
TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Arvutiteaduse instituut

Tallinn 2015

ITV70LT

Maria Kohtla 132387IAPM

GESTURE EVALUATION FOR LEAP MOTION

Master thesis

Jaagup Irve

Master of sciences

Software engineer

2

Autorideklaratsioon

Deklareerin, et käesolev lõputöö on minu töö tulemus ja seda ei ole kellegi teise poolt varem

kaitsmisele esitatud.

…………………….. ……………………….

(kuupäev) (lõputöö kaitsja allkiri)

3

Abstract

The goal of this thesis was to create a simple yet highly functional application for Leap

Motion with a practical purpose. That goal led to the idea of the Japanese hiragana learning

tool.

Application was written in Python using Pygame module for mainly managing UI and

keyboard events. For motion control the Leap Motion was used with its software, which

provides a lot of different tools for managing its input.

For the need of this application the stroke detection method was developed. Main parts of the

method are feature point extraction and the stroke comparison.

The work also gives an overview of the application, including descriptions for the storage

method, used to store the correct stroke patterns, also the Leap Motion controls, and different

visual elements used.

4

Annotatsioon

Antud töö eesmärgiks oli luua lihtne, kuid efektiivne ja praktiline rakendus Leap Motioni abil.

See viis ideeni luua Jaapani hiragana kirjutasimise õppevahend.

Rakendus on kirjutatud Pythonis kasutades Pygame moodulit, põhiliselt kasutajaliidese ja

klaviatuuri sündmuste haldamiseks. Käte liikumise tuvastamiseks kasutati Leap Motionit,

mille tarvara pakub palju erinevaid meetodeid selle sisendi haldamiseks.

Rakenduse tarvis sai eraldi loodud ka joonsümboli tuvastamise meetod. Antud meetodi

põhiosadeks on joonsümboli põhipunktide tuletamine ja joonsümbolite võrdlus.

Lisaks sisaldab töö ka rakenduse ülevaadet, sealhulgas kirjeldusi nii korrektsete sümbolite

hoiustamisest, Leap Motioni funktsioonidest ning ka erinevatest kasutatud visuaalsetest

elementidest.

5

Table of Contents

1 Introduction ..7

2 Overview ..8

2.1 Leap Motion ...8

2.1.1 Motion tracking ... 10

2.1.2 Gestures .. 11

2.1.3 Coordinate system ... 13

2.2 Pygame .. 15

2.2.1 Main features .. 16

2.2.2 Modules .. 16

2.3 Hiragana ... 18

2.3.1 Writing system .. 18

3 Stroke detection .. 20

3.1 Extracting feature points ... 20

3.1.1 Basis of point extraction .. 20

3.1.2 Improved method .. 21

3.2 Comparing lines ... 25

3.2.1 Angle comparison ... 26

3.2.2 Distance comparison ... 26

3.3 Comparing characters ... 27

4 Application for stroke detection .. 28

4.1 Original stroke patterns .. 28

4.1.1 Stroke pattern storage structure.. 28

4.1.2 Character position ... 30

4.1.3 Original stroke pattern selection .. 30

4.2 Leap Motion controls ... 32

4.2.1 Converting coordinates .. 32

4.2.2 Touch emulation.. 33

4.2.3 Gestures .. 34

4.3 Mouse and keyboard controls ... 35

4.3.1 Mouse controls .. 35

4.3.2 Keyboard events .. 36

6

4.4 Character drawing .. 36

4.4.1 Drawn stroke normalization... 37

4.4.2 Character comparison .. 37

4.5 GUI .. 38

4.5.1 Screens .. 38

4.6 Convenience ... 39

4.6.1 Properties .. 39

4.6.2 Logging ... 40

5 Testing the application .. 41

5.1 Leap Motion pointer tracking testing .. 41

5.2 Gesture testing .. 41

5.3 Stroke detection testing .. 42

5.4 Intuitiveness testing .. 42

6 Conclusion .. 43

7 References .. 45

7

1 Introduction

In almost every science fiction movie, book or series we have ever seen, protagonists use

powerful motion control tools with just a wave of their hand. We have been captivated by the

notion of those simple, natural and intuitive technologies and imagining how it would be like

if they became reality. Now all of those fantasies start coming to life.

We also wanted to step into the future and try to create something new and innovative. A goal

was to create a simple yet functional application, which can be controlled using hand motion

as the main input. This application would also have to serve a practical yet entertaining

purpose. Combining this goals lead us to the idea of the Japanese kana learning tool.

In the first chapter we give an overview of the technologies and techniques used in this thesis.

We explain methods and capabilities of two main technologies - Leap Motion and Pygame,

which are later used in the creation of the application. We also give the reader a quick

overview of the Japanese hiragana.

Second chapter explains in detail the work of our stroke detection method. The chapter

describes feature point extraction, which is crucial to the method of stroke detection. After

that we explain how the drawn stroke comparison with the original stroke pattern works.

Third chapter gives an overview of the written application. It explains how the original stroke

patterns are stored and used. It also describes the created control system for Leap Motion and

keyboard and shows how the drawing and visuals work.

In the last chapter we describe a few tests we did with the application and their results.

8

2 Overview

In this section we wanted to give the reader a basic understanding and knowledge of the

technologies and techniques used in this thesis.

Two main technologies we used to write this work were Pygame 1.9.1 and Leap Motion SDK

Windows 2.2.3. In next sections we will give a basic overview on these technologies.

As the main programming language Python 2.7 was chosen due to its easy and readable

syntax and the compatibility with Pygame and Leap Motion.

Please note that all of the used software, libraries and plugins work with given versions and

are not guaranteed to work under different conditions, such as different versions or platforms.

2.1 Leap Motion

Leap Motion is a small device, only 13 x 13 x 76 mm and 45 grams [1], equipped with optical

sensors and infrared light that allow the system to recognize and track hands, fingers and

finger-like tools [2].

Figure 1. Leap Motion [1]

9

The Leap Motion Controller tracks all 10 fingers up to 1/100th of a millimetre at a rate of

over 200 frames per second. It's dramatically more sensitive than existing motion control

technology [1].

The sensors are directed along the y-axis – upward when the controller is in its standard

operating position – and have a field of view of about 150 degrees. The effective range of the

Leap Motion Controller extends from approximately 25 to 600 mm above the device (1 inch

to 2 feet) [2]. The only restriction is that Leap Motion has the fixed orientation, so it has to be

has to be facing upwards with x-axis towards the user. That means, that if it is placed in

different orientation, for example upside down or sideways, then the Leap Motion software

cannot detect or adjust to that.

Figure 2. The Leap Motion controller's view of your hands [2]

Leap Motion can be run on three main operation systems: Windows, Mac, Linux. And to run

Leap Motion, it only needs, in addition to one of those operating systems, Leap Motion

software and the USB port.

Leap Motion supports many different programming languages like C#, C++, Java, Python,

Objective-C and JavaScript. In addition it has plugins to work with game engines Unity 3D

and Unreal Engine 4. It also has some other platform integrations and libraries.

10

2.1.1 Motion tracking

Leap Motion controller tracks hands, fingers and tools in its field of view and presents tracked

information to the application as a Frame object. Each Frame object representing a frame

contains lists of tracked entities, such as hands, fingers, and tools, as well as recognized

gestures and factors describing the overall motion in the scene. The Frame object is essentially

the root of the Leap Motion data model.

Figure 3. Tracking model [3]

Hands are the main entity tracked by the Leap Motion controller and is represented by the

Hand class, which provides access to hand position and other information about the hand as

well as the arm to which the hand is attached, and list of all the fingers. There could be more

than two Hand objects in one Frame, but it is not recommended for tracking quality.

The Leap Motion software combines its sensor data with an internal model of the human hand

to help cope with challenging tracking conditions, for example when some of the fingers are

hidden from Leap Motions view. Detection and tracking work best when the controller has a

clear, high-contrast view of an object’s silhouette [2]. This, however, means that if the hand is

11

badly visible then the software can make mistakes and return the wrong information, for

example identifies right hand as the left one.

The Leap Motion controller provides information about each finger on a hand. If all or part of

a finger is not visible, the finger characteristics are estimated based on recent observations and

the anatomical model of the hand. Fingers are identified by type name, i.e. thumb, index,

middle, ring, and pinky [2].

Fingers are represented by the Finger class, which is a kind of Pointable object and

provides information on fingers, like position, direction and even all the bones from the finger

with their positions and directions.

Leap Motion also tracks tools, which can only be thin, cylindrical objects as pencil for

example. Tools are represented by Tool class, which is also kind of Pointable object and

provides its position and direction.

2.1.2 Gestures

The Leap Motion software recognizes certain movement patterns as gestures which could

indicate a user intent or command. Gestures are observed for each finger or tool individually.

The Leap Motion software reports gestures observed in a frame the in the same way that it

reports other motion tracking data like fingers and hands [4].

Gestures are represented by the Gesture class and if occurred are returned by the Frame

object just like Hand and Finger objects are. Gesture class has subclasses for all four

gestures it can recognize: CircleGesture, KeyTapGesture, ScreenTapGesture

and SwipeGesture. All of the subclasses contain information related to the specific gesture.

The following movement patterns are recognized by the Leap Motion software:

12

Figure 4. Circle — A finger tracing a circle

[4]

Figure 5. Swipe — A long, linear movement

of a hand and its fingers [4]

Figure 6. Key Tap — A tapping movement

by a finger as if tapping a keyboard key [4]

Figure 7. Screen Tap — A tapping

movement by the finger as if tapping a

vertical computer screen [4]

The gestures Circle and Swipe are continuous. The Leap Motion software updates the

progress of these gestures each frame. Taps are discrete gestures. The Leap Motion software

reports each tap with a single Gesture object [4].

13

2.1.3 Coordinate system

The Leap Motion Controller provides coordinates in units of real world millimetres within the

Leap Motion frame of reference. That is, if a finger tip’s position is given as (x, y, z) =

[100, 100, -100], those numbers are millimetres – or, x = +10cm, y = 10cm, z = -10cm [5].

The Leap Controller hardware itself is the centre of this frame of reference. The origin is

located at the top centre of the hardware (as shown in Figure 8). That is if you touch the

middle of the Leap Motion controller (and were able to get data) the coordinates of your

finger tip would be [0, 0, 0] [5].

Figure 8. The Leap Motion right-handed coordinate system [5]

Due to the fact, that Leap Motion Controller provides coordinates in millimetres they have to

be interpreted so that they make sense in the application. Differences between coordinate

systems may require flipping axes and neglecting data from some of them. For example, most

2D applications put origin at the top, left corner of the window, with y values increasing

downward. But Leap Motion origin point is at the top center of the Leap Motion itself, with y

values increasing upwards.

14

Leap Motion has pretty large field of view, but it is shaped as an inverted pyramid, so the

available range on the x and z axes is much smaller close to the device, than it is near the top

of the range. That means if the whole field of view is used, then user might not be able to

reach some parts of the application.

Most of those problems can be solved by using built in coordinate normalizer

InteractionBox. InteractionBox converts coordinates from Leap Motion

coordinates to normalized scale running between 0.0 and 1.0 and can be then easily converted

to application appropriate scale. It also defines a rectangular area within the Leap Motion field

of view so as long as the user’s hand or finger stays within this box, it is guaranteed to remain

in the Leap Motion field of view and be suitable for the application.

Figure 9. InteractionBox field [5]

The size of the InteractionBox is determined by the Leap Motion field of view and the

user’s interaction height setting (in the Leap Motion control panel). The controller software

adjusts the size of the box based on the height to keep the bottom corners within the field of

view. If user sets the interaction height higher, then the box becomes larger. A user can also

set the interaction height to adjust automatically. If the user moves his or her hands out the

interaction box, the controller software readjusts the box height [5].

Every frame provides new interaction box. Because the interaction box can change over time,

the normalized coordinates of a point measured in one frame may not match the normalized

15

coordinates of the same real world point, when normalized using the interaction box provided

by another frame. Thus straight lines or perfect circles “drawn in the air” by the user may not

be straight or smooth if they are normalized across frames [5].

Figure 10. Change in interaction box [5]

To guarantee that a set of points are normalized consistently, the same InteractionBox

object has to be used for normalizing.

2.2 Pygame

Pygame is a set of free Python modules designed for writing games. Released under the GPL

License, you can create open source, free, freeware, shareware, and commercial games with it

[6].

 Pygame adds functionality on top of the excellent SDL library [6]. Simple DirectMedia Layer

(SDL) is a cross-platform development library designed to provide low level access to audio,

keyboard, mouse, joystick, and graphics hardware via OpenGL and Direct3D. SDL 2.0 is

distributed under the zlib license. This license allows you to use SDL freely in any software

[7].

To avoid common OpenGL setup issues, Pygame does not require OpenGL, it uses either

OpenGL, DirectX, WinDIB, X11, Linux Frame Buffer, and many other different backends,

including an ASCII art backend [6].

16

2.2.1 Main features

Pygame uses optimized C, that is often 10-20 times faster than python code, and Assembly

code, that can easily be 100x or more times faster than python code, for core functions [6].

Pygame supports use of multi core CPUs. Selected Pygame functions release the dreaded

python GIL (global interpreter lock), which is something that can be done from C code [6].

Pygame is highly portable supporting vast variety of operating systems like Linux, Windows,

Mac, FreeBSD, NetBSD, OpenBSD, BSD/OS, Solaris, IRIX, and QNX. Code olso contains

support for AmigaOS, Dreamcast, Atari, AIX, OSF/Tru64, RISC OS, SymbianOS, and OS/2,

but these are not officially supported. It can also be used on handheld devices from Nokia,

game consoles like gp2x, and the One Laptop Per Child (OLPC) [6].

2.2.2 Modules

The pygame package represents the top-level package for others to use. Pygame itself is

broken into many submodules, but this does not affect programs that use Pygame [8].

A pygame.Surface() object is used to represent any image. The Surface has a fixed

resolution and pixel format. Surfaces with 8bit pixels use a colour palette to map to 24bit

colour [9].

Control over Pygame display is managed by pygame.display module. Display is created

as any other pygame.Surface() object, with all of its functions, but there can be only one

display at a time. If another display is created, Pygame closes the first one. The origin of the

display, where x = 0, and y = 0 is the top left of the screen. Both axis increase positively

towards the bottom right of the screen [10].

The pygame.font module allows for rendering TrueType fonts (.ttf) into a new Surface

object. The actual font rendering is done by the pygame.font.Font() object. The render

17

can emulate bold or italic features, but it is better to load from a font with actual italic or bold

glyphs. The rendered text can be regular strings or Unicode [11].

Pygame also enables user do draw several simple shapes, like rectangles, polygons, cyrcles,

ellipses, arcs and lines, to Surface objects. For that it has pygame.draw module [12].

Pygame handles all events through pygame.event module. The input queue is heavily

dependent on the pygame.display module. If the display has not been initialized and a

video mode not set, the event queue will not really work.

All events have a type identifier. An pygame.event.EventType() event object

contains an event type identifier and a set of member data. EventType objects are retrieved

from the pygame event queue. You can create your own new events with the

pygame.event.Event() function [13].

pygame.key module contains functions for dealing with the keyboard. Event queue gets

pygame.KEYDOWN and pygame.KEYUP events when the keyboard buttons are pressed

and released. Both events have a key attribute that is an integer id representing every key on

the keyboard [14].

The pygame.mouse functions can be used to get the current state of the mouse device.

When the display mode is set, the event queue will start receiving mouse events. The mouse

buttons generate pygame.MOUSEBUTTONDOWN and pygame.MOUSEBUTTONUP events

when they are pressed and released. These events contain a button attribute representing

which button was pressed [15].

For framerate management there is a pygame.time module. Time in Pygame is represented

in milliseconds (1/1000 seconds) [16].

18

2.3 Hiragana

Hiragana is a Japanese syllabary, one basic component of the Japanese writing system, along

with katakana, kanji, and in some cases rōmaji (the Latin-script alphabet). The word hiragana

means "ordinary syllabic script" [17].

Hiragana and katakana are both kana systems. With one or two minor exceptions, each sound

in the Japanese language is represented by one character in each system. This may be either a

vowel such as "a" (hiragana あ); a consonant followed by a vowel such as "ka" (か); or "n"

(ん), a nasal sonorant which, depending on the context, sounds either like English m, n, or ng

([ŋ]), or like the nasal vowels of French. Because the characters of the kana do not represent

single consonants (except in the case of ん "n"), the kana are referred to as syllabaries and not

alphabets [17].

2.3.1 Writing system

The modern hiragana syllabary consists of 46 characters:

 5 singular vowels

 Notionally, 45 consonant–vowel unions, consisting of 9 consonants in combination

with each of the 5 vowels, of which:

 1 singular consonant

These are conceived as a 5×10, as illustrated in the Figure 11, with the extra character being

the anomalous singular consonant ん (N) [17].

19

Figure 11. Hiragana table

あ い う え お
a i u e o

か き く け こ
ka ki ku ke ko

さ し す せ そ
sa shi su se so

た ち つ て と
ta chi tsu te to

な に ぬ ね の
na ni nu ne no

は ひ ふ へ ほ
ha hi fu he ho

ま み む め も
ma mi mu me mo

や ゆ よ
ya yu yo

ら り る れ ろ
ra ri ru re ro

わ を ん
wa wo n/m

20

3 Stroke detection

Stroke detection is a method that compares drawn strokes and original stroke patterns with

each other and determines their compatibility.

A stroke is one continuous line, that consists of one or more linked line segments. It is defined

by a sequence of points. Point is one single dot with x and y coordinates. Points make up

strokes and line segments. Part of the stroke, that is made up by two points, one at the start

and one at the end of it, is called line segment. They have important role in stroke comparison.

Original stroke pattern is number of points that make up the right pattern of strokes. These

patterns of strokes are used as an reference standard and are considered the correct shape of

the characters. The drawn strokes are thereafter compared against these original strokes.

Character or sign is a sequence of strokes, which make up one complete entity.

3.1 Extracting feature points

Leap Motion can process over 200 frames per second and the application runs, at least, at 60

frames per second. Considering, that the application takes one frame from Leap Motion every

cycle, this calculates to a whole lot of coordinate points.

In order to effectively compare data points from the Leap motion with the original stroke

pattern, there is a need to extract the essential coordinate points which make up the stroke.

3.1.1 Basis of point extraction

Currently there are several methods and techniques employed for optimizing coordinate lists.

One such technique has been described below.

Feature points are extracted by such a method as Ramner. First, the start and end points of

every stroke are picked up as feature points. Then, the most distant point from the straight line

between adjacent feature points is selected as a feature point if the distance to the straight line

21

is greater than a threshold value. This selection is done recursively until no more feature

points are selected. The feature point extracting process is shown in Figure 12 [18].

Figure 12. Feature points extraction [18]

Though this method is very good for extracting feature point for character recognition, it does

not suite the needs of this thesis. The amount of coordinate points has to be predetermined by

the original stroke pattern and this method fails to provide a suitable solution in such a case.

3.1.2 Improved method

To compare the strokes easily and efficiently we need to extract the same amount of points

that is given in the original stroke pattern.

First, the start and the end point are chosen for the first two feature points. Then, the furthest

point from the straight line, which can be drawn between those two points, is chosen as the

next feature point and added to the list of feature points. Next, furthest points from the lines,

22

which can be drawn between the closest feature points, are picked and the one that had the

longest distance from the line is chosen as the feature point. This runs recursively until the

needed amount of points is reached.

Figure 13. Improved method for point extraction

Note that this algorithm runs only till the needed amount of points is chosen. So if only two

points are needed, the algorithm stops after getting the start and the end point.

23

Next the code for the method is shown:

cord = []

cord.append(line[0])

cord.append(line[-1])

pos = []

pos.append(0)

pos.append(len(line)-1)

while len(cord) < nr:

 max_dist = 0

 max_point = (0, 0)

 max_i = 0

 max_pos = 0

 for i in range(len(cord)-1):

 for j in range(pos[i], pos[i+1]):

 dist = get_distance_to_line(cord[i], cord[i+1],

line[j])

 if max_dist < dist:

 max_dist = dist

 max_point = line[j]

 max_i = i + 1

 max_pos = j

 cord.insert(max_i, max_point)

 pos.insert(max_i, max_pos)

return cord

24

Finding the distance

To find the distance between the line and the point we have to find the point on the line,

which is closest to the given point, and get the distance between those two.

Let’s say that line is created between point A and B. The point we want to get the distance to,

is P. In that case, we get vectors from A to B and from A to P. Then we get u, the scaling

factor of the projection of AP onto AB, which will help us get the coordinates of the closest

point on the line AB to point P [19]. If the projection was not made on the line segment AB (u

< 0 or u > 1), then we set it to either end point of the line segment. Then we get the

coordinates of the closest point on the line to the point P by offsetting the A coordinates and

find the distance between those and point P.

22

1

1

22

112

112

2211

)()(

*

*

00

11

**

),(),(

),(),(),(

pp

AB

AB

ABAB

ABAPABAP

pAPAB

pAPAB

APAPABAB

pp

yyxxdist

yuyy

xuxx

uu

uu

yx

yyxx
u

yyyyyy

xxxxxx

yxAPyxAB

yxPyxByxA




















25

3.2 Comparing lines

Given line comparison works only in case if both lines have the same amount of line

segments. For that we use the previous method of extracting feature points.

We wanted to make this method independent from the size and the position in the grid of the

new line compared to the original stroke pattern. So for that we compare stroke with the

original stroke pattern by their angles and line segment lengths.

Comparing angles is easy since they are independent from line scale and position. With line

segments it is more difficult, so we use distance difference. Distance difference is difference

between drawn line segment length and the length of the same segment from original stroke

pattern. That way we can compare if the line segments are all in the same relation to each

other as they are in the original stroke pattern. For that average distance difference is used. It

signifies how big is the line segments average distance difference.

Considering that the new sign cannot be identical to the original stroke pattern, we use

allowed error. Allowed error is a constant that signifies how much error we allow in our

comparisons. Its value is given from 0 to 1.

if (len(line1) == len(line2) and len(line1) != 0):

 n = len(line1) - 1

 dist_dif_sum = 0

 for i in range(n):

 angle1 = get_angle_with_x_axis(line1[i], line1[i+1])

 angle2 = get_angle_with_x_axis(line2[i], line2[i+1])

 if are_similar_angles(angle1, angle2, allowed_error)

== False:

 return 0

 dist1 = get_distance(line1[i], line1[i+1])

26

 dist2 = get_distance(line2[i], line2[i+1])

 dist_dif_sum += get_distance_dif(dist1, dist2)

 average_dist_dif = dist_dif_sum / (i+1)

 if are_similar_distances(dist1, dist2,

average_dist_dif, allowed_error) == False:

 return 0

 average_dist_dif = dist_dif_sum / len(line1)

3.2.1 Angle comparison

Angle for comparison is found between vector from A to B and the positive x-axis. The result

is in radians between –pi and pi.

Angles are compared based on allowed error. If difference in angles remains in the range of

allowed error, then the angles are considered similar.

3.2.2 Distance comparison

Euclidean metric is used to get distance between two points

)arctan(

),(

),(),(

12

12

2211

AB

AB

AB

AB

ABAB

x

y
angle

yyy

xxx

yxAB

yxByxA









27

Line segments are compared considering the allowed error and the average distance

difference. They are considered similar if the difference between distance difference and

average distance difference is in range of allowed error.

3.3 Comparing characters

The different lines or strokes of the characters should be drawn in a certain order. When

comparing the stroke lines with original stroke pattern that order is considered. So if the

drawn line is not deemed similar to the same ordered line in the original stroke pattern, it is

returned as the wrong line.

Also the direction of the stroke is important. If the drawn stroke is in the different direction

from the one in the original stroke pattern then it is also considered wrong.

Character comparison also tries to determine if all the strokes are similar in size compared to

each other.

22

12

12

2211

),(

),(),(

ABAB

AB

AB

ABAB

yxdist

yyy

xxx

yxAB

yxByxA









28

4 Application for stroke detection

The stroke detection method was created in order to utilize it in a specific Leap Motion

application. This application is for leaning to write Japanese kana, but can also be used to

learn to write any character which uses strokes.

The main parts of the applications are:

 Usage of original stroke patterns

 Application control methods

 Drawing and visuals

4.1 Original stroke patterns

Original stroke patterns have to be stored in a certain way in character sheet for the

application to be able to read them. Character sheet is the whole list of original stroke patterns

that are read into the application at one time.

After the character sheet is read into the application, all characters have to be set to their right

positions and the character widget has to be created, so that the user can choose the character

for learning.

4.1.1 Stroke pattern storage structure

We wanted to create universal application that could potentially be used with any original

stroke patterns, not only Japanese hiragana. For that purpose we decided to use external file

for storing the original stroke patterns (referred also as character sheet). For its readability and

easy parsing XML file was chosen.

The particular file [20] used in this application was released under the GNU Lesser General

Public License version 2.1 [21].

29

For application to be able to parse given XML file correctly, it needs to have a particular

structure. Name of the root element of the document is not important in this application.

Characters have to be stored as children of the document root element and be stored in

<character> elements.

<character> element needs to have two children: <utf8> and <strokes>. First is to

store the character in UTF-8 coding and the second one for containing the strokes for original

stroke parent of that particular character. In case of setting a different XML file, that does not

contain character stroke patterns, then the description of the element in UTF-8 coding can be

set as the <utf8> element contents.

Element <strokes> can have infinite amount of children elements <stroke>. Every

<stroke> element represents single stroke pattern of the character. Its children <point>

represent points and have must have attributes “x” and “y” as integer valued coordinates.

Here is an example of one character stroke pattern in XML:

<character>

 <utf8>き</utf8>

 <strokes>

 <stroke>

 <point x="256" y="260"/>

 <point x="683" y="266"/>

 </stroke>

 <stroke>

 <point x="300" y="500"/>

 <point x="736" y="526"/>

 </stroke>

 <stroke>

 <point x="430" y="90"/>

 <point x="513" y="623"/>

 </stroke>

30

 <stroke>

 <point x="270" y="683"/>

 <point x="346" y="823"/>

 <point x="533" y="890"/>

 </stroke>

 </strokes>

</character>

4.1.2 Character position

The original stroke pattern might have the character (referred also as sign) position anywhere

on the screen. For better usage of it, we wanted to show it in the middle of the application

window. Because it is not drawn on the different Surface object, but on the screen in series of

lines we needed to alter the coordinates of each stroke.

For that, after creating the original character, we find the top left and bottom right points of

the minimal rectangle the character could fit in. Next, we find centre of the application

window and subtract half of the width and height of the rectangle to get the right position for

the character rectangle to start from. By dividing coordinates of the right character starting

point and the current one we get the difference in coordinates. Adding that to the original sign

coordinates we get the right position for the sign.

4.1.3 Original stroke pattern selection

We wanted user to be able to select the character they want to learn to draw, so for that

purpose we created character choosing widget. Considering, that we decided to make original

stroke patterns easily changeable, we had to make choosing widget also adaptable.

The idea was to create a button panel that is controllable with Leap Motion.

For button outlines to be clear and visible, we wanted to create a border around every

character button. Pygame does not have the functionality to create borders around Surface

31

objects, so to create them we have to draw two different Surface objects. We first draw the

bigger one and set its colour the same we want our borders to be. Next, we draw different

surface, smaller by the size of the wanted border and the colour we want our character

selection button to be. After that we draw smaller Surface of top of the border coloured one.

In Pygame, writing directly onto a Surface object is not possible, so to write character onto

created black button we need to create text Surface and draw it onto the black button Surface.

Note here, that Pygame does not have fonts suitable for rendering Japanese characters, so we

had to import a new font Japanese character friendly font. In case of changing character sheet,

font might not be able to render that and buttons will not have readable text on them.

To create the character button widget, first the buttons for all the characters from character

sheet are created. Then they are drawn on a Surface object in rows or columns according to

the program’s specifications. Example is shown in Figure 14. Character widget is set as the

main part of the home screen.

Figure 14. Character widget

For creating a character widget, application uses information from character sheet. So if the

character sheet is changed, the content of the character widget will be different as well.

To detect the pushed button we ask all buttons if the pushed coordinates were theirs, until we

find the right one and return the button. Controller then finds the appropriate sign and sets it

as the sign for learning and sends user to drawing view, where the sign is drawn in the middle

32

of the screen for user to see and try to copy. Character is drawn in light grey colour, so that it

does not get mistaken it with the one user is currently drawing.

4.2 Leap Motion controls

Leap Motion controls are used as main control method in this application. They allow user to

move the application cursor, push and draw onto the screen and use different gestures for

different actions.

Leap Motion enables to track not only fingers but also pen-like tools. They are all classifies as

Pointable objects and reports its physical characteristic, like position, type, touch zone etc. In

this application usage of both is supported.

For tracking, the closest object to the screen is chosen with the help of the Leap Motion

method frame.pointables.frontmost. If there are many Pointables close to the

screen, then the Leap Motion controller can make mistakes in interpreting the right Pointable

object and the cursor might jump unexpectedly.

4.2.1 Converting coordinates

Leap Motion returns the coordinates in millimetres so they have to be normalized. Leap

Motion provides a method for that. InteractionBox converts coordinates from Leap

Motion coordinates to normalized scale running between 0.0 and 1.0 and can be then

converted to application appropriate scale.

Every Leap Motion frame provides new InteractionBox object, but due to the fact that it

can adjust and move, coordinates normalized with different InteractionBox every turn

can be different and the point can start to flicker. To prevent that, we save a single

InteractionBox at the start of the application and keep using it during the whole work

cycle. If the user wants to make adjustments to the interaction box, then the application has to

be closed and restarted.

33

After the InteractionBox has normalized the coordinates, it returns them in range from 0

to 1, so we still had to convert them to a readable form for the application. For that we

multiply the normalized the x coordinate with application width and the y coordinate with the

height of the application.

Y–axis in InteractionBox starts from bottom and increases towards the top on the view

range of the Leap Motion. In the application, on the other hand, the y-axis origin point is on

top and increases towards the bottom of the application. So for them to match we had to flip

the y-axis. For that we have to subtract the normalized y coordinate from 1 before we multiply

it by the application height.

self._pointable = self._frame.pointables.frontmost

if self._pointable.is_valid:

 leap_point = self._pointable.stabilized_tip_position

 normalized_point = self._iBox.normalize_point(leap_point,

True)

app_x = int(round(normalized_point.x * APP_WIDTH))

app_y = int(round((1 - normalized_point.y) * APP_HEIGHT))

4.2.2 Touch emulation

The application has only 2D controls, but we still used z-axis for touch emulation. For that

Leap Motion software has two methods in Pointable class: touch_zone() and

touch_distance.

The first method is for determining if the Pointable has passed through the floating touch

plane that adapts to user’s finger or tool. If the Pointable is past the plane, then it is in

„touching“ zone, otherwise it is in the „hovering“ zone. If the Pointable is not visible, then the

zone is „none“. We used that functionality to determine if the user is touching the screen or

not.

34

The second method returns the touch distance in range from -1 to 1. The value 1.0 indicates

the Pointable is at the far edge of the hovering zone. The value 0 indicates the Pointable is

just entering the touching zone. A value of -1.0 indicates the Pointable is firmly within the

touching zone. Values in between are proportional to the distance from the plane. Thus, the

touch_distance of 0.5 indicates that the Pointable is halfway into the hovering zone [22].

This last method enabled us to create the functionality for warning user about getting close to

the transfer zone. When the user is in „hovering“ zone, then before reaching the

„touching“ zone, the cursor becomes dark grey, warning the user, that it will soon transfer to

the „touching“ zone and the application will register the „click“. Also in reverse, when the

user is in the „touching“ zone, cursor will become dark grey prior to leaving the zone.

4.2.3 Gestures

Leap Motion offers a range of built-in hand gestures in order to allow for easy control over

the unit and applications.

By default Leap Motion gestures are disabled. In this application we enabled three of the Leap

Motion gestures: Circle, Swipe and Key tap.

Commands Leap Motion gestures trigger:

 Circle – delete the last drawn line

 Swipe – return to the home screen

 Key tap – compare characters

While drawing user might make some movements, which could be interpreted by Leap

Motion controller as gestures. To prevent these unwanted interruptions, we enabled the

handling of the Leap Motion gestures only while user is not writing anything and is just

hovering over the screen.

Application also makes sure that every gesture is carried out only once. For that it saves the

ID of the gestures from the last Leap Motion frame and compares them with the ID’s of the

new gestures. In addition it prevents continuous gestures like Circle and Swipe to trigger more

35

than one action per time. It means that gestures that are added to every frame as long as they

last trigger the action still only once. To trigger the action again, user has to stop the

movement and start a new one. For example, that prevents the user from deleting lines too fast

and losing more lines than the user intended.

Before triggering the comparison of the characters, application checks if the needed amount

of lines is drawn to the screen. We decided not to make the comparison start automatic, in

case user wants to redraw the last line.

4.3 Mouse and keyboard controls

For testing purpose it is also possible to use the application with a standard mouse. Before

getting coordinates from Leap Motion, application checks if the Leap Motion is connected to

the system. In case there is no connection to Leap Motion, application switches to the mouse

controlled mode.

Additionally, gesture activated actions can also be activated using a standard keyboard. This

functionality works independently from the connection to Leap Motion.

4.3.1 Mouse controls

In case the Leap Motion is not connected to the system, user can use the application with the

help of the mouse.

For interacting with mouse we used pygame.mouse module. With it we were able to obtain

coordinates of the mouse and check every cycle if the mouse button is pressed. With that we

were able to imitate the Leap Motion controls using the mouse.

36

4.3.2 Keyboard events

We also added keyboard events as an alternative control method to the Leap Motion gestures.

Performing Leap Motion gestures might sometimes be tricky, but with the keyboard

alternative is user still able to perform all needed tasks.

Keyboard commands trigger:

 Delete – deletes whole drawn character

 Backspace – deletes last drawn line

 Space – compare characters

 Home – return to home screen

Keyboard commands are realized through pygame.KEYDOWN event that are added to the

event queue when the keyboard buttons are pressed. Those events have key attribute that

represents a key on the keyboard. If the right key is hit, the certain events are triggered.

for event in pygame.event.get():

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_SPACE:

 self.compare_signs()

 if event.key == pygame.K_DELETE:

 self.clear_sign()

 if event.key == pygame.K_HOME:

 self.back_to_home_screen()

 if event.key == pygame.K_BACKSPACE:

 self.drawn_sign.delete_last_line()

4.4 Character drawing

While the character is being drawn by the user, the application normalizes every stroke after it

is drawn. When the drawing is complete and the user submits the result, the application

compares the drawn character to the original stroke pattern and gives feedback.

37

4.4.1 Drawn stroke normalization

Controlling the application with Leap Motion can be a bit of a challenge for many reasons.

First, it is not the easiest task to draw nice straight lines in the air. Secondly, Leap Motion is

not perfect, so it can and does make mistakes. For that reason, after the stroke is drawn, the

application normalizes it, to try and make our stroke look as much alike with the expected one

as possible.

After the line is drawn by the user, obtained coordinates are run through the feature point

extraction method considering the needed number of points for expected stroke. Old

coordinates of the drawn stroke are replaced by the extracted feature points.

Figure 15. Stroke normalization with 4 feature point extraction

Example of the stroke normalization is shown in the Figure 15, where stroke on the left is

unnormalized and the one on the right is after the needed feature points were extracted.

4.4.2 Character comparison

After the needed amount of strokes for the particular character have been drawn, the

application does not let user to draw any more lines and waits to get the command to start

comparing drawn character to the original stroke pattern.

38

Any lines that are considered to be wrong, are coloured red, the right ones are set green.

Figure 16. Display of drawn strokes after comparison

4.5 GUI

All of the GUI elements in this application were created using Pygame.

In order to use the Pygame modules, they first have to be initialized. The pygame.init()

method initializes all of the main modules.

Main window is created using the pygame.display method. It allows creating the display

Surface object easily, by just setting its size. Display is a very important Surface object,

because all of the other Surface objects have to be drawn on it. To update the content of the

entire display the pygame.display.flip() was used.

For framerate management pygame.time.Clock() object was used.

4.5.1 Screens

The application does not have many screens. The home screen is the first one user sees and

the one that has the character widget on it, so the user can choose a character to learn.

39

After the character is chosen, application changes to drawing screen. To prevent any

accidental strokes, after the screen change, it is not possible to draw. User has to wait till all

the lines of the original stroke parent have appeared and only after that the drawing is possible.

4.6 Convenience

A few extra functionalities were created for convenience of the developer. They made writing

and debugging code easier and faster.

4.6.1 Properties

Many variables were used in many modules of the application. For convenient editing reasons

and to keep repetitions at minimum the Properties module was made. This module stores

variables for application width and height, as well as font style and size etc. It also stores a

few of the enumeration type variables used all over the application.

def enum(**enums):

 return type('Enum', (), enums)

Color = enum(SILVER = (192, 192, 192),

 GRAY = (128, 128, 128),

 BLACK = (0, 0, 0))

APP_WIDTH = 800

APP_HEIGHT = 600

FONT = "../../fonts/07LogoTypeGothic-Condense.ttf"

FONT_SIZE = 50

40

4.6.2 Logging

For practical reasons logging was added to the application. It allows for easier debugging and

information gathering about the way the application is working. Logging entries display the

date and time of the entry and the message like: 2015-05-15 17:20:58,448

Connected.

logging.basicConfig(filename = 'Leap.log', level =

logging.DEBUG, format='%(asctime)s %(message)s')

41

5 Testing the application

Any developed application needs to be tested. So we ran a few tests to determine the work of

the main functions.

First we tested pointer tracking and gesture recognition by Leap Motion. Then, the stroke

detection method was tested. Lastly we gave the application for testing to four people, to see

how intuitive the controls are.

5.1 Leap Motion pointer tracking testing

The pointer tracking is an important part of the application. So it was tested in different

conditions, to determine the optimal environmental parameters.

Tests of different pen-like objects revealed, that Leap Motion works best with either fingers or

traditionally shaped pens. Uneven shapes, holes and shining surfaces in objects hinder the

performance of the unit. Objects under 5mm and over 20mm were hard to detect. Also

brighter and duller coloured objects got better results.

By trying many Pointables at once, we got to the conclusion that Leap Motion works better if

difference from the screen between the main Pointable and any other is at least 5cm.

Insufficient lighting also hinders the work of the device.

After a while, the device also seems to be overheating, and the performance of the device

degrades. For better use of the device, giving it breaks to cool is advised.

5.2 Gesture testing

We also tested the gestures used in the stroke detection application.

42

Tests for all the gestures resulted in similar results. Leap Motion did not always recognize the

gestures and they had to be repeated. Most difficulty was experienced in recognizing the Key

tap gesture, which needed to be repeated several times for the device to recognize the gesture.

5.3 Stroke detection testing

For testing the stroke detection method we tested different hiragana characters.

Simpler hiragana characters, with smaller amount of points and curves were substantially

easier to draw correctly because of the normalization. When the line consists of only two

points, then the only ones that have to be drawn correctly are the start and the end point of the

stroke.

More complicated characters are much more difficult. The normalization algorithm takes the

most important points from the drawn ones for normalization. If they are too different from

the ones from the original stroke pattern then the method determines them as wrong strokes.

But this adds an extra level of difficulty and challenge to the learning task.

5.4 Intuitiveness testing

We wanted controlling the application to be intuitive and natural. So we decided to give the

application for testing to four people, who had not seen or heard about it or its control system.

All four of the test subjects were able to understand the work of the pointer with ease. They

said, that the drawing and clicking with it was logical and intuitive and they had no problems

in understanding when pointer was in writing mode without prior instructions.

Gestures, on the other hand, needed some elaboration. Two out of four people were able to

figure out the return to home screen gesture. After explaining the gestures and the activated

actions, everyone found them easy to use.

43

6 Conclusion

We wanted to create a simple yet highly functional application for Leap Motion that would be

practical and entertaining learning tool. To realize that goal we made tool for learning the

basic writing method of Japanese hiragana.

As the main programming language Python was used for its simplicity and compatibility with

other technologies. For creating mainly the UI elements with keyboard and mouse events the

Pygame, that is a set of free Python modules designed for writing games, was used. For

motion control, a small device equipped with optical sensors and infrared light capable of

tracking and recognizing hands, fingers and pen-like tools, called Leap Motion was used. Its

software is easy to use and provides a lot of different tools for managing the input from that

particular device.

For the purpose of this application, the stroke detection method was developed. Stroke

detection is a method that compares drawn strokes and original stroke patterns with each other

and determines their compatibility. First, this method normalizes the strokes, by extracting the

feature points from drawn strokes to match the amount in the same stroke from the original

stroke pattern. Next it compares the gotten stroke with the original stroke pattern and decides

if the strokes are deemed similar or not and returns the result.

In developing the application, a user interface was created. The control methods included the

controls with Leap Motion pointer and gestures, but also the keyboard and mouse. In addition

a great way to store the original stroke patterns was found – XML file. That enabled us to

make character sheets easily changeable, that led to the idea of creating the adaptive

application, that could potentially be used for learning any kind of character as long as the

character consists of strokes and is stored in that particular way.

After the application was finished a few tests were ran, including the tests of Leap Motion

tracking of the pointer and gestures, tests of the stroke detection and intuitiveness of the

application itself. The test results were overall positive and satisfactory.

For future development, we would suggest working on the UI and adding new functionalities

like quizzes and character sheet changing. Furthermore, better visuals for displaying the

44

correct way of writing the original characters could be implemented. Also, some

improvements could be made for the comparison of the whole character comparison.

45

7 References

1. Leap Motion product. [WWW] https://www.leapmotion.com/product (18.05.2015)

2. Leap Motion overview. [WWW]

https://developer.leapmotion.com/documentation/python/devguide/Leap_Overview.ht

ml (18.05.2015)

3. Leap Motion tracking model. [WWW]

https://developer.leapmotion.com/documentation/python/devguide/Leap_Tracking.ht

ml (18.05.2015)

4. Leap Motion gestures. [WWW]

https://developer.leapmotion.com/documentation/python/devguide/Leap_Gestures.htm

l (18.05.2015)

5. Leap Motion coordinate mapping. [WWW]

https://developer.leapmotion.com/documentation/python/devguide/Leap_Coordinate_

Mapping.html (18.05.2015)

6. Pygame about. [WWW] http://www.pygame.org/wiki/about (19.05.2015)

7. About SDL. [WWW] http://www.libsdl.org/ (19.05.2015)

8. Pygame pygame module. [WWW] http://www.pygame.org/docs/ref/pygame.html

(19.05.2015)

9. Pygame surface module. [WWW] http://www.pygame.org/docs/ref/surface.html

(19.05.2015)

10. Pygame display module. [WWW] http://www.pygame.org/docs/ref/display.html

(19.05.2015)

11. Pygame font module. [WWW] http://www.pygame.org/docs/ref/font.html

(19.05.2015)

12. Pygame draw module. [WWW] http://www.pygame.org/docs/ref/draw.html

(19.05.2015)

13. Pygame event module. [WWW] http://www.pygame.org/docs/ref/event.html

(19.05.2015)

14. Pygame key module. [WWW] http://www.pygame.org/docs/ref/key.html

(19.05.2015)

15. Pygame mouse module. [WWW] http://www.pygame.org/docs/ref/mouse.html

(19.05.2015)

https://www.leapmotion.com/product
https://developer.leapmotion.com/documentation/python/devguide/Leap_Overview.html
https://developer.leapmotion.com/documentation/python/devguide/Leap_Overview.html
https://developer.leapmotion.com/documentation/python/devguide/Leap_Tracking.html
https://developer.leapmotion.com/documentation/python/devguide/Leap_Tracking.html
https://developer.leapmotion.com/documentation/python/devguide/Leap_Gestures.html
https://developer.leapmotion.com/documentation/python/devguide/Leap_Gestures.html
https://developer.leapmotion.com/documentation/python/devguide/Leap_Coordinate_Mapping.html
https://developer.leapmotion.com/documentation/python/devguide/Leap_Coordinate_Mapping.html
http://www.pygame.org/wiki/about
http://www.libsdl.org/
http://www.pygame.org/docs/ref/pygame.html
http://www.pygame.org/docs/ref/surface.html
http://www.pygame.org/docs/ref/display.html
http://www.pygame.org/docs/ref/font.html
http://www.pygame.org/docs/ref/draw.html
http://www.pygame.org/docs/ref/event.html
http://www.pygame.org/docs/ref/key.html
http://www.pygame.org/docs/ref/mouse.html

46

16. Pygame time module. [WWW] http://www.pygame.org/docs/ref/time.html

(19.05.2015)

17. Hiragana. [WWW] http://en.wikipedia.org/wiki/Hiragana (20.05.2015)

18. Bilan Zhu and Masaki Nakagawa (2012). Online Handwritten Chinese/Japanese

Character Recognition, Advances in Character Recognition, Prof. Xiaoqing Ding (Ed.),

ISBN: 978-953-51-0823-8, InTech, DOI: 10.5772/51474. Available from:

http://www.intechopen.com/books/advances-in-character-recognition/online-

handwritten-chinese-japanese-character-recognition

19. Projection of point onto line 2D. [WWW]

http://intumath.org/Math/Geometry/Analytic%20Geometry/projectionofpoin.html

(21.05.2015)

20. Tegaki-zinnia-jaanese-0.3.zip. [WWW]

http://www.tegaki.org/releases/0.3/models/tegaki-zinnia-japanese-0.3.zip (22.05.2015)

21. GNU Lesser General Public License, version 2.1. [WWW]

https://www.gnu.org/licenses/lgpl-2.1.html (22.05.2015)

22. Leap Motion pointable. [WWW]

https://developer.leapmotion.com/documentation/python/api/Leap.Pointable.html

(23.05.2015)

http://www.pygame.org/docs/ref/time.html
http://en.wikipedia.org/wiki/Hiragana
http://www.intechopen.com/books/advances-in-character-recognition/online-handwritten-chinese-japanese-character-recognition
http://www.intechopen.com/books/advances-in-character-recognition/online-handwritten-chinese-japanese-character-recognition
http://intumath.org/Math/Geometry/Analytic%20Geometry/projectionofpoin.html
http://www.tegaki.org/releases/0.3/models/tegaki-zinnia-japanese-0.3.zip
https://www.gnu.org/licenses/lgpl-2.1.html
https://developer.leapmotion.com/documentation/python/api/Leap.Pointable.html

