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ABSTRACT 

Current study is focused on Synthetic Aperture Radar (SAR) based sea ice and 

water classification using different machine learning methods for coastal area in 

Western Estonia. K-means based superpixel algorithm is chosen to separate SAR data 

into homogenous segments representing only ice or water. Statistical parameters from 

SAR backscattering field, Grey Level Covariance Matrix parameters (texture) and 

parameters describing segment geometry, are calculated for each segment and 

properties which best describe ice or water class are selected. Classification based on 

AdaBoost, Random Forest and Support Vector Machine algorithms is performed.  

Accuracy of the classification algorithms is assessed. In cold conditions when water 

between islands and on the coast is frozen Random Forest provided best accuracy with 

93.6% on ice and 82.2% on water. AdaBoost performed correctly on 90.7% ice 

segments and 80.1% water segments, Support Vector Machine accuracy on ice was 

80.2% and on ice 70.6%. Comparison between Finnish Meteorological Institute SAR 

based ice charts and Random Forest based classification gives greater similarities in 

cold conditions (average difference 54%) and increases in warmer period when coastal 

area is clear of ice (average difference 214%). The algorithm performs poorly on warm 

conditions with little ice, as the algorithm is prone to overclassification of ice on the 

coastal area. 

 

Key words: sea ice, synthetic aperture radar, backscattering, machine learning  
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RESÜMEE 

Antud töö keskendub tehisavaradari (SAR) põhisele merejää ja vee 

klassifitseerimisele kasutades erinevaid masinõppe meetodeid Lääne-Eesti 

rannikumeres. SAR andmed jaotatakse homogeenseteks segmentideks, mis sisaldavad 

ainult vett või jääd, kasutades k-means põhist superpikslite algoritmi. Igale segmendile 

arvutatakse statistilised parameetrid, mis kirjeldavad SAR tagasipeegelduvust, 

tekstuuri (Grey Level Covariance Matrix) ning segmendi geomeetriat. Nende seast 

valitakse välja parameetrid, mis kirjeldavad ning eristavad vee ja jää klasse kõige 

paremini. Klassifikatsioon teostatakse kasutades AdaBoost, Random Forest ja Support 

Vector Machine algoritme. 

Hinnatakse klassifikatsiooni algoritmide täpsust. Külmades ilmatingimustes, kui 

vesi on saarte vahel ja rannikul jäätunud, annab Random Forest parima tulemuse, 

93.6% jääl ja 82.2% veel. AdaBoost’il põhineva algoritmi täpsus on 90.7% jääl ja 

80.1% veel. Support Vector Machine andis täpsuseks jää 80.2% ja veel 70.6%. 

Võrdluses Soome meteoroloogia instituudi jääkaartidega annab Random Forest’il 

põhinev algoritm sarnasemaid tulemusi külmades tingimustes (keskmine erinevus 

54%), kuid erinevus suureneb soojades tingimustes, mil rannik on jääst vaba 

(keskmine erinevus 214%). Algoritm annab soojades tingimustes kehvi tulemusi, kuna 

algoritm üleklassifitseerib jää esinemist rannikul. 

 

Märksõnad: merejää, tehisavaradar, tagasipeegeldus, masinõpe  
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INTRODUCTION 

Sea ice extent is essential information for ice map formation. In current work sea 

ice extent is defined as area covered by ice or drifting ice. Accurate ice maps in turn 

offer valuable information for winter marine navigation by enabling to efficiently plan 

ice breakers work, shipping routes, thereby saving fuel. In addition, accurate 

knowledge of ice conditions increases marine safety by allowing to evaluate what type 

of vessels could safely navigate in given conditions and if ice breaking is needed.  

Extensive in situ ice measurements provide most accurate information about ice 

conditions but are expensive to conduct and need considerable man power. Out of 

remote sensing methods optical high resolution satellite imagery supply one of most 

accurate and easy to interpret information, but only during daytime and in cloud free 

situations. Unfortunately during winter time in Estonia, there are few cloud free days. 

According to “Meteorological yearbook of Estonia 2016” (Loodla et al., 2017) only 

16% of daytime was sunny in January 2016, 15% in February 2016 and 41% in March 

2016, measured in Tallinn-Harku meteorological station. Synthetic Aperture Radar 

(SAR) is an active remote sensing system that sends microwave to the surface of the 

Earth and reads the backscatter from the surface. This means it is independent from 

daylight and cloud cover.  

However, SAR data is difficult to interpret and different ice conditions may produce 

extremely similar backscattering. As SAR data understanding requires detection of 

small changes in backscattering patterns, growing number of sea ice applications use 

machine learning methods in order to separate ice and water.  

Most of ice classification algorithms are developed for Arctic Ocean with the aim 

of distinguishing between first-year ice, multi-year ice and water. Leigh and Wang 

(2014) deploy both unsupervised (iterative region growing using semantics algorithm) 
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and supervised (Support Vector Machine) algorithms in order to separate ice and water 

in Canadian Arctic region with 96.42% of overall accuracy. Zakhvatkina et al. (2012) 

classify Arctic ice using neural networks and Bayesian algorithm with accuracies for 

different ice types ranging 83% to 85% for neural networks and 68% to 96% for 

Bayesian algorithm. 

There is lesser amount of research done about using machine learning algorithms 

to classify ice in small regional areas with ice appearing only seasonally. The most 

extensive research about first-year ice classification is done by Finnish Meteorological 

Institute. Karvonen (2004) uses hypothesis that SAR data distribution within segment 

is very close to Gaussian distribution. Estimating overall data distribution, six different 

distributions can be detected which respond to three different ice types. Karvonen 

(2012a) presents automatic ice concentration algorithm based on autocorrelation 

distribution which can be used as statistical texture measure. Image is segmented using 

simple k-means clustering and autocorrelation is calculated within one segment.  

As ice cover area in Estonian coastal area is very small and topographical 

characteristics have to be taken in account, new algorithm is proposed and tested. 

Estonia also lacks extensive ice survey service which means ice extent algorithm based 

solely on SAR would provide cost effective solution for collecting information about 

ice conditions.  
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2 OBJECTIVES 

The main objective of this study is to develop operational ice extent and type 

algorithm for the Baltic Sea and Estonian coastline with only SAR HH and HV 

polarization data as an input. 

Specific tasks include (1) finding suitable segmentation algorithm and ensuring that 

the segments follow ice-water border; (2) collecting training data and selecting the best 

features that enable to separate different ice and water classes; (3) to train ice/water 

classification algorithm using three different machine learning methods (AdaBoost, 

Support Vector Machine and Random Forest); (4) and comparing the results of the 

ice/water classification algorithms and assessing their accuracy. In addition, suitability 

of simple machine learning classification based only on SAR data is investigated. 
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3 LITERATURE REVIEW 

 

 

3.1 Ice conditions in Estonian coastal sea 

According to report on Estonian ice conditions (Uiboupin and Pärn, 2016) ice 

appears every year at least in Väinameri and in Gulf of Pärnu (Figure 1). In cold 

winters all of Estonian marine waters is covered with ice. 

 

(d) Cold winter (c) Intermediate 
winter 

(a) 2001-2016 
average 

(b) Mild winter 

Figure 1. Length of ice period in days  (a) during period 2001-2016; (b) during warm winter; (c) during 

intermediate winter; (d) during cold winter. (Uiboupin and Pärn, 2016). Red square indicates area of interest. 
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On average winter the ice cover appears for 70 to 110 days in Väinameri and Gulf 

of Pärnu. The probability of ice occurrence in period of 15th December to 1th of May 

is 40% - 70%. On cold winters ice appears for more than 110 days, with probability of 

ice occurrence over 70% during ice season. 

 

 

3.2 Radar scattering from sea ice 

Overview article “Sea Ice Monitoring by Synthetic Aperture Radar” by Dierking 

(2013) states that what is visible from SAR images is determined by various radar 

properties. The foremost one being radar frequency, most common frequencies are L-

band (15-30 cm), C-band (3.8-7.5 cm) and X-band (2.4-3.8 cm), latter two allow to 

see objects of interest and surface roughness in fine detail. In addition, brightness of 

sea ice in radar images is influenced by incidence angle and polarization. Overview of 

SAR geometry is provided in Figure 2. 

 

Figure 2. Schematic overview of SAR geometry. 
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Incidence angle is the angle between the radar system’s line of sight and a local 

vertical vector with respect to the geoid. Polarization is marked as a combination of 

transmitted and received signals where “H” means “horizontal” and “V” means 

“vertical”. If transmitted and received signals are in same polarization, it is co-

polarized method, if transmitted and received signals are in different polarization, it is 

cross-polarized method. HH-polarization is preferred for operational sea ice mapping 

as noise caused by water in radar signal is more suppressed at HH polarization than at 

VV. Level and deformed ice can be better identified from cross-polarization (HV or 

VH) as deformation zones have strong depolarization effects (Dierking, 2013). 

The main scattering from sea ice is by surface and volume scattering (Ibid.). Radar 

waves are reflected from smooth surface relative radar wavelength as from a mirror, 

therefore appear very dark in SAR images (Figure 3a). Scattering from rougher 

surfaces is dependent on size of disruption compared to radar wavelength. The 

probability of rubble and ice ridges reflecting toward the radar is much higher than for 

level ice. Thus, deformations appear as areas of higher backscatter. Direction of 

scattering from surface with different roughness are depicted on Figure 3. 

 

Figure 3. Direction of microwave scattering from a) a smooth surface, b) a roughened surface, c) a rough surface. 

(Robinson, 2004)  

Volume scattering occurs when radar wave penetrates into the ice or snow and then 

is redirected to the surface (Dierking, 2013). Amount of volume scattering occurring 

is determined partly by dielectric constant and penetration depth of radar wave, which 

decreases with increasing radar frequency, ice salinity and temperature. In first year 
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ice in cold conditions X-band may have penetration depth from 3 to 15 cm, whereas 

in L-band it may range from 0.15 to 1 m. Ice characteristics, which influence volume 

scattering are volume fraction, size and shape of inclusion particles, such as air bubbles 

and brine. Brine concentration in sea ice is large during formation, but decreases with 

age and thickness growth. Volume scattering is reduced or non-existent when ice cover 

is wet due to melting. 

Radar scattering from water is overviewed by Nekrasov (2014) according to whom 

scattering from water surface is dependent on incidence angle, which is highest near 

nadir and decreases with increasing incidence angle. Radar backscattering is 

predominantly due to presence of capillary-gravity wavelets, which are superimposed 

on large gravity waves on the sea surface. Wind speed and direction also affect 

backscattering as strong wind produces larger backscattering values at medium 

incidence angel and smaller backscattering values at small incidence angle compared 

to mild wind. 

  

 

3.3 Machine learning algorithms 

According to Michie et al. (1994) “Machine Learning is generally taken to 

encompass automatic computing procedures based on logical or binary operations, that 

learn a task from a series of examples”.  

Machine learning can be divided into three groups, (1) supervised learning,  (2) 

reinforcement learning and (3) unsupervised learning, based on how much information 

is given to the classifier about correct outcome (Russel and Norvig, 1995). If both 

inputs and outputs are defined by the user, the process is called supervised learning, 

these include popular classifying algorithms like decision trees and support vector 

machines. Reinforced learning occurs if the classifier receives some evaluation of its 

action but is not told the correct action. If there is no hint at all about the correct output, 

it is called unsupervised learning, such as segmentation algorithms, which group 

similar data points to clusters but do not tell the user what they are. In current work, 

both supervised and unsupervised machine learning methods are used. 
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A common unsupervised method is clustering, which discovers the compositions 

and structure of a given dataset (Castrounis, 2016). Clustering is a process of bundling 

data into clusters to see if or what groups emerge. One cluster can be characterised by 

set of features. Another important method is supervised classification (Ibid.) which 

assign a class to observation or estimating the probabilities that an observation belongs 

to each classes. 

Machine learning algorithm implementation has been made accessible for non-

computer sciences experts through Python data analysis modules as Scikit-learn 

(Pedregosa et al., 2011). 
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4 DATA 

 

 

4.1 Sentinel-1 SAR 

C-band Sentinel-1 SAR data has been used in this study. Sentinel-1 satellite series 

is part of Europe’s Copernicus program and combines two identical satellites orbiting 

as a constellation 180° apart (Torres et al., 2012). One satellite images the Earth in 12 

days, thus the two-satellite constellation repeats its orbit in 6 days, providing identical 

acquisition in this period. Combined with Estonia’s high latitude, Sentinel-1 satellite 

series provides new images of Estonia at least twice as often.  

Sentinel-1 data is distributed in Standard Archive Format for Europe (SAFE) and 

Level-1 Ground Range Detected (GRD) products are used in this study, which are in 

Extra Wide Swath (EW) SAR acquisition mode. According to Sentinel-1 Product 

Specification (Bourbigot et al., 2016) the EW mode provides very large swath 

coverage with medium spatial resolution. The pixel resolution for EW mode GRD 

product in medium resolution (GRDM) is 40x40 m (SUHET, 2013, 65-69). 

Acquisitions over Estonia are done in dual polarizations, providing one image with 

co-polarization (HH or VV) and one image with cross-polarization (respectively HV 

or VH). According to “Sentinel High Level Operations Plan (HLOP)” (CSC Mission 

Management Team, 2017) HH+HV polarizations are most suitable for sea-ice 

observations, thus GRDM products are acquired in HH+HV polarisations in the Baltic 

Sea during ice season.  

Training data used for training supervised machine learning classifier is from 11 

January 2017 to 6 February 2017 (list of files is located in Appendix 1). During this 
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period, 35 Sentinel-1 images over Estonian coastal region are acquired. Validation data 

was acquired between 13 January 2016 and 25 February 2016, in this period 17 images 

are randomly selected for validation. 

 

 

4.2 Moderate Resolution Imaging Spectroradiometer data 

Data from Moderate Resolution Imaging Spectroradiometer (MODIS) is used for 

visual estimation of sea ice extent. MODIS images have resolution of 250 m and are 

available as false colour image (Red: 859 nm; Green: 645 nm; Blue: 645 nm) on 

Department of Marine Systems website. In Training period of 11 January to 6 February 

2016 there are nine relatively cloud free images available. 

 

 

4.3 Finnish Meteorological Institute Sea Ice Forecast 

Finnish Meteorological Institute (FMI) provides SAR based sea ice thickness charts 

using Sentinel-1 or Radarsat-1 data (Karvonen, 2012b) and combining this information 

with ice thickness history and thermodynamic ice model (Karvonen et al., 2008). The 

maps have resolution of 500 m and are publically available as part of project 

Copernicus Marine Environmental monitoring Service (CMEMS). As the product is 

Sentinel-1 based, it has same temporal coverage as data in paragraph 4.1. 

 

 

4.4 In situ observations 

In situ observations were conducted in 2015 during three days and in 2016 during 

five days. In 2015 the observations were done on foot and in 2016 using TTÜ 

Department of Marine Systems drone. In situ observations enabled to estimate the 

texture of ice and how different ice types looked like from SAR images. Summary of 

in situ observations is presented in Appendix 2.   
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5 METHOD 

 

 

5.1 Operational processing chain 

In order to automatically classify SAR images, various machine learning techniques 

are used. Figure 4 depicts flowchart of processes to create ice maps. The most 

important steps are segmentation and classification, which are investigated thoroughly 

in current study. 

 

Figure 4. Flowchart of sea ice extent classification algorithm. Segmentation involves separating ice and water into 

homogenous divisions. Classification involves separating and defining segments as ice or water.  

 

Preprocessing SAR 
backscatter 
in SAFE 
format Segmentation 

Classification 

Segment 
image (PNG) 

Projection 
(L-Est) 

Ice map (PNG) 

Projection 
(WGS84) 

Segment 
values (CSV) 

Visual output 
creation 

(a) SigmaHH 
(b) SigmaHV 
(c) Ice map 
on basemap 
(PNG) 
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5.1.1 Pre-processing 

Pre-processing is done using program ESA Sentinel Application Platform (SNAP). 

Sentinel-1 GRD products are calibrated and Land mask is applied using prewritten 

algorithms. Flowchart of pre-processing is visible in Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Flowchart of pre-processing in SNAP. 

SAFE file distributed by ESA is imported to ESA SNAP. The first processing step 

is calibration which relates pixel values to the radar backscatter of the scene, thus 

converting digital pixel values to radiometrically calibrated backscatter (SNAP 

Sentinel-1 Toolbox Help). Although uncalibrated images can provide information for 

visual evaluation, in order to statistically analyse the data, calibration must be 

performed.  Information needed for calibration is provided along with the SAR data. 

Calibrated backscatter values are defined as sigma nought (σ0), also referred as 

variable SigmaHH and SigmaHV depending on the polarisation (HH or HV). 

Creating Land Mask turns any pixel on land into no data value. ESA SNAP will 

automatically download Shuttle Radar Topographic Mission (SRTM) 5 minutes digital 

elevation model (DEM) which allows to quickly determine if a pixel is on land or in 

water. Applying Land Mask allows to reduce file size by removing land pixel values 

Import 

Calibration 

Land mask 

application 

Layers: 
1: SigmaHH 
2: SigmaHV 

 

Export 

Calibrated 

and 

masked 

SAR 

backscatter

DIMAP file 

SAR 
backscatter 
in SAFE 
format 
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and segregate land pixels in segmentation process and causing the segments to follow 

the coastline. 

The images produced in ESA SNAP are exported in BEAM-DIMAP Data format 

which can be read into other applications. In addition, part of pre-processing is 

calculating longitude and latitude fields.  

 

5.1.2 Segmentation 

Segmentation in current work is done by using superpixels method which is 

developed for image classification and figure detection by Ren and Malik (2003). The 

aim of superpixels is to produce larger areas of pixels that contain pixels of similar 

values based on texture, brightness, sudden boundaries in the image and proximity of 

pixels. 

Superpixel method has many benefits compared to traditional sliding window 

approach for classification. Sliding windows robustly take the mean values of side-by-

side pixels and classifies the pixels together without taking into consideration whether 

the siding pixels are similar or not. This creates inaccurate results in boundary areas. 

In order to produce satisfactory results, the sliding window has to contain a small 

number of pixels, which increases computing time. In comparison, segments contain 

significantly larger number of pixels that can be classified together due to their 

homogeneous properties. 

In this work, simple linear iterative clustering (SLIC) superpixel algorithm is used 

(Achanta et al., 2012). SLIC algorithm uses adaptation of k-means, but instead of 

searching the entire image for similar values, only region proportional to the segment 

size is searched. The number of segments desired on the image is controlled by the 

size of each pixel. The first step is to place cluster centres on regular grid spaced S 

pixels apart. Each pixel is associated to the nearest cluster centre. Then for each pixel 

new cluster centre is assigned based on brightness and distance. For large segments, 

spatial distances outweigh similarity in brightness, for small segments, the converse is 

true.  
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For this work, the optimal segment size is chosen to be 40 000 pixels. For regular 

grid, this translates into a square size of 200 by 200 pixels. In the real world, using 

resolution of Sentinel-1 GRDM product, 8 km by 8 km is covered with one regular 

segment. The actual size of segment can vary from 2000 to 110 000 pixels depending 

on the boundaries and different ice types in the image being processed. The minimal 

width of any segment is eight pixels.  

 

5.1.3 Segment properties 

For each segment 30 properties are calculated from sigma naught field of HH and 

HV polarization and the segment field itself. From HH and HV polarizations HH and 

HV field value parameters and texture parameters based on Grey-Level Co-occurrence 

Matrix (GLCM) are calculated. Geometrical parameters are calculated from segment 

field. 

Value parameters are following: 

 Mean_HH – Mean value of HH polarization sigma naught 

 Stddev_HH – Standard deviation value of HH polarization sigma naught 

 Variance_HH – Variance value of HH polarization sigma naught 

 Mean_HV – Mean value of HV polarization sigma naught 

 Stddev_HV – Standard deviation value of HV polarization sigma naught 

 Variance_HV – Variance value of HV polarization sigma naught 

 HH-HV_mean – HH and HV polarization sigma naught difference 

 HH_div_HV_mean – HH divided by HV polarization sigma naught values 

 

GLCM is a simple texture analysis devised by Haralick et al. (1973) which is based 

on assumption that texture information in an image is contained in the overall spatial 

relationship which grey levels of neighbouring pixels have to one another. 22 different 

texture features can be derived from GLCM, but usually only Contrast, Homogeneity, 

Dissimilarity, Energy and Entropy are considered as parameters of importance. GLCM 

parameters are calculated separately for both co-polarized and cross-polarized images, 

(a) (b) 

(c) (d) 
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with 50 levels (range between 0.01 and 0.51 with step 0.01) for co-polarized data and 

18 levels (range between 0.001 and 0.01 with step 0.0005) for cross-polarized data. 

GLCM value (texture) parameters are following: 

 GLCM_mean – the mean of rows and columns mean (Soh and Tsatsoulis, 

1999) 

 
𝜇 =

𝜇𝑥+𝜇𝑦

2
=
∑ 𝑖 ∙ 𝑝(𝑖, 𝑗)𝑖,𝑗 +∑ 𝑗 ∙ 𝑝(𝑖, 𝑗)𝑖,𝑗

2
 (1) 

 GLCM_variance – measures how far each GLCM element is from mean 

(Haralick et al., 1973) 

 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑(𝑖 − 𝜇)2𝑝(𝑖, 𝑗)

𝑖,𝑗

 (2) 

 GLCM_correlation – measures the linear dependency of grey levels on 

those of neighbouring pixels. (Ibid.) 

 
𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =

∑ (𝑖𝑗)𝑝(𝑖, 𝑗) − 𝜇𝑥𝜇𝑦𝑖,𝑗

𝜎𝑥𝜎𝑦
 (3) 

where µx and µy represent means of rows and columns and σx and σy 

represent standard deviations of rows and columns. 

 GLCM_entropy – represents spatial disorder (Gebejes and Huertas, 2013) 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =∑𝑝(𝑖, 𝑗) log(𝑝(𝑖, 𝑗))

𝑖,𝑗

 (4) 

 GLCM_homogeneity – measures uniformity of the non-zero entries in the 

GLCM (Ibid.). 

 
𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑

1

1 − (𝑖 − 𝑗)2
𝑝(𝑖, 𝑗)

𝑖,𝑗

 (5) 

 GLCM_energy – a measure of local homogeneity, which enables to estimate 

how uniform the texture is (Ibid.).  

 𝐸𝑛𝑒𝑟𝑔𝑦 =∑𝑝(𝑖, 𝑗)2

𝑖,𝑗

 (6) 

 GLCM_contrast – local grey level variation in the GLCM (Ibid.).  
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 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑|𝑖 − 𝑗|2𝑝(𝑖, 𝑗)

𝑖,𝑗

 (7) 

 GLCM_dissimilarity – defines variation of grey level pairs in an image 

(Ibid.). 

 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑|𝑖 − 𝑗|𝑝(𝑖, 𝑗)

𝑖,𝑗

 (8) 

Geometrical parameters are following:  

 Pixels – Number of pixels in segment 

 X_length – Segment length along x axis 

 Y_length – Segment length along y axis 

 Ratio – Shorter segment side length (x_length or y_length) ratio to longer 

segment side length (correspondingly y_length or x_length) 

 Difference – Shorter segment side length and longer segment side length 

difference  

 Dif_to_pix – Number of pixel in segment divided by area of square where the 

segment would fit (x_length*y_length) 

Image of backscattering at HH polarization band with segment borders and segment 

identification is saved to PNG file. In addition, values of each segment are saved in 

csv file along with label whether the segment covered area is water, newly formed or 

melting open ice or full ice. The labelling is done by studying the SAR image texture 

and comparing the SAR image with optical satellite image. This information is later 

used for training the classifier.  

Images in training dataset are segmented and parameters from each segment are 

calculated. Then segments are labelled by human as ice, open ice and water by 

comparing SAR data with optical MODIS imagery. In most cases of sea ice 

classification there are no simultaneous ground truth data available, thus visual 

classification based on SAR data or other remote sensing data is used (Karvonen et al., 

2005). Where ice is visible on optical images, the segments are labelled as ice. Where 

no ice is visible, the segments are labelled as water. If ice is not visible from optical 



24 

 

images, but changes in roughness can be detected from SAR, the segments are labelled 

as open ice.  

 

5.1.4 Segment classification 

Segments are classified using supervised machine learning algorithms AdaBoost, 

Random Forest and Support vector machine.  

AdaBoost (AB) (Freund and Schapire, 1997) is a method that combines series of 

weak classifiers that are only slightly better than guessing and incorporates single 

prediction rule. The booster is presented with set of properties associated with certain 

label. In our case, the properties are described in paragraph 5.1.3 and the label is 

visually assigned based on SAR image texture or optical satellite data. The booster 

devises a distribution using naïve Bayes method over the set of examples and produces 

a weak hypothesis based on each property. The booster starts with unweighted training 

sample and accuracy of each weak hypothesis is calculated. If a training data point is 

misclassified, the weight of that training data point is boosted. This procedure is 

repeated and the final classifier is defined as the linear combination of the classifiers 

from each stage. In this work AdaBoost-SAMME algorithm that can successfully solve 

multi-class predictions is used (Zhu et al., 2009). 

Random Forest algorithm (RF) (Ho, 1998), (Breiman, 2001) constructs multiple 

decision trees in randomly selected subspaces with random features. Individual 

decision is made by using all the decision trees to classify the object and the most 

common outcome of all the decision trees is selected as the label. Decision trees used 

in current work are formed using Classification And Regression Tree (CART) 

algorithm.  

Support vector machine (SVM) (Cortes and Vapnik, 1995) maps input vector to a 

high-dimension feature space where linear decision surface is constructed. Decision 

surface is calculated by finding the hyperplane that gives the largest minimum distance 

to the training examples – finding the maximum margin. The trade-off between 

minimizing the training error and the complexity of the decision function is controlled 
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by a kernel and kernel parameters (Friedrichs and Igel, 2005). The current work uses 

Radial Basis Function for kernel, which is controlled mainly by parameters γ and C. γ 

defines how far the influence of a single training element reaches, with low meaning 

’far’ and high values ’close’. C parameter adjusts the relationship between 

misclassification of training samples with simplicity of decision surface, with low 

values making decision surface smooth.  

 

5.1.5 Projection 

When segments have been formed and each pixel has been assigned value in ice 

map creation, then the image is converted into L-EST97 (EPSG:3301) and WGS84 

(EPSG:4326) projection to create visual output. 

 

 

5.2 Comparison of properties 

The amount of information provided by certain property is estimated by performing 

analysis of variance (ANOVA), also known as F-test. An ANOVA determines if and 

independent variable, in this case property, had a significant impact on dependent 

variable, in current work – class (Scott MacKenzie, 2013). Higher F-scores indicate 

greater separability between classes. 

Correlation matrix is constructed using all segment parameters to eliminate 

parameters which are duplicating each other. From parameter pairs with correlation 

higher than 0.9 or lower than -0.9, the least representative based on visual inspection 

is removed. 

 

 

5.3 Ice map accuracy and comparison 

Ice map accuracy with three classification algorithms is measured by comparing ice 

map results retrieved by implementing the algorithm on independent validation 

dataset, with MODIS imagery and visual estimation of source SAR image to 
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determinate if each segment is correctly classified. Segments are divided into four 

groups: correctly classified ice segments, falsely classified ice segments, correctly 

classified water segments and falsely classified water segments. This process is 

analogous to training data collection described in 5.1.3 Classification accuracy is 

calculated for each class and overall accuracy is calculated using all evaluated 

segments. 

In addition, comparison with FMI ice chart is performed. The area covered by ice 

in square kilometres is measured by counting the number of pixels defined as ice in 

both FMI ice chart and ice area chart produced in this study. 

Ice map accuracy is only measured for Väinamere region, around Hiiumaa and 

Saaremaa, and for northern part of gulf of Riga where ice appears every year. As winter 

of 2016 and 2017 were mild, this are also the only regions where ice appeared in those 

winters. The area of interest is bordered with latitude 57.75 degrees from south, 

latitude 59.5 degrees from north, longitude 21.0 degrees from west and longitude 25.0 

degrees from east. 
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6 RESULTS 

 

 

6.1 Segmentation accuracy 

Segmentation accuracy is determined by visual inspection comparing segment 

border with MODIS images and drone observations. Superpixel based segmentation 

generally offers good separation between ice and water and between different ice 

types. 

On Figure 6 it is visible that superpixel based segmentation separates two different 

ice classes (Figure 6b and Figure 6c) into different segments (Figure 6a). Visual 

inspection also shows that water and ice are divided into different segments. At the 

same time the segments are large enough for reasonable computing time. 

Training data was compiled using supporting image (Figure 7) where radar 

backscattering is overlaid with segment borders and segment identification is written 

in the centre of the segment, as well as other source data. In total 14 725 segments 

were separated of which 626 where ice, 298 were open ice and 13 801 were water. In 

order to prevent the classifier to be biased toward water, as it was overrepresented, 601 

segments were randomly selected out of all water segments. 
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Figure 6. Ice conditions on 15 January 2016 (a) Sentinel-1 SAR backscattering at HH polarization  with segment 

borders (yellow) where blue dot corresponds to image (b) and red dot to image (c); (b) drone photo of closed ice; 

(c) drone photo of fast ice. 

 

Figure 7. Segment borders (yellow) laid 

over radar backscattering image at HH 

polarization.  

 

 

 

 

(a) 

(b) (c) 
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6.2 Properties selection   

Aim of property selection is to reduce the number of properties that describe the 

different classes/segments. The benefit of this is reduced calculation time and better 

performing classifier attributes that describe noise are removed. To estimate wheatear 

a property gives any valuable information for classification – has significantly 

different values for different classes, an analysis of variance (F-test) is performed. F-

values for each property is depicted in Figure 8. p-values for all properties were less 

than 0.05, thus being statistically significant. Properties stddev_HH, variance_HH, 

variance_HV, pixels, glcm_energy_HH and glcm_entropy_HH have significantly 

lower F-values than other properties, thus these properties do not describe the 

difference between different classes. Visual interpretation of the data confirms the 

hypothesis, as depicted on Figure 9. The features that best describe the difference 

between the classes are dif_to_pix, glcm_correlation_HV, glcm_correlation_HH, 

HH_div_HV_meanand glcm_variance_HV. In Figure 10 are examples of scatterplots 

where water and ice classes are separable.  
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Figure 8. Analysis of variance for each feature. 
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In order to further reduce the numbers of properties, the ones that duplicate each 

other are also excluded. This is done by calculating correlation between each property 

(Figure 11). glcm_dissimilarity_HH has over 0.9 absolute correlation value with 

Figure 9. Properties with similar values for different classes (a) HH polarization GLCM energy value of segment 

and HH polarization GLCM entropy value of segment; (b) HH polarization standard deviation of segment and 

pixels in segment 

(b) (a) 

Figure 10. Properties with different values for different classes (a) HH polarization GLCM correlation of segment 

and HH mean value of segment; (b) Mean value of HH divided by HV and HV standard deviation of segment 

(b) (a) 
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glcm_mean_HH (Figure 12a), glcm_homogenity_HH and glcm_contrast_HH  while  

glcm_dissimilarity_HV has absolute correlation over 0.9 with glcm_mean_HV, 

glcm_entropy_HV, glcm_energy_HV and glcm_contrast_HV. Therefore, it is 

concluded that GLCM dissimilarity in both polarizations may be removed. In HV 

polarization GLCM homogeneity, entropy and energy are all highly correlating with 

each other as also visible on Figure 12b, thus only one of the parameters is necessary. 

glcm_homogenity_HV is chosen as a representative texture parameter, as it provided 

visually the best data separation. 

 

Figure 11. Correlation matrix of all properties. 
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The F-test and correlation analysis results in reduction of properties used for 

classification. The number of properties was reduced from 20 to 10.  The remaining 

properties are:  

 mean_HH 

 mean_HV 

 stddev_HV 

 HH-HV_mean 

 HH_div_HV_mean 

 x_lenght 

 y_lenght 

 max_ratio 

 max_difference  

 dif_to_pix 

 

 glcm_variance_HH 

 glcm_mean_HH 

 glcm_correlation_HH 

 glcm_homogenity_HH 

 glcm_contrast_HH 

 glcm_variance_HV 

 glcm_mean_HV 

 glcm_correlation_HV 

 glcm_homogenity_HV 

 glcm_contrast_HV 

 

 

 

 

Figure 12. High correlation of properties (a) HH polarization GLCM dissimilarity and HH polarization GLCM 

mean; (b) HV polarization GLCM homogeneity and HV polarization GLCM energy  

(b) (a) 
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6.3 Class separation: ice, open ice, water 

The data has been divided into three classes: ice, open ice and water. Analysis of 

variance with different variables was conducted (Figure 13) to asses if these groups 

are statistically separable before machine learning algorithms are deployed. In Figure 

13 it is visible that all F-values between ice and open ice are extremely low. Therefore, 

it may be stated that ice and open ice are statistically similar with each other and 

therefore inseparable from each other during classification. In most of the properties, 

the best separability manifests between ice and water, with the exception of dif_to_pix, 

x_lenght and y_lenght, where open ice and ice offer better division. It is concluded that 

open ice class should be neglected and viewed as part of ice class.  
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Figure 13. Analysis of variance for different features between all class pairs (ice/water; water/maybe; 

ice/maybe) 



36 

 

6.4 Machine learning algorithm comparison 

Three machine learning algorithms (AdaBoost, Random Forest, Support Vector 

Machine) are used for sea ice extent calculation. For accuracy measurement 1505 

segments from 8 randomly selected training images acquired between 13 January 2016 

and 1 February 2016 were evaluated. Ice and water class accuracy by image is 

available on Table 1.  

 

Table 1. Accuracy of sea ice extent algorithm using different machine learning 

algorithms for each test image. 

Date Time 

AdaBoost Random Forest 

Support Vector 

Machine 

Ice class 

accuracy 

Water 

class 

accuracy 

Ice class 

accuracy 

Water 

class 

accuracy 

Ice class 

accuracy 

Water 

class 

accuracy 

13.01.2016 04:57 93% 91% 100% 88% 83% 79% 

13.01.2016 16:11 92% 75% 89% 75% 80% 75% 

20.01.2016 16:03 96% 88% 98% 88% 77% 78% 

25.01.2016 04:57 91% 72% 94% 75% 83% 61% 

25.01.2016 04:58 100% 33% 100% 49% 100% 34% 

25.01.2016 16:12 63% 85% 81% 90% 63% 61% 

27.01.2016 04:42 91% 90% 89% 87% 84% 76% 

1.02.2016 16:03 94% 85% 100% 89% 78% 83% 

Total 90.7% 80.1% 93.6% 82.2% 80.2% 70.6% 

Overall 82.7% 85.0% 73.0% 

 

The most accurate result was acquired using Random Forest (RF) for classification 

with overall accuracy of 85%. Because of that, RF based algorithm was chosen for 

comparison with FMI ice charts in period between 13 January 2016 and 25 February 

2016. In Table 2, it is visible that on images with more ice, compared to other images, 

the RF based algorithm produces more similar results to FMI ice charts. On images 

where there is less ice, the RF algorithm greatly overestimates the amount of ice in the 

scene. In case of large ice extent the difference between FMI and RF based algorithm 

was between 20-85%  (on average 54%) and in case of small ice cover the difference 

was 113-424% (on average 214%). In Figure 14 it is visible that FMI and RF based 
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algorithm follow similar trend. However when there is more ice, the error is less 

significant as on images with little ice where the overestimation happens on the coast. 

Table 2. Comparison with FMI ice chart. 

Date Time FMI (km2) RF (km2) Difference 

13.01.2016 04:57 4837 6998 45% 

13.01.2016 16:11 3585 6649 85% 

20.01.2016 16:03 4266 5890 38% 

25.01.2016 04:57 6141 8724 42% 

25.01.2016 04:58 1408 4810 242% 

25.01.2016 16:12 2180 2883 32% 

27.01.2016 04:42 4330 5180 20% 

1.02.2016 16:03 1651 3514 113% 

6.02.2016 04:57 1947 4569 135% 

6.02.2016 16:11 871 1753 101% 

8.02.2016 04:42 2094 3233 54% 

8.02.2016 15:55 667 1644 147% 

13.02.2016 16:03 650 2293 253% 

18.02.2016 04:57 593 2119 257% 

20.02.2016 04:42 669 2523 277% 

20.02.2016 15:55 348 1826 424% 

25.02.2016 16:03 453 2188 383% 

 

  

  

16.01 23.01 30.01 06.02 13.02 20.02 27.02 

Figure 14. Comparison between FMI ice chart and RF based ice map from 13th Jan to 28th Jan 2016. Both FMI ja RF 

area decreases in time. The difference between FMI and RF increases. Meteorological data from Loodla et al. (2016) 
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7 DISCUSSION 

 

 

7.1 Accuracy of ice classification and false classification causes 

According to Table 1, the best overall accuracy is produced by Random Forest 

based algorithm. The second best result is produced by AdaBoost. Both are ensemble 

methods, which means that several base estimators are combined to make a prediction. 

This means that they are easy to use and require little parameters tuning to make the 

algorithm work for any problem. Zhu (2008) stated that inexperienced users usually 

produce better results with ensemble methods, rather than kernel methods (as is SVM), 

even if the problem is better suited for kernel method. This is due to the fact, that kernel 

methods like SVM require thorough testing and are very sensitive to parameters set 

up. Inadequate parameterisation could be the reason why SVM performed poorly.  

 

7.1.1 Classification algorithm performance comparison  

All used algorithms overestimated the amount of ice in the coastal area as segments 

by the coast follow the coastal line thus producing segments with irregular size, which 

in turn is more characteristic of an ice segment. In Figure 15, it is visible that AB and 

RF greatly overestimates the ice on the coast compared to FMI ice chart. SVM 

performs slightly better on the coast, but also considers some ice segments as water. 

Therefore the algorithm produces better results if coastal area is frozen (Figure 16), 

especially Väinamere region. This is also illustrated when comparing air temperature 

data with FMI ice chart and RF based algorithm results (Figure 14). In February 2016 

started a warm period, which melted the ice. This coincides with increase of difference 

with FMI ice chart. 
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SVM FMI ice chart 

AB RF 

Figure 15. Icemaps produced by Adaboost (AB), Random Forest (RF), Support Vector Machine (SVM) and FMI 

ice chart. 

Figure 16. Example of good ice classification result. (a) Random Forest based ice map; (b) FMI ice chart; (c) 

Radar backscattering at HH polarization on 20th January 2016. 

(a) (b) (c) 
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Random Forest based ice classification has shown good ice-water border detection 

where the influence of coastal area is reduced (Figure 17). This is possible because 

segmentations produces segment which only contain ice or water class. The false 

classification of ice in Figure 17a is caused by homogenous nature of ice in the 

northern coast of Saaremaa, which is more common to water surface. 

It has to be noted, that FMI ice charts also contain errors, although in smaller scale 

than algorithm produced in current study. In Figure 18 it is visible that FMI ice chart 

shows existence of ice in area where radar backscatter gives no reason to suspect the 

presence of ice. This error is present even though ice charts are produced using ice 

thickness history and visual inspection of the product is usually done. 

 

(a) (b) (c) 

Figure 17. (a) Example of good ice-water border detection. Random Forest based ice map; (b) FMI ice chart; 

(c) Radar backscatter at HH polarization on 25th January 2016. 

Figure 18. Error in FMI ice chart (red square); (a) FMI ice chart (b) Radar backscatter at HH polarization on 6th 

January 2016. 

(a) (b) 
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7.1.2 Errors caused by source data 

Scan lines from HV polarization backscattering may cause false classification 

(Figure 19). As segments are calculated from HH backscattering field, segmentation 

is not affected by the scan lines. Scan lines are similar to change in ice type or 

discontinuity in ice, which smooth and homogeneous water surface do not have.  This 

problem has also been noted by Leigh et al. (2014). 

 

However, HH polarization is more 

susceptible to influence of incidence 

angel on backscatter (Figure 20), where 

areas scanned with small incidence 

angles appear brighter on 

backscattering field. This in turn makes 

water and ice separation difficult, as 

brighter backscattering values are 

common for rough ice surface. 

Therefore HV polarization enables to 

distinguish between water and ice 

Figure 19. (a) Backscattering at HV polarization; (b) icemap (water - light blue; ice – dark blue) false 

classification caused by scan line in HV polarization backscattering using SVM. 

(a) (b) 

Figure 20. Radar backscatter as a function of 

incidence angle for representative surfaces. (Farr, 

1993) 
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without incidence angle correction on HH polarization backscattering field.  

An alternative to using HV polarization for separating ice and water is to perform 

incidence angle correction on backscatter at HH polarization. This however may prove 

to be problematic as backscatter relation to incidence angle is also influenced by the 

surface roughness (Figure 20), which is information that is not available. Menges et 

al. 2001 suggested a method that can be used without knowledge about surface based 

on assumption that each line in azimuth direction contains similar composition 

(histogram) and backscatter frequency distribution of each azimuth line can be used to 

correct the effect of variations in incidence angle. However, this means that target 

properties must not vary significantly from one azimuth band to another. Lang et al. 

2016 proposes class based incidence angle correction for sea ice data, by using k-

means clustering to separate different ice types and then normalizing the backscatter 

values within the class. 

 

 

7.1.3 Effect of meteorological conditions 

A problem frequently encounter in water-ice separation is roughening of water 

surface due to meteorological conditions (Leigh et al. 2014) (Scheuchl et al., 2001). 

In current work it was noted that on 25 January 2016 in three images water surface 

displayed uncharacteristic patterns (Figure 21), which are likely caused by atmosphere 

effect. During images acquisitions in Kihnu meteorological station the temperature 

ranged from -1.6 to -1.4°C with wind speed less than 1 m/s, the sky was fully covered 

with clouds. It has been noted that on C-band radar clouds effect may show on radar 

images (Danklmayer, 2009). The patterns on water surface cause irregularly shaped 

segments and texture parameters similar to ice. 
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Figure 21. Patterns on water surface from radar backscattering at HH polarization in 25th January 2016. 

 

 

7.2 Possible improvements 

Combining SAR data with information about coastal boarders could improve ice 

extent classification.  Ice usually starts to form in the coastal areas and moves outward 

to the open sea (Granskog et al., 2006). Therefore it could be assumed that areas 

classified as ice that are far from coast and where neighbouring areas are not covered 

with ice are falsely classified and could be corrected in an automatic process. This only 

solves false classification if only few segments are falsely classified. If a larger area is 

falsely classified, due to wind pattern or other ice look-a-likes, it would remain falsely 

classified. Similar tactics is employed by Karvone et al. (2005) who filter out small 

segments. 

This could be partly solved by using ice maps produced by Estonian Weather 

Service which are manually produced every day during winter season using different 

inputs. If area classified as ice is far from ice areas on ice maps, they are probably 

falsely classified. Areas that are covered with ice on the ice maps and are not located 

at ice/water boarder, could be classified as ice with high confidence. Machine learning 

based SAR data classification would still remain as the main source of information at 

ice/water boarder. Any additional information to the SAR image will create alongside 



44 

 

benefits additional errors. Therefore, the trade-off of any additional information has to 

be evaluated. 

The main problem in the coastal area is overclassification of ice. Due to coastal 

segments are in irregular shape, which is characteristic to ice segment. By reducing 

the influence of segment shape as classification parameter in the coastal area and 

increasing the influence of texture parameters, this could be reduced. 
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CONCLUSION 

Superpixel algorithm based segmentation provides good separation of ice and water 

into different segments which provides basis for ice classification. Segmentation 

allows to calculate multiple characterizing parameters for area which provide 

additional information to radar backscattering at HH and HV polarizations. 

For each segment 30 properties including 8 value parameters, 16 texture parameters 

and 6 geometrical parameters were calculated and analysed using analysis of variance 

and correlation. It was determined that backscatter standard deviation, GLCM energy, 

GLCM entropy calculated from HH polarization backscattering and variance 

calculated from HH and HV backscattering and number of pixels in segment offer little 

for class separation and may be removed. Good class separation was provided by 

GLCM correlation calculated at HV and HH polarization, variance from HV 

backscatter, HH backscatter divided by HV backscatter and number of pixels in 

segment relative to the area where the segment fits. Many GLCM parameters correlate 

strongly with each other as they are calculated from same field. Very strong correlation 

is between homogeneity, entropy and energy, thus two of the latter may be removed 

in order to avoid duplicating information. Number of properties used for operational 

processing and validation was reduced to 20. 

Possibility of class separation between ice and open ice was investigated. Due to 

strong similarities between the datasets, it was concluded that ice and open ice are 

inseparable using current method. Therefore, only ice and water classification was 

attempted.   

AdaBoost, Random Forest and Support Vector Machine algorithms were tested for 

ice classification. Out of tested algorithms, Random Forest allowed to achieve most 
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accurate results in cold conditions when most of the coastal area was frozen, providing 

accuracy of 93.6% on ice and 82.2% on water.  

Comparison between FMI ice charts and Random Forest based classification gives 

greater similarities in cold conditions (difference 20-85%) and increases in warmer 

period when coastal area is clear of ice (difference 113-424%). This is induced by 

overclassification of ice near the coast due to segments irregular shape. If coast effect 

is reduced, the algorithm shows good ability to detect ice-water border. 

Segmentation of SAR backscatter allows separating ice and water into homogenous 

divisions that provide good basis for ice-water classification. Current ice classification 

algorithm provides information about ice location in cold conditions when water by 

the coast is mostly frozen. In difficult conditions (warm weather and small amount of 

ice) the algorithm is unreliable and needs further investigation in order to improve 

classification on the coast. 
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APPENDICES 

 

 

Appendix 1. SAR data 

Table 1. Training data 

No. Date Name 

1 13.01.2017 S1B_EW_GRDM_1SDH_20170113T045702_20170113T045802_
003825_00693E_9AEF 

2 13.01.2017 S1B_EW_GRDM_1SDH_20170113T161111_20170113T161216_
003832_006972_064C 

3 15.01.2017 S1B_EW_GRDM_1SDH_20170115T044042_20170115T044142_
003854_006A20_568D 

4 15.01.2017 S1B_EW_GRDM_1SDH_20170115T155507_20170115T155611_
003861_006A4C_848D 

5 17.01.2017 S1B_EW_GRDM_1SDH_20170117T042409_20170117T042513_
003883_006AFA_6380 

6 17.01.2017 S1B_EW_GRDM_1SDH_20170117T153914_20170117T154018_
003890_006B24_4826 

7 18.01.2017 S1B_EW_GRDM_1SDH_20170118T050513_20170118T050613_
003898_006B6A_56A1 

8 18.01.2017 S1B_EW_GRDM_1SDH_20170118T050613_20170118T050714_
003898_006B6A_BB24 

9 18.01.2017 S1B_EW_GRDM_1SDH_20170118T161938_20170118T162042_
003905_006B9C_0567 

10 20.01.2017 S1B_EW_GRDM_1SDH_20170120T044850_20170120T044950_
003927_006C4A_831A 

11 20.01.2017 S1B_EW_GRDM_1SDH_20170120T044950_20170120T045051_
003927_006C4A_A34D 

12 20.01.2017 S1B_EW_GRDM_1SDH_20170120T160315_20170120T160419_
003934_006C7D_BF4F 

13 22.01.2017 S1B_EW_GRDM_1SDH_20170122T043221_20170122T043325_
003956_006D35_3C8C 

14 22.01.2017 S1B_EW_GRDM_1SDH_20170122T043325_20170122T043404_
003956_006D35_E7F9 

15 22.01.2017 S1B_EW_GRDM_1SDH_20170122T154655_20170122T154759_
003963_006D63_0FCB 

16 25.01.2017 S1B_EW_GRDM_1SDH_20170125T045702_20170125T045802_
004000_006E7E_8510 

17 25.01.2017 S1B_EW_GRDM_1SDH_20170125T045802_20170125T045902_
004000_006E7E_30E7 

18 25.01.2017 S1B_EW_GRDM_1SDH_20170125T161111_20170125T161215_
004007_006EB1_FDCF 
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19 27.01.2017 S1B_EW_GRDM_1SDH_20170127T044042_20170127T044142_
004029_006F62_CAF3 

20 27.01.2017 S1B_EW_GRDM_1SDH_20170127T155506_20170127T155611_
004036_006F92_6314 

21 29.01.2017 S1B_EW_GRDM_1SDH_20170129T042409_20170129T042512_
004058_00703D_955B 

22 29.01.2017 S1B_EW_GRDM_1SDH_20170129T153914_20170129T154018_
004065_007069_08AF 

23 30.01.2017 S1B_EW_GRDM_1SDH_20170130T050513_20170130T050613_
004073_0070A9_0BB9 

24 30.01.2017 S1B_EW_GRDM_1SDH_20170130T050613_20170130T050713_
004073_0070A9_F64C 

25 30.01.2017 S1B_EW_GRDM_1SDH_20170130T161937_20170130T162042_
004080_0070D7_831D 

26 01.02.2017 S1B_EW_GRDM_1SDH_20170201T044850_20170201T044950_
004102_007185_8BEB 

27 01.02.2017 S1B_EW_GRDM_1SDH_20170201T044950_20170201T045050_
004102_007185_C40B 

28 01.02.2017 S1B_EW_GRDM_1SDH_20170201T160314_20170201T160419_
004109_0071B5_E062 

29 03.02.2017 S1B_EW_GRDM_1SDH_20170203T043220_20170203T043325_
004131_007260_9FEA 

30 03.02.2017 S1B_EW_GRDM_1SDH_20170203T043325_20170203T043403_
004131_007260_999A 

31 03.02.2017 S1B_EW_GRDM_1SDH_20170203T154655_20170203T154759_
004138_00728E_ABB9 

32 05.02.2017 S1B_EW_GRDM_1SDH_20170205T153105_20170205T153209_
004167_00735C_06CA 

33 06.02.2017 S1B_EW_GRDM_1SDH_20170206T045701_20170206T045801_
004175_0073A4_22AE 

34 06.02.2017 S1B_EW_GRDM_1SDH_20170206T045801_20170206T045902_
004175_0073A4_4853 

35 06.02.2017 S1B_EW_GRDM_1SDH_20170206T161111_20170206T161215_
004182_0073DB_225B 
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Appendix 2. In situ observations 

Table 1. Observations in 2015 and 2016. 

Date Location Latitude Longitude Ice types 

16.01.2015 Keemu 58.746111 23.672222 Rough ice, melted 

16.01.2015 Saastna 58.738778 23.544972 Rough ice 

16.01.2015 Puise Nina 58.763722 23.447639 Pressure ridge 

16.01.2015 Suur-Holm 58.960722 23.521306 Rough and level ice 

29.01.2015 Tahkuranna 58.249116 24.469733 Small pressure ridges, old 

fast ice, new level ice 

29.01.2015 Uulu mole 58.299166 24.572916 Rough and level ice 

29.01.2015 Pärnu port 58.366333 24.464233 Pressure ridge, level ice 

29.01.2015 Liu 58.278183 24.271100 Pancake ice 

17.02.2015 Uulu mole 58.298900 24.568150 Level ice 

17.02.2015 Pärnu port 58.360475 24.468780 Pressure ridge 

17.02.2015 Liu 58.271311 24.270020 Pancake ice 

07.01.2016 Pedase 59.282355 23.897493 Closed ice 

07.01.2016 Puise Nina 58.760672 23.470222 Very closed ice 

07.01.2016 Kesselaid 58.632407 23.495728 Fast ice 

07.01.2016 Matsi beach 58.371367 23.732642 Fast ice, water-ice border 

07.01.2016 Munalaid 58.22742 24.122478 Fast ice 

08.01.2016 Häädemeeste 58.071577 24.46929 Fast ice, water-ice border 

08.01.2016 Liu 58.284848 24.272082 Fast ice 

08.01.2016 Munalaid 58.219837 24.092083 Very closed ice, fast ice 

08.01.2016 Matsi beach 58.370418 23.723205 Open ice 

08.01.2016 Saastna peak 58.73554 23.503622 Fast ice 

12.01.2016 Valaste fall 59.447875 27.334773 Drift ice, water-ice border 

12.01.2016 Toila 59.427575 27.513597 Open ice, water-ice 

border 

12.01.2016 Sillamäe 59.40077 27.778492 Open ice, water-ice 

border 

15.01.2016 Pedase 59.280778 23.894747 Fast ice 

15.01.2016 Ramsi cape 59.034562 23.403993 Fast ice 

15.01.2016 Virtsu 58.554988 23.488383 Fast ice 

15.01.2016 Muriste 58.508693 23.659612 Fast ice 

15.01.2016 Matsi beach 58.370363 23.7253 Fast ice, very closed ice 
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15.01.2016 Manilaid 58.219415 24.144065 Fast ice 

22.01.2016 Valaste fall 59.452825 27.337312 Fast ice 

22.01.2016 Sillamäe 59.400248 27.7847 Fast ice 

22.01.2016 Narva-Jõesuu 59.453817 28.014553 Fast ice 
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Appendix 3. Classifier algorithm accuracy 

Table 1. Adaboost based algorithm accuracy. 

Date Time 
Ice 

correct 
Ice 

false 
Water 
correct 

Water 
false 

Ice class 
accuracy 

Water 
class 

accuracy 
Overall 

accuracy 

13.01.2016 04:57 55 4 171 17 93% 91% 91% 

13.01.2016 16:11 59 5 86 29 92% 75% 81% 

20.01.2016 16:03 55 2 142 19 96% 88% 90% 

25.01.2016 04:57 71 7 107 41 91% 72% 79% 

25.01.2016 04:58 9 0 29 60 100% 33% 39% 

25.01.2016 16:12 17 10 123 21 63% 85% 82% 

27.01.2016 04:42 50 5 87 10 91% 90% 90% 

1.02.2016 16:03 17 1 168 29 94% 85% 86% 
 

Table 2. Random Forest based algorithm accuracy. 

Date Time 
Ice 

correct 
Ice 

false 
Water 
correct 

Water 
false 

Ice class 
accuracy 

Water 
class 

accuracy 
Overall 

accuracy 

13.01.2016 04:57 59 0 165 23 100% 88% 91% 

13.01.2016 16:11 57 7 85 29 89% 75% 80% 

20.01.2016 16:03 63 1 135 19 98% 88% 91% 

25.01.2016 04:57 73 5 111 37 94% 75% 81% 

25.01.2016 04:58 9 0 44 45 100% 49% 54% 

25.01.2016 16:12 22 5 130 14 81% 90% 89% 

27.01.2016 04:42 49 6 84 13 89% 87% 88% 

1.02.2016 16:03 18 0 176 21 100% 89% 90% 
 

Table 3. Support Vector Machine based algorithm accuracy. 

Date Time 
Ice 

correct 
Ice 

false 
Water 
correct 

Water 
false 

Ice class 
accuracy 

Water 
class 

accuracy 
Overall 

accuracy 

13.01.2016 04:57 49 10 149 39 83% 79% 80% 

13.01.2016 16:11 51 13 85 29 80% 75% 76% 

20.01.2016 16:03 49 15 120 34 77% 78% 78% 

25.01.2016 04:57 65 13 90 58 83% 61% 69% 

25.01.2016 04:58 9 0 30 59 100% 34% 40% 

25.01.2016 16:12 17 10 88 56 63% 61% 61% 

27.01.2016 04:42 46 9 74 23 84% 76% 79% 

1.02.2016 16:03 14 4 163 34 78% 83% 82% 

 



57 

 

 

 

 

KOKKUVÕTE 

Superpikslitel põhinev segmenteerimise algoritm annab hea tulemuse vee ja jää 

eristamiseks eraldi osadeks, mis on aluseks jää klassifitseerimisele. Segmenteerimine 

võimaldab arvutada mitmeid ala iseloomustavaid parameetreid, mis annavad radari 

tagasipeegeldumisele HH ja HV polarisatioonis lisa informatsiooni. 

Igale segmendile arvutatakse 30 omadust, mille seas on 8 väärtusparameetrit, 16 

tekstuuriparameetrit ning 6 geomeetrilist parameetrit. Parameetreid analüüsitakse 

kasutades variatsiooni analüüsi ja korrelatsiooni. Kuna HH polarisatsiooni 

tagasipeegelduvuse standardhälve, GLCM energia, GLCM entroopia, HH ja HV 

polarisatsiooni tagasipeegelduvuse varieeruvus ning pikslite arv segmendis annab 

vähe lisainformatsiooni klasside eristamiseks, siis need eemaldatakse. Head klasside 

eristamist võimaldasid GLCM korrelatsioon HH ja HV polarisatsioonis, HV 

tagasipeegelduvuse varieeruvus, HH tagasipeegelduvus jagatuna HV 

tagasipeegelduvusega ning pikslite arvu suhe alaga, kuhu segment mahuks. Mitmed 

GLCM parameetrid korreleeruvad üksteisega, kuna need arvutatakse ühest ja samast 

väljast. Eriti tugev korrelatsioon on homogeensuse, entroopia ja energia vahel, mille 

tõttu kaks viimast eemaldatakse, et vähendada dubleerivat informatsiooni. Omaduste 

hulk, mida operatiivses algoritmis ja valideerimises kasutati, vähendati kahekümneni.  

Hinnati jää, lahtise jää ja vee eristamise võimalikkust. Andmehulkade sarnasusest 

tulenevalt on antud meetodiga jää ja lahtise jää klassid üksteisest eristamatud. Selle 

tõttu viidi läbi vaid jää ja vee klassifitseerimine.  

Jää klassifitseerimiseks testiti AdaBoost, Random Forest ja Support Vector 

Machine algoritme. Valitud algoritmidest pakkus Random Forest kõige täpsemat 

tulemust külmades ilmatingimustes, mil enamik rannikualast oli jäätunud (93.6% jääl 

ja 82.2% veel). 
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FMI jääkaardi ja Random Forest’il põhineva algoritmi tulemuse võrdlus annab 

sarnasemaid tulemusi külmades tingimustes (erinevus 20-85%), erinevus suureneb 

soojal perioodil, kui rannik on jäävaba (erinevus 113-424%). Selle põhjuseks on 

rannikul jää üleklassifitseerimine tulenevalt segmentide ebaregulaarsest kujust. Kui 

ranniku mõju vähendada, pakub algoritm head jää ja vee piiri eristamist. 

Tehisavaradari tagasipeegelduvuse segmenteerimine võimaldab jää ja vee 

eristamist homogeenseteks aladeks, mis on hea põhi jää-vee eristamiseks. Antud jää 

klassifitseerimise algoritm annab informatsiooni jää asukoha kohta külmades 

tingimustes, kui rannik on jäätunud. Keerulistes oludes (soe ilm ja vähe jääd) on 

algoritm ebausaldusväärne ning vajab edasisi uuringuid, et parandada 

klassifitseerimist rannikul. 


