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TRON:Legacy
The Grid. A digital frontier. I tried to picture clusters of information as they

moved through the computer. What did they look like? Ships? Motorcycles?
Were the circuits like freeways? I kept dreaming of a world I thought I’d never

see. And then, one day...I got in.
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Introduction

Technological revolutions have always been a driving force for the society.
The discovery of electricity in the late 18th century was a powerful catalyst
which in turn brought about the discovery of radio waves, invention of internal
combustion engine and the discovery of a nuclear fission. In general we
have sought for new ways to make things faster, stronger, more powerful etc.
Since the 20th century the society has become more and more dependent on
electricity. Today our everyday lives depend on electricity almost around the
clock. Without electricity most of the infrastructure would stop functioning.
For instance, shopping malls, gas stations and schools would be closed. We
constantly use devices dependent on electricity, be it a mobile phone or
a computer. We are currently in the beginning of the era of Internet of
Things (IoT), meaning that small electronic devices are communicating via
the Internet mostly without the need of human intervention, therefore creating
independent systems.

Although electricity is one of the cleanest sources of energy when converted
from wind [8, 53, 64], it is also one of the most environment polluting when
made from fossil fuels. For instance, 67% of the electricity produced in the
US in 2016 came from fossil fuels [92]. In Estonia, according to [16] over 90%
of electrical energy is produced using fossil fuels, more precisely oil shale. As
a result, Estonia ranks as the worst among developed countries, according
to the report on carbon emission intensity [94]. Therefore, preserving the
environment means not to wasting electrical energy. The possible cause
of wasting or overusing electricity is for example global warming, which
leads to climate changes, higher cost of electricity and shorter lifespan of
appliances when overused [80]. However, at times we fail to see that a common
household activity has something to do with electrical energy waste. Several
energy-wasting habits are presented in [75]. For instance, the so-called Energy
Vampires, home appliances that are in stand-by or sleep mode, consume small
amounts of energy. According to [27], the top five energy vampires in a
common household are flat screen TVs, video game consoles, computers and
laptops, DVRs and cable boxes, tablets and mobile phone chargers. A review
of vampire energy and its reduction techniques, presented in [50], claims that
the vampire energy consumption in an average home ranges from 5% to 10%
of the total household energy consumption. Some of its causes are the onset
of Internet of Things (IoT) devices, which numbers are growing dramatically,
and the digitalisation of mechanical devices. The paper also states that
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vampire energy consumption is responsible for 1% of worldwide carbon dioxide
emission, which in turn contributes to climate change [11].

By way of illustration, one could ask what would happen if our electrical
devices stoppedworking due to the deficiency of electrical energy. Furthermore,
what is energy, in any case? How do we define it? In physics, energy is
considered a property which enables an object to perform work. Therefore,
for an object to do any work at all, energy in needed. Energy consumption in
turn is the amount of energy or power used by the object to perform work.
Energy comes in two forms: kinetic and potential. Potential energy is stored
energy and it can be chemical, mechanical, nuclear etc. Kinetic energy is the
energy present in movement. Electrical energy is derived from both forms of
energy: kinetic energy as well as potential energy. The main benefits of the
use of electrical energy is its high efficiency in transformations from one form
to another, speed, simple ways to store it, and many others. For example,
a battery transforms electrochemical energy to electrical energy that in turn
powers cell phones, computers, remote controls, circuits etc.

In our everyday lives electricity seems an abundant energy source but in
some cases it is not. This applies, for example, to battery powered embedded
systems. Designing a battery powered electrical device without any regard
to energy consumption and energy monitoring is unthinkable. To give an
example, this could result in a battery powered mobile phone that does not
give user any information about the amount of battery left or how much of it
is consumed. Another bad example would be a TV remote that often needs
new batteries to function properly. Energy constraints are also a vital part
of self-aware computing systems - autonomic computing systems, where the
developers must deal with multiple and often conflicting constraints [52], such
as achieving high performance and low energy consumption. Therefore, when
designing electrical devices with limited energy sources, one should always
consider energy consumption. Seen that the previous examples are based on
DC circuits, then how to assess the electrical energy consumed? The equation
E = U ∗ I ∗ t presents the formula used for computing the energy in direct
current (DC) circuits, where E is energy, U is voltage, I is current and t time.
Therefore, the value for three unknowns is needed to calculate the electrical
energy consumed. As embedded systems consist of DC circuits the presented
equation is the most relevant one for finding out the energy consumed by an
embedded system.

In principle, an embedded system is a computer system consisting of
hardware and software, and is a part of a larger system [29]. An embedded
system is controlled by a microcontroller unit (MCU) and is based on an
Integrated Circuit (IC).MCU itself consists of a central processing unit (CPU),
besides memory and input/output (I/O) peripherals. Usually, an embedded
system has a dedicated function and it is a part of a larger system. For
example, an IoT device used for monitoring room temperature and humidity
is an embedded system. In addition to the control unit, an embedded system
usually has many other hardware components for data acquiring and/or
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storing etc. These other components are mainly in on or off state. One way
to find the amount of energy consumed by the hardware component is to
conduct run-time measurements. Whereas the MCU is the most important
gadget of an embedded system, this work is concentrating on determining the
energy consumed by the device. Also, a MCU must be programmed prior to
usage, therefore, the final energy consumption depends solely on the developed
program. Consequently, knowing the energy consumption of the program
gives the developer important information both about the program as well as
the efficiency of the entire system.

However, does knowing the energy consumption of the microcontroller have
any significance? According to Itow, microcontroller unit (MCU) sales are
rising with a prediction of almost up to 25 billion units sold in 2018 [30]. Half
of total MCUs sold are going into Smart Card production, leaving roughly 12
billion for the general market share. According to the 2017 data, the general
MCU market is divided into five segments, with the majority of devices sold in
the multipurpose market with almost 7 billion units. Around 3 billion units are
consumed by the automotive industry. Roughly 1.5 billion units are used in the
consumer market and the remaining 0.5 billion in communications, computers
and other peripherals. Also, microcontroller sales are going up, although this
prediction is based on a different market, the Internet of Things (IoT) market.
The sales in global IoT MCU market in 2016 were approximately 1.98$ billion
and it is estimated to rise up to 6.49$ billion by 2024. That is more than a
threefold increase in total, which means in turn that the number of MCUs sold
will triple. [60]

In general, MCUs are used in household electronic devices, such as washing
machines and microwaves, in car controlling throttle, as well as entertainment
systems, also in airplanes with high redundancy etc. MCUs comewith different
parameters, packages and sizes. Perhaps the most important parameter of
all is the very much architecture-related data word size that the MCU can
process. Common MCUs are classified with 4-bit, 8-bit, 16-bit and 32-bit
architecture corresponding to the word size the MCU executes. With a
higher architecture value, the MCU usually processes the data faster but also
consumes more power and is generally more complex. From all the MCU
sales, according to [30] the 32-bit MCUs have a 38% market share, thus finally
surpassing the 8-bits which hold a 33% share of the market. The 16-bits are
also popular, having a 26% of the market. The 4-bit MCUs are almost out of
the market, holding only a 3% share. However, the latter have their niche,
for instance the 4-bit MCUs are used in modern razors [19]. Nevertheless,
the 4-bit microcontrollers are losing the battle to more powerful ones and are
disappearing.

The software as a program executed by the MCU is responsible for all
the operations the device executes. Nowadays, the software is written in
a high-level programming language, like C, and developers rarely program
anything on a lower level, using assemblers or machine codes. However, the
MCU does not operate in C language, but in machine code. Therefore, a
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translator a.k.a compiler is needed. The execution speed of a MCU depends on
the quality of the software, architecture, as well as clock frequency. In addition
to these, several other aspects affect the execution efficiency of the MCU.

The aspects affecting the energy consumption of the MCU also affect the
performance. Why is performance important for a MCU? Performance is a
metric crucially important for a system containing aMCU, as it shows whether
the time constraints set for the entire system are met at the MCU level or not.
To establish a performance metric, the execution time of the software running
on the MCU is needed. However, the execution time is an unknown needed
to calculate the energy consumption. Thus performance estimation can be
considered as a part of the energy consumption where the electrical power,
product of voltage and current equals constant 1. Although the amount of
energy consumption can directly be translated to the battery power needed for
the system, the performance value can be used to give an estimate for energy
consumption with an unknown for current consumption. Yet a preliminary
value for the current consumption could be taken from the MCU datasheet.
As mentioned before, the performance metric itself is important for execution
deadlines.

Motivation

Although there are more than thirty MCU manufacturers in the world,
accordingto [37] themajorityof themarket is splitbetweeneightmanufacturers,
with a total market share of 88%. Choosing a MCU for a project from eight
manufacturers relying purely on the technical data is difficult. However,
the choice becomes even more difficult when either energy consumption or
performance constraints are set for the final product. The question is how to
choose the right MCU for the task at hand. One could try to make several
prototypes with MCUs from different manufacturers, as the program code is
mostly portable with some or little effort. Yet, by doing so, another problem
occurs - each MCU needs its programming device, which are sometimes quite
costly. Besides that, each MCU produced by a different manufacturer has its
own Integrated Development Environment (IDE). IDE is a software suit meant
to program and debug a MCU. One might experience a deep learning curve
when starting to work with a unfamiliar MCU, as each IDE is a bit different
from the others. Last but not least, the time, effort and money put into
unsuitable prototypes is unwise. Often developers use the products from one
manufacturer, thus having no need to learn to use new IDE or buy a new and
expensive programmer, yet sometimes a new platform must be chosen. This
might be the case for example when the manufacturer has stopped production
or has been acquired by another manufacturer or the MCU family has been
discontinued or perhaps the preferred manufacturer does not produce suitable
MCUs for the product. The reasons for incompatibility could be low power,
performance, size, packaging etc. Whatever the reason for choosing a MCU
from an unknown manufacturer, the choice is always complicated.
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Not all IDEs provide the developer with important run-time information
about energy consumption, and best to our knowledge no IDE provides
information about performance. Therefore, for obtaining the data on energy
consumption or performance, a different tool is needed. One option is to use
the Instruction Set Simulator (ISS), if such a tool has been developed for
the target MCU. The ISS outputs information about the performance of the
software on the target MCU, but data on energy consumption is missing, as
the ISS is more for debugging and test purposes. Another way of finding the
energy consumption and performance is to make the physical measurements
on the target MCU running the software [49, 26], however, it should be kept
in mind that each change in the software means re-measuring the parameters.
Also, measuring a MCU to find current consumption, software execution time
and voltage level in run-time is not a trivial task. In addition, the measuring
does not provide detailed information about the software, which might be
important to determine the bottle-necks both for performance as well as
energy consumption. For example, when a floating point datatype is used
instead of an integer or a redundant, function with a high energy consumption
is called. This information is not obtained by functional verification either, as
the software executes the tasks correctly.

Organising ameasurements cycle for getting thedata on energy consumption
or performance of aMCU is a time-consuming task, regardless of the equipment
needed for taking measurements. Also, relying on average values from the
datasheet when sorting the MCUs might not be enough, as the final software
execution depends on many intermittent steps: compiler flags, version and
optimization level, clock frequency, voltage level etc.

Even when the goal is to have an energy estimation of the software for
a couple of MCUs that are from different manufacturers and either IDE is
supporting the energy consumption estimation feature, the developer must
install both IDEs, know how to operate them, have the programmer and the
MCUs, and program the devices. The whole process of getting the initial
result may take several days or even more. However, with a functional software
running on the target MCU in the prototyping phase, it is less time consuming
and effortless to use an analyser for the rest of the target MCUs for data
comparison. Even if the analyser result is not very precise for each MCU,
the difference between MCUs is still clear. For instance, 32-bit MCU with a
higher clock frequency performs faster than a 8-bit MCU with a lower clock
frequency.

Problem formulation

The aim of this thesis is to make the MCU selection a less complicated
process for a developer, when an energy consumption or the performance of
the software are important constraints. By generating a measurements based
model for a C-programming language of the MCUs, rough estimates can be
made. The model-creation itself is a one-time process. Later, the model
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can be used infinitely to evaluate changes in the software. In addition, the
model can be used to find and estimate bottle-necks in the software for energy
consumption and/or performance. This means that the code can be optimised
for one or other goal, as the cost for energy consumption and performance is
directly related to every operation in the software. It also allows to compare
different programming techniques when creating a program. When the model
for the MCU has been created and is publicly available, it will provides the
means to simulate the software prior to purchasing a new programming device
or a MCU and starting the process of learning an unknown IDE. A prerequisite
for an estimation is that at least a partial C-program or a function must exist,
as the estimations are based on the C-application.

Another goal is to make the estimation process faster. Instead of installing
a variety of different IDEs to get the estimation result for MCUs from different
manufacturers, a single platform could be used. Also, in the initial phase
where the choice either for a MCU or the manufacturer is being made, a rough
estimate for energy consumption or performance is sufficient to determine
whether the constraints are in general met.

Contributions of the thesis

This work is based on five papers, published in international conferences.
The published papers cover three closely connected topics on estimations for
embedded software: energy consumption estimation, performance estimation
and automated measurement taking. The methodology and results of energy
consumption estimation are presented in [65]. The impact of different
datatypes on energy consumption in embedded software is presented in [66].
The methodology of taking automated measurements for creating an energy
or performance model of a microcontroller is presented in [67]. [69] presents
an assessment for performance estimation on microcontrollers and [68] is
considered a follow-up of performance estimation which adds estimations for
different compiler optimizations. The main contributions of this work are:

I A novel methodology for robust estimation of energy consumption for
embedded software. The estimation method is based on models which
are created using physical measurements of the target hardware, in
particular 8- to 32-bit microcontrollers. Instead of using an assembly
language, the measurements are conducted for C-programming language
syntax operators and commands only, thus removing the need for details
about instruction-set (IS).

II A novel methodology for robust performance estimation for embedded
software for 8- to 32-bit microcontrollers. The estimation method is
based on models which are created using physical measurements of the
target hardware executing a custom benchmark program in a high-level,
C-language program. In addition, the estimation methodology is
extended to support different compiler optimisation levels.
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III A new methodology for conducting measurements on the target
microcontroller for model creation either for energy consumption or
performance estimation. Although the measurements for the energy
consumption estimation methodology’s proof of concept were conducted
by manually setting and re-setting the measurement equipment, it could
still be used in the absence of a more advanced measurement software.
More importantly, an automated measurements platform, which is based
on LabVIEW graphical programming platform with a fully custom
virtual instrument (VI) was developed. In addition, a custom software
benchmark program was developed for microcontrollers, in order to
execute the embedded software commands in a predetermined manner.

IV A set of new methods to obtain more precise results for either energy
consumption or performance estimation for the embedded C-program.
In particular, an estimation model for single and nested loops with an
arbitrary loop counter was developed and verified to estimate the total
loop execution time, using two parameters. The parameter’s values
are obtained by measuring at least two loops with a predetermined
loop counter value. Additionally, a novel approach for estimating
embedded software energy consumption for different voltage levels and
clock frequencies based on measurements of reference voltages and
clock frequencies. Finally, a discovery of datatype impact on energy
consumption estimation for embedded software.

The previous contributions are related to the research papers on which this
work is based on, shown in Table 1. The research papers are available in full
in appendices A-E. Furthermore, the thesis contains unpublished work that is
not covered in Table 1.

Table 1: Contributions in Published Works

Contributions Paper A Paper B Paper C Paper D Paper E
I 3 3

II 3 3

III 3 3 3

IV 3 3 3

Organisation of the Thesis

This work is divided into six chapters. The introductory chapter gives a
brief overview of the importance of microcontrollers in the society and our
everyday life. Also, the impact of microcontroller energy consumption on the
environment is mentioned.

Chapter 1 describes the background of the energy consumption and
performance estimation techniques and former methods for microcontrollers.
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Furthermore, the current estimation trends with research literature references
are presented.

Chapter 2 gives a thorough overview of the methodology and methods
developed in the framework of this work. Also, the energy consumption,
performance estimation details and important discoveries for more precise
estimation results are presented.

Chapter 3 describes both themanual aswell as the automatedmeasurements
platform. In addition, the LabVIEW measurement suite is presented and a
brief overview of the MATLAB analysis program is given.

Chapter 4 demonstrates the estimation quality of the methodologies,
as the results are presented and validated. For the energy consumption
estimation, previously published results are briefly presented. However,
for the performance estimation, new measurements are made, using all the
advancements and refinements in the methodology, models and analysis.

The final chapter concludes this work.
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Abbreviations

Atomic-
operation

software operation, statement or command

ARM reduced instruction set computing (RISC) architectures
CISC Complex Instruction Set Computer
DAQ data acquisition
DC Direct Current
DSP Digital Signal Processor
DUT Device Under Test
EEPROM electrically erasable programmable read-only memory
GCC GNU Compiler Collection
GPIB General Purpose Interface Bus
GPIO General Purpose Input/Output
GUI Graphical User Interface
ICDI In-Circuit Debug Interface used on TI Tiva ™C-series kits
IDE Integrated Development Environment
IO Input-Output
ISS Instruction set simulator
JTAG industry standard connection interface
LA Logic Analyser
LED Light-emitting diode
MAPS Million of Atomic-operations Per Second
MSS Measurements Software Suit
MPSoC Multiprocessor System-on-Chip
NI MAX National Instruments Measurement Automation Explorer
QEMU A generic and open source machine emulator and virtualiser
RAM random-access memory
RISC Reduced Instruction Set Computer
SRAM static random-access memory
TDMS File format for storing measurement data
TI Texas Instruments company
VI Virtual Instrument
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1. Review of the Field

In this chapter, an overview of the research field is given. The main focus is on
energy consumption estimation, as the initialwork in the fieldwas conducted on
the topic. The performance estimation (also called execution time estimation)
of embedded software should be considered as a subset of energy consumption
estimation and is thus described along energy consumption estimation. In
addition, the field of measurement-taking is briefly described. The chapter is
divided into five sections, covering Estimation Classification, Review of the
EnergyConsumption Estimation Field, Review of the Performance Estimation
Field and Review on the Measurement Platform. The Chapter Summary
finalises the chapter.

1.1. Estimation Classification

One possible classification for performance modelling as well as performance
measurement is presented in Figure 1.1 which is a reference to [38]. Full
description of all the nodes is available in [38]. However, in short, the
Simulation-based approach is the de facto in modelling, Analytical models
are more suitable for larger systems with less detail than available in
microcontrollers. One of the main differences between Modelling and
Measurement estimation methods is the feasibility of the estimation method.
The estimation modelling should be used early in the design process, whereas
measurement based estimation is available when an actual product is ready.
As the accuracy of the measurement based estimation is typically higher
than the modelling based estimation, the drawback of the measurement based
estimation is the fixed configuration of the system. The reconfiguration of
the system is usually not available, thus the measurement based estimation is
usable only for the system with fixed parameters. The results presented in this
work are based on off-chip measurement of microcontroller running embedded
software commands in order to generate a model for simulation. Therefore, the
first step for estimation is target hardware-measuring, followed by data analysis
and model creation. Thereafter, the model can be used for simulation. In
terms of Figure 1.1 classification diagram, bothOff-ChipHardwareMonitoring
as well as Execution-Driven Simulation are used to perform the estimation.
Off-Chip Hardware Monitoring means that the required physical data is
extracted from the available target hardware, using external equipment. The
use of Execution-Driven Simulator however means that an executable program
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is employed as an input to the simulator. Additionally, the method used in
this work requires a program profiler, which is used to extract the data from
the program and match it with the data available in the simulation model.

Estimation

Modelling

Simulation

Probabilistic Models

Statical Simulation

Event-Driven Simulation

Trace-Driven Simulation

Execution-Driven Simulation

Complete System Simulation

Analytical

Queuing
Models

Markov Models
Petri Net
Models

Measurement

On-Chip/Off-
Chip

Hardware
Monitoring

Software
Monitoring

Microcoded
Intrumentation

Figure 1.1: Estimation Classification

Another view of the methodology presented in this work is a black
box modelling of a MCU, based on physical measurements of C-language
atomic-operation. In the field of MCU energy consumption estimation, two
fundamental approaches exist: the measurement-based and the simulation-
based estimation [49]. The simulation-basedmethodology requires a previously
obtained simulationmodel of the targethardware. For instance, the simulation-
based model could be a detailed gate level model, such as in[32] or an abstract
behavioural level model, as in [12]. However, obtaining a simulation model
for a MCU is difficult, if at all possible. The measurement-based estimation
methodology could be for the MCU only, as in [14] and [57], or also including
external components, as in [33]and [49]. Theestimationmethodologypresented
in this work is a measurement-based one only for MCU. Measurement-based
methodologies are considered more precise than simulation. Most of the works
on the energy consumption estimation which are measurement-based, are
conducted on instruction-level – a lower abstraction level than themethodology
presented in this work. Instruction-level measurements are based on assembly
or machine-level program. However, the de facto standard of the MCU
programming language is definitely C-language. For example, over 71% of
Red Hat Linux 7.1 distribution [95] is written in C-language. With the higher
abstraction level, less details about the system architecture are known, thus,
precision of the the estimation results declines. Therefore, the methodology
presented in this work is meant for robust estimations.
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To conclude, the methodology presented in this work requires both
measurement and simulation. On the one hand, the developed methodology
is measurement-based, as measurements are needed to build a model used for
modelling. On the other hand, it is also simulation-based, as the estimation for
a random software program is generated on the previously created model. In
Figure 1.2, the workflow of the estimation process for both energy consumption
and performance is presented. The process for either estimation target consists
of two parts. First, a model of the MCUmust be created as noted on the figure
by ”Model creation”. This involves executing a ”Benchmark program” on the
”Microcontroller” under no compiler optimisations and gathering the data.
For performance estimation, only operation execution duration is needed. For
energy consumption estimation, the consumed current by the MCU must
also be measured, as noted by the keyword ”Measuring” in the figure. The
voltage, which is used for the MCU, must be noted for both cases. The data
gathered is then analysed in the ”Data analysis” and stored, so that is can be
used later. In other words, an estimation model is created as noted by the
”Model creating”. The model is stored in ”Database” or as a spreadsheet and
used later for application analysis. The ”Application analysis” has four steps.
Firstly, an ”Application” must be picked for analysis. A ”Profiling” of the
application must be commenced, meaning that the number of operations and
their repetitions in the application must be known. Next step is to take the
corresponding operation data from the model ”Database” and match it with
the operations repetition. The results is the ”Estimation”.

Microcontroller

Benchmark program

Measuring

Data analysis

Model creating

Database Analysis

Profiling

Application

Estimation

Model creation Application analysis

Figure 1.2: Estimation Methodology Presented in this work

One of the parameters needed for energy estimations is the current consumed
by theMCU. The current measurements are differentiated either by measuring
the average current, by measuring the voltage drop on a resistor, by measuring
charge transfer of switched capacitor, or by using an accurate multimeter
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in ammeter mode. In this work, the current measurements are conducted
using the multimeter in ammeter mode, however, the equipment used for
current measurement utilised a shunt resistor of 2Ω or 200Ω, depending on the
measured current.

1.2. Review of the Energy Consumption Estimation Field

The work by Tiwari et al. in the paper ”Power Analysis of Embedded Software:
A First Step Towards Software Power Minimization” [87], 1994, is considered
the pioneer in the field of energy consumption estimation. The work is based on
power analysis of an embedded computer system consisting an Intel 486DX2
CISC processor, not on an embedded system with a MCU. The aim of their
work is to estimate the power cost of the software component of the system.
Besides estimating power, the work also suggest power optimizations based on
the results. The authors propose a hypothesis that by measuring the current
drawn by the processor as it repeatedly executes certain instructions or certain
short instruction sequences, it is possible to obtain most of the information
needed to evaluate the power cost of a program for that processor. Therefore,
the method is based on instruction-level and called instruction-level power
analysis. The work flow consists of splitting up the assembly or machine
program into basic blocks and determining the cost for each block. By adding
up the cost of basic blocks, the cost for an instruction is computed. Also, a
program profiler is used to extract the information on the number of times each
basic block was executed. Using the data derived from the model, the authors
were able to reduce energy consumption by up to 40% for some test cases.
The methodology in this work is also based on measuring certain instructions,
C-language atomic-operations, yet, the measuring cycle and the abstraction
level in this work are different.

In [89], Tiwari et al. added more platforms to show that the power
reduction methodology has a wider range. In addition to the Intel 486DX2-S
Series processor, already used in [87], the methodology was applied on
Fujitsu SPARCliteMB86934 and Fujitsu proprietary DSP. However, the goal
of Tiwari’s work was to reduce energy consumption, although the methodology
could also allow for energy consumption estimation. Therefore, no results on
energy consumption estimations are presented.

The work by Tiwari. et al in [87] was taken further by Russell et al. [70].
They used a 32-bit RISC processor in order to make a software energy model.
The proposed model was more exact compared to Tiwari et al., for it used the
statistical approach for measurements. In principle, measurement setup was
similar to Tiwari et al. presented in [87]. As a conclusion, the margin for
model’s accuracy is 8%, with 99% confidence. An important note from their
work is a principle classification for power analysis techniques.

In [88], Tiwari et al. present a continuation to their earlier works by
proposing a low power software design, based on the power model. They also
state that the power model can be used to efficiently evaluate the power cost
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without any regard to the lower level details of the processor. It is important
to note that the analysis technique was implemented on Fujitsu SPARClite
MB86934 RISC processor and not on a MCU. Notably, no estimation error is
presented, although estimations for current consumption are presented.

In [13], Chakrabarti et al. presented another instruction level energy
estimation methodology, based on modelling the MCU instruction level in
register-transfer level. The experiments are conducted on an MCU, a 8-bit
Motorola M68HC11. In the experiments, four test programs were used with
a maximum error of almost 12% for program number four. For the other test
programs, the error was much lower. As there is no way of knowing the weights
of the programs, the arithmetic average is taken to find the final estimation
error. The computed average estimation error is 4.28%.

In [73], Senn et al. proposed an approach to energy consumption estimation
similar to the present work. The main idea is to have an energy model,
therefore, executing the C program on the target hardware is not necessary.
The authors are also motivated to compare different processors or versions of
the algorithmswithout the need for the real hardware. However, the estimation
method used in [73] is a Functional Level Power Analysis (FLPA), which
means that the parameters for estimation are derived from assembly level and
used later for estimation in C. Also, the model verification was done in an
assembler and not in C. The average estimation result for C-language energy
consumption is 4.2%, which is similar to the experiment results presented
in this work, when no compiler optimisation flags are used. The average
estimation result for assembler level is 1.8%. Although the estimation results
for C-language are good, the methodology depends on the models created
and verified on assembler level. The hardware platform used in the paper
of Senn et. al. experiments is a Texas Instruments digital signal processor
TMS320C6201 [86].

An important advancement in the fieldwas presented in the final dissertation
by Scarpazza [72]. He proposed amethodology for estimation and optimisation
of software, based on optimised source-level instrumentation techniques. The
relevance of his work was that the programming language was the C-language,
not assembler as used in the previous works in the field. However, the
estimation method was based on statistic timing analysis (STA), which makes
his work fundamentally different from the methodology proposed in this work.
Yet, an important feature of his work was the scalability, as the estimations
could be done on large software projects as well. Another difference is
the platform – Scarpazza’s solution is targeting the ARMs, whereas the
methodology in this work is for general purpose MCUs with architectures from
4-bit to 32-bit. As for the main results the average estimation error was within
the 8% margin.

In [33] Konstantakos et al. presented an energy consumption estimation
modelling technique for an embedded system consisting of a MCU, a memory
unit and an A/D converter. They also produced a custom circuit for measuring
current, claiming that a simple ampere meter is not sufficient. As the custom
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circuit may give more precise results for current measuring, the measurement
setup presented in this work does not require one since the measurement
technique is completely different. For the target hardware platform, a
8-bit Freescale MCU MC68HC908GP32 [58] is used. In the publication by
Konstantakos et al., the measurements are conducted on the assembly level,
thus measuring instructions. The estimation error for the MCU is 4.5%.
However, the fundamental difference of this work is that the C-language
atomic-operations are measured.

An interesting approach for energy consumption estimation was proposed
by Brandolese in [10]. He claimed that the proposed methodology is more
precise than an ISS, as it can determine the energy cost for even a single
operator. Therefore, each C-language syntax production has been analysed
and atoms (single smallest virtual assembly-instruction) are identified. An
analysis tool was used as a golden model to verify the estimation results. The
method is reported to be faster than an ISS. The estimation error for energy
consumption is reported to be 8.50%.

An important milestone was set by Callou et al. in [12], where both
embedded software energy consumption and performance estimation are
presented. Interestingly, they use Coloured Petri net (CPN) to provide the
basis for the stochastic simulation. Besides the assembly code, the presented
methodology is also able to estimate the C-language code. However, it
is necessary that the code is compiled and the results – listing file and
binary C-code – are needed to conduct further estimations. As a result, the
estimations are performed on a simulator, called ALUPAS. The simulator
model is based on 32-bit ARM-7 architecture as an experimental proof of the
methodology. The difference in this work is that the C-code is not interpreted
at any intermediate state. Also, the estimation methodology is fundamentally
different – no listing file, CPN or intermediate states are needed for the
purpose of this work. The work by Callou et al. is based solely on simulators
and no physical measurements are made. The experimental results in this
work are targeted to 8-, 16- and 32-bit MCUs, yet the case study is based on
a ARM7 microcontroller’s instruction set. Although for different case studies
the estimation error is different, they conclude that the estimation error is
within 7%.

In [49], a more recent work by Bazzaz et al. on energy consumption
estimations for AT91SAM7X256 [6] is presented. The authors note that
no SPICE simulation model exists for the device, therefore a simulation is
impossible. Themethodology is based on instruction-level energy consumption
modelling and the aim of the work is to produce a precise measurement-based
model. The experiments are conducted only for a single 32-bit RISC
architecture based MCU. The main difference is that this work is aimed at a
robust measurement based model and targets the MCU similarly to a black
box as no data on architecture is needed. For a set of seven benchmark
programs from the MiBench suite [24], the total estimation error was less than
6%.
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More recent works in the field focus on mobile platforms. Although the
estimation platforms are fundamentally different from MCUs, for instance
by having a GPU unit, the ideas presented in the works could also apply
to MCU energy consumption and performance estimations. The work by
Hao et al., presented in [25], is combining a software programs analysis
with per-instructions energy modelling. They claim to estimate the energy
consumption within 10% of every application available in the Google Play
environment. The essence of the work is a tool called eLens, which provides the
developer with important information about the software code in development.
In [3] is presented the work by Alsheikhy et al., a Hierarchical Performance
Modelling (HPM) to estimate the delay improvement in mobile platforms
running on Android operating system. The key element in the presented
estimation results is the hierarchical generic Finite State Machinge (HGFSM),
which is covered in detail in [3]. Four different Android devices were chosen
as hardware target platforms. Unfortunately, no estimation error is given,
for only the energy consumption reduction is calculated. Li et al. present
their work in [36] on energy optimisation framework. However, the works
target neither the platforms covered by this work, nor the goals. Also, the
results are concentrating only on the energy consumption reduction and not
on estimation.

In [26], Heinrich et al. present their work on using program flowcharts for
energy consumption estimation. Their goal is to present tools to the software
developer in the early phase of the design process. The methodology is using
program flowcharts at the abstracted level for C-language constructs. Also,
the work has an informative introduction with classification for low-level as
well as high-level power modelling. For the evaluation a six-core MCU with
MIPS32 architecture is used. However, for evaluation, only a single core was
utilised. For validation, a measured result on the target hardware platform
is used. The methodology is different from the one introduced in this work.
Furthermore, only a single hardware target platform was chosen. The reported
estimation error is between -11.9% and 6.9%. The average, which is computed
as an arithmetic average by the author of this work, shows a 7.92% error on
the absolute scale.

Ingeneral, thefirstworks in thefield focusedon reducingpower consumption,
using mainly instruction-level techniques for energy consumption estimation.
The created models were very accurate, as they were developed on assembly
level. Some works in the field had an average estimation error of less than
3%. Expectedly, the estimation error for a higher programming language,
for instance C-language, becomes higher. Table 1.1 presents the estimation
results for the energy consumption estimation, done previously as comparison
to the work presented in this thesis. The estimation error presented for this
work is the average value from [65]. The keywords marked in bold are the ones
that this work is based on. As can be seen, only the work by Heinrich et al.
has the same keywords. However, the estimation methodology in that work
was based on program flowcharts, not on the actual measuring of C-language
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atomic operations. Also, the estimation error presented in this work is lower
than the one presented by Heinrich et al.

Table 1.1: Energy Consumption Estimation Results Comparison

Publication Method Level Target Error
Tiwari et al. [87] measuring assembler processor NA
Russell et al. [70] measuring assembler processor 8%
Chakrabarti et al. [13] modelling assembler 8-bit MCU 4.28%

Senn et al. [73] modelling C and
assembler DSP 4.2%

Scarpazza [72] analysing C 32-bit MCU 8%
Konstantakos et al. [33] measuring assembler 8-bit MCU 4.5%

Brandolese [10] analysing
modelling

C and
assembler ISS 8.50%

Callou et al. [12] simulating C and
assembler 32-bit MCU 7%

Bazzaz et al. [49] measuring assembler 32-bit MCU 6%

Hao et al. [25] analysing
modelling android mobile 10%

Alsheikhy et al. [3] analysing android mobile NA
Li et al. [36] analysing android mobile NA

Heinrich et al. [26] analysing
measuring C 32-bit MCU 7.92%

This work measuring C 8-, 16- and
32-bit MCU 6%

1.3. Review of the Performance Estimation Field

Not much information exists for performance estimation or execution time
estimation in the domain of microcontrollers. For instance, in [74], the target
platform is a MPSoC, thus the results are incomparable to this work. On
the MCUs, the main works are conducted for the ARM platform using heavy
computation benchmark suits, for instance MiBench [24]. MCUs with 8- and
16-bit architectures are not used in this case.

In [12], the execution duration is also estimated for the 32-bit ARM-7
MCU. Compared to the energy consumption estimation, the execution time
estimation error is lower. No average estimation error for execution time is
given, thus the author of this work computed the arithmetic average for the
presented results. On average, the execution time estimation error is 3.0%.

In [10], the work by Brandolese is presented. The results are also presented
for execution time, using an ISS, as it was done for the energy consumption
estimation. The estimation error for execution time is 8.41%.
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Zhao et al. present their work in [96] on Source-Level Performance, Energy,
Reliability, Power andThermal (PERPT) Simulation. An intermediateC-code
representation is created using a C-language compiler. The intermediate code
is then turned back to C. The result is a cycle-accurate ISS that is used
for estimations. The complex estimation process produces good estimation
results. However, as the estimation targets are many, the estimation error
varies. Yet, it seems that a target of less than a 10% error was achieved in each
case.

[34] presents the work by Kriegel et al. on performance estimation. As
a hardware platform, the OMAP3530 [84] was used, featuring an ARM core
and DSP. However, the estimation model was developed using the QEMU
emulator. As several different test are carried out, the estimation error varies.
The maximum estimation error is 12.5% and the minimum is as low as 5.8%.

A more theoretical work based on mathematical models on performance
estimation with confidence levels is presented in [35] by Lattuada et al. The
estimation is created using a framework, therefore, the methodology is based
on simulation. As no measurements were taken, the main goal is to establish
whether the constraints are met or not. Therefore, no estimation error
reflecting any real data could be extracted.

As a conclusion, there is a very small number of works, if any, for
performance estimation on MCUs with 8-, 16- and 32-bit architectures. The
results presented in this work are found in Section 4.3 and are not repeated
here. For preliminary comparison, a good estimation result in the context of
this work has an error margin less than 10%, and all the estimations fulfilled
the goal.

1.4. Review on the Measurement Platform

The measurements platforms described in this work are the manual mea-
surements platform and the automated measurements platform. The main
distinction is in the work done by the operator, as the automated platform
is faster due to being based on LabVIEW data acquisition (DAQ) virtual
instrument(VI). Both approaches are fully described in Section 3, therefore,
the review presented here is based on the uses of the National Instruments
LabVIEW framework [54].

The purpose for having a measurements platform in the first place is
to extract data from the subject. According to the National Instruments
definition presented in [56], a ”data acquisition (DAQ) is the process of
measuring an electrical or physical phenomenon such as voltage, current,
temperature, pressure, or sound with a computer. A DAQ system consists of
sensors, DAQ measurement hardware, and a computer with programmable
software. Compared to traditional measurement systems, PC-based DAQ
systems exploit the processing power, productivity, display, and connectivity
capabilities of industry-standard computers providing a more powerful,
flexible, and cost-effective measurement solution”. The National Instruments
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company provides both DAQ hardware and software. Besides the different
measuring devices, the software they provide is the most important in the
context of this work. It is called LabVIEW [54], a graphical programming
environment for configuring measurement hardware, which captures and
stores the measurement results. According to [93], LabVIEW is the de facto
standard in the realm of automated test, whereas now it is also used in
industrial embedded monitoring and control. Also, in [91] it is mentioned that
LabVIEW is a de facto standard for measurement, test, and control systems
(both for the industry and academia). It is difficult to find any competitors for
LabVIEW. Perhaps the MyOpenLab [51] could be considered as the strongest
competition, however, the data on the web-page is in Spanish (translation
is also forbidden). According to some forums, it seems to support mainly
Arduino [4] devices and is not suitable for the scope of this work.

As mentioned in the previous paragraph, the LabVIEW platform could
be used for different purposes: monitor, control, configuration, measurement
etc. As far back as in 2003, Resendez and Bachnak presented their work
on internet-based measurements via LabVIEW in [62]. A special ”Internet
Toolkit”, available for everyone who submit their username and password, was
used to publish the VI to the web. In [71] by Sandu et al., the LabVIEW
suite is used as an e-Learning platform for teaching. In [9], Bourlis et al.
present their work on creating a custom software framework in LabVIEW for
utilising high sampling rate oscilloscope signals for digitization, monitoring
and recording. Gupta et al. present a demo in [23], on using LabVIEW
framework for prototyping dense LTE network as a test-bed. LabVIEW has
also been used for modelling, as Rerkratn et al. present in [61]. A design and
implementation of water level control plant model was developed as a learning
aid in the level control process.

1.5. Chapter Summary

An overview of the energy consumption estimation as well as performance
estimation was presented in this chapter, including an overview of different
uses for the LabVIEW software suite. The classification of energy consumption
estimation techniques were presented, as energy consumption is the main
estimation target for the MCUs. Also, comparisons between the published
works and the results presented in this work were drawn.
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2. Methodology

In this chapter, a detailed overview of the estimationmethodology is presented.
The chapter contains information from all the publications [65, 67, 66, 69, 68]
that this work is based on. Full texts of the publications are available in
Appendix [A-E] correspondingly. The chapter is divided into four sections,
covering Motivation, Estimation Approach and Estimation Details . The
Chapter Summary concludes the chapter.

2.1. Motivation

Estimation as a process is based on approximations. Whereas the weather
forecasts are based on previous measurements, the estimation for energy or
performance consumption for microcontrollers are somewhat similar. An
important indicator for an estimation methodology is the estimation accuracy.
Even in case of weather forecasts, predicting a temperature change within
1◦C is still difficult [7], and for the most of us, hardly noticeable. However,
mistaking a prediction by 10 ◦C becomes a problem. Naturally, a lot depends
on the weather model or an estimation model.

In this work, two estimation targets are considered: the energy consumption
estimation and performance estimation, the latter being a subset of energy
consumption estimation. The difference between the two is that the
measurements conducted for performance estimation do not require measuring
current consumption and the voltage level of power supply. Thus, the
measurements platform is somewhat simpler, since there is no need for a
multimeter. The methodologies proposed in this work are not considered very
precise, but for giving rapid estimations for whatever software application
when the appropriate model already exists. The software to be estimated does
not have to be a program but can also be a function or only a line of code.
Depending on the circumstances, the estimation error can vary from 0% to
up to 30%. The upper limit is defined by the author as the maximum error
margin up to which the measurement model is still usable. A good estimation
result has less than a 10% error and can then be considered success. An
example from the weather would be that there is a 70% probability for rain
tomorrow, which might not be enough for making decisions. However, with
that 70% of rain, it is certain that the temperature will be higher than 10◦ and
that there will be no wind, fog or snow. When estimating energy consumption
on microcontrollers, the same could be interpreted in a way that the software
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program on the specific hardware will consume energy between 300 to 500 µJ,
but will definitely execute the program faster than 100ms and consume less
then 16 mA of current at any given time.

The main idea of the estimation methodology is that a C-program’s energy
consumption or performance is the sum of the atomic-operations of that
program. In other words, by summing up all the atomic-operation’s values, the
result should be the total energy or performance consumption of the program.
Each atomic-operation on the specific microcontroller must be measured and
stored. As a result, a model is created from the atomic-operations executed on
the microcontroller. An atomic-operation is a C syntax command, operator
etc. For instance, an add operator ”+” is an atomic-operation and so are
the statements ”for” and ”if”. Due to technical reasons, measuring a single
atomic-operationwith reliable accuracy is not feasible, mainly because the slow
measuring speed and fast execution of the atomic-operation would increase
the measurement error. Therefore, an atomic-operation is executed in a loop
and consequently, for computing a single atomic-operation value, the extra
factors are reduced. The extra factors are the atomic-operation repetition and
the subtraction of an empty loop. The estimation result is the created model
in conjunction with profiling and parsing result of the target application.

The proposed methodology for energy consumption estimation is verified
without compiler optimisations, usually noted as ”-O0” level. The performance
estimation is also conducted at other optimisation levels.

2.2. Estimation Approach

Themain principle of the estimationmethodology is based on themeasurement
of different C-language atomic operations. In the initial research paper [65],
an energy estimation method based on the model of a C-language atomic-
operations on a single microcontroller is proposed.

2.2.1. Energy Consumption Estimation
As described in Introduction, the total electrical energy consumed by a device
can be found using Equation 2.1. The equation states that the electrical
energy is the integral of electrical power over time, which in turn is the product
of current and voltage.

Eelectrical =
∫

P ∗ dt =
∫

U ∗ I ∗ dt, (2.1)

where Eelectrical is the energy in J , P is the power in W , dt is the time
differential in s, U is voltage in V , I is current in A. In terms of the energy
consumed bymicrocontroller, some details are changed. Equation 2.2 is used to
verify the total energy consumed by the C-program. The energy is calculated
for the program, Eprogram. The voltage level provided to the microcontroller is
noted as Vdd. The current drawn by the microcontroller should be the average
value Iaverage, as it is difficult to choose the right timestep. Also, measuring
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the average current is simpler, thus there is no need to integrate. The time is
the total execution time of the program tprogram. From the three unknowns in
Equation 2.2, Vdd and Iaverage are easily measurable. The main question is how
to measure the time tprogram. Further explanations on the subject are given in
Sections 2.3.2. In this section, an overview of the mathematical principles are
given.

Eprogram = Vdd ∗ Iaverage ∗ tprogram. (2.2)

Themethodology stipulates that aC-programconsists of atomic-operations.
The sum of all energies of atomic-operations gives the total energy consumed
by the C-program. Equation 2.3 presents the formula for computing the
energy estimate, Eestimated, for a C-program, where mi presents the value
of repetitions for the atomic-operation in the program. n presents all the
different atomic-operations in the program. Eatomic−operationi is the energy
calculated for the atomic-operation.

Eestimated =
n∑

i=1
mi ∗ Eatomic−operationi (2.3)

The energy for a single Eatomic−operation in Equation 2.3 can be found using
Equation 2.4. The first part of the equation differs from Equation 2.2 only by
the division of k, where k stands for the loop iterator value, usually an integer.
The energy for Eemptyloop is found similarly to Equation 2.2, where the tprogram

is the execution time of an empty loop. In order to extract only one instance
of the Eemptyloop execution, the result is divided by l. It should be noted that k
and l may or may not have the same value, however, they should be declared
in the same datatype. A further explanation on the topic is in Section 2.3.3.
In total, the Equations 2.3 and 2.4 give the estimation value per an atomic
operation in the C-program. Another way to describe the estimation value is
that of calculating all the specific atomic-operations in the program so that
the total estimation value can be found.

Eatomic−operation = Vdd ∗ Iaverage ∗ tatomic−oper.

k
− Eempty−loop

l
,where k, l ≥ 1

(2.4)
In some cases, extracting all the atomic-operations in the whole C-program

might be complicated, impossible or even unwanted. Also, sometimes it is not
possible or necessary to extract a specific library function and, therefore, the
function in measured as a block-operation. The block can represent a single
line or even a function or a subroutine. For example, a loop consists of various
parts that can be seen as block-operations, further analysed in Section 2.3.2.
The formula for the case is shown in Equation 2.5, where Eblock−operation is
the energy per single execution of the block-operation, measured separately.
The energy value for the Eatomic−operation is received using Equation 2.4. The
variable n presents the number of different atomic-operations in the program.
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The value o presents the number of repetitions of atomic-operations in the
specific program. Similarly, the variable p presents the number of different
block-operations in the program. The variable q presents the number of
repetitions of block-operations in the program. As a results the total estimated
energy Eestimated of the program is calculated by summing up both the results
for atomic-operations as well as the results for block-operations.

Eestimated =
n∑

i=1
(oi ∗ Eatomic−operationi) +

p∑
i=1

(qi ∗ Eblock−operationi) (2.5)

Regardless of the method used for calculating the estimation result,
the percentage difference of the estimation value and the measured energy
consumption shows the precision of the estimation. Equation 2.6 presents the
equation for error calculation. If the result for the precision is positive, it
shows overestimation, meaning that the estimation result was higher than the
real result measured. A negative estimation means that the estimation result
was lower than the measured energy consumption.

precision = (Eprogram − Eestimated)/Eprogram ∗ 100% (2.6)

2.2.2. Performance Estimation
Performance estimation can be seen as a subset of energy estimation and
is solely based on timing measurements. More precisely, the estimation
model consists only of execution time data, since the voltage level and
current consumption measurements are neglected on the assumption that the
fluctuations are small. By ways of simplification the P = U ∗ I is expected to
have a constant value of ”1W”. Therefore, the performance model is a part
of an energy model, but without the data on current and voltage. Although
the energy model contains more information, it is also harder to generate.
For the performance model, only one parameter execution time must be
measured. The idea of dropping the extra parameters needed for the energy
model was derived from the results of the energy consumption estimation. It
was obvious that for the microcontrollers under test, current consumption was
fluctuating very little, regardless of the operation executed [65]. The main
cause for current consumption to change was a change in clock frequency.
With higher clock frequency, current consumption was raised. Therefore, a
model for performance is derived by measuring only the execution time of
atomic-operations.

The methodology for measuring execution time is the same as the one
used for energy consumption estimation. Equation 2.7 presents the principle
of retrieving the performance value for a single atomic-operation. The
tperformance presents the performance value in seconds s. The tatomic−operation

is the measured atomic-operation execution time. The tempty−loop is the
execution time of an empty loop or, in other words, a loop without the
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atomic-operation in its body. The values for p and r present the loop iterator
of the corresponding operation.

tperformance = tatomic−operation/p − tempty−loop/r (2.7)

2.3. Estimation Details

Besides the main principle of measuring an atomic-operation’s duration for
performance estimation, and the current consumed for energy consumption
estimation, some other important features must be taken into account in
order to have a precise estimation result. The methodology, described in
Section 2.2.1, states that for finding the energy for the atomic-operation, the
energy added by the loop which was used to execute the atomic-operation
must be subtracted. Therefore, to have a precise estimation value for the
atomic-operation, the loops must first be precisely estimated. To achieve
this, a loop estimation model was derived from the C-language loop execution
flowcharts. Another important aspect for having a precise estimation is
taking the estimation measurements for the correct datatype. Although
the estimation methodology is exclusively for the no optimisation level, an
experiment to estimate the performance for higher compiler optimisation
levels was conducted.

2.3.1. Estimation at Different Compiler Optimizations

As the results for both energy consumption and performance estimation
[65, 69] on compiler optimisation level -O0 looked promising, an experimental
attempt to estimate software performance on higher compiler optimisation
levels was made. According to the data gathered in GCC (GNU Compiler
Collection) [18], the compiler has more than 600 optimisation flags and more
than a 100 additional parameters. In order to control the optimisations, the
compiler has seven built-in optimisation levels. Although all the optimisations
can be manually turned on and off, it is more customary to use the available
optimisation levels. The Table 2.1 presents an overview of all the different
compiler optimisation levels available in GCC. The experimental results and
conclusions on estimating performance for different compiler optimisation
levels are in [68].

As each optimisation level is invoking different flags, the uses for the
optimisation levels are different. However, most commonly the levels -O0 to
-O3 are utilised, whereas the levels -Os, -Ofast and -Og are left for more special
cases. Due to this, the experiments performed for estimating the performance
for different compiler optimisation levels are also conducted for the levels -O0
to -O3. In order to estimate the performance for the chosen optimisation
levels, two approaches are proposed.
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Table 2.1: GCC Compiler Optimisation Options [18]

Opt. Description
level
-O0 Reduce compilation time and make debugging produce the expected

results. This is the default.
-O1/-O Optimise. Optimising compilation takes somewhat more time, and

a lot more memory for a large function. With -O, the compiler
tries to reduce code size and execution time, without performing any
optimisations that take a great deal of compilation time.

-O2 Optimise even more. GCC performs nearly all the supported
optimisations that do not involve a space-speed trade-off. As
compared to -O, this option increases both compilation time and the
performance of the generated code.

-O3 Optimise yet more. -O3 turns on all optimisations specified by -O2
and also turns on extra 13 flags.

-Os Optimise for size. -O2 enables all -O2 optimisations that do not
typically increase code size.

-Ofast Disregard strict standards compliance. -Ofast enables all -O3
optimisations. It also enables optimisations that are not valid for
all standard-compliant programs. It turns on -ffast-math and the
Fortran-specific -fstack-arrays, unless -fmax-stack-var-size is specified,
and -fno-protect-parens.

-Og Optimise for debugging experience. -Og enables optimisations that
do not interfere with debugging. It should be the optimisation
level of choice for the standard edit-compile-debug cycle, offering
optimisations while maintaining fast compilation and debugging.

Method 1

The estimate is found by measuring the execution time of a benchmark
program in the host system (PC) at different compiler optimisation levels.
The exact time values are used to find the timing ratios between different
optimisation levels. The ratios are in turn used to calculate the estimation
result on the target platform for other compiler optimisation levels than -O0.
The ratios, when combined with the already available estimation for -O0, are
the final result for the current optimisation level.

Method 2

By measuring atomic-operations at different optimisation levels on the target
hardware, an estimation model, similar to the main methodology introduced
in this work, is generated. The created model is then used for estimations.
However, it is not easy to find out how sequences of atomic-operations are
transformed during compiler optimisations.
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2.3.2. Loop Estimation

The main results in the following section are presented in [69]. A sophisticated
view on loops in C-language is given in [2], in Chapter 9.6 Loops in Flow
Charts. An atomic-operation should essentially contain only one operation.
Exceptions in this case are block-operations, where the operation under
measurement intentionally contains more operations and is treated as such
also in analysis. The structure flowchart of the while and do-while loops in
C-programming language is presented in Figure 2.1. As can be noted, both
structures basically contain only a condition-block, whereas the code-block
can remain empty. Therefore, for measuring the execution time of either of the
loops, the condition is the single most important part. Measurement of while
or do-while loops is quite straightforward. However, when the operation is a
complex structure, such as a for loop, a more elaborate approach to estimation
is needed.

while( condition )
{code;}

Condition

Code

true

false

do{code;}
while( condition )

Code

Condition

false

true

Figure 2.1: While and Do-while Loop Flowcharts

The situation is more complex when the execution time for the for-loop is
measured. The structure flowchart of the for-loop is presented in Figure 2.2.
Compared to the structures of the while or do-while loops, the structure of
the for-loop is more complex. Therefore, measuring the for-loop as a single
atomic-operation will produce a higher estimation error than expected, mainly
because the structure contains many parts that contribute to the overall
execution of the loop and thus makes the loop execution time estimation
difficult. The importance of the for-loop lies in the fact that for finding out
the execution time for an atomic-operation, an empty loop execution time is
subtracted from the execution of a loop with an atomic-operation in its body.
Therefore, the correct execution time for the for loop is essentially important
for the methodology.
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for( init;condition;increment )
{code;}

Init

Condition

Code

Increment

true

false

Figure 2.2: For-Loop Flowchart

To achieve a better estimation result for the for-loop, an approach based on
decomposition is proposed. The main parts of the for-loop are initialisation
(tinitialisation), condition (tcondition), code (tcode) and increment (tincrement).
The initialisation is executed only once per loop and can even be discarded in
case of a high number of increments. An important figure for the loop is the
iterator N , which is usually an integer and is used for controlling the loop. In
other words, the condition is that the iterator checks N + 1 times whether to
complete the loop or continue with the code. The code is a user program in
the loop body. It can remain empty for the execution time measurement. The
increment part means that the loop iterator N is incremented or decremented.
As a conclusion, the for-loop execution time is:

tloop = tinitialisation + (N + 1) ∗ tcondition + N ∗ tincrement + N ∗ tcode. (2.8)

To calculate the total execution time of the loop tloop, all the timings
for the separate parts are needed. However, as an assumption, the tcode is
assumed to contain a specific atomic-operation and thus is treated as such in
the further analysis. However, it should be noted that complex operations,
statements, variable initialisation, conditions etc. are taken into account in
atomic-operation analysis. When the iterator N is a high number the extra
check for tcondition can also be discarded and the iterator N can be brought out
of the brackets as shown in Equation 2.9. From the remainder in the brackets,
an assumption is made that tcondition and tincrement can be merged. The basis
for the merge is that both condition-checking and iterator-incrementing are
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executed with every cycle in the loop and are treated together as titerator. Also,
the tinitialisation can be dropped when the iterator N is a high number, but
the estimation precision may consequently decrease. For a single for-loop the
timing model is the following:

tloop = tinitialisation + N ∗ (tcondition + tincrement + tcode) =
= tinitialisation + N ∗ (titerator + tcode).

(2.9)

The Equation 2.9 is also used as a basis for estimating the execution time for
nested loops. A nested loop describes the situation where a loop is executed in
a loop. Nested loops often exist in program code, therefore, it is essential to be
able to estimate them exactly. A precise nested loop estimation also enables
to use the loop model for extracting atomic-operation execution time from the
measurement result. The nested loop commonly has two parts: the inner and
the outer loop. The outer loop marks the loop which also executes the inner
loop. Equation 2.10 describes the nested for loop model, where the tcode of the
touter is substituted with the tinner. As a result, the tnested is the combination
of both the inner and the outer loop. The variables M and N present the loop
iterators. A nested loop was used to create the measurement data points for
finding the values for touter and tinner.

touter = tinitialisation + M ∗ (titerator + tcode);
tinner = tinitialisation + N ∗ (titerator + tcode);

tnested = tinitialisation + M ∗ (titerator + tinitialisation + N ∗ (titerator + tcode)).
(2.10)

As can be seen in Equation 2.10, despite the loop iterator, the tnested has
both the variables titerator and tinitialisation twice in its body, due to the inner
and the outer loop. It is obvious that they are the same for both parts of
the loop. One purpose of the loop model is to allow for its use in estimating
the tnested value. For this, the parameters tinitialisation, titerator and tcode must
be known. When the M and N values are high, the parameter tinitialisation

can be neglected. Therefore, only two measurements with different values
for both M and N are needed to find the titerator and tcode values. However,
the estimations are more precise when the tinitialisation is included in the loop
estimation. To find the parameter values, a linear equation system or least
squares method could be used. In this work, the parameters were found by
non-linear least squares method available in MATLAB Curve Fitting Toolbox
[40] on Equation 2.10.

As a special case, the for loop model was verified by using Equation 2.11.
The equation represents the situation where the code part is executed more
than once, for instance O times. The aim was to verify that the number of
code repeats does not affect the estimate for a single loop execution time.

tloop = M ∗ (titerator + O ∗ tcode). (2.11)
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If the loop model parameters tinitialisation, titerator have been found the tcode

can be found by extracting it from the Equation 2.9 as shown in Equation 2.12.
Obviously, the value of the total loop execution time tloop is needed, as well.

tcode = tloop − tinitialisation

N
− titerator (2.12)

It should be noted that init-, condition- and increment-blocks, shown
in Figure 2.1 and 2.2, can contain complex expressions with a rather long
execution time. However, the atomic-operation in these expressions is taken
into account, while counting and profiling C-code atomic-operations in general.

2.3.3. Datatype Energy Consumption
The results of the datatype impact on the energy consumption estimation are
presented in [66]. It was observed that different datatypes have large effects on
the energy consumption. Therefore, optimising a C-code for the most suitable
datatype has an important effect on the energy consumption. The main aspect
of the datatype energy consumption is the amount of memory allocated for
the datatype. The GNU C standard differentiates between eleven types of
integers and three types of real numbers [21]. As the integers size is from 8-bits
to at least 32-bits, the actual amount of memory allocated for the datatype is
determined by the compiler. Therefore, it might be possible that an ”int” for
one compiler means 16-bits, but 32-bits for another. In the experiments done
for this work, the <stdint.h> C-library was used to rule out the differences in
the memory amount for the variables.

2.4. Chapter Summary

In this chapter, a thorough overview of the methodology for both energy
consumption as well as performance estimation methodology was given. In
addition, the important aspects that must be taken into account when using
the methodology were introduced – for instance, the loop model and datatypes
used. Also, the preliminary method for estimating the performance for other
compiler optimisation levels than no optimisation was introduced.
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3. Measurement Platform

In this chapter, a description of the measurements techniques is given,
including both manual and automated measurements platforms. The general
overview of the development of measurement platform is reported mainly in
[67]. However, the description for the automated measurement platform for
measuring performance data is presented in [69]. The chapter is divided
into four sections, covering Manual Measurements Platform, Automated
Measurements Platform and Application Estimation and Model Verification.
The Chapter Summary concludes the chapter.

3.1. Manual Measurements Platform

At the beginning of the experiments, it was decided that the proof of concept
for the energy estimation method must be executed first and everything else
comes as a secondary task. In the initial experiments, all the data was gathered
manually, meaning that the person who conducted the experiments was
constantly setting and resetting the measurement equipment. To develop an
energy consumption estimation model with fixed parameters (clock frequency,
-O0 compiler optimization level, fixed voltage level), it took a full workday
in a lab, while constantly modifying oscillator and multimeter settings to
guarantee correct measurements. The process contained changing the width
of the measurement window and adjusting the cursors on the oscillator, as well
as clearing the average current value on multimeter for each measurement.
The process was also slowed down by the fact that in one measurement
cycle, only one atomic-operation could be measured. The main reason for
measuring only one atomic-operation in one programming cycle was caused
by the inability to distinguish them from one another on the measurement
equipment. To illustrate, an energy model of 100 atomic-operations requires
the controller to be re-programmed 100 times, as well as connecting and
disconnecting the programmer 100 times, and resetting the measurement
equipment 100 times. This manual labour was very time-consuming and
tedious, despite the fact that the measurement results were taken manually
from the equipment. However, for the purposes of generating an estimation
model without LabVIEW [54] or other advanced measurement hardware
control system, the initial measurement system still serves its purpose. In this
section, an overview is given on how to measure data without sophisticated
automated tools.

43



3.1.1. Overall Measurement Flow
The principle of the methodology is based on creating a model of a
microcontroller. To create a model either for energy consumption or
performance estimation, some data is needed. As mentioned already in
Section 2.2.1, in the case of energy consumption estimation, measured values
for voltage level, current drawn by the microcontroller and execution time of
the atomic-operation are needed. For performance estimation, only a value
for execution time is needed. For measuring current, an ammeter is needed,
for voltage, a voltmeter. A logic analyser (LA) can be used to measure the
execution time. A schematic of the measuring circuit is presented in Figure
3.1. Either a voltage source or a battery is needed for powering the circuit.

Figure 3.1: An Overview of the Initial Measurement System

Besides the physical data, the model also depends on metadata. For
instance, the clock frequency of the microcontroller changes both energy, as
well as performance consumption results. Therefore, the compiler name and
version, clock frequency, the operation itself and amicrocontroller identifier are
also stored. For the manual measurements platform, the model data was saved
to spreadsheet. Models are constructed based on a C programming language
syntax –commands and operations. In particular, each C language atomic-
operation is measured and the corresponding data is retrieved. Therefore, for
creating a model of a microcontroller, a certain software must be executed and
the values for physical parameters must be measured. The manual measuring
system focuses only on energy consumption estimation, as it was the needed
result when the process was developed.

3.1.2. Measurement Instruments
The physical parameters needed for the model are voltage, current and time,
presented in Equation 2.2. In Figure 3.2, adapted from [65], a simplified view
of the initial measurement system is shown. The most important device of
course is the microcontroller. First, the device is programmed with a relevant
program code, thereafter, the measurements are taken. The measurement
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hardware consists of a multimeter, a power source and a logic analyser. Besides
the measurement devices, the setup has a programming device and a host PC.
Multimeter is set to measure the average current drawn by the microcontroller
and is therefore connected in series with the power source. On the figure, the
blue lines present the power connection. The value for voltage is set on power
source and as a simplification, the same value is used in computations. The
voltage drop on the power circuit is neglected. The logic analyser measurement
probe is connected with one general-purpose input/output (GPIO) pin of
the microcontroller. The pin is set to be in output mode. Logic analyser
measures the raising and falling edge of the microcontroller pin which in turn
is used to extract the execution time of the atomic-operation running on the
microcontroller. The logic analyser is also connected to the host PC, as the
data extraction is done on the host PC. The host PC is also used to program the
microcontroller via the programming device. For each microcontroller under
measurement, a specific Integrated Development Environment (IDE) is used
for programming and debugging the code. The connection between the host
PC and the programmer is used only to reprogram the microcontroller. The
programmer is disconnected for each measurement cycle, because in the case
of some devices, it had an impact on the current drawn by the microcontroller
or the prototyping board. The green lines one the figure present the data
connections.

Figure 3.2: An Overview of the Initial Measurement System
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It should be noted that the equipment used for measuring current
consumption was a Keysight 34405A [1] multimeter. The power source was a
Rhode & Schwarz HMP2030 [63]. The Intronix Logicport LA1034 [28] was
used as a logic analyser. The host PC had a Windows environment, therefore
the software was LogicPort Software, available at Intronix homepage. In
the initial tests, a 32-bit PIC microcontroller PIC32MX460F512L [46] was
used on an Etteam plug-in module [17]. The PicKit3 programming device
[47] was used for programming the chip, and for developing the code for the
microcontroller, the MPLAB X IDE [41] was used.

3.1.3. Measurement Software
Eachmeasurement cycle, whether it is for verifying the complete program or for
measuring an atomic-operation, starts with programming the microcontroller.
It is important to note that after programming, the programming device
is disconnected to eliminate its impact on current consumption. The size
of the impact varies with the microcontroller. The software loaded on the
microcontroller is executed in an infinite loop where in the beginning of each
loop, a GPIO pin is toggled. The software can also be designed as modular
in a way that the user can easily call out different functions without the
need to rewrite some basic configurations. As only one atomic-operation or a
program can be measured at the time, the rest of the functional code must be
commented out.

Figure 3.3 depicts an abstract overview of measuring ”a + +; ” statement
on an abstract platform. A measurable software part is enclosed with GPIO
pin-toggle command, line 4, to enable knowing the exact execution time of each
iteration. A for-loop, within which the needed atomic-operation is executed, is
presented on line 6. A complete program execution time can last from a fraction
of a second to several minutes and longer. However, an atomic-operation lasts
only a fraction of a second. Therefore, the atomic-operation itself is virtually
unmeasurable and must be programmed to execute for longer.

1 void main (void) {
2 int ik, a; // Variable declarations
3 while(1){ // Infinite loop
4 pin_toggle; // Abstract pin toggle command
5 // Cycle for measuring 100k operation executions
6 for(ik = 0; ik < 100000; ik++){
7 a++; // Operation under test
8 //a = a + 1; //
9 } //End of for

10 a = 0; // Clearing the value to avoid overflow
11 } // End of while
12 } // End of main

Figure 3.3: An Example of Abstract Software for Measuring a Single Operation
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In the software, loops are used with fixed counter value. The actual value
for the loop iterator is found mostly by using trial and error, although it is
also dependent on the measurement hardware. The value of the loop iterator
is chosen according to the execution length of the operation. The reason for
measuring an atomic-operation in a loop is the sampling rate. According to
the Nyquist-Shannon sampling theorem [90], the sample rate of the signal
under measurement must be at least twice or more. For a microcontroller
running at 8 MHz frequency, the sampling rate must be at least 16 MHz to
pinpoint the pin-toggle event. On the other hand, for a 32-bit MCU running at
80 MHz frequency, the sampling rate must be at least 160 MHz or more. This
means that one instruction on the MCU is executed within 12.5 nanoseconds.
Capturing the rising and falling edge of such a short duration signal with high
precision requires more advanced measurement instruments, not available to
the author. Thus, in the case of undersampling, the rising and falling edge
of the pin-toggle signal can go undetected. The main effect of undersampling
is the measurement error, since the pin-toggle signal is registered with a
delay. Another reason is that even when the 12.5 nanosecond signal is
measurable, the instrument’s (oscilloscope or logic analyser) measurement
window is considerably decreased. Therefore, capturing the signal within
the measurement window requires external triggering from the measurement
device. Using external triggering for capturing was nonetheless tested.
However, as it did not help much with the measurement process, it was
discarded. Figure 3.4 presents an example of the pin-toggle signal sampling
based on Figure 3.3. The signal ”pin-toggle” is generated by the MCU GPIO
pin. Several high and low signal values are captured within the length of
the measurement window. As the software is programmed to execute the
atomic-operation during the high signal period, the cursors are set to measure
the high time. The result is the execution time of the atomic-operation that is
stored in ∆t.

t0 t1∆t

0 0 01 1pin-toggle

Measurement window

Figure 3.4: Measuring a Signal Duration on a Waveform

The execution time of a program can be measured similarly to the execution
time of an atomic-operation execution time. On Listing 3.3, the ”Operation
under test” must be changed into the program or a function call containing
the appropriate code. Depending on the program, the cycle counter on line 6
might also be changed if the execution of the program is taking unreasonably
long.
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3.1.4. Measurement Process
Asmentioned inSection3.1.3, themeasurementcanbeperformed foracomplete
program, a block-operation or an atomic-operation. The measurement cycle
for either case is similar because there is no significant difference in the
measurement process. Prior to measuring, the following steps are needed:
the software is loaded on the controller, the multimeter is set to measure the
average current, the logic analyser is triggered to start the measurement on a
rising edge of the GPIO pin signal and the programming device is disconnected
from the microcontroller. When the channel output on power source is turned
on, the microcontroller starts to execute the program, loaded in the memory, in
an infinite loop. The logic analyser registers the rising edge, and the execution
duration of one measurement cycle is saved on a waveform. The multimeter is
set to start measuring the average current. It can be done bymanually pressing
an appropriate button or by setting themicrocontroller GPIO pin-toggle signal
as an external trigger. The measurement by the multimeter must be ended by
the user when the value of the average current is stable. Depending on when
the measurements were started, the experiments show that the current drawn
by the microcontroller drops considerably in the first second after power-on
and then stabilises. The effect is probably caused by charging of the supply
circuitry, as the MCU development boards usually also include a capacitor.
Therefore, it is recommended to wait for a couple of seconds before starting
the multimeter measurements. Although the current consumption during the
low and high pin-toggle varies, the differences between measuring on high and
low signal are evened out when the program is run for a while.

The results are gathered as following. The average current value from the
multimeter is written down by the measurement operator and the current
value on the multimeter is cleared. The voltage level value is noted from the
power source and, as explained earlier, the voltage drop on the microcontroller
is not considered. For the execution time, cursors are applied on the
registered waveform in logic analyser software. The difference of the cursors
is the execution time value of the operation. Besides the measured physical
parameters, the microcontroller name and clock frequency, compiler version,
loop count (iterations), datatype and the operation must be noted. In case
the parameters of a complete program are measured, it is for the verification
purposes of the method or the program itself. The measurement data of a
complete program is irrelevant when generating an estimation model.

3.1.5. Data Analysis and Model Creation
The raw data for an atomic-operation is manually noted from measurement
sources and stored in a spreadsheet. The data is further analysed in order to
generate a model based on raw data. For some C-operations, other operation
must be first subtracted to get the result. For instance, for finding the most
precise execution time for an add operator ”+”, a C-expression ”a = b+c; ” can
be subtracted from a ”a = b + c + d; ” operation. However, for some operations
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it is difficult to subtract a supplemented atomic-operation. Therefore, the
execution time is derived by separating the outer loop execution time from
the expression. In other words, an empty loop body with an equal number of
iterations is subtracted from the execution duration of the expression. In any
case, the execution time of the surrounding loop is needed, as the energy (or
execution time) of the loop must be subtracted. The loop model, described
in detail in Section 2.3.2, is used for this purpose. The precision of a loop
model weighs heavily on the estimation error and has therefore been improved
several times. An example of a energy model for expressions on Microchip
PIC32MX460F512L microcontroller is shown in Table 3.1. For brevity, the
data on microcontroller name, compiler name and version, datatype and clock
frequency are discarded from the table. It should be noted that the maximum
clock frequency of 80MHz was used and the datatype was the 8-bit char. In the
table, the column execution time in milliseconds presents the total execution
time for 1000 iterations. In the column Single expression in µs, execution
time of a single expression when the loop execution time with the number of
iterations is subtracted, is presented. The column Expression energy presents
the energy for a single execution of the expression, using Equation 3.1, thus
also taking into account the loop model.

Table 3.1: Example of an Energy Model for PIC32MX460F512L

Expr. Iter- Current Voltage Exec. Single Expr.
ations mA mV time ms expr. µs en. µJ

a = a + b; 1000 12.26 3300 22.03 22.029 891.26
a = a; 1000 12.21 3300 14.03 14.029 565.27

To find the add operator ” + ” energy, the energy of the ”a = a; ” expression
must be subtracted from the ”a = a + b; ” expression’s energy. First, however,
the total energy must be found. For this the equation for total energy is used:

Etotal = Vdd ∗ Iaverage ∗ toperation, (3.1)

where Etotal presents the energy, Vdd is the Voltage level, Iaverage is the
average Current drawn and toperation is the total Single expression execution
time of the operation. In Table 3.1, the result of Expression energy is presented
in µJ. To get the energy value for a single add operator ” + ”, the total energies
of the two expressions must be subtracted as shown in Equation 3.2.

E”+”operation = (Ea=a+b − Ea=a) => 891.26 − 565.27 = 325.98(µJ). (3.2)

It should be noted that the iterations shown in Table 3.1 for the expressions
can differ, as the loop model takes the iterator values into account.
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3.2. Automated Measurements Platform

As the first results of the estimation of energy consumption looked promising
[65], a more sophisticated measurements system was needed. For the
automated measurements solution, both energy consumption estimation and
performance estimation are taken into account. The development of the
automated measurements platform is presented in [67].

3.2.1. Measurements Platform Requirements
The motivation behind the idea of developing an automated solution was to
reduce the time and effort needed to generate a model, as the manual labour
was tedious and slow. Time for taking measurements and analysing data
was speeded up. In addition, the amount of man-hours needed to generate
the model was reduced significantly. However, it was clear that a fully
automated measurements platform was not feasible. For instance, the need
to program and re-program the controller required human intervention. For
the data acquisition (DAQ) automation, it was decided that the amount of
manual labour must be taken to zero, meaning no more setting or resetting
the measurement equipment manually. This was done particularly to reduce
the time needed to configure the measurement equipment and take the
measurements, which had previously included manually setting in place the
cursor positions for the logic analyser waveform, clearing and starting the
measurement of average current. It was also important to reduce the overall
measurement time formodel creation by reducing the need for re-programming
the controller under test. One of the motivations was to develop a rapid
measurement system, as it was intended for repeated measurements. For
instance, if only a single parameter was changed, the whole model had to
be re-measured, for example, when a model for different clock frequency or
voltage level was needed. The main requirements for the new measurement
system are the following:

I Acquiring data from measurements devices must be fully automated. No
more manual setting or clearing values on measurement devices.

II Configuring measurement devices must be automatic, uniform and
quick. To set the measuring parameters of the devices, no more manual
configuring of the devices. Also, if possible, the configuration of the
device should be made using a single environment.

III Gathering and storing raw data must be automated. No more manual
noting of different measuring data. The results from devices must be
automatically digitized when the measuring ends.

IV Measuring more than one atomic-operation in one cycle should be
achieved. To reduce the number of re-programming the controller, more
measurements within one measuring cycle should be taken.
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V Analysing raw data must be done by automated software program.
Extracting the model data from raw data must be automated.

VI Measuring and analysing data can be separated processes. The raw
measurement data must include all the necessary details for the energy
model to reduce the occupation time of the measurement device.

VII Model data must be stored in an organised manner publicly or in a local
server to avoid data losses and to give uniform access.

According to the list, every item adds something to the measurement
method and also differs from the manual measurement platform. Keeping
in mind these requirements, a new automated measurement platform was
developed. For the control software, the LabVIEW platform was chosen, as
it was available for us and was also supported by most of the measurement
instruments.

3.2.2. Measurement Hardware Overview
Based on the list presented in Section 3.2.1, the new measurements platform
had to support remote control of the measurement devices, as manual
setting and re-setting of the devices was cumbersome. Besides controlling
the measurement start or end cycle, the platform also had to support the
configuration of the measurement devices. The results must be acquired and
stored in digital format. In case of measuring more than one atomic-operation
in a cycle, an atomic-operation distinction method must be implemented.
Therefore, each measured atomic-operation must have a unique identifier
which must be also stored with the measured value. Data analysis is likely
to occur later or separately of the measurements. Therefore, all the stored
measurement data must also contain the metadata needed for the model,
regardless of the analysis platform used or the time the analysis takes place.

As one of the requirements was the remote control of devices, it was
imminent that the chosen logic analyser must be disregarded, since it did
not support any external control features besides the manufacturer software.
However, the logic analyser function as such would have been sufficient where
the externally controlled device is available. An oscillator was chosen as a
substitute, as it also provided the necessary operations. In general, a logic
analyser can still be used, however, there was none available which would
have had the option of external control. In Figure 3.5, adapted from [67], is
shown the idealistic view of the automated measurements platform for energy
consumption estimation. In principle, the mechanism of measurement-taking
is the same as described in 3.1 Manual Measurements Platform. Multimeter
is used to measure the current drawn from the microcontroller. Power source
is used for powering the circuit. Oscilloscope’s digital channel is used for
registering the rise and fall of the microcontroller GPIO pins. The blue lines
present the power lines to the microcontroller. The green line present data
connections from PC to programmer and microcontroller for programming
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the device, from microcontroller to the oscilloscope for catching the pin toggle
signal. As a difference from the Manual measurements, the pink lines present
the communication line between the host PCand themeasurement device. One
option for controlling the measurement devices is to use LAN connection, as
presented in the Figure 3.5. However, to control themeasurement instruments,
many other connection types are available. For instance, USB connection,
Serial connection and General Purpose Interface Bus (GPIB) [55].

Figure 3.5: An Overview of the Automated Measurements System for Energy
Estimation [67]

The main difference between energy consumption and performance estima-
tion is measuring the current drawn by the microcontroller. That is, making
the choice between measuring the current or not. When only considering
performance, the execution time of the atomic-operations is needed, regardless
of the current drawn. However, the voltage drawn by the microcontroller is
still needed, as it might have an impact on the execution time. In Figure 3.6,
adapted from [69], the measurement hardware overview of the performance
measuring platform is presented. Depending on the microcontroller under the
test, the circuitry can be powered either by the power source or by the USB
port of the PC. The connection is presented as a blue line, the asterisk depicts
that only one of the lines can be active at the time. It depends on the fact that
some development/break-out boards have an integrated voltage regulator.

An important aspect of the measurement hardware is the measurement
window width of the oscilloscope. One of the goals of the automated
measurements platform was to reduce time spent on programming and
re-programming the microcontrollers. Therefore, the only feasible solution
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Figure 3.6: An Overview of the Automated Measurements System for Performance
Estimation [69]

was to program more than one atomic-operation on the controller. Having
more than one operation in the MCU memory also creates a more realistic
situation for the measuring, as more memory is used, which would also be the
case when a program is loaded into the memory. As the atomic-operations are
executed, the data is retrieved by the oscilloscope, described in detail in the
following section. This in turn may cause a situation where the length of the
atomic-operations is greater than the sampling window of the oscilloscope. To
solve the situation, the microcontroller executes atomic-operations in a loop.
As each atomic-operation’s execution is surrounded by the needed metadata,
the measurement cycle must be caught by one measurement window. If the
atomic-operation was executed in between the measurement window and data
transmission, the atomic-operation would be discarded.

3.2.3. Automated Measurements with LabVIEW

For the methodology proof on concept, all the necessary measurements were
taken by hand in a simplified manner, meaning that the equipment was
manually reconfigured for each measurement. On the multimeter, the average
currentmodewas reset, on the logic analyser, the cursorswere shifted according
to the raising or falling edge of the signal. The method was cumbersome as well
as time consuming. Therefore, as part of the research that followed, a more
sophisticated and automated measurements system was developed. However,
in case of limited resources, the initial measuring method is still usable. The
results of developing an automated measurements platform are reported in
[67].
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An automated measurement device configuration requires some sort of
software control. Despite the fact thatmanufacturers of all of themeasurement
devices offer a custom program, it makes the configuration inconvenient, as the
devices may be from different manufactures. As the licenses of the National
Instruments LabVIEW software were available to us, we decided to try to use
the National Instruments LabVIEW systems engineering software. It turned
out to be very suitable for controlling the measurement hardware, as well
as gathering data for model creation. The software supported the available
measurement devices and is a part of a well-known brand with good support
from both community and developers.

The goal of the automated measurement system was to rapidly configure
and re-configure the measurement hardware, for example, to change the
measurement window of the oscilloscope, power supply voltage output etc.
Therefore, a custom LabVIEW Virtual Instrument (VI) was programmed to
meet the needs of the method. It was decided that the data analysis is left
out from the VI and is done separately. One of the main reasons was to keep
the utilisation time of the measurement devices low, in order to reduce the
physical lab occupation time. Therefore, the analysis and the measurements
for the model were separated, which in turn meant that the raw data from the
lab must be complete. The VI was configured so that the raw data from the
measurement was instantly presented to the measuring person, which in turn
was needed to verify the general correctness of the measurement. Specifically,
the result from the oscillator was visually displayed.

The control over the measurement process was managed by LabVIEW.
For either estimation goal, a slightly different VI was programmed. For the
control of the devices, the VIs provided by hardware manufacturers were used
where possible. A VI usually consists of a front panel and a back panel, called
the block diagram. An abstract view of the block diagram of measurement
process is presented in Figure 3.7. The process is divided into three sections.
In the ”configuration” section, the pre-defined configuration settings are sent
to the measurement equipment. In the fetching, the measurements are taken
repeatedly, until user interrupt or the measurements counter is finished. The
”fetching” starts only when all the operations in the ”configuration” clock are
completed for each device. In the ”wave generation”, the measurement data is
combined into one waveform chart. The data is presented to the measurement
operator for a quick validation and also stored. All the parameters needed for
controlling the measurement instruments and retrieving data are controlled
from the block diagram.

The front panel of the VI for energy consumption estimation measurements
is presented in Figure 3.8. The front panel is divided into six sections to enable
quick configurations. The ”Devices” tab is meant for selecting the correct
device for measuring. The available devices are previously set and named in
the National Instruments Measurement and Automation Explorer (NI MAX)
environment. For each measurement instrument, a custom panel which
includes the necessary quick access buttons for instrument configurations is

54



multimeter

power source

oscillator

multimeter data

oscillator data

waveform

waveform

timestamp

be
gi

n waveform
array en

d

configuration fetching wave generation

Figure 3.7: LabVIEW VI Block Diagram of Abstract Measurement Process

created. The ”General” tab holds two values. The measurement time out
displays the time inmilliseconds, showing how long onemeasurements can last.
The ”# of measurements” presents the number of measurements taken in a
row. The tab ”File attributes” contains the buttons for the measurements file,
which allow to choose whether the measurements file will be created or not. In
addition to file name and path, the fields with metadata are also added, such
as controller name, compiler name and clock speed. The measurements file is
saved in LabVIEW specific TDMS file format. The abbreviation is derived
from National Instruments technical data management solution. Also, a
waveform chart is displayed, which is used to visually check whether the
conducted measurement data was retrieved correctly or not. For debugging
purposes, the ”Start of the measurements” tab was added.

Figure 3.8: Front Panel View of LabVIEW for Energy Consumption Measurements
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The front panel of the VI used for performance estimation measurements
is presented in Figure 3.9. Compared to the Figure 3.8, the front panel is
somewhat simpler, as the performance measurements do not require so many
instruments. The front panel contains the same items already described for
the energy consumption estimation panel.

Figure 3.9: Front Panel View of LabVIEW for Performance Measurements

In addition to initialisation and end, the measurement process can be
divided into three parts. The initialisation is the start of the measurement.
The end can also contain the outputting of the data to a file, depending
on the choice in the front panel VI. The configuration has three parallel
branches, one per every measurement instrument. Various parameters are
set depending on the instrument, for instance, the length of the measurement
window of oscillator, voltage level for power source and measurement type
for multimeter. When the all the configuring is done, the fetching starts. A
special construct in the LabVIEW VI is used to achieve this. One cycle of
the measurement data fetching acquires data from the multimeter and the
oscillator. If the number of measurement is higher than one, seen in Figure
3.8 and Figure 3.9, the fetching cycle is looped until the measurement count
is fulfilled. Waveforms are constructed from the retrieved data and gain extra
value from the added system timestamp. From each measurement data, a
waveform array is constructed – the result of the measurements.
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3.2.4. Data retrieving

In order to obtain the measurement data, a single GPIO pin was used, as
described already in the manual measurement section. However, for obtaining
the measurement data with all the metadata as well as the data on the
atomic-operation duration, a second GPIO pin is necessary. It is necessary
that each of the measured atomic-operation is distinguished. Therefore, each
atomic-operation is coded, meaning that the data on the operation code must
be extracted. Besides the operation data, the value for each loop iteration has
to be stored in the measurement file. The reason for this is the requirements of
the automated measurements platform – each measurement must contain all
the necessary data. To this end, a custom 2-bit data protocol was established
in order to extract and gather all the necessary data from a measurement.
This means that two MCU GPIO pins are used to transmit the data. One of
the pins transmitting the data about atomic-operation execution duration, as
used in the Manual Measurements Platform, was used to detect the change of
the rising and falling edge. The pin is also used to indicate the start of the
measurement cycle with a short toggle signal. The other pin transmits the
metadata when there is no atomic-operation being executed. In Figure 3.10,
an overview of the measurement window for the 2-bit protocol is presented.
The dotted lines present the trendlines and signal positions. The slashes on the
signals show that the signal is actually longer in the shown period. The striped
area on the signal points out that the signal value is changing in the period.
One measurement cycle, in Figure cycle #1, includes four parts: start toggle,
operation code, operation duration and loop count. Both the operation code
and loop count are part of the metadata signal and described in detail below.
The start toggle and operation duration are a part of operation execution
signal. The length of the start toggle should be at least more than two samples
of the measuring device, so it is definitely captured. The high time of the
operation duration responds to the executed atomic-operation duration. The
duration of measurement cycle #1 depends on the MCU, the measurement
window as well as the measurement instrument and the atomic-operation
under measurement. Usually, the duration is between 0.5 seconds and 2
seconds. There is no need to keep the time between measurement cycles long,
in Figure it is the ”rest” period, as the data is analysed by automatic tools.

In Figure 3.11, the abstract overview of the measurement protocol for
operation code and loop count packets is presented. The data presented in
the figure is retrieved from the metadata signal, as shown in Figure 3.10. The
protocol consists of 32-bits and is divided into three parts, where the first
4-bits are the start bits, also used for synchronisation. The start sequence is
always ’1’, ’0, ’1’ and ’0’. The payload is 25-bits and in the Figure, the bit
values are displayed using ’X’, which means that the real value, either ’1’ or
’0’, will be determined while in use. The last 3-bits are the end bits. The end
sequence is determined by ’1’ and ’0’ plus the very last bit, which is a parity
bit. The purpose of the parity bit is to keep the high values in the packet odd.
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Figure 3.10: Measurement Window of 2-bit Protocol

In a way, it is used as a packet verification indicator, showing whether the
packet was retrieved correctly or not.

In addition, the importance of the start bits is that they are needed to
determine the sample rate to read the rest of the data bits. As the length of
the packet depends on MCU clock frequency etc., the 4-bits in the beginning
of the packet determine the hold time for the rest of the bits in the packet.
This allows the packet structure to be used on a random MCU without almost
any need for changes. However, it is important that one bit’s hold time is
higher than the sample rate of the oscilloscope, so it would not go lost.

1 1 10 0 0X X X X X X X X X X X X X X X X X X X X X X X X X

packet 32-bits

start payload end

Figure 3.11: Measurement Packet Structure

Figure 3.12 presents the detailed view of both the operation and loop count
packets, which are part of the metadata signal, previously shown in Figure
3.10. The packets have the same outer shell and differ only in the payload.
Both of the packets consist of 32-bits with a 4-bits for start sequence and
2-bits for end. Also, a parity bit, which is in the last position, is added. The
first difference is in the operation select bit, which determines the essence of
the the payload. The payload is 24-bits long and is marked with ’X’, meaning
that the bit could have either the value of ’1’ or ’0’ depending on the message.
If the operation selection bit value is ’1’, the operation packet is sent. For
the operation, the payload consists of datatype, operation code and reserved
bits. In case of datatype, 3-bits are used. In Table 3.2, the masks for used
datatypes are presented. The operation code is a unique value for the current
atomic-operation under measurement. The reserved bits are for future use,
however, 1-bit is used to distinguish that the loop count is not for a single loop,
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but for a nested loop. If the operation select bit value is ’0’, the loop count
packet data is sent. The payload for the loop count packet is the iterator value.
The maximum possible value is therefore 224. In case nested loop iterators are
sent, one of the reserved bits’ values must be changed. However, for nested
loops, both iterators can have a maximum value of 212. The importance of
also retrieving a loop iterator value with the measurement is that a timer can
possibly be used for executing an atomic-operation. Therefore, the number of
loop iterator for different operations is constantly changing.

start

operation select

datatype

operation code

reserved

end

parity

start

operation select

iterator value

end

parity

1 1 1 10 0 0X X X X X X X X X X X

1 1 10 0 0 0X X X X X X X X X X X

operation

loop count

32-bits

Figure 3.12: Packet Structure for ”operation” and ”loop count”

As presented already in Figure 3.12, the ”operation” signal also includes
information about the datatype. The importance of distinguishing different
datatypes is explained further in Section 4.2.3. However, in order to
measure the atomic-operation using different datatypes, three bits from the
”operation” packet were allocated. Table 3.2 presents the chosen datatypes
for the Measurements Software Suite, further explained in Section 3.2.5. The
choice of the datatypes was based on previous experience and the results
presented in [66]. In the table, the column Datatype presents the common
name for the datatype. Length in bits is determined in the measurement
software by using the universal <stdint.h> library, as different compilers could
have different lengths for different datatypes. The defined name is inherent to
the 2-bit data protocol as well as the mask, which is the hexadecimal value for
writing the datatype on the operation packet.

In Figure 3.13, the screenshots of oscillator fetching atomic-operation data
are presented. The image is divided into three sub-figures. The blue-green
signal D0 presents the operation execution and the red signal D1 presents
the metadata (as already presented in the abstract view in Figure 3.10). In
the sub-figure (a), the full ten-second view of a measured atomic-operation
is presented. The high signal value shows the operation duration, as low
signal value means no operation. The measurement duration is less than
four seconds, as can be distinguished by the grid (one grid step responds to
one second). As the operation code and loop count last only fractions of a
second, the values are indistinguishable on the sub-figure (a). However, in the
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Table 3.2: Datatype Masks for 2-bit Protocol

Datatype Length, bits Defined name Mask
unsigned char 8 UINT8 0x00000000
signed char 8 INT8 0x01000000
unsigned short 16 UINT16 0x02000000
signed short 16 INT16 0x03000000
unsigned int 32 UINT32 0x04000000
int 32 INT32 0x05000000
float 32 FLOAT 0x06000000
double 64 DOUBLE 0x07000000

sub-figure (b), the zoomed-in view of the code-retrieving operation is shown.
As can be seen, one step on the grid presents 20ms, therefore, one bit of data
transmission on the MCU takes approximately 4ms, as the total operation
code transmission on the metadata signal D1 is roughly 160ms. The spike on
the D0 signal after 20ms presents the start toggle (shown previously in Figure
3.10). In the sub-figure (c), the loop count data transmission is presented. The
length of one measurements step as well as the whole signal duration on D1 are
the same as in sub-figure (b). The spike at the end of the D0 signal, roughly at
184ms, is the start toggle of the next atomic-operation measurement. It must
be noted that the durations of the bits in operation code and loop count vary
depending on the MCU under test. The automated MATLAB data analysis
program, described in Section 3.2.6, adapts according to the data duration
length in the beginning of the operation code (sub-figure (b) in Figure 3.13,
beginning of the red signal).

3.2.5. Measurements Software Suite

The Measurement Software Suite (MSS) for automated measurements had
to be as universal as possible, to facilitate a minimal change necessary when
porting it to a different IDE. In Figure 3.14, an overview of the benchmark
suit’s ’main’ program is presented. As each microcontroller has a different
configuration setting, a dedicated macro ”INIT ()” on line 3, is called in
”main(); ”. The macro is resolved in the header file, pointing to the correct
configuration function according to the MCU under test. The configuration
function is used to include the needed libraries and to configure the MCU.
The configuration includes setting IO pins to output mode, in addition to
setting the macros for high, low and toggling commands of the IO signals.
The configuration is also used to call the main setup function to configure
the controller. In general, the configurations include clock speed, use of the
watchdog timer, using the reset button (if available), etc. The enforced delay
function is on line 5 of the figure. The main purpose of the delay function is to
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(a) View on measuring atomic-operation

(b) Zoomed-in view on the op. code (c) Zoomed-in view on the loop count

Figure 3.13: Oscillator Screenshots of Performance Measuring

give the operator some time to start the LabVIEW measurement cycle before
the MSS is executed on the MCU. To automate the measurement-taking
even further, the external trigger on the oscillator could be connected to the
operation code pin of the MCU to reduce the delay caused by the operator.
However, up to this point, there had been no need for such a feature.
The atomic-operations needed for measurements are united and organised in
modules. In the figure the modules are on lines 7 - 11. Correspondingly,
the MSS is executing the function ”execute_block”, with the module of
”adding_test_array” on line 8. Besides the module, the function has three
more parameters. These are: the start value of the operation code, datatype
and the mask for reserved bits. The ”execute_block” is a wrapper for calling
the operations from the module in sequence and controlling the output of the
metadata. The module itself contains several add-operations with different
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parameters, such as initial value, number of operators etc. The modular
solution is the most useful one when a MCU with a low amount of memory
is under test, as it allows to turn the modules on separately. However, for a
microcontroller with a large memory size, several modules can be loaded and
executed on the controller within one programming cycle and therefore reduce
the time spent on re-programming the microcontroller. Before and after an
operation in a module is executed on the MCU, the metadata described in
Figure 3.12 is sent.

1 int main( void ) {
2 /* Setup for the controller */
3 INIT ()
4 /* Delay before operation execution */
5 for ( empty_for = 0 ; empty_for < 100000; empty_for++);
6 /* Atomic-operations modules*/
7 //execute_block(benchmark_test_array , 0x0000, INT8_TYPE ,

0x02); // 2-tests
8 execute_block ( adding_test_array , 0x0010 , INT8_TYPE, 0x02

) ; // 21-tests
9 //execute_block(assign_op_array , 0x0025, INT8_TYPE , 0x02

); // 14-tests
10 //execute_block(multiply_for_array , 0x004F, INT8_TYPE , 0

x02); // 21-tests, opcodes correct
11 //execute_block(adding_for_array , 0x0064, INT8_TYPE , 0

x02); // 21-tests, opcodes correct
12 while (1) {}
13 } /* End of main*/

Figure 3.14: Automated Measurements Software Suit ’main’ Program

3.2.6. Data Analysis with MATLAB

The raw data gathered in LabVIEW is analysed using MATLAB [39] multi-
paradigm numerical computing environment. In Figure 3.15, the flowchart of
the MATLAB program is presented. Initially, the data is extracted from the
LabVIEW TDMS files, that is the output of the LabVIEW VI. The main goal
of the data extraction at this point is to distinguish the different pin-toggles
as the oscilloscope data is put together into one channel. For instance, if
metadata signal is high, the channel value in the field is ’1’. If the operation
execution signal is high, the channel value is ’2’. However, if both of the
signals are high at the same time, the channel field value would be ’3’. On the
other hand, value ’3’ in the channel values is not allowed and is considered an
error. Until a new synchronisation signal is found, the data at this point is
discarded. After the data extraction, intermediate data tables are created to
further analyse the data. The analysis process is divided into two main parts:
Data About Measurement (DAM) and Data About Current Consumption
(DACC). For both parts, a separate table is created with two columns - one
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columns for timestamp and the second one for measurement data. The DACC
is optional and is needed if energy consumption estimation is the goal. For
performance estimation, only the DAM is needed. On the figure, the optional
flow for energy consumption data extraction is marked with dashed lines.

TDMS

DAM

Bit length

Indices

Operation codes

Loop counts

DACC

Current con-
sumption indices

Average current
consumption

Energy per
measurement

Mid-results

Final results

Spreadsheet Database

Energy
consumption

Figure 3.15: MATLAB Program Flowchart

As shown in Figure 3.15, DAM data analysis tree has four parts, until
a mid-results table is created. In the ”Bit lengths”, the data acquisition
step is extracted from the start bits, as shown in Figure 3.12 earlier. The
”Indices” part means that the measurement begin indices values as well as
header indices from the DAM table are extracted and stored in a separate
table. From the operation execution, the signal begin and end index values
of the signal high time are extracted, that in turn is the atomic-operation
execution time. From the metadata, signal begin and end index values for
both operation code and loop count are extracted. During the ”Operation
codes” and ”Loop counts”, the corresponding data is extracted, using the
previously found indices. From the extracted data, the ”Mid-results” table
is created. Where only performance estimation is needed, the ”Mid-results”
is used to create the ”Final results”. For the ”Final results”, the data about
other important features of the measurement are added, for instance, the
MCU name, clock frequency, voltage level, compiler name and version. The
data from the ”Final results” is in turn saved to ”Spreadsheet”. However, first
attempts to try to integrate a database for the estimation model have been
successful. Therefore, the optional ”Database” solution to upload the data to
database could be used.
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TheDACC tree in Figure 3.15 has three steps. In the ”Current consumption
indices” process, the timestamps from ”Mid-results” are used to extract both
the begin and end indices for the different current ranges. The indices are
stored in a separate table. Next, in the ”Average current consumption”
process, the average current within each separate begin and end index is found
and stored. Finally, in the ”Energy per measurement”, the energy for the
atomic-operation is calculated, using the Equation 2.2, as described earlier.
The energy consumption data is also added to the ”Final results”.

3.3. Application Estimation and Model Verification

Regardless of the measurement technique chosen, the application (or a
function) estimation process is the same. Furthermore, it does not matter
whether the estimation is for the energy consumption or for the performance,
as the only difference is in the amount of data needed to process. When the
application program is chosen, the estimation process involves three stages:

• Model creating

• Application profiling

• Application analysing

First, the model of the MCU must be created, which was already described
in Sections 2.2.1 and 2.2.2. Besides the created energy consumption or
performance model, an application program, used for the estimation, is
needed. The next step is to profile the application program. The necessary
result from the profiler is the repetition count for each program line in the
application. For profiling, a program called GCOV [20] from GNU toolchain is
used. In Figure 3.16, the profiler result for the FIR filter benchmark program,
which is also used for experiments, is presented. The first column on the Figure
presents the line numbers and the second depicts the profiling result. To get
the total number of atomic-operations, each line must be looked at separately
in order to extract the operations. For this, a software tool which extracts
all the necessary data would be useful. For instance, the data about loops
and conditions, operations and of course the datatype used for the variables.
However, such a tool does not currently exist and is not needed for the proof of
concept of the methodology. So far, the atomic-operations have been extracted
and countedmanually. It is not a problem for small applications, but extracting
the atomic-operations from a large program (with more than 100 functional
lines) is quite time consuming. For example, there are seven atomic-operations
in total on line 8: one assignment, one multiplication, four additions and one
subtraction. So in total seven atomic-operations. Each atomic-operation is
multiplied by the profiling result of the line repetitions. Therefore, the line
8 has: 288 times ”=”, 288 times ”*”, 1152 times ”+” and 288 times ”-”. By
multiplying the atomic-operations repetitions with corresponding data from

64



1 1 void main(void) {
2 - int i;
3 - int y;
4 - volatile float OUTPUT[36], sum;
5 37 for (y = 0; y < 36; y++) {
6 36 sum = 0;
7 324 for (i = 0; i < FIR_LENGTH / 2; i++) {
8 288 sum = sum + COEFF[i] * (INPUT[y + 16 - i] +

INPUT[y + i]);
9 - }

10 36 OUTPUT[y] = sum + (INPUT[y + FIR_LENGTH / 2] *
COEFF[FIR_LENGTH / 2]);

11 - }
12 1 }

Figure 3.16: Profiling Result for the Main Part of a FIR Filter Program

the model, the total energy consumption or performance estimation for the
line is found.

An interesting figure for the FIR filter profiling result in Figure 3.16 is the
total of program line repetitions. By adding the profiling result for each line,
except for lines 1 and 12, the total is 721. The first and the last lines are
ignored as they are not part of the functional code of the application and do
not contain any atomic-operations. When all the operations are extracted,
the total number of atomic-operations for the small FIR filter program is
2557. Therefore, from a small, 5-line program a total of more than 2500
atomic-operations are extracted. An important conclusion is that most of
the application programs are based on loops and nested loops. The total
number of atomic-operations is also an indicator for the estimation model.
For instance, when an application with a high number of atomic-operations
is verified to have a low estimation error, the model used for estimation was
quite exact. Yet, when an application with a relatively small number of
atomic-operations shows a high estimation error, the methodology is either
unsuitable for the MCU or for the benchmark. Also, the methodology could
have been used inappropriately or a human error was made. Some reasons
behind a high estimation error are estimating with the wrong datatype, human
error, optimised subroutines in compiler (even with no optimisation level),
wrong loop parameters.

Model verification essentially consists of an application estimation, as
described previously. In addition the total energy consumption, performance
of the application is exclusively measured. Therefore, the estimation result can
be compared to the total measured result of the application. The difference of
the two measures is the estimation error, which is the single most important
indicator of the usefulness of themethodology. As themethodology introduced
in this work does not require any information about the instruction-set of the
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MCU, the estimation results compared to the methodologies for the lower
abstractions level are less exact. Therefore, for the no-optimisation level, a
good estimation result has a less than a 10% error, and for the optimised code,
a good estimation error is less than 30%.

3.4. Chapter Summary

In this chapter, the detailed description for both manual and automated
measurements platforms are given. As the manual measurements platform
was used for the proof of concept for the methodology, the automated
measurements platform is an important development. However, with limited
resources, the manual measurements platform is still usable. Yet, the main
developments for the automated measurements include equipment control via
a custom LabVIEW VI, 2-bit measuring protocol, measurement software suit
and automated data analysis with MATLAB.
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4. Experiments

In this chapter, the experimental results for energy consumption and for
performance estimation are presented. The chapter contains information from
all the publications [65, 67, 66, 68, 69] that this work is based on. The chapter
is divided into four sections, covering Experiment Equipment, Experimental
Results for Energy Consumption Estimation and Experimental Results for
Performance Estimation. The Chapter Summary concludes the chapter.

4.1. Experiment Equipment

In the following section, themeans for experiments are explained. In particular,
detailed descriptions of the MCUs, benchmark programs and error calculation
are givenwith the addition of variable declaration. Eightmicrocontrollers from
four different manufacturers are used. The estimation methodology is verified
using three (in come cases, two) benchmark programs. Two of the benchmarks
are from the MSP430 Competitive Benchmarking suite benchmarks [22], the
third is an image processing benchmark.

4.1.1. Microcontrollers Under Test

The microcontrollers were chosen randomly on the basis of what was available.
Also, it was beneficial to havemicrocontrollers with both different and the same
parameters to show that the methodology is widely usable. The parameters
were, for instance, the manufacturer, clock frequency, architecture etc. All
the chosen microcontrollers are general-purpose, off-the-shelf devices that are
still in production. In Table 4.1, the data on MCU manufacturer, IDE and
compiler is presented. For each MCU, the latest IDE and compiler version
were obtained, except for MSP430G2553, as the experiments were already
done using an older version, released on 9th of February, 2018. The latest
version was released three days later! As mentioned in the introductory section
of this chapter, MCUs from four different manufacturers were chosen: Atmel
Corporation (Atmel), Microchip Technologies (Microchip), Texas Instruments
(TI), and STMicroelectronics (STM). According to the top MCU IC Suppliers
of 2015-2016 [37], the MCU manufacturers used in this work have a total of
30% of the marketshare. The producers column in the table presents the
manufacturers. In addition it is important to note that in July 2016 Atmel
merged with Microchip Technologies. However, both Atmel MCUs used in the

67



experiments were released before the mentioned merger date, therefore, the
MCUs are considered to be from different manufacturers. In total, there are
eight MCUs from four different producers, and four different IDEs using six
different versions of compilers.

Table 4.1: MCUs Metadata

Controller Producer IDE Compiler
ATmega328P

Atmel Atmel Studio
7.0.1417

Atmel AVR 8-bit GNU
Toolchain (3.6.1.1750)ATmega128RFA1

PIC16F1508 Microchip MPLAB X
IDE v4.15 XC8 1.45

MSP430G2553
TI

CCS 7.2.0 TI v16.9.7.LTS
MSP430F5529 CCS 8.0.0 TI v18.1.1.LTS

STM32F051R8T6 STM Keil uVision
V5.25.2.0

ARMCC 5.06
update 6

PIC32MX460F512L Microchip MPLAB X
IDE v4.15 XC32 2.05

TM4C123GH6M TI CCS 8.0.0 TI 18.1.1.LTS

In addition to the data about the manufacturers, IDEs and compilers, it
is also necessary to list the technical details of each MCU. The important
configurations for each MCU are the maximum clock frequency and clock
source, the architecture and the used voltage level. Despite the fact that voltage
is not directly used to calculate the result of the performance estimation, it is
nevertheless an important parameter, as it affects the overall performance. In
Table 4.2, the technical information on the MCUs is shown. The clock source
shows from where the oscillator signal for the MCU was taken. In general,
it can be either internal or external. Internal clock source means that the
oscillator is integrated within the MCU, as the external implies to an MCU
external oscillator, usually added on the development board. Besides the
external or internal oscillator, the clock source could come from a phase-locked
loop clock generator circuit [59]. This means that a special circuit is used to
control the clock frequency, thus it can be much higher than the internal or
external oscillator’s frequency. In the table the clock frequency is a numerical
value in megahertz. It is one of the most important parameters, as it has
the biggest impact on both the energy consumption as well as performance.
The abbreviation Arch. in the table means the architecture of the MCU and
shows the width of the data path. Besides the ATmega328P and PIC16F1508
which used 5V, the rest of the MCUs were powered by 3.3V. As some of the
controllers were on a development board, all the external devices which might
have draw extra current were switched off, where possible. In any case, all the
measurements were taken under the same conditions, not to alter the result in
any way.
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Table 4.2: MCUs Technical Data

Controller Clock source Clock freq. Arch. Voltage
ATmega328P internal 16 8 5V
ATmega128RFA1 internal 16 8 3.3V
PIC16F1508 internal 16 8 5V
MSP430G2553 internal 16 16 3.3V
MSP430F5529 external 16 16 3.3V
STM32F051R8T6 internal, PLL 48 32 3.3V
PIC32MX460F512L internal, PLL 80 32 3.3V
TM4C123GH6M external, PLL 80 32 3.3V

In the following subsections, a brief description of the used microcontrollers
is given. It is an overview of the hardware platforms under test, because
the results on the same microcontroller, but on another hardware platform
might give a different result for the current consumption. Performance
estimation and consequently atomic-operation execution duration are usually
not influenced by the hardware platform used.

ATmega328P

The 8-bit ATmega328P microcontroller [43] is used with the Arduino Nano
board [5], version 3.0. The 32-pin MCU has 32KB of flash memory of
which 0.5KB is used by the boot-loader. The MCU features also 2KB of
SRAM and 1KB of EEPROM. Besides the MCU, the board also features the
programming device and is equipped with a reset button and four LEDs.
Although, the ATmega328P MCU operating voltage is between 1.8V - 5.5V,
the recommended input voltage of the board is between 7V - 12V. In case the
board is powered by USB a power regulator is used.

ATmega128RFA1

The 8-bit ATmega128RFA1 MCU [42] is used on Dresden Elektronik
development board deRFnode for AVR/ARM [15]. For programming the
MCU, the AVR Dragon [44] programming device is connected via the JTAG
interface. The MCU is combined in a single chip from AVR microcontroller
and an IEEE 802.15.4 compliant 2.4GHz RF transceiver. The transceiver was
not used for measurements. The available 128kB flash is enough for the small
RTOS, making the chip usable as the IoT device. The MCU also has 16KB
of SRAM and 4KB of EEPROM. It also supports wake-on radio, 32-bit MAC
symbol counter, temperature sensor, 128-bit AES crypto engine, true random
number generator, antenna diversity support and other features [42].
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PIC16F1508
The 8-bit Microchip MCU PIC16F1508 [45] is used on Microchip PICkit 3
Low Pin Count Demo Board [48]. As a programming device, the PICkit™3
In-Circuit Debugger [47] is used. The small 8-bit in DIP packaging MCU has
18 I/O’s, 7KB flash and 256 bytes of RAM.

MSP430G2553
The 16-bit Texas Instruments (TI) MSP430G2553 [83] in plastic dual in-line
(PDIP) packaging is used on TI MSP430 LaunchPad Value Line Development
kit [82]. The development board also features the programming device, two
LEDs and two push-buttons, one of which is a reset. The chip has 16KB of
non-volatile memory and 0.5 KB of RAM. The MCU is the most difficult to
estimate. In [69], it was discovered that even though the compiler optimisations
were turned-off, the disassembly of the C-source code had custom subroutines
which source was not available. In particular, the TI MCU was calling the
subroutines when floating point operations were executed. Therefore, the
results for benchmark programs with floating points showed an estimation
error of above the 10% margin.

STM32F051R8T6
From the ST Microelectronics, the STM32F0DISCOVERY kit [77] is used.
The board features the programming device ST-LINK/V2 [78] as well as
STM32F051R8T6MCU [76]. The chip has 64KB of flash and 8KB of RAM. In
addition, the board features four LEDs and two push-buttons, one of which is
a reset. Besides the IDE for programming the STM32CubeMX, a visual MCU
configuration tool was used. The STM32CubeMX [79] is a graphical software
configuration tool that allows the generation of the C-initialization code.

PIC32MX460F512L
From Microchip, the 32-bit PIC32MX460F512L MCU [46] is used on the
Etteam plug-in board [17]. As a programming device, the PICkit™3 In-Circuit
Debugger [47] is used. The chip has 512KB of flash and 32KB of RAM. In
addition, the MCU has 12KB of flash for boot and a flash prefetch module
with 256 Byte cache. The plug-in board does not have any features.

TM4C123GH6M
From TI, the 32-bit TM4C123GH6 [85] MCU is used on ARM®Cortex®-M4F
Based MCU TM4C123G LaunchPad™Evaluation Kit [81]. The evaluation
kit also features an on-board in-circuit debug interface (ICDI) that allows
both programming and debugging the MCU. The chip has 256KB flash, 32KB
of SRAM and 2KB EEPROM. The LaunchPad also features programmable
buttons and a RGB LED together with a reset button.
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4.1.2. Benchmark Programs

In Table 4.3, the benchmark programs used in the experiments are described.
The value in the column Program lines corresponds to the executable program
lines. The column Lines exec. presents the total result of the profiling of the
program. In other words, the Lines executed is the sum of the line repetitions
in the benchmark. Finally, the column Atomic ops. is the total number
of atomic-operations in the benchmark. The total number of executed lines
and atomic-operations in image processing benchmark depends on the image
size that is parametrized in software, therefore, the value varies, as noted by
var. As the atomic-operation counting in the C-code is done manually, it is
cumbersome to estimate the programs with a high number of code lines, except
image processing, where the atomic-operations are counted already in [65].
The matrix multiplication and FIR filter are from Texas Instruments MSP430
Competitive Benchmarking [22]. Although the benchmark suit features many
more benchmark programs, the rest of the benchmark programs were left
aside due to the low number of atomic-operation or high software complexity
(for Whetstone and Dhrystone, the manual extraction of atomic-operations is
difficult). For instance, for all the mathematical benchmark programs in the
MSP430 benchmark suit, the total number of atomic-operations is six. The
benchmark programs are categorised as trivial and substantial, depending on
the total number of atomic-operations in the programs. The categorisation is
not official and is only used as a quantifier for the results. The substantial
benchmarks have more than 500 atomic-operations, as the trivial ones have
less than 500 atomic-operations. The number of atomic-operation in image
processing depends on the created image size and is discussed below.

Table 4.3: Benchmark Programs

Trivial

Benchmark
program

Description Program
lines

Lines
exec.

Atomic
ops.

Matrix mult. A 3x4 matrix is multiplied
by 4x5 matrix. 5 174 292

Substantial

FIR filter
Output from a 17-coefficient
filter using simulated ADC
input data.

5 723 2557

Image processing Gaussian blur and edge de-
tection on simulated image. 47 var. var.

The image processing program used as a benchmark consists of five
consecutive code snippets: variable declaration, picture generation, Gaussian
blur, edge detection, and output generation. The picture generation is
parametrized, meaning that the size of the image created in the MCUmemory
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can be changed in the software. Several different image sizes were used
in the experiments, mainly because of the lack of memory on MCUs with
smaller architecture. In Table 4.4, the number of executed lines as well as
atomic-operations for different image sizes is presented. The bigger the image,
the more memory must be allocated in the MCU. Therefore, in PIC16F1508
and MSP430G2553 there was not enough memory for the benchmark, not
even for an 5x5 image. Also, for the ATmega328P, the chosen image size
was the maximum that was executed without errors. For the other MCUs,
the image size was not the maximum and was chosen so that the results
could be compared. It must be noted that due to human error, there is a
mistake in the number of C-operations published in [69]. The number of total
atomic-operations was mistakenly a product, instead of a sum between the
lines executed and product lines. However, the results in [69] were not affected
by the error, as the value was only meant to show the weight of the benchmark.

Table 4.4: Atomic-Operations per Image Size in Image Processing Benchmark

Controller Arch. Image size Lines executed Atomic-ops.
PIC16F1508 8

NA NA NA
MSP430G2553 16
ATmega328P 8 15 x 15 13 241 40 755
ATmega128RFA1 8

30 x 30 59 480 185 481
MSP430F5529 16
STM32F051R8T6 32

50 x 50 172 607 541 208PIC32MX460F512L 32
TM4C123GH6M 32

4.1.3. Measurement Error

As the estimation methodology introduced in this work is based on measuring
physical parameters, the measurement error must be also considered when
an estimation value is presented. The main reason is to verify whether the
estimation error is caused by the measurement or the methodology. Instead
of presenting the measurement error of each single measurement result, the
error of measurement is explained in this section. The measurement error is
considered only for the performance estimation, as it is currently the main
estimation goal.

Only an oscilloscope was used to measure performance. A logic analyser
could also be used, however, in this work, an oscilloscope was chosen due to
the possibility to remote-controlling the device. The oscilloscope used for
performance measurement is Keysight (former Agilent Technologies) DSO-X
3034A [31]. Although the oscilloscope has four analogue channels, the device’s
digital channel was used for performance measurements. Yet, the analogue
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channel proved useful for verifying the MCU’s clock frequency. According
to the datasheet, the minimum detectable pulse width is 5ns, which in
turn means that the smallest measurement window width should be chosen.
Nevertheless, for performance measurements, a measurement window of 10s is
used throughout the measurements. Therefore, the detectable pulse width is
40µs. For example, for a measurement cycle of 1ms, the measurement range
is between 1ms ± 0.2µs and the error caused by the measurement step is
2%. To keep the measurement step error at 0.1% or lower, the measurement
duration should be at least 20µs. To conclude, the total error caused by the
measurement is insignificant, as the measurement duration was above 20µs.

4.1.4. Variable Declaration
In all the previously presented experimental results, the variable initialisation
or declaration has not been taken into account, as it is executed only once in
every benchmark program. The amount of energy consumed or time taken by
variable declaration is so trivial that it does not affect the estimation result.
For instance for the MSP430G2553, the declaration of a single variable in
integer datatype (”int a;”) takes less than 10−9 seconds. Although the number
is small for every MCU used in the experiments, it might have a bigger impact,
when executed in a loop. Therefore, Table 4.5 demonstrates the execution
durations in seconds, with different keywords of the expression ”a = b + c + d
+ e”, where all the variables are from 8-bit char datatype and have the initial
value of 3. It must be noted that the expression was executed ten times in
each iteration of the loop and that the variable declaration was done outside
of the loop. Needless to say, the used keywords are from different domains, yet
the table presents the execution duration of the expression where the variables
are initialised in different situations. The ”global” keyword means that the
variables were declared in a global scope. The keyword ”static” indicates
that the variables were declared in a function with the additional keyword
static. The keyword ”malloc” marks the malloc function used. The variables
were declared as pointers with allocated memory and initial value. The
”volatile” keyword refers to the variable being declared volatile. And finally,
the ”default” keyword means that no special keyword was used for declaring
the variable. Besides the ”malloc” keyword, the rest of the expressions have
a similar execution time. Both ”static” and ”volatile” results are within the
measurement error (0.00004 s). Also, the ”global” and ”default” keyword
show the same result when executing the expression. The faster result for the
”malloc” can only be explained by some compiler subroutines. However, it
should be noted that it is also dependant on the compiler and the MCU.

Table 4.5: Variable Declaration Keywords Results of MSP430G2553

Keyword global static malloc volatile default
Duration 0.70648 0.70636 0.6802 0.70632 0.70648
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4.2. Experimental Results for Energy Consumption Estima-
tion

The results for the energy consumption estimation have been published in
[65] and [66]. A brief summary on the results is presented in this section. It
is important to note that all the measurements presented in [65] were taken
manually, which means that the result may contain a larger error than noted
by the measurement device, due to human error. The manual measurements
platform is described in Section 3.1. Another important feature of the
following results of the energy consumption estimation is that only one MCU,
the PIC32MX460F512L, was used and a single benchmark program, the image
processing benchmark with 50x50 picture, was estimated. In addition, the
main aspects influencing the current consumption are the clock frequency
and the clock source. This in turn means that experimental results taken
with different clock frequencies and using a different clock source are not
comparable.

4.2.1. Image Processing

The following results are taken from [65] and are merely repeated here. In the
results published in [65], for the energy consumption estimation methodology,
three estimation goals were pursued: energy consumption for an image
processing benchmark, energy consumption estimation scalability for voltage,
and energy consumption estimation scalability for clock frequency. The most
important indicator for the whole methodology is undoubtedly the estimation
result for the image processing benchmark. As the methodology was still
under development and initial proof of concept was made, the estimations
were done for three different scenarios: minimum, maximum and typical. The
different scenarios meant that the corresponding model value was used for
the estimation. In Figure 4.1, the estimation results for the three different
estimation scenarios are presented. It must be noted that the estimation errors
are presented on an absolute scale. As can be seen, the estimation error is
around 3% for the minimum and maximum scenarios and almost 0% for the
typical scenario. This means that the estimations are on a similar scale to
the assembler level estimation error, described in Chapter 1, that are usually
published as 3% or less.

4.2.2. Energy Consumption Estimation Scaling for Voltage
and Clock Frequency

The experiments done on the energy consumption estimation scaling for
voltage and clock frequency were published in [65]. The clock frequency scaling
was executed using the PIC32MX460F512L MCU and an image processing
benchmark with a 50x50 image. It is important to note that for the clock
source the PLLwas used. Main cause for the noting is the current consumption
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Figure 4.1: 8-bit MCU Performance Estimation of Matrix Multiplication Benchmark
[65]

– an internal or external oscillator consumes much less current than a PLL
clock generator.

The results of the energy consumption estimation for different clock
frequencies are presented in Table 4.6. The atomic-expressions were
measured for 4MHz and 80MHz frequencies. From the energy consumption
estimations made for the measured frequencies, the intermediate estimations
were calculated. The hypothesis was that the energy consumption for the
intermediate frequencies is linear. As the estimation error is mostly between
±5%, the experiment was considered a success and the hypothesis was correct
in this case. Yet, another conclusion was drawn from the results: themaximum
clock frequency should be used to achieve the lowest energy consumption.

Table 4.6: Energy Consumption Estimation Scaling of Clock Frequency [65] ©2015
IEEE

Clock frequency, MHz Measured, mJ Estimated, mJ Error, %
4 154.61 151.34 2.12
8 97.23 92.64 4.72
10 84.28 80.89 4.01
20 58.34 57.42 1.57
30 49.36 49.59 -0.48
40 45.19 45.37 -0.41
60 40.49 41.77 -3.16
72 39.29 40.47 -3.00
80 38.55 40.89 -6.06

An attempt for estimating energy consumption for a different voltage level
was presented in [65]. The PIC32MX460F512L MCU was used with the image
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processing benchmark at 3.3V as the base. The hypothesis was that a different
voltage level does not affect the execution duration nor the amount of current
consumed. Therefore, the atomic-operations energies measured on 3.3V were
re-calculated as if the voltage would have been 3.5V, and the estimation
result was 152.0mJ. As the measured energy consumption was 151.2mJ, the
estimation error was only 0.6%. However, this was so for only one of the MCUs
with a small difference between the base voltage and the new voltage level.
Yet, the hypothesis in this particular case was true.

4.2.3. Energy Consumption Estimation for Datatypes

The following results on the energy consumption estimation for different
datatypes are taken from [66]. It was observed that utilising the atomic-
operations values measured using different datatypes caused a high estimation
error. For instance, from the statement ”a = b + c”, the measured value for
the ”+” operator was different than, for example, when using an integer or
a float for the variables. Therefore, an estimation goal was set to determine
the effects of different datatypes on the estimation methodology. For the
experiments, the PIC32MX460F512LMCUwith various image sizes for image
processing benchmark was used.

In the GNU C [18], there are three real number types: float, double and
long double, and eleven integer types. More information about the GNU
C datatypes is found in [21]. As the datatype handling is performed by a
compiler, the datatypes chosen for experiments were two real number types:
float and double, and six integer types. It is important to mention that
the MPLAB XC32 v1.40 was used, since the compiler is responsible for the
amount of memory assigned to each datatype. In Table 4.7, the results for the
30x30 image processing benchmark when executed with different datatypes
are presented. The estimation error is mostly below the 10% margin, except
for the double datatype. The overall estimation error is higher than for the
performance estimation results presented later in this work. One of the main
reasons for this is the lack of a loop estimation model, introduced in [69].
When looking at the measured energy amount of each datatype, the 8-, 16- and
32-bit integers are consuming energy within the same range, around 12mJ. The
64-bit integer datatype ”long long” and the floating point datatypes ”double”
and ”long double” differ significantly from the others.

4.3. Experimental Results for Performance Estimation

As the estimation goal has moved from energy consumption estimation
to performance estimation, the experiments on performance estimation are
carried out exclusively to this work. As one of the goals of this work is also
to develop the automated measurements platform, which initial version was
published in [67], the results presented in this work are generated using the
latest solution developed for performance measuring. This means that the
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Table 4.7: Energy Consumption Estimation for Various Datatypes [66] ©2016 IEEE

Datatype Length Measured, mJ Estimated, mJ Error, %
unsigned char 8-bit 11.94 12.92 -8.17
signed short 16-bit 12.76 13.57 -6.32
unsigned short 16-bit 12.50 13.06 -4.45
signed integer 32-bit 12.24 13.02 -6.36
unsigned integer 32-bit 12.24 13.17 -7.63
long long 64-bit 17.70 17.53 0.97
double 32-bit 43.69 36.70 16.00
long double 64-bit 58.22 55.13 5.31

2-bit data transmission protocol is used to gather the data from MCU via
oscilloscope. The data gathering is controlled by the custom LabVIEW VI
and is analysed by the MATLAB program, explained in Chapter 3. Also,
the loop model parameters are found using the MATLAB Curve Fitting tool
and not by solving the linear equation for two data points, as it was done in
[69]. Although the results on performance estimation are also presented in
[69], they were repeated for this work, as the estimation methodology was
perfected, mostly by a more precise loop estimation model and a more careful
consideration of the datatypes used for measuring atomic-operations.

The presentation of the performance estimation results is organised by the
benchmark program: matrix multiplication, FIR filter and image processing;
and then by the MCU architecture: 8-, 16- and 32-bit. For each MCU,
the same model is used to evaluate the result for every benchmark program.
Additionally, some simplifications in estimation are used. For instance, in the
estimation subtraction is replaced by addition. Expectedly, the simplification
increases the estimation error, but notably, it is only so for the MCUs with
a smaller architecture and an available memory amount. It should be also
noted that the 8-bit MCUs are much more affected by the datatype than the
others, possibly because of the small size of data word as well as the amount
of available memory. Even though the main goal of the experiments is to
show the validity of the methodology, it is also interesting to compare the
performance of the MCUs to each other. For instance, when it is necessary to
choose a device for the task. In addition, as the developer would apply a high
level or compiler optimisation, a comparison is made between the estimation
results on no-optimisation and on those with the highest optimisation levels
to show the relevance of the methodology.

The estimation results are presented on bar graphs. The darkest bar
presents the estimated value, lighter bar the measured value and the the
lightest bar, separated with a white space from the other bars, presents the
estimation error. The estimation error is presented in the absolute scale.
However, in the explanations, the underestimations are exclusively mentioned.
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Underestimation means that on a relative scale, the estimation error was
negative, thus the estimation was smaller than the measured result. The
10% error margin line presents the maximum allowed error for a good result.
An error above the margin means that the estimation methodology was not
correctly used. It may be that the atomic-operation for estimation was
executed using different datatype or a human error occurred due to the manual
computations.

4.3.1. Matrix Multiplication
The matrix multiplication benchmark program consists of two constant
two-dimensional matrices, which values are multiplied and then added to a
third two-dimensional matrix. The operation is executed in a triple-nested
loop. The default datatype for the benchmark in experiments was 8-bit
unsigned char, noted as ”uint8_t”.

In Figure 4.2, there are the results for matrix multiplication benchmark
program of 8-bit MCUs. All the MCUs show an estimation error below
10%. The PIC16F1508 shows the worst performance, whereas the ATmega328
performs the fastest. As shown in Table 4.2, all the 8-bit MCUs are running
on a 16MHz clock frequency which in turn makes the results comparable. For
the ATmega128RFA1, the estimation is underestimation. The PIC16F1508
has the poorest performance, which is somewhat obvious, as the MCU has the
smallest amount of resources available compared to the others.
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Figure 4.2: 8-bit MCU Performance Estimation of Matrix Multiplication Benchmark

In Figure 4.3, the performance estimation results for the 16-bit MCUs of the
matrix multiplication benchmark are presented. Again, the estimation error
is below 10% for both MCUs. It seems that for the fixed point calculus, the
estimation methodology is nicely suitable for both MSP430 devices, although
the results presented in [69] showed that there is a mayor issue with the
floating-point calculus.

In Figure 4.4, the performance estimation results for the 32-bit MCUs
for the matrix multiplication benchmark are presented. The estimation
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Figure 4.3: 16-bit MCU Performance Estimation of Matrix Multiplication Benchmark

error is low for all the MCUs, and is even below 5%. As for performance,
the PIC32MX460F512L has the poorest performance compared to the other
32-bit MCU results. The measured performance values are so low for the
STM32F051R8T6 and TM4C123GXL, that measuring the values without
an outer loop would cause a high measurement error. Of course, all the
benchmarks are executed in a loop, with a duration much longer than 0.05 or
0.04 milliseconds, because the estimation result is an underestimation.
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Figure 4.4: 32-bit MCU Performance Estimation of Matrix Multiplication Benchmark

4.3.2. FIR filter

From the the five executed lines of the FIR filter program, a total of 2 557
atomic-operations are extracted, aswas presented inTable 4.3. The benchmark
consists of a nested-loop executing simple add-subtract-multiply operations
with variables as well as matrices. The output of the filter is stored in a
one-dimensional matrix. For the experiments, the datatype for the benchmark
was fixed and the 8-bit unsigned char was used.
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In Figure 4.5, the estimation results of the 8-bit MCUs executing FIR filter
benchmark program are presented. To approximate, the estimation error is
roughly around 5% in total, which means the experiment is a success. As seen
already in the Matrix multiplication in 4.3.1, the 8-bit Microchip PIC16F1508
has yet again the poorest performance. Although theMCUhas also the highest
estimation error, it is still within the 10% margin. For the PIC16F1508 and
again for the ATmega128RFA1, the estimation results is an underestimation.
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Figure 4.5: 8-bit MCU Performance Estimation of FIR Filter Benchmark

In Figure 4.6, the results for 16-bit MCUs of executing FIR filter benchmark
are presented. From the two MCUs, the MSP430F5529 has only somewhat
better performance than the MSP430G2553, however, the estimation error is
much lower for the latter. Yet again, the estimation error is nicely below the
10% margin for both. Interestingly, the execution time of the 16-bit MCUs is
around the same as the 8-bit ATmega328P.
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Figure 4.6: 16-bit MCU Performance Estimation of FIR Filter Benchmark

In Figure 4.7, the estimation results for 32-bitMCUs executing the FIR filter
benchmark are presented. The 32-bit PIC32MX460F512L has the poorest
performance. It was the same for the Matrix multiplication benchmark, as
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well, described in Section 4.3.1. The average estimation error seems to be
roughly around 6%, which is lower than the 10% margin. The TM4C123GXL
has a noticeably better performance than the STM32F051R8Tx compared
to the Matrix multiplication benchmark, where the performance difference
between the MCUs was only 0.01ms.
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Figure 4.7: 32-bit MCU Performance Estimation of FIR Filter Benchmark

4.3.3. Image processing
The image processing benchmark is definitely the most significant of the three,
mainly because of the number of atomic-operations of which it consists. As
presented already in Table 4.4, three different sized images were used in the
benchmarks due to the different amount of memory available in the MCUs.
Because of the low amount of memory in MSP430G2553 and PIC16F1508,
it was impossible to execute the benchmark and the MCUs were skipped.
The image processing benchmark has a dozen nested-loops, executing simple
add-subtract-multiply-divide operations on variables as well as on matrices.
The biggest nested loop is fourfold, including two if-statements and several
operations. The characteristics of the loop model are truly put to the test in
the image processing benchmark.

In Figure 4.8, the estimation result of the ATmega328P executing the
image processing benchmark is presented. For the ATmega328P, the used
image size is 15x15, as it was the maximum size that was successfully compiled
and executed without problems. For bigger images, the program execution
was halted without any errors from the compiler. The reason for halting
remains unknown, as no debugger was available for problem exploration. The
results are satisfactory because the estimation error is below the 10% margin.
However, the result is an underestimation.

In Figure 4.9, the ATmega128RFA1 and MSP430F5529 estimation results
for the image processing benchmark using the 30x30 image size are presented.
Neither of the MCUs were able to execute the 50x50 image and yet the 15x15
image has more than four times less atomic operations as the 30x30 image
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Figure 4.8: ATmega328P Performance Estimation of Image Processing Benchmark

(shown in Table 4.4). Therefore an intermediate image size was selected.
The 8-bit ATmega128RFA1 has expectedly a much poorer performance than
the 16-bit MSP430F5529. However, the estimation error is vice versa and
the ATmega128RFA1 has almost a smaller of an estimation error than
the MSP430F5529. The estimation error for the ATmega128RFA1 was an
underestimation, as it has been for each benchmark executed on the MCU.
Yet, both MCUs have an estimation error smaller than the 10% margin.
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Figure 4.9: MCU Performance Estimation of 30x30 Image Processing Benchmark

In Figure 4.10,the 32-bit MCU image processing benchmark results for
the ultimate 50x50 image are presented. Only the 32-bit MCUs had enough
resources to execute the 50x50 image. In the previous experiments, published
in [65] and [66], bigger images were also used. However, it seemed that there
was no need for choosing an even a bigger image size, although the MCUs
probably could execute an image with a larger dimension, as well. For the
PIC32MX460F512L, the estimation error is almost non-existent, as the MCUs
is the one most thoroughly studied, also, it is the one on which the initial
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experiments were conducted. The TM4C123GXL has a smaller than a 5%
estimation error compared to the STM32F051R8T6 that had an estimation
error of more than 8%. Interestingly, all the results were underestimations,
meaning that the error on the relative scale was negative. Nevertheless, all the
estimations had less than a 10% estimation error, which was set as the margin.
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Figure 4.10: MCU Performance Estimation of 50x50 Image Processing Benchmark

4.3.4. The Deduction of Performance Estimation Results

The data model of the MCU enables to calculate the value for Millions of
Atomic-operations Per Second (MAPS), a value that is defined by the author
of this work. Table 4.8 presents the results for each MCU and the benchmark
used. The higher the value, the faster the MCU performs. Although only
three benchmarks were used, the trends are clear on the worst and the best
performing controller. Apparently, the 8-bit PIC16F1508 has the poorest
performance and the 32-bit TM4C123GH6M has the best performance,
compared to the other MCUs.

Table 4.8: Millions of Atomic-operations Per Second (MAPS)

Controller Matrix
multiplication FIR filter Image

processing Average

ATmega328P 0.564 1.533 1.331 1.143
ATmega128RFA1 0.280 0.768 0.774 0.607
PIC16F1508 0.082 0.173 NA 0.128
MSP430G2553 0.694 1.429 NA 1.062
MSP430F5529 0.628 1.603 1.462 1.231
STM32F051R8T6 5.822 12.396 10.633 9.617
PIC32MX460F512L 0.959 2.224 3.111 2.098
TM4C123GH6M 8.072 16.297 13.725 12.698
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Although the estimation methodology is applied only to no-compiler
optimisations, it still shows the tendency for the optimised code as well. In
Table 4.9 the MCUs are ranked in the order by the average MAPS value,
presented in Table 4.8. In addition each MCU was measured executing
the benchmark program at the maximum compiler optimisation level (-03).
Although it is questionable to order the MCUs by the compiler efforts, as it
is more of a characteristic of the compiler. However as can be seen from the
table, the MAPS average shows the order of the MCUs well. Interestingly the
ATmega328P ranks second for the FIR filter. The only explanation is that the
use of the unsigned char in the benchmark is most suitable for the MCU.

Table 4.9: MCU Ranks for the Optimised Benchmark Executions

Controller Rank Matrix
multiplication FIR filter Image

processing
TM4C123GH6M 1 1 1 2
STM32F051R8T6 2 3 2 3
PIC32MX460F512L 3 5 3 1
MSP430F5529 4 6 5 2
ATmega328P 5 2 4 1
MSP430G2553 6 7 7 NA
ATmega128RFA1 7 4 6 1
PIC16F1508 8 8 8 NA

4.3.5. Loop Model
The equations and the principle of the loop model is presented in Section
2.3.2. The initial result for using the loop and nested-loop models is presented
in [69]. However, the estimations in the published results are made using a
simplified loop model. The loop model used for the experimental results in this
work is more profound. The main difference between the results here and the
ones published in [69] is the loop initialisation parameter. By taking the loop
initialisation parameter into account, the loop iterator value slightly changes,
thus allowing for a more precise result on estimating the loop body - the
atomic-operation under measurement. To find the loop parameters, measured
values on nested loops were used in MATLAB Curve Fitting toolbox. The
nested loop equation was used for a reference. In Figure 4.11, the plot of
the MSP430G2553 is shown to illustrate the result. It was observed that
the loop initialisation and iteration values change when the nested loops are
executed with different iteration values. In other words, the loop parameters
are different for loops with small and big loop iterator values. However, in
the experiments carried out during this work, the loop parameter values were
counted on a wide range of loop iterator and the resulting parameters were
later validated.

84



Figure 4.11: MSP430G2553 Nested Loop Curve Fitting Plot

In Table 4.10, partial data of the nested loop estimation error for the
MSP430G2553 MCU is presented. The loop iterator values presented in the
table were chosen randomly from the larger dataset and do not have any
particular meaning. The aim was to have different inner and outer loop values,
so that the number of total iterations would be different. It is clear that for
loops with smaller iterator values, the total error is higher. However, with the
rise of the total iteration, the total error becomes more marginal. Next to
the high measurement error for the 50x50 nested loop, the estimation error
of 0.88% is also high compared to the other results. One conclusion that can
be drawn from the fact that the estimation error is higher than for the other
results is that the loop initialisation and incrementation parameters are not
constants for each iterator value. This in turn means that the loop parameters
should be found for different ranges of iterator values. Currently, due to the
measurement system, it is difficult to measure any operation precisely if the
execution time of the operation is under 0.01ms.

4.3.6. Performance Estimations for GCC Optimisation Levels
The experimental results of estimating at different compiler level optimisations
are published in [68] and a brief summary of the results is given here. The
methodology for estimation was previously presented in Section 2.3.1. Two
different experimental methods were used to obtain performance estimations
for different compiler optimisation levels. Three MCUs were used for the
experiments: ATmega328P, MSP430G2553 and PIC32MX460F512L, and two
benchmark programs: matrix multiplication and FIR filter. The main goal
of the work was to establish whether the proposed estimation methods are
suitable for estimation on higher compiler optimisation levels. Table 4.11
presents the results from [68] as mean squared error in percentage on the
proposed estimation methods. In the table the PM1 presents the Proposed

85



Table 4.10: Atomic-Operations per Image Size in Image Processing Benchmark

Outer
iterator

Inner
iterator

Total
iterations

Meas.
error

Est.
error

Total
error

50 50 2500 0.93 0.88 1.81
50 500 25 000 0.10 0.09 0.19
200 300 60 000 0.04 0.05 0.09
450 450 202 500 0.01 0.02 0.03
450 700 315 000 0.01 0.01 0.02
500 850 425 000 0.01 0.00 0.01
750 700 525 000 0.00 0.02 0.02
850 850 722 500 0.00 0.00 0.00

Method 1 and PM2 presents the other proposed method. As a conclusion,
neither of the proposed methods gave remarkable results, as the estimation
errors were high and fluctuating. Using either method for estimation on
compiler optimisation level -O3 might cause an estimation error of 50% or
even more, although the Proposed Method 1 had the estimation error of less
than 50% in every situation. Still, the error is higher than the established 30%
for a satisfactory estimation error.

Table 4.11: Mean Squared Error Comparison of Proposed Estimation Methods [68]
©2017 IEEE

Optimisation FIR filter Matrix multiplication
Level PM1 PM2 PM1 PM2
-O1 33.61 65.78 39.09 8.01
-O2 36.56 52.00 8.79 17.41
-O3 38.15 61.11 47.11 59.48

4.4. Chapter Summary

In this chapter, the experimental results of the different aspects of the
methodology were presented to show the usability of the methodology. In
all the experiments on performance and energy consumption, the estimation
error was less than 10%, therefore, the experiments are considered a success.
A MAPS indicator was derived to show the capability of the MCU and can
be used to rank the MCUs. An experimental approach to estimating the
performance on higher compiler optimisation levels than -O0 is possible, but
only so with a high estimation error of almost up to 50%.
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Conclusions and Future Work

From the introduction of the field of energy consumption and the performance
estimation up to the experimental results, this chapter concludes this work.
The proposed methodology as well as all the refined details to get a more
precise estimation were presented, along with using a custom automated
measurements platform for acquiring measurements results. The chapter is
divided into two sections, covering Conclusions and Future work.

Conclusions

This work is focusing on energy consumption and performance estimation for
embedded software and its aim is to give the developer more tools for making
robust, but rapid estimations. Not all Integrated Development Environments
are supporting the functionality to provide the developer with the necessary
information about energy consumption and even fewer have the option for
performance estimation. Even though some development tools have the option
for presenting energy or performance data about the software, it is cumbersome
to compare microcontrollers energy or performance consumption of different
manufacturers, as different development tools are needed. Another solution
to get the energy consumption or performance information would be to use
an Instruction-Set Simulator. However, the simulator might not be available
for the chosen microcontroller, thus, it should be developed first, making the
estimation result even more time-consuming and troublesome.

As a solution to the aforementioned problems, the methodology proposed
in this work is novel in the field, as no other work uses estimation models
based on physical measurements of the C-language atomic-operations for
microcontrollers with 8- to 32-bit data word. Also, the developed methodology
is meant to be implemented as a single uniform estimations platform for
microcontrollers from different manufacturers. The methodology is based
on the higher abstraction level, therefore, it is considered robust. However,
the estimation error in average, compared to the other works in the field, is
nevertheless equivalent, as the experimental results clearly show. An important
indicator for the potential future use of the methodology is the usability of
microcontrollers with different data word lengths, as most experiments in the
field are only considering the 32-bit ARM microcontrollers.

To create an estimation model, a new customised automated measurements
platform was developed, and it features the de facto LabVIEW graphical
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programming suite and MATLAB multi-paradigm numerical computing
environment. The need for an automated measurements platform was vital for
creating the estimation models faster, more precisely and in a systematic way,
compared to the manual measurements platform. Also, no such measurements
system is uniformly available to suit the need for the creation of estimation
models. Although the advanced automated measurements platform might
not be available to everyone due to the proprietary access of LabVIEW and
MATLAB, the initial manual measurements platform shows how to still create
an estimation model without the sophisticated tool-sets.

To improve the estimation precision for the estimation methodology, a loop
model was added. The method was developed for estimating the execution
duration of single and nested loops . This in turn has made it possible to
have the estimation error of less than 10% for all the microcontrollers used
in the experiments and to extract the atomic-operation data from a loop.
Furthermore, it is important to take into account the proper datatype in order
to make the estimation more precise, as shown in this work. The choice of
the datatype is perhaps less important for the 32-bit microcontrollers with a
lot memory, but for the small 8-bit microcontrollers, it is crucial to allocate
only the required amount of memory. Also, the 8-bit microcontrollers tend to
consume more energy, as it is the datatype which requires the most memory.

As a result, this work established that a measurements based estimation
on C-language operators and expressions, creating an atomic-operation based
model, is sufficient for estimations. Both energy consumption estimation as
well as the performance estimation showed results within the error margin of
10% and less, which is in the same range as in other works in the field. The
modelswere created using amanual and an automatedmeasurements platform,
where the latter is an important improvement which creates estimation models
fast and exact. In addition, several methods were developed in the process,
in order to have a more precise estimation model. For instance, the loop
model allows to estimate loops and nested loops performance with less than
1% error. Moreover, an important discovery was the datatype impact on the
estimation result. It was found that 8-bit MCUs were more responsive to
the estimation error than 32-bit MCUs, when an atomic-operation with the
wrong datatype was used for estimations. A novel approach compared to the
other works in the field was the model scalability for different voltage levels
and clock frequencies. Perhaps even more important was the clock frequency
where the estimation error was 6% and less, showing that the models can be
used for estimations for other clock speeds.

Future work

This work showed the potential of the estimation methodology based on the
measurement of C-language operators and instruction in order to create an
accuratemodel formeasuring atomic-operations. However, all the benchmarks
used to verify the results were manually parsed, as there is currently no parser
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available which would suit the methodology. Although creating a parser to
support the methodology was not the aim of this work, it is considered a
next step. With a functional parser supporting almost any C-application, the
created models and methodology are to be made publicly available. A parser
particular to the methodology allows also for more opportunities to verify the
methodology by using more complex benchmarks for comparison (like fast
Fourier transform etc.).

In addition, the created estimation models are more easily usable with a
graphical front-end. For example, the user copy-pastes the C-application,
selects the microcontroller(s) and other parameters and the estimation results
are proposed with an error estimation. Whether the graphical user interface
should be a custom design or an extension to an already existing solution (like
Eclipse) is for future discussion.

The estimation methodology allows to compare the energy consumption or
performance of different C-applications between microcontrollers, or the dif-
ferent programming approaches of the same function on one microcontroller.
For comparison, the C-application should be estimated on both target
platforms and the estimation results compared. However, the process can be
made faster by using the Million of Atomic-operations Per Second (MAPS)
indicator, introduced for the first time ever in this work. MAPS is a single
derivated measure for the chosen microcontroller, created from the estimation
model. By using theMAPS indicator, the preliminary comparison between the
different microcontrollers under consideration can be done by looking at the
singleMAPS value. As already demonstrated in this work, theMAPS indicator
quite clearly shows the performance differences of different microcontrollers.
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Abstract
Energy Consumption and Performance Estimation of
Embedded Software

Digital revolution has made us even more dependent on electricity by
introducing new, smart appliances into our everyday lives. Appliances that
nowadays include an embedded system—a small, dedicated computer system,
that in turn is controlled by a microcontroller (MCU). We are so accustomed
to mobile phones, computers, TVs and tablets that it is hard to image life
without them. Rarely, we consider the amount of energy wasted on keeping
the devices in stand-by or sleep mode. However, recent studies show that home
appliances on stand-by mode waste up to 10% of the total household energy
consumption. Therefore, in order to reduce the waste of energy, it is necessary
to have the MCUs coordinate their actions better. A software program loaded
in the MCU is responsible for the actions that the MCU executes. This
work proposes a methodology and a workflow for embedded software energy
consumption and performance estimation.

The primary idea of the estimation methodology, introduced in this work,
either for energy consumption estimation or for performance estimation, is
that a C-program’s energy consumption is the total sum of the repeated
atomic-operations in the program. Therefore, by adding up the energy of each
atomic-operations energy or a performance value of a complete C-program,
the assumption is to get the energy or performance results of the complete
program. The process of obtaining the energy or performance values of the
atomic-operations is achieved by physically measuring the execution time,
current drawn and voltage level on the microcontroller.

The main indicator for the methodology is the estimation error. In order
to achieve a low estimation error, it was essential to consider the correct
datatype and have a precise estimation for loops. A single atomic-operation
on a microcontroller is executed within a fraction of a second, therefore, the
measurements are conducted in loops, to relieve the effect on the measurement
error. Themeasurement result of the atomic-operation is later used to compute
the estimation value for a single atomic-operation by extracting the loop
execution duration. Also, if needed, the supplementary atomic-operations
should be subtracted. This in turn makes a loop execution time estimation one
of the key elements in the whole estimation process. For estimating loops and
nested loops, equations were derived to predict the execution time of the loop.
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To estimate an arbitrary C-application, an estimation model is needed.
The initial process of model creation took roughly eight hours in the lab with
measuring only one set of parameters. As the initial results looked promising,
a more advanced measuring solution was needed for faster model creation.
Thus, an automated measurements platform was developed and considerable
reduction in measurement time was achieved. Currently, the measurement
with one set of parameters (clock speed for instance) takes less than half an
hour, when the measurement protocol is set in advance.

In this work, the detailed description of the estimation methodology
for energy consumption estimation as well as performance estimation are
presented. In particular, loop model and datatype dependence are presented.
A thorough overview of the initial manual measurements and automated
measurements platform is given. Exclusively to this work, a set of experiments
for performance estimation were conducted and are presented in addition
to the previously published results on the energy consumption estimation.
One goal of this work was to show that an embedded software performance
and energy consumption could be estimated on a higher abstraction level
than proposed by earlier works in the field, by still maintaining sufficient
estimation accuracy. Inevitably, the low level instruction-set based simulators
using assembly language as an input, present an estimation error as low as
3%, whereas the methodology proposed in this work is showing somewhat
rougher results, but is not far behind, nevertheless. For energy consumption
estimation, the estimation error is 6% and for the performance estimation, the
maximum error is 8.42%.
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Kokkuvõte
Sardtarkvara energiatarbe ja jõudluse ennustamine

Digitaalne revolutsioon on viinud inimkonna üha enam sõltuvusse elek-
trienergiast tuues meie igapäevaellu uusi, nutikaid kodumasinaid. Seadmeid,
mis tänapäeval sisaldavad sardsüsteeme — väiksed, spetsiaalsed arvutisüs-
teemid, mida omakorda juhitakse mikrokontrolleriga. Me oleme harjunud
kasutama mobiiltelefone, arvuteid, televiisoreid ja tahvelarvuteid, mistõttu
on raske kujutada elu ette ilma nende seadmeteta. Tõenäoliselt mõtleme
me harva sellele, kuipalju energiat me raiskame, et hoida neid seadmeid
ooterežiimil või suikeolekus. See-eest hiljutised uuringud on näidanud, et
ooterežiimis kodumasinad raiskavad kuni 10% majapidamise kogu tarbitavast
elektrienergiast. Niisiis selleks, et vähendada energia raiskamist peavad olema
mikrokontrollerid programmeeritud andma optimaalseid käske. Käskude eest,
mida mikrokontroller täidab, vastutab tarkvara programm, mis on laetud
mikrokontrolleri mällu. Selles töös pakutakse välja metodoloogia ja töövõtted
sardtarkvara energiatarbe ja jõudluse ennustamiseks.

Käesolevas töös esitatud ennustamise metodoloogia peamine mõte seisneb
selles, et C-keele programmi energia tarbimine on programmis esinevate
atomaarsete operatsioonide korduste summa. Metodoloogia on rakendatav nii
energiatarbe kui ka jõudluse ennustamiseks. Niisiis eeldus on, et summeerides
kõikide atomaarsete operatsioonide energiatarbe või jõudluse väärtused, mida
üks C-keele programm sisaldab, saadakse terve programmi energiatarbe
või jõudluse väärtus. Atomaarsete operatsioonide energiatarbe või jõud-
luse väärtuste saamiseks teostatakse füüsilised mõõtmised mikrokontrolleril.
Mõõdetakse operatsiooni kestuse aega ja mikrokontrolleri poolt tarbitud voolu
hulka ning pinge taset.

Metodoloogia peamiseks näitajaks onmõõtmisviga. Selleks, etmõõtmisviga
oleks väike on oluline arvesse võtta kasutatud andmetüüpi ning ennustada
võimalikult täpselt silmuseid. Kuna üksik atomaarne operatsioon täidetakse
mikrokontrolleril kiiremini kui sekundi murdosaga teostatakse atomaarsete
operatsioonide mõõtmine silmuses. Ühtlasi vähendatakse niimoodi ka
mõõtmisel tekkivat viga. Silmuses täidetud atomaarse operatsiooni mõõtmis-
tulemusi kasutatakse hiljem ühe atomaarse operatsiooni leidmise arvutamisel.
Arvutamisel on oluline osa silmuse osa eraldamisel. Niisiis silmuste täpne
ennustamine on metodoloogia rakendamisel üks võtme küsimusi. Silmuste
ja pesastatud silmuste täpse ennustamise tarbeks said tuletatud vastavad
valemid.
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Selleks, et viia läbi ennustus suvalisele C-programmile on vaja ennustus
mudelit. Esialgne mudeli loomise protsess võttis laboris ligikaudu kaheksa
tundi aega kui mõõdeti ainuüksi ühte parameetrite komplekti. Seevastu
esialgsed tulemused olid paljulubavad ning keerukam mõõtmissüsteem oli
vajalik, et luua mudeleid kiiremini. Niisiis arendati välja automatiseeritud
mõõtmiste platvorm, mis võimaldab teostada mõõtmisi oluliselt kiiremini ja
täpsemalt. Ühe parameetrite kompletiga mõõtmine, eeldusel, et mõõtepro-
tokoll on mikrokontrollerile juba eelnevalt seadistatud, võtab aega vähem kui
pool tundi.

Käesolevas töös on esitatud detailne ülevaade energiatarbe ja jõudluse hin-
damisemetodoloogist. Lisaks on eraldimainitud silmustemudel ja andmetüübi
valiku olulisus. Põhjalik ülevaade on antud nii esialgsestmanuaalsestmõõtmis-
platvormist kui ka automatiseeritud mõõtmisplatvormist. Spetsiaalselt selle
töö tarbeks teostati komplekt eksperimente jõudluse ennustamiseks kasutades
välja arendatud metodoloogiat. Samuti on esitatud tulemusi energiatarbe
ennustamise kohta eelnevalt avaldatud publikatsioonidest. Selle töö üheks
eesmärgiks oli näidata, et sardtarkvara jõudluse ja energiatarbe ennustamine
on võimalik ja piisavalt täpne ka kõrgemal abstraktsioonitasemel, kui on
tehtud eelnevalt avaldatud töödes. Kuigi madalamal abstraktsioonitasemel
avaldatud tulemustest on parimad 3% veaga on käesolevas töös kõrgemal
abtraktsioonitasemel saadud tulemused siiski võrreldavad. Energiatarbe
ennustamisel on viga 6% ja jõudluse ennustamisel maksimaalselt kuni 8,42%.
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Publication A
Ruberg, Priit; Lass, Keijo and Ellervee, Peeter. ”Microcontroller Energy
Consumption Estimation Based on Software Analysis for Embedded Systems.”
In: 1st IEEE Nordic Circuits and Systems Conference (NorCAS), Oslo,
Norway, 2015, pp. 1-4.). Do not copy it into the thesis file but send to the
publishing office as a separate document.
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Abstract—In this paper we present a energy consumption
estimation method for microcontrollers. Vast amount of work
in this topic has been done based on measuring the energy per
instruction in low level programming languages like assembler.
However in our approach we use solely C programs and
instructions without any regard to lower level languages. The
method is based on measuring energy per each C instruction
in the benchmark program and using the result to estimate the
total energy consumed by the program. As a test case we use
simple image processing algorithm including Gaussian blur and
edge detection on PIC PIC32MX460F512L microcontroller. We
show that the method is scalable on different microcontroller
voltages and clock frequencies with only one set of measurements
to reduce the amount of preparation work for estimation. We
show that the estimation results give us credibility with less than
7% error.

I. INTRODUCTION

An embedded system, which is plugged into a wall socket,
has almost infinite energy regardless of the consumption.
Therefore it is rarely an issue. However today we often see
distributed embedded systems with one or multiple micro-
controllers. Those systems are usually working under various
physical conditions like time constraints, voltage levels or
extreme temperatures and still we would expect them to
behave as the one connected to the wall socket. For an engineer
to develop such a system is no trivial task. Though many
energy consumption models have been developed, we propose
one for taking into account the above-mentioned physical
conditions.

In this paper we present an idea for creating microcontroller
energy consumption model based solely on the program code
written in C language. Our aim for the method is to use it
on several different microcontrollers for selecting the most
suitable one for the task. This means creating energy con-
sumption models for each microcontroller under consideration.
In the proposed method we take into account voltage level
and clock frequency of the microcontroller to predict energy
consumption with different values for those parameters. To
show the scalability of our method, we made experiments on
PIC32MX460F512L microcontroller [1] using simple image
processing algorithms. We show that after taking measure-
ments on fixed microcontroller voltage and clock frequency,
the data can be used to create a model for different voltages
and frequencies without the need for remeasuring.

A novel approach for energy consumption estimation was
developed by [2] where they propose to measure energy drawn
by processor at runtime to estimate the software cost later on
that same processor. It is important to note that the estimation
is based on assembly language and thus its error is less than
3%. However there were no pipeline stalls and cache misses.
A good overview of the methods used in energy consumption
generally are presented in [3]. They also propose an abstraction
level between hardware and software concerning energy esti-
mation techniques. More recent article about creating energy
consumption model is [4]. Although it takes into account
analog-to-digital converter, for instance, it is still based on
the analysis of the assembler. In [5] is presented a comparison
of assembly- and C language energy estimation difference.
Although the prediction in assembly language gives more
accurate results, the use of it today is rare as microcontroller
programming is done mostly in C language. A quite similar
approach for the measuring methodology is done in [6], where
the authors take every instruction into account to measure the
average energy. The main differences are in the programming
language, as in [6] assembler is used. In our method we also
measure the average energy consumption per instruction over
several different cases as shown in Table I.

Main aspects according to [6] affecting the energy consump-
tion using software based method are:

• Microcontroller architecture and instruction set - a micro-
controller without floating point unit executing floating
point operation will probably consume more energy than
a microcontroller with such a unit executing the same
operation. This brings us to the fact that we need to
take measurements for energy consumption on every
microcontroller planned to be used in the preliminary
evaluation for the task.

• Operating voltage and frequency - we also show that
operating voltage and clock frequency are closely con-
nected with the energy consumed by the microcontroller.
We also note that in our benchmark test the higher
clock frequency allowed the operation to be completed
faster thus consuming less energy than with lower clock
frequency.

An outline of the used energy consumption method has the
following structure:



• Measure each C instruction energy in a loop with several
different initial values;

• Compute the average power consumption of the instruc-
tion;

• Profile the main program for number of instructions
executed;

• Calculate the estimate for consumed energy in a program
using the profiling result and average consumed energy
by instruction;

• Measure the average current and program execution time
for different voltages and clock frequencies;

• Calculate the actual energy consumed by the program
using Formula 3; and

• Compare the results of estimation and consumed energy.

II. METHODOLOGY

Power estimation model in our work is based on the
fact that total energy of the program is computable from
the sums of instructions, in our case C instructions. Every
instruction’s energy consumption is measured in a loop to
get the average and later used on the benchmark program to
calculate the estimation. In our case we used the MicroChip
PIC32MX460F512L [1] microcontroller and the correspond-
ing MicroChip XC32 Free Edition [7] compiler without any
compiler optimization. Only the microcontroller core was used
in the test without taking into account ADC, watchdog, timers,
dynamic frequency scaling etc. In this paper we present the
results without using any cache in the microcontroller. Those
simplifications were used to validate the applicability of the
approach. Additional modules can be taken into account later.

The total energy (E) consumed by the program is shown in
Formula 1.

Eprogram =

n∑
i=1

mi ∗ Eexpression (1)

, where mi holds the number of times the expression was used
in the program. Expressions in this case are split into two: base
expression and complete expression. For example, a complete
expression is: a = b+c and it consists of two base expressions
–assignment: a = b and add: +c. The total number of different
expressions is huge as each operator should be measured using
different data type. Currently we have conducted experiments
for all operators in our test program. So the energy for the
Eexpression is calculated by the sums of the base expression
it consists of as shown in Formula 2.

Eexpression =

k∑
i=1

Ebaseexpressioni (2)

The total energy consumed by the microcontroller for each
base expression is calculated using Formula 3.

E = Vdd ∗ Iaverage ∗ toperation (3)

, where
• E is energy in joules, J
• Vdd the microcontroller voltage level, V

• Iaverage average current consumption during the opera-
tion, A

• toperation time duration of the operation, s

To calculate the energy for specific base expression Formula
4 is used.

Eoperation = (Etotal − Eempty) (4)

, where the energy for operation (Eoperation) is subtraction
from the total energy consumed by the operation (Etotal)
and the energy consumed by the microcontroller without the
operation (Eempty). In Formula 4 the Eempty is measured
only once as all operations are measured using the same
microcontroller configuration. However Etotal is calculated in
several cases for every operation using different conditions.
By modifying formula Formula 4 with division for number of
loops used for the operation (n) we get the final formula for
base expression as shown in Formula 5.

Eoperation = (Etotal − Eempty)/n (5)

In Table I are shown the different cases for measuring
average current consumed by ”+” operator. Every operation
in every case was ran in a loop for 1000 times to get the
precise measurement. Also a loop counter of 5000 was tested,
however the average current did not change compared to the
1000 cycles, so the latter was used. In Table I MAX and -MAX
indicate the maximum value for the int data type.

TABLE I
ADD OPERATOR MEASUREMENTS CASES FOR (int)a+ (int)b [8]

Data values, a & b Operation energy
0 + 0 0.277

0 + 0, a = 0 0.277

MAX + 0 0.280

MAX + 0, a = 0 0.279

(MAX/2 - 1 ) + MAX/2, a = 0 0.276

(MAX/2 -1) + MAX/2 0.278

1000 + 1000 0.278

100 + 100 0.287

-MAX + 0 0.278

-MAX + 100 0.277

Minimum 0.276

Maximum 0.280

Average 0.278

For some operations it was important to take into account
the minimum, maximum and average values as shown on the
bottom of Table I. For instance, if-statement with multiple con-
ditions required probability analysis to get the most accurate
energy consumption estimation.

To predict energy consumption on different voltage levels,
we took Formula 3 and changed the Vdd value for the desired
voltage. In out experiments the default voltage was 3.3 V and
the changed one 3.5 V.



III. TEST SYSTEM

For the measurements we built a test system, which simplifi-
cation is shown on Figure 1. As mentioned previously, we used
PIC microcontroller PIC32MX460F512L. For programming
we used PicKit3 [9]. For the logic analyser we had Intronix
LogicPort [10]. It was used to measure the time duration of
the test program and base operations. For multimeter we used
Agilent 34405A [11] and the power source was Rhode &
Schwarz HMP2030 [12]. As the frequency measurements were
done using phase-locked loop (PLL) clocking, the frequency
was verified using Agilent DSO-X 3034A oscilloscope [13].

Fig. 1. Test system setup

As a test program we used simple image processing al-
gorithm. The program created pseudo image in the micro-
controller memory. The main operations were Gaussian blur
and simple edge detection. To calculate the estimated energy
consumption we used GCC tool gcov [14] to measure the code
coverage of our program. The need to use gcov was to get the
coefficients for each line of code executed. As the original
program consists of PIC specific register settings they were
substituted with function calls for profiling. The total result of
the profiling gave 172 824 operations which can be interpreted
as the number of code lines in the program.

IV. RESULTS

In Table II are the results for energy consumption with
default parameters: internal clock frequency 8 MHz, voltage
3.3 V. The estimation is divided into three different scenarios
where MIN represents the minimal estimated energy con-
sumption, MAX represents the maximum estimated energy
consumption. The abbreviation TYP presents the energy con-
sumption in case all condition statements in conditions were
checked equally.

As can be seen from Table II the error with this method
using average energy for each base operation is best in
case using TYP scenario with the error difference of only -
0.5%. Generally all the methods give satisfactory results for
estimation energy consumption as the MAX has the biggest
difference of 3.9%.

TABLE II
TEST PROGRAM ENERGY CONSUMPTION UNDER DEFAULT PARAMETERS

[8]

Scenario Measured, mJ Estimated, mJ Error, %
MIN 139,7 135,5 -3,1

MAX 139,7 145,5 -3,9

TYP 139,7 140,4 -0,5

A. Scalability to voltage

As the default measurements were done with 3.3 V the new
reference was chosen close to the microcontroller maximum,
3.5 V. Table III shows the results for 3.5 V. As can be
concluded the consumed energy has slightly risen from 139.7
mJ on 3.3 V to 151.2 mJ on 3.5 V. Yet the estimation result
is only 0.6% different from the measured energy.

TABLE III
TEST PROGRAM ENERGY CONSUMPTION AND ESTIMATION FOR 3.5 V [8]

Measured, mJ Estimated, mJ Error, %
151,2 152,0 0,6

B. Scalability to clock frequency

The PIC32MX460F512L microcontroller features 8 MHz
and 32 KHz oscillators [1]. Using the built-in PLL feature the
clock frequency can be clocked up to 80 MHz. In our tests for
the clock frequency energy consumption modelling we used
PLL clock. Input for the PLL came from the internal oscillator
which was divided by 2 giving the PLL input frequency of 4
MHz [1]. Base expressions were measured on three different
clock frequencies, 4, 40 and 80 MHz respectively as shown
in Table IV.

Also in Table IV are shown the energy consumption results
for different frequencies using linearity. The base frequencies
applied for estimations are on 4 MHz and 80 MHz, meaning
that the intermediate energy consumption values are calcu-
lated using linear function based on the two aforementioned
frequencies. We note that clock frequency estimation measure-
ments in Table IV were conducted using PLL clocks and in
Table II the internal oscillator was used for measurements.
Therefore the results for 8 MHz are not comparable even
though the test program was the same on both cases. Clock
frequency estimation measurements were done on microcon-
troller voltage at 3,3 V.

As a conclusion to Table IV we can say that estimation error
in the maximum case is 6,06% that we consider satisfactory.
The first line in Table IV shows the energy consumption
result for 375 kHz. As can be noted the actual frequency is
378,6 kHz which is approximately 1% difference from the
theoretical frequency. The same tendency followed all the PLL
frequencies. We also point out that increasing clock frequency
decreases program execution time so that total consumed
energy is always lower with the higher frequency. During
our measurements the PicKit3 programmer was constantly



TABLE IV
TEST PROGRAM ENERGY CONSUMPTION AND ESTIMATION ON DIFFERENT

CLOCK FREQUENCIES

Clock frequency, MHz Measured, mJ Estimated, mJ Error, %
0.3786 715.797 - -

4 154.61 151.34 2.12

8 97.23 92.64 4.72

10 84.28 80.89 4.01

20 58.34 57.42 1.57

30 49.36 49.59 -0.48

40 45.19 45.37 -0.41

60 40.49 41.77 -3.16

72 39.29 40.47 -3.00

80 38.55 40.89 -6.06

connected, adding approximately 3 mA to the total power
consumption. However the Agilent DSO-X 3034A oscillo-
scope was disconnected during the measurements as the energy
consumption became volatile while it was connected.

V. CONCLUSION

In this work we have shown that measuring each base
instruction in C language can be used to estimate program
energy consumption. Using that we show the consumed energy
and estimated energy consumption differ approximately 6%.
We also show that the created energy consumption model can
be used to estimate the microcontroller energy consumption
when a different supply voltage or clock frequency is applied.
In addition, we point out that with the increasing clock
frequency the consumed energy by the microcontroller is
decreasing as the program execution time is shortened. One
potential explanation for this is the reduced effect of leakage
power –less time to leak.

VI. FUTURE WORK

To go further with the approach of C language based energy
consumption estimation we suggest taking into account cache
effects for this method. Some remarks about it can be found
in [5], where they point out that larger code size results in
higher energy consumption by the instruction cache as it needs
to load more instructions. Although [15] presents a in-depth
analysis of the failing linear energy consumption modelling for
cache etc. it is aimed for modern high-end computers. Also
the authors of this work believe that cache energy consumption
estimation modelling can be achieved within credible terms.

A model for compiler optimizations is needed as in this
work the compiler optimizations were turned off. Also a
lot of research towards energy consumption from compiler
optimizations has been previously done. For example in [16]
is presented a simulator based on energy model from different
compiler optimization techniques. In [17] is shown that a
good optimizing compiler, that minimizes execution time, will
simultaneously minimize energy consumption.

We also plan to introduce the method on several different
microcontrollers to estimate the most suitable for specific

task. This means creating energy consumption model for each
microcontroller taking into account both the possible compiler
optimizations and cache effects. As a result, the user has
the estimations data from which to choose the most suitable
platform for the task based on the constraints: voltage level
and clock frequency, as those are the main aspects of energy
consumption.
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Abstract—This paper presents a data acquisition system to
automate microcontroller energy consumption measurements.
Taking a single measurement with a multimeter does not require
much, but taking thousands of measurements per second will
result in large amount of data that needs to be thoughtfully
stored. The aim of the measurement system is to gather current
consumption and pin toggle from microcontroller while executing
different software programs. The data collection is handled
via LabVIEW System Design Software. The measuring devices
are connected to the host system by local area network and
thus making them accessible from anywhere in the lab. The
measurement equipment consists of power source, multimeter
and oscilloscope which are all setup and controlled in LabVIEW.
The gathered data is saved into TDMS file which is analysed
during post-processing.

I. INTRODUCTION

Today, in the era of different mobile and embedded devices,
the energy consumption is important not only because of
battery lifetime, but also because of cooling issues. This
applies especially for applications that require now and then
high performance computing [1].

In addition, those systems are usually working under various
physical conditions like time constraints, voltage levels or
extreme temperatures. To develop such a system is not a
trivial task. One way to simplify the design process is to use
microcontrollers because of their flexibility to implement an
application by using programming languages. Another reason
is the availability of microcontrollers with different perfor-
mances. To analyse different possible solutions, an engineer
should be able to model energy consumption at early design
phases. For this, many energy consumption models have been
developed working mostly at assembly level [2], [3], [4], [5].

To build such a energy consumption model, actual measure-
ments with real microcontrollers running realistic applications
are needed. Measuring a single parameter manually without
any concern of timing is not a complicated process and
is easily doable. Therefore taking one measurement can be
performed relatively simply. However measuring parameters
for thousands of times in a second gives a huge amount of
values which need an organised approach for both measuring
and storing the data. In our initial measurement system we

were able to retrieve data, however the sampling speed and
accuracy were insufficient. Also the duration of the measure-
ment process took up to eight hours which we thought could
be speeded up.

II. PREVIOUS WORK

In our previous work we have focused on high-level energy
consumption estimation. We have proposed a method that the
energy consumption of a program is sum of operations. For
the energy estimation we measured the energy consumptions
of the C-operations and benchmark program. By adding up
the energy measurements for the operations we compared the
results to the benchmark program. All the measurements were
taken on the C-language basis without any regard to lower
levels like assembler. [6]

To be able to compute the energy consumption of the bench-
mark program and the operations we used Equation 1, where
the energy is a product of voltage(Vdd), current(Iaverage) and
time (tprogram) divided by the number of loops in software(n).

Eprogram = (Vdd ∗ Iaverage ∗ tprogram)/n (1)

In the software both benchmark program and the operation
programs are running in a loop. On Figure 1 the loop counter n
has a sample value of 10 000 so that the operation runs longer
than a fraction of a second. Outside the for loop a pin toggling
command is given so that we can measure the duration of
loop execution. Whole code runs in a infinite while loop so
that multiple measurements can be taken and also assuring the
there was no glitch in the results. It is important to note that
the program was executed in both high and low pin values.

Fig. 1. Fraction of a sample software code for energy measurement.



As a case study we have conducted measurements of C-
language operations for a simple image processing benchmark
program with Gaussian blur and edge detection. For the device
under test (DUT) we used Microchip PIC32MX460F512L 32-
bit microcontroller plug-in module. According to our results
we had the worst estimation error less than 5% when using
the default 8MHz clock frequency. We also showed that the
energy consumption estimation is almost linear in terms of
clock frequency. We also conducted measurements on different
clock frequency’s to verify the results. The biggest estimation
error was 6,06% on the highest clock speed.

III. MOTIVATION

To be able to compute the energy consumption we need
voltage, current and time as shown in Equation 1. The loop
counter is already known to us from the software. In our
initial measurement setup, as seen Figure 2, the voltage was
noted from the power source Rhode & Schwarz HMP2030
[7] and used as a constant. For current consumption we used
Agilent 34405A [8] multimeter in the average measurement
mode. The measurement mode sample rate is dependant on
the analog-to-digital converter. In case of the Agilent 34405A
multimeter the maximum sample rate was 15 samples per
second for 5 1

2 digits [9]. To measure time for one operation,
we configured the microcontroller to toggle a GPIO pin, which
was connected to PC via Intronix Logicport LA1034 [10]. The
software of Logicport LA1034 allowed us to take time duration
measurements of pin toggle on the screen.

Fig. 2. A overview of the initial measurement setup.

Each measurement cycle for the operation’s of the bench-
mark program required a re-programming of the microcon-
troller with connecting and disconnecting the programmer,
resetting the average function on the multimeter and restarting
the Logicport LA1034 real-time capture software. In turn each
re-programming cycle required the power supply output to
be manually turned off and then on again. The measured
average current value was noted down to spreadsheet program
manually. A measurement cycle on fixed parameters for mi-
crocontroller clock frequency and power source voltage took

up to eight hours of work. As we took many measurements
with different parameters, the workplace and the measurement
equipment in laboratory were occupied for weeks. In turn it
was impossible to parallelise any work because the measure-
ment sequence had to be executed in series.

IV. SEMI-AUTOMATIC MEASUREMENT SYSTEM WITH
LABVIEW

To reduce the amount of work needed in the lab we anal-
ysed the previous measurement setup in order to reduce the
measurement time, equipment occupation time and increase
measurement accuracy and sample rate. Our first goal was
to eliminate the need of manual action as much as possi-
ble. For instance noting the data values and configuring the
equipment for each measurement. The institute of Computer
Engineering had two valid licences for LabVIEW 2014 which
were put in use. For the measuring equipment we decided
to use devices which can be connected to network. This
allowed us to develop the LabVIEW measuring program from
more than one workstation. As a constraint the DUT could
only be programmed from one workstation. Therefore for
measurement a workplace in laboratory is still needed. To
connect to the measurement devices a National Instruments
Measurement & Automation Explorer [11] is used to setup the
connection. Each measurement device is given its own VISA
resource name, which is later used in LabVIEW program to
open a session to a given resource [12].

According to [13] a virtual instrument (VI) consists of
an industry-standard computer or workstation equipped with
powerful application software, cost-effective hardware such
as plug-in boards, and driver software, which together per-
form the functions of traditional instruments. In our case
we modified the proposed sample software VIs from the
measurement device manufacturers to be able to measure
current consumption and pin toggle in synchronised manner
suitable for us.

A. Hardware overview

As for the measuring equipment we used the same devices
described in Section III except for the multimeter. To increase
sample rate we chose a Agilent 34410A [14], which is able
to take up to 10k samples per second when measuring DC
current for 5 1

2 digits [15]. However to decrease measurment
error from analog-to-digital converter we chose 1k samples
per second with 6 1

2 digits.
The developed measurement system overview is represented

on Figure 3. The pink lines describe the network connections.
As the router is connected to LAN, network access to the
measurement devices is so also possible. For instance to
conduct a long-term test on the controller. The blue lines
present the current flow between the DUT and multimeter. The
green lines present the data connection for programming the
device. As mentioned before the programmer was always dis-
connected from the microcontroller when any measurements
took place. A general purpose PC was used to run LabVIEW
and spreadsheet programs.



Fig. 3. A overview of the developed measurement system.

Both multimeter and oscilloscope are set to wait for external
trigger signal, which is a pin toggle from the microcontroller.
When the microcontroller sends the signal the 10 seconds data
acquisition cycle starts. As mentioned earlier the data rate is 1k
samples per seconds giving us 10k data points. The maximum
size of the measuring window would be 50 seconds, however
for our case and due to some synchronization problems the 10
seconds window was sufficient.

B. LabVIEW program

The LabView program can be divided into five sections as
shown on Figure 4, each have a different colour. In the Start
measuring block the devices addresses and initial values are
set. For example measurement time-out, number of sample
points, datafile path and comments, trigger count etc. The
yellow blocks represent the measurement devices configura-
tion. For example the trigger signals, number of measurement
points, channel, trigger source, measurement type etc. The
orange measurement cycle is described in detail on Figure
5. The blue block handles the data storing as the measured
values are saved to predetermined file. The pink blocks retrieve
error messages from the measurement devices, set off any
outputs and close the connection to the devices. Without
closing the connection the device remains connected to the
current workstation handling the measurement thus no other
connection could be established.

Fig. 4. A overview of the LabVIEW measurement system.

A measurement cycle in our LabVIEW program is a while
loop, controlled via the loop counter as seen on Figure 5. The
loop counter determines how many times the measurements
with preconfigured settings are taken. The input signals block
transmits the data about the VISA resources. A separate block
(in dark grey) represents the flat sequence block in which the

devices start measuring. Also the power to the controller is
turned on. As the controller takes a bit of time to achieve
a steady output state a loop is executed. In the end of the
loop a pin toggle is given, which is the trigger signal for
oscillator and multimeter. In such a way the synchronisation
of the measurement is achieved. After the measurement cycle
is finished, data fetching takes place as seen on green blocks.
Depending on the amount of data points the time for fetching
data comes from fraction of a second to tens of seconds. At
this point the VISA resource information is send to output
signals block.

Fig. 5. A overview of the LabVIEW measurement cycle.

With each measurement cycle the data is gathered from
the devices and used to construct a waveform. To construct a
waveform we use data value, time step between measurements
and timestamp (pink block on Figure 5) for the start of
the measurements. Data from multimeter and oscillator are
constructed separately to waveforms. The build array block
combines the two waveforms together and the data is sent to
output signals block.

V. RESULTS

Due to the much higher sample rate we are able to evaluate
the current consumption in respect to time and pin toggle
more exactly. On Figure 6 the stabilization of current is clearly
shown. The left axis represents the logic value from pin, right
axis shows the value for current consumption. On the bottom
the measurement time value is given. As can be observed the
current (shown in red, blue and purple) is decreasing with each
measurement cycle. The gap between the measurement cycles
is due to the data fetching as shown on Figure 5 earlier. The
stabilization of current was by too short cycle in software and
was later fixed.

Fig. 6. A sample waveform chart from LabVIEW.



The 10 second measurement window is wide enough for
taking many different operation measurements in one run. On
Figure 7 is an example of subtraction operation a = b − c,
where b and c are constants, but the data types for every mea-
surement are different. Therefore we could easily observe the
behaviour of current consumption and operation duration. For
instance floating point operations on our DUT took noticeably
less current yet took longer time to execute. As a remark all
the subtraction loops had the same counter value. For the fixed
point data types the differences on current consumption and
execution time are not so obvious.

Fig. 7. Subtraction operation with different datatypes from LabVIEW.

On Figure 8 results for our simple image processing algo-
rithm are shown. The wavy nature of the current consumption
is caused by the pin toggling, software program and external
noise.

Fig. 8. A sample waveform graph from LabVIEW.

VI. CONCLUSION AND FUTURE WORK

With the use of the National Instruments LabVIEW mea-
surement environment we were able to reduce the eight hour
measuring cycle to a mere hour. This concludes that the
development of the data acquisition method was a success.
With increase in the sample rate and measurement accuracy
allow us to start the post-processing more quickly and with
higher data reliability.

The next step is to analyse a quicker ways for post-
processing as so far a spreadsheet program was used. Currently
we see three possible options. For one use the options of Lab-
VIEW to save a fully analysed data instead of raw waveform,
secondly develop a spreadsheet program or adopt MathWorks
Matlab software
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Abstract—Limited energy sources in embedded systems have
driven the developers to search for new ways to optimise and
estimate the energy consumption. Although energy estimations
are usually conducted on instruction level models we have
proposed a method based on the energy consumption of a C-
operation. As some energy estimation techniques are meant
to be applied in the very early of the design process, our
proposed method is most applicable when a substantial part of
the functional program code has already been programmed. This
paper will show that different data types have significant impact
on the overall energy consumption on microcontrollers. We apply
our energy estimation methodology on different data types using
a simple image processing algorithm and show that the estimate
error is less than 8% with one exception.

I. INTRODUCTION

Energy consumption of a device or an application is an
important factor for embedded systems. Especially in wearable
systems, e.g., wireless sensor network (WSN), that have their
expected lifetime from days to months or even years [1]. It is
clear that designing an energy efficient system is not a trivial
task. Microcontrollers are often used to speed up the design
process because of their flexibility – high-level programming
languages can be used to implement an application. In ad-
dition, there exists many different controllers with different
performances. Because of that, a designer should be able to
evaluate usability of those controllers at early design phases.
That is, both performance and energy consumption should be
estimated already when developing/selecting the algorithm to
be implemented. So far the energy estimation approaches have
used models at mostly at assembly level [2], [3], [4], [5].

This is useful when the target microcontroller has been
selected. However, at the design space exploration phase,
fast estimates are needed and the absolute precision is less
important – relative differences are of interest for designers. In
addition, to make estimations at assembly level, corresponding
cross-compilers must be used first. On the other hand, one
can assume that when using a programming language, the
program code will be translated into assembly following the
same basic steps. For instance, GCC [6] is used for many
microcontrollers as the underlying compiler set. Using the
same underlying compiler allows to estimate performance and
energy consumption of an application without the need for
specific cross-compilers.

The idea of using C-language for energy estimation is
evaluated was [7]. In this paper we focus on extending our
previous work by analysing effects of data types used in a
program. This is important because when selecting a data type,
additional constraints may be set for the algorithm, or vice
versa. For instance, 16-bit data words require less memory
however additional overflow analysis may be needed. On the
other hand, loading 32-bit words from memory will take
more time when the data bus is 16-bit wide. It should be
noted that although the power consumption of a controller
is essentially the same when using 16- or 32-bit data, the
extra time required for memory accesses will increase energy
consumption. Another point of interest for a designer would
be to analyse whether to use floating point data or not. That is,
how much the improved data range and precision will affect
the overall performance and energy consumption.

II. PREVIOUS WORK

The first systematic evaluation for the power cost of em-
bedded software was proposed in [2]. In the following years
the methodology was refined [8], [9], [10]. These estimations
are based on the assembly language and give excellent results.
For example, in [3] the estimation error was 1.8% based on
assembly-level analysis. Another interesting work is [5] where
a method for estimating energy consumption on program
flowcharts was proposed. The main idea of that work is to be
able to estimate the energy consumption in the early design
process. They achieved error between -11.9% and +6.9%.

So far the closest to our work is [3] where it was shown that
a C-based energy estimation method is usable for power model
with estimation error between 4% to 10%. An important differ-
ence to our work is that they did not analyse the C-program but
used assembly code to estimate the total energy consumption.
The same is also true for [11] where all instructions were used
to estimate the average energy consumption.

In our previous work we proposed a method to estimate
energy consumption of a program written in C-language.
For estimation, the energy consumption of the C-operations
contained in the benchmark program were measured. By
adding the energy measurements for the operations, the result
was compared against the actual energy consumption of the
benchmark program. This method enabled us to make all the
estimations on the C-language basis without any information



gathered from assembly level. The same experiments were
repeated at different clock frequencies provided by the on-
board oscillator and supply voltages within the controllers
limits.

The measurements were conducted on the Microchip
PIC32MX460F512L controller [12] using a simple image
processing program as the benchmark. The same benchmark
is also used in this work (see subsection III-A). The estimation
error was around 5% with the default, 8 MHz clock frequency
and hovering at 6% with PLL circuit providing 80 MHz,
showing that the energy consumption is almost linear in terms
of clock frequency. As a conclusion we showed that the
optimal energy consumption is achieved at the maximum clock
speed, at 80 MHz [7] due to the shorter program execution
time.

In order to automate the measurement process and anal-
yse data more quickly, a LabVIEW [13] virtual instrument
(VI) was developed with networked measurement devices.
Figure 1 shows an overview of the developed automated
measurement system. The magenta lines present the network
connections. The green lines are for data gathering and device
programming. The blue lines present the current flow between
the device under test (DUT) and multimeter. The whole
measurement system setup is more thoroughly described in
[14]. However, it is important to note that some changes
in the measurement equipment, namely the change of the
multimeter and connection schemes were done compared to
previous work. For power source we used Rhode & Schwarz
HMP2030 [15] to generate supply voltage of 3.3 V for
the microcontroller. To measure current we used Keysight
34410A Digital Multimeter 6 1

2 Digit [16]. For detecting pin
toggle, operation duration and verifing microcontroller clock
frequency Keysight DSOX3034A Oscilloscope [17] was used.

Fig. 1. Measurement setup overview

III. EXPERIMENT

According to the MPLAB XC32 user’s guide [18] the
compiler supports eight integer data types and three floating-
point data types. Our aim was to experiment with data types
of different bit widths as the most obvious cause for energy

consumption. In Table I are shown the available data types
from the compiler. As there seemed to be no difference of
float and double we excluded float from our test as redundant.
Due to the fact that we did not see any remarkable difference
between signed and unsigned data types, signed char and
unsigned long long were not used in the benchmark.

TABLE I
DATA TYPES USED FOR EXPERIMENTS WITH BENCHMARK

# Type Bits Used
1 unsigned char 8 yes

2 [signed] char 8 no

3 unsigned short 16 yes

4 [signed] short 16 yes

5 unsigned int 32 yes

6 [signed] int 32 yes

7 unsigned long long 64 no

8 [signed] long long 64 yes

9 float 32 no

10 double 32 yes

11 long double 64 yes

We started by measuring current consumption and execution
duration of a simple a = b − c operation, where b and
c are constants, but the data types for every measurement
are different. In Figure 2 are shown the results where black
lines represent the time moments beginning and end of the
operation sequence, and the red lines current consumed by
the microcontroller. The data types from 1 to 11 are taken
from Table I. For instance floating point operations (9 to 11)
on our DUT took slightly less current but took longer time
to execute. The main reason for longer duration is in the fact
that there is no hardware support for the floating-points. It
should be noted that the subtraction loops had the same loop
counter value, meaning that the results are comparable. For
the fixed point data types 1 to 8 (Table I and Figure 2), the
differences on current consumption and execution time are not
so obvious although the signed int data type consumed more
current than the rest of 8- to 64-bit integers. Interestingly the
64-bit long long showed a bit lower results than other integers.
This gave us the principle idea that the choice of the data type
may have significant impact on the total energy consumed by
the microcontroller.

Fig. 2. Subtraction operation results from LabVIEW



A. Test program
To estimate and measure the energy consumption of the mi-

crocontroller for different data types we used a simple image
processing program. In Figure 3 is a simplified flowchart of the
program. For different data types we used an image with fixed
dimensions. The chosen dimensions were 30 x 30 that was
the maximum when testing with long double due to available
memory size. Since the program is divided into five blocks,
the image size was declared in ”variable declaration” block.
As the image processing program uses dynamic memory, the
allocation was done in ”picture generation” as well as filling
the allocated memory with predetermined data in a loop.
”Gaussian blur” is divided to vertical and horizontal blur.
”Edge detection” looks for neighbouring pixel difference and
generates a output image with computed value. In ”generate
output image” the result from the ”edge detection” is written
to a variable after which memory is deallocated.

Start

Variable declaration

Picture generation

Gaussian blur

Edge detection

Generate output image

Stop

Fig. 3. Simplified image processing algorithm

Additionally we used a fixed data type (unsigned char)
with variable image dimensions to test the scalability of the
estimation method. For each different image size we profiled
the code again to find out the number of repetitions for each
program line as this is essential for finding the total estimation
result. In Table II are shown the total number of rows executed
by the program. The difference between the lowest and the
highest values is more than 550 times, showing the importance
of the image size. As for the chosen image sizes, since 5 x 5
is rather small even for an icon, we did not try with smaller
values. The largest image size – 84 x 84 – was determined by
the available memory.

TABLE II
ROWS IN A PROGRAM PER IMAGE SIZE

Image size Executed lines of code
5 x 5 905

10 x 10 5 246

30 x 30 59 618

50 x 50 168 487

70 x 70 344 316

84 x 84 498 751

B. Methodology

In addition to the experiments with data sizes, another
modification was made when measuring test sequences. In our
previous work [7] we used energy per base expression to find
the total energy per operation. For instance a = a+b+c would
have two add and one assign operations. Instead of analysing
single expressions, multiple operations were grouped and
analysed in larger blocks. This approach avoids the need for
variable declarations and allows better analysis of complex
expression – creation of temporary variables is left then
for compilers, thus mimicking better realistic applications.
However, the drawback is the number of combinations of
operations and therefore more expressions must be analysed.
To simplify the analysis, only combinations used in the bench-
mark program were measured for this work – 26 altogether.
One of the future directions will be thorough experiments
with different combinations of operations to find out useful
combinations.

For energy consumption calculations we needed to measure
execution duration and current consumption of the executed
program on the microcontroller. An overview of the test
system setup is described in Section II. To compute the
total energy consumed by the program we used Equation 1,
where V was fixed to 3.3 V, I and t were measured and n
was the number of iterations the program was executed. The
total energy consumption is used as a reference base for the
estimations. It should be noted that the power source was fixed
to output 3.300 V in all of the tests and this result was used
in every computation. However in our test measurements with
Fluke-179 [19], on the value on the DUT was 3.249 V. The
voltage drop can be explained by the long measurement wires
as well as having the multimeter in a circuit measuring current.

E = (V ∗ I ∗ t)/n (1)

Energy estimations are based on the hypothesis that the
total consumed energy of the program is sum of the energy
consumed by the operations. For that, energy for each oper-
ation/block is found and then multiplied by the number of
repetition of the operation/block. The number of repetitions
is found by profiling the code. For this we used GCC [6]
tool called Gcov that outputs a number of repetition for
each code line executed. To find the energy consumption per
operations, we used Equation 1 to compute the total energy
per operation and then subtract the energy used by an empty
loop. An empty loop is used to make each operation last
longer than just a fraction of a second and also to output more
samples from which to take measurements. Then the energy
consumption of an operation is computed by subtraction the
energy consumption of the empty loop.

C. Measurement

Every unique line of code was separated from the test
program and enclosed with in loop and output pin toggle
command in a separate operations measurement program.
In total, our simple image processing test program had 25
+ 1 different operations. The extra one corresponds to the



empty for-loop used to compute the energy consumed by
operations. As some operations included memory allocation
and deallocation they consumed considerably more time to
execute. As the LabVIEW VI was set for measuring in
20 second execution windows, we had to modify the loop
counters for different operations. Altogether we generated five
different loop counters for 25 operations ranging from 30
to 106, depending on the operation duration. Although the
minimum loop value used was only 30, the operation was
verified separately with a higher loop value giving still the
same average energy.

IV. RESULTS

As described in Section II we changed the measurement
equipment as well the way to measure the energy per op-
erations explained in Section III-B. As a result, the total
energy on 80 MHz clock speed for unsigned char data type
for 50 x 50 image was lower compared to our previous
work. Previously we have showed that the total energy under
the above mentioned conditions was 38.55 mJ, but in our
recent tests the result for the same condition was 34.69 mJ.
The main difference is in the current consumption as in our
previous work the measured current consumption was 69.14
mA compared to 60.12 mA shown here. Although the results
are different from the previous work [7], we assume that the
change in measurement setup up as well as equipment used
have created this situation.

As described above, the default image size for test program
was 30 x 30. The number of iteration for each program cycle
was 10, meaning that the program run ten times until an output
was flipped on the microcontroller. In Table III are shown the
measurement results as well the total energy consumed by the
program. It should be noted that the precision of the measured
data was higher than shown here.

TABLE III
TOTAL ENERGY CONSUMED BY BENCHMARK PROGRAM

Type Current, mA Duration, s Total energy, mJ
unsigned char 60.11 0.602 11.94

signed short 60.16 0.643 12.76

unsigned short 60.11 0.630 12.50

signed integer 60.03 0.618 12.24

unsigned integer 60.03 0.618 12.24

long long 59.91 0.895 17.70

double 59.52 2.225 43.69

long double 59.44 2.968 58.22

The main difference in total energy consumption is mostly
affected by the execution time. As expected, the floating-point
data type is more energy hungry that the integers, with double
consuming more than 43 mJ and long double more than 58
mJ. However, differences between integer data types are not
so big. As expected, 8-bit unsigned char consumes the least
amount of energy with 11,94 mJ. Another interesting result is
the difference of short and integer data types, as 16-bit short

consumes a bit more energy than the 32-bit integer. Possible
explanations include effects of the internal bus width and/or
data type conversion operations added by the compiler.

Energy estimations for different data types for 30 x 30 image
are shown in Table II. For integer data types the estimate is
mostly lower than real measured value, except for long long,
which gives 0.97% lower estimate for energy. For floating-
points the case is reversed, as the estimated value is lower than
the measured energy. The worst case difference is for double,
as the estimated value is 16.00% lower. Although we tested
the estimation and real measured energy for double several
times the estimation was still off. At this point it is still a
problem which should be investigated more thoroughly. For
the 64-bit long double the difference is only 5.31% compared
to the highest amount of energy consumed.

TABLE IV
ENERGY ESTIMATIONS FOR BENCHMARK PROGRAM

Type Total, mJ Estimated, mJ Diff., %
unsigned char 11.94 12.92 -8.17

signed short 12.76 13.57 -6.32

unsigned short 12.50 13.06 -4.45

signed integer 12.24 13.02 -6.36

unsigned integer 12.24 13.17 -7.63

long long 17.70 17.53 0.97

double 43.69 36.70 16.00

long double 58.22 55.13 5.31

As the image size is one of the most important factor in
the simple image processing program we measured energy
consumption for different image sizes. In Table II are shown
the number of code lines executed per image size. It should
be noted, that due to the amount of available memory the 84 x
84 image size was maximum for the unsigned char data type
which could still be allocated. In Table V are shown the results
of total consumed energy and estimated energy for different
image sizes.

TABLE V
DIFFERENT IMAGE SIZES FOR 8-BIT unsigned char

Image size Total, mJ Estimated, mJ Diff., %
5 x 5 0.19 0.21 -11.56

10 x 10 1.05 1.15 -9.40

30 x 30 11.94 12.92 -8.17

50 x 50 34.69 37.32 -7.60

70 x 70 69.33 74.83 -7.94

84 x 84 100.67 108.56 -7.84

The estimated results depend solely on the profiling as
the operation energy is measured only once. Taking this into
account, we can say that the initial measured values per
operation are not image size based and are scalable to different
image sizes. As the minimum measured image size gives the
maximum error it is more dependant on the overheads in the
program.



V. CONCLUSION AND FUTURE WORK

Choosing the data type is important for the optimal energy
consumption of a program. In this paper we showed that the
total energy consumed can vary drastically and this can be
estimated rather well. For instance, floating-point data types
consume several times more energy than any of the integer
data types. Among integer data types, there is a difference
when using 64-bit long long compared against to 32-, 16-
, or 8-bit data types. We also showed that our estimation
methodology is valid for most data types with error around
8% and less. The only exception being double that produced
around 16% of error on our simple image processing program.
Currently this issue with high estimation error ondouble is left
for further investigation.

We also showed that when making energy estimations
based on blocks and not a single expressions, results are still
satisfactory. This will reduce the need to measure every C-
operator and instead give a chance to use larger blocks for
measurements. A benefit is to categorise certain operations into
blocks to reduce the need to measure every single operation’s
current consumption and execution duration separately. Also,
the declaration of temporary variables is left for compilers,
therefore mimicking realistic applications better.

In our future work we will look more deeply into developing
custom benchmark program which takes into account the main
aspects of any C-program. For instance structures, data types,
main operations, memory allocation, loops etc. By running
the unified benchmark program once, a microcontroller can
be characterised and the data used for estimating energy
consumption of a random C-program.
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Abstract—This paper extends our previous work on the source-
code level energy consumption estimation with emphasis on
more precise performance estimation. In this work we present
results for three mainstream microcontrollers with different
architectures. Our proposed methodology lies in measuring each
C operation’s execution time therefore creating a measurement
accurate performance models for the microcontrollers. The
higher precision for the estimates in this work is achieved by
introducing a model for loops and hence improving the results
both for nested loops and also for operations. As a result we
show that the performance estimation method is applicable on
most cases with estimation difference between -1% to 7.5%.

I. INTRODUCTION

Today, in the beginning of the Internet of Things era the bat-
tery powered devices are becoming increasingly popular and
widespread. In our everyday use we find smartwatches; home
automation devices for monitoring and controlling appliances;
activity monitors; sports related – shoe integrated sensors
and soon also personal healthcare devices[1]. For a designer
this means that the energy consumption and performance
of the device must be taken into account on every step of
the development process. Although some of the Integrated
Development Environments (IDE) like TI Code Composer [2]
already support runtime energy consumption estimation, most
of the IDEs do not.

When implementing embedded applications, one of the key
factors is the efficiency of the implementation - consuming
as little energy as possible while meeting deadlines. This
goal is not easy to achieve and design-space exploration
is needed to estimate or evaluate how fast one or another
solution is and how much energy is consumed. Of course, it
is possible to implement the same application using different
microcontrollers and evaluating how good one or another
solution is. However, for a developer this approach is not
cost effective since it requires the use of different development
tools and platforms - cross-compilers and prototyping boards,
for instance.

In our previous work we have seen that the current con-
sumption for a single-thread controller fluctuates very little.
Therefore the fundamental component in energy estimation
for microcontrollers is execution time and thus in this paper
we focus on performance estimation.

Estimations are used to avoid implementing different solu-
tions, but for that models must exist to estimate both perfor-

mance and energy consumption. Several methods have been
proposed that make use of cross-compilers. Estimations, which
are made at assembly code level, are based on instruction set
simulators (ISS) for instance. Accuracy of such an approach
depends how detailed models are used. Nevertheless good
results have been achieved - 3% and less [3], [4], [5], [6]. The
drawback is that different cross-compilers and simulators are
needed, and simulation times can be too long for fast design-
space exploration.

In a ideal scenario only compiler and one simulator
could be used to estimate performance for different proces-
sors/microcontrollers. A compiler for host computer executing
the application at full speed would give the fastest turnover.
However, the problem is that not only the speed of the target
processor may differ significantly from the host processor,
but also internal architectures of the processors may be very
different thus making it impossible to compare at assembly
code level.

In the proposed approach the effect of this drawback is
reduced by analysing operations not at assembly level but at
programming language level (C in our case). This can be done
because when using the same compiler family (GCC [7] in
our experiments), the operations of a programming language
are compiled into the same assembly code sequences for the
same processor family. Of course, when applying sequence
optimizations at assembly level and not only meta-level, the
resulting sequences will vary. On the other hand, for fast and
robust solution estimates with ±10-20% error is good enough
to evaluate whether to further analyse the usability of one or
another controller/processor. Our motivation is to present good
enough performance models for the developer, for instance to
evaluate platforms when porting software from one system to
another.

This paper is organized as follows. In Section II we give
an overview of the significant works in the field as well as
our previous contributions. In Section III we describe the
theoretical principle of our approach. In Section IV we show
the measurement cycle, describe the used benchmark programs
and the microcontrollers. In Section V are the measured data
as well as our energy consumption estimation results with error
calculations. Section VI concludes the paper.



II. RELATED WORK

To the best of our knowledge works on performance esti-
mation for 8-, 16- or 32-bit microcontrollers have not been
published. However as execution time is a subset of energy
consumption (further explained in III), we consider the works
on energy estimation as basis for related works in perfor-
mance estimation. Also, the authors were previously involved
in energy estimation before the performance estimation was
considered as an independent research topic.

Energy estimation for software components has evolved
several times since the pioneer work by Tiwari et al. in [8],
where the instruction level model was created for the sole
purpose of power consumption minimization. The methodol-
ogy was developed further by Russell and Jacome [9] towards
simplifying the generation for the processor model. Although
they measured the processor physically, all measurements
were conducted on assembly level and thus on the lower
abstraction level. The cycle-accurate energy estimation models
were developed further in the pursuit for better estimation
results by Brandolese et al. [3], [4], [5], [6]. In 2013 Bazzaz et
al. [10] propose an accurate instruction-level energy estimation
model with error less than 6%. The method is based on
model and the results verified by measuring the processor
physically. Although they show good results using some of
the well known MiBench [11] benchmarks their method is
based on lower abstraction level. As in [12] the results are
produced using only one ARM-based microcontroller. The
achieved accuracy in low-level energy estimators reached very
high precision. In some works error percentage was less than
3%, however drawbacks remained – high simulation time as
well as need for accurate register-transfer or behavioural level
model.

Next step in the energy consumption estimation brought the
researches to source-code energy estimation. In 2001 Bran-
dolese et al. [13] showed that their method is producing results
with absolute relative error less than 4%. The C source-code
level energy consumption estimation was further developed
by Scarpazza [12]. He developed a series of automatic tools
in such a way that the designer was able to observe the
amount of energy consumed for each line of code during
the programming workflow. As the toolchain needed extra
computing power it was pointed out that the compilation took
2.2 times more time. The energy estimation technique relied
on an abstract model of the processor which was derived from
the analysis of the processor and the source-code. However
no physical measurements were conducted to the best of our
knowledge. Also only one ARM-based microcontroller was
used to prove the applicability of the method. As a result the
source-level energy consumption estimation model had up to
8% error. In 2008 Brandolese et al. published results where the
absolute relative error of the automatic C program statistically-
accurate models have average absolute error of 8.5% [14].

Further works in the field of C source-code level energy
consumption estimation for microcontrollers include improv-
ing the model for instruction fetching phase [15]. In 2016

Zhao et al. [16] propose a new model for source-code level
energy estimation that takes into account more than timing
parameters, however the work is based on getting the switching
activity and computing the dynamic power dissipation. The
source-code level energy estimation is also implemented on
mobile devices as in [17] is introduced a method for estimating
energy consumption on Java source-code level.

The main idea behind our approach is that it should be
enough to compile an application for the host computer, to
profile the program with realistic data, and to estimate per-
formance with the help of models of target microcontrollers.
This divides the approach into two main parts - profiling
the application and building the model. Also verification of
the model could be considered as a extra part, however it is
executed only once during the model development phase.

Profiling is used to collect information: how many times
different operations are executed and which data-types are
used. Default profiling of a compiler does not give that
information, e.g. GCC counts only how many times a line
is executed [7], but with additional static code analysis it
is possible to find out which atomic programming language
operations are executed in one or another line and what data-
types are used. The data-type is important as the number of
assembly instructions to process a data-word may be very
different for different data-types, especially for controllers with
a small word-size. Also, the number of clock-steps to execute
the same operation may differ for different data-types because
of the size of internal buses, for instance. In addition, for some
smaller controllers, complex operations may be implemented
as functions/subroutines that take more time to execute. It
should be noted that for optimized functions, the performance
may depend on the data values thus making estimations less
precise.

The result of the profiling is a list that shows how many
times an atomic programming language operation with certain
data-type is executed. Knowing the execution time of an opera-
tion, it is easy to find the total execution time of the application
by simply summing up each of the operation’s execution
time. It should be noted that the approach is valid only for
single-thread processors, but for small and energy efficient
embedded applications multi-threading is seldom used. The
possible effects of caches have been analysed in many works
(see e.g.[18]), and were left out for future work together with
effects of compiler optimizations.

In [19] is shown the principle of our approach for C source-
code level energy consumption method based on measured
data. Initially we showed on 32-bit PIC32MX460F512L that
image processing algorithm with edge detection and Gaussian
blur could be estimated with less than 7% error. In [20]
we showed that data-type has a significant impact on the
overall energy consumption. For acquiring the measurements
for energy estimation we have set up a framework with
measurement devices, LabVIEW and data analysis which is
further described in [21]. The principle of the measurement
framework is also used for the taking measurements for the
performance models.



III. METHODOLOGY

To collect the execution time of an operation, either actual
controller should be measured or ISS can be used, if available.
For our experiments, we measure actual controllers under dif-
ferent working conditions: clock frequency and supply voltage.
In our previous work we measured execution time and also
current consumption at various phases of test programs with
the goal to generate as precise model for energy consumption
as possible. However, it came clear that supply current fluctua-
tions were rather small and were not caused by the application
but by other factors like supply circuity and clock frequency.
Also, since the energy consumption in a controller is not so
data dependent, instead of the detailed current consumption,
average can be used. Because of that we are now focusing on
a performance estimation since energy can be found simply by
multiplying time, current and voltage. Of course, one should
keep in mind that both current consumption and possible
maximum clock frequency depend on the supply voltage too.

Since the execution time of an operation is too short to mea-
sure, we run operations and their combinations in loops while
measuring the time. To reduce the effect of time measurement
granularity, loops were iterated thousands to millions of times.
However, this introduced for smaller controllers another hard
to predict effect because data-word sizes for loop iterators
could be very different - 16 bits vs. 32 bit, for instance. To
avoid the use of different data-sizes, nested loops were used,
but this introduced the need for more precise loop model -
constant time per iteration was too off.

When looking at how a for-loop is compiled, five separate
parts can be identified - loop initialization, iterator checking,
loop body, iterator incrementing, and loop completion. For
measuring loop execution time, the first and last part can be
merged into initialization as they are executed exactly once per
every loop (tinit). Loop body (tbody) can be left out from this
analysis because time spent for that depends on the commands
and operations in the loop body. The number of iterator checks
(tcheck) and increments (tincr) depend on the number of loop
iterations (N ) - when the loop body is executed N times,
the incrementing is also executed N times, but checking N+1
times. The extra compare is due to the last check before exiting
the loop. Total time to execute a loop with an empty body can
be written as:

tloop = tinit + (N + 1) ∗ tcheck +N ∗ tincr. (1)

When assuming relatively large numbers for loop iterations
N (more than 10) the tcheck and tincr can be merged, hereafter
we use titer for the merged unknown. Also the impact of
the tinit could be considered insignificant when N has high
enough value. Therefore it is possible to simplify the Equation
1 even more by ignoring the extra checks. Equation 2 presents
the loop model used in our estimates with tbody .

tloop = N ∗ (titer + tbody). (2)

In case the operation is executed several times a in loop
body we complement Equation 2 with an optional variable

L, to count loop body repetitions. Explicitly L shows the
number of times a given operation is repeated in a loop. In
our experiments Equation 3 was used to verify that the number
of repetitions for a operation did not affect the estimate for a
single repetition.

tloop = N ∗ (titer + L ∗ tbody). (3)

Measuring execution time for nested loops with different
numbers of loop iterations, it is possible to find the parameters
titer and tbody with satisfying precision. Also the parameters
can be found using Equation 3 with different values for L.
The results of titer and tbody can then be used to calculate
durations of various estimations. Equation 4 presents the loop
model used in our calculations for the nested loop where the
body of a outer loop is substituted with the inner loop. The
variable M shows the value for the iterations of the inner loop.
We postulate that titer for both inner and outer loop have the
same value.

touter = N ∗ (titer + tbody);

tinner =M ∗ (titer + tbody);

tnested = N ∗ (titer +M ∗ (titer + tbody)).

(4)

Measuring the execution times with different values for M
and N , the initialization coefficient tinit could also be found
by solving the resulting set of Equations 5 to compute even
more precise loop estimates.

tnested = tinit +N ∗ (titer + tinit +M ∗ (titer + tbody)).
(5)

For that we measure execution time for each C command.
For example the operators we measured are: +, *, = etc.
We also measure for-cycles and conditions and any other
command which is a part of a C syntax. The measurements
are conducted in a loop as mentioned previously to compute
the time duration for the command/operations to reduce gran-
ularity effect. Execution time of a single operation, which is
stored in a tbody is found by subtracting an empty loop iteration
time from a loop measurement with an operation and in turn
dividing the result with the loop iterator. The equation to find
the duration for a single operator is presented in Equation 6.
We begin by solving Equation 3 for tbody . The premise of
the equation is that titer and tbody are previously found. The
parameters are easily computed by solving a linear equation
system either for Equation 3 or 5. In case Equation 5 is used
the variable L must be substituted for M .

tbody =
tloop −N ∗ titer

N ∗ L
. (6)

In case the operation in a tbody was a complex operation the
result for the additional part must be subtracted. For instance
Equation 7 shows the calculation for a + operator, where both
ta=b+c and ta=b are a reference to tbody in Equation 6.

t+ = ta=b+c − ta=b (7)



We assume that a program’s execution time is a sum of
the operators/commands times duration in that program. To
verify the estimated time duration result, we also measure
the whole program execution time in a loop and compute the
duration for a single execution as shown previously for single
operator/command. For the source-code we can have any C
program, but the preferred source should be flattened, meaning
that the code is mainly in one function to avoid the extra
work needed to modify the code for analysis. When computing
the estimates we look for the C operations/commands in the
program code. As the parser is still under development we are
currently computing the estimates manually. By comparing the
results for the computed estimate and the measured program’s
time duration, we validate the estimation results.

IV. EXPERIMENTS

Figure 1 presents the simplified overview of the process
for measuring execution time both for a program and an
operation/command. The pink line describes the data analysis
in a host computer. The data is collected using LabView and
analysed by several programs including technical computing
and spreadsheet program. The blue lines present the power
connection to microcontroller. The ∗ shows that only one of the
lines can be active at a time, depending on the microcontroller.
The green lines depict the data connection for programming
the device and gathering measuring results. From the oscillator
to the microcontroller we used two data lines and came up
with our own custom communications protocol. One wire
for measuring operation execution time and the second for
sending metadata. The protocol for the metadata has 32-
bits and includes information about the datatype, measured
operation, iterator value and reserved bits. Besides it contains
synchronization bits in the beginning and a parity bit in the
end. Reserved bits serve a backup purpose for the future and
can be used when measuring the controller under different
circumstances. For instance when measuring nested loops the
protocol is somewhat changed to get the values for the iter-
ators only. The device used in our experiments was Keysight
DSOX3034A oscilloscope.

Fig. 1. An Overview of the Measurement System

A. Benchmark Programs

For benchmarks we chose FIR filter and matrix multipli-
cation from MSP430 Competitive Benchmarking [22]. The
benchmarks were chosen from this source due to the need
to test also 8-bit microcontroller, which has considerably less
hardware resources compared to the 32-bit controller and
cannot be used for sizable benchmarks due to the limited
amount of memory. It is important to note that the floating-
point coefficients for the FIR filter were changed to integers.
The reason is further discussed in Section V. We also included
the image processing program that consists of Gaussian blur
and edge detection. However only the 32-bit controller had
enough memory to execute the program. The image processing
results from our previous work [19] are incomparable as we
changed the dynamic memory allocation of the program to
static. In Table are I shown the benchmark programs with a
short description.

TABLE I
BENCHMARK PROGRAMS WITH DESCRIPTIONS

Benchmark Description
Matrix multiplication A 3x4 matrix is multiplied with 4x5 matrix.

Program consists of nested loops as well as
2-dimensional matrix assigning, adding and
multiplying.

FIR filter FIR filter operations performed on a simulated
integer data. Program consists of nested loops,
adding, subtraction, multiplying and dividing
both integers as well as 1-dimensional arrays.

Image processing Gaussian blur and edge detection of a
software generated image. Program consists of
nested loops with more than 20 000 iterations.
Operations are conducted with 1- and
2-dimensional arrays and also with integers.

In Table II is shown the complexity of the benchmark
programs. The column ”# lines” presents the number of useful
program code lines in the benchmark and it also shows the
number of lines which were profiled. The column with ”#
LoC” shows the figure for Lines of Code executed and is
the total sum of the program lines executed by the profiler.
The importance of the LoC lies in the fact that the total
execution time is a sum of each code line. Therefore when
the estimation error for benchmark with high LoC is low it
shows that the estimation was based on correct estimates for
loops and operations/commands. For program profiling we use
a tool in GCC toolchain called GCOV. The last property shows
the sum of the number of C-operations on which our estimates
are based. For example an program line of a = b + c on its
own would have the properties of 1 program line, 1 LoC and
2 C-operations - assign and add. As can be concluded from
the figures in the table the programs heavily depend on loops
and nested loops in particular as the number of program lines
and LoC have totally different proportions.



TABLE II
NUMBER OF CODE LINES IN BENCHMARK PROGRAM’S

Benchmark # lines # LoC # C-operations
FIR filter 5 721 2 557

Matrix multiplication 5 172 292

Image processing 50x50 38 172 602 14 325 966

B. Devices Under Test

As our performance estimation method should be usable for
any common microcontroller we tested it on several micro-
controllers available to us. The controllers are from different
manufacturers. For the 8-bit we had Atmel ATmega328. For
the 16-bit range we had Texas Instruments MSP430G2553
and for the 32-bit we used Microchip PIC32MX460F512L.
In our previous works we have shown that the most energy
efficient configuration should use the highest clock frequency
[19], therefore for the performance estimation each controller
was set to run under the highest stable clock frequency. Also
in our ongoing development in the field we have observed that
different compilers produce different code, thus it is important
to know which compiler was used. In Table III are shown
the basic details of each microcontroller configuration. The
superscript number near the controllers name presents the
data path width. As a remark, all the compilers were set
on optimization level -O0. Also, microcontroller features like
watchdog, timers and interrupts were disabled.

TABLE III
MICROCONTROLLER’S CONFIGURATIONS

Controller Clock Clock Compiler version
[MHz] source

ATmega328P8 16 RC AVR-GCC 4.9.2

TI MSP430G255316 16 RC TI 4.4.8

PIC32MX460F512L32 80 PLL XC32 1.44

V. RESULTS

Tables IV, V and VII show the performance estimates as
well as the measured results for the corresponding micro-
controllers. The positive percentage in the difference column
”Diff.” shows that the estimated value was smaller than the
measured result. According to the Table II, the most interesting
results are the image processing and FIR filter, as those
benchmarks have the highest number of code lines. One
should consider that each measurement contains an error. In
our case the oscilloscope sample rate was 1

25000 meaning
that each measurement could be ±20µs off. The results for
the FIR filter are not so much affected compared to the
matrix multiplication, where the figures are in the range of
350µs−550µs. It is important to note that in future we should
raise the sample rate when measuring programs with such a
small execution duration.

In Table IV are the results for Atmel ATmega328 controller.
The estimation difference for either benchmark is not signifi-
cant. Unexpectedly the performance for the FIR filter is better

than for the 16-bit Texas Instruments MSP430G2553 presented
in Table V. When comparing the raw data the main difference
is from the operations and not from the loop iterations. Best
explanation for the cause is that the program used 8-bit data,
which was not optimized for the 16-bit architecture.

TABLE IV
RESULTS FOR ATMEL ATMEGA328

Benchmark Measured [ms] Estimated [ms] Diff. [%]

FIR filter 1.667 1.706 2.28

Matrix mult. 0.518 0.548 5.49

In Table V are the final results for the 16-bit Texas Instru-
ments MSP430G2553 controller. On the first look the results
are satisfactory compared to our initial statement of having
±10-20% error.

TABLE V
RESULTS FOR TEXAS INSTRUMENTS MSP430G2553

Benchmark Measured [ms] Estimated [ms] Diff. [%]

FIR filter 1.789 1.821 1.77

Matrix multiplication 0.419 0.452 7.39

However the results for the 16-bit fluctuated more and
needed special attention. First we conducted a deep analysis
for the nested loops in order to verify that the poor results
were not affected by incorrectly assessing loop titer. Table VI
presents the results for the nested loop estimations. As can
be seen, the estimation difference is mostly under ±1% and
therefore we did not consider it as a cause for poor results.
The results were obtained executing a a = b+ c operation in
the nested loop.

TABLE VI
RESULTS FOR NESTED LOOP ESTIMATIONS ON TEXAS INSTRUMENTS

MSP430G2553 MICROCONTROLLER

Outer Inner Total Measured Estimated Diff. [%]
loop loop iterations time time
200 50 10000 0.017 0.017 0.01

300 70 21000 0.035 0.035 0.88

400 90 36000 0.061 0.06 -1.4

500 110 55000 0.092 0.092 -0.52

600 130 78000 0.129 0.129 0.34

700 150 105000 0.174 0.174 -0.07

800 170 136000 0.224 0.225 0.39

900 190 171000 0.282 0.282 0.14

1000 210 210000 0.347 0.346 -0.16

1100 230 253000 0.417 0.417 0.01

By further investigating we found that the main reason
is the compiler’s build-in optimized subroutines in assembly
level, which were called also when the compiler optimization
level was set to -O0. These subroutines were always called
for floating point operations, but also sometimes for integer
operations, multiplying for instance. Due to that our approach



for the floating point data type operations like add and multiply
showed error of more than the satisfactory level. However all
the estimation results for the floating point were overestimated.
As a conclusion we see that in this case the floating point
data type estimations need more investigation and perhaps a
different approach.

The Microchip PIC32MX460F512L experiment results for
the benchmark programs are in Table VII. Overall the aver-
age difference is small. Interestingly this is the only micro-
controller where we underestimated the results. As expected
the performance compared to other controllers is best for the
32-bit, but not by far, considering the fact that the clock
frequency is five times higher than for the other controllers.

TABLE VII
RESULTS FOR MICROCHIP PIC32MX460F512L

Benchmark Measured [ms] Estimated [ms] Diff. [%]

FIR filter 1.121 1.146 2.20

Matrix multiplication 0.353 0.351 -0.64

Image processing 173.897 171.051 -1.66

VI. CONCLUSION AND FUTURE WORK

Until now our C source-code level estimation method
was only tested with the image processing algorithm as a
benchmark on a 32-bit PIC-microcontroller. By extending
both the benchmark programs as well as controllers, we have
shown that the method is eligible for a variety of commercial
microcontrollers with different architectures. Although some
of the estimates in some cases are more than 10% off, we
do not consider it as an insurmountable problem. The reason
for the higher estimation errors is known to us - optimized
subroutines are used even with optimization level -O0. With
some fine tuning of the model we expect that the error can
be reduced even more. Overall the method shows good results
on every platform and therefore we consider the experiments
success.

Our goal is to apply the method so that it will become
an autonomous tool, usable for developers. Currently we
are working on developing a general benchmark suit which
consists of all the common C-instructions and can be used
to create the controllers’ performance models faster. Also a
suitable C-code parser is under construction to extract the base
instructions needed for estimation.
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Abstract—Tools for performance estimation based on instruc-
tion set simulators (ISS) are mostly available and show good
results. However when the need arises to choose different
platform or to estimate performance without having the ISS
the developer needs all the different software suits and devices
and also must be able to work with them. In this case we
propose a estimation method based on physical measurement
for generating performance models. This paper extends our
previous work on source-code level performance estimations for
microcontroller. We compare two proposed estimation methods
to find the most suitable for estimating embedded software
performance for C source-code level on microcontrollers with
higher compiler optimization levels than -O0. As a result we
show that both methods could be applied with some exceptions.

I. INTRODUCTION

Software execution performance is an important indicator
for an embedded system depending on clock speed, architec-
ture, compiler etc. It also strongly affects the energy consump-
tion of a device. Sometimes even more so when the application
is executed on a battery powered devices such as sensor nodes
in Wireless Sensor Network (WSN). The expected lifetime of
such a system, according to Mak et al. [1] is often from days to
months or even years. When designing an energy independent
embedded software, without any regard to program execution
time, is both unreliable and short-sighted. Common approach
in this case is to use estimations and profiling. However for
motes in a WSN network it is not crucial to predict the
performance with a microsecond precision and thus a more
rough estimate is sufficient.

Either in development phase or with finished software,
performance estimation is necessary metric. However not all
programming software suits available today are giving out
the data for performance. Although some of the Integrated
Development Environment (IDE) are capable of Instruction
Set Simulation (ISS) like Texas Instrument Code Composer
Studio (TI CCS). Nevertheless in case of porting the software
to a new platforms it means installing all the different software
suits as well as having all the devices ready for testing not
to mention the know-how to perform each simulation. Ergo
a need for more uniform solution is needed. We propose a
rough, but general environment for performance estimation
method based on physical measurement of source-level micro-
operations. We consider less than 10% estimation error for

no optimization (-O0) level and less than 30% estimation
error with higher optimization levels a very good result. Such
precision for estimates is typically good enough in the design
space exploration phase when different alternate solutions are
considered.

This paper is organized as follows. In Section II we give
an overview of the significant works in the field as well
as our previous contributions. In Section III we describe
the proposed estimation methods as well as give a short
overview of different optimization levels. We also specify
the microcontrollers under test and the benchmark programs.
In Section IV are presented the estimation results for both
proposed methods. Section V concludes the paper.

II. RELATED WORK

To the best of our knowledge works on performance esti-
mation for compiler optimization levels on 8-, 16- or 32-bit
microcontrollers have not been published. Similar works on
performance estimation exist, however targeted for different
hardware platforms. For instance Jia et al. [2] observed from
the empirical data how different GCC [3] optimization options
behave on the efficiency aspect of data race detection using
benchmarks from PARSEC 3.0 [4]. They conducted experi-
ments on Dell desktop machine running the 32-bit desktop
Ubuntu Linux 12.04.1 with 3.16GHz Duo2 processor and
3.8GB physical memory. Alsheikhy et al. [5] presented a
method to analyse and estimate the expected performance
metrics with the parallelization and GPUs approaches in
any embedded system using hierarchical generic Finite State
Machine along with its affiliated hierarchical performance
model on several Android platforms. In [6] Lattuada & Fer-
randi propose a performance estimation method for embedded
software with confidence levels using LEON3 processor. The
closest to our work on hardware wise was published by Kriegel
et al. [7] as they used Texas Instruments OMAP3530 which
consists of general purpose processor ARM Cortex-A8 and
digital signal processor VLIWTMS320C64x+. However their
estimation model was developed using QEMU emulator and
virtualizer. They report that in case more detail was added
to the model the simulation time went up from 10 minutes
to days or even longer without achieving necessarily better
results.



As energy consumption estimation is a superset of perfor-
mance estimation we consider some works of energy consump-
tion estimation also relevant. For instance one of the latest
works in instruction-level energy estimation was published
in 2013 by Bazzaz et al. [8]. They propose an accurate
instruction-level energy estimation model with error less than
6%. The method is based on model and the results verified
by measuring the processor physically. Although they show
good results using some of the well known MiBench [9]
benchmarks their method is based on lower abstraction level.
As in [10] the results are produced using only one ARM-based
microcontroller. The achieved accuracy in low-level energy
estimators reached very high precision. In some works error
percentage was less than 3%, however drawbacks remained
– high simulation time as well as need for accurate register-
transfer or behavioural level model.

We assume that a program’s execution time is a sum of the
micro-operations execution duration in that program. When
adding up all the micro-operations in that program we get
the estimation result. To verify the estimated result, we also
measure the whole program execution time. The measurements
for the whole program as well as for the micro-operation are
taken in a loop. The main reason is to reduce the measurement
error and also to have more time for taking the measurement.
The loop iterator is stored and used to compute the duration
for a single execution. An important property for a program
is gained by profiling. Profiling is used to collect information:
how many times different operations are executed and which
data-types are used. Default profiling of a compiler does not
give that information, e.g. GCC tool GCOV [11] counts only
how many times an each code line is executed. However with
additional static code analysis it is possible to find out which
atomic programming language operations are executed in one
or another line and what data-types are used. Finding out the
data-type is important as the number of assembly instructions
to process a data-word may be very different for various data-
types, especially for controllers with a small word-size. Also,
the number of clock-steps to execute the same operation may
differ for different data-types due to the size of internal buses,
for instance. In addition, for some smaller controllers, complex
operations may be implemented as functions or subroutines,
that take more time to execute. It should be noted that for
optimized functions, the performance may depend on the data
values thus making estimations less precise.

For the source-code we can have any C program, but the
preferred source should be flattened, meaning that the code
is mainly in one function to avoid the extra work needed
for modifying the code for profiler. When computing the
estimates we look for the C micro-operations in the program
code. As the custom parser for our method is still under
development we are currently making the statical analysis of
the source program manually. By comparing the results for
the computed estimate and the measured program’s execution
time, we validate the estimation results. For example a trivial
program consisting of a = b + c without any outer loop has
the following properties: 1 program code line, 1 code line

(result from GNU profiler GCOV) and 2 micro-operations
— assign and add. In Equation 1 is shown the calculation
for a + operator, where a, b and c are variables, ta=b+c and
ta=b record the measured execution time and t+ stores the
computed time for the + operator.

t+ = ta=b+c − ta=b (1)

In [12] is shown the principle of our approach for C source-
code level energy consumption method based on measured
data. Initially we showed on a 32-bit PIC32MX460F512L
[13] that image processing algorithm with edge detection
and Gaussian blur could be estimated with less than 7%
error. The results were obtained with using no optimization.
However our recent results on the image processing algorithm
are showing less than 2% error. In [14] we showed that
data-types have a significant impact on the overall energy
consumption. Although our previous works were targeted
towards energy consumption estimation we observed that
supply current fluctuations were rather small and were not
caused by the application, but by other factors like supply
circuity and clock frequency. As the execution time has the
biggest impact on energy consumption we started to focus on
performance metric. In [15] we showed that the performance
estimation method on -O0 optimization level is applicable
on most cases with estimation difference between -1% to
7.5%. For acquiring the measurement data we have set up
a measurement framework which is further described in [16].

III. METHODOLOGY

The aim of this work is to find the most suitable method
for estimating embedded software performance for C-source
code level on microcontrollers on higher compiler optimization
levels than -O0. As our previous work is based on generating
a measurement accurate models for controller we take this
into account when proposing possible solutions. As stated in
GNU – compiler’s goal without any optimization option is
to let debugging produce the expected result and to reduce
the compilation time. Each subsequent optimization level will
optimize the program using more built-in optimization flags.
According to the GNU we have counted up to 600 different
flags plus more than 100 different parameters. In Table I is
an overview of the different optimization levels in GNU GCC
used in our experiments by both Atmel and Microchip com-
pilers. The compiler from Texas Instruments for MPS430 [17]
however has different taxonomy. The following list describes
the TI compiler optimization levels:

• off – No Optimizations
• 0 – Register Optimizations
• 1 – Local Optimizations
• 2 – Global Optimizations
• 3 – Interprocedure Optimizations
• 4 – Whole Program Optimizations
The benefit of our estimation method is that without

any regard to the underlying instruction set we are able to
show estimation results rapidly and with good accuracy. Of



TABLE I
GNU GCC COMPILER OPTIONS THAT CONTROL OPTIMIZATION [3]

Comment Optimization Description
Default -O0 Reduce compilation time and make debugging produce the expected results. This is the default.

-O1 Optimize. Optimizing compilation takes somewhat more time, and a lot more memory for a large function.
With -O, the compiler tries to reduce code size and execution time, without performing any optimizations
that take a great deal of compilation time.

Standard optimization -O2 Optimize even more. GCC performs nearly all supported optimizations that do not involve a space-speed
tradeoff.As compared to -O, this option increases both compilation time and the performance of the
generated code.

-O3 Optimize yet more. -O3 turns on all optimizations specified by -O2 and also turns on extra 13 flags.

course the estimations are based on a model meaning that
the measurement accurate model must be generated initially.
However we have composed ad hoc C-language benchmark
suit in order to generate the performance models rapidly.
Only two features of the target hardware are required: proper
settings for configuration bits/words and two digital output
pins with macros for set, clear and toggle states. Our previous
work with no optimization shows good results. For different
architectures and benchmark programs the maximum error was
8% fluctuating mainly around 2% [15]. However to estimate
the performance with higher compiler optimization levels we
propose two methods to investigate:

1) Proposed method 1 - timing the benchmark in host sys-
tem at different optimization levels and using the timing
ratios to populate the result from the no optimization
level estimate;

2) Proposed method 2 - by physically measuring the
micro-operations at different optimization levels on the
target device we generate a estimation models for higher
compiler optimization levels.

A. Proposed method 1

The objective is to find a multipliers of the benchmark pro-
gram by measuring the execution time at different optimization
levels on a host machine. In other words using cross-compiler
to find the speed-up ration between different optimization
levels. Presumably each subsequent optimization level will
reduce the program execution time. Therefore the performance
on no optimization will be the lowest. As we already have
the estimation result for the -O0 optimization level (showing
relatively small error) we multiply the estimation result with
the computed multiplier/speed-up values in order to find the
estimates at higher optimization levels. The main benefit
of this method is computing the multipliers only once and
utilizing them later as many times as needed. The drawback
is that each program must be compiled on the host machine
separately.

Compared to the other proposed approach the method does
not need any extra measurements to be made on the target
hardware nor profiling and parsing the software program are
needed. The method can be considered more trivial than the
other.

B. Proposed method 2

In this case we measure the micro-operations in the same
way as we did for estimates at the -O0 optimization level. In
performance estimation model creation for the no optimization
level our main idea is that it should be enough to compile an
application for the host computer, to profile the program with
realistic data, and to estimate performance with the help of
models of target microcontrollers. This divides the approach
into two main parts - profiling the application and constructing
the model. Also verification of the model could be considered
as a extra part, however it is executed only once during the
model development phase.

The drawback for this method is that all the measurements
must be taken again for a new optimization level thus making
the method more time consuming than the other. Also the
complexity of the whole method could be consider higher
compared to the other method as several models are needed.
The advantage of this approach should be the low estimation
error compared to the other proposed method.

C. Devices Under Test

As our performance estimation method should be usable for
any common microcontroller we tested it on several micro-
controllers available to us. The controllers are from different
manufacturers. For the 8-bit we had Atmel ATmega328P. For
the 16-bit range we had Texas Instruments MSP430G2553
and for the 32-bit we used Microchip PIC32MX460F512L.
In our previous works we have shown that the most energy
efficient configuration should use the highest clock frequency
[12], therefore for the performance estimation each controller
was set to run under the highest stable clock frequency. Also
in our ongoing development in the field we have observed that
different compilers produce different code, thus it is important
to know which compiler was used. In Table II are shown
the basic details of each microcontroller configuration. The
superscript number near the controllers name presents the data
path width. It is also important to note that microcontroller
features like watchdog, timers, cache and interrupts were
disabled during the benchmarking and their effects are left
for future study.



TABLE II
MICROCONTROLLER’S CONFIGURATIONS

Controller Freq. Clock Compiler version
[MHz] source

ATmega328P8 16 int. AVR-GCC 4.9.2

TI MSP430G255316 16 int. TI 4.4.8

PIC32MX460F512L32 80 PLL XC32 1.44

D. Benchmark Programs
For benchmarks we chose FIR filter and Matrix multipli-

cation from MSP430 Competitive Benchmarking [18]. The
benchmarks were chosen from this source due to the need
to test also 8-bit microcontroller, which has considerably less
hardware resources compared to the 32-bit controller and
cannot be used for sizeable benchmarks due to the limited
amount of memory. It is important to note that the floating-
point coefficients for the FIR filter were changed to integers.
The reason is in the Texas Instruments compiler’s built-in opti-
mized subroutines for floating-point data-type. The subroutines
were called even on optimization level -O0 when floating-point
arithmetic was executed. In Table are III shown the benchmark
programs with a short description.

TABLE III
BENCHMARK PROGRAMS WITH DESCRIPTIONS

Benchmark Description
Matrix multiplication A 3x4 matrix is multiplied with 4x5 matrix.

Program consists of nested loops as well as
2-dimensional matrix assigning, adding and
multiplying.

FIR filter FIR filter operations performed on a simulated
integer data. Program consists of nested loops,
adding, subtraction, multiplying and dividing
both integers as well as 1-dimensional arrays.

In Table IV is shown the complexity of the benchmark
programs. The column ”# lines” presents the number of useful
program code lines in the benchmark. The column with ”#
LoC” shows the figure for code lines executed and is the total
sum of the program lines executed by the profiler. As a note
some code lines found by the profiler were disregarded, as they
have no major effect on the total execution time: declaration
of ”main” and declaration of variables. Therefore when the
estimation error for benchmark with high LoC is low, it shows
that the estimation was based on correct estimates. The last
property shows the sum of the number of micro-operations on
which our estimates are based. As can be concluded from the
figures in the table the programs heavily depend on loops and
nested loops in particular as the number of program lines and
LoC have totally different proportions.

E. Experiment setup
On Figure 1 is presented the simplified overview of the

measuring process to capture execution time both for a

TABLE IV
NUMBER OF CODE LINES IN BENCHMARK PROGRAM’S

Benchmark # lines # LoC # micro-operations
FIR filter 5 721 2 557

Matrix multiplication 5 172 292

benchmark program and a micro-operation. The measuring
process is used to collect micro-operation data for the -O0
optimization level and is previously developed in [12], [16].
Also the benchmark program’s total execution time is captured
by the same principle as it is needed for all the proposed
methods. The pink line describes the data analysis in a host
computer. The data is collected using LabView and analyzed
by special MATLAB program. The result is currently stored
in a spreadsheet however a prototype for database solution
already exists. The blue lines present the power connection to
microcontroller. The ∗ shows that only one of the lines can
be active at a time, depending on the microcontroller. The
green lines depict the data connection for programming the
device and gathering measuring results. From the oscillator
to the microcontroller we used two data lines and came up
with our own custom communications protocol. One wire
for measuring operation execution time and the second wire
for sending metadata. The protocol for the metadata has 32-
bits and includes information about the data-type, measured
operation, iterator value and reserved bits when measuring
micro operation. Besides it contains synchronization bits in
the beginning and a parity bit in the end. The oscilloscope
used in our experiments is Keysight DSOX3034A [19].

Fig. 1. An Overview of the Developed Measurement System [15].

IV. RESULTS

In this section are presented and analysed the results for the
proposed performance estimation methods. For brevity only
the results of estimation errors are presented. A negative result
means we underestimated as positive results shows overesti-
mation. The results for the optimization level -O0 are excluded
and can be found from our previous work [15]. As a remark
by the authors the figures for MSP430 optimization level 0
are not presented as the results were practically insignificant
compared to other optimization levels.



TABLE V
RESULTS FOR ESTIMATION ERROR FOR PROPOSED METHOD 1

Optimization FIR filter Matrix multiplication
Level ATmega328P[%] MSP430[%] PIC32MX460[%] Speed-up ATmega328P[%] MSP430[%] PIC32MX460[%] Speed-up

-O0 / off 2.28 1.77 2.20 1 5.49 7.39 -0.64 1
-O1 / 1 26.58 -77.86 20.57 1.87 24.35 -460.06 -30.58 5.63
-O2 / 2 29.31 -37.22 21.85 1.80 1.13 -198.51 -8.72 4.72
-O3 / 3 21.56 -191.52 31.48 2.91 42.73 -625.97 -19.84 11.64

– / 4 — -207.87 — 3.08 — -636.80 — 11.65

A. Proposed method 1 results

In Table V are shown all the results for Proposed method
1 as percentage of error of the estimated performance and
measured result. On the left side of the Table column ”Op-
timization Level” is presented the GNU GCC compiler op-
timization level as on the right side is the corresponding
TI compiler optimization level. The results for MSP430 are
presented under the similar GNU compiler optimization level,
except level 4, due to the taxonomy difference compared to
GNU GCC, previously explained in III. The column ”Speed-
up” is the ratio between optimization level -O0 and respective
optimization level. The number is computed by measuring the
benchmark program’s execution time in the host machine’s
cross-compiler with respective optimization level and dividing
the result with the time measured for the no optimization
result. The ”Speed-up” is always presenting the difference
in between the corresponding and -O0 optimization level.
The first method for timing the benchmark in host system at
different optimization levels interestingly showed very good
and stable results except for MPS430!

The incomparable results for the MSP430 could be caused
by the optimized subroutines which are called even when
the optimizations are turned off. The MSP430 has caused
problems for the authors before when trying to estimate the
performance without optimizations. Previous results with more
than 20% error show that TI MSP430 performance is hard to
predict. Therefore the only conclusion is that the method is
not applicable for the Texas Instruments MSP430 series. In the
following analysis for Proposed method 1 we have excluded
the MSP430.

The other two microcontrollers, ATmega and PIC32 are
showing mostly very good and stable results. The stability
of the error percentage for FIR filter is smashing for both
controllers and shows the potential of the method. Results are
mostly positive also for the Matrix multiplication, however
compared to the FIR filter there is more fluctuation. One main
reason is the difference of Speed-up between -O1 and -O2
optimization level, as the lower optimization -O1 is optimizing
the program even better than -O2 level. The difference is
reflected in the results as well. As a conclusion the method
is showing potential for future analysis and should be verified
by more benchmark programs and controllers.

B. Proposed method 2 results
In Table VI are shown the results for ATmega328P con-

troller. In general both FIR filter and Matrix multiplication can
be estimated very well. Only the figure for Matrix multiplica-
tion on optimization level -O3 is a bit too much off. However
the 47.20% error is easily explained as the problem is in the
measurement accuracy. The initial measurements were done
with sample rate 1

25000 which was fine for lower optimization
levels as program’s execution duration was longer. Whereas for
the optimization level -O3 the program execution time became
so small that the high error was caused by the measurement
step. Due to worked out process for taking the measurements
it is currently not easy to change the measurement step without
the need for further changes in the process. Therefore we
accept the high estimation error as it’s cause is know to us.

TABLE VI
PROPOSED METHOD 2 RESULTS FOR ATMEGA328P

Optimization FIR Matrix
Level filter [%] multiplication [%]
–O1 5.19 1.04
-O2 5.72 -13.29
-O3 18.19 47.20

MSP430 results for Proposed method 2 are presented in
Table VII. Compared to Proposed method 1 the results are
considerably better. For Matrix multiplication the results are
still not usable with higher optimization levels. Although for
FIR filter all the estimations are below the 30% = good result
margin.

TABLE VII
PROPOSED METHOD 2 RESULTS FOR MSP430

Optimization FIR Matrix
Level filter [%] multiplication [%]

1 -6.79 -33.41
2 18.56 -77.51
3 -12.00 -81.94
4 -0.40 -65.84

In Table VIII are presented the results for PIC32. The results
for Matrix multiplication are satisfactory in terms of estimation



error, but present a fluctuation in stability. In case of the
36.20% error our analysis showed that it is caused yet again by
the measurement sample rate 1

25000 as the execution time on
-O3 for Matrix multiplication becomes very small. However
the high estimation errors for FIR filter are not caused by the
sample rate. As we used the previously developed method for
estimations on optimization level -O0 it seems that for higher
optimization levels there seems to be conflict.

TABLE VIII
PROPOSED METHOD 2 RESULTS FOR PIC32

Optimization FIR Matrix
Level filter [%] multiplication [%]
-O1 65.58 -7.94
-O2 51.68 -11.25
-O3 58.34 36.20

C. Comparison of the methods

In Table IX is shown the mean squared error (MSE) com-
parison of the proposed estimation methods’ errors. The com-
parison is taking in account only ATmega and PIC32 results,
excluding the MSP430 as in any case either of the methods is
unsuitable for estimations. In the Table the Proposed methods
are abbreviated, where the PM1 stands for Proposed method 1
etc. As can be seen the MSE for PM1 is mostly smaller, except
for Matrix multiplication on optimization level -O1. The high
MSE on -O3 for Matrix multiplication is caused by the sample
rate. it seems that PM1 is showing better results for FIR filter
as PM2 is more precise for Matrix multiplication.

TABLE IX
MEAN SQUARED ERROR COMPARISON OF PROPOSED ESTIMATION

METHODS

Optimization FIR filter Matrix multiplication
Level PM1 PM2 PM1 PM2

-O1 33.61 65.78 39.09 8.01
-O2 36.56 52.00 8.79 17.41
-O3 38.15 61.11 47.11 59.48

V. CONCLUSION

In this paper we present two performance estimation meth-
ods for embedded software at different optimization levels. As
expected the overall estimation error is lower when measuring
the micro-operations at different compiler levels. However
the estimations can be derived faster when computing speed-
up on host machine with cross-compiler for the optimization
levels. Neither method can be considered perfect as for both
some unaccountable glitches remain. For the used MSP430
microcontroller neither of the methods is suitable and show
in almost any case more than 30% error with the peak at -
636.80%! For ATmega both methods show good results and
can be considered for future use. The 32-bit PIC however is
showing better results with Proposed method 1 and for the

second the estimation results for FIR filter are approximately
58% off.
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