
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Risto Alas 990746 IAPM

Using permissioned blockchains for security
risk mitigation: an analysis framework and

case studies

Master’s Thesis

Supervisor Ahto Buldas
PhD

Co-supervisor Jaan Ginter
PhD

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Risto Alas 990746 IAPM

Loaliste plokiahelate kasutamine turvariskide
vähendamiseks: analüüsiraamistik ning

juhtumiuuringud

Magistritöö

Juhendaja Ahto Buldas
PhD

Kaasjuhendaja Jaan Ginter
PhD

Tallinn 2021

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Risto Alas
(signature)

Date: January 11, 2021

i

Abstract

Blockchain and distributed ledger technology (DLT) have become increasingly popular due
to their ability to perform the so-called "trustless" execution: they allow running software
without trusting any single party for the correctness of execution. Instead, the correctness
is established via mutual consensus protocols and many-sided client verification. In some
cases, blockchains can have their own significant inefficiencies as well, depending on the
use-case at hand. This brings up two questions: first, when can we trust a single party
after all, and second, when we do need more parties, does blockchain technology have
alternatives? To study the above questions we developed a model for assessing human
behavior, based on consultations with a criminology expert. It estimates the probability
of dishonest acts depending on the number of people involved, their likelihood of getting
caught, how well they know each other, the attractiveness of the prize and several other
factors. The resulting model is general enough to apply for many different situations
outside our original problem space.

We then use the model to extract insights about the differences between blockchain
technology and centralised multi-party security ceremonies. Based on the model, we
suggest considering security ceremonies with remote participation as potential centralised
alternatives for some permissioned blockchain deployments; we also discuss potential
downsides and suggest areas for further study.

The thesis is in English language and contains 84 pages of text, 5 chapters, 1 figure, 8
tables.

ii

Annotatsioon

Plokiahel (inglise keeles blockchain) ning üldisemalt hajusraamatu tehnoloogiad (dis-

tributed ledger technology ehk DLT) on muutunud viimastel aastatel järjest populaarse-
maks. Nende peamine eriomadus on võimekus luua süsteeme mille toimimist ei ole vaja
usaldada ühe konkreetse osapoole kätte, olgu siis põhjuseks kas usalduse puudumine ühe
süsteemioperaatori vastu või arvamus, et osaopoolel puuduvad vahendid teenuse kvaliteet-
seks tööshoidmiseks. Selliste hajussüsteemide korral saavutatakse suurem usaldus tänu
mitut osapoolt hõlmavatele konsesusprotokollidele ning kliendipoolsele verifitseerimisele.
Kuna aga taolised mitme aktiivse osapoolega süsteemid võivad mõnedel juhtudel olla ka
märgatavalt ebaefektiivsemad (sõltuvalt valitud kasutusjuhust), soovime nende uurimiseks
esitada järgmised kaks küsimust: esiteks, millistel juhtudel saaksime hakkama ka ilma
plokiahelata, ja teiseks, kas ülejäänud juhtudel eksisteerib plokiahelale ka alternatiive?

Konsulteerides krmininoloogia eksperdiga töötasime välja antud küsimuste uurimiseks üld-
isema mudeli mis püüab ette ennustada inimeste ebaausa käitumise tõenäosust erinevates
olukordades, võttes avesse inimeste arvu otsuse tegemise juures, vahelejäämise tõenäosust
ebaausa käitumise korral, aga ka seda kui hästi inimesed üksteist tunnevad ning ebaausa
ründega saavutatava võidu suurust ja mitmeid muid faktoreid. Katsetasime mudelit paari
kasutusjuhu peal ning mudel töötas subjektiivse hinnangu järgi ootuspäraselt. Samuti on
mudel piisavalt üldine, et seda saaks kasutada ka paljudes muudes olukordades.

Uurime potentsiaalseid alternatiive loalistele (permissioned) hajusraamatutele tsen-
straalsete turvatseremooniate näol, kus erinevalt plokiahela tehnoloogiast ei pea erinevad
arvutid üle kontrollima üksteise arvutustulemusi, vaid usaldus tulemuste vastu saavutatakse
protseduuriliselt: kõik turvalisuse mõttes olulised operatsioonid tehakse mitme inimese
juuresolekul ning ühelgi inimesel pole üksinda juurdepääsu arvutitele, ei füüsiliselt ega
üle võrguühenduse. Kasutasime loodud mudelit võrdlemaks plokiahela turvalisust antud
tseremooniatega. Mudeli järgi peaks kaaluma plokiahelaga päris sarnaste turvaomadusete
saamkseks vähemalt mõnede tseremoonia osaliste poolt virtuaalset osalemist, ilma teiste
tseremoonia osalistega suhtlemata. Viimane aitab tagada nii osapoolte anonüümsust,
raskendades võimallike vägivaldseid rünnakuid nende vastu, kui ka vähendab samal ajal
tõenäosust, et osapooled saavad üksteisega tuttavamaks ning setõttu julgevad üksteisele

iii

teha ka suurema tõenäosusega ettepanekut kuritegelikuks käitumiseks.

Sellisel tsentraalsel tseremoonial on ka fundamentaalsemaid puuduseid – näiteks kui pu-
udub usaldus ühegi konkreetse arvutiriistvara tootja vastu siis võib plokiahelates kasutatav
konsensus erinevate arvutite vahel muuta süsteemi töökindlamaks ja usaldusväärsemaks.
Töö mainib põgusalt ka võimalust kasutada hübriidlahendusi mis kasutavad korraga nii
ülalmainitud tseremooniaid kui ka plokiahelate poolt populariseeritud konsensusprotkolle.
Antud lahendus võib olla atraktiivne näiteks juhul kui ühtegi konkreetset arvutit ei usaldata,
aga samas ei saa ka majanduslikel või efektiivsuse põhjustel kasutada rohkem kui mõnda
üksikut arvutit kuid lisaks ei soovita ka usaldada iga masinat haldama vaid ühte konkreetset
operatorit.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 84 leheküljel, 5 peatükki, 1 joonist,
8 tabelit.

iv

List of Abbreviations and Terms

0-day vulnerability A vulnerability that is in software or hardware
but is not known to the parties interested in miti-
gating it (including vendors)

BFT Byzantime fault-tolerance
Byzantime fault-tolerance A characteristic of consensus protocols that guar-

antees resilience even when some number of par-
ticipants fail in arbitrary ways, including lying
on purpose.

Blockchain A decentralised architecture for achieving in-
tegrity and availability of computation and state
(memory) for a service. In general, it is im-
plemented using byzantine fault-tolerant (BFT)
consensus coupled with state storage and shared
validation rules.

Centralised architecture An architecture where the security properties
under study can be broken at execution time by
compromising a single secretly chosen computer.
This is the traditional way of building services;
most systems today work this way.

CPU Central Processing Unit

v

Decentralised architecture An architecture where the security properties un-
der study cannot be broken at execution time
by arbitrarily compromising one (ideally more)
secretly chosen computer(s). For integrity and
availability, this is often achieved with Byzan-
tine fault-tolerant (BFT) consensus. For confi-
dentiality purposes, tools like secure multi-party
computation (MPC) can be used. Such comput-
ers are typically owned and operated by differ-
ent entities, resulting in the additional resilience
property that no single operating entity can com-
promise the security properties of the service on
their own.

Distributed ledger tech. For the purposes of current work, synonymous
with blockchain. Otherwise, the term is often
used to refer to blockchain-like technologies that
do not necessarily use a chain of blocks for their
main data model.

DLT Distributed ledger technology
Multi-party computation A decentralised architecture for the purposes of

achieving privacy of the data being computed
on.

MPC Multi-party computation
Permissioned blockchain A blockchain where participants are permis-

sioned and vetted using their identities.
Permissionless blockchain A blockchain where participants are not per-

missioned and vetted using their identities and
often are allowed to be anonymous to every-
body but themselves. In practice, major public
blockchains like Bitcoin and Ethereum often aim
for the additional property of censorship resis-
tance.

Public blockchain A blockchain whose contents are public for ev-
eryone. Sometimes used as a synonym for per-
missionless blockchains.

Security ceremony Expansion of the term "protocol" to include the
actions of human actors, often used for the pur-
poses of thinking about security.

vi

Table of Contents

List of Figures ix

List of Tables x

1 Introduction 1
1.1 The Problem . 1
1.2 Restrictions on the Work . 6
1.3 Research Problems . 8
1.4 Research Methods . 9

2 Background 10
2.1 Blockchains and DLT . 10
2.2 On-site Security Ceremonies . 13

3 Body of Work 16
3.1 Blockchains as "Trust Machines" . 16
3.2 Properties of Tendermint Consensus as a Typical Example 19
3.3 Blockchain Validation Beyond Consensus 22
3.4 Properties of On-Site Ceremonies . 25
3.5 Comparing Blockchain Consensus and On-site Security Ceremonies . . . 27
3.6 A Model for the Integrity of Humans . 29

3.6.1 Probability of Dishonest Acts Of Individuals, Depending on the
Odds of Getting Caught. 31

3.6.2 Likelihoods of Success and Getting Caught When Enlisting New
People . 36

3.7 Applications of the Model for Centralised and Decentralised Architectures 42
3.7.1 Comments on The Trust Differences Between On-Site Ceremonies

and Blockchain Consensus . 42
3.7.2 Phishing and Other Cyberattacks. 45
3.7.3 Detecting Backdoors, Steganographic Data Infiltration and Exfil-

tration . 45
3.7.4 Software and Hardware Backdoors 50

3.8 Statistics on Software and Hardware Security 52
3.9 Sample Analysis of a Cryptocurrency Use-Case 58

3.9.1 Introduction . 58
3.9.2 Case 1: Printing and Stealing Money 60

vii

3.9.3 Case 2: Compromising a Random-Number Generator 63
3.9.4 Discussion of Results . 64

4 Results 65
4.1 Summary of Results . 65
4.2 Novelty of Results . 66
4.3 Application of Results . 67

5 Conclusions and Future Work 68
5.1 Conclusions . 68
5.2 Future Work . 68

References 70

Acknowledgements 76

Appendices 77

Appendix 1 – Non-exclusive licence for reproduction and publication of a grad-
uation thesis 77

Appendix 2 – Derivations of the Tendermint Blockchain Fork Threshold Un-
der Delayed Network Packets 78

Appendix 3 – Statistics On 0-day Vulnerabilities in Chosen Software Compo-
nents Between 2015 - 2020 80

Appendix 4 – Effect of Re-Shuffling Members by an Individual Request on the
Resilience of Ceremonies 82

viii

List of Figures

1. Aspects of security to be taken into account, both
on the server side and on the client side, includ-
ing people, hardware and software. 8

ix

List of Tables

2 Probabilities that, in a group of n = 10 participants, we have at least 7
participants who are reliable, depending on the probability of a single
participant being reliable (p), assuming the probabilities for all participants
are independent. 21

3 Our assumed person’s "base" probability for performing a dishonest act
if they do not fear getting caught. We assume the probabilities differ
depending on the seriousness of a crime. 32

4 Our assumed values for factor f , to be used in equation 3.1. Factor f
depends on three variables: the likelihood of getting caught (q, on the
vertical axis), seriousness of the punishment (also on the vertical axis) and
the attractiveness of the prize for a successful attack (on the horizontal
axis). The table represents a typical European Union citizen with a monthly
net income of C 2 000. For people with different income levels or whose
wealth is not typically represented by their income level, the attractiveness
of the monetary values will have to be adjusted as discussed in section
3.6.1. Finally, as people generally do not end up in jail for 100 Euros in
the European Union, we have used the phrase "N/A" ("Not Available") for
such combinations. 34

5 Person’s risk modifier r that represents a change to their probability of
taking a risk depending on their social status. 35

6 Likelihood of getting reported to authorities when proposing (q), depending
on the closeness of the person being proposed to. 37

7 Somewhat arbitrarily assumed number of well-trained IT professionals
who also double as spies willing to infiltrate other organisations, depending
on the size of the attacking organisation. The underlying assumption is
that most well-trained professionals are not willing to accept the risks of
being a spy, whereas spies in turn do not generally seek a second career at
which they would be well-trained. Note that for smaller crimes – especially
non-criminal offenses – the number of willing participants is likely much
higher among all populations. 40

x

8 The numbers listed are all computed as estimates for the frequency and
probability of 0-day vulnerabilities per year that allow remote attackers to
execute arbitrary code on attacked machines. The corresponding probabili-
ties are calculated using a binomial distribution to reflect the probability
that there is at least one vulnerability in a year. Column f0 represents the
number of such vulnerabilities discovered per year, p0 is the corresponding
probability per year; fs represents an estimate for a number of such vulner-
abilities known by "sophisticated" parties per year, ps is the corresponding
probability that they known at least one per year; fn is the same frequency
for "non-sophisticated" parties and pn their corresponding probability for
at least one per year. 55

9 Sample values to illustrate the odds of the entire group ending up as
dishonest, depending on whether or not shuffling group members is allowed
at the request of any single group member at all times, and depending on
the group size n and the probability of a dishonest act of a single member p. 84

xi

1. Introduction

1.1 The Problem

Cryptocurrencies like Bitcoin, Ether and countless others have become increasingly popu-
lar in the recent years [1]. Likewise, the key underlying technology of cryptocurrencies,
the distributed ledger technology (DLT) or simply blockchain technology, is also seeing
wider use outside the strictly cryptocurrency space, now encompassing a wide array of
applications, including health and energy sector applications, cryptocurrency exchanges,
smart contracts, games and many others that are too numerous to mention here [2]. Addi-
tionally, the financial impact of this technology has received considerable praise; the global
research and advisory firm Gartner has predicted that “the business value generated by
blockchain will grow rapidly, reaching $176 billion by 2025 and $3.1 trillion by 2030” [3].

Although there are no universally accepted definitions for the technology, one of the most
concise definitions is provided by Wikipedia [4]:

A distributed ledger (also called a shared ledger or distributed ledger technol-
ogy or DLT) is a consensus of replicated, shared, and synchronized digital
data geographically spread across multiple sites, countries, or institutions.[5]
Unlike with a distributed database, there is no central administrator.[6]

In particular, it is the lack of a central administrator that is an important characteristic of
DLT. It allows the building of services where no single party can exert control over the
system, neither for profit nor malice. For more information on blockchains in general and
how they differ from traditional database systems, refer to section 2.

Typically, the blockchain protocol will not allow any single entity to tamper with data,
software or calculations without the approval of other parties. Thus, even when any
(sufficiently small) subset of participants are completely compromised by attackers, the
service continues to function normally: data remains tamper-proof, the system outputs
correct results to client requests and remains available to its users. This is achieved
by the fact that many parties would be running redundant copies of the system, always

1

synchronising in real time with each other over a consensus protocol, essentially taking
frequent majority votes in real-time over the results of any computations in the service.
The current work assumes this consensus protocol to be tolerant of arbitrary faults by its
members, including lying on purpose – a Byzantine fault tolerant (BFT) consensus for
blockchains [7].

This lack of a single central administrator is also the reason why blockchains are praised
for their potential for reducing the number of trusted third parties in society, as Wüst and
Gervais write in [8]:

Blockchain is being praised as a technological innovation which allows to
revolutionize how society trades and interacts. This reputation is in particular
attributable to its properties of allowing mutually mistrusting entities to ex-
change financial value and interact without relying on a trusted third party. A
blockchain moreover provides an integrity protected data storage and allows
to provide process transparency.

Thus far we have mentioned the security properties of integrity and availability and how
they can be enhanced using DLT. Although out of scope for the current work, using
additional machinery, such decentralised systems can also give privacy guarantees of
similar nature, resulting in systems where no single party can leak secret data from the
system, albeit sometimes at a noticeable cost in performance [9], perhaps due to techniques
like secure multi-party computation (MPC) or zero-knowledge proofs. Therefore, this
overall space of decentralised technologies could potentially improve all aspects of security
– confidentiality, integrity and availability – by means of reducing reliance on single parties.

Yet such decentralisation also comes with costs. The most obvious and perhaps the most
fundamental cost is that of re-verification: multiple computers will have to verify the same
computations again and again, as the participants cannot simply trust the computations
performed by others. This results in excess computing power and electricity use; depending
on a use-case this may or may not be a significant problem. Additionally, there is also
the performance degradation of synchronising between multiple parties (and sometimes
waiting for slower computers to catch up). Famously, some consensus protocols can
also have huge costs of their own, such as Bitcoin with its Proof-of-Work consensus
[10], although it should be mentioned that Proof-of-Work consensus has some unique
advantages as well, and other, significantly more efficient forms of consensus exist also
– particularly, Proof-of-Stake. As an example, Ouroboros Genesis is a Proof-of-Stake
protocol [11] and Ethereum is also planning a move to a Proof-of-Stake consensus in the

2

near future [12]. Permissioned blockchains often use efficient protocols as well, such as
the Tendermint BFT protocol [7], which we will use as our canonical example. Moving
to the area of privacy, calculating with confidential data in a decentralised manner can
also take additional computing power that otherwise would not be needed [9], and due
to the replicated nature of blockchains, there can be a bigger need for such advanced
privacy techniques than there would otherwise be (Bitcoin serves as a notable example
[13]). Blockchains are also a relatively recent technology, thus it is natural to expect them
to have early adoption costs: training for developers and users, immature tooling and so
forth. Therefore, it makes sense to consider where blockchains truly add value – the areas
where they are worth their costs.

It is also not immediately obvious where such decentralised architectures offer anything
truly unique: regarding the often claimed strengths of blockchains – trust and security
[8, 14] – the more traditional (centralised) architectures can also offer good levels of
assurance. To pick a few intuitive examples, people often trust banks with their life savings
(perhaps simultaneously relying on insurance companies and government bailouts), they
trust companies like Microsoft and Apple to upload backdoor-free closed-source operating
system updates straight to their computers (repeatedly), and they trust that their Intel or
AMD CPUs (central processing units) are not backdoored with covert/steganographic
channels set to receive secret commands from afar. Even the nuclear weapons of the
world are not controlled by blockchains. Additionally, centralised cloud services seem
to be getting more trustworthy over time: Amazon AWS has had a GovCloud region for
some US government services since 2011 [15] and they have even introduced Top Secret
workloads for the intelligence community as an air-gapped service [16].

Thinking about this further, in many ways the centralised and decentralised systems seem
to be more similar than it would at first appear. For example, the traditional centralised
systems can also be co-administered by multiple entities from different organisations.
Specifically, centralised administration ceremonies can be used where multiple witnesses
watch the entire process of administering computers, and the process could even be filmed
or live-streamed online; various physical defences can also be employed, including tamper-
detection, surveillance cameras and security guards. Public examples of such procedures
include the DNSSEC key signing ceremony [17, 18], as well as banks and certificate
authorities (CA) who often use similar methods for securing their centralised systems
(sometimes called the “four-eyes principle”)1. In other words, solving reliance on single

1In the simplest case, the four-eyes principle could mean that the server’s root password is split between
two administrators, thus ensuring that no single administrator has access to the server alone. Similarly for
the physical defenses – the security code to disable the alarm in the server room can also be split. In practice,
it is advisable to use more flexible and more secure schemes, for example using two-factor authentication
and allowing for back-up administrators.

3

individuals and organisations does not necessarily require decentralised blockchains.

At the same time, decentralised blockchains are often less decentralised than it would at
first seem. As security in general is often considered to be a “weakest link in the chain”-
type of a problem where the least secure component can often determine the security level
of the overall system [19], it can be important to keep all major components as secure as
possible (except when the weaker components are shown to be well isolated from the rest
of the system).

Of particular concern is the fact that the more privileged components of a computer system
can have almost full control over the less privileged ones: a CPU can alter and observe the
software it runs, an operating system can similarly alter and observe the software that it
runs (excluding secure isolation mechanisms like Intel SGX and other secure hardware
[20]), and the human operators can often alter and observe both hardware and software
under their control. With that in mind, security bottlenecks can be created when a major
set of users are sharing the same hardware and software combinations, thus making it
easier for one manufacturer to compromise a large number of participants at once (either
by mistake or due to malice).

Often the blockchain software itself has only one popular implementation available, and
even if all users compile that code directly from the source using a trusted compiler, not
many people double-check each and every line of the code involved, and then double-check
it again after every update. In a sense this is worsened by the potential for split-view
attacks, where even if only a small number of blockchain consensus participants are
compromised, they could maintain parallel ledgers such that correct computers would not
detect a consensus failure (only the users of the compromised computers would be affected,
and may not notice the problem either for a while).

Secondly, even the most secure blockchain in the world has to be observed through the lens
of a user’s computer, and that computer needs to be trusted by its user. Yet the machine
probably receives various binary updates over the air and contains hardware that nobody
has verified under a microscope. Even the typical best-case scenario has potential holes:
a diligent user of open-source software could build her own binaries straight from the
source that she downloads from GitHub; however, she typically still trusts GitHub to give
her the exact same source code that auditors and reviewers have looked at, without any
modifications; additionally, the first compiler that she downloaded was also probably a
binary file that she did not inspect. Thus, given that there are limits to the trustworthiness of
users’ machines (which amount to the users’ “eyes and ears”), it may not even be necessary
to make the service itself much more trustworthy than the combined “eyes and ears” of

4

its users (otherwise, the attackers could simply move their attacks to the users’ machines
instead, as in some cases they already have [21]).

Compromised blockchain computers may lie and equivocate in arbitrarily clever ways,
lying to other computers as needed and also lying to their own users: the computers could
for example display data that does not match its own cryptographic hash values, making it
appear to their users that the often-used sanity checking values blockchain block hashes
are correct even though the actual block contents are different. To catch the problem, users
would have to compare with non-compromised users the exact blockchain data contents
(even though on a non-compromised computer, merely comparing the cryptographically
strong hash values would suffice).

Thus, it can be useful to investigate in a more detailed way what the practical differences
are between the security properties of blockchains and centralised architectures, especially
given that decentralisation also has associated costs.

5

1.2 Restrictions on the Work

For readability purposes, the terms distributed ledger technology (DLT) and blockchain are
considered synonymous in this work. Some sources use the terms in the same way (as an
example, Wüst and Gervais appear to use the terms interchangeably in [8]). Other sources
consider blockchain to be a special case of DLT (for example, [22] and [4]). For the current
work, the difference between blockchain and DLT is considered to be an implementation
detail: unless otherwise specified, anything that applies to blockchain also applies to DLT
overall, and vice versa.

We say that a blockchain is permissioned when participants have to be explicitly allowed
to use the system (typically using their known and verified identities). This is in contrast
to permissionless blockchains where anyone is allowed to participate, typically including
anonymous actors.

We focus our study on permissioned blockchains, which we define as (permissioned)
decentralised services that aim for greater integrity and availability than to their single
participants’ machines. Typically they utilise a Byzantine fault-tolerant (BFT) consensus
protocol that allows any small subset of participants to fail in arbitrary ways (including
lying on purpose), without breaking the integrity or availability of the system (for back-
ground on blockchains and consensus, refer to section 2.1). Where a specific example is
needed, we often refer to Tendermint as a canonical permissioned blockchain platform [7].
Tendermint uses a BFT consensus algorithm with strong similarities to the traditional Prac-
tical Byzantine fault-tolerant consensus (PBFT) algorithm [23], it includes full client-side
validation and supports a gossip protocol [24] to ensure eventual delivery of important data
across any available routes among participants.

For our purposes, unless otherwise noted, we only consider blockchains which use a
Byzantine fault tolerant (BFT) consensus model, which is the strong model of consensus
as it allows its participants to arbitrarily deviate from the protocol, even to maliciously
lie on purpose. Our findings apply for various network models as well (synchronous,
asynchronous, partially synchronous, among others).

We also analyse a type of architecture that is, in a sense, between the blockchains and
centralised architecture (and can be combined with each if necessary): the on-site security
ceremony. Such architectures are technically centralised (that is, the computations are not

re-verified on multiple machines), but there are procedures in place to ensure that no single
person or organisation (as needed) could access the system single-handedly (both in terms
of physical and remote access). We describe such ceremonies in more detail in section 2.2

6

and analyse their key properties in section 3.4.

7

1.3 Research Problems

As we wish to compare the security risks of blockchains against their more centralised
counterparts (including the on-site ceremonies), we need a way to assess these specific
security risks which differ across the architectures.

In traditional, more centralised architectures, users have to trust a single party to run
the system correctly (see section 3.1 for our definitions of trust), whereas in blockchain
systems like Bitcoin, Ethereum and Tendermint, several parties re-verify the accuracy of
the computation and state of the service. This acts as a diversification mechanism against
the failures of any single (central) party. However, we must remember that the client
computers need to be secure enough as well. Thus, we should consider the risks of both.

Mark Silver et al. write that an information system "comprises hardware, software, data,
people, and procedures" [25]. Of these, we focus on the following three components:
hardware, software and people.

Thus we end up with the list of sub-items that we wish to take into account as can be seen
in figure 1.1.

1 S e r v e r s i d e , i n c l u d i n g c o n s e n s u s i f any :
1 . 1 Pe op l e (i n t e g r i t y , c o e r c i o n , management , p h i s h i n g)
1 . 2 S o f t w a r e (v u l n e r a b i l i t i e s + b a c k d o o r s)
1 . 3 Hardware (v u l n e r a b i l i t i e s + b a c k d o o r s)

2 C l i e n t s i d e , c o n s e n s u s and / o r " f u l l node " v e r i f i c a t i o n
2 . 1 Pe op l e (same as above)
2 . 2 S o f t w a r e (same as above)
2 . 3 Hardware (same as above)

Figure 1.1. Aspects of security to be taken into account, both on the server side and on the
client side, including people, hardware and software.

Our goals are:

� Taking the above needs into account, create a model that can be used in conjunction
with a simple multi-parameter attack tree model based on Buldas et al. [26] to take
into account the risks enumerated in figure 1.1 in the following way:

– Using expert estimates, create a simple model of human behavior to estimate

8

the likelihood that an employee will act honestly, based on the seriousness of
misbehavior, likelihood of getting caught, the social status of the employee,
and various coercion methods (extortion, managers changing team contents,
infiltrating an organisation through legitimate channels, bribing). Additionally,
assess the likelihood that a person will give up another person to authorities for
suggesting a conspiracy and how that affects the other person’s willingness to
suggest a conspiracy.

– Using publicly available information on the history of 0-day vulnerabilities
(roughly, 0-day vulnerabilities are "secret" vulnerabilities which exist in produc-
tion software and are not known to the vendor and users at large), assess which
ones have so far been critical for securing web services, including operating
systems and web server software; estimate the rate of critical 0-day vulnerabili-
ties to be found for operating systems and web servers to estimate under which
condition blockchain architecture could be used to achieve resilience against
them.

� Perform a simple validation of the model from the previous goal by comparing a
blockchain and a centralised architecture for the same system.

1.4 Research Methods

The work analyses socio-technical aspects of security and was carried out using the design
science methodology.

The main work product is a model designed to assess the socio-technical aspects of
security for heterogeneous systems. A criminology expert was consulted with to assess the
parameters suitable for the model.

Suitability of the model was validated by applying it to sample use-cases, after which
subjective opinions were formed to assess the performance of the model.

To evaluate the model, the widely used attack tree approach was chosen due to its apparent
fitness for purpose and for its game-theoretic semantics, which allow to quantitatively
study the socio-technological aspects. The attack model was based on a model from Buldas
et al. from 2006 [26]. Even though the models for computation of attack trees have since
been improved [27, 28, 29, 30, 31, 32, 33, 34], the earlier model from [26] was sufficient
for the current work.

9

2. Background

2.1 Blockchains and DLT

This section will introduce blockchain technology. To define what blockchains are, we
come back to the definition proposed by Wikipedia [4]:

A distributed ledger (also called a shared ledger or distributed ledger technol-
ogy or DLT) is a consensus of replicated, shared, and synchronized digital
data geographically spread across multiple sites, countries, or institutions.[5]
Unlike with a distributed database, there is no central administrator.[6]

Thus we can think of DLT/blockchains as a kind of distributed database technology. Like
many other databases, blockchains can store data, set permissions and execute code on
the data. In the database world the code is often called stored procedures, whereas in the
blockchain world it is often called smart contracts [35].

As the above definition from Wikipedia specifies, blockchains differ from distributed
databases for their lack of central administrators. Thus, no single administrator can tamper
with the database: not with its data, nor with its code and neither with its permissions.
Unless otherwise noted, we are assuming a Byzantine fault tolerant (BFT) model, a strong
model of consensus which allows participants to break the protocol in arbitrary ways,
including lying maliciously on purpose.

Any reading or writing to the database will have to be approved by a consensus between
multiple participants. The exact details vary between systems, but as a simple mental
model, we can imagine that the participating computers, owned by different entities, are
coordinating and voting in real time between each other whether to approve any specific
state updates for the system. In some cases, such real-time voting is literally a majority
voting protocol, albeit the voting happens in multiple rounds and phases – as is the case
with the PBFT/Tendermint consensus [7] – and in other cases like Bitcoin and Ethereum,
their Proof-of-Work consensus achieves eventual consistency across multiple participants
over time [36, 37].

10

Naturally, every bit of shared state is exactly the same across all parties (provided they have
synchronised up to the same point). Often this means that any state-changing transactions
that are executed in the system must be fully deterministic, as they must always lead
to exactly the same result on all replicas (and the replicas cannot simply trust others to
do the computations for them). A notable exception is Hyperledger Fabric which does
allow non-deterministic transactions, but eventually, the consensus still decides on exactly
the same value for everyone (that is, the transactions have to be deterministic on enough
"endorser nodes" at the same time during the time of "endorsing", but they do not need to
be fully deterministic at all time and across all machines) [38].

Typically, blockchain systems replicate data in discrete data packets called blocks:

b0, b1, ..., bn

The first block b0 is often referred to as a genesis block, and each following following block
bi (where 0 < i ≤ n) links to its previous block bi−1 via a cryptographically strong hash
value (traditionally, this has often been the SHA-256 hash function taken over the contents
of the entire previous block). Since the hash value of every block is calculated over the
entire block contents, it therefore also hashes over the hash value of the previous block.
Thus, the hash of the last block bn uniquely authenticates the entire chain of blocks (and as
hash values tend to be short, they can be conveniently compared between participants even
using low-bandwidth communication mediums, even by humans speaking over the phone,
if the need ever arises).

Over time, this forms an ever growing hash chain of blocks which allows auditing and of
the entire system over time, bearing similarities to the event sourcing architectural pattern.
Under normal operation, no blocks ever get removed or modified, only appended (except
as part of an eventually consistent consensus algorithms like Bitcoin and Ethereum use,
where the more recent blocks may take some time to settle).

In general (without sharding and privacy considerations), all participants receive the exact
same set of blocks. Therefore, everyone shares the same history: there should not be a
parallel history that differs (except again for short time periods in eventually consistent
consensus algorithms). Such parallel histories are called "forks" of blockchains, and
consensus algorithms attempt to prevent them as best as they can. When illegal forks
happen, many blockchain security properties can no longer be guaranteed; perhaps the
most famous example of this is the double-spending problem, where the users can spend
the same amount of money multiple times (once on each fork), and each fork on its own

11

looks legitimate to observers.

For completeness, the term "fork" can also refer to perfectly welcome changes in the
consensus protocol which may lead to parallel chains: one chain with the old protocol and
another chain with the new protocol. However, as these changes are planned, measures can
be taken to ensure that people are not negatively harmed by them (for instance, reminding
everyone to upgrade their software can help ensure that they do not stay on the old parallel
chain) [39].

In many designs (including Bitcoin and Ethereum) all fully validating clients download
all blocks (even if they are not consensus participants themselves); in real time, as the
blocks become available, such clients verify the entire contents of the block (according to
shared validity conditions) and only accept such blocks whose state updates fully satisfy
their validity conditions. For example, in the case of Bitcoin, double-spending transactions
are not allowed to be included (these are transactions that spend money that the owner
has already spent, without receiving it back from anyone) – thus even if the consensus
participants create a block with an invalid double-spending transaction, the other fully
validating clients will reject that block and any updates that it contains are ignored.

The blocks also often include any necessary metadata for verifying the correctness of the
block contents – after all, the verifying participants cannot simply trust that the block
contents are valid –, for example, currency transfer transactions may be signed by the
respective account owners, and the resulting digital signatures are included inside the
blocks. The blocks also come with authenticating information to verify that the consensus
participants have indeed approved the block, as required by the consensus algorithm (in a
simple case, this could be a list of digital signatures from consensus participants over the
block).

An important classification of blockchains is around their openness to welcome new partic-
ipants. Permissionless blockchains like Bitcoin and Ethereum are open for participation by
anyone: merely having enough computation power is sufficient to allow anyone to partici-
pate in the consensus of these blockchains, and anyone is allowed to transact on the systems.
Such platforms attempt to stay as neutral as possible, welcoming any participation by all
people, often anonymously, generally without the need to perform Know-Your-Customer
(KYC) verification.

Permissioned blockchains, on the other hand, allow only identified participants to perform
in consensus and/or to transact on the blockchain. The permissioning entity could be
a single entity or it can be a coalition of multiple parties. Examples of permissioned

12

blockchain technology include Hyperldger Fabric and R3 Corda.

Public blockchains are visible to everyone, private blockchains are visible to a smaller
number of parties.

Public proof-of-work blockchains (for example, Bitcoin and Ethereum) typically call their
consensus participants miners, whereas permissioned blockchains often refer to them
as validators (note that when public Ethereum will be transitioning to proof-of-stake
consensus, it too will start to call their consensus participants as validators).

Many blockchains have the property of making appearing more resilient, more secure and
more trustworthy compared to some central parties alone. Some public permissionless
blockchains (particularly, Bitcoin and Ethereum) are further claimed to have the property
of censorship resistance from governments; although this property is not analysed in the
current work, it is an often-claimed benefit of such blockchains.

For more information on blockchains in general, Wikipedia has an introduction article and
links to resources for further study [40].

2.2 On-site Security Ceremonies

Carl Ellison introduced the idea of security ceremonies in 2007, with the following abstract
in his paper [41]:

The concept of ceremony is introduced as an extension of the concept of
network protocol, with human nodes alongside computer nodes and with
communication links that include UI, human-to-human communication and
transfers of physical objects that carry data. What is out-of-band to a protocol
is in-band to a ceremony, and therefore subject to design and analysis using
variants of the same mature techniques used for the design and analysis of
protocols. Ceremonies include all protocols, as well as all applications with a
user interface, all workflow and all provisioning scenarios. A secure ceremony
is secure against both normal attacks and social engineering. However, some
secure protocols imply ceremonies that cannot be made secure.

In the current work, we focus specifically on on-site security ceremonies as an alternative

to blockchain consensus and other forms of verification available to blockchain users. To
be clear, blockchain consensus is also a kind of security ceremony in itself, involving

13

both people and protocols; we contrast blockchain consensus with on-site ceremonies that
typically take place in a fixed location and lead to an agreement between humans that they
a set of computers are trustworthy, without the need for a blockchain-type verification
afterwards. Examples of such ceremonies include the DNSSEC key signing ceremony
[18, 17], various private PKI key ceremonies on the digital certification market [42] and
ceremonies for counting the votes in the national internet voting systems in Estonia, as
well as electronic voting pilots in Norway and Australia [43], among others.

Although using a blockchain consensus can be more secure compared to meeting in person
due to less physical risks and the fact that the operators of the blockchain consensus
computers do not necessarily even have to know each other, there are also ways to make
the on-site ceremonies more secure: not everyone needs to be physically present: cameras
and other sensors can be used for remote participation, for which the participants can send
trusted representation to set them up.

Although the economics of the solution are left for future work, a potentially simple
solution for remote participation could be the use of smart phones as sensors on the
ceremony site, potentially more than one phone per user (multiple phones allow the user
both to get a better view of the ceremony environment and also to get a better view of
whether the phones themselves are being maliciously tampered with). Users who trust the
same phones could also share the feeds from the same phones. Phone cameras can be used
for getting a live recording of the ceremony, various wireless connections on the phone
might be usable for connecting to electronic tamper-evident seals and depth sensors on
the phones can provide for additional data. On a very high level, this may be expected to
replicate the canonical blockchain verification model – in both cases, multiple users are
"watching", they all have to trust their own machines (in this case, also their sensors), and
they all connect to each other "electronically" without being physically present.

A remaining difference would be the machine itself that performs the computation of
the service – thus, if one does not trust any particular operating system or hardware
manufacturers, a BFT consensus would still be warranted. For completeness, it should be
mentioned that the on-site ceremony also supports setting up a BFT consensus of machines
on the site, both with or without a corresponding "regular full node" verification on the
client side. Which model is the best for a given situation will have to be decided on a
case-by-case basis.

An interesting use-case for using a hybrid BFT consensus together with a ceremony could
be when the number of consensus nodes needs to be low (perhaps 2 or 3 computers) due to
economical or performance reasons, yet the people using the system do not wish to trust

14

merely one operator for each of these computers. And at the same time they may not be
willing to settle for just 1 computer, as they may not trust a given computer architecture
enough. In that case, all such consensus computers could have a security ceremony of their
own, with multiple participants (some participants potentially joining remotely).

Physical defenses can also be duplicated redundantly (for instance, if security hardware
is not mutually trusted, each participant could send their own security hardware into the
computer room). Section 3.4 goes into more details on the assumptions on how many
people would have to collude in a ceremony to cause the system to misbehave.

We call the people who participate in the on-site ceremony witnesses. These people do
not necessarily have to be security experts themselves; rather, the ceremony can often be
designed in such a way that, with proper instruction, the participants can follow along and
verify the honesty of the ceremony without much IT education. There are usually one or
more leaders (perhaps called ceremony administrators) who perform the work of setting
up and configuring computers, while witnesses are carefully watching to make sure the
administrator follows his intended script and does not do anything suspicious.

It is also possible to extend the ceremony to the purchasing of computer equipment (in
the simplest case, all participants could enter a computer store together; in more complex
cases, the equipment could for example be sealed in tamper-evident packaging in factory
and the on-site ceremony participants will observe the unboxing of the computer together,
verifying that the tamper-evident packaging has not been tampered with).

In principle, the concepts of on-site security ceremonies can be extended to every aspect of
IT: hardware manufacturing lines, software development, delivery services, and so forth
– could all be implemented with remote and/or local witnesses present. Such approach
might allow for manufacturing hardware that multiple non-friendly countries can trust
simultaneously; however, the economics of such operations would have to be separately
analysed, and lacking any such initiatives in practice, it might be make more sense for such
countries to use a decentralised protocol between themselves, especially for an one-off
case.

15

3. Body of Work

3.1 Blockchains as "Trust Machines"

Many factors can go into the decision process to use a blockchain, but almost universally,
the most common advantages of blockchains are said to be trust, honesty, security and
transparency. We have previously described how the properties of trust, honesty and
security are interrelated in section 3.1. The remaining property of transparency is not
strictly unique to blockchains: centralised architecture could just as easily provide more
data for the world; the difference might be lack of trust in such data, which brings us back
to the word "trust".

"Trustworthiness" is perhaps the most frequently discussed benefit of blockchains. In 2015,
The Economist famously called blockchain the "trust machine" [14] and Wüst and Gervais
write in [8] the following: “In general, using an open or permissioned blockchain only
makes sense when multiple mutually mistrusting entities want to interact and change the
state of a system, and are not willing to agree on an online trusted third party.” This suggests
that a trusted online third party could generally serve as a replacement for blockchains,
if such a party exists and is agreed to by the parties. Thus, blockchains are claimed to
be useful in general only if one cannot find (and agree to) a trusted third party to run the
(state-changing) functionality of the service.

The above conclusion also makes intuitive sense: you can take any blockchain system
and transfer all its participating computers to a common owner, perhaps a well known
cloud business. To the users, the blockchain would still function exactly the same, but
what has changed is the ownership over participating computers: the blockchain would
essentially be owned and operated by a single entity. The entity can then proceed to remove
the blockchain technology without affecting functionality for their users: first the entity
might reduce consensus participants to just one member (that is, one computer that they
own), and then remove the consensus code altogether. The users would still be able to use
everything like before, except eventually there will be little blockchain technology left in
the system. If the central party is trusted by their users enough to do this, this appears to
be a valid alternative to the blockchain, possibly with its own set of advantages (efficiency
and cost would be likely candidates). Thus, the lack of trust in the central operator’s ability

16

to run the service single-handedly would be a clear and valid reason to use a blockchain
instead (or to move to an alternative design altogether), yet if the trust was there, the
functionality could, in principle, still be run centrally.

On the flip side, there can also be situations where consensus would be less trustworthy
than a central actor: if the majority of consensus participants are maliciously colluding, it
may be better to use a trusted central party instead. (And using multiple such trustworthy
central parties together in BFT blockchain consensus would be better still.) Naturally,
system designers are expected to build their systems according to the needs of a situation.

But what exactly is meant by the word "trust"? We have adopted the definitions from
the 1995 paper due to Mayer et al. [44], where they propose three different aspects of
organisational trust:

1. Ability. “Ability is that group of skills, competencies, and characteristics that enable
a party to have influence within some specific domain.” [44]

2. Benevolence. “Benevolence is the extent to which a trustee is believed to want to do
good to the trustor, aside from an egocentric profit motive. Benevolence suggests
that the trustee has some specific attachment to the trustor.” They clarify the concept
with an example involving a manager and an employee: “If the manager also were
benevolent toward the employee, he or she may try to protect the employee from
the possible ramifications of mistakes. A manager who is less benevolent to the
focal employee may be more disposed to use the information in a way that helps the
company most, even at the possible expense of the employee” [44]

3. Integrity means that “the trustee adheres to a set of principles that the trustor finds
acceptable”. It should be added that integrity includes personal morals and work
ethic, people doing what they promise. “Such issues as the consistency of the party’s
past actions, credible communications about the trustee from other parties, belief
that the trustee has a strong sense of justice, and the extent to which the party’s
actions are congruent with his or her words all affect the degree to which the party is
judged to have integrity” Using again their example of a manager and an employee,
they mention that “if the manager’s integrity is questionable, can the employee help
but wonder how long it will be until the manager betrays her or him as well?” [44]

We will be using the above definition of trust in the context of teams and employees, many
of whom are working to provide useful services to their users. We suggest that the above
benevolence property is seldom used in such business contexts – in a business setting, one
does not generally rely on forming significant personal attachments to each other – thus
we focus on the other two aspects of trust instead: ability and integrity. We tie both of

17

these aspects together under the following definition.

Definition 3.1.1 (Dishonesty). We call a service dishonest or untrustworthy if it fails to
comply with at least one of the following criteria for correctness at least once during a
time period:

� All computers that make up the service (often called "servers") execute only their
designated software, without alteration, and nothing else. (In practice, this definition
has to be somewhat relaxed, so long as no significant harm will be done by this. For
example, a legitimate system administrator asking the server to tell its local date and
time does not necessarily constitute a trust violation.)

� All people working on the service follow their designated work protocols.
� All designated software and protocols of the service are created in such a way that

most experts in the intended society would consider the system reasonably fair and
secure.

� We include all aspects of security from the traditional security triad of confidentiality,
integrity and availability, unless mentioned otherwise.

For the remainder of this work, it is assumed that customers would naturally want to trust
only reputable companies and that such companies generally make a serious attempt to
hire capable and reasonably trustworthy people. Thus we do not investigate the question of
assessing capabilities of employees (for example, auditing and certification can be useful
for such purposes). We also do not estimate reputations of companies; rather, we assume
an existing good reputation and focus on how that company should build its processes:
whether they should use a blockchain or not, whether some positions in the company would
require multiple people approving certain actions.

18

3.2 Properties of Tendermint Consensus as a Typical Example

Byzantine fault-tolerant consensus algorithms can be parameterised in multiple ways – for
example, to favor availability over integrity, or vice versa. A typical balance for permis-
sioned blockchains is used by the PBFT/Tendermint consensus algorithm [7], a partially
synchronous BFT consensus with strong similarities to the Practical Byzantine Fault Tol-
erance (PBFT) algorithm from [23]. The algorithm is also used in the Cosmos public
blockchain network [45]. The properties of the Tendermint consensus are summarised as
follows.

The mechanism uses a "round robin" leader rotation scheme where each consecutive block
is proposed by a different consensus participant. This ensures that a small number of
participants cannot censor transactions or keep the system from progressing for long.

In the simplest cases, all consensus participants have an equal number of voting power, but
the following also generalises for more complex voter-weight assignments.

Here and in the rest of the document, we use the following notation to represent the floor
and ceiling functions:

bxc = max {m ∈ Z|m ≤ x}

dxe = min {n ∈ Z|n ≥ x}

We represent the total number of consensus participants as n, where n ≥ 1. In practice
it often makes sense to use n ≥ 4 consensus participants in order to allow for at least
one redundant party, due to the fact that the protocol requires at least b2

3
nc+ 1 consensus

parties to function correctly for it to finalise new blocks.

Depending on the number of consensus participants, failure scenarios can occur under the
following conditions.

� An illegal fork in blockchain (that is, an illegal parallel blockchain) can occur if at
least one of the following is true:

– At least n − 2(d1
3
ne − 1) consensus participants are acting "maliciously"

and network packets are being delayed to prevent the remaining ”honest”
participants from seeing the other parallel chain before finalising on their own
one. (See appendix on page 78 for an explanation of the formula.) For example,
with n = 10 total consensus participants the attacker would need to co-opt at
least 4 of the participants (assuming again that specific network packets can be

19

delayed sufficiently).
– Over 2/3 of consensus participants (that is, b2

3
nc+1 participants) are "malicious"

and all network packets are arriving on time. For example, for n = 10, that
would be 7 participants.

� An invalid state transition in blockchain (for instance, a payment of more money
than an account holder actually has) can occur if over 2/3 of consensus participants
(that is, b2

3
nc+ 1 participants) are "malicious".

� A failure to update the blockchain state can occur if at least one of the following is
true:

– at least d1
3
ne the consensus participants are unavailable to participate. For

example, for n = 10, that would be 4 participants.
– the one consensus participant whose turn it is to propose a new block is unable

to participate, and the same for the next proposer in line and so forth (one
proposer at a time).

� A transaction can be censored if at least d1
3
ne the consensus participants are willing

to reject blocks that include that transaction (and they can create blocks without that
transaction when it is their time to propose a block).

There is often a general assumption that adding more participants to the consensus makes
the system more reliable. However, this only holds true if the new participants are reliable
enough. To illustrate this, we can calculate the likelihood that at least c among n parties
are reliable using the binomial distribution, under the assumption that the all parties have
the same probability p of being reliable (X is a random variable representing the number
of honest parties):

Pr(X ≥ c) =
n∑

i=c

(
n

i

)
pi(1− p)n−i.

As an example, table 2 lists the availability probabilities of a consensus group with n = 10

participants within the Tendermint protocol (that is, the probabilities that over 2/3 or 7
of the participants are available), depending on different reliability probabilities of each
individual member (p).

We can see from the above table that availability of consensus with n = 10 participants
can be dramatically better than availability of a single member, but only if the availability
of a single member (p) is reasonably high. Accordingly, with smaller values of p, the
consensus availability can be significantly less than that of a single member. In practice, it
is generally assumed that the configurations are chosen favorably by the designers of the

20

Table 2. Probabilities that, in a group of n = 10 participants, we have at least 7 participants
who are reliable, depending on the probability of a single participant being reliable (p),
assuming the probabilities for all participants are independent.

p Pr(X ≥ 7)
0.0 0.0000000000
0.1 0.0000091216
0.2 0.0008643584
0.3 0.0105920784
0.4 0.0547618816
0.5 0.1718750000
0.6 0.3822806016
0.7 0.6496107184
0.8 0.8791261184
0.9 0.9872048016
0.99 0.9999979987
0.999 0.9999999998
1.000 1.0000000000

system.

21

3.3 Blockchain Validation Beyond Consensus

In many popular blockchain designs there is a distinction between blockchain clients who
participate in consensus and other clients who do not. Those who do not participate in
consensus can still verify blockchain contents for themselves, and depending on a design,
even sporadically alert other users automatically of any wrongdoings they find, for example
by broadcasting computer-verifiable fraud proofs [46], or even participating in protocols
to punish the misbehavior of consensus participants [47]. Such blockchain clients who
download and verify all blockchain contents are often called "full nodes" or "fully verifying
nodes", as is the case for Bitcoin [39] and Ethereum [48], among many others.

Here we will distinguish between two kinds of full nodes: these who participate in
consensus are called validators and these who do not are called regular full nodes. Often,
lightweight nodes are also mentioned which do not verify all transactions [49]; such
lightweight nodes are out of scope for the current work.

This, even if the consensus is compromised (either consensus participants agree to create
"illegal" parallel blockchains – forks – or they agree to produce blocks that are considered
invalid by the blockchain protocol, perhaps including transactions that spend money which
does not exist), other regular full nodes can still verify a lot of their behavior and discover
their wrongdoings. Let us classify the different types of such misbehavior that consensus
participants can engage in and how well each can be detected by regular, non-validating
full nodes. We will cover all aspects of security – confidentiality, integrity, availability. (For
reference, chapter 3.2 lists the conditions under which integrity and availability failures
can occur under a specific consensus algorithm.)

� Confidentiality of blockchain contents is typically not a task for consensus, unless it
is a private chain or the system is using privacy techniques like secure multi-party
computation (MPC). There are no good ways for regular full nodes to directly detect
whether a computer has privately leaked information to outside parties who continue
to keep it a secret; only probabilistic predictions can be made about the likelihood of
such behavior.

� Integrity failures. Integrity failures can be created by the consensus in the following
two ways:

– Illegal blockchain forks (illegal parallel chains). These cannot always be
detected with certainty by full nodes, unless they receive some help from other
blockchain clients, due to the fact that lever consensus participants would not
send multiple forks to the same client, but each fork would go to a different
client. To learn about the duplicity of the validators, in the general case of a

22

typical PBFT consensus algorithm the targeted clients would need to hear from
other clients that received a different parallel blockchain. Such synchronisation
is often implemented using a peer-to-peer gossip algorithm – for an example,
see [24] – but in principle, it could even be implemented manually (perhaps
by the users occasionally exchanging block hash values with each other). It is
also important to note that for this detection to work, the clients on the other
side of the fork must be available, able and willing to send their information to
the participants on other forks; attackers may attempt to disrupt or delay such
synchronisation, for example by flooding the synchronisation protocol with
their own messages.
For completeness, it should be mentioned that there exist also situations where
the lack of parallel blockchains can be reasonably detected without commu-
nicating with other parties, such as when enough consensus participants are
known to be extremely trustworthy, or when a consensus algorithm makes
forking "physically impossible" (as an example, with Proof-of-Work, if the
world’s entire computational power is known and accounted for and most of it
has clearly participated for long enough time in the creating of a single chain –
as can be seen from the Proof-of-Work artefacts on the blockchain itself –, it
would be extremely unlikely for another parallel chain to exist).

– Invalid blocks (according to the validity conditions of a given blockchain).
Assuming no bugs in software, this attack should be perfectly detected every
time by every full client that receives the invalid blocks. Such attacks may fool
more lightweight nodes that do not validate all block contents, however.

� Availability
– Censoring updates to the chain (either all updates or just specific transactions,

perhaps from certain users). This may be naturally detectable by the user(s)
whose transactions fail to go through; in some cases, other observers on the
network will be able to detect censorship as well, and even specific protocols
have been proposed for this purpose (for one informal suggestion, see for
example [50]).

– Hiding block contents from parties. Technically, once the consensus partici-
pants have created a new block, they do not have to show the completed block
to anyone, or on a smaller scale, they could show the block only to select
participants. Obviously, anyone who does not receive a block will notice it,
especially if the blocks have to arrive at a known rate (say, once per second on
average).

To summarize, all integrity and availability failures can be detected by regular full nodes,
with the caveats that detecting invalid forking requires exchanging information between

23

parties on different forks, and availability failures can only directly be detected by the
parties to whom the system is not available (without additional observer protocols).

This ability of regular full nodes to detect consensus failures can be very important:
consensus participants may be less likely to misbehave if they know they are being
observed, and it allows other network users to take action against the misbehaving parties
(including taking away their rights as consensus participants and punishing them with for
example monetary fees; this has been automated in the so-called "slasher" protocols for
example, where consensus participants have to put down security deposits that can be taken
from them automatically if the network detects that they have signed off on multiple forks
of the blockchain, have built an invalid block, or appear to be ”offline” for too long [47]).

24

3.4 Properties of On-Site Ceremonies

As specified in chapter 2.2, on-site security ceremonies can be seen as a natural alternative
for blockchain consensus (at least for permissioned implementations), and the ceremonies
can, in a sense, also function as an alternative for client-side full node verification (assuming
there is enough security). This idea of using on-site security ceremonies is not new:
variants of such security ceremonies have been in use for some time in different contexts
(for example, see [18, 42, 43]). The current chapter answers the following problem: if we
already know the integrity of the people involved, which we express as a probability of
them acting dishonesty, how do we calculate a corresponding probability of dishonesty for
an entire on-site security ceremony? Later chapters will investigate how to assign more
concrete probabilities for different people.

In the case of BFT consensus protocols, a typical configuration is to allow the consensus
to proceed so long as over 2/3 of consensus participants have signed off on the block, thus
producing an invalid block would require comprising an equal number of nodes: over 2/3

of consensus participants. In principle, one could achieve even higher integrity guarantees
by requiring a larger share of participants to sign off on block, all the way up to 100%, but
there would be a price to pay in availability. For instance, in the extreme case of requiring
100% of participants to sign off on every block, the system would stop producing any
blocks every time there was even one participant who was unwilling (or unable) to sign off
on a block: every single participant would have veto power over any and all updates.

On the other hand, for on-site security ceremonies, it might not matter if someone vetoes
a ceremony if we can simply reschedule it again at a later date, perhaps with different
participants next time. Eventually we should have a ceremony that succeeds and we can
start to use the computer we have just set up; at that point, nobody can veto it as it is already
running and no single party would have access to it alone. There could still be situations
where we need to act fast – perhaps when a data center has gone offline unexpectedly and
one needs to move the application over to another data center quickly; at that point, it
could be disadvantageous to have the entire decision to move data centers be vetoed easily
by a single person.

For simplicity and for ease of comparison, we will assume that the on-site ceremony will
also have a threshold of over 2/3 participants needing to confirm any action of system
administration that could result in a security violation. Various different models are
possible as well (in particular, appendix on page 82 goes into a bit more details about the
risks of allowing a single member of a team to veto the result of the ceremony and suggests
some solutions).

25

Let us specify conditions analogous to chapters 3.2 and 3.3, which follow naturally from
our established premises:

� Confidentiality. An on-site ceremony can be used to configure a computer that
operates on secret data, analogous to secure multi-party computation but on a single
computer and secured by the ceremony instead of decentralised architecture. Secure
multi-party computation can be configured to accept various thresholds for honest
members, as can the on-site ceremonies. Here, however, as stated above, we have
chosen the option that over 2/3 of the witnesses have to approve every ceremony.

� Integrity, which has 2 sub-parts.
– Invalid forks. It is here that the witness ceremony has an advantage for the

same number of people on a BFT consensus algorithm like Tendermint, due
to the fact that invalid forking is not possible on a properly set up centralised
architecture: it is not possible for a centralised computer to split into two
computers, each on a separate "fork" of state updates. Thus, the number of
people to achieve a "fork" in state would be again over 2/3 of the witnesses,
as that is the number of people who can successfully complete a ceremony to
configure the computers however they see fit.

– Invalid state updates (blocks), similarly, require over 2/3 of the witnesses to be
complicit, a number similar to Tendermint consensus.

� Availability.
– Censoring some or all of the transactions, once the system is operational, would

again require over 2/3 of the witnesses to be complicit, as less people cannot
re-configure the system in any way. This number is larger than with Tendermint
consensus.

– However, stopping the ceremony from functioning altogether can be achieved
with merely d1

3
ne of witnesses (a number that is again comparable to the typical

BFT consensus parameters).

26

3.5 Comparing Blockchain Consensus and On-site Security Cere-
monies

As established in chapter 3.3, we are considering two modes (layers) of verification in a
typical blockchain (including in Bitcoin and Ethereum, as well as the Tendermint consensus
we use as an example): the two layers are:

1. The consensus protocol (e.g. the Tendermint consensus protocol).
2. Verification by regular full nodes.

Our cited source [49] additionally refers to lightweight nodes, which are out of scope for
the current work. As stated in chapter 3.3, the second layer (verification by regular full
nodes) is virtually perfect when detecting invalid blocks (to the extent that the verifying
full node itself is trustworthy), whereas detecting forks in the blockchain with Tendermint
consensus (and many others) requires successfully hearing from other parties who are
willing, able, and are aware of the other parallel chain. Such fork detection is often
implemented as an automated gossip protocol (for an example, see [24]; Bitcoin, Ethereum
and many other protocols also utilise gossiping protocols).

Let us compare the properties of Tendermint consensus from chapters 3.2 and 3.3 to
an on-site ceremony from chapter 3.4. Let us consider the different verification layers
separately.

1. The Tendermint consensus protocol vs on-site ceremony. To summarise our findings
above regarding the on-site ceremonies, we assume that on-site ceremonies for
any system administration action (that can result in a significant security risk) can
be stopped from occurring by d1

3
ne of witnesses, whereas it would take over 2/3

of witnesses to make the ceremony succeed at breaking a security property. This
is in some contrast to Tendermint consensus as elaborated in chapter 3.2, where
some actions have similar numbers of minimum parties acting dishonestly as the
on-site ceremony, whereas two types of attacks differ – a) forking using packet
delays, and b) censorship/availability attacks on an already-working system. Such
attacks can be achieved with less participants than with the ceremony, respectively:
a) n− 2(d1

3
ne − 1) and b) d1

3
ne.

2. The on-site ceremony, by default, lacks any verification comparable to that of
regular full nodes. Although full node verification rests on the trustworthiness of
the particular full node, and additionally the fork detection requires successfully
communicating with other full nodes – many of which can be frequently offline, a

27

fact which can be exaggerated by attackers without much suspicion in the short run
(by for example delaying network packets or flooding the gossip protocol with too
many messages) – the fork detection may be a slow process, which thus may end
up being a background process which may merely alert the user of a wrongdoing
a long time after user has already committed to a course of action based on wrong
facts (for example, a user selling a TV set may have given away their TV thinking
that they have received a payment for it, only to have the payment later be declared
suspect when their full node finally hears from the other fork). Even so, at least the
crime will be eventually detected (depending on the protocol, perhaps in a matter of
seconds, hours or days).
Thus, the best way to model the second layer of verification is the same: we can
model it as something that will not stop an invalid transaction, but will find out about
it in the near future. Assuming enough participants are trustworthy, the invalid fork
may be found with relative certainty in reasonable time (this is particularly important
if the number of regular nodes far outweighs the number of consensus participants).
If we wish for the on-site ceremony to have a similar layer of verification, then either
we would have to introduce a second service that verifies the first one in some way
(perhaps using blockchain technology and/or computational integrity proofs), or
alternatively, we can make the single ceremony more secure, perhaps by including
more people (particularly, we could involve the people would would otherwise be
running full nodes; in practice, however, we can probably achieve a good likelihood
of reliability with just a few additional people). More details on how to make the
ceremonies more secure are provided in section 3.7.1.

28

3.6 A Model for the Integrity of Humans

The following model estimates the integrity of humans. The results from this model can be
used to analyse various security risks associated with a service and can be plugged into for
instance the attack tree model [51, 26].

Specifically, the model from this section (and subsections below) can be used in the
following different ways:

� To estimate a probability of a dishonest act originating from a particular person
(inside or outside an organisation), we can use section 3.6.1 to estimate the proba-
bility that a given employee will choose to act dishonestly, depending on various
parameters.

� When analysing the act of enlisting additional people in a conspiracy (for example
using bribes or violence), section 3.6.2 can provide estimates of success and the
likelihood that the approached person will turn to the authorities instead.

Other sections in the document offer clarification on the integrity of hardware and software.
Specifically, when providing rough estimates for capabilities of attackers and their exploit
tool kits, sections 3.8 and 3.7.4 may help provide additional data points, whereas section
3.7.3 provides additional justification for our additional assumptions around backdoors
being unlikely to be detected.

Specific sub-sections below will contain additional descriptions on how and for what
purpose the information in the given sections can be applied.

The model for estimating human behavior has been built with consultations with a crimi-
nology expert, though (obviously) it cannot take into account the specifics of all situations.
Thus, the model should be taken as a starting point and a possible approximation of general
human trustworthiness.

Where the difference matters, when we talk about probability of dishonest acts (definition
3.1.1), we typically talk about the likelihood of (at least one) dishonest act in a year.

As usual for security analysis, one may have to consider many different kinds of attackers:
state actors, criminal organisations, lone criminals, competitors, employees, employees of
tool builders, delivery personnel, etc. Various taxonomies have been proposed for the task.

Any monetary values below are represented in Euros (C) and the examples assume an

29

average European Union (EU) context, but the general findings should translate to many
other countries naturally.

30

3.6.1 Probability of Dishonest Acts Of Individuals, Depending on the
Odds of Getting Caught.

Probability of dishonest acts from an individual matters in two cases: first, when an attacker
is trying to enlist an employee into a conspiracy, only dishonestly acting people will join
the attacker willingly. Second, when we are analysing a situation where the individual
is the one who is starting the conspiracy, we can use the probabilities in this section to
calculate the likelihood that the person who is legitimately employed in a position will
start that conspiracy. (This differs from the situations where we would already assume the
person to be an attacker beforehand.)

In our model, the probability of an individual acting dishonestly (p) depends on the
following parameters:

1. person’s probability of performing the dishonest act if they assume they won’t get
caught (w);

2. factor f that modifies the probability of a dishonest act depending on the probability
of getting caught and the attractiveness of the motivating goal;

3. person’s risk tolerance modifier r which we assume to depend on their social status;
this is based on the assumption that people who feel like they have more to lose tend
to take less risks of getting caught.

As an aside, we note the fact that since the person’s probability of acting dishonestly
depends on their likelihood of getting caught, this can make it somewhat harder to work
with attack trees: the overall likelihood of getting caught may not be known until the entire
attack tree is fully computed; only then can the probability of a dishonest act be computed
for said person (unless we assume that the person is not well informed about the situation
and assumes that a different attack tree is involved).

We calculate the probability of a person acting dishonestly (p) in the following way. We
first start by estimating the following values, which we then use in a formula.

First, we estimate the person’s "base" probability of acting dishonestly without factoring in
the fear of getting caught. It is assumed that the probability depends on the seriousness of
the crime. The value is represented with the letter w and its values can be read from table
3.

Secondly, we proceed to look up the factor f , which takes into account the person’s

31

Table 3. Our assumed person’s "base" probability for performing a dishonest act if they do
not fear getting caught. We assume the probabilities differ depending on the seriousness of
a crime.

Crime Probability without getting caught (w)
White-collar crime 0.8
Threatening with violence to hide a crime 0.1
Actually carrying out violence to hide a crime 0.01

likelihood of getting caught and the attractiveness of the goal.

We begin by calculating someone’s overall odds of getting caught during the attack, as they
understand their own odds. The attackers are assumed to be rational, but some attackers
may not be given enough information by others, misleading them for example into thinking
that the odds of getting caught are less than they actually are. When calculating a person’s
willingness to attack, it should be calculated based on what the person thinks is true.

Thus, the odds of getting caught may include the odds that an auditing procedure will catch
the crime, or perhaps the tax office will start a successful inquiry, or potentially another
person being proposed to will report the whole conspiracy to authorities. This overall
chance of getting caught depends on the use-case at hand and will have to be estimated
on a case-by-case basis, for example using attack trees (which may mean that the attack
trees will have to be computed partially out-of-order: the likelihoods of getting caught
specified on the upper nodes of an attack tree have to be finished before the probability of
participation can be calculated for lower nodes that specify the joining of the participants).

Once we know the person’s likelihood of getting caught as the person estimates it (q), we
can estimate their factor f for probability of a dishonest act by reading the value from
table 4. The factor f depends on three factors: probability of getting caught, seriousness
of the punishment and the attractiveness of the prize for a successful attack, represented as
a monetary value in Euros in the year 2020.

Our assumptions represent a typical European Union citizen with a monthly net income
of C 2 000 in 2020. For people with different income levels, the attractiveness of the
monetary values will have to be adjusted accordingly; a linear adjustment is suggested as a
first approximation: person A whose income is thousand times larger than that of person
B would find a billion Euros as motivating as person B would find million Euros. In other
words, the prize amounts listed in the table header should be divided by a person’s income
divided by 2000.

32

Additional adjustments may be necessary for people whose income level is not representa-
tive of their overall wealth level. Precise mechanics of such adjustments are out of scope
for the current work, but one suggestion for consideration could be to compare a person’s
overall wealth to that of a typical EU citizen which the table represents. (For instance, we
might assume that the net wealth of a typical adult in the EU is around 125 000 Euros and
calculate analogously to the income calculation.)

The table lists values for factor f for specific probabilities and prize amounts in Euros.
To calculate f for probabilities or prize amounts that are between the values listed in the
table, one could use interpolation – for instance, one can interpolate between the monetary
amounts and the corresponding value of f . It is out of scope for the current work to
determine the most accurate ways of interpolation, but as a first approximation, standard
linear interpolation techniques can be used, as shown for example in the following equation
(f0 and f1 represent the values of f from the table, m0 and m1 represent corresponding
money prize amounts from the table):

f =
f0(m1 −m) + f1(m−m0)

m1 −m0

.

We do not specify an analogous method for extrapolating to values outside the bounds
listed in the table.

This table (like other tables about human behavior in this work) was created using consul-
tations with a criminology expert and its estimations take into account the fact that people
fear criminal charges but at the same time a huge sum of money may overwhelm their
otherwise rational thinking. It also takes into account that there are a certain amount of
people who do not necessarily act according to realistic likelihoods of getting caught.

Crimes of passion are excluded from the table, as they tend to generally last for a shorter
amount of time and typically do not last long enough to create a conspiracy or a so-
phisticated attack. However, there exist also attacks that do not require sophisticated
planning, and studying them could be part of a future study. For now, we may propose
that a probability for passion crimes per year per attacking person might be on order of
p = 0.001.

Thirdly, we must further take into account that people with higher social status have more
to lose, and are thus less willing to take the risk of getting caught; for some of them, a
chance of getting convicted at all might feel almost as bad as going to jail. We will use the

33

Table 4. Our assumed values for factor f , to be used in equation 3.1. Factor f depends on
three variables: the likelihood of getting caught (q, on the vertical axis), seriousness of the
punishment (also on the vertical axis) and the attractiveness of the prize for a successful
attack (on the horizontal axis). The table represents a typical European Union citizen with
a monthly net income of C 2 000. For people with different income levels or whose wealth
is not typically represented by their income level, the attractiveness of the monetary values
will have to be adjusted as discussed in section 3.6.1. Finally, as people generally do not
end up in jail for 100 Euros in the European Union, we have used the phrase "N/A" ("Not
Available") for such combinations.

Type of a
criminal act

Probability
of getting
caught (q)

Prob. of
risking for

C 100
(f)

Prob. of
risking for
C 10 000

(f)

Prob. of
risking for

C 1 000 000
(f)

Prob. of
risking for

C 1 000 000 000
(f)

No jail 0 0.9 0.95 0.99 0.999
prospects 0.001 0.01 0.05 0.5 0.9

0.01 0.005 0.01 0.1 0.5
0.1 0.0002 0.0005 0.001 0.005
0.5 ... 0.9 0.0001 0.00012 0.0002 0.0005

Jail 0 N/A 0.95 0.99 0.999
prospects 0.001 N/A 0.01 0.05 0.9

0.01 N/A 0.004 0.02 0.1
0.1 N/A 0.001 0.002 0.001
0.5 ... 0.9 N/A 0.00012 0.0002 0.0005

34

Table 5. Person’s risk modifier r that represents a change to their probability of taking a
risk depending on their social status.

Social status Status-based risk modifier (r)
Top executives, high politicians 1/3
Experienced skilled professionals 1/2
Neutral 1
People with "nothing to lose",
or in some cases, people who
strongly fear or have already
lost "everything".

10

values from table 5 to get a risk modifier corresponding to the person.

Finally, using the numbers from above we can calculate a person’s likelihood of a dishonest
act can then be calculated as follows:

p = w ∗ [1− (1− f)r]. (3.1)

We can simplify the above formula for small values of f in the following way: p = wfr.
Particularly, when rounding to a single digit, values f ≤ 0.1 already work reasonably
well with the simplified formula. The simplified formula is especially useful for quickly
mentally estimating the probability of a dishonest act: one simply has to multiply the three
values looked up from tables 3, 4 and 5.

35

3.6.2 Likelihoods of Success and Getting Caught When Enlisting
New People

There are several ways people can enlist others into the attack conspiracy. This chapter
calculates not only the probability of success for each act of enlistment (p), but also the
probability of co-conspirators telling authorities about it (we represent that probability
with q). Thus, from this section we get a tuple of values (p, q) that we can use for further
analysis of attacks.

The importance of probability of reporting to authorities (q) depends on the case at hand.
For some attacks, authorities finding out about the attack means the attack has failed (for
instance, once a conspiracy is found, a security ceremony may be cancelled before its
results are ever used for anything important); for such attacks, probability q signifies the
probability of failure for the attack. For other attacks, notifying authorities is not even
a major concern for attackers: perhaps they have stolen something and will escape to a
foreign country with the item, and the authorities will not be able to get to the attacker.

In the following we list different ways to enlist people into conspiracies, each with their
own sets of likelihood of success (p) but also a likelihood of being reported to authorities
(q).

Proposing to or bribing other people.

This comes with a risk that other people will give up the proposer to the authorities (even
if they initially appear to agree to the conspiracy). This probability of getting caught
can depend greatly on how close the proposer and the proposed are to each other: close
family members are far less likely to give up the other person, compared to people who
do not know each other. Thus, smart attackers will tend to approach new people through
friends as much as possible; under the rational attacker model (that is, an attacker that
maximises their likely outcome) one would generally assume that at each step, a new
person is approached by someone who is the closest to them among the people who already
are part of the conspiracy.

We can use table 6 to estimate the probability of getting caught q when proposing to a
person, depending on their level of closeness to the proposer. For instance, if a conspiracy
will require 3 people, 2 of which are friends and another is a very close colleague, the
probability of getting caught for all people in the conspiracy via these mutual proposals is
qcombined = 1− (1− 0.01) ∗ (1− 0.01) ∗ (1− 0.1) = 0.11791. Proposing to each separate

36

Table 6. Likelihood of getting reported to authorities when proposing (q), depending on
the closeness of the person being proposed to.

Closeness
Likelihood of getting
caught when proposing
(q)

Close family, the closest friend 0.001
Friends 0.01
Very close colleagues 0.1
A colleague, frequently met 0.9
Unknown auditor 0.999

person could be a separate node in an attack tree, for example; in that case, the aggregation
of such values would be left to the mechanics of the attack tree construction.

We assume the relationships to be symmetric: that is, if person A considers person B to be
a friend then person B will similarly consider person A to be a friend. In principle, this
model could be extended to non-symmetric understanding of relationships as well, where
every person would have a different perspective on how likely they are going to get caught,
and would act accordingly.

Thus, in general, we can say that the likelihood of getting caught is multiplied by the
probability q from the said table.

The likelihood of success p depends on two things: 1) whether the invited party is also
willing to act dishonestly – specifics for calculating that are specified in section 3.6.1, and
2) the likelihood that the inviting party and invitee both trust each other not to give them up
to authorities. This second part is indirectly already included in the calculations in the first
part (that is, it is already included in the calculations in section 3.6.1) by the fact that the
probability of getting caught increases during each such proposal (generally, the overall
probability of getting caught needs to be multiplied by the value q from above), and the
invited party’s probability of acting dishonesty directly takes into account the scheme’s
overall probability of getting caught.

We assume that, unless the situation dictates otherwise, the proposals to different people
can be considered independent probabilities, and their likelihoods of success can thus be
multiplied as usual.

Managers can replace and issue orders to teams, including the chain of command all
the way up to governments.

37

We assume that managers may have up to 100% control over people working under them
as they often have the ability to replace the teams (unless they are too far in the chain of
command, e.g. typically, democratic governments cannot arbitrarily replace teams in firms
at will). As an example, the managers may replace teams under the guise of using a team
they really trust; other people do not necessarily need to fully agree with the decision in
order to go along with it eventually.

An important aspect for some systems can be the independence of countries from each-
other’s influence. For the purposes of national security, we may assume that even other
honest people may "misbehave" against other countries, as ordered by their respective
governments. (A related idea is that the meaning of honesty would always have to be
compared to a local social context.) Thus, for some international systems, witnesses
or validators may need to be present from multiple countries, and the trustworthiness
of underlying hardware (and software) may also need to be considered from the same
perspective.

If the managers wish to replace teams with malicious participants, they may nonetheless
be limited by how many malicious well-trained experts they can find and dare to make
contact with. Most well-trained experts already expect to have a reasonably high status
in society and are thus far from being the people who would be desperate enough to risk
loss of reputation or criminal charges. Further, even if the experts are indeed criminal, the
managers may not risk proposing to them, as we saw in the previous point above. The
table 7 contains sample guesses about available well-trained malicious IT professionals for
attackers of different sizes.

Perhaps the most general defence against malicious managers could be independent audit-
ing of procedures and hiring decisions, which could even be ordered by the shareholders
of a company, without necessarily waiting for approvals by managers.

In many cases we might be able to make the simplification that managers higher up in the
ladder are less likely to attack due to more social status to lose, as well as due to having
more power and money, which makes them harder to coerce; if that is the case, then as
a first approximation, we may not need to always analyse the risks regarding managers
higher than the ones that are in the lowest ranks of these managers who are already capable
of carrying out the attack. Obviously, the details vary on the case at hand.

At the same time, a manager’s ability to issue orders generally does not extend to break-
ing the law; at that point, the manager should be considered a mere "proposer", albeit
potentially a close one. The exact specifics would have to be judged on a case-by-case

38

basis.

Threats of violence.

Violence can be a very effective tool of coercion. Calculating the probability of performing
or threatening with violent acts was discussed in section 3.6.1. The odds of getting caught,
however, can differ. We propose the following crude estimates:

� For regular, white-collar extortion, the likelihood of a single victim turning to
authorities may be q = 0.5.

� For more violent cases with threats of retaliation, perhaps the likelihood of turning
to authorities can be q = 0.1 per victim.

Note that we are explicitly not considering large organised crime units here who may have
credible means of threatening a large number of people at the same time, and who can
carry out retaliatory acts long past some of their members have gotten caught. Information
on such crime is partially classified and it is the work of governments to keep major threats
under reasonable control. One potential defense measure for organisations could be to hide
the identities of key personnel, although that might not always be enough against a large
blanket-threat.

We are also excluding crimes of passion, as we assume that the attackers would very likely
calm down before they could finalise a complex scheme involving multiple people. It
is also assumed that such attackers do not necessarily behave according to the rational
attacker model. However, such attacks cannot completely be ruled out in every situation;
critical resources may need some protection against any single person’s sudden misbehavior
regardless.

Infiltration using legitimate channels.

We assume it to be relatively unlikely that an attacker can get a spy employed in a position
that requires well-trained skills from the employees, for the following reasons. First, there
are not a lot of such people who are willing to be spies and at the same time also would
be able to have a well-trained career at another job. Secondly, one does not always know
the full evaluation criteria for each job, the employers may decide partially based on their
instincts or personal preferences. We provide some crude estimates for how many such
spies might be employed by attackers with different resources in table 7.

For each such spy, the probability of getting employed in a specific place might be for

39

Table 7. Somewhat arbitrarily assumed number of well-trained IT professionals who
also double as spies willing to infiltrate other organisations, depending on the size of the
attacking organisation. The underlying assumption is that most well-trained professionals
are not willing to accept the risks of being a spy, whereas spies in turn do not generally
seek a second career at which they would be well-trained. Note that for smaller crimes –
especially non-criminal offenses – the number of willing participants is likely much higher
among all populations.

Attacker’s size

Assumed well-trained
IT professionals who
double as spies, ready
to infiltrate others

Nation state 100
Large organised crime unit 10
A high-ranking manager 1

example p = 0.05. For positions requiring less skill, the probability of employment could
be for example p = 0.5 or more. However, the numbers will have to depend on the
carefulness of the employer’s background checks as well as the willingness of the attacker
to prepare very thoroughly.

In the special case of using local people from a country by the hands of a foreign country
in order to get employed at skilled positions, we may assume intuitively the likelihood of
success to be p < 0.001.

The likelihood of getting caught will have to depend on the actions of the spy, which
can be analysed separately; we assumed that the likelihood of getting caught during the
hiring process (for example by background checks) can be quite low (q < 0.01, unless,
obviously, there is something suspicious about the person’s past that will fail to go through
the background checks, like an existence of a criminal history). However, it the spy may
be more likely to get caught later by their actions, depending on the situation and form of
an attack.

Blackmail.

Blackmail is out of scope for our model. We offer no specific insight into blackmail, apart
from saying that while blackmail can be a very effective tool, it may be less likely to work
for more serious offenses; it can also be harder to use in a foreign country, where it can be
harder to collect incriminating data about someone.

Additional notes.

40

Regardless of the attack at hand, we make the following additional observations:

� Co-conspirators may always have a change of heart and can give themselves up on
purpose. We assume this to be happen at least with a probability ranging from of
q′ = 1

4000
to q′ = 1

200000
per person per year involved with a conspiracy (depending

on the ethics and incentives involved). That is, for a conspiracy of n people, the odds
of at least one participant giving up the conspiracy in a year can be approximated
in the following way: q = 1 − (1 − q′)n. For instance, with 2773 people, using
the range of values for q′ above, the odds of a participant speaking up in a year
would roughly be in the range 0.01...0.5. However, it should be noted that in many
situations people can be more forthcoming, and in some, less so. Actual values
will likely depend on many details, including ethics, legal, violent and monetary
incentives. In practice, one may often skip this probability without noticeable loss of
precision, as the other probabilities tend to overshadow it in magnitude. This value
becomes more important when one is discussing conspiracies where the participants
would otherwise assume that there is no chance of getting caught whatsoever. The
range mentioned above is approximated from the data sets in [52]; the smaller value
from that paper corresponds to the conspiracy over the NSA PRISM project, whereas
the bigger value corresponds to the FBI forensics scandal that became public in
1998.

� As a reminder, when building for example attack trees, any other probabilities for
getting caught need to be added as well (for example, an external monitoring service
that occasionally sounds an alarm could be added as a factor in getting caught).

41

3.7 Applications of the Model for Centralised and Decentralised Ar-
chitectures

3.7.1 Comments on The Trust Differences Between On-Site Cere-
monies and Blockchain Consensus

In section 3.5 we discussed the security differences between blockchains and on-site
ceremonies in terms of number of validators and witnesses required to achieve the same
probability of honest behavior, given a fixed honesty probability for all members. In this
section, we will build on that by commenting on how trust properties differ between the
architectures by taking into account our new model on human and tool trustworthiness.

� First, in terms of probability of individuals acting dishonestly – section 3.6.1 – there
is no difference between blockchains and on-site ceremonies. Indeed, if we consider
the contents of the formula, none of the involved variables appear to be directly
affected by this choice: the nature of the act remains the same whether or not we
are using a blockchain; the likelihood of getting caught may differ, but only in ways
we calculated in section 3.5 – that is, the validation by regular full nodes is not

performed in a ceremony, which may necessitate involving some more people as

witnesses instead. Also, the attractiveness of the goal does not likely change, neither
does the person’s social status.

� Second, an important difference with the on-site ceremony is that people will have to
meet with each-other. This has the following effects for considerations from section
3.6.2:

– When bribing or proposing to people, people who know one-another are more
likely to conspire. It appears unlikely that meeting for a few times will make
people friends with each-other, but to compensate for this effect, either 1) the

team composition should be changed regularly (say, after a few months), or

2) the team members should not interact unless absolutely necessary (it might

be possible to darken the room and specify them not to interact before or after

meetings); a more firm alternative would be remote participation via cameras

and/or other necessary sensors without the remote participants communicating

to other participants; it could also be possible to watch a live-stream on a

video streaming service or even watch the video later, as appropriate. (The
remote participants could even ask their own trusted parties to install their own
cameras/sensors before the meeting and leave.)

– Managers can still order their teams and change team contents in both cases.
– Depending on the set-up, violence could still require threatening the same

42

number of people in both cases; however, an advantage of blockchain con-
sensus would be that remote participants are harder to intimidate and locate.
This suggests that for parity, at least one (ideally more) on-site ceremony

participants could also be joining remotely (or in some other way hide their

identity well). If their organisation also keeps their identity secret, the attackers
would need to threaten additional people to find out the identities of the remote
participants, which increases their chances of getting caught (potentially even
getting caught before the attack succeeds). For the worst attackers, one could
even imagine a corresponding defense protocol where even the managers do
not know who among their teams participate remotely in a ceremony (and the
same for blockchain validators). As always, one may also need to assume
certain physical defenses to make sure that e.g. flying a mini-drone inside the
organisation won’t make it possible to easily see who the participant is (again,
presumably the same with and without blockchains). Another obvious solution
against some types of violence is the use of one or more security guards and
various security devices. Even though violence can be relatively rare, when
used it can be highly effective, at least in the short term; the more critical
services often like to plan for such potential eventualities as well.

– Infiltration using legitimate channels is not affected.
– For blackmail attacks, there may be similar advantages to hiding identities as

there are for violent attacks.

We also note that even if there is "feature-parity" between blockchains and remotely
participated on-site ceremonies in terms of witnesses being the equivalents of validators,
there can still be at least two differences: trusting tools (hardware and software) and cost
differences. Trusting tools is briefly discussed in section 3.8. While comparing the costs of
each solution is out of scope for the current work, we can offer some ideas for future study:

� Additional costs of on-site ceremonies.
– The ceremony participants may need to work slower compared to regular

computer administrators and may need a larger area for administrative tasks
(perhaps several times slower and/or larger) owing to the fact that their actions
will have to be done carefully so that witnesses can observe there is no foul
play, particularly when handling computer hardware.

– Costs of participation. For remote participants, camera(s) and other sensor(s)
need to be bought, installed and maintained. (In the simplest case, we might
imagine multiple smartphones plugged into wall sockets, communicating over
Wi-Fi, utilising both their cameras as well as other sensors like depth sensors,
perhaps Bluetooth for authenticating tamper-proof boxes and so forth.) For

43

local participants, additional travelling costs may need to be paid.
– Physical defenses may or may not need to be more expensive for on-site

ceremonies.
� Additional costs of blockchains.

– The blockchain may need more computing power due to multiple computers
re-verifying the same computations. Privacy techniques like secure multi-party
computation (MPC) and zero-knowledge proofs can slow down the system
further.

– Blockchains may have a higher development cost due to more complicated
protocols and less mature tooling. (On the flip side, the ceremonies also need
tools and procedures to be developed and verified.)

44

3.7.2 Phishing and Other Cyberattacks.

Quoting from [53]: “Phishing is a form of social engineering in which an attacker attempts
to fraudulently acquire sensitive information from a victim by impersonating a trustworthy
third party. Phishing attacks today typically employ generalized “lures.” For instance, a
phisher misrepresenting himself as a large banking corporation or popular on-line auction
site will have a reasonable yield, despite knowing little to nothing about the recipient.”

Some phishing attempts direct users to malicious websites that use vulnerabilities in the
users’ machines for hacking into them (for one example, refer to the High Roller attack in
[21]). Other attacks may merely ask the users to log into a fake website instead of a real
one in order to steal user credentials and/or their browser sessions.

The likelihood of success in impersonation attempts depends greatly on the type of an
attack, preparedness of the attacker and whether the defenders are willing to let go of
modern conveniences like clicking on links in e-mails (or at least willing to carefully
inspect the links every single time), among other factors.

For higher-quality phishing attempts that are targeted towards specific victims (often called
spear phishing), we propose the following rough likelihoods of success depending on
the sophistication of the defenders: for average users, p = 0.1; for specifically trained
IT professionals, p = 0.001; for environments like banks where people go to additional
lengths including what some would call "draconian measures", p = 0.0001.

The likelihood of getting caught with a simple phishing attack or any other cyberattack
can be low, especially if the attackers hide their tracks well and do not arose suspicion that
would authorise a major search for them. The attackers may also live in different countries
from their targets, which may require international cooperation to locate them.

3.7.3 Detecting Backdoors, Steganographic Data Infiltration and Ex-
filtration

The assumptions in this chapter are not strictly proven, but informal reasoning is presented
to justify them as good candidates to represent the real world. The chapter starts with a
more general discussion and then proceeds to describe specific assumptions.

When comparing centralised services to decentralised ones, one of the common questions
that comes up is as follows: is a computer in one’s own possession more trustworthy than a

45

computer in the possession of a cloud company (which the user does not own)? There are
of course questions of competence (regular users may not be as competent at cybersecurity
as major cloud vendors), laws (the user may be in a different legal jurisdiction or simply
different laws can apply for your own data that is in your own computer), etc.

However, this chapter focuses on the question of honesty. More specifically, a potential
trust problem with the cloud is that the cloud operators can administer their computers at
will, without the user directly noticing much of their misbehavior. As an example, the cloud
owner could inspect the filesystem and processes running on their systems, modify them,
use backdoored hardware and operating systems, and so forth. Nonetheless, our question
must be whether that will make a real difference in practice: after all, the user did not build
her own computer and thus her own computer could also have various backdoors inserted
by manufacturers, potentially using steganographic covert communications channels to
administer the user’s computer beyond her ability to detect? If so, the situation would be
equivalent between the external cloud machine and her own computer: in both cases there
would be a trusted entity that she would have to simply trust not to abuse their (potential)
administrative access.

To begin answering that question, let us look at the administrative powers that cloud
operators have – regarding physical and remote access separately – and for each, compare
the differences between a user’s own computer and a computer in the cloud not operated
by the user herself.

First, cloud employees can potentially tamper with hardware physically, even replace it
with other hardware (temporarily or permanently), without the user directly seeing it. In a
way, this seems somewhat analogous to what hardware manufacturers can do – they can
ship their hardware with backdoors embedded in the factory, and thus have full control over
what the hardware does; if they ever need to update the backdoor in hardware, they have the
ability to authorise corresponding firmware updates (often via legitimate channels). Thus,
hardware manufacturers do not necessarily need to physically tamper with user hardware
after the time of purchase in order to insert a backdoor, but they may need to do more
work than the cloud administrators (as presumably, the covert backdoors need to be built,
whereas the honest administrative consoles already exist) and there exists at least a small
probability that in the future someone will be able to find such backdoors in hardware
(either accidentally or using systematic search; perhaps in a more distant future, there
will be people scanning hardware under microscopes using futuristic AI-based backdoor
scanners).

Assumption. Even though in a cloud, it is theoretically also possible to get caught by

46

an auditor, if the attackers working for the cloud company are confident they can escape

auditors (perhaps a colleague will warn them in advance), they may assume their likelihood

of getting caught is smaller.

Further, it is not enough to simply add backdoors: some attacks may be practically
impossible to perform without the ability to communicate with the system under attack
(for reconnaissance or other reasons), even if the attacker’s goal is not data exfiltration per

se; for instance, if the attacker cannot simply guess a configuration file format, she may not
be able to configure a remote application to do her bidding; in that case, she might want to
see a sample configuration or be able to download and reverse-engineer the configuration
parsing software itself.

Thus, our second point is that cloud employees also have remote administrative access
on the cloud computers: they can read, write and modify any data on the computer.
Technically, this can also be achieved on a user’s own computer using a backdoor with
steganographic communication channels to keep the network traffic covert. If effectively
used, it may allow users’ own computers to be administered remotely by the attackers in a
similar manner to a cloud, albeit perhaps at significantly slower speeds (steganographic
channels may be slower to stay maximally covert, both in terms of bandwidth and latency).
Presumably again such backdoors need to be built (if they do not exist yet), which requires
additional work and dedication.

Steganography is a common method of covertly infiltrating and exfiltrating data. It appears
to be agreed that clever use of steganography can be difficult to detect. For an example, Dr.
Simon R Wiseman writes the following in A Defenders’ Guide to Steganography [54]:

Only in limited cases can Discoverable Steganography be discovered with any
degree of certainty, whereas by definition Undetectable Steganography cannot
be discovered. Thus, the strategy of detecting messages that carry a hidden
message in order to block their use in a cyber-attack does not work. Attackers
generally find ways of evading attempts to discover their activities, and this
will surely be the case with detecting steganography.

Since detection can be very hard, the same paper also suggests a better strategy of dealing
with steganography – transforming and normalising data in order to reduce the attack
surface for steganography [54]:

“The only effective way of destroying hidden messages is to take the informa-

47

tion that is found in the carrier data and build entirely new normalised data to
carry it forward. This is the strategy behind Content Threat Removal [ctr]. It
transforms the way information is carried, converting potentially unsafe data
to known clean safe data.

Essentially, what such content threat removal methods accomplish is reducing the degrees
of freedom available to a user of a system, thus making it harder to effectively embed large
amounts of covert data. However, even such methods are not perfect, as practical systems
often must allow their users at least some degrees of freedom. For example, a Bitcoin user
must be allowed to choose how much money they send to whom and when. Such data
could already be used to encode hidden information. And it does not help that such data
must also be used very precisely (users won’t accept a money amount that is only roughly
correct), and in a format that the known Bitcoin client code will be able to understand
(that is, humans cannot be in the loop of verifying the details of the Bitcoin blockchain
due to efficiency reasons); this also makes it easier for a backdoor to recognise the data
steganographically. Such covert channels may even work if the service is technically
hidden from the rest of the world (no access is allowed from the outside networks) as some
data would often still go in, and some data would still come out (for instance, an internal
payment gateway in the bank will still see the payment amounts and account numbers, and
will be able to issue errors for the payments which the attackers may be able to see, at least
to an extent).

Further, for example Bitcoin explicitly allows adding encrypted custom data and data
hashes to its blockchain; as such data is expected to be computationally indistinguishable
from random numbers, it can be a very efficient location for encoding steganographic
content: the attacker can simply encrypt covert data and it will look indistinguishable
from regular content. Similarly, many web services allow clients to send custom data like
messages to customer service, comment fields, profile images, etc, and it is expected that
the service does not change the data significantly. (Although, it is useful that if there is a
service that doesn’t need to process some data – it just needs to pass it through – then the
data could be encrypted in transit by the data sender itself, only to be decrypted at the last
possible moment; this can reduce the attack surface of steganography and can sometimes
be applied to data stored in databases and even web services.)

As alluded to above, a problem for steganography can be the low data rate; establishing an
exact data rate for each situation is out of scope for this work. However, a potential help
for attackers might be that network traffic numbers will probably go up in the future, not
down, and as such, if users send more data to services, there may also be more potential
for covert data along with it.

48

There is, however, one generic class of situations where it may be possible to almost
completely remove any degrees of freedom: one can make all of their computations
deterministic (including timing and random numbers), and then log all the inputs and
outputs of the system (for example, this logging action could be done using another device
which is less likely to be compromised at the same time); this allows one to verify the
entire computation with another computer. If either of the computers attempts to send
steganographic communication on any of the main channels (as opposed to side-channels
like power usage or sound), the responses from computers will not match byte-by-byte
anymore and can be detected. In that case, data exfiltration attempts on the main channel
can be detected on one’s own system, but this does not necessarily apply to data infiltration
attempts (as one cannot typically ask all of their clients to make their systems deterministic
as well).

Although the above analysis is not a proof, it is hoped that it is enough to motivate the
following assumptions, which will be used as a basis in the rest of this work.

Assumption. Reasonably undetectable steganographic methods may exist and may be

used by attackers so long as there is any way for attackers to send any information to

the compromised system or receive any information from it, for incoming and outgoing

data respectively. However, if all transmissions are monitored by a correctly functioning

system, these transmissions that are deterministic – for which there can be no alternatives

– (perhaps due to the fact that there is exactly one way to respond to each incoming request

and there is even one specific response time), the monitoring system must necessarily be

able to detect any covert alterations to the communications stream.

For instance, even if a payments engine inside a bank is technically an internal system and
is cut off from internet traffic, it probably still needs to receive the payments that customers
authorise; if these payments or their metadata contain any covert commands, they could
be processed and recognized by a backdoor in the payments processor. Similarly, that
payments processor will need to send data out to the outside world – it may have the ability
to modify payment descriptions (especially for payments that get routed to other banks);
even flagging a certain set of payments to be investigated for fraud may result in effects
that a customer can notice (perhaps the payments will be slower or the bank will contact
the customer for clarifications). Clever attackers may invent schemes to pack surprising
amounts of information into such covert channels.

On the other hand, if the above mentioned payment processor only modifies payment data
deterministically – perhaps it merely converts between different payment data formats, and
does so in a canonical way – and even always processes payments in exactly 10 seconds

49

(to eliminate time as a side-channel for communication as well), then someone (correctly)
monitoring the entire communications history of the payment processor would be able
to notice if steganographic communications had altered the outgoing traffic in any way;
however, to do so, the monitoring party may have to perform the same computations as
the payment processor itself (for example, to convert between payment data formats to
verify that the payment processor did the same correctly); this has many similarities to a
Byzantine fault-tolerant consensus, with an important exception that the parties receiving
payments do not necessarily know about the result of consensus (they get a response from
just one machine).

It should be noted that a simple method exists that can help against targeted backdoors that
are installed only for specific users: a buyer can go to an unexpected store or warehouse,
perhaps at an unexpected time, and perhaps purchase a random (unpredictable) instance
among the products being sold. For software, it can be even simpler to merely compare the
cryptographic hash of a downloaded binary against similar hashes from other people. This
would remove the attacker’s ability to aim precisely: their remaining options would be 1)
aiming "blindly" and often missing their target, 2) stopping the attack, or 3) backdoor a
large percentage of their products to make sure that a randomly selected one would end
up going to the right place, which in turn can make it more likely for the backdoor to be
discovered (even if the discovery takes a long time).

3.7.4 Software and Hardware Backdoors

It may be possible to predict the number of malicious backdoors in libraries and other
third-party software, hardware and tools using estimates from section 3.6.1. We might
decide for example that roughly one software developer in 10000 would be willing to
insert a backdoor into the code for a given purpose, and then we could take into account
the review processes in the company (that is, how many people would review the code)
– so long as there is at least one reviewer then the probability of dishonest acts per the
two people would be the probability for one person squared; that number could then be
"multiplied" by the number of developers using the following formula: 1− [1− (10−4)2]n.

Even with 10 000 developers this would then give the likelihood of backdoors as roughly
10−4. However, in practice, on many less mission-critical teams it may be possible for
developers to fake a code review (perhaps they lie to other team members that they already
did a code review on their own machine with another person). In that case, the real number
of developers who can attack may be 1, not 2, and with 10 000 developers the likelihood
that someone would be willing to attack would then be around 0.63 per year.

50

The precise mechanics of this will have to be reserved for future studies, as the results may
technically depend on the number of developers who have ever existed in the world and
who have built different tools that in turn have built other tools and so forth; for instance,
in principle, it is possible to have a self-replicating backdoor in a compiler that is not even
present in any source code anywhere [55]. At the same time, the attacks get harder the
longer they have to stay covert; some backdoors may need code updates as well over time,
to adjust for changing unpredictable circumstances.

51

3.8 Statistics on Software and Hardware Security

We attempt to roughly estimate the number of exploitable 0-day vulnerabilities in common
software and hardware by analysing known history of 0-day vulnerabilities in a few
representative components that we assume are most dangerously exposed to network
attackers: for software, we include web servers (Microsoft IIS and Oracle WebLogic), web
browsers (Google Chrome, Internet Explorer and Mozilla Firefox) and operating systems
(Microsoft Windows, Linux, Apple MacOS, Apple iOS); for hardware we include the Intel
CPUs and their chipsets as a representative. This analysis is not meant to be exhaustive,
but rather a starting point for further study in the future.

The data sets in this section lack strong empirical validation and should be treated with
care. For example, we did not establish any error bars, we did not analyse how many secret
0-day vulnerabilities as estimated to exist that are not publicly known, and how different
vulnerabilities can be used together to create more powerful combined attacks. Rather we
focused on the simple case of remote code execution (RCE) vulnerabilities as these are the
most critical ones to defend against.

For the above software components we took a look at the known and exploited 0-day
vulnerabilities between the years 2015 and 2020 in The Zero-day Vulnerability Database
[56] (refer to appendix on page 80 for more details). For vulnerabilities in the Intel CPUs
and their chipsets in the same time frame we used the CVE Details database [57].

The Zero-day Vulnerability Database only lists "0-day" software vulnerabilities that are
known to have been actively exploited "in the wild". Thus, the actual number of vulnera-
bilities being exploited is even larger and this provides a conservative estimate.

The time period was chosen to be 5 years, 2015 - 2020. In appendix on page 80 we list
only the remote code exploit vulnerabilities (that is, these that allow remote attackers to
directly execute arbitrary code on the target machines), but the complete number of 0-days
(including all types of 0-days) is also provided for each software.

No backdoors were found in Linux, Windows, MacOS, iOS, Android and popular web
browsers and web servers (except for third party browser plug-ins).

Counting the above-mentioned remote code execution vulnerabilities, we can see from the
dataset that:

� The application servers in the list appear to have roughly 1 remote code execution

52

vulnerability per 5 years, or about 0.2 per year.
� Although the operating systems of Windows, Linux, maxOS and iOS have 2 + 1 +

0 + 2 = 5 combined remote code exploits in 5 years, none of these appear to be
readily exploitable from a web server, rather from a client’s web browser. Thus,
for client-side exploits we might estimate (2 + 1 + 0 + 2)/4/5 ≈ 0.3 per year per
operating system, whereas for server-side, we hesitate to use the number 0 (especially
given our knowledge of earlier exploits like Shellshock [58] and Heartbleed [59])
and rather estimate 1 per 10 years per operating system, or 0.1.

� For web non-mobile browsers, we get an average of (4 + 10 + 5)/3/5 ≈ 1 remote
code exploits per browser per year.

When building applications, one must also consider any vulnerabilities in our own applica-
tion code, as well as various other tools. For reference, Bitcoin and Ethereum are generally
considered relatively secure blockchain platforms; we did not find any comparable 0-day
vulnerabilities for either. Here is what we found when we searched for 0-days in Bitcoin
and Ethereum:

� Using different databases we found at least one serious vulnerability for Bitcoin
between the years 2015 and 2020 – a dangerous inflation bug was discovered in 2018
which allowed breaking a strong property of Bitcoin – namely, allowing Bitcoins to
be created out of thin air [60]. Technically, this does not meet the same criteria for a
0-day which is actively exploited, as there is no evidence that it was ever exploited
by attackers. Nonetheless, we have included it here for reference.

� We also did not find similar 0-days for Ethereum’s main client (Geth) in the specified
timeline.

For our representative hardware – the Intels CPU and their chipsets – we found from [57]
only 1 confirmed remote code exploit 0-day vulnerability between 2015 and 2020: identi-
fied as CVE-2017-5689, its description starts in the following way [57]: “An unprivileged
network attacker could gain system privileges to provisioned Intel manageability SKUs:
Intel Active Management Technology (AMT) and Intel Standard Manageability (ISM).”
Thus, the remote attacker could completely overtake the target system. However, this
vulnerability required Intel Management Technology to be explicitly turned on for it to
be exploitable. We make the somewhat arbitrary assumption that on a critical server, all
components have been turned off as much as possible for security reasons, which then
leads us to the figure 0 exploits; even looking further back to 2009 in the same database, we
fail to find other similarly critical vulnerabilities. Thus, we will, as a first approximation,
use the number 0 to represent such CPU vulnerabilities.

53

It also matters how widely known and exploited a 0-day vulnerability is. Bilge et al. wrote
in 2012 that “Zero-day attacks last between 19 days and 30 months, with a median of
8 months and an average of approximately 10 months.” [61]. Loosely based on the 10
months figure and acknowledging the increasing imprecision in our estimates, we could
make the simplification of assuming that a zero-day will stay exploitable for a whole year.
However, discussions with a security expert lead us to believe that "sophisticated" entities
like nation states and expert security research firms tend to know about exploitable 0-days
for longer than a year. The expert was not able to claim any specific numbers. Therefore,
we assume the following instead, subject to further study in the future:

� "Sophisticated" parties (including nation states and expert security research firms)
know of a 0-day for an average of 5 years.

� "Non-sophisticated" parties occasionally also get access to advanced 0-day exploits,
but we assume that to be 10 times less likely and their knowledge of the 0-day could
last for about 2 weeks before the vulnerability is patched in up to date systems
(admittedly, leaving some systems behind that have not been updated on time).

(As an aside on terminology, in security literature it is common to call someone an
"attacker" even if they are performing the said "attack" for legitimate purposes such as
law enforcement and intelligence gathering; this does not in any way pass judgement on
morality of the actions, which can be subject for separate study.)

Our results are summarised in table 8 where we also have calculated the likelihood that
the vulnerability happens to be exploitable at least once during a year for both the "sophis-
ticated" and "non-sophisticated" parties (we multiplied the frequencies for sophisticated
entities by 5 and divided them for non-sophisticated entities by 10; the probability calcula-
tions for turning frequencies to probabilities were done using the binomial distribution and
taking each day as a separate event).

From the data in table 8 we can estimate the likelihood that clients and servers have 0-day
remote code execution vulnerabilities in them in a given year. Then, we can perform
a second calculation assuming the use of Byzantine fault-tolerant consensus between
multiple computers to see how the reliability would differ.

For both server and client we will perform two sets of calculations. First we will calculate
assuming the "sophisticated" attackers who may know about a 0-day exploit for a year
before it gets patched. Second we calculate assuming the attackers know about the attacks
for two weeks before they get fixed by the vendors.

54

Table 8. The numbers listed are all computed as estimates for the frequency and probability
of 0-day vulnerabilities per year that allow remote attackers to execute arbitrary code
on attacked machines. The corresponding probabilities are calculated using a binomial
distribution to reflect the probability that there is at least one vulnerability in a year. Column
f0 represents the number of such vulnerabilities discovered per year, p0 is the corresponding
probability per year; fs represents an estimate for a number of such vulnerabilities known
by "sophisticated" parties per year, ps is the corresponding probability that they known at
least one per year; fn is the same frequency for "non-sophisticated" parties and pn their
corresponding probability for at least one per year.

Component f0 p0 fs ps fn pn
CPU and chipset 0 0 0 0 0 0

Application servers 0.2 0.18 1 0.63 0.02 0.02
Operating systems on servers 0.1 0.095 0.5 0.39 0.01 0.01
Operating systems on clients 0.3 0.26 1.5 0.78 0.03 0.03

Web browsers 1 0.63 5 0.99 0.1 0.095

� Server side (application server + operating system)
– "Sophisticated" attackers who know about a 0-day potentially for a several

years before it gets patched.

* The combined probability of 0-days on hardware, application servers and
operating systems per year (that is, the probability that at least one of them
has a 0-day) is 1− (1− 0)(1− 0.63)(1− 0.39) ≈ 0.77.

* The likelihood that two different server stacks have such vulnerabilities at
the same time would thus be roughly 0.772 ≈ 0.59

* The likelihood for three different server stacks would be 0.773 ≈ 0.46, or
roughly once every two years.

– "Non-sophisticated" attackers who use publicly known attacks which stay
public for about 2 weeks before getting patched.

* The likelihood of at least one attack happening in a year is analogously to
the "sophisticated" case 1− (1− 0)(1− 0.02)(1− 0.01) ≈ 0.03.

* The likelihood of two different server stacks having vulnerabilities at the
same time is considerably smaller, as the two week windows may not
match as likely (we divide yearly probability with 26, roughly half the
number of weeks in a year): (0.03/26)2 = 1× 10−6.

* For three server stacks, the probability is lower still: (0.03/26)3 =

2× 10−9.
� Client side (web browser + operating system)

– "Sophisticated" attackers.

* The likelihood that there would be at least one exploitable 0-day per year
would be 1− (1− 0.78)(1− 0.99) ≈ 0.998(!).

* For two services in consensus: 0.9982 = 0.996.

55

* For three services in consensus: 0.9983 = 0.994.
– "Non-sophisticated" attackers.

* The likelihood that there would be at least one 0-day per year would be
1− (1− 0.03)(1− 0.095) ≈ 0.12.

* For two services in consensus: (0.12/26)2 ≈ 2× 10−5.

* For three services in consensus: (0.12/26)3 ≈ 1× 10−7.

Let us analyse the results. According to our model, for “sophisticated” attackers infiltrating
on the server side, subjectively, it does not seem to make a lot of difference whether
one uses 1 server stack or 3 server stacks together in a BFT consensus (corresponding
probabilities of knowing a 0-day vulnerability are 0.77 and 0.46). However, we do note
this result is sensitive to exact numbers in an exponential way, therefore with an improved
understanding of the number of 0-days discovered this number could change significantly.
Subjectively, it is hard to say whether the result is correct or not.

For non-sophisticated attackers aiming for the server side, there does appear to be a large
difference: they could compromise a single server stack roughly once per 30 years, whereas
compromising already two stacks at the same time would be extremely unlikely, or about
once in a million years. It is likely that real systems would thus be compromised using
alternative means — phishing attacks, bribing, and so forth.

For client-side attacks, in our model, it is virtually impossible to defend against sophis-
ticated attackers, whether or not someone is using multiple devices. This is largely due
to the numerous 0-day vulnerabilities discovered in web browsers. An obvious solution
would be to stop using the browsers or to cleverly restrict which websites are being visited.
The feasibility of these and other measures will have to be weighed depending on the
situation.

Once again, there is a difference for non-sophisticated attackers between how many
different devices are used in parallel, although the situation is also not hopeless for a single
device (an attack roughly 10 years; for two devices, it an attack would happen once every
50 000 years.

It may be wise for client users, especially with devices that connect to critical systems, to
only visit minimally suspicious websites (even though that does not guarantee success:
popular legitimate websites have been known to be infected by attackers occasionally);
subjectively, this is good advice. However, particular attackers may still not be able to
infect multiple devices of the same user – for example, the user may visit different websites
on the phone and the computer, or the phone could have better protection mechanisms

56

between different applications in such a way that the same attackers might not be able to
infect the entire phone at a time.

For many client computers, it is also possible that they are generally not even receiving all
the latest security updates quickly, making the 0-days last even longer on these computers.
The European Union Agency for Cybersecurity (ENISA) has advised in 2012: “For a bank,
in the current situation it is safer to assume that all of its customers’ PCs are infected – and
the banks should therefore take protection measures to deal with this.” They follow that up
with more specific advice [62]:

Many online banking systems, some with one-time transaction codes, calcula-
tors or smartcard readers, work based on the assumption that the customer’s
PC is not infected. Given the current state of PC security, this assumption
is dangerous. Banks should instead assume that PCs are infected, and still
take steps to protect customers from fraudulent transactions. For example, a
basic two factor authentication does not prevent man-in-the-middle or man-in-
the-browser attacks on transactions. Therefore, it is important to cross check
with the user the value and destination of certain transactions, via a trusted
channel, on a trusted device (e.g., an SMS, a telephone call, a standalone
smartcard reader with screen). Even smartphones could be used here, provided
smartphone security holds up.

It should be noted that according to their advice above, using 2 devices together (a PC and
a mobile phone) is deemed secure enough for banking purposes. (Which in itself, lacking
further clarifications, neither confirms nor refutes our model.)

57

3.9 Sample Analysis of a Cryptocurrency Use-Case

3.9.1 Introduction

Cryptocurrencies were the first popular use-case of blockchain technology, they are rel-
atively easy to understand and explain as applications, and provide enough interesting
functionality to make risk analysis useful in our framework.

We describe a simple permissioned cryptocurrency that has two operations. First, the owner
of an account can transfer money to any other account (thus potentially creating a new
account in the process) using the TRANSFER operation: TRANSFER(from,to,amount).
Every such operation is digitally signed by the transaction creator. Account numbers
"from" and "to" are simply public keys of the account owners. The "from" field can only
be the public key of the signer. The cryptocurrency amounts are represented by 64-bit
integers and there is a fixed amount of the cryptocurrency. Every account has a computed
balance.

The second operation is a lottery. Everyone can send money to a specific lottery account,
and once per month the system randomly picks a winner from all the people who sent the
money, and the lucky winner gets everything that was sent that month. The odds of winning
are weighed by how much money someone has sent. The winner is picked by a random
number that, for fairness, is composed of three random numbers that the three key people
(validators or witnesses) send – all numbers are hashed together with a cryptographically
strong hash function and the result is taken as an input to the random number generator; a
commit protocol is used so they cannot peek at the numbers of other people before sending
their own.

All lottery bids are read in the order as they were received, by their weight, and added to an
array data structure (the more money was sent, the more slots in the array) and the random
number simply gives the index of the winning slot.

The system starts in a "genesis state" which was determined during system launch – differ-
ent parties sent money to the bank accounts of system creators, and in exchange for how
much money they spent, the genesis state contained the right amounts of cryptocurrency on
each of their accounts, assigned to the public keys of their respective owners. We assume
that this startup process was correctly executed.

For the purposes of handling user load, the system only needs one computer. However, for

58

availability reasons, there need to be more machines.

We analyse the attack tree of an insider attacker for each of the two configurations: 1) an
on-site ceremony with three witnesses (with 3 computers for availability), compared to 2)
a Tendermint permissioned blockchain with three validators (each running two Tendermint
consensus nodes for better availability). Naturally, end-users of the system can also run
a Tendermint regular fully validating node. Two of these people are close friends who
started the company; the third one is an auditor from a well-respected auditing company.
We estimate both trustworthiness and operational costs for both with and without using a
blockchain.

The scenario is as follows. One of the two trusted friends working for the company really
wants to steal money from the system. We consider different options for him to do so,
cooperating with other people and attempting to do it alone as well.

We will calculate the odds of succeeding for such attacks; we will utilise data from sections
3.6.1 and 3.6.2, as well as many other sections throughout this work.

We assume everyone’s social status modifier in table 5 is "experienced skilled professionals"
and that if caught, they expect to go to jail.

We represent attack trees as nested bullet points, where each node will have its probability
of success specified. For instance, a choice between two attacks where one has a chance of
success 0.1 and another has a chance of success 0.5 will be represented as follows:

� "OR". p = 0.5.
– Option 1. p = 0.5.
– Optopn 2. p = 0.1.

Nodes that both have to be implemented are represented in the following way:

� "AND". p = 0.05.
– Option 1. p = 0.5.
– Optipn 2. p = 0.1.

We consider getting caught as a failure as well. Probability of getting caught is represented
by the letter q and probability of success is represented by p. We do not calculate the
probability of getting caught q for every node if it does not appear useful for evaluating the
model in a given case.

59

The scenario begins with the assumption that one of the close friends has already decided
to attack; he now needs to convince his friend or anyone else as necessary to get the attack
implemented.

3.9.2 Case 1: Printing and Stealing Money

"Printing" money or creating an invalid transaction that pays money from "nowhere" is
technically not stealing anybody else’s money, but in practice, as more money is created
there tends to be an inflationary effect, which essentially means that everybody else looses
some value on their holdings. Technically, this would account to stealing from everybody
and would thus break the social contract they established with their users in the beginning.

� "OR" p = 5× 10−4

– p = 6.4× 10−9. The attacker would invite his close friend and the auditor to
come and break blockchain consensus by issuing an invalid transaction that
creates money "out of thin air" by sending money to their own accounts from a
non-existing account. Immediately, the other blockchain nodes would notice
it, thus the odds of getting caught are nearly 1, and since they can even go
to jail over this action, then using using equation 3.1 for the other two actors
the likelihood of attacking for both of them is 0.8 ∗ 0.0002 ∗ 1/2 = 8× 10−5,
and the likelihood that they both agree to perform the attack is even smaller:
(8× 10−5)2 = 6.4× 10−9.

– "AND" p = 0.9 ∗ 0.5 ∗ 0.001 ≈ 5× 10−4.
The attacker could insert a backdoor into the binary build of the blockchain
code such that when a rich person sends money to someone, the code would
actually send more money to the attacker instead, and then the attacker would
also send money to the intended receiver (about which the hacked client code
notifies him); the receiver might not mind which account his money came from.
The rich person would not see the attack as his blockchain client would display
the amount he is supposed to see. So long as he never spends all of his money
he may never notice. However, the attacker may not be able to hack every node
in the future; at some point the victim may be using a node that shows him his
real balance.

* p = 0.9. Volunteer to build a binary and insert a backdoor into the binary
build to perform the attack.

* p = 0.5. When the money arrives, make sure to send the right amount
to the actual receiver as well, and hope the receiver does not notice the
money coming from a different account and the sender does not look at
his balance via another mechanism.

60

* p = 0.001 Long-haul maintenance: build every next version of the binary
as well, insert and maintain the hacked code there, hoping that the victim
would keep installing that hacked version of the binary in the future and
that the victim would not look at the balance using other tools.

– "AND" 2× 10−7 ∗ 0.46 ≈ 9× 10−8

The attacker could pay a huge amount of money to purchase a specialised
attack kits that could break into all blockchain nodes using rare zero-day
vulnerabilities of each operating system. He would compromise all blockchain
nodes (both consensus machines and regular full nodes) – at which point he
could install persistent malware kits to these computers and hack the blockchain
software in these computers. (We note that paying this much money for the
attack kits would likely be rational only if he expected to steal and use more
money than the expensive attack kits were worth, which could cost many
millions of Euros over the years.)

* p = 0.46 Wait for a time when 3 different operating systems and web
server stacks are exploitable at the same time (we assume all operating
systems and web server stacks have good representation throughout the
blockchain infrastructure). The probability from section 3.8 for 3 different
server-side stacks being compromised at the same time is 0.46.

* Make sure that when customers buy new computers these can be compro-
mised as well, or otherwise some users will notice that they do not have
the right amount of money. Assume this will continue for 20 years straight
– 0.4620 ≈ 2× 10−7.

Thus, even with the most likely attack to succeed, the attack of altering the blockchain
binaries, the likelihood of success is low, even owing to the simple fact that people
remember how much money the are supposed to have. Let us now compare the above to a
centralised version of an architecture, the on-site security ceremony involving just three
people, the two close friends and an external auditor. A difference here is that there are no
outside observers who would verify the results (other than the fact that people generally
remember the history of their spending and how much money they think they should have).
Let us investigate whether the probabilities of success will increase for the attackers.

� "OR" p = 0.009

– "AND". p = 8× 10−5 ∗8× 10−5 ∗0.99 ≈ 6× 10−9, q = 1− (1−0.001)(1−
0.01)(1− 0.999) ≈ 0.999.
The attacker would invite his close friend and the auditor to come and break
on-site ceremony’s security, which requires all 3 participants to agree. The
objective is to issue an invalid transaction that would create money "out of thin

61

air" and send that money to their own accounts. Without blockchain, outside
parties do not notice it easily anymore.

* p = 4× 10−5, q = 0.001 The attacker would invite his close friend to
participate in the attack. Using equation 3.1 we calculate the likelihood of
joining in the following way, knowing from the upper leaves of the tree
that the likelihood of getting caught is 0.999: p = 0.8 ∗ 0.0002 ∗ 1/2 =

8× 10−5.

* p = 4× 10−5, q = 0.999. The attacker would invite the independent
auditor to join in the attack. From equation 6 we estimate that the auditor
will give them up with a likelihood of q = 0.999. Knowing from the upper
leaves of the tree that the overall likelihood of getting caught is 0.999, thus
p = 0.8 ∗ 0.0002 ∗ 1/2 = 8× 10−5

* p = 0.99, q = 0.01. The attacker(s) need to pass any audits.
– "AND". p = 0.9 ∗ 0.01 = 0.009

The attacker could insert a backdoor into the binary build of the code used
in the ceremony such that when a rich person sends money to someone, the
code would actually send more money to the attacker instead, as in a case
before; the rich person (and everyone else) would not see anything different.
The advantage here is that the attacker only has to control one computer; the
shared disadvantage is that eventually a correctly working computer will come,
and then the attack may become apparent, as either someone will end up with
less money than they think they have or the total number of coins available will
be too high, if a simple audit is launched that adds up everyone’s coins.

* p = 0.9. Volunteer to build a binary and insert a backdoor into the binary
build to perform the attack.

* p = 0.01 Long-haul maintenance: build every next version of the binary
as well for 20 years, insert and maintain the hacked code there.

� "AND". p = 0.77 ∗ 5× 10−3 ≈ 4× 10−3.
The attacker could pay a lot of money to purchase a specialised attack kit that could
break into the centralised ceremony computers using rare zero-day vulnerabilities.
(Again we note an extreme cost of this attack as well, due to the cost of such attack
kits.)

– p = 0.77. Wait for a time when the used operating system is exploitable, then
buy the exploit kit. The probability from section 3.8 is 0.77 per year.

– p = 5× 10−3. Make sure that when the on-site set-up gets new computers then
these can be compromised as well, or otherwise some users will notice that
they do not have the right amount of money. Assume this will continue for 20
years straight – p = 0.7720 = 5× 10−3.

62

While there is a difference of roughly 18 times of a more probable attack in the centralised
case, there would also be a simple fix for this attack: if the team was using reproducible
builds and if every binary was verified by more than one key participant, that would fix
these attacks both for the centralised as well as the decentralised architecture.

3.9.3 Case 2: Compromising a Random-Number Generator

The above-described random number generation protocol has a weakness: not only is it
easy to compromise by the colluding 3 parties, the collusion does not necessarily leave any
evidence to find, other than the altered binary that other people may also stumble upon and
investigate. These facts can be taken advantage of by the attacker. First, let us describe the
blockchain variant.

� "AND". p = 0.9 ∗ 0.5 ∗ 0.8 = 0.36

The attacker could single handedly hack the binary of their blockchain download,
knowing that both of his two colleagues use the official blockchain client binary
from the website to send their random numbers. Since the other two do not suspect
anything, this will likely work well. However, as he cannot differentiate between
different downloaders on the download site (he does not administer the site), his
main concern could be someone else downloading the same binary and inspecting
it to find the hacking code inside; also, once he wins, other people may want to
investigate even harder.

– p = 0.9. The attacker programs and tests the additions to send specific random
numbers; since he knows the numbers in advance, he can pick his own numbers
("brute-forcing" the hash function) accordingly.

– p = 0.5. The attacker volunteers to build a binary of the client, then builds
it with his own additions, and uploads to the download site. We estimate a
likely one-time probability of getting caught of 0.5 which comes from people
disassembling the binary; thus, the odds of success of this step are 1−0.5 = 0.5.

– p = 0.8. Once the lottery is finished successfully, he has to successfully
convince the tax office, his friends and a wider community that he did not steal
the money. This is likely to work.

Then, the centralised variant.

� "AND". p = 0.9 ∗ 0.95 ∗ 0.8 ≈ 0.68

Here, there is no need to worry about outside downloaders, unless there is a process
for involving them.

63

– p = 0.9. The attacker programs and tests the additions to send specific random
numbers; since he knows the numbers in advance, he can pick his own numbers
("brute-forcing" the hash function) accordingly.

– p = 0.95. The attacker volunteers to build a binary of the client, then builds it
with his own additions, and uploads to the download site. We estimate a likely
one-time probability of getting caught of 0.05; thus, the odds of success of this
step are 1− 0.05 = 0.95.

– p = 0.8. Once the lottery is finished successfully, he has to successfully
convince the tax office, his friends and a wider community that he did not steal
the money. This is likely to work.

Here, as with the previous use-case, the main issue was lack of a repeatable build system.
With that fixed, there likely would not have been such a likely attack vector.

3.9.4 Discussion of Results

The model behaved expectedly, as the results form the initial use-case analysis seem
realistic. The biggest attack vector against the system was found to be a compromised
insider working on a critical task that nobody else was verifying. Getting people involved
in a conspiracy appeared unlikely, which makes sense considering how high the chance of
getting caught was.

Sophisticated exploit kits appeared usable as means for attacking, but sustaining the attacks
over time appeared once again unlikely, which also feels realistic. Also unsurprisingly,
compared to the blockchain system, the centralised system appeared less robust against
exploit kits due to a single application stack being used (although we note that during
a 20-year attack, the likelihood of succeeding all the way through was only p = 0.004).
However, caution must be expressed over the capabilities of the exploit kits, as the particular
20-year formula scales exponentially, thus potentially exaggerating smaller inaccuracies
in the model. Further studies are needed to determine more accurately the capabilities of
such exploit kits.

64

4. Results

4.1 Summary of Results

The main result of this work is the proposal of a new model for assessing socio-technical
aspects of security in heterogeneous systems. The model estimates the probability of
humans committing dishonest acts in various situations, depending on a set of parameters
including the seriousness of a crime (violent and non-violent), seriousness of criminal
punishment (jailable and non-jailable offenses), attractiveness of the goal as expressed in
money, the social status of the person, various coercion methods being applied (extortion,
managers changing team contents, infiltrating an organisation through legitimate hiring
channels, bribing and generally proposing a conspiracy). The model further assesses the
likelihood that a person will be given up to authorities by another person for suggesting a
conspiracy and takes into account how that affects the other person’s willingness towards
suggesting the conspiracy in the first place.

The result can be applied to estimate the likelihood of criminal acts and corresponding
conspiracies both in individuals as well as in groups of several people; the latter is
particularly helpful for comparing aspects of security between blockchain systems and
their centralised counterparts, including for on-site security ceremonies.

The model was also validated against two use-cases and worked as expected according to
subjective evaluation of the results.

Additionally, using the model, permissioned blockchain architectures were compared to
centralised on-site security ceremonies for their security properties. The main differences
that were found based on the model were as follows (section 3.7.1 has more details):

� In a typical centralised architecture, users’ computers cannot directly validate the
results, as opposed to the case with blockchain systems which often support what is
called a "full node" verification method for thoroughly verifying the computations
of the blockchain on the client side (section 3.5). For the cases where this leads to
sub-optimal security for a given use-case, some additional people can be added to
the ceremony as witnesses to compensate.

65

� In regular on-site ceremonies, people meet in order to perform the ceremony, which
has the following two disadvantages: 1) for acts of bribery and proposing conspira-
cies to each-other, people who know one-another well are on average significantly
more likely to conspire (section 3.6.2), and 2) violent acts of coercion are more
difficult to carry out when people are attending remotely and/or hiding their identities.
Violence may be relatively rare, but when it is used it can be highly effective, at
least in the short term. Luckily, the blockchain validators do not have a strong need
to meet and may even be able to hide their identities from each-other completely,
whereas in a typical ceremony, people have to meet in a common location. The
following improvements were suggested for ceremonies accordingly:

– One or more ceremony participants could attend remotely, without commu-
nicating with other participants. They can use whatever cameras and other
sensors they trust and need in order to record or observe the live transmissions
from the ceremony room. Different users may have their own sensors that they
trust (section 2.2).

– Ceremony participants could be rotated on a regular basis (this only applies
to people becoming overly familiar with each-other and may not help against
violence in itself).

– An obvious solution against some types of violence (but not necessarily against
people becoming overly familiar with one-another) is the use of one or more
security guards and/or various security devices.

Nonetheless we note an important difference – a Byzantine fault tolerant (BFT)
consensus may be needed if hardware and/or software cannot be trusted without
such consensus (though utilising consensus for such purposes is apparently a rare
occurrence in business). Technically, such consensus systems can be used both with
blockchains and with the centralised ceremonies, although typically they tend to
signify a blockchain solution.

4.2 Novelty of Results

To our knowledge, a novel part of this work is the combination of using a model for human
behavior with the properties comparable to that of the proposed model together with the
task of comparing different heterogeneous systems like blockchains and centralised on-site
ceremonies, and our results thereof.

66

4.3 Application of Results

The resulting model of human behavior can be applied across a wide range of systems
in order to estimate aspects of security in socio-technical systems. The model can help
assess the number of people needed to securely perform different tasks and can help inform
people on picking the appropriate mix of insiders and outsiders for security in different
situations.

It can also bring some additional clarity to discussions around blockchains and their
alternatives, where especially people mostly coming from the technology sector (such as
the author of this work) may be curious about analysing human behaviour in the context of
their work.

The potential use of security ceremonies as replacements for permissioned blockchains can
be particularly interesting for expensive computations (perhaps even for supercomputers)
for which it would be prohibitively expensive to have a large number of computers verifying
the computations. The economical aspects of such arrangements are left for a future study.

67

5. Conclusions and Future Work

5.1 Conclusions

A new model was proposed for assessing socio-technical aspects of security, and in
particular, the probability of humans committing dishonest acts in various situations. The
model was validated with sample use-cases and was applied to perform a generalised initial
comparison on the security aspects of permissioned blockchains to centralised on-site
ceremonies.

The model suggests that in order to bring the security of centralised systems closer to the
security of permissioned blockchains with Byzantine fault-tolerant (BFT) consensus, one
could consider the possibility for remote participation in centralised security ceremonies.
Nevertheless, if trusting computer hardware or software requires a BFT consensus, then a
remote ceremony alone will not be sufficient. A combined approach can be used as well:
ceremonies can be used together with BFT consensus, which could be particularly useful
if the number of computers participating in consensus needs to be low for economic or
performance reasons and yet there is a need for more people to act as witnesses for the
correct operation of the computers.

5.2 Future Work

Several areas of research can be interesting for further study.

First, the models presented here could be used to study many more use-cases. In doing so,
the models could also receive further refinement and/or validation. The addition of strong
empirical studies to validate various aspects of human behavior would also be particularly
interesting.

Second, economic and performance differences between blockchains and centralised
ceremonies are also left for future study, as well as more concrete specifications for such
ceremonies.

Further study would also be warranted for more accurate estimates for the occurrence

68

of 0-day vulnerabilities in hardware and software and the potential damage different
vulnerabilities are likely to cause. This could help further refine the decisions on when
a single hardware or software component can be trusted without consensus with other
components.

Estimating the likelihood of backdoors in all of our tools is also somewhat of a nuanced
problem, owing to the fact that as a society we build smart tools that we then use to create
the next generation of smart tools and so forth, in countless successive iterations, and
in principle, viruses and backdoors can spread over time into many different seemingly
unrelated systems. More precise estimates for such likelihoods could also help decide how
much to rely on multiple different hardware and software stacks when developing software
in different situations.

Integrating our model with public permissionless blockchains like Bitcoin and Ethereum,
especially with their properties of censorship resistance, could also be an interesting study
to continue with.

69

References

[1] Łukasz Goczek and Ivan Skliarov. “What drives the Bitcoin price? A factor aug-
mented error correction mechanism investigation”. In: Applied Economics 51.59
(2019), pp. 6393–6410. DOI: 10.1080/00036846.2019.1619021. eprint:
https://doi.org/10.1080/00036846.2019.1619021. URL: https:
//doi.org/10.1080/00036846.2019.1619021.

[2] Kaidong Wu. An Empirical Study of Blockchain-based Decentralized Applications.
2019. arXiv: 1902.04969 [cs.DC].

[3] Digital Disruption Profile: Blockchain’s Radical Promise Spans Business and So-

ciety. URL: https://www.gartner.com/en/doc/3855708-digital-
disruption-profile-blockchains-radical-promise-spans-

business-and-society. (Accessed: 28 December 2020).

[4] Wikipedia contributors. Distributed ledger — Wikipedia, The Free Encyclo-

pedia. [Online; accessed 30-December-2020]. 2020. URL: https : / / en .
wikipedia.org/w/index.php?title=Distributed_ledger&

oldid=995824149.

[5] Distributed Ledger Technology: beyond block chain. URL: https://www.gov.
uk/government/uploads/system/uploads/attachment_data/

file/492972/gs-16-1-distributed-ledger-technology.pdf.
(Accessed: 29 August 2016).

[6] Claudio Scardovi. Restructuring and Innovation in Banking. Springer, 2016, p. 36.
ISBN: 978-331940204-8.

[7] Ethan Buchman. “Tendermint: Byzantine Fault Tolerance in the Age of Blockchains”.
In: (2016). University of Guelph, Guelph, Ontario, Canada.

[8] K. Wüst and A. Gervais. “Do you Need a Blockchain?” In: 2018 Crypto Valley

Conference on Blockchain Technology (CVCBT). 2018, pp. 45–54. DOI: 10.1109/
CVCBT.2018.00011.

[9] Guy Zyskind, Oz Nathan, and Alex Pentland. Enigma: Decentralized Computation

Platform with Guaranteed Privacy. 2015. arXiv: 1506.03471 [cs.CR].

70

https://doi.org/10.1080/00036846.2019.1619021
https://doi.org/10.1080/00036846.2019.1619021
https://doi.org/10.1080/00036846.2019.1619021
https://doi.org/10.1080/00036846.2019.1619021
https://arxiv.org/abs/1902.04969
https://www.gartner.com/en/doc/3855708-digital-disruption-profile-blockchains-radical-promise-spans-business-and-society
https://www.gartner.com/en/doc/3855708-digital-disruption-profile-blockchains-radical-promise-spans-business-and-society
https://www.gartner.com/en/doc/3855708-digital-disruption-profile-blockchains-radical-promise-spans-business-and-society
https://en.wikipedia.org/w/index.php?title=Distributed_ledger&oldid=995824149
https://en.wikipedia.org/w/index.php?title=Distributed_ledger&oldid=995824149
https://en.wikipedia.org/w/index.php?title=Distributed_ledger&oldid=995824149
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://doi.org/10.1109/CVCBT.2018.00011
https://doi.org/10.1109/CVCBT.2018.00011
https://arxiv.org/abs/1506.03471

[10] Jörg Becker et al. “Can We Afford Integrity by Proof-of-Work? Scenarios Inspired by
the Bitcoin Currency”. In: The Economics of Information Security and Privacy. Ed.
by Rainer Böhme. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 135–
156. ISBN: 978-3-642-39498-0. DOI: 10.1007/978-3-642-39498-0_7.
URL: https://doi.org/10.1007/978-3-642-39498-0_7.

[11] Christian Badertscher et al. “Ouroboros Genesis: Composable Proof-of-Stake
Blockchains with Dynamic Availability”. In: Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security. CCS ’18. Toronto, Canada:
Association for Computing Machinery, 2018, pp. 913–930. ISBN: 9781450356930.
DOI: 10.1145/3243734.3243848. URL: https://doi.org/10.1145/
3243734.3243848.

[12] The ‘Hot Swap’ Plan to Switch Ethereum to Proof-of-Stake Explained. URL:
https://www.coindesk.com/the-hot-swap-plan-to-switch-

ethereum-to-proof-of-stake-explained. (Accessed: 29 December
2020).

[13] Qin Wang et al. “Preserving transaction privacy in bitcoin”. In: Future Generation

Computer Systems 107 (2020), pp. 793–804.

[14] The trust machine. 2015. URL: https://www.economist.com/leaders/
2015/10/31/the-trust-machine. (Accessed: 4 January 2021).

[15] J. Nicholas Hoover. Amazon Launches Cloud Services For Government. [Online; ac-
cessed 30-December-2020]. 2011. URL: https://www.informationweek.
com/cloud/amazon-launches-cloud-services-for-government/

d/d-id/1099599.

[16] AWS launches a Secret region for the U.S. intelligence community. URL: https:
//techcrunch.com/2017/11/20/aws- launches- a- secret-

region-for-the-u-s-intelligence-community/. (Accessed: 29
December 2020).

[17] The DNSSEC Root Signing Ceremony. URL: https://www.cloudflare.
com/dns/dnssec/root-signing-ceremony/. (Accessed: 29 December
2020).

[18] DNSSEC Practice Statement for the Root Zone KSK Operator. URL: https:
//www.iana.org/dnssec/icann-dps.txt. (Accessed: 29 December
2020).

[19] “Security Is a Weakest-Link Problem”. In: Beyond Fear: Thinking Sensibly About

Security in an Uncertain World. New York, NY: Springer New York, 2003, pp. 103–
117. ISBN: 978-0-387-21712-3. DOI: 10.1007/0-387-21712-6_8. URL:
https://doi.org/10.1007/0-387-21712-6_8.

71

https://doi.org/10.1007/978-3-642-39498-0_7
https://doi.org/10.1007/978-3-642-39498-0_7
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1145/3243734.3243848
https://www.coindesk.com/the-hot-swap-plan-to-switch-ethereum-to-proof-of-stake-explained
https://www.coindesk.com/the-hot-swap-plan-to-switch-ethereum-to-proof-of-stake-explained
https://www.economist.com/leaders/2015/10/31/the-trust-machine
https://www.economist.com/leaders/2015/10/31/the-trust-machine
https://www.informationweek.com/cloud/amazon-launches-cloud-services-for-government/d/d-id/1099599
https://www.informationweek.com/cloud/amazon-launches-cloud-services-for-government/d/d-id/1099599
https://www.informationweek.com/cloud/amazon-launches-cloud-services-for-government/d/d-id/1099599
https://techcrunch.com/2017/11/20/aws-launches-a-secret-region-for-the-u-s-intelligence-community/
https://techcrunch.com/2017/11/20/aws-launches-a-secret-region-for-the-u-s-intelligence-community/
https://techcrunch.com/2017/11/20/aws-launches-a-secret-region-for-the-u-s-intelligence-community/
https://www.cloudflare.com/dns/dnssec/root-signing-ceremony/
https://www.cloudflare.com/dns/dnssec/root-signing-ceremony/
https://www.iana.org/dnssec/icann-dps.txt
https://www.iana.org/dnssec/icann-dps.txt
https://doi.org/10.1007/0-387-21712-6_8
https://doi.org/10.1007/0-387-21712-6_8

[20] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptology ePrint
Archive, Report 2016/086. https://eprint.iacr.org/2016/086. 2016.

[21] Dissecting Operation High Roller. URL: https : / / www . wired . com /
images_blogs/threatlevel/2012/06/rp- operation- high-

roller.pdf. (Accessed: 5 January 2021).

[22] What is Blockchain and DLT? URL: https://www.wto.org/english/
res_e/reser_e/01_a_virginia_cram-martos_final_wto_2019-

1202.pdf. (Accessed: 30 December 2020).

[23] Miguel Castro, Barbara Liskov, et al. “Practical Byzantine fault tolerance”. In: OSDI.
Vol. 99. 1999. 1999, pp. 173–186.

[24] Ethan Buchman, Jae Kwon, and Zarko Milosevic. “The latest gossip on BFT con-
sensus”. In: arXiv preprint arXiv:1807.04938 (2018).

[25] Mark Silver, M. Markus, and Cynthia Beath. “The Information Technology Interac-
tion Model: A Foundation for the MBA Core Course”. In: MIS Quarterly 19 (Sept.
1995), pp. 361–390. DOI: 10.2307/249600.

[26] Ahto Buldas et al. “Rational choice of security measures via multi-parameter attack
trees”. In: International Workshop on Critical Information Infrastructures Security.
Springer. 2006, pp. 235–248.

[27] Aivo Jürgenson and Jan Willemson. “Processing multi-parameter attacktrees with
estimated parameter values”. In: International Workshop on Security. Springer.
2007, pp. 308–319.

[28] Aivo Jürgenson and Jan Willemson. “Serial model for attack tree computations”. In:
International Conference on Information Security and Cryptology. Springer. 2009,
pp. 118–128.

[29] Aivo Jürgenson and Jan Willemson. “On fast and approximate attack tree com-
putations”. In: International Conference on Information Security Practice and

Experience. Springer. 2010, pp. 56–66.

[30] Ahto Buldas and Roman Stepanenko. “Upper bounds for adversaries’ utility in attack
trees”. In: International Conference on Decision and Game Theory for Security.
Springer. 2012, pp. 98–117.

[31] Ahto Buldas and Aleksandr Lenin. “New efficient utility upper bounds for the fully
adaptive model of attack trees”. In: International Conference on Decision and Game

Theory for Security. Springer. 2013, pp. 192–205.

[32] Aleksandr Lenin and Ahto Buldas. “Limiting adversarial budget in quantitative
security assessment”. In: International Conference on Decision and Game Theory

for Security. Springer. 2014, pp. 155–174.

72

https://eprint.iacr.org/2016/086
https://www.wired.com/images_blogs/threatlevel/2012/06/rp-operation-high-roller.pdf
https://www.wired.com/images_blogs/threatlevel/2012/06/rp-operation-high-roller.pdf
https://www.wired.com/images_blogs/threatlevel/2012/06/rp-operation-high-roller.pdf
https://www.wto.org/english/res_e/reser_e/01_a_virginia_cram-martos_final_wto_2019-1202.pdf
https://www.wto.org/english/res_e/reser_e/01_a_virginia_cram-martos_final_wto_2019-1202.pdf
https://www.wto.org/english/res_e/reser_e/01_a_virginia_cram-martos_final_wto_2019-1202.pdf
https://doi.org/10.2307/249600

[33] Ahto Buldas et al. “Simple infeasibility certificates for attack trees”. In: International

Workshop on Security. Springer. 2017, pp. 39–55.

[34] Ahto Buldas et al. “Attribute evaluation on attack trees with incomplete information”.
In: Computers & Security 88 (2020), p. 101630.

[35] Konstantinos Christidis and Michael Devetsikiotis. “Blockchains and smart contracts
for the internet of things”. In: Ieee Access 4 (2016), pp. 2292–2303.

[36] Christian Decker, Jochen Seidel, and Roger Wattenhofer. “Bitcoin meets strong
consistency”. In: Proceedings of the 17th International Conference on Distributed

Computing and Networking. 2016, pp. 1–10.

[37] Marko Vukolic. “Eventually Returning to Strong Consistency.” In: IEEE Data Eng.

Bull. 39.1 (2016), pp. 39–44.

[38] Elli Androulaki et al. “Hyperledger fabric: a distributed operating system for per-
missioned blockchains”. In: Proceedings of the thirteenth EuroSys conference. 2018,
pp. 1–15.

[39] A.M. Antonopoulos. Mastering Bitcoin: Unlocking Digital Cryptocurrencies.
O’Reilly Media, 2014. ISBN: 9781491902646. URL: https://books.google.
ee/books?id=IXmrBQAAQBAJ.

[40] Wikipedia contributors. Blockchain — Wikipedia, The Free Encyclopedia. [Online;
accessed 30-December-2020]. 2020. URL: https://en.wikipedia.org/w/
index.php?title=Blockchain&oldid=997158758.

[41] Carl M Ellison. “Ceremony Design and Analysis.” In: IACR Cryptol. ePrint Arch.

2007 (2007), p. 399.

[42] Jean Everson Martina, Túlio Cícero Salavaro de Souza, and Ricardo Felipe Custodio.
“Ceremonies formal analysis in pki’s context”. In: 2009 International Conference

on Computational Science and Engineering. Vol. 3. IEEE. 2009, pp. 392–398.

[43] Carsten Schürmann et al. “Framing Electoral Transparency: A comparative analysis
of three e-votes counting ceremonies”. In: (2016).

[44] Roger C Mayer, James H Davis, and F David Schoorman. “An integrative model of
organizational trust”. In: Academy of management review 20.3 (1995), pp. 709–734.

[45] Jae Kwon and Ethan Buchman. “Cosmos whitepaper: A network of distributed
ledgers, 2019”. In: URL: https://cosmos.network/cosmos-whitepaper.pdf (2019).

[46] Mustafa Al-Bassam, Alberto Sonnino, and Vitalik Buterin. “Fraud proofs: Max-
imising light client security and scaling blockchains with dishonest majorities”. In:
arXiv preprint arXiv:1809.09044 (2018).

[47] Vitalik Buterin and Virgil Griffith. “Casper the friendly finality gadget”. In: arXiv

preprint arXiv:1710.09437 (2017).

73

https://books.google.ee/books?id=IXmrBQAAQBAJ
https://books.google.ee/books?id=IXmrBQAAQBAJ
https://en.wikipedia.org/w/index.php?title=Blockchain&oldid=997158758
https://en.wikipedia.org/w/index.php?title=Blockchain&oldid=997158758

[48] Nodes and clients. URL: https://ethereum.org/en/developers/
docs/nodes-and-clients/. (Accessed: 1 January 2021).

[49] Wenbo Wang et al. “A survey on consensus mechanisms and mining management
in blockchain networks”. In: arXiv preprint arXiv:1805.02707 (2018), pp. 1–33.

[50] Vitalik Buterin. Timeliness detectors and 51% attack recovery in blockchains. URL:
https://ethresear.ch/t/timeliness- detectors- and- 51-

attack-recovery-in-blockchains/6925/1. (Accessed: 2 January
2021).

[51] Bruce Schneier. “Attack trees”. In: Dr. Dobb’s journal 24.12 (1999), pp. 21–29.

[52] David Robert Grimes. “On the viability of conspiratorial beliefs”. In: PLoS One

11.1 (2016), e0147905.

[53] Tom N Jagatic et al. “Social phishing”. In: Communications of the ACM 50.10
(2007), pp. 94–100.

[54] Simon R Wiseman. Defenders Guide to Steganography. Tech. rep. Deep Secure
Technical Report DS-2017-2. DOI: https://doi. org/10.1314 0/rg . . ., 2017.

[55] Ken Thompson. “Reflections on trusting trust”. In: Communications of the ACM

27.8 (1984), pp. 761–763.

[56] Zero-day Vulnerability Database. URL: https://www.zero- day.cz/
database/. (Accessed: 6 January 2021).

[57] Serkan Özkan. CVE Details. URL: https://www.cvedetails.com/. (Ac-
cessed: 11 January 2021).

[58] A Caroline Mary. “Shellshock attack on linux systems–bash”. In: International

Research Journal of Engineering and Technology 2.8 (2015), pp. 1322–1325.

[59] Zakir Durumeric et al. “The matter of heartbleed”. In: Proceedings of the 2014

conference on internet measurement conference. 2014, pp. 475–488.

[60] Inflation Bug Still a Danger to More Than Half of All Bitcoin Full Nodes. URL:
https://cointelegraph.com/news/inflation-bug-still-a-

danger-to-more-than-half-of-all-bitcoin-full-nodes.
(Accessed: 11 January 2021).

[61] Leyla Bilge and Tudor Dumitraş. “Before we knew it: an empirical study of zero-day
attacks in the real world”. In: Proceedings of the 2012 ACM conference on Computer

and communications security. 2012, pp. 833–844.

74

https://ethereum.org/en/developers/docs/nodes-and-clients/
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://ethresear.ch/t/timeliness-detectors-and-51-attack-recovery-in-blockchains/6925/1
https://ethresear.ch/t/timeliness-detectors-and-51-attack-recovery-in-blockchains/6925/1
https://www.zero-day.cz/database/
https://www.zero-day.cz/database/
https://www.cvedetails.com/
https://cointelegraph.com/news/inflation-bug-still-a-danger-to-more-than-half-of-all-bitcoin-full-nodes
https://cointelegraph.com/news/inflation-bug-still-a-danger-to-more-than-half-of-all-bitcoin-full-nodes

[62] Flash note: EU cyber security agency ENISA; “High Roller” online bank robberies

reveal security gaps. URL: https://www.enisa.europa.eu/news/
enisa- news/copy_of_eu- cyber- security- agency- enisa-

201chigh-roller201d-online-bank-robberies-reveal-security-

gaps. (Accessed: 8 January 2021).

75

https://www.enisa.europa.eu/news/enisa-news/copy_of_eu-cyber-security-agency-enisa-201chigh-roller201d-online-bank-robberies-reveal-security-gaps
https://www.enisa.europa.eu/news/enisa-news/copy_of_eu-cyber-security-agency-enisa-201chigh-roller201d-online-bank-robberies-reveal-security-gaps
https://www.enisa.europa.eu/news/enisa-news/copy_of_eu-cyber-security-agency-enisa-201chigh-roller201d-online-bank-robberies-reveal-security-gaps
https://www.enisa.europa.eu/news/enisa-news/copy_of_eu-cyber-security-agency-enisa-201chigh-roller201d-online-bank-robberies-reveal-security-gaps

Acknowledgements

This work would not have been possible without the generous support I have received
from many people over the years. First, I would like to thank my advisor Ahto Buldas
who repeatedly pointed me in the right direction and shared his wisdom that was crucial to
the success of this work. I would also like to thank professor Jaan Ginter for his tireless
answers to my questions on criminology and human behaviour, without which this work
would not have been possible.

Next I would like to thank many of my colleagues and friends who have helped me learn
about computer security and blockchains, including Andres Ojamaa, Risto Laanoja, Ahto
Truu, Andres Kroonmaa and Peeter Omler. I would also like to thank my girlfriend Liisi
who patiently tolerated my busy schedule as I was finishing the work.

76

Appendices

Appendix 1 – Non-exclusive licence for reproduc-
tion and publication of a graduation thesis

I Risto Alas

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis "Using permissioned blockchains for security risk mitigation: an analysis
framework and case studies", supervised by Ahto Buldas
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

77

11.01.2021

Appendix 2 – Derivations of the Tendermint
Blockchain Fork Threshold Under Delayed Net-
work Packets

Let us calculate for the Tendermint BFT consensus algorithm the threshold of nodes that
need to be compromised in order to successfully finalize (commit to) an invalid parallel
fork of the blockchain, under the assumption that the attacker can delay the arrival of
network packets long enough that the honest consensus nodes which are on different
parallel forks do not learn about the existence of each-others forks before they have already
finalized on their own fork. Thus, the attacker can separate the consensus nodes from each
other and the attacker’s nodes can equivocate, that is, the attacking nodes can secretly
participate on both forks.

Let n be the number of consensus nodes. We know that it takes cfinalise = b2
3
nc+1 nodes to

finalise a block, which means that the other leftover nodes could be sent by the attacker to
another fork: cleftover = n− cfinalise = n− (b2

3
nc+1). However, this number is clearly less

than what it takes to finalize another fork, thus the attacker will need to enlist some nodes
that would vote for both parallel chains. The minimum number of required double-voters is
equal to the number of votes required for finalising a block minus the number of "leftover"
nodes from the other parallel block:

78

cmalicious = cfinalise − cleftover

= cfinalise − (n− cfinalise)

= 2(cfinalise)− n

= 2(b2
3
nc+ 1)− n

= 2(b2
3
nc+ 1)− 2n+ n

= 2(b2
3
nc − n+ 1) + n

= 2(−(n− b2
3
nc) + 1) + n

= 2(−(n+ d−2

3
ne) + 1) + n

= 2(−(dn− 2

3
ne) + 1) + n

= 2(−(d1
3
ne) + 1) + n

= 2(−d1
3
ne+ 1) + n

= 2(1− d1
3
ne) + n

= −2(d1
3
ne − 1) + n

= n− 2(d1
3
ne − 1).

For instance, if the number of consensus nodes is n = 10, then the resulting value
cmalicious = 4; if n = 9 then cmalicious = 5.

79

Appendix 3 – Statistics On 0-day Vulnerabilities
in Chosen Software Components Between 2015 -
2020

The following is a list of known to be actively exploited 0-day remote code exploits, as
well as other types of vulnerabilities from the years 2015 to 2020, for select software. We
summarise the results in section 3.8.

� Google Chrome. Remote code executions: 4, total: 7.
– Multiple vulnerabilities in Google Chrome. CVE-2020-16017. Use-after-free
– Remote code execution in Google Chrome. CVE-2019-13720. Use-after-free
– Remote code execution in Google Chrome. CVE-2019-5786. Use-after-free
– Multiple vulnerabilities in Google Chrome. CVE-2020-6418. Type Confusion.

� Google Chrome for Android. Remote code executions: 1, total: 1.
– Remote code execution in Google Chrome for Android. CVE-2020-16010.

Heap-based buffer overflow.
� Microsoft Internet Explorer. Remote code executions: 10, total: 17.

– Remote code execution in Microsoft Internet Explorer. CVE-2020-1380.
Buffer overflow

– Remote code execution in Microsoft Internet Explorer. CVE-2020-0674.
Buffer overflow

– Remote code execution in Microsoft Internet Explorer. CVE-2019-1429.
Buffer overflow

– Remote code execution in Microsoft Internet Explorer. CVE-2019-1367. Use-
after-free

– Remote code execution in Microsoft Internet Explorer. CVE-2018-8373. Use-
after-free

– Remote code execution in Microsoft Internet Explorer. CVE-2015-2502. Mem-
ory corruption.

– Multiple vulnerabilities in Microsoft Internet Explorer. CVE-2017-0222. Mem-
ory corruption

– Multiple vulnerabilities in Microsoft Internet Explorer. CVE-2017-0149. Mem-
ory corruption.

80

– Multiple vulnerabilities in Microsoft Internet Explorer and Edge. CVE-2016-
3351. Memory corruption

– Multiple vulnerabilities in Microsoft Internet Explorer. CVE-2015-2425. Mem-
ory corruption

� Mozilla Firefox. Remote code executions: 5. Total: 7.
– Remote code execution in Mozilla Firefox and Firefox ESR. CVE-2020-6820.

Use-after-free
– Remote code execution in Mozilla Firefox and Firefox ESR. CVE-2020-6819.

Use-after-free
– Remote code execution in Mozilla Firefox and Firefox ESR. CVE-2019-17026.

Type Confusion
– Remote code execution in Mozilla Firefox and Firefox ESR. CVE-2019-11707.

Type Confusion
– Remote code execution in Mozilla Firefox. CVE-2016-9079. Use-after-free

� Oracle WebLogic. Remote code executions: 1. Total: 1.
– Remote code execution in Oracle WebLogic Server. CVE-2019-2729. Deseri-

alization of Untrusted Data
� Microsoft IIS. Remote code executions: 1. Total: 1.

– Remote code execution in Microsoft IIS 6.0. CVE-2017-7269. Buffer overflow
� Oracle Java SE. Remote code executions: 1. Total: 2.

– Remote code execution in Oracle Java SE. CVE-2015-2590. Remote code
execution

� Microsoft Windows. Remote code executions: 2. Total: 41.
– Remote code execution in Microsoft Windows. CVE-2015-2426. Buffer

overflow. A remote attacker can create a specially crafted document or website
with embedded malicious OpenType font, trick the victim into opening it, cause
memory corruption and execute arbitrary code on the target system.

– Multiple vulnerabilities in Microsoft Windows. CVE-2016-3393. Arbitrary
code execution.

� Linux. Remote code executions: 0. Total: 3.
� Apple MacOS. Remote code executions: 1. Total: 3.

– Multiple vulnerabilities in Apple macOS. CVE-2020-27930. Memory corrup-
tion

� Apple iOS. Remote code executions: 2. Total: 6.
– Remote code execution in Apple iOS. Out-of-bounds write. 2020-04-22. The

vulnerability exists due to a boundary error when processing email in the iOS
MobileMail.

– Multiple vulnerabilities in Apple iOS. CVE-2016-4657. Memory corruption

81

Appendix 4 – Effect of Re-Shuffling Members by
an Individual Request on the Resilience of Cere-
monies

Although our main analysis does not use this configuration, merely for informative reasons
we analyse the case of an on-site ceremony where we allow every single ceremony
participant to veto a ceremony, thus causing a ceremony to be re-scheduled, and if the
same team is vetoed and rescheduled too many times then eventually we would have to
assign new team members (perhaps the team members randomly assigned across a larger
pool, thus the term "re-shuffling" for members). One of the reasons for composing a new
team is that otherwise the team members could eventually get too familiar with each other,
which, according to our model, would make them slightly more likely to conspire. Another
reason for re-shuffling the team could be that the veto represents something negative about
the team, in which case the next team could hopefully do better. However, if we allow such
reshuffling by a mere request of a single member, we run a risk of the following attack:
if malicious parties always keep vetoing every time they can see that the team does not
consist of their co-conspirators, they would increase the likelihood of ending up on the
same team with their co-conspirators. Let us calculate the likelihood of that happening.

To be conservative, let us assume that re-shuffling can be done an infinite number of
times, and that all dishonest participants know each other and can tell whether all other
participants in their ceremony happen to be dishonest or not (if they are dishonest, they
could safely conspire together).

Let the likelihood of the entire group being dishonest be D and the likelihood of at least
one member out of that group (but not all of them) being dishonest d. Without reshuffle,
the probability of arriving at a dishonest group would the simply be:

P (DishonestyNoShuffle) = D.

With infinite numbers of reshuffles (even when the same people end up on asking for
reshuffles as they eventually end up on the team again), the probability of ending up with

82

a dishonest team would be a geometric series, where the first addendum represents the
likelihood of the group being dishonest at the first attempt and every next addendum
represents the likelihood of the group being dishonest after the next shuffle:

P (DishonestyWithShuffle) = D + dD + d2D + d3D + ... =
∞∑
k=0

Ddk

The above represents a geometric series, often generally represented with the following
formula:

∑∞
k=0 ar

k. The series is known to converge to the value computed by the formula
a/(1 − r) under the assumption that the common ratio r stays in the range |r| < 1.
Substituting our numbers to the last formula, we can calculate the dishonesty likelihood to
converge to:

P (DishonestyWithShuffle) =
D

1− d
, 0 ≤ d < 1 (1)

Thus we can calculate how much the "infinite" amount of shuffling allowed will make
ceremonies less secure. Thus, we can calculate the honesty of the group with and without
shuffling for various group sizes n and members’ probabilities for dishonest acts p (for
simplicity, we assume here that the probabilities p are equal for all group members).

We assume in the following example that so long as there is one person in the ceremony
that is honest, the ceremony will not approve a malicious change, which means that the
overall group honesty without shuffling is simply

P (DishonestyNoShuffle) = D = pn. (2)

With shuffle, we can use the equation 1, where D can be calculated again as pn. Calculating
d (the likelihood that some, but not all group members are dishonest) is slightly trickier,
but not by much: d = 1− pn − (1− p)n, which leads to the final formula for dishonesty
using shuffle:

83

Table 9. Sample values to illustrate the odds of the entire group ending up as dishonest,
depending on whether or not shuffling group members is allowed at the request of any
single group member at all times, and depending on the group size n and the probability of
a dishonest act of a single member p.

Group
size
n

Member
dishonesty

p

Probability
that everyone
is dishonest

without shuffle
D = pn

Probability
that everyone
is dishonest
with shuffle

P (DishonestyWithShuffle)
1 0.001 1.000 000× 10−3 1.000 000× 10−3

1 0.010 1.000 000× 10−2 1.000 000× 10−2

1 0.100 1.000 000× 10−1 1.000 000× 10−1

1 1.000 1.000 000 1.000 000
4 0.001 1.000 000× 10−12 1.004 010× 10−12

4 0.010 1.000 000× 10−8 1.041 020× 10−8

4 0.100 1.000 000× 10−4 1.523 926× 10−4

4 1.000 1.000 000 1.000 000
7 0.001 1.000 000× 10−21 1.007 028× 10−21

7 0.010 1.000 000× 10−14 1.072 886× 10−14

7 0.100 1.000 000× 10−7 2.090 751× 10−7

7 1.000 1.000 000 1.000 000
10 0.001 1.000 000× 10−30 1.010 055× 10−30

10 0.010 1.000 000× 10−20 1.105 727× 10−20

10 0.100 1.000 000× 10−10 2.867 972× 10−10

10 1.000 1.000 000 1.000 000

P (DishonestyWithShuffle) =
pn

1− (1− pn − (1− p)n)

=
pn

pn + (1− p)n
. (3)

To tell the difference of probability of honesty between not shuffling and shuffling, we thus
need to compare the results of equation 2 and equation 3. Analysing the formulae is out of
scope for the current work, but when designing a ceremony, the exact parameters would
have to be calculated by the designers. For reference, we show some values for multiple
realistic situations for which the difference between the reliability of the shuffled and not
shuffled version is relatively small in table 9.

84

	List of Figures
	List of Tables
	Introduction
	The Problem
	Restrictions on the Work
	Research Problems
	Research Methods

	Background
	Blockchains and DLT
	On-site Security Ceremonies

	Body of Work
	Blockchains as "Trust Machines"
	Properties of Tendermint Consensus as a Typical Example
	Blockchain Validation Beyond Consensus
	Properties of On-Site Ceremonies
	Comparing Blockchain Consensus and On-site Security Ceremonies
	A Model for the Integrity of Humans
	Probability of Dishonest Acts Of Individuals, Depending on the Odds of Getting Caught.
	Likelihoods of Success and Getting Caught When Enlisting New People

	Applications of the Model for Centralised and Decentralised Architectures
	Comments on The Trust Differences Between On-Site Ceremonies and Blockchain Consensus
	Phishing and Other Cyberattacks.
	Detecting Backdoors, Steganographic Data Infiltration and Exfiltration
	Software and Hardware Backdoors

	Statistics on Software and Hardware Security
	Sample Analysis of a Cryptocurrency Use-Case
	Introduction
	Case 1: Printing and Stealing Money
	Case 2: Compromising a Random-Number Generator
	Discussion of Results

	Results
	Summary of Results
	Novelty of Results
	Application of Results

	Conclusions and Future Work
	Conclusions
	Future Work

	References
	Acknowledgements
	Appendices
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2 – Derivations of the Tendermint Blockchain Fork Threshold Under Delayed Network Packets
	Appendix 3 – Statistics On 0-day Vulnerabilities in Chosen Software Components Between 2015 - 2020
	Appendix 4 – Effect of Re-Shuffling Members by an Individual Request on the Resilience of Ceremonies

