. We can know the code section from Name member. Basically code section is

named as “.text”. When I disassembled the executable file, I found the string “.text” and

took frequency for operation codes. VirtualSize represents RVA for the starting address

when the program has loaded. SizeOfRawData represents section size on the disk.

Actually We can calculate the end of section by adding VirtualAddress +

SizeOfRawData. However insignificant codes are included at the end of code section as

padding or something for some reasons. I thought this would affect taking the appearance

frequency. That's why I calculated with the end of section as VirtualAddress +

VirtualSize.

 Packer compresses real code section and has the special section for unpacking. For

example typical packer UPX (Ultimate Packer for executable) [18] creates UPX0 and

UPX1 section during packing an application. I show the packer's unpacking image in

Figure 3-6 [19].

18

Figure 3-6: Unpacking process by a packer

 I explain how the unpacking step takes place. As the first step, packer jump to subroutine

for extracting. After extracting original code, packer sets the EIP register to OEP

(Original Entry Point) pointing original code. Then the original code correctly is

executed. In statical analysis, original codes are compressed and are invisible. However

some of solutions is being suggested.

 One of the way is to unpack them on the virtual machines by dumping memory image.

The good point is that it does not depend on kinds of packer's algorithm. However some

malware is able to detect that it is being running on virtual machine and will change

behavior. So the countermeasure to pretend the realistic machine is recommended for

additional treatment.

 In particular, it is thought as effective way to detect the execution for protected page.

When packer finished extracting original codes, packer would attempt to jump and

execute the head of original code. If we use memory-breakpoint, it observes execution,

read and write on the memory. OllyBoneE [20] changes page table entry to prohibit

access from user mode. When reading and writing for page memory are taken place, page

fault exception is triggered on the page where breakpoint is set. After page fault

exception, it judges whether accessing memory is for execution or for reading or for

writing. If memory accessing is for execution, it calls exception handler for step

execution (INT 1). When detecting execution for protected page, it dumps all memory

image including original codes. This software that utilize the technique is famous for

OllyBonE which works as OllyDbg [21] plugin.

 In the case of applying it on Vmware, OllyBoneE is needed to modify and rebuild the

source codes. Because the way to treat with TLB (Translation Lookaside Buffer) on is

different from realistic machine. TLB exists for both read and write independently [22].

19

3.2.3 Jubatus framework

 Jubatus framework provides learning machine which implements classification,

regression, recommendation, graph mining, anomaly detection, clustering. In my thesis,

although I focused on classification, it is also helpful to find malware having similar

habitats by recommendation.

 Perceptron algorithm is categorized into classifier. Jubutus framework supports another

classification algorithm such as PA [23], CW [24], AROW [25], NHERD [26]. In the case

of choosing these algorithm, we can specify the sensitivity parameter for learning as

constant value. After deciding on implementation, I give a type of algorithm for Jubatus

server as configuration file which are written in JSON format. When starting Jubatus

server, It must provide configuration file as mandatory argument. Then Jubatus server

works and waits on TCP port 9199.

 The client application sends learning datasets to Jubatus server. At this moment, learning

datasets must be set as associative array. Associative array consists of label and value. For

example, If label is “mov”, value is 1, associative array becomes {“mov”, 1}. In addition,

it needs to convert it to Datum data format [30]. Client application sends correct label and

Datum data as tuple to get the Jubatus server to learn. After completing to learn, the client

send the test dataset to the server and server start the classification.

 During classifying an application, it gives testing data in Datum format to server. Server

answers as a label which is either goodware or malware and the corresponding score.

Client treat with the label which has higher score than the other label's one as correct

answer. Lastly comparing correct label with the label server answered, the client

calculates rates of FP, TP, TN and FN.

20

4 Classification by ranking appearance frequencies

 I used 500 samples for learning and 300 for testing dataset in Table 4-1. I prepared

sample malwares as datasets from VirusSignList [27]. I excluded packed executable files

from goodware and malware. As a signature database file, I used Bob /Team PEiD

Signature [28]. I prepared a set of goodwares by independent way such as copying from

“Program Files” folder in Windows XP and collected some softwares from Internet

randomly.

Malware Goodware

Learning datasets 500 500

Testing datasets 300 300

Table 4-1: dataset used in classification

 I took only operation code for ranking appearance frequency. For example, if

disassembled code is “xor eax, eax”, I pick up only “xor” and count as +1 for operation

code xor. Operation code always does not appear in the head of the instruction. In the

case that segment over ride prefix and data segment over ride prefix include in instruction

code, those prefix would appear in the head of instruction. So I skipped those code and

searched operation code from the instruction and extracted as characteristic quantity.

4.1 Classification results by ranking appearance frequencies

 I show the results of FP, TP, TN and FN rates for classification by ranking appearance

frequency of operation codes in Table 4-2. This rank represents the maximum rank

number when ranking appearance frequency for each datasets. In the case of rank 10, I

took the rank of operation code up to 10 as characteristic quantity. As looking at column

of rank 37, both TN and TP rates were the highest number among all ranking. This

indicates the machine could classify malware and goodware with approximately 74% of

accuracy. In rank 30, difference between TP and TN rates were big. This classification

21

was unstable. Because the way to cut noises was wrong. I had to exclude the quantities

that commonly highly seen in goodware and malware. As increasing ranking from 10 to

20, TN and TP rates were equal a little by little. From rank 50 to 200, TN and TP rates

gradually became bigger difference. From the results, as comparing bias for operation

code between goodware and malware, it is thought that it is the most effective that we

take rank 20 to 50. But it cannot be applied to realistic heuristic detection with this rate.

In the security field, detection rates must always keep the high accuracy more than 90%.

Because the risk of false negative is quite serious in security field. However I could see

bias for some operation codes through this experiment and relevance between frequency

of operation code and malware.

Rank FP rate TN rate TP rate FN rate

10 0.34 0.66 0.63 0.36

20 0.29 0.70 0.78 0.21

30 0.12 0.88 0.55 0.45

37 0.25 0.75 0.74 0.26

40 0.12 0.88 0.54 0.46

50 0.22 0.78 0.69 0.31

60 0.12 0.87 0.55 0.45

70 0.06 0.93 0.44 0.56

80 0.21 0.78 0.68 0.31

90 0.89 0.50 0.5 0.5

100 0.07 0.93 0.34 0.65

200 0.08 0.92 0.37 0.63

Table 4-2: rates categorized in rank by perceptron algorithm

 Next I changed the algorithm from perceptron to AROW under same condition of Table

4-1. AROW takes an advantage against noises when learning the dataset. I show the

22

results for AROW in Table 4-3. As we look in the most effective rank, it is rank 41 at 0.73

and 0.70 for TN and TP respectively. Compared with perceptron algorithm, it was not

seen big difference among methods. The more the rank increases, however, the difference

for TN and TP rate in perceptron algorithm was extremely bigger where the biggest

difference for TN and TP rate was approximately 0.55. In contrast with that, the

difference in AROW was more stable where the biggest difference for TN and TP rate

was about 0.36. Therefore AROW method could provide the stable results than

perceptron algorithm.

I took the average of ranking for learning data within top 50 and compared the average

ranking for goodware and malware in Table 4-4. Note that I extracted only operation code

which had big difference. Average ranking was calculated for each goodware and

malware respectively and took difference with them. If ranking of one operation code

become same as another one, I recognized them as same rank. Negative values represents

that ranking of corresponding operation code is lower than goodware' rank, positive

values are above than goodware's rank.

 I analyzed that difference of these ranking affected classification. Malware used

operation code treating with floating point than goodware. Especially fcmovne, fbstp and

fsave operation codes had quite big difference and were often used by malware because

difference value is negative value. Probally malware's code would tend to hold floating

point operation. Otherwise the packeware not included in the signature database might

have been used as normal executable files.

 In addition, pcmpqtd, pmulhw and pandn also had showed big difference at rank 3, 7 and

25 respectively. The common point with them is operation for MMX which is SIMD

extended operation. This difference affected greatly to classify malware and goodware.

 Nop code is comparatively often seen at rank 10.

 In the view of heuristic detection, this accuracy 70 % does not achieve to a practical

level overall. There are various kinds of malwares as realistic problem. For example,

23

malwares must be categorized into some groups such as trojan, warm, rootkit, backdoor

(RAT), downloader, fishing, botnet, spyware and so on. This time the machine classified

them in a comprehensive manner. So malware's bias as characteristic function was not

revealed dominantly because of mixing up all kinds of malware. I analyzed that I should

classify them after malwares were categorized by their function and characteristic.

 Although I detected packedwares to skip them with the method based on signature, some

of packed applications might be minor and pass the detection with signature. They might

be included in the datasets. To solve the packer's problem, it needs to implement

automated unpacking system.

Rank FP rate TN rate TP rate FN rate

10 0.31 0.69 0.7 0.3

20 0.21 0.79 0.64 0.36

30 0.38 0.62 0.76 0.24

40 0.30 0.69 0.79 0.20

41 0.27 0.73 0.70 0.29

50 0.45 0.54 0.83 0.17

60 0.49 0.51 0.82 0.18

70 0.5 0.5 0.86 0.14

80 0.50 0.49 0.83 0.16

90 0.53 0.47 0.82 0.18

100 0.49 0.51 0.78 0.22

200 0.46 0.54 0.76 0.24

Table 4-3: rates categorized by rank by AROW algorithm

24

Operation code Malware's ranking Goodware's ranking

pcmpqtd 3 98

adc 7 39

pandn 7 114

popa 10 44

nop 10 41

movaps 12 50

xchg 13 53

fbstp 15 74

fist 15 51

into 15 70

insb 16 53

pushf 18 60

insv 18 51

scasd 19 74

bswap 19 63

pusha 20 61

jno 24 63

loop 24 64

lock 24 73

fcmovne 24 107

fsave 25 98

pmuhw 25 94

Table 4-4: Average ranking for goodware and malware.

25

5 Classification by using N-gram

 N-gram is a kind of the way to take characteristics quantity from text. N-gram model is

the language model that counts the combination of N length character string in some text

message. Claude Elwood Shannon who was known as the father of information theory

invented as the language model of N-gram. There are mainly 1-gram, 2-gram and 3-gram

which depend on taking minimum unit of character. As problem to attribute to take N, if

we make N bigger, it would tend to lower accuracy and the combination of co-occurrence

rise exponentially. In the case of 1-gram, it creates an index which is based on 1

character. In the case of bi-gram, it creates index for sequence of 2 characters. N-gram is

practically implemented in Google search engine to find some word since when the word

had been used and how much of the appearance frequency on each year [29].

 I explain how the N-gram works with following example sentences.

Example sentence1: This is an apple.

Example sentence2: That is an apple

Now we consider how the sentence is separated when I apply the 2-gram to this sentence.

I separate them on each 2 characters for each sentence. And I assign the sentence ID for

separated characters. I show the 2-gram table for both sentence1 and 2 in Table 5-1

respectively. Next I combined the sentence1 applied 2-gram with of sentence 2 in Table

5-2. In the table, under score (_) represents space. Now we think of an example sentence

“An apple is eaten by that boy” to classify it. First of all, We divide the string apple into

“ap”, “pp”, “pl” and “le”. As we refer to Table 5-2, these strings have ID 1 and 2.

Secondly we search “that”. As same way, “that” is taken part in “th”, “ha” and “at”. As

narrowing a search from the Table 5-2, we can find that sentence 2 is possibly candidate.

In this way, N-gram would be useful to calculate the degree of similarity of the text

message. I would apply N-gram to classify goodwares and malwares by a machine

learning.

26

Sentence1 Sentence 2

2-gram Sentence ID 2-gram Sentence ID

th 1 th 2

hi 1 ha 2

is 1 at 2

s_ 1 t_ 2

_i 1 _i 2

is 1 is 2

s_ 1 s_ 2

_a 1 _a 2

an 1 an 2

n_ 1 n_ 2

_a 1 _a 2

ap 1 ap 2

pp 1 pp 2

pl 1 pl 2

le 1 le 2

Table 5-1: a piece of characters applied 2-gram for sentence 1 and 2

27

2-gram Sentence ID

th 1,2

hi 1

is 1,2

s_ 1,2

_i 1,2

is 1,2

s_ 1,2

_a 1,2

an 1,2

n_ 1,2

_a 1,2

ap 1,2

pp 1,2

pl 1,2

le 1,2

ha 2

at 2

t_ 2

Table 5-2: Two sentences applied 2-gram are merged

5.1 Applying N-gram

 Although it is effective to classify the similarity of some documents, I considered it was

not good to apply N-gram with character unit in the disassembled code. Moreover there

are some similar operation code for example mov, movs and movsx. So I would suggest

N-gram with word unit. For example, assemble code “push dword [ebp+0x18]”. I divide

them into 2-gram of word unit. Then it becomes “push dword”, “dword [ebp+0x18]” and

“[ebp+0x18]”. In this way, similar operation codes such as “mozx”, “movl”, “movsx” are

28

treated as independent operation code. I expect that N-gram with word unit could classify

malware better than character unit. Because characteristics of assembly structure might

be more emphasized if we consider as word unit. I used the plug-in of word unit for

N-gram from github of Jubatus [31].

5.2 Classification by N-gram

As same as the experiment by ranking, I prepared 500 samples for learning dataset, 300

for testing dataset (Table 5-3).

Malware Goodware

Learning datasets 500 500

Testing datasets 300 300

Table 5-3: dataset used in classification

This time I implemented experiment with perceptron and AROW algorithm combined

with 2-gram and 3-gram for character unit and word unit. AROW has sensitivity

parameter for learning data. This time I set sensitivity parameter as constant value 1. In

addition, I changed the way to treat with weight for characteristic quantity on Jubatus

configuration of the server. Jubatus's configuration is JSON formatting. There are two

kinds of weight configuration [30], sample_weight and global_weight. Sample_weight is

related to pair of key and value uniquely. Global_weight is calculated from current

results. About “bin” as one of an option, weight is always constant value 1 and I set

sample_weight and global_weight as string “bin”.

29

5.3 Classification results by N-gram

I show the classification results by 2-gram and 3-gram in Table 5-4. In N-gram column,

2(word) represents that 2-gram implemented by word unit. Otherwise it is N-gram with

character unit.

Method N-gram FP rate TN rate TP rate FN rate

perceptron 2 0.7 0.3 0.96 0.03

perceptron 3 0.87 0.12 0.98 0.01

perceptron 2(word) 0.19 0.8 0.86 0.14

perceptron 3(word) 0.15 0.85 0.81 0.18

AROW 2 0.77 0.22 0.97 0.02

AROW 3 0.31 0.69 0.85 0.15

AROW 2(word) 0.23 0.76 0.89 0.11

AROW 3(word) 0.25 0.74 0.91 0.09

Table 5-4: N-gram classification results for perceptron and AROW algorithm

From the result, we can see that the perceptron with both 2 and 3 grams recorded high

accuracy rate for TN and TP at (0.8, 0.86) and (0.85, 0.81) respectively. In contrast with

2-gram and 3-gram with character unit both for perceptron and AROW algorithms, the

gap of TN and TP was large. This indicates the classification by N-gram with character

unit did not work well. Therefore n-gram for word unit is said to be effective for

classification based on disassemble code. AROW with 2 and 3 word gram showed the

lower accuracy than perceptron for TN and TP rates.

30

6 Classification by using Import Address Table

 Import Address Table (IAT) is stored to call API which exists in DLL in PE format file.

For example, MessageBox function is registered in User32.dll. Windows application call

it by importing API into IAT. Win32 API is involved in a wide range of function,

controlling process, hardware device, file system, creating process, drawing the picture,

synchronizing thread and so on.

As seen the behavior on malware, API to register malicious executable files to startup is

also imported in IAT when loading application. It is not always malware import API

which is related to registry. In addition, some goodwares also import such kind of API.

However what malware would like to achieve must be different from goodware's one. So

I expected that the bias could be seen when comparing imported API with goodware. I

treated with list of API as characteristic quantity to classify them with.

6.1 IAT

 To obtain the list of IAT, we need to access IAT which is stored in PE format file. I show

the IAT structure in Figure 6-1 [32].

 First of all, start point to access IAT is to examine at DataDirectory[1] which is member

of Optional Header in PE header. DataDirectory[0] is for export table. DataDirectory[1]

is for import table, pointing to structure IMAGE_IMPORT_DESCRIPTOR in import

table. In IMAGE_IMPORT_DESCRIPTOR, member OriginalFirstThunk is a pointer to

IMAGE_THUNK_DATA in import-lookup-table and FirstThunk is a pointer to

IMAGE_THUNK_DATA in IAT. The member Name represents the name of DLL. So

IMAGE_IMPORT_DESCRIPTOR exists for each imported DLL. If we import the API

of LoadLibraryA and MessageBox, the number of IMAGE_IMPORT_DESCRIPTOR

would be 2, each member Name in IMAGE_IMPORT_DESCRIPTOR are Kernel32.dll

and User32.dll.

31

32

Figure 6-1: IAT structure

 IMAGE_THUNK_DATA is pointer to structure IMAGE_IMPORT_BY_NAME which

has member hint and API's name. Before loading application, IAT and ILT points to same

IMAGE_IMPORT_BY_NAME. After an application has been loaded by a loader, API

address is resolved and IAT rebuild with actual virtual address for it. However it is not

always that IAT and ILT point to same structure for each API. Because Bound-import

method should be considered as resolving the address of API before loading application.

The method is to replace IAT's value with actual address of API beforehand. In instance,

cmd.exe and calc.exe are implemented bound-import method [32].

6.2 Classification results with IAT

 I basically took only API name imported in IAT. Because it is not always that import

address pointed to thunk value is not same even if the same API is imported in each

applications. So I used API name imported in IAT as characteristic quantity. Finally I

recognized DLL name as key for learning data and API name concatenated character

space with next API name in same DLL name as value. In some application, the size of

import address table is zero or the number of API in IAT is zero. I skipped to classify

such a file. Also I did not include packed file as data.

 Classification method was implemented with perceptron and AROW algorithms. I

applied 2-gram to extract characteristic quantity. Text message is divided by space

character and treat with lists of divided character as characteristic quantity. I show the

result in Table 6-2.

Algorithm FP rate TP rate TN rate FN rate

Perceptron 0.17 0.82 0.85 0.15

AROW 0.23 0.77 0.92 0.08

Table 6-2: classification result with API name

33

As we can see the table, TN and TP were 0,82, 0.85 respectively. It suggested that it

could possibly classify malware only with API name. I analyze that a set of API could be

different and biased between goodware and malware.

 To obtain the clue for the result, I took the appearance frequency for API stored in IAT

for malware and goodware in Table 6-3. I focused on API which was higher frequency

than goodware's frequency.

The way to read the table is ,for example, about ExitProcess. 285 in 500 malwares

imported the API and goodware's appearance frequency was 275.

 Now we consider about the reason ExitProcess function is often called. I analyzed that

malware immediately terminates itself if detecting malware is attached by debugger. If

not, malware tends to process injection to hide itself. At the time, I expected that

ExitProcess would be called.

 About appearance frequency of LoadLibraryA is 273, while goodware was 291. The rate

of usage was 55 % in average in malware. It indicates that malware's behavior is strongly

tied up with external DLL file than goodware. I believe that the function must be surely

meaningful classification level even if the number of samples increases.

 GetStartupInfoA was seen in malware name Generic.BackDoor.U which stole the system

information of the created process [33]. As seen in malware name Generic.Fake.Alert.lw

as well [34], GetStartupInfoA could be thought as possibly being abused even in another

malware. The rate of appearance frequency was 34% and showed high value.

VirtualFree and HeapCreate are API related to control memory. VirtualFree was called

after VirtualAlloc to release the reserved memory. Although it seemed to be same

frequency with VirtualAlloc both in goodware and malware, VirtualFree imported with

simgle was often seen in malware. The rate of appearance frequency was 33%.

34

API Rank Mal's freq(x/500) Good's freq(x/500)

ExitProcess 2 279 269

LoadLibraryA 3 273 255

VirtualFree 7 208 191

GetStartupInfoA 12 169 152

HeapCreate 23 144 114

GetStringTypeA 39 124 120

LCMapStringA 68 99 82

FreeEnvironmentStringsA 82 87 70

__vbaExceptHandler 97 77 4

ShellExecuteA 107 74 63

CopyFIleA 112 72 41

GetSystemDirectoryA 190 51 38

SetFileAttributesA 197 50 35

UuidCreate 287 36 10

__vbaFreeStrList 425 28 3

__vbaVarMove 466 22 2

OpenSCManagerA 512 19 8

InternetReadFile 527 18 8

OpenMutexA 547 17 5

OpenServiceA 594 15 5

InternetOpenA 600 15 2

ControlService 614 15 8

WriteProcessMemory 624 14 9

CreateServiceA 865 9 3

CreateRemoteThread 915 8 3

Table 6-3: Average ranking for malware and appearance frequency for both malware and

malware by API imported in IAT

35

CopyFileA would be called when malware copy itself and resources to the disk space.

GetSystemDirectoryA is to obtain the path of system directory. It would be considered

that malware duplicates itself to the system directory. According to analysis report of new

threat by IPA in 2009, GetSystemDirectoryA was identified to be called [35]. After

copied itself, SetFileAttributesA would be called to change it to hidden attribute.

 InternetOpenA and InternetReadFile are a set of API to download files with HTTP and

FTP protocol from Internet. Malware can download a malicious file encrypted with

SSL/TLS because InternetOpenA supports SSL flag as an argument.

 OpenSCManagerA, OpenServiceA, ControlService and CreateServiceA are to control

service in windows. By registering malicious service on windows, malware can invoke its

activity every system booting. These APIs are called with a bunch of processing service.

At first, malware open service controller with OpenSCMManagerA. Then it can access to

the service by OpenServiceA. ControlService is called at restarting and stopping service.

 __vbaExceptHandler, __vbaFreeStrList and __vbaVarMove are imported in

VBRuntime.dll. One could argue that malware developed in Visual Basic showed the

characteristic is disposed to call these functions. The rate of use frequency was

approximately 8%. However it does not work on the target machine that is not being

installed VBRuntime library. As malware developer, they are supposed to develop

malware which does not depend on the machine environment. My expectation attributes

on the ease of development.

 WriteProcessMemory is for process injection which is the technique to inject the

malicious code to another process. For instance, malware inject malicious code into

system process. Therefore we feel that it would not appear to be malicious only if we

monitor process list in task manager. It is said to be great malware if as long as to hide

and stay in the target system. CreateRemoteThread is called to execute the code copied

by WriteProcessMemory. In addition, CreateRemoteThread is combinated with API

LoadLibrary as DLL injection technique that force to inject malicious code into another

process. The rate of frequency in use for these function were 2 % in malware. Despite

36

invisibility is malware's important element, these function are implemented in minor

ones.

 ShellExecuteA is API for lunching another application and the percentage of appearance

frequency was 17 % in total malware. In case of Worm/Conflicker, it would be used to

execute another malware copied to temporary folder [36].

 I analyzed the bias of API by appearance frequency affected the classification.

 Next I show the list of API name which was used only for malware in Table 6-4.

API name Rank Frequency(x/500)

WSCEnumProtocols 308 34

DllUnregisterServer 546 17

GetProcessVersion 743 11

InternetCrackUrlA 827 9

GetVolumePathNameA 833 9

ExcludeUpdateRgn 875 9

DllGetClassObject 906 8

CopyFileExA 912 8

DebugSetMute 920 8

UpdateResourceA 944 8

CreateMailslotW 1036 6

InternetOpenUrlA 1053 6

EnumServicesStatusA 1109 6

CreateDesktopA 1139 5

URLDownloadToFileA 1172 5

WNetGetUserA 1635 3

Table 6-4: API list seen only in malware

37

WSCEnumProtocols is API in Ws2_32.dll to enumerate protocol that is available in the

system. WnetGetUserA is to enumerate user account for establishing connection.

GetProcessVersion is to get major and minor version for windows. These API could be

helpful to steal information of target system.

 InternetCrackUrlA, InternetOpenUrlA and URLDownloadToFileA are related to

download another malware from Internet. InternetOpenUrlA supports protocol SSL/TLS

and there are some malware that would bypass the sniffing by network administrator.

 CreateMailslotW is used for communication with another process. I expect that the API

is helpful for malware to communicate the other malware created by parent malware. In

stuxnet 0.5, communication among malware process was established by a mailslot [37].

 Although API name showed in Table 6-4 was low in appearance frequency in malware, it

had never seen in goodware. It reflects the characteristics of minor malware. Almost of

malware consists of subspecies generated by tool automatically. So I think that the this

analysis would be helpful to find new species of malware.

38

7 Classification by using API call sequence

 In this chapter, I classified the goodware and malware by API call sequences as

characteristic quantities. API call sequences are obtained from dynamic analysis not from

static analysis. As good point of dynamic analysis, it is possible to find activities of

malwares in detail. For example, we can discover how, when, which files, registries and

services the malwares access, write and read. Also we can trace procedures of generating

child processes and injecting them. As first bad point of dynamic analysis, time to spend

for analysis could be relatively longer than static analysis. For treating with more

malwares, there are some ways to shape the method by parallelizing machines to save

time or by sharing the analysis results in several machines. As second negative point,

some malwares has the competence to detect that a malware itself is running on the

virtual machines [38]. In the case of Virtual Box, it is quite easy for malwares to detect an

execution environment by enumerating the process lists. Because windows operating

system installed guest additions has the VboxService.exe as a process name. In the case

of VMware, it is possible to detect an execution environment for malwares by sending

some command to a backdoor port. If running on the virtual machine, it should response

to malwares over the port. However it is avoidable to change the configuration of a guest

machine [39]. Note that this way is not perfect way to avoid malware's detection. Because

an exception should be caused at realistic machine when it is detected. By patching codes

checking 'VMXh' with NOP codes, it is able to emulate the exception even on the virtual

machine [40].

7.1 Cuckoo Sandbox

 I introduced Cuckoo Sandbox as a tool of dynamical analysis [41]. It outputs the results

formated JSON after analyzing executable files. The pros is that we can discover the lists

of all API name imported and exported by malwares even if executable files are packed.

In static analysis, the list of API name imported by a malware is hidden by a packer and

39

actual API called by malware is restored after unpacking original code and rebuilding

IAT. So we can skip the procedure of unpacking with Cuckoo Sandbox. A disadvantage

point is that it takes more time to analysis compared with static analysis. In addition, I

would like to recommend to divide the server of the Cuckoo Sandbox for goodwares and

malwares to manage logs easily and to save time for dynamic analysis.

 Cuckoo Sandbox supports to capture the network traffic. We can check the lists of hosts

that malwares accessed and what kind of traffic malware sent with servers. I believe that

it could be possible to use characteristic quantity from network traffic.

 Next we move to the log of API call sequences output by Cuckoo Sandbox. I show the

log structure of calls field in the result obtained from Cuckoo Sandbox in Table 7-1.

Field Description

category Either file system or system or network or registry or process or

service or misc or synchronization

status True(Success) or false(Fail)

timestamp Timestamp when the API was called

thread_id Id of thread

repeated Times to be called repeatedly

api API name

arguments Stored as sets of argument name and the value

Table 7-1: structure of call filed in the result formated in JSON file from Cuckoo

Sandbox

From the table, I took API name as a characteristic quantity for classification. For some

specific API, I took some argument to clarify the different activities among goodwares

and malwares (Table 7-2). API VirtualProtectEx is supposed to change an attribute of the

40

memory region into executable attributes by malware. APIs RegSetValueExW,

RegCreateKeyExW, RegOpenKeyExW, RegOpenKeyExA could be often used both by

goodware and malwares. I thought that it was good to take Subkey's value because

Subkey indicates the path of some registry key. I expected to make the difference

malwares often access. API FindWindowA is used when controlling window belong to

another applications. For example it is called when checking whether particular

application is running or not. In some case, malware lists up the list of processes in the

task bar and be sure the existence of anti-virus and network firewall. API

LdrGetProcedureAddress is called to resolve address of API imported from DLL. I

thought that this API could be useful to trace beginning of malicious activity. In

LdrGetDllHandle and LdrLoadDll, we can identify which DLL and the exported function

has been loaded in the application. LookupPrivilegeValueW would be used to check what

the range of activities malwares can do. In NtCreateFile, we can monitor files and

directories created by a process. However I filtered file handle and file name because it

depends on every process. I believed that DesiredAccess indicated the wish of an

application to operate file system.

 When I was taking categories, I filtered for a misc category. Because most of API are

GetSystemMetrics function in a misc category. I thought it would affect to the accuracy

of classification as noises and the function would not be important to classify malwares.

41

API name arguments

VirtualProtectEx Protection

RegSetValueExW ValueName, Type

RegCreateKeyExW SubKey

RegOpenKeyExW SubKey

RegOpenKeyExA SubKey

FindWindowA ClassName

LdrGetProcedureAddress FunctionName

LdrGetDllHandle FileName

LdrLoadDll Flags, FileName

LookupPrivilegeValueW PrivilegeName

NtCreateFile DesiredAccess

NtFreeVirtualMemory FreeType

OpenServiceW ServiceName, Desired Access

OpenSCManager MachineName, DatabaseName, DesiredAccess

Table 7-2: sets of API and arguments took as characteristic quantity

7.2 Experiment of the classification with API call sequences

 I show the dataset used in the classification in Table 7-3. A virtual machine for executing

datasets is Windows XP SP2 32bits.

 In this time, I targeted at unpacked file as well as packed file. Because it does not need to

unpack it manually and packer automatically unpack a file and extract original code.

That's why I included packed files.

42

Malware Goodware

Learning dataset 500 500

Testing dataset 300 300

Table 7-3: dataset used in the classification

I show the flow chart of the experiment in Figure 7-1. Firstly I gave all datasets for

Cuckoo Sandbox and Cuckoo Sandbox outputs result files formatted JSON. Secondly I

provided them for Jubatus client. Jubatus client eliminates the noise which is high

frequency among all datasets [42]. Because it is able to make classification more stable.

Jubatus client extracts the characteristic quantities from output file formatted in JSON.

 Finally Jubatus client sends characteristic quantities to Jubatus server which responses

with classification results to the client. Finally Jubatus server classify datasets with

perceptron algorithm combined with 2-gram.

43

Figure 7-1: the flow chart of the experiment

 The rate for filtering noise is set to 0.90 as cutting high frequency. So the noise should be

recognized to be cut off if appearance frequency is more than 0.90. The reason why I

chosen those number is because they were the most stable among the experiments

changed from 0.75 to 0.90 as high frequency.

 While classifying datasets with string character which has long length, sometimes

memory error happened on Jubatus server. So I dynamically assigned hexadecimal

number with each fields to shrink the data length. (Figure 7-2). It could mitigate the risk

for the memory error on Jubatus server.

7.3 Classification results of API call sequences

 Firstly I took only API name excluding its arguments as characteristic quantities. In

addition, the process cutting noise was not implemented. I show the result in Table 7-4.

44

Figure 7-2: Convert API name to hexadecimal number

FP rate TN rate TP rate FN rate

Average 0.08 0.92 0.94 0.06

Minimum 0.15 0.85 0.98 0.02

Maximum 0.05 0.95 0.93 0.07

Table 7-4. Classification result for extracting only API name. The process cutting noise

was not implemented. I experimented 20 times in total by randomizing the order of

learning datasets.

 I show the classification results in the case of including API's arguments in Table 7-5. I

experimented 20 times in total and obtained the each accuracy rates. Comparing the result

in Table 7-4, rates for an average and the gap for minimum are same. However we found

that higher accuracy was obtained when including API's argument.

FP rate TN rate TP rate FN rate

Average 0.08 0.92 0.94 0.06

Minimum 0.15 0.84 0.96 0.04

Maximum 0.04 0.96 0.96 0.04

Table 7-5: classification result by API call sequence. Average, minimum and maximum

rates are for 20 times of experiment randomizing the order of reading files.

 As the evaluation from the results, I evaluated the average value, maximum value and

minimum value among those experiments. On the average rate, TN rate was 0.92 and TP

rate was 0.94. The gap for TN and TP at minimum rate were 0.12 . So the result became

unstable in some case. In maximum rate, both TN and TP were 0.96 and it showed high

accuracy and stable. We can see that the gap was not seen in TN and TP rates and the

result indicates that the machine could classify correctly. If we always kept the maximum

accuracy stable, we could implement it on realistic anti-virus products as heuristic engine.

45

 However the result depending on the order of learning datasets are negative points for

machine learning. To fill in this gap, this classification method should not work alone. It

might be better to classify malware by corporating with another classification algorithm.

As an example of an open source classification tool, Adobe malware classifier

implements 4 classification algorithms (J48, J48 Graft, PART, and Ridor) and classifies

them by collegiate system [43]. Adobe malware classifier classifies them with

characteristic quantities obtained from statical analysis. When judging it, the classifier

returns 1 as malware if all classification algorithms answers that the file must be malware

in a unanimous. If classifier vote to goodware in a unanimous, then it returns 0 as

goodware. Otherwise, it returns string value “UNKNOWN”.

46

8 Summary

 In summary, I summarized the findings about machine learning. I list up the key point,

suggestions, improvement and reflections throughout my experiments.

1. In the classification testing by ranking of operation code, the rate of accuracy

marked approximately 74% in maximum. To make the classification stable, I

implemented to filter noise by taking top rank of appearance frequency for

operation code. However evaluating about which upper ranking is best accuracy

depends on the datasets that we use. By filtering from the top rank 30 to 50, it

showed stable accuracy for both AROW and perceptron algorithm. In addition we

have to implement another way to cut noise. Because the result was unstable

though the experiments. I should have cut noise by excluding the high and low

appearance frequency commonly used in goodware and malware.

2. In the classification testing using perceptron and AROW algorithm of 2-gram and

3-gram with word unit, the accuracy rate was approximately 0.83 in a maximum.

The accuracy rate from n-gram with word unit showed higher rates than n-gram

with character unit. Therefore I would suggest that implementation for N-gram

should be word unit.

3. In the classification testing using perceptron and AROW algorithm of API

imported into IAT, the accuracy was approximately 0.83 for perceptron. In this

time, AROW algorithm did not show the stable results. However I believe that I

have to evaluate more accurate results by randomizing reading files and

increasing the number of datasets. Because the sequence of learning files affects

the accuracy of classification. This can be said on all experiments of machine

learning. Also we could not implement the automatic unpack for packed file. As

an agenda, I am going to investigate the automated unpacking system. In

47

addition, by evaluating frequency of API, we can find the clues about what kind

of activity that malwares prefer and what kind of the minor function that they

have. We might find the new species of malwares by machine learning.

4. In the classification testing using perceptron algorithm taking API call sequence

as characteristic quantity. As our agenda, we have to review more which

arguments of API should be taken as characteristic quantity. And process for

cutting noise should be improved. I cut the noise from only API name. But I

noticed that I should cut it from API name and its arguments.

5. I could not prepare enough datasets of goodwares. So it is required to collect

more goodwares to calculate more accurate rate. In this time, installer file

formatted in win32 executable was included in goodware. I think that it is not

recommended to include an installer. Because we purely need to extract the

characteristic of goodware. Therefore it is highly required to install goodwares on

the victim's virtual machine in advance that does not work alone or only submit

the executable file that can work with single to Cuckoo Sandbox.

6. Jubatus framework supports some kinds of algorithm for classification. In this

time, I implemented perceptron and AROW algorithm. However there are

another possibility to try PA [23], CW [24], NHERD [26]. I have to evaluate the

results with those algorithms. In addition, among these algorithm, it is interesting

for us to take collegiate system for classifying malware.

7. From the results of my experiments, I think that it is still difficult to apply in

realistic malware detection. Because the rates of the accuracy are unstable and

getting rid of noise by screening and filtering should correctly be applied in my

experiments. In addition, we should consider about how to unpack packed

application.

48

References

[1] Quaterly REPORT PandaLabs (July-September 2009)

http://www.ps-japan.co.jp/uploads/fckeditor/pdf/pandalabs_2009Q3.pdf

[2] News of Malicious Email Campaign Used As Social Engineering Bait

http://blog.trendmicro.com/trendlabs-security-intelligence/news-of-malicious-ema

il-campaign-used-as-social-engineering-bait/

[3] The Anatomy of RTKT_ZACCESS

http://about-threats.trendmicro.com/RelatedThreats.aspx?

language=en&name=The+Anatomy+of+RTKT_ZACCESS

[4] Infographic: state of malware 2013

http://www.mcafee.com/us/security-awareness/articles/state-of-malware-2013.asp

x

[5] Perceptron learning: http://page.mi.fu-berlin.de/rojas/neural/chapter/K4.pdf

[6] Upatre : Another day Another Downloader

http://www.secureworks.com/cyber-threat-intelligence/threats/analyzing-upatre-d

ownloader/

[7] Blackout: What Really Happened: Jamie Butler and Kris Kendall

https://www.blackhat.com/presentations/bh-usa-07/Butler_and_Kendall/Presentati

on/bh-usa-07-butler_and_kendall.pdf

[8] Towards an Understanding of Anti-virtualization and Anti-debugging Behavior in

Modern Malware

https://web.eecs.umich.edu/~mibailey/publications/dsn08_final.pdf

[9] pefile module http://code.google.com/p/pefile/

[10] Jubatus http://jubat.us/en/

[11] Exploit:W32/AdobeReader.K (F-secure)

http://www.f-secure.com/v-descs/exploit_w32_adobereader_k.shtml

49

http://www.ps-japan.co.jp/uploads/fckeditor/pdf/pandalabs_2009Q3.pdf
http://www.mcafee.com/us/security-awareness/articles/state-of-malware-2013.aspx
http://www.mcafee.com/us/security-awareness/articles/state-of-malware-2013.aspx
http://about-threats.trendmicro.com/RelatedThreats.aspx?language=en&name=The+Anatomy+of+RTKT_ZACCESS
http://about-threats.trendmicro.com/RelatedThreats.aspx?language=en&name=The+Anatomy+of+RTKT_ZACCESS

[12] ClamAV http://www.clamav.net/lang/en/

[13] University of Birmingham, lecture note

http://www.cs.bham.ac.uk/internal/courses/intro-nc/current/notes/08-perceptrons.

pdf

[14] Libdasm https://code.google.com/p/libdasm/

[15] IMAGE_DOS_HEADER

http://www.nirsoft.net/kernel_struct/vista/IMAGE_DOS_HEADER.html

[16] IMAGE_NT_HEADERS

http://msdn.microsoft.com/en-us/library/windows/desktop/ms680336(v=vs.85).as

px

[17] IMAGE_SECTION_HEADERS

http://msdn.microsoft.com/en-us/library/windows/desktop/ms680341%28v=vs.85

%29.aspx

[18] UPX(Ultimate Packer For Executable) http://upx.sourceforge.net/

[19] Analyzing malware: fighting against infection incidents with free tool (O'Reilly

Japan) Page 78-79

[20] OllyBoneE http://www.joestewart.org/ollybone/

[21] OllyDbg http://www.ollydbg.de/

[22] Analyzing malware: fighting against infection incidents with free tool (O'Reilly

Japan) Page 87-88

50

http://www.joestewart.org/ollybone/
http://upx.sourceforge.net/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680336(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680336(v=vs.85).aspx
http://www.nirsoft.net/kernel_struct/vista/IMAGE_DOS_HEADER.html

[23] Koby Crammer, Ofer Dekel, Shai Shalev-Shwartz and Yoram Singer, Online

Passive-Aggressive Algorithms, Proceedings of the Sixteenth Annual Conference

on Neural Information Processing Systems (NIPS), 2003.

[24] Mark Dredze, Koby Crammer and Fernando Pereira, Confidence-Weighted Linear

Classification, Proceedings of the 25th International Conference on Machine

Learning (ICML), 2008

[25] Koby Crammer, Alex Kulesza and Mark Dredze, Adaptive Regularization Of

Weight Vectors, Advances in Neural Information Processing Systems, 2009

[26] Koby Crammer and Daniel D. Lee, Learning via Gaussian Herding, Neural

Information Processing Systems (NIPS), 2010.

[27] Free VirusSignList http://freelist.virussign.com/freelist/

[28] Bob / Team PEiD Signatures

http://code.google.com/p/reverse-engineering-scripts/downloads/detail?

name=UserDB.TXT

[29] Google Ngram Viewer https://books.google.com/ngrams

[30] Data conversion http://jubat.us/en/fv_convert.html

[31] N-gram plugin of word unit

https://github.com/jubatus/jubatus-example/tree/master/malware_classification

[32] Analyzing malware: fighting against infection incidents with free tool (O'Reilly

Japan) Page 63-69

[33] McAfee Generic BackDoor.ru

http://www.mcafee.com/japan/security/virG2005.asp?v=Generic%20BackDoor.u

51

http://freelist.virussign.com/freelist/

[34] Generic FakeAlert.lw http://www.mcafee.com/japan/security/virG.asp?

v=Generic+FakeAlert.lw

[35] analysis of new threat by IPA in 2009 https://www.ipa.go.jp/files/000017746.pdf

[36] Worm/Confliker

http://www.avira.com/de/support-threats-description/tid/4474/tlang/en

[37] Stuxnet 0.5: Command-and-Control Capabilities (Symantec Official blog)

http://www.symantec.com/connect/blogs/stuxnet-05-command-and-control-capabi

lities

[38] The Dead Giveaway of Vm-Aware Malware

http://www.fireeye.com/blog/technical/malware-research/2011/01/the-dead-givea

ways-of-vm-aware-malware.html

[39] Bypassing Virtual Machine Detection on Vmware Workstation

http://www.unibia.com/unibianet/systems-networking/bypassing-virtual-machine-

detection-vmware-workstation

[40] Analyzing malware: fighting against infection incidents with free tool (O'Reilly

Japan) Page 133-136

[41] Cuckoo Sandbox http://www.cuckoosandbox.org/

[42] Analysis of massitve amount of API call logs collected from automated dynamic

malware analysis systems http://www.iwsec.org/mws/2013/manuscript/3A1-4.pdf

[43] Adobe Malware Classifier http://sourceforge.net/projects/malclassifier.adobe/

52

https://www.ipa.go.jp/files/000017746.pdf

