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Abstract 

 

As part of this thesis, a web application was developed for the client, Pipedrive. The 

application is a sales velocity calculator. Sales velocity is a metric, which tells a 

salesperson how much money’s worth of successful deals he makes in a given time 

period. The purpose of the application is to give the salesperson a better understanding 

of the effectiveness of his work, and to help him understand which of his sales velocity 

parameters could be improved. 

 

The application uses a client-server architecture. It uses the Gin-gonic and React.js 

frameworks, as well as PostgreSQL database and Docker. New versions of the 

application are deployed using Gitlab CI/CD. End users’ data is fetched from 

Pipedrive’s public API. The application requires the user to login using OAuth. 

 

Initially, the scope of the work included automatically making suggestions about which 

sales velocity parameters the salesperson should improve. A neural network based 

machine learning approach was used for this purpose. However, the used data set 

proved difficult for machine learning and the attempt was unsuccessful. One result of 

this work is a thorough analysis of the data set and the code for an inadequately accurate 

machine learning model. 

 

The application is available at www.pipedrivesalesvelocity.tk. A Pipedrive account is 

required to log in. 

 

The thesis is in English and contains 58 pages of text, 8 chapters, 33 figures and 7 

tables. 
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Annotatsioon 

Käesoleva bakalaureusetöö raames on tehtud Pipedrive jaoks müügikiiruse arvutamise 

rakendus. Müügikiirus on indikaator, mis annab müügiinimesele teada rahasumma, mis 

väärtuses ta teatud ajaperioodis edukaid müügitehinguid teeb. Eesmärk on anda 

müügiinimesele parema arusaamise tema töö efektiivsuse kohta ning aidata mõista, 

missuguseid tema müügikiiruse parameetreid oleks tark parandada. 

Rakendus on valmistatud klient-server arhitektuuri järgi, kasutades Gin-gonic ning 

React.js raamistikke, PostgreSQL andmebaasi ning Dockerit. Uute versioonide 

serverisse paikamise protsess on lahendatud Gitlab CI/CD tööriistaga. Lõppkasutaja 

andmed saadakse Pipedrive avaliku API’ga suheldes ning sisselogimine kasutab 

Pipedrive OAuth’i. 

Töö esialgsesse skoopi jäi lõppkasutajatele automaatsete soovituste pakkumine selle 

kohta, missuguseid müügikiiruse parameetreid ta võiks parandada. Selle jaoks võeti 

kasutusele närvivõrkudega masinõppimise meetod. Antud andmestik osutus 

masinõppimise jaoks keerukaks. Töö tulemusena valmis põhjalik andmete analüüs ning 

ebapiisava täpsusega masinõppe mudeli kood. 

Rakenduse valmistamise põhilisteks raskuskohtadeks olid masinõpe ning Pipedrive 

avaliku APIga andmevahetus. 

Valminud rakendus on kättesaadav aadressil www.pipedrivesalesvelocity.tk. 

Sisselogimiseks on vaja Pipedrive kontot. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 58 leheküljel, 8 peatükki, 33 

joonist, 7 tabelit. 
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List of abbreviations and terms 

ReactJS Javascript Framework for Frontend applications 

Pipeline Set of stages that a prospect moves through, as they progress from a 
new lead to a customer 

Kanban board Agile project management tool 

React Context Component structure provided by the React framework, which enables 
sharing specific forms of data across all levels of the application 

TensorFlow Free and open-source software library for dataflow and differentiable 
programming across a range of tasks 

Jupyter 
Notebook 

Open document format based on JSON 

Google Colab  Google research project created to help disseminate machine learning 
education and research 

CSV Comma-separated values (CSV) file is a delimited text file that uses a 
comma to separate values 

Zeppelin  Web-based notebook that enables data-driven, interactive data 
analytics and collaborative documents with SQL, Scala and more 

Seaborn  Python data visualization library based on matplotlib 

Pairplot Set of graphs of pairwise relationships in a dataset 

MAE Mean Absolute Error is a measure of errors between paired 
observations 

SPA Single-page application. A web application or website that interacts 
with the web browser by dynamically rewriting the current web page, 
instead of the default method of the browser loading entire new pages 

Gin-gonic HTTP web framework written in Go 

Golang, Go Statically typed, compiled programming language designed at Google 

DBMS  Database Management Software 

DB Database 

DAO Data Access Object. Pattern that provides an abstract interface to some 
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type of database or other persistence mechanism 

JSX JavaScript XML. Syntax extension to JavaScript 

Jest JavaScript testing framework 

AWS Amazon Web Services. Cloud computing service provider 

ECR  Amazon Elastic Container Registry. Managed AWS Docker registry 
service 

EC2 Amazon Elastic Compute Cloud. Web service that provides compute 
capacity in the cloud 

ECS Amazon Elastic Container Service. Highly scalable, high performance 
container management service 

S3 Amazon Simple Storage Service. Cloud-based data storage 

Cloudfront AWS content delivery network 

Cloudwatch Monitoring service for AWS cloud resources 

Security 
Group 

Virtual firewall for AWS instances 
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1 Introduction 

Pipedrive is a cloud-based sales software company. It is the maker of the web 

application and mobile app Pipedrive, a sales customer relationship management 

(CRM) tool for salespeople in scaling companies. Pipedrive aims to improve the 

productivity of businesses through the use of their software.  

 

Pipedrive has a lot of different features that all work together but are separated visually 

and are meant for different purposes. One of these functionalities is the Insights & 

Reports page which provides statistics about how logged in salesmen and other people 

in the same company are doing and how effective they are. 

 

As part of this Insights page, Pipedrive wishes to let their users know how well they are 

currently doing as a salesperson by letting them know what their sales velocity is. Sales 

velocity is one of the key metrics for the salespeople to understand how successfully 

they are selling and also a way to compare their current results with their past results 

[1]. 

 

Sales Velocity (S) is an indicator, which is calculated based on 4 key variables: the 

number of opportunities in the pipeline (A), average deal size (B), win rate (C), and 

time it takes to win a sale (D).  The following formula is used: 

 

𝑆 =
𝐴 ∗ 𝐵 ∗ 𝐶

𝐷 	 

Equation 1 Sales velocity formula 

 
The logical solution for this problem would have been to create the additional 

functionality as part of the Insights page. However, that would have required access to 

Pipedrive’s internal API. Because only access to Pipedrive’s Public API had been 

granted for the project, the only option left was to create a Marketplace application that 

Pipedrive users can add to their account. 
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2 Project scope 

The project scope consisted of three concrete phases. In the first phase creation of an 

application which allows the user to calculate his sales velocity was required. After the 

completion of the second phase the user is able to change the values of his key variables 

to see how the change affects his sales velocity. The third phase was to suggest the most 

optimal change for increasing the user’s sales velocity (Appendix 2). 

  

The expectation of the third phase was unclear from the start. A question was posed to 

Pipedrive about how they expected the algorithm to suggest the most optimal change to 

the user. They initially suggested to look at which small changes in velocity parameters 

would result in the greatest change in sales velocity, and to simply suggest those 

changes.  

 

It was explained to the Pipedrive mentor that it doesn’t matter if you increase the 

parameter A, B or C by 10%, the resulting sales velocity increase would still be 10% 

(Equation 1). It was also explained by the team that a very effective suggestion for 

increasing sales velocity would simply be to lower the D parameter to have a value 

which approaches zero, so that the sales velocity approaches infinity. However, this is 

clearly not practical. 

 

Instead, a meaningful suggestion should take into account which values are achievable 

in the real world for each parameter. Changes should be suggested based on where the 

salesman is underperforming. 

 

Pipedrive didn’t have any ideas about how exactly they wanted this problem to be 

approached, so they allowed the team to find the best approach themselves. It was 

decided to use a neural network-based machine learning approach, described in chapter 

4.1. 
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2.1 Alternative scope 

 It was discussed to have an alternative plan in case the machine learning system didn’t 

work. The Pipedrive mentors gave input that the most useful feature would be a filtering 

system incorporated into the application.  

 

The system would have the possibility to select the user, the pipeline and the time 

period (this/last week/month/quarter) which would be displayed. Additionally, a 6-

month history was added, which displays a sales velocity chart and has tooltips with all 

key metrics which the sales velocity is calculated from. Filtering can be seen as a simple 

feature, however the challenges and problems with them can be read about in chapter 

5.1.2. 

Fortunately, it turned out that allowing the users to view their history and compare 

themselves to other users can be used for the same purposes that the machine learning 

was meant for. By comparing themselves to others and seeing their past performance, 

the clients can understand which parameters they need to concentrate on.  

2.2 User stories 

User stories were given by the Pipedrive. Afterwards, they were discussed with the team 

and the following is the final user story list and visualization (Figure 1): 

• As a salesperson, I want to know my sales velocity, so that I know my 

performance and can forecast the revenue more accurately. 

• As a salesperson, I want to change the original value of key variables, so I can 

understand how it would affect my velocity. 

• As a salesperson, I want to see how my sales velocity has changed during the 

last 6 months, so I can see how effective and productive I was during that 

period. 

• As a salesperson, I want to be able to filter the results by time, pipeline and user. 
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Figure 1 User stories 
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3 Project description 

Prior to the actual beginning of development, the project framework was set up:  

• The roles and responsibilities were split. 

• The rules, methodology, agreements, development guidelines and project 

structure were set. 

• The tools and environments were set up. 

 

It was agreed that Heino Sass will be a DevOps and backend engineer, Juri will be a 

frontend engineer and the team lead and Konstantin will be a full stack engineer. 

While doing machine learning Konstantin and Juri were performing the role of data 

engineers while Heino Sass assumed the role of ML engineer and data scientist 

 

Two days were chosen for full-time work on this project (8h per day). Those days were 

Tuesday and Saturday for the first half of the semester. For the second half of the 

semester they were Wednesday and Saturday.  

 

Prior to the emergency situation in Estonia, which started on 12th of May, work was 

done in Pipedrive’s office, where tables with monitors and other needed equipment 

were provided for each team member.  

 

As a communication channel Slack was used for internal text messaging communication 

and Zoom was used for video meetings. The main reasons were that every team member 

had some experience with those applications. Pipedrive mentors also use those, so 

communication with them was faster and easier for both sides. 

 

Meetings with the Taltech mentor were organized twice a month at the beginning of the 

project. After COVID-19 it was decided to have meetings once a week. Meetings with 

Pipedrive managers were organized on-demand, when required. Once a week the 

progress of the team was written in Slack and it was asked whether Pipedrive mentors 

wanted to video conference with the team or not. 
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A Kanban board was used to organize tasks. Table 1 describes each stage which was on 
the board. 
 

Table 1 Kanban board stages 

Stage title Description 

Backlog Tasks that had to be done later, not in the current milestone 

Selected for 
development 

Tasks that have to be done in current milestone, but not yet taken 
by any team member 

In development Tasks that are already taken and are being implemented 

In review Tasks are currently in review. There was a guideline that every 
PR should be approved by another teammate before it’s merged 
into the master branch 

Done Tasks that are completed 

 
 
Tasks were grouped into milestones which served the role of a one sprint iteration. In 

the beginning, milestones were one week long. However, it became apparent that too 

much time was used for planning and management. Consequently, it was decided to 

extend the milestone duration. Therefore, in the second part of the project, milestones 

were 2 weeks long. After milestone planning the timeline graph was updated on the 

project's Wiki page (Appendix 4 - Project links). 

 

Every working day was started with a morning standup. Backlog grooming was done at 

standups when needed. Retrospectives were done every two weeks. 

 

Additionally, a daily project log was kept (Appendix 4 – Project links).  
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4 Project design 

The high-level abstract design of the application is shown in Figure 2. 

 

In the frontend ReactJS SPA (Single Page Application) is used, which sends HTTPS 

requests to the API. The API is a Golang application, in which the Gin-gonic REST 

framework is used. The Golang application stores information about users in a 

PostgreSQL database. It receives the data, which is needed for calculations, by querying 

the Pipedrive public API.  

The decision of using PostgreSQL was made since it's a very popular relational DBMS 

(Database Management Software) [2] and each member of the team already had 

previous experience with it. The fact that each team member was already comfortable 

with the DBMS made it an easy choice. However, due to the architecture of the app and 

simplicity of the schema, it can be easily replaced by some other SQL database, or any 

other suitable data storage, such as Key-Value storages like Redis. 

For the backend language the project team had a choice between Go and Node.js, which 

are the only two languages currently approved for making new internal services in 

Pipedrive.  

 

 

Figure 2 Application design 
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Reasons why Go was chosen over Node.js: 

• It is a statically typed language. 

• It has opinionated styling rules (enforced with go fmt built-in tool). This helped 

save time by setting team-specific style rules, since the team consists of 

developers from different companies. 

• It was a great opportunity to learn something new. The team had a lot of 

experience with Node.js, thus choosing Golang for the project was an 

opportunity to grow professionally and improve the authors’ value on the job 

market. 

4.1 Backend 

The two key aspects of designing the backend were the database schema design and 

design of the backend application. 

4.1.1 Database design 

The choice of SQL database was partly reasoned by the fact that the plan was to add a 

velocity_params_record (see Figure 3) table for adding caching to the results. 

 

Figure 3 Initial database schema 
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It was considered both useful for performance and for analyzing the data for the 

machine learning part (since it was unknown initially if access to Pipedrive’s data 

warehouse would be provided). For data analysis purposes it was also planned to have a 

company table which would contain useful metadata for predictions, such as the sales 

team size or the region of the company. 

However, after time filtering appeared in the scope, caching became less relevant. It was 

initially not clear which filters were required to be implemented, and therefore how the 

caching should be implemented. Therefore, development of the caching functionality 

was delayed. Later, caching was removed from the scope of the project since it was not 

a high priority feature for Pipedrive. 

Furthermore, access to Pipedrive’s data warehouse was given for data analysis and 

machine learning purposes, so velocity parameters storage in the DB (database) became 

completely redundant. 

Currently the database is used only for storing refresh tokens for the users. 

4.1.2 Backend application design 

A layered architecture (shown on Figure 4) with clear separation of concerns is used in 

the backend.  

 

The backend project has the directory structure described in Table 2. 

 

Figure 4 Backend architecture 
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Table 2 Backend application folder structure 

Folder 

name 
Purpose 

controllers 

Route handlers that extract parameters from request. After the requests 

are passed to services, the handler decides how to forward the service’s 

response back to the client 

middleware CORS and authorization (Figure 7 in chapter 5.1.1) middleware 

services 
Folder containing packages with services. Services are packages that do 

most of the logic of the app, using pdapi and db packages 

db Containing DB migrations, DB instance initialization, and DAOs 

pdapi 
Wrappers for working with Pipedrive public API. In Figure 5 there are 

mappings between Pipedrive response data and Go structures 

mocks 
Auto-generated mocks done by make (Unix terminal command) 

generate 

types Data structures used across different packages 

util Helper functions used across different packages 
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dev-setup 
Containing pre-commit scripts which should be installed in the 

developer’s machine 

vendor 
Folder with go modules (dependencies), which is used by the Docker 

container running an app 

Also, a makefile with helper commands is present in the project. Table 3 contains the 

most relevant helper commands in the makefile: 

 

Table 3 Most often used CLI commands 

Command Purpose 

make setup install 
Installs linter and prehooks 

make setup install 
Makes tidying of modules and generates the vendor folder, which 

is described above 

make docker-

prepare 
Generates mocks and places them to the mocks folder 

The code is covered by unit tests with coverage of around 80%. Functional tests, 

however, aren't present, since most of them would require valid access tokens, so trying 

to write those would not be worth the effort. 

A custom open-source docker image that supports hot reloading is used [2]. Hot 

reloading makes it extremely practical to use the same environment as in production, 

while developing new functionality locally.  
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Figure 5 Data diagram 
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4.2 CI/CD integration 

To ease the deployment process, it was decided to use Gitlab CI/CD. Having a CI/CD 

solution is useful for the project because deploying the application consists of many 

time-consuming steps, such as installing packages, building, testing, etc. Automating 

the process saves a significant amount of time. Additionally, any updates to the master 

branch will be immediately deployed to production, making it easy to check that the 

code, which works in a development environment, also works in production.  

A preproduction environment could have been also set up to test that everything works 

before deploying the changes to production. That way any bugs will be spotted before 

the clients see them in production. In this project it was chosen not to do that, since it is 

not expected that there will be any future development of this app after it is added to the 

marketplace. Instead Pipedrive has said that they would like to integrate the 

functionality into the “Insights” view where a Pipedrive-specific CI/CD process would 

be used. 

4.3 Frontend 

The main technology for the frontend is ReactJS. It was an obvious choice, since it’s the 

main frontend framework used in Pipedrive. Since the application code is intended to be 

integrated into Pipedrive’s web application it was the only option. 

For faster bootstrapping of the frontend Create React App was used - “an officially 

supported way to create single-page React applications. It offers a modern build setup 

with no configuration” [3]. It was also decided to use Typescript to improve code 

readability and ease of development by using optional types that Typescript provides. 

For writing CSS, the project team agreed to use the CSS modules approach, which is 

one of the defaults from the Create React App template. The benefit of this approach is 

that it is not necessary to worry about CSS class name overlapping anymore, because 

during compilation a unique hash is generated and added to the class name, thus 

avoiding any overlapping class definitions. Other than that, the CSS modules approach 

uses the classical CSS syntax.  
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4.3.1 Code design 

Design principles that are promoted by ReactJS’s community and documentation were 

followed when designing the Frontend part of the application. Although those principles 

might be interpreted in different ways and are not too strict, the team tried to follow the 

best practices while writing the Frontend code. The main pattern of React is creating 

small and reusable components that are responsible for a certain part of application. In 

this project the Functional components and React Hooks approach are used, where each 

component is just a function that returns a piece of the DOM. As it was decided to work 

with functional components, React Hooks are a great option for managing state, 

application context, and side-effects. One functional component is essentially a function 

written in JSX (JavaScript XML) syntax, which returns a small standalone piece of the 

application. 

 

4.3.2 User interface design 

The team did not include any designers. It was suggested by Pipedrive that UI designs 

could be asked from Pipedrive designers if necessary. However, it would have been 

excessive as this application has only 2 pages without a complex user interface. The 

first UI variations were created on paper and discussed inside the team. Further changes 

in UI and UX were done in the following manner: 

• Design the idea, create a mock-up in HTML. 

• Discuss it in a weekly meeting with the client, Pipedrive. 

• Work on implementation. 

Design patterns such as color scheme, spacings, fonts, font sizes etc. were chosen in 

such a way that it would look similar to Pipedrive’s main web application. It helps to 

create the feeling that the Sales Velocity Calculator is a part of Pipedrive. 

4.3.3 Testing 

The frontend only has two main pages, a login page and a home page. Therefore, it can 

be tested manually without a strong need for automated tests. Nevertheless, it was 

decided to cover basic functionality and verify components’ correct rendering with unit 

and smoke tests. The smoke tests just try to render the main components and check if 

this operation succeeded. This way it is ensured that the component will render correctly 

for the client and will not throw an error. Unit testing for components was also added to 
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check that all the elements that the user needs to interact with are rendered and visible. 

Unit testing was also used for testing simple JS functions. 

For testing the frontend, Jest and React Testing Library were used. Jest is mainly used 

for assertions and basic testing functionality. React Testing Library is used for React 

components testing, which basically provides a convenient way of testing DOM nodes. 

That way what users see and what they interact with is tested, not the code itself. 
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5 Project contents 

The following is the detailed description of the project implementation. 

5.1 Backend 

An authorized user (see chapter 5.1.1) has access to the endpoints described in Table 4. 

Table 4 Accessible endpoints for authorized user 

Endpoint Parameters Description 

GET/filters/pipelines - 
Returns all pipelines 
that the user has access 
to. After that user can 
use their IDs in 
calculator requests 

GET/filters/users - 
Same as pipelines, but 
returns list of users 

GET/calculator/velocity_history pipeline: int 
user: int Returns array of sales 

velocity params for 
past 6 months 

GET/calculator/velocity_params pipeline: int 
user: int 
interval: Enum<String> 
{this_month, last_month, 
this_week, last_week, 
this_quarter, last_quarter 
and 6_months} 

Returns sales velocity 
params using provided 
filters 

GET/user/me - 
Returns information 
about the user, such as 
name and default 
currency 

 
 

 



29 

5.1.1 Auth 

The first request a user makes after OAuth is POST/send_code [5]. 

Then the user's row in the database (storing his refresh token) is created or updated. 

Finally backend responds with the access token to the user. 

From time to time, a client will call GET/refresh_token which will get the user's refresh 

token from the database and will use it to refresh the user's access token and return it to 

the user. 

Every request (except POST/sendCode) should contain the AUTHORIZATION header 

with an access token. This access token will be checked in the auth middleware by 

fetching the user profile from the Pipedrive API. If fetching was successful, the 

middleware passes the request further. If it is not successful, which in most cases means 

that access token is expired, the backend will return a 401 to the client that will force the 

client to log out and do OAuth again. 

You can see the authorization and corresponding middleware sequence diagrams on 

Figures 6 and 7. 
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Figure 6 Authorization sequence diagram 
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5.1.2 Filtering 

Filtering data was one of the main architectural problems on the backend. In the 

beginning, it was discovered that a Pipedrive filter can be applied when making a call to 

the “/deals” Pipedrive API endpoint by including a filter ID with the request. Filters in 

Pipedrive are separate and powerful entities that can combine any conditions using 

different logical operations, data fields and helper functions/variables (as relative dates 

which are used in the application for filtering). However, it has one obvious drawback 

in the case of Sales Velocity Calculator - namely all created filters will be visible to the 

 
Figure 7 Authorization middleware sequence diagram 
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user in their Pipedrive user interface. So it could not be afforded to just create a separate 

filter for every combination of a pipeline, user and period. 

 

Considering this fact, and after discussion with Pipedrive Product Managers, it was 

decided to create 7 filters (6 relative dates + half-year period for the history 

functionality) for each user (which are also only visible to him). Pipeline and user 

filtering happen on the application side. 

 

In the last iteration, the team was notified that it is needed to make a slight change in the 

calculation process which has brought another problem - the application side had to 

have some kind of time filtering on it as well. After implementing time helpers for 

relative periods, Pipedrive filters have become redundant in terms of functionality - 

users still get the same result with or without it. However, it has performance value in 

case of long-lived companies, so it was not removed. 

 

A sequence diagram with detailed explanations about how Pipedrive filtering creation 

happens is shown on Figure 8. 
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5.2 Frontend 

The final frontend part contains 2 main pages - Login and Home. Which page to render 

is decided by whether the user is logged in or not. On first landing it is checked whether 

the access token is present in browser local storage. If the token is present, the validity 

of the token is checked by making a request to the backend. If the token is not valid, 

then the user should first login before using the application. In case the token is valid, 

the user is redirected to the home page, otherwise the user is asked to log in to the 

application by redirecting him to Pipedrive’s OAuth page. 

Right after login, when the user lands on the Home page, information about the user is 

queried, including available filters for this specific user, and save those to the context of 

 
Figure 8 Pipedrive filter creation sequence diagram 
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the application. React Context1 is used because 2 different parts of the Home page use 

this information, the calculator and the graph. Thus there is no point in passing this 

information separately. Component specific data is fetched from the backend when the 

component is loaded. For example, when loading HistoryContainer, which is 

responsible for showing the graph, /calculator/velocity_history is queried and when 

loading the calculator component - InputContainer /calculator/velocity_params is 

queried. 

 

All the requests to the backend should have an Authorization header which contains the 

valid access token. If the token is not specified or status 401 (Unauthorized) is received 

then the user is being redirected to the Login page. 

 

5.2.1 State management 

In this project 2 types of state management are used. The first one is the state for the 

component if this is a complex component with a lot of different states. The second one 

is the global application state. In both cases there is no need to use separate libraries like 

Redux (Predictable State Container for JS Apps) as ReactJS allows to implement the 

same approach using React Context and useReducer hook. UseReducer hook allows to 

specify a separate reducer and initial state and gives the current state of the application 

and a dispatch function. By passing the state object and the dispatch function via 

context is it possible to change the global state of the application from any component 

and also receive this change made by other components. 

5.2.2 Typings 

As Typescript was chosen, the project has a separate folder for typings - types. Types 

are used to specify different object structures that are used around the project. One of 

the common use cases for types in the project is action payload definitions for state 

reducers and app state type definitions. 

 
 
1 https://reactjs.org/docs/context.html 
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5.2.3 Environment configuration 

In this project only 2 environments are present:  development and production. For 

making this possible config.ts was made which has different values for development and 

production environments. The selection is happening based on the node environment 

(process.env.NODE_ENV variable). This approach separates the configuration from the 

implementation logic, so the developer does not need to worry about specifying the 

right value for the different environments every time and can just use config.apiUrl 

variable for example. 

 

5.3 Machine learning 

The following is a detailed explanation of the research and development which was 

undertaken in an effort to use machine learning to give improvement suggestions to 

users. 

5.3.1 The idea 

Let’s assume there is a large dataset of clients. In the dataset there are the four 

parameters for calculating sales velocity. Additionally, there is useful metadata, such as 

the industry, company size, geographical location, etc. 

It is possible to train a machine learning algorithm to predict one of the four parameters 

based on the other parameters, given that the training data includes those parameters.  

 

The predicted parameter may be viewed as the expected value of that parameter, or in 

other words, the normal value a client might achieve, given his other parameters. It is 

important to note that the sales velocity should not be used for predicting the parameter, 

because otherwise it would be a simple calculation. 

 
If the real value of the parameter is lower than what is predicted, then the client can be 

given feedback that the parameter could be improved. If the real life value is higher than 

what is predicted, then feedback can be given that he or she is doing well. 

This method can be repeated for all parameters, and thereby find out where the client is 

successful and which parameters could be improved. 
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5.3.2 Method 

For predicting the values, a neural network would be created with one input layer, one 

middle layer and an output layer. The output layer would have one neuron, which will 

be the predicted value. 

The calculations are handled by TensorFlow. The code is based on TensorFlow’s basic 

regression learning tutorial [4].  

Google Colab was used for running the code. It was an extremely convenient option 

because the required libraries are immediately available there. It also made it possible to 

share the code and cooperate more quickly and efficiently. The document is a Jupyter 

notebook, which is hosted on Google Colab. A copy of the Jupyter notebook has been 

included with the application’s source code. 

The training data is stored in a CSV (comma-separated values) file, which must be 

uploaded to the user’s Google Drive. The CSV has been exported from Pipedrive’s data 

warehouse. 

5.3.3 Data gathering 

All the data was taken from Pipedrive’s data warehouse. This was the easiest way to 

gather all the needed data for the analysis from one place. For data gathering standard 

SQL queries were used. Pipedrive’s data warehouse uses the tool Zeppelin which uses a 

specific SQL syntax - Hive SQL. 

Table 5 describes the data fields which were imported from Pipedrive’s data warehouse. 

These parameters are all considered to be “main” parameters and will be referred to as 

such in the future. The only exception is the sales velocity, which is not considered to be 

a main parameter. 

Table 5 Main sales velocity parameters’ explanations 

Opp The number of deals with the status “won” or “lost”. In 

other words, the number of all closed deals. 

Value The average value of selected deals, in euros. Deal values 

in other currencies were converted to euros using the 
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exchange rate of the day when the deal was closed. 

Period The average amount of time it takes to close a deal, in 

seconds. 

win_rate The number of won deals divided by the number of closed 

deals. 

vp_result The resulting sales velocity, in euros per day. 

 

Table 6 describes data fields which were imported from Pipedrive’s data warehouse. 

These parameters are all considered to be “extra” parameters and will be referred to as 

such in the future. 

Table 6 Extra sales velocity parameters' explanations 

country The country of the user. It is an ISO 3166 two character country code. 

tier_code The tier code of the user’s Pipedrive subscription. It has four possible 

values, ranging from “silver” to “diamond”. 

industry The industry of the user. 

company_size The size of the company the user is working in, as a category. 

Region The region of the user. Either Europe or the United States. 

 

As an effort to only gather relevant data, a number of filters were used to get rid of 

unwanted data points. Only the following deals were included: 

• Deals that are already closed - either won or lost state. 

• Deals that have a value bigger than 0. 

• Deals from companies that are on the “paying” plan and were created after 2016. 

These filters are relevant for a set of reasons: 

• Analysing only closed deals was opportune, because open deals did not have any 

value in terms of training. This is because the predicted sales velocity 

parameters were based on closed deals. 
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• Deals with value 0 or a negative value have very specific use cases and should 

not be considered when calculating sales velocity. 

• Companies created after the year 2016 were used because of Pipedrive’s 

instructions to use only a smaller subset of the total dataset. Therefore this was a 

way to reduce the size of the dataset and simultaneously be able to work with 

more recent data. 

• Only companies on the “paying” plan were used as they are more likely to be 

active users of Pipedrive. 

The amount of data in Pipedrive’s data warehouse was more than what was needed for 

machine learning. This was also one of the requirements from Pipedrive - not to use all 

the data. Therefore, only 20% of data was used, even before the application of 

additional filters. After the application of filters, the total amount of data points was 

6092.  

All the currencies were converted to euros for ease of analysis. For currency conversion 

an exchange rate of the two currencies at the time the deal was closed was used. 

All the exported data was exported without any user- or company keys as this data 

should not be traceable back to specific users. This was also one of the requirements 

from the Pipedrive’s data protection department. 

In the first iterations of data gathering and analysis, Zeppelin was used for creating 

scatter plots and histograms. However, because Zeppelin executes queries from the web 

interface and, in this case, on a big dataset, it was performing really slowly. One query 

could take up to 3-4 minutes. Zeppelin also had a learning curve and it turned out to be 

much easier to try out different ideas in Python instead. All this meant Zeppelin was 

better used only for checking basic ideas and exporting data. Further analysis was done 

in Python. 

5.3.4 Data analysis introduction 

Before attempting to build a machine learning model, it is extremely useful to have a 

thorough analysis of the training data. That way more informed decisions can be about 

the learning process.  
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Therefore, possible correlations between the learning parameters were examined. 

5.3.5  Correlation coefficients 

Figure 9 shows Pearson correlation coefficients, which were calculated for all the 

parameters which are not class-based. 

It would be expected to see a fairly strong linear correlation between the main 

parameters and the sales velocity, because the sales velocity is calculated based on the 

main parameters. However, this is not the case, and the coefficients show almost no 

linear correlations.  

The reason for this may be that different combinations of parameters can result in the 

same sales velocity, and correlations are nonlinear. 

For example, if the value parameter is 10000 euros, then that can result in a very large 

or very small sales velocity, depending on the other parameters. Although intuitively it 

might seem that larger values should correspond to larger sales velocities, the data turns 

out to be more chaotic. 

The strongest linear correlation is between the win rate and the period. 

5.3.6 Main parameters’ scatter plots 

While correlation coefficients didn’t show any large linear correlations between 

parameters, it was hoped that scatter plots would reveal any nonlinear correlations. 

 
Figure 9 Sales velocity correlation coefficients 
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The plots were constructed using the Seaborn python library. On the top-left to bottom-

right diagonal of the graphs are histograms of the parameters. All the other graphs are 

scatter plots, which show what the pairwise values were for each data point.  

Figure 10 shows a pairplot between the main parameters and the sales velocity. 10% of 

the total amount of exported data points, 609 data points, were used for easier 

readability of the data. Unless stated otherwise, the same will be done in future scatter 

plots as well. 

 
At first glance, the results seem quite messy. The win rate graphs don’t seem to show 

any meaningful correlations, and many plots (like value and vp_result) are rendered 

almost unreadable due to some extremely high outlier values. 

 

Figure 10 Scatter plot between main parameters and sales velocity 
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Therefore, extremely large values were filtered out, which were outliers in the general 

data set (over the 99th percentile). The cut-off points can be seen in Table 7. 

 

Table 7 Sales velocity filtered 99th percentile values 

sales velocity over 169403 euros per day 

Value over 753651 euros 

opportunities over 618 

Period over 23220796 seconds, or 268 days 

 

As a result of this filtering, the amount of data points was reduced to 583. Figure 11 

shows the updated pairplot.  
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The data still doesn’t show anything too promising. However, some observations can be 

made: 

• There exist many users who have a 100% win rate (19.5% of total data points). 

• When the deal size is high, then the number of opportunities tends to be low, and 

vice versa. 

• High values in the period tend to be accompanied by somewhat lower values in 

the sales velocity. 

• High sales velocities more commonly occur when the number of opportunities is 

low and vice versa. However, the correlation is not as strong as the correlation 

between the deal size and the number of opportunities. 

• High sales velocities more commonly occur when the period is low. 

 

Figure 11 Scatter plot between main parameters and sales velocity with filtered data 
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5.3.7 Main parameter correlation conclusions 

The following conclusions were made: 

• There are some nonlinear correlations in the data between certain parameters. 

• A surprisingly high amount of users have a near 100% win rate. 

 

More research is needed to determine if and to what extent the data is inaccurate 

because of the fact that people use Pipedrive in unexpected ways. For example, it is not 

known if the win rate might be influenced by people who delete (or simply do not mark 

down) unsuccessfully closed deals. 

5.3.8 Problems with near 100% win rates 

Roughly 20% of data points have a win rate of over (or equal to) 99%. From those 

users’ data set, the median number of opportunities is 2. 

 

Figure 12 is a histogram of users with over (or equal to) 99% win rate, zoomed in to 

under 100 opportunities. The x axis represents the number of opportunities and the y 

axis is the fraction of total users who have that amount of opportunities. 

 

It’s visible that most users with very high win rates have a very low amount of 

opportunities. The question arises, if users with a low amount of opportunities should 

even be included in the data set. 

 

Additionally, the reason it was necessary to zoom in on the histogram is because there 

are also companies with thousands of opportunities, who also have 100% win rates. 

More research is required to identify if such a high win rate is standard for their 

 

Figure 12 Histogram of users’ opportunities with an above 99% win rate 
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industry. Perhaps it’s possible that those users are deleting their failed deals, or simply 

neglecting to write them down. 

5.3.9 Problems with extreme sales velocities 

The highest sales velocity in the data set is 19014754040 (nineteen billion) euros per 

day. This seems infeasible. 

 

Analyzing the top 1 percentile of the data in terms of sales velocity, it turns out most of 

these users (82%) have a 100% win rate. 61% of these users also have 4 or fewer 

opportunities, while only 20% of the overall data set has 4 or fewer opportunities. These 

users are also characterized by very low sales periods and high value deals. The median 

sales period is 58.6 seconds, or roughly one minute, while the median value of a deal is 

26409 euros. 

 

In conclusion, the data set has problematic users who close their deals immediately, 

thereby creating an unrealistically high sales velocity. 

 

5.3.10 Problems with inconsistent user behaviour 

Pipedrive is a platform where users are free to mark down their deals however they like. 

By marking down their deals in different ways, users can artificially increase or 

decrease their sales velocity (as evidenced by the high win rates and low sales periods 

of some users, which results in a high sales velocity).  

 

Given this fact, there is a risk of telling a salesman that he is underperforming, while in 

reality, he is simply marking down his deals correctly, while others are not doing so.  

 

A possible solution to this problem is to only take into account users from the same 

company when making predictions. In that case each company would have to make 

their users mark down their deals in the same way. 

5.3.11 Extra parameters’ correlation to sales velocity 

The goal was to use the extra parameters to aid in the learning process. Therefore, it was 

attempted to see if there is a connection between the extra parameters and the sales 
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velocity to gain a better understanding of how the sales velocity is affected by the extra 

parameters. Another hope was to spot potential problems, similar to the 100% win rates 

in section 5.3.8. 

 

An integer was assigned to each class for the country parameter, because there are too 

many countries to display them as labels. Once again, the extremely high sales 

velocities in the top 1st percentile had to be filtered out to be able to read the scatter 

plot. As with all scatter plots, only 10% of the total data set was included to improve 

readability. Scatter plots between the extra parameters and the sales velocity were 

created.  

 

Figure 13 shows scatter plots between company_size, region and vp_result. The purpose 

of the scatter plots was to find noticeable differences in sales velocity between different 

classes of extra parameters. This would indicate how the sales velocity correlates to the 

different classes.  

 

 

Figure 13 Scatter plots between extra parameters and sales velocity 
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Different company sizes have differences in sales velocities. Companies with the size 

“2-5” achieve lower sales velocities than companies with no specified size (“—“). 

Although companies with the size “1-5” have the most amount of data points with a 

sales velocity of over 1 million euros per day, then they are by far the largest group 

(Appendix 1 – company size). Assuming there is a small probability for any individual 

data point to be an outlier who has a high sales velocity, it is no surprise that the largest 

group would have the most outliers. The difference between the “2-5” and “—” group is 

more interesting because the “—” group is not bigger than the “2-5” group yet they 

have more data points with a high sales velocity. 

 

It’s also visible that the United States region seems to have a few more users with high 

sales velocities than the European region. However, there is still significant overlap 

between the two. 

 

 

 

Figure 14 Scatter plots between extra parameters and sales velocity 
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Figure 14 shows scatter plots between the sales velocity and the remaining three extra 

parameters. The first easy-to-spot pattern seems to be that some countries have higher 

sales velocities than others. There are also differences in sales velocities between 

different industries.  

 

Conclusions cannot be made about “platinum” and “diamond” tier codes because there 

are too few of them in the data set.  There seems to be a lot of overlap between the 

“silver” and “gold” tier code users in terms of their sales velocities.  

 

Deciding to investigate the correlation between countries and sales velocities further, a 

pairplot of the two parameters was created. 

 

 

Figure 15 shows that some countries have many people who have high sales velocities, 

while others have none.  

 

However, it should be noted that the countries with the most data points are, in this case, 

generally located to the left of the upper right graph. Therefore, if there is some low 

 

Figure 15 Pairplot between the country and sales velocity parameters 
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probability of a country having a person with a very high sales velocity, then it is no 

surprise that the countries on the right of the graph might have none (due to a small 

number of data points). 

 

5.3.12 Extra parameters’ correlation to sales velocity conclusion 

The extra parameters do seem to have some correlation to the sales velocity. Different 

countries, industries and company sizes have different sales velocities. However, there 

is overlap and the correlations aren’t as strong as it could have been hoped.  

 

However, whether the extra parameters will be included in the training process will be 

determined by how strong their correlations with the main parameters are. 

 

5.3.13 Extra parameters’ correlation to main parameters 

Because the goal is to predict main parameters, it should be analysed how the extra 

parameters correlate with the main parameters if it’s desired to use the extra parameters 

to aid in the learning process. 

 

The “country” parameter was converted to an integer, since there are too many labels 

and they’re too small to read otherwise. 10% of the dataset was used for creating the 

graphs. 
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Observations about the “value” parameter were derived from Figure 16: 

• Companies with the “platinum” tier code have fewer total high value deals. But 

also, from the histogram (Appendix 1 – tier code) it’s visible that there are far 

fewer companies with the “platinum” tier code. 

• Some countries make more high value deals than others. Also, comparing the 

graph to the histogram (Appendix 1 - country), it can be seen that the countries 

located at the right of the graph, which have fewer data points, also have fewer 

high value deals. 

• There are some noticeable differences in industry deal sizes. 

• There is only a small difference between regions. 

 

 

Figure 16 Pairplot between "value" and "industry" parameters 
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Observations about the “opp” parameter were derived from Figure 17: 

• There are differences between company sizes. For example, people in companies 

with the size “2-5” seem to have fewer high values in the opportunity parameter 

than people in companies with sizes “1-5” and “—". 

• There are differences between countries. 

• There are no real differences between regions. 

 

 

Observations about the “win_rate” parameter were derived from Figure 18: 

• The extra parameters do not seem to be correlated to the win rate. 

 

 

Figure 17 Pairplot between "opp" and "industry" parameters 

 

Figure 18  Pairplot between "win_rate" and "industry" parameters 
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Observations about the “period” parameter were derived from Figure 19: 

• There is much less correlation between extra parameters and the period 

parameter, than between extra parameters and the value and opp parameters. 

• There does not seem to be any correlation to the region and tier_code 

parameters. 

 

5.3.14 Extra parameters’ correlation to main parameters conclusion 

It was concluded that the extra parameters are mainly useful when predicting the opp 

and value main parameters. They are of lesser usefulness when predicting the period 

and win_rate parameters.  

 

The region should not be used for predictions. The most useful extra parameters seem to 

be the industry and the size of the company.  

5.3.15 Initial training results with only main parameters 

It was attempted to train the neural network to predict the value parameter. Only the 

main parameters were used for training.  

After 1000 epochs of training, there was no noticeable improvement in the training 

result’s MAE (Mean Absolute Error). The straight line in Figure 20 is the training 

MAE. The dotted line represents the MAE for the validation set. 

 

Figure 19 Pairplot between "period" and "industry" parameters 
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The final testing set mean absolute error was 172731 euros. 

 

Figure 21 shows how predictions correlate with actual true results. Ideally the graph 

should be a diagonal line, where the predictions match the true values as closely as 

possible. 

 

 

 

 

Figure 20 Initial training with main parameters MAE 

 

Figure 21 Initial training with main parameters prediction and true value comparison 
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The predictions are consistently low, even if the true values are high. Figure 22 is the 

same graph, zoomed in: 

 

 

Most of the predictions fall between 0 and 20000 euros. The training was entirely 

insufficient. 

5.3.16 Initial training results with extra parameters 

For training, the extra parameters industry and company_size were included. The 

parameters tier_code and region were not used because the data analysis didn’t show 

them to be promising candidates. The parameter country was not included due to 

overfitting concerns. 

 

The class-based data was split into separate columns, where a “0” indicates the row 

does not belong to that class, and a “1” indicates the row does belong to that class. 

 

As seen from Figure 23, after 1000 epochs of training, there was no noticeable 

improvement in the training results (Mean Absolute Error). 

 

 

 

Figure 22 Initial training with main parameters prediction and true value zoomed in comparison 
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The testing set mean absolute error was 184829 euros. The results were worse on 

average this time. 

 

Figure 24 shows how predictions correlate with actual true results. Ideally the graph 

should be a diagonal line, where the predictions match the true values as closely as 

possible. 

 

 

 

Figure 23 Initial training with extra parameters MAE 

 

Figure 24 Initial training with extra parameters prediction and true value comparison 
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Figure 24 shows that predictions are consistently low, even if the true values are high. 

 

 

 

Figure 25 shows that this time much more variability was seen in the predictions than 

when the training was done with only main parameters. The training results were 

worsened by the inclusion of the extra parameters. 

5.3.17 Data filtering of low opportunities 

It was attempted to solve some of the problems highlighted in the machine learning 

“Problems” sections 5.3.8 and 5.3.9. This was attempted by filtering out data points 

which are not adequate for training. The first thing to be filtered was data points with a 

low amount of opportunities. 

 

Keeping data points with a low amount of opportunities was undesirable because: 

• It is desirable for the training and predictions to be based on the parameters of 

long-term, active users. 

• Users with a low amount of opportunities in the dataset have more “anomalies”, 

such as 100% win rates and extreme sales velocities (Figure 26). 

 

 

Figure 25 Initial training with extra parameters prediction and true value zoomed in comparison 



56 

Originally, ~20% of data points in the total data set had a 100% win rate. It was also 

discovered that the vast majority of users with a 100% win rate have a low amount of 

opportunities. 

 

Figure 26 shows how the number of data points with a 100% win rate goes down as the 

number of opportunities is increased. The number of data points is a percentage of the 

total amount of data points. The result is obtained by dividing the number of data points, 

which have a 100% win rate and meet the minimum opportunities criteria, with the total 

number of data points, which meet the minimum opportunities criteria. 

 

 

From the plot it can be seen that setting the minimum opportunities to around 40 would 

substantially lower the amount of data points with a 100% win rate (from ~20% to 

~2,5%). However, it would also cut out very many data points in the data set.  

 

Figure 27 shows how the number of data points falls when imposing a minimum 

required number of opportunities: 

 

Figure 26 Minimum allowed opportunities and percentage of data points with 100% win rate 

relationship 
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It can be seen that setting a restriction to have a minimum amount of 40 opportunities 

would keep less than 40% of the original data points. 

 

Therefore, the minimum amount of opportunities was chosen to be 20, which keeps 

~52% of the original data points, and lowers the amount of data points with a 100% win 

rate to 3.6%. 

 

It must however be conceded that this sort of filtering may also filter out people with 

very large deal sizes. This is because a correlation between high value deals and a low 

amount of opportunities was identified in section 5.3.6.  

 

5.3.18 Data filtering using a combination of sales period and opportunities 

It was visible from the data that a large amount of high sales velocity data points are 

simply caused by users who have only a few low value sales, which were closed 

quickly. These data points should be removed. 

 

Instead of getting rid of all people with a low sales period, it was decided to use a 

combination of the sales period and the number of opportunities for the filtering. This is 

because it was identified that the users with extremely high sales velocities and low 

 

Figure 27 Percentage of data points which meet minimum opportunities restriction 
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sales periods will usually also have a low amount of opportunities. Therefore, such a 

combined filter will be an efficient way to remove these anomalous data points. 

 

It was decided to use a time-based metric. The combined duration of all sales should 

exceed 8 hours (1 workday). Such a number will make sure the non-anomalous data 

points don’t get filtered out, because active users should easily be able to exceed one 

workday’s worth of deals made. Additionally, it isn’t so important which exact number 

is used as the basis for filtering, as long as it is within a reasonable timeframe. For 

example, if 24 hours is chosen instead of 8 hours, then in the dataset, only one extra data 

point was filtered as a result of the change. 

 

The filter is calculated as follows: 

𝑜𝑝𝑝 ∗ 𝑝𝑒𝑟𝑖𝑜𝑑 < 𝑤𝑜𝑟𝑘𝑑𝑎𝑦 

Where: 

• opp - number of deal opportunities the user has had. 

• period- average sales duration in seconds. 

• workday - number of seconds in a workday (8 hours) 

 

The results of the filtering were very positive. Only ~2.7% of data points were filtered, 

but that included a great number of anomalous data points. The start of the sales 

velocity’s 99th percentile in the original was ~13,5 million euros per day, while in the 

version with the filters applied, it’s only ~80000 euros per day, a massive decrease.  

 

Also, it can be verified that mainly the anomalous data points were filtered out, because 

looking at the filtered data, the median amount of opportunities is 1, the median sales 

period is 2 minutes, the median win rate is 100% and the median sales velocity is over 2 

million euros per day. 

5.3.19 Considerations for filtering out all data points with a 100% win rate 

In the data set there are data points with thousands of deals, with a win rate of 100%. 

While it is tempting to simply filter out all those users, it is not actually known why 

these users have such a high win rate. Although setting a required minimum amount of 

opportunities removed most of these 100% win rate users, there still remained some 

who had thousands of opportunities and a 100% win rate.   
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As a follow-up to this data analysis it would be enlightening to interview some of these 

users and find out why their win rate is so high. 

5.3.20 Data filtering conclusion 

In the end, both filters were used - the low opportunities filter and the combined filter 

between the opportunities and the sales period.  

 

The combined filter is good because it filters out anomalous users with a high sales 

velocity and a low sales period very well.  

 

The low opportunities filter is much less precise. It filters out a large percentage of all 

data points and at least partially overlaps with the combined filter. However, due to the 

low quality of the data (low activity users with abnormal win rates), it was appropriate 

to use this filter as well. 

5.3.21 Filtered dataset description 

The filters outlined in the previous section were applied and the dataset was increased to 

roughly 15000 data points. 

 

The addition of that many new data points also brought some new extreme sales 

velocities. The new highest sales velocity is in the magnitude of 10!"(euros per day). 

For reference, the net worth of the wealthiest man in 2020 (Jeff Bezos) is 1.49 ∗ 10!! 

USD [5].  

 

These extremely sales velocities were filtered out. The arbitrary upper limit was set to 

be 10 million euros per day. This filtered out 50 of the ~15000 total data points. 

5.3.22 Training results with main parameters 

Unfortunately, it seems there still was no learning progress throughout the epochs. The 

number of epochs was limited to 100 because with 1000 epochs the MAE stayed the 

same (Figure 28). 
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The testing set mean absolute error was 152425.11 euros per day. 

 

As can be seen on Figure 29 and Figure 30, the neural network seems to stay within a 

certain range. The two graphs are the same, but the second graph is zoomed in 10 

times.  

 

 

 

Figure 28 Training result MAE with main parameters 
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5.3.23 Training results with extra parameters 

 

Once again, the extra parameters industry and company_size were included. Figure 31 

hows degradation in the mean absolute error metric over the epochs while the loss 

 

Figure 29 Training with main parameters prediction and true value comparison 

  

Figure 30 Training with main parameters prediction and true value zoomed in comparison 
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function MSE (mean squared error) didn’t improve significantly. Therefore the number 

of total epochs was cut down to 100 from the initial 1000. 

 

 

 

The testing set mean absolute error was 213272.31 euros per day. 

 

Once again, the results were chaotic when the extra parameters were included (Figure 

32). The model has a tendency to predict high values when the true value is low (Figure 

33). 

 

Figure 31 Training result MAE with extra parameters 
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Figure 32 Training with extra parameters prediction and true value comparison 

 

Figure 33 Training with extra parameters prediction and true value zoomed in comparison 
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The neural network was not able to sufficiently learn how to predict the main parameter, 

“value”, based on the filtered dataset. 

 

5.3.24 Machine learning conclusion 

Although the data analysis revealed some interesting statistics and correlations, the 

dataset turned out to be too difficult for learning. And although many problematic data 

points from were successfully identified and removed from the dataset, it did not 

significantly increase the ability to predict values.   
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6 Results and validation 

The result is a ready and deployed web application available directly via URL or from 

the Pipedrive Marketplace with the links specified in Appendix 4 – Project links. 

 

The main validation objective of the project is to verify Pipedrive’s satisfaction with the 

results. For collecting more feedback, a post in the Pipedrive community1 was created 

together with the form where users could provide feedback on how useful the 

application is. The created post and form did not receive much attention.  

 

Therefore, it was decided to ask for the feedback from Pipedrive product managers, 

because product managers are the ones who understand the value of the application 

from the users’ perspective. For this feedback to be more valuable and diverse product 

managers from different areas were asked. 

 

The collected feedback from Pipedrive product managers is mainly positive (Appendix 

3). However, even from this relatively small feedback it is noticeable that there is room 

for user experience improvements. For example, Vincet Jyrwa did not clearly 

understand why the parameters are changeable. Also, he got confused by the fact that 

initial user filter is not set, in reality it defaults to logged in user. Ashwin Kumar 

expressed the opinion that weekly history chart would be a nice improvement to the 

current chart functionality. 

 

As already mentioned, overall the feedback is very positive, which shows that the 

results of this project are already capable of bringing value to Pipedrive’s customers. 

Also, from the product managers’ comments it can be seen that they definitely would 

like this application to be integrated in the main Pipedrive application. 

 

 

  

 
 
1 https://community.pipedrive.com/post/5eb9515c87702e3f63f010e3 
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7 Comments 

In this section an overview is provided about the technologies that were replaced during 

the project development or that could be improved in the future development. 

7.1 Amazon Web Services 

Initially, Amazon Web Services (AWS) was used for hosting. It seemed to be an 

attractive option, since AWS has a free tier which was expected to entirely fulfill 

demands of this project. Additionally, one of project members (Heino Sass Hallik) 

already had previous experience with the platform. 

 

It was decided to incorporate many of AWS’s free services into the stack: 

• Elastic Container Repository (ECR) for storing docker images of the backend 

• Elastic Container Service (ECS) 

o For detecting and automatically deploying new ECR images in EC2 

(Elastic Compute Cloud) containers 

o For automatically growing or shrinking the number of containers based 

on the amount of traffic 

o For automatically assigning or unassigning the Elastic Load Balancer to 

EC2 containers 

• Amazon RDS for hosting the database 

• Simple Storage Service (S3) for hosting the frontend 

• Cloudfront for providing worldwide fast access to the frontend 

• Cloudwatch for monitoring 

 

However, although powerful, AWS proved to be a poor choice due to the cost of the 

service and the complexity of the required setup.  

 

In theory, setting everything up is easy, especially with previous experience. In practice, 

however, it can be a painful and prolonged process.  

 

All the setup in AWS is built to be “secure by default”. Meaning, nothing can connect to 

anything by default, and it is up to the administrator to allow those connections using 
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Security Groups. And if something isn’t connecting, even though the Security Group 

configuration seems to indicate that it should, then debugging the issue can be 

extremely time-consuming and difficult when there is no error message other than a 

“502 Bad Gateway”. 

 

The second issue with configuring AWS is that often once a service or a configuration 

is created, and the administrator realizes he has made a mistake, then there is often no 

way to change it other than to delete it and start over from the beginning. 

 

The third and final issue with AWS is that there is no preset free tier configuration. 

Meaning, if the administrator wants to avoid getting billed, then he must very carefully 

follow the documentation to see what falls under the free tier and what doesn’t. Even 

after the team followed the documentation to the best of their abilities, the project team 

was still billed for RDS usage at the end of the month, making it not worth the hassle. 

 

All in all, moving to TalTech’s servers and redoing everything from scratch was most 

likely faster than trying to resolve the AWS issues, even though the AWS configuration 

was already almost complete. In the future, it will be wise to avoid using AWS. Instead 

it’s preferable to use a simpler platform, unless there is a specific need for the scaling 

functionality. 

7.2 SQL Database 

SQL database could be changed for any type of key-value database, such as Redis, since 

only hashmap-like structure has to be stored on the server and long data retention is not 

needed. The long retention is not needed as if a user is not using the app for more than 1 

hour, his access token will expire anyway. Also, it should be mentioned that any data 

loss at any moment of the time will only impact the user as a "logout" action and he will 

just need to reauthenticate. However it does not seem very beneficial from the 

performance perspective to change DBMS at the present moment, considering that 

performance won will not be noticeable and at the same time it limits possibilities of 

further feature development.  
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8 Conclusion, future development  

In conclusion, the project team is quite pleased that Pipedrive is happy with the work 

done. Although the machine learning approach didn’t work out, the team was still able 

to deliver value to the customer by integrating the sales velocity history and filters into 

the web app. 

It is very likely that sales velocity as an indicator will be soon integrated into 

Pipedrive’s “Insights” view. There is also hope that the machine learning data analysis 

is useful to Pipedrive and that Pipedrive will be able to use the analysis to attempt a 

different approach to machine learning solutions. 

Another avenue for future research is investigating the data points which have 

thousands of deals and a 100% win rate to find out why those Pipedrive customers do 

not lose any deals. 

In terms of the basic functionality of the application, the history graph can be improved. 

A few ideas for history improvements: 

• Increase the maximum duration that can be chosen 

• The time scale could be chosen. Currently the graph has only information by 

month, it would be great if users could see the daily or weekly change, for 

example. 

• Ideally, different things could be stacked onto one graph. For example, logged in 

client could see a few users’ or pipelines’ parameters on the same graph 

simultaneously.
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Appendix 1 – Histograms of extra parameters 

Histograms of extra parameters were created to give extra context to machine learning’s 

data analysis. 

Country histogram 
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Industry histogram 
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Company size histogram 
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Region histogram 
 

Tier code histogram 
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Appendix 2 – Initial project description 

TalTech Bachelor Project Description 
  
V1 (MVP) - Calculate sales velocity  
As a salesperson, I want to calculate my sales velocity, so I know my performance and 

can forecast the revenue more accurately.  

• Sales Velocity is calculated based on 4 key variables: the number of 

opportunities in the pipeline (A ) , average deal size (B ), win rate (C ) , and time 

it takes to win a sale (D ). Formula = ( A*B*C)/D. See more here1.  

• All 4 key variables are available in Pipedrive.  

V2 - Change the original value of key variables  
As a salesperson, I want to change the original value of key variables, so I can 

understand how it would affect my velocity.  

• For example, my original win rate is 7%(C). As a user, I want to change it to 

9%, so I can see how that would affect my sales velocity.  

V3 - Suggest the most optimal change for velocity increase  
As a salesperson, I want to know the most optimal change I can do in order to increase 

my sales velocity.  

• For example, the system determines that reducing the winning time only by 3 

days would increase the sales velocity by 30%.   

 
 
1 https://blog.marketo.com/2017/11/sales-velocity-critical-sales-metric-team-probably-isnt-
measuring.html 
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Appendix 3 – Feedback from Pipedrive product managers 

Seda Sahradyan, Product Manager (Progress, Insights) – “The main task was to 

build a web app that calculates the sales velocity based on Pipedrive users’ data. Thanks 

to the completed project, Pipedrive customers can already start benefiting from it. Sales 

Velocity is a very powerful metric in the Sales industry as it combines different 

important sales aspects (win rate, # of opportunities, average deal value, sales cycle 

duration) into one and shows the overall productivity of the team/organization. The 

main question it answers is - how fast is a company making money (dollars per day). 

Now, Pipedrive users can track that number without a need to export data to 

spreadsheets and calculate it manually. Moreover, users can also change the existing 

values to see the impact of each parameter to the whole productivity. It can help the 

customers to identity the bottleneck of their sales process and make an improvement for 

a higher efficiency. Thanks to the additional feature, it is also possible to monitor how 

velocity changes over time which gives insight if a company is doing worse or better 

compared to the previous period. Simple and clear user interface helps to navigate fast 

and keep the focus on the app’s main point. 

Future plans - as Pipedrive is building its new customizable reporting tool which 

combines all the sales metrics into one, then the plan is to bring in the sales velocity 

there as well so that users can get a full overview of sales performance from one view. 

Also, the vision is to proactively tell customers how they can improve, and which are 

the weak aspects of their sales they should focus on.” 

Ashwin Kumar, Product Manager (Engagement) – “Pipedrive is a tool for 

salespeople to attain sales craftsmanship. To do this it's imperative for successful sales 

executives to have a revenue target and systematically work towards it. Their sole focus 

should be on hitting their targets and not on anything else. There is the need; however, 

for sales executives to check if they are on track to achieve their revenue goals. Instead 

of de-focusing sales executives to calculate their performance, sales velocity calculator 

steps in. It's a quick and easy app that plugs into a user’s Pipedrive account and gives 

him/her a simple one page answer to the question - am I on track to achieve my sales 

targets? Instead of having sales teams pull out their spreadsheets, update their deal data 

there, and then calculate if they're on track, sales velocity calculator gives them this 
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ability with just a few clicks. It's quick to implement, and easy to use. The only 

improvement needed, if at all, is that it should allow for users to have access to weekly 

sales velocity so that they have a better understanding of their performance.” 

Vincet Jyrwa, Product Manager (Scheduler, Activities, Calendar) –  

“Quick feedback: 

• Maybe makes sense to add an option “all users” to the user selection field 

• Also, the win rate/opportunities/etc. fields are editable, but I don’t have to edit 

them, right? 

• I don’t see anything on the chart because unfortunately I haven’t been marking 

deals as won before, only tested it out just now. 

Otherwise, this is a cool project! I see potential of having this inside the app somehow, 

especially on the Deal Forecast page” 
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Appendix 4 – Project links 

Item Link 

Source code https://gitlab.cs.ttu.ee/heisas/pipedrive-

sales-velocity-bachelors 

Deployed Application https://www.pipedrivesalesvelocity.tk/ 

Pipedrive Marketplace link to 

Application 

https://marketplace.pipedrive.com/app/sales-

velocity-calculator/d0cc8349139b7ef3 

Project Wiki https://gitlab.cs.ttu.ee/heisas/pipedrive-

sales-velocity-bachelors/-/wikis/home 

Project Log https://gitlab.cs.ttu.ee/heisas/pipedrive-

sales-velocity-bachelors/-/wikis/Project-log 

Project Issue tracker https://gitlab.cs.ttu.ee/heisas/pipedrive-

sales-velocity-bachelors/-/boards/466 

 


