
Tallinn 2024

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Oskar Pikkov 212922IVSB

Developing a Telegram Scraper to Identify and

Alert on Leaked Credentials Based on Pre-

Defined User Input

Bachelorôs thesis

Supervisors: Toomas Lepikult

 PhD

 Mert Meiessaar

 BSc

Tallinn 2024

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Oskar Pikkov 212922IVSB

Kasutaja sisendi põhjal lekkinud

kasutajakontosid tuvastava ning neist teavitava

Telegrami ämbliku arendus

Bakalaureusetöö

Juhendajad: Toomas Lepikult

 PhD

 Mert Meiessaar

 BSc

3

Authorôs declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Oskar Pikkov

13.05.2024

4

Abstract

The prevalence of credential leaks on the Telegram platform has been very high,

fuelling the status of the app as a cybercrime hub, turning it into an ecosystem for

criminals. While a big business or government entity might have the needed resources

and possibilities to track credential leaks on Telegram, the less-protected entities and

individuals are at much higher risk of becoming victims in the form of a credential leak

being shared on Telegram.

The current solutions for tracking credential leaks on Telegram for smaller

organizations or individual persons are either very costly or not working in the way

needed to. Thus, the author proposes and develops a solution as developing a tool,

allowing for the forementioned to start finding, processing and receiving credible

intelligence about the credentials of their personal or business accounts being shared on

Telegram. In the theoretical part of the thesis, a cybercrime forum is utilized to

acknowledge the reader with different topics of importance to the reader. The research

concludes that a solution like this can be developed, but there also exist ways of further

improving it.

This thesis is written in English and is 44 pages long, including 5 chapters, 39 figures

and 3 tables.

5

Annotatsioon

Kasutaja sisendi põhjal lekkinud kasutajakontosid tuvastava

ning neist teavitava Telegrami ämbliku arendus

Lekkinud kasutajakontode levik ning sagedus suhtlusrakenduses Telegram on väga

suur, mis omakorda konstanteerib asjaolu, et Telegram on muutumas küberkriminaalide

keskseks kogunemispunktiks. Kuigi suurkorporatsioonidel või riiklikel asutustel võivad

eksisteerida vahendid ning võimalused lekete tuvastamiseks Telegramis, ei oma sellist

privileegi väiksemad ärid ja organisatsioonid või eraisikud.

Hetkel saadaolevad lahendused Telegrami kasutajakontode lekete jälgimiseks

väiksematele organisatsioonidele või eraisikutele on ebanormaalselt kallid või ei

lahenda probleemi. Autor pakub välja ning arendab lahenduse, võimaldades eeltoodud

riskirühmadel kasutajakontode lekkimise tuvastamist, töötlemist ning teavituste saamist.

Töö teoreetilises osas kasutab autor küberkurjategijate seas populaarset

internetifoorumit, et tutvustada lugejale mitmeid olulisi tööga seotud teemasid.

Uurimuse järeldusena tuleb välja, et sellise lahenduse valmistamine on võimalik, kuid

eksisteerib mitmeid viise selle edasiarenduseks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 44 leheküljel, 5 peatükki, 39

joonist ja 3 tabelit.

6

List of abbreviations and terms

APT Advanced Persistent Threat

CIS Commonwealth of Independent States

DB Database

DDoS Distributed Denial-of-Service

GB Gigabyte

LEA Law Enforcement Agency

MD5 hash A cryptographic hash used to generate digital signatures or

message digests.

OS Operating System

OTR Off-The-Record

P2P Peer-to-Peer

PC Personal Computer

PII Personally Identifiable Information

RDP Remote Desktop Protocol

Spider A bot that harvests information from a digital system.

SQL Structured Query Language

SSH Secure Shell Protocol

TLD Top Level Domain

URL Uniform Resource Locator

WWW World Wide Web

XMPP Extensible Messaging and Presence Protocol

7

Table of contents

1 Introduction ... 11

2 Background .. 13

2.1 Theoretical Overview ... 13

2.1.1 Credential leaks and breaches ... 13

2.1.2 Ways of sharing credential leaks ... 18

2.2 Problem Statement .. 29

2.3 Available Solutions... 30

2.3.1 Haveibeenpwned ... 30

2.3.2 IntelligenceX ... 31

3 Methodology .. 34

3.1 Data leak channels .. 34

3.1.1 Google for finding channels .. 34

3.1.2 Cybercrime forums for finding channels ... 36

3.2 Telegram scraper and alert bot ... 37

3.2.1 Telegram scraper ... 37

3.2.2 Telegram alert bot .. 38

4 Development and usage ... 39

4.1 Development of the scraper .. 39

4.2 Development of the alert bot .. 43

4.3 Usage .. 49

5 Summary .. 54

References .. 56

Appendix 1 ï Non-exclusive licence for reproduction and publication of a graduation

thesis ... 58

8

List of figures

Figure 1. Access sale subsection in the forum XSS. .. 14

Figure 2. An access sale post in the forum XSS. .. 15

Figure 3. An example of an info stealer ñlogò [11]. ... 16

Figure 4. A data-leak subsection on the forum XSS. ... 19

Figure 5. Various new data leak posts on the forum XSS. ... 20

Figure 6. A pinned topic about locating data leaks on forum XSS. 20

Figure 7. A user on XSS asking for a download link to a data leak. 21

Figure 8. A user on XSS responding to a data leak request with the file. 22

Figure 9. Starting an OTR-enabled chat on Adium. ... 23

Figure 10. The administrator of LockBit using Tox Chat. ... 24

Figure 11. The admin of XSS opposing any illegal actions targeting Russia/CIS. 26

Figure 12. A member of XSS opposing the use of Telegram on the forum. 27

Figure 13. A member of XSS stating their opinion about Telegram. 27

Figure 14. The simplicity of acquiring malicious information in Telegram. 28

Figure 15. Lines in the file from a public data leak. ... 28

Figure 16. Haveibeenpwned notifying about breaches. ... 30

Figure 17. IntelligenceX displaying found results.. 32

Figure 18. An improved Google search for Telegram channels..................................... 35

Figure 19. A website sharing Telegram channels... 35

Figure 20. Setting up the scraper. ... 39

Figure 21. Gathering local information about already downloaded files. 40

Figure 22. Downloading a .txt file with subsequent processing. 41

Figure 23. Ways of processing a line. .. 42

Figure 24. Another way of processing a line. ... 42

Figure 25. Adding the line to the database. .. 43

Figure 26. Setting up the bot. ... 43

Figure 27. The ñ/startò command. .. 44

Figure 28. Checking the correctness of the ñ/queryò command. 45

Figure 29. The functionality of the ñ/queryò command. .. 46

9

Figure 30. Checking the correctness of the ñ/statsò command. 47

Figure 31. Counting the lines in the DB. .. 47

Figure 32. Finding top 10 most common domains. .. 48

Figure 33. Finding top 10 most common passwords. ... 48

Figure 34. Sending the statistics to the user. .. 49

Figure 35. Size of the scraped data. .. 50

Figure 36. Querying by URL. ... 51

Figure 37. Querying by username. ... 52

Figure 38. Querying by password. ... 53

Figure 39. Statistics for the whole DB. .. 53

10

List of tables

Table 1. Explanation of the contents of an info stealer ñlogò [11]. 17

Table 2. Analysis of the selected channels found from Google. 36

Table 3. Analysis of the selected channels found from XSS.. 36

11

1 Introduction

As digitization is rapidly improving and changing our world, cyber security has become

a household name for many of us. Long gone are the days of it being a niche topic of

information technology, having made its way to being one of the hottest subjects in the

modern computerized world.

While the popularity of cyber security might be seen as a positive outcome for most, it

could also be explained by the rapid rise of different forms of cyber offenses, increasing

number of criminals operating solely behind a screen and changing possibilities to

conduct harm in the cyberspace. This is also illustrated by the fact that the annual cost

of cybercrime is predicted to reach up to 9.5 trillion US dollars in 2024 [1].

The fast-paced and seemingly limitless landscape of the cyberspace allows adversaries

to conduct various types of criminal activities, ranging from DDoS attacks to

transnational espionage operations. Although complex APT-intrusions or major service

downtimes cause huge problems to the service owners, they do not possess a tangible

effect on the average computer user. This is where data breaches and credential leaks

come into play, having the possibility to affect almost everyone using a digital system.

An uneducated computer user entering their social media credentials to a cloned version

of the site or a network administrator saving sensitive passwords on their system getting

infected by info stealer malware might sound as two totally different events with

unalike scopes, outcomes and approaches. But when analysing such episodes on a

higher-level basis, one can easily conduct that illegally obtaining and reusing foreign

credentials is the main objective of the threat actor in control of the operation. Various

attacks like these are part of the fact that data breaches were are at an all-time high in

the United States in 2023. [2].

The publicity and popularity of data leaks wouldnôt be possible without a form of

sharing them by the illegal acquirers. The development of the worldwide cybercrime

environment has seen a vast growth in miscellaneous forums, messengers and other

ways of communication and expression between the participants.

12

There exist many forms for messaging between the cyber criminals. One of the most

prevalent ways is using Telegram, an accessible and free messaging app, that even

many of normal users are familiar with. In some ways, Telegram has transformed itself

from a privacy and security focused messaging app to a hub for cybercrime, allowing to

easily host, share and obtain illegal content, communicate with other criminals and

acquire various illicit gains from it [3].

13

2 Background

This section acts as a base to the reader, giving a strong theoretical summary of the

main topics used and discussed about in this thesis, the problem statement, currently

available solutions on the market and the expected results the author tries to achieve

with his work.

2.1 Theoretical Overview

This subsection aims to acknowledge the reader about the tools, products and topics

mentioned or used in this thesis. While the main work is focused on developing a

scraper and alert bot for the Telegram application, it is vital to get accustomed to

different aspects, history and characteristics associated with developing a tool like this.

For this subsection, a diverse collection of internet resources is used, combined with the

author accessing an underground cybercrime forum called XSS (an account is required

for the access), to get a more detailed overview of the role and the information present

on such forums about this topic.

2.1.1 Credential leaks and breaches

Obtaining various digital information has been on the forefront of illicit cyber activities

since the first hackers starting to take place on the Internet. As data leaks have been a

hot topic and in some ways a buzzword for the larger public, the exact meaning needs to

be defined for a better grasp on the scope of this thesis.

In this paper, the author uses various words such as (data) ñleaksò and ñbreachesò,

which should be interpreted as illegally obtained digital credentials, allowing to access

any kind of a digital system, application or website without the knowledge or

permission of the owner of these credentials.

While the topic of credential leaks might be easy to grasp for most of the readers as a

collection of illegally obtained digital accesses, it is mandatory to demonstrate some

popular ways of gathering them by threat actors.

14

2.1.1.1 Gaining entry to a sensitive system to steal credentials

One of the easiest ways for hackers to steal large amounts of credentials is to gain an

entry into the system(s) of an organization or company possessing the needed data. The

main option for an adversary is to buy the access outright, from various private sellers

or cybercrime forum users.

For example, the product might be sold as a backdoor already implemented to the

compromised system by the seller or legitimate RDP access allowed to an employee of

the organization or company [4].

System accesses are a common article for sale and one can easily find auctions or

advertisements dealing with them on the dark web. Take for example XSS (founded in

2004 under the name ñDaMaGeLaBò) [5], a predominantly Russian-speaking

cybercrime community, where there is a publicly accessible subsection for these kinds

of purchases (displayed on Figure 1). There exist many similar topics with various

accesses for sale, allowing criminals to start their operation with an already

compromised system.

The posts themselves (see Figure 2) contain diverse information about the accesses,

such as the country of the organization or company attacked, their business revenue

(used mainly by ransomware operators to determine the ransom payment size), business

sector and type of access (such as a web shell, RDP, SSH credentials etc.). Often the

privileges of the compromised user are mentioned in the post, such as Domain Admin,

Domain User or Administrator on Windows OSôs or the availability of root access on

Linux machines.

Figure 1. Access sale subsection in the forum XSS.

15

As the cybercrime ecosystem on these forums operates mostly as a mechanism where

financial gain is the main motivation of the perpetrators, the pricing of these products is

another factor to consider analysing the value of them. The cheaper forms start from

couple of hundred US dollars, usually with low privileges and a small (by revenue)

organization or company. Bigger accesses have seen to be sold for tens of thousands of

US dollars, usually with very strong privileges of the compromised user, used to access

a large and popular company with a big revenue (hundreds of millions of US dollars)

[6].

Another way of entering the network of an unsuspecting entity is to utilize a publicly

available application of the organization with malicious actions. It can be done by

means of a misconfiguration by the developer(s), a software bug or by using a powerful

exploit accustomed for the exact technology present on the app [7]. One of the most

trivial, but still popular ways of abusing the configurational or developmental errors by

the developer(s) is to conduct a SQL Injection attack, allowing the intruder to enter as

an administrator or any other high-privileged user, usually by obtaining their credentials

with the intrusion [8].

The third method might be to socially engineer the user to willingly give their

credentials to the attacker(s) by conducting an operation targeting them, known as

phishing. The threat actor usually delivers a message from a compromised or specially

crafted source via e-mail or social media, instructing the unsuspecting user to share their

login and password details, which end up in the hands of the malicious attacker [9].

Figure 2. An access sale post in the forum XSS.

16

2.1.1.2 Using info stealer malware to gather credentials

The usage of malware has been continuously prevalent in the last decade, with the year

of 2022 containing over 5.5 billion different malware attacks [10]. Info stealer malware

is a type of malicious software, used to identify, obtain and exfiltrate data from a

compromised computer system. While there are various stealers for sale in the

cybercrime ecosystem, the general structure of them remains the same. As the data from

the compromised system is stolen for further human use, it must be packaged and

organized in a comprehendible way for the later user of it. A typical ñlogò, the package

with the information stolen from one unique computer, uses an understandable format,

categorizing different data files into different directories, as demonstrated on Figure 3

[11].

Figure 3. An example of an info stealer ñlogò [11].

17

As displayed above, an info stealer can obtain various data from a compromised system.

The author feels the need to further explain the files shown in Figure 3, to give the

reader a better understanding of the capabilities of the info stealer malware. These

explanations are available in Table 1.

Table 1. Explanation of the contents of an info stealer ñlogò [11].

Folder or file name Content

Autofills/ Autofill data from various browsers.

Contains e-mail addresses, phone numbers,

physical addresses, PII etc.

Cookies/ Cookie files from various browsers. Used to

access accounts and services without the

need for logging in.

CreditCards/ Credit card numbers from various browsers.

Used for financial gain by the malware

spreaders.

FileGrabber/ Files from various directories from the

compromised computer. Used to find

additional information (such as passwords

saved to the Desktop), that cannot be

accessed solely from the browser files.

DomainDetects.txt Domains, that the system has accessed or

interacted with. Allows the operator to

quickly identify if the info stealer log is

valuable to them or not (i.e. the domains

paypal.com and swedbank.ee could indicate

that the owner of the computer stores

banking information on their PC).

ImportantAutofills.txt Autofill data as in the first folder but filtered

by importance. Contains the most sought-

after information, such as addresses and

phone numbers.

InstalledBrowsers.txt List of browsers present on the victim

machine.

InstalledSoftware.txt List of software present on the victim

machine.

Passwords.txt List of domain-username-password

combinations collected from browsers on the

victim machine. Used to access various

services and accounts, often combined with a

cookie file in the Cookies/ folder, for

maximum recognition as the owner of the

18

Folder or file name Content

account.

ProcessList.txt List of processes running on the victim

machine at the point of infection.

Screenshot.jpg A screenshot taken by the info stealer

malware at the point of infection. Used to

gain a better understanding of the victim

machine, showing saved bookmarks, desktop

background or notes etc.

UserInformation.txt A file containing most crucial information

about the victim system. Usually contains

system name, time zone, IP, infection date

and time, hardware information etc.

While one info stealer malware log contains very valuable information to conduct

identity theft, financial fraud or other illegal actions, it is not enough to be categorised

as a significant credential leak or breach. Thatôs where ñCloud of Logsò-type services

come into play. These are huge datasets of hundreds of thousands of info stealer logs,

where access is sold on a time-based (e.g. one week or one month) basis. It allows cyber

criminals to gain access to an enormous amount of stolen credentials and other crucial

digital information [12]. These services are then used by the criminals to gather colossal

amounts of Passwords.txt files, filter them and combine into big text files, for further

sharing. These final collections of credentials make up the vast amount of credential

leaks sourced from many small info stealer malware infections all over the world.

2.1.2 Ways of sharing credential leaks

Without the credentials being leaked, we couldnôt consider them as released for the

bigger audience, resulting in different types of malicious actions, such as but not limited

to [13]:

¶ Identity theft

¶ Blackmail or catfishing

¶ Social engineering operations

¶ Trade secret compromises

19

¶ Espionage/state surveillance

A simple file transfer containing some usernames and passwords between two

adversaries could be considered as a shared credential breach, but in the scope of this

thesis, the author defines ñsharingò as publishing a large set of credentials to an external

audience for free digital access. The following subsections showcase some of the ways

credentials are distributed by the threat actors.

2.1.2.1 Forum posts

Since the first appearances of popular cybercrime forums in the 2000s [14], they have

served as handy platforms for sharing various data and credential leaks. While there

exist multiple of such communication boards, they are quite similar in their content. For

the purpose of displaying some of the parts of a service of this kind, the cybercrime

forum ñXSSò is used, just like in section 2.1.1.1.

Forums feature special subsections for sharing illegally acquired data, allowing users to

discuss, obtain and guide others on this topic. As seen on Figure 4, the forum XSS hosts

a subsection solely for this, called Bases (i.e. databases, ñɹʘʟòr in Russian). As of April

2024, the subdivision has over 4600 unique topics (ñʊʝʤòr in Russian) and over 32 100

unique messages by users (ñCʦʦʙʱʝʥʠʷò in Russian).

The subsection is quite active, with daily (see Figure 5) new posts about data or

credential leaks. This is indicated by the publication date, shown on the right-hand side

of the screenshot. The two latest posts are added on the date of capturing the screen for

this thesis (ñʉʝʛʦʜʥʷò in Russian).

Figure 4. A data-leak subsection on the forum XSS.

20

Additionally, larger, pinned topics are present in this subsection of the forum. These

topics are meant for users to ask questions and locate various data leaks circulating

around the dark web. On Figure 6, a topic like this is present, allowing members to ask

others for download links to various forms of information that they would like to

acquire. The name of the topic roughly translates to ñSearching of data dumps and news

of leaksò (ñʇʦʠʩʢ ʜʘʤʧʦʚ ʠ Leaks ʅʦʚʦʩʪʠò in Russian). As of April 2024, this topic

has over a million unique views and over four thousand unique posts inside of it, largely

consisting of members asking and receiving download links to different data leaks.

For example, in December of 2023, a user sought to obtain the database of JoyGames, a

gaming forum breached in 2019 (see Figure 7) [15]. His message roughly reads as

ñLooking for joygames.com 17kk, thanks in advanceò (ñʀɦ ʫ joygamaes.com 17kk,

ʟʘʨʘʥʝʝ ʙʣʘʛʦʜʘʨʝʥò in Russian). The phrase ñ17kkò points to the fact that the leaked

set of credentials consists of about 17 million lines of data.

Figure 5. Various new data leak posts on the forum XSS.

Figure 6. A pinned topic about locating data leaks on forum XSS.

21

Upon reviewing the userôs request, another forum member responds with the file asked

for in Figure 7. As seen on Figure 8, he has included two download links for the same

file (redacted by author), in case of a file hosting service removing one of them, to keep

the file available for other members to access and download. He adds that ñThere isnôt

anything more available on the web [about this data leak]ò (ñɹʦʣʴʰʝ ʥʠʯʝʛʦ

ʧʫʙʣʠʯʥʦʛʦ ʚ ʩʝʪʠ ʥʝʪò in Russian). As a sign of thanking the replier, the requester

acknowledges the response with a green thumbs up icon, adding to the reputation count

of that profile.

Figure 7. A user on XSS asking for a download link to a data leak.

22

Friendly sharing of data breaches as displayed above in such search-topics and other

separate postings about data leaks make up a great quantity of the data leak ecosystem,

as such forums are still dominant in 2024, with new users signing up every day.

2.1.2.2 Messaging solutions

Thereôs no doubt that the popularity of messaging applications has also carried over to

cyber criminals, who similarly to normal users, need to communicate in a fast and

secure way. Although many of online communication solutions are available even for

cyber criminals, they tend to shift towards the securest solutions, giving them peace of

mind either about the encryption, security or logging policies (the promise of not saving

user actions and/or data by the messaging application provider) of that service. In this

section, some of the most prevalent communication solutions for cyber criminals are

analysed.

One of the oldest ways of exchanging information for cyber criminals is Jabber (also

known as XMPP). It has dominated the Russian-speaking cybercrime landscape,

offering them to host their own independent servers for accounts [16]. Combined with

the plugin called Off-the-Record Messaging [17], allowing the participants in a XMPP

chat to be sure who they are really talking to, makes the Jabber and OTR combination

Figure 8. A user on XSS responding to a data leak request with the file.

23

quite powerful in terms of security and privacy. There also exist some Jabber clients

with built-in OTR functionality, such as Adium [18] (see Figure 9).

Jabber is a great tool for secure communication but lacks the needed functions to allow

large groups of members to connect to a certain channel to share various data leaks.

There is no common way of hosting files on a Jabber server, thus not allowing for users

to easily access them. There is also some technical knowledge needed to set up and use

Jabber, which has some functions that younger cyber criminals might not be used to (i.e.

creating a Jabber account on a server used by others for communicating about such

topics). Itôs obvious that an XMPP-style way of communication is not suitable for

comfortably sharing data leaks between many users.

Another tool for communicating in this sphere is called Tox Chat. It is a fully P2P way

of exchanging messages, without the need of a centralized server for relaying data. All

the exchanges between two users are sent directly and, in some cases, a Tox bootstrap

node might be used by the messaging client [19]. The phenomenon of Tox has risen

together with the popularity of ransomware operators in the last decade, thus making it

often used by more sophisticated cyber criminals [20].

Each Tox user has a unique identifier (Tox ID) [19], a long string of letters and

numbers, identifying their account from millions of others. This is the ñusernameò of a

Figure 9. Starting an OTR-enabled chat on Adium.

24

Tox account and is utilized to add other users of Tox to the friends list. As seen on

Figure 10 [21], one of the strongest and most sophisticated ransomware groups,

LockBit, has seen the owner of it operate on Tox Chat for years [21]. Although

LockBitôs operations and infrastructure has been dismantled for multiple times, the

original administrator remains at large, successfully avoiding LEA [22].

As we can see, Tox is a secure and popular solution for cyber criminals. Although

popular in one-to-one conversations, it lacks the traction to be used widely for group

chats. Just as Jabber, the rise of use of Tox has been mostly among more sophisticated

criminals, with the needed technical and operational knowledge. The bigger part of the

cybercrime ecosystem is still to widely accept and promote Tox as the standard for

communicating, thus still leaving it in the area of niche-messengers in the year of 2024.

There currently is no broad use of Tox for sharing data leaks to a larger audience.

The third option for communicating and sharing data leaks discussed in this thesis is

Telegram. The origins of Telegram date back to 2013, when the founders of VKontakte

(Russiaôs Facebook), Pavel and Nikolai Durov, were pressured to sell their shares of it,

related to ignoring the wishes of the Russian government to start censorship of protests

Figure 10. The administrator of LockBit using Tox Chat.

25

on the platform. They left Russia and founded Telegram, aiming to provide the world

with a communication solution without any government interference [23].

After 10 years of activity, it reached over 800 million active users in 2023, solely on

word-of-mouth marketing [24]. It has transformed itself from a largely unknown

messenger in its early days to a behemoth of communication, accepted as the way of

transmitting messages in almost any free country.

While Telegram has had its commercial success, it has also gained the attention of cyber

criminals. It has always allowed to register an account without disclosing any PII, just a

phone number for account confirmation. Thus, a cybercriminal using an SMS-receiving

service, can easily rent a virtual phone number and receive the confirmation code on it,

thus validating their Telegram account and gaining access to all of the functions. Also,

there are hardly any limitations on creating multiple accounts, allowing the malicious

users to discard of accounts and create new ones rapidly, somewhat disrupting LEA

efforts to profile them in the long run [3].

Telegram is also very confident in their data privacy claims. According to them, they

have not released any user information to LEA, claiming to notify the user base on a

special channel, if it happens. Although their privacy policy claims to only disclose

information about terrorists and child abusers, there has yet to exist concrete proof of

them doing so. A neat feature about Telegram is the ability to conduct encrypted one-to-

one chats (called Secret Chats), enabling only the sender and the receiver to read the

messages. Normal chats and channels are not protected in such a way, but the long track

record of safeguarding user information and not storing much data about them, has still

made Telegram the most popular messaging app for cyber criminals [3].

Even though Telegram has secured its place in the cybercrime world, it has met a lot of

resistance from the ñold schoolò hardliners, who find it unimaginable to use such an

application, pointing to the uncertainty about data collection and privacy claims. For

example, many older and respected members of the Russian-speaking cybercrime

community are very opposed to the shift of the community in switching their

communications to such a platform. On Figure 11, a topic started by the long-time

administrator of the cybercrime forum XSS, states that the whole forum is against any

form of cybercrime targeting Russia and/or CIS-countries (ñʄ ,r ɼʘʤʘʛʘ, ʧʨʦʪʠʚ

26

ʨʘʙʦʪʳ ʧʦ ʈʋ/ʉʅɻò in Russian). The admin also included a banner that the members

could add to the signatures of their future posts, indicating their support of the idea.

There exist many reasons for such a mindset in the Russian-speaking cybercrime

community, but the main reasons for this claim are patriotism (i.e. not causing harm to

their homeland) and freedom of the criminals themselves (i.e. most likely transnational

requests for extradition of Russian nationals accused of cybercrime are ignored by the

Russian government, but for illegal actions internally, they would surely be prosecuted).

While this statement was accepted by the community, it somehow attracted many

opinions regarding the rise of Telegram as a messaging application for ñworkò (full-

time cyber criminals regard their actions as work and quite often compare it in some

ways to a normal office job). As seen on Figure 12, the first answer in this thread asked

for a banner for opposing the use of Telegram (ñʆʪʨʠʩʫʡʪʝ ʯʪʦ ʥʠʙʫʜʴ ʧʦʭʦʞʝʝ,

ʪʦʣʴʢʦ ʩ ʪʝʢʩʪʦʤ «ʗ ʧʨʦʪʠʚ ʊʝʣʝʛʨʘʤèò in Russian). It received only positive

reactions from other members.

Figure 11. The admin of XSS opposing any illegal actions targeting Russia/CIS.

27

Soon, a second message (see Figure 13) appeared in the thread. Again, the use of

Telegram was questioned, this time more vulgarly, stating that only an ñidiot or a copò

would use Telegram for cybercrime (ñɺ ʪʝʣʝʛʨʘʤʝ ʜʝʣʘ ʚʝʩʪʠ ʙʫʜʝʪ ʣʠʙʦ

ʦʪʢʨʦʚʝʥʥʳʡ ʠʜʠʦʪ, ʣʠʙʦ ʢʦʧò in Russian), implying the lack of trust in the privacy

of Telegram.

There are many such cases of opposing Telegram in the cybercrime ecosystem, but

nonetheless, it has secured its place as the top application for communication between

cyber criminals. As easy as it is to install Telegram and to become a member, one can

quickly access various illegal content, such as prohibited items, cybercrime chats, sale

of PII and data leaks. To demonstrate this, the author opened Telegram, registered a

dummy account, and searched the phrase ñdata leaksò in Telegram. The second channel

in the search contained many files with Facebook information (see Figure 14). It took

less than 30 seconds to locate a file with the name ñEstonia.zipò, hinting that the content

of it might be associated with data related to Estonia.

Figure 12. A member of XSS opposing the use of Telegram on the forum.

Figure 13. A member of XSS stating their opinion about Telegram.

28

Upon finding such a file, the author downloaded it and opened it in a secure

environment, as all of such files should always be treated as malicious. The text file

contained over 87 thousand different Facebook users from Estonia. A unique line in the

text file had the userôs phone number, account ID, first and last name, gender, home and

work information and often an email (see Figure 15 for an example, sensitive

information is blurred by the author). Subsequently, the author verified the authenticity

of the leak by finding his contacts known to him in it with all of their information being

valid.

Taking note of the most recent dates present in the lines, the author dated the leak to

sometime in the summer of 2019. Using a Google search, he was able to determine that

Figure 14. The simplicity of acquiring malicious information in Telegram.

Figure 15. Lines in the file from a public data leak.

29

a vulnerability was exploited to scrape the data of over 533 million Facebook users in

106 countries in August of 2019 [25]. An example like this perfectly illustrates the

capability of Telegram, both in allowing such data to be present and for users to quickly

interact with it. Thus, we can conduct that Telegram is a great platform for sharing data

leaks and must be taken into scope to better mitigate various risks that are prevalent in

the case of digital credentials being shared with other cyber criminals.

2.2 Problem Statement

So far, the author has given the reader a basic overview of the cybercrime ecosystem

and the use of messaging applications and their role in it. The author has also shown

different ways how data or credential leaks might occur and on what platforms they

might be shared between various cyber criminals. Telegram has been identified as a

popular way of distributing stolen credentials and PII, with various sensitive

information being accessible from the search bar of the application. Obviously, finding

and gathering special data leak channels will support, if not amplify such a statement,

making Telegram an even more important target for gaining intelligence about the past,

present and future credential leaks. While leaked credentials might be in the safety focus

of large corporations and government entities, the average citizen or small business

might not have the time, resources and funds to track, distinguish and filter their digital

credentials being shared on Telegram.

The solution to this massive-scale data leak sharing on the Telegram messenger is to

create an application that could automatically detect, download, filter and notify the

operator of the application of pre-set credentials (i.e. username, password or URL)

being leaked and/or shared on Telegram, without any significant financial cost to the

operator of the app.

As a result, a digital program shall be created, that allows anyone with basic computer

knowledge to start detecting and locating various credentials of their interest being

shared on Telegram. The solution must be free to use and only require a dummy

Telegram account for its successful utilization. This would give less tech-savvy Internet

users, persons who value their time, small business or organization representatives and

many others the possibility to increase their digital safety and security by being more

aware of their credentials circulating on the Telegram platform.

30

2.3 Available Solutions

There exist many different solutions, free and paid, that in some way help the user or

organization to identify leaked credentials. Although different in pricing, functionality,

history and capabilities, the main function remains quite the same. This subsection

acknowledges the reader with some available services, which might help to detect

credential leaks.

2.3.1 Haveibeenpwned

Haveibeenpwned (accessible at haveibeenpwned.com) is a great tool for individuals to

identify if their e-mail address has appeared in credential breach(es). First launched in

2013 as a small project, it currently hosts over 730 credential leaks and over 13 billion

leaked accounts. It allows the user to see the largest breaches by size and search for sites

and services that were compromised with the data ending up on Haveibeenpwned [26].

The search function present on the website can be used to quickly get an overview of

the different leaks the userôs email has been present in, without any cost (see Figure 16,

with a search conducted for a very popular e-mail address).

Although free and easy to use, it has doesnôt solve the problem stated in subsection 2.2

of this paper. The author has found the following shortcomings in the functionality of

Figure 16. Haveibeenpwned notifying about breaches.

31

this credential leak service, which make it quite weak in terms of operating in the scope

of the issue explained in this thesis:

¶ There is no possibility to search for a domain and get all of the leaked

credentials associated with it.

¶ The search result(s) are just the leaks with some basic information. There are no

passwords included.

¶ It does not incorporate smaller leaks, and if so, they need to be vetted, filtered

and approved for use by the website administrator.

¶ It does not conduct active collection of data leaks in Telegram.

2.3.2 IntelligenceX

IntelligenceX (accessible at intelx.io), is another tool for finding various leaked

credentials, data breaches and info stealer logs gathered from the dark web. It is quite

powerful, allowing the user to search for domains, URLs, IP-addresses, cryptocurrency

addresses etc. Founded in 2018 in Prague, it has defined its target customers as

companies of any size and governments [27].

IntelligenceX allows free searches, but they are quite useless in terms of actually

gathering credentials leaked by an adversary. Almost all of the results are fully

obfuscated (see Figure 17 for a search with a very popular e-mail address), prompting

the user to acquire a license (2500 euros per year for the cheapest, 20 000 euros per year

for the most expensive one) [28].

32

As with Haveibeenpwned, IntelligenceX has many issues to be classified as a superior

alternative to the solution proposed in this paper. Some of the shortcomings are:

¶ The product is unusable without a pricey license.

¶ It does not conduct active collection of data leaks in Telegram.

¶ The leaks are displayed as full files, the exact account searched for is never

available separated from the others (the user has to collect and export the needed

lines manually to a better format).

Figure 17. IntelligenceX displaying found results.

33

Certainly, many other alternatives exist for the proposed solution proposed by the

author. But they are not popular and easy enough to use for the average PC user, as

required in the Problem Statement subsection. Also, most of them require some means

of payment for usage, either as a one-time lump sum or a monthly or yearly license fee.

The need to create a working solution to the problem defined beforehand is crucial, to

ensure the timely detection, identification and alerting of credential leaks in Telegram,

without any real financial cost to the user of it.

34

3 Methodology

The main objective of this research is to develop a working solution to the issue

described in the Problem Statement subsection. The author aims to give insight into the

ways of researching information about Telegram channels used to spread credential

leaks, acquiring access to them with a dummy account and the collection of tools,

packages and code used for building the working application for scraping the channels

identified in the research step.

3.1 Data leak channels

The topic of data leak channels is quite interesting. While it was demonstrated in the

end of section 2.1.2.2 that credential leaks are easily found on Telegram, it still takes

some effort and research to locate the channels with almost every-day sharing of

credentials, that provide fresher data and more a more active community. For this, the

author utilizes two ways of approaching the problem. First, he uses Google and

conducts different searches to find Telegram channels, which do not appear in the

applicationôs first search results. Secondly, he leverages the beforementioned

cybercrime forum XSS, to gather more data leak channels. For the purpose of this

paper, two channels are found through the Google search engine and two other channels

are located on the forum XSS. As the number of files present on an average data leak

channel is quite large, four different channels are enough for demonstrating the needed

functionality of the solution for scraping and alerting of data found on these channels.

3.1.1 Google for finding channels

Google is a great resource, as it has the capability of indexing almost anything available

on the WWW. For the purpose of finding Telegram credential leak channels, the

keywords ñtelegram credential leaks channels listò are used. The author adds a special

tag ñintext: t.me/ò to the query, indicating the need to only see the results with the prefix

of a Telegram channel link in it. This is known as a Google dork, a way of telling the

search engine exactly what it should return to the user. While useful for locating

sensitive information, such as open web directories, password files and various

35

misconfigurations, one can still leverage it to improve their usual searches [29]. As seen

on Figure 18, the search only displays 9 results, with the first one being accessed by the

author on Figure 19.

Figure 18. An improved Google search for Telegram channels.

Figure 19. A website sharing Telegram channels.

36

This proves the ability to access data leak channels even from the most popular [30]

search engine. As two channels have to be used from Google for this experiment, they

are hand-picked from the website by the author and analysed in Table 2.

Table 2. Analysis of the selected channels found from Google.

Channel name Authorôs description Activity

DNFTM | Cloud A channel intended to

publish maliciously obtained

data. The admin often shares

credential leaks, Cloud-of-

Logs info stealer logs

obtained from other services

and data leaks that have

happened recently.

Advertises to the members

about the possibility to gain

access to a ñprivateò

collection of credential leaks

in exchange for payment.

Hosting over 1300 files as of

April 2024.

Almost daily, with some

pauses.

OCTOPUS

[LOGS/URL/COMBO]

Channel for sharing info

stealer logs and stolen

credentials. Heavy

advertising of a ñprivateò

access, available to members

for an additional fee. Hosting

over 500 files as of April

2024.

Almost daily, with some

pauses.

3.1.2 Cybercrime forums for finding channels

The other two channels of the four will be found by the author on a popular cybercrime

forum, XSS. For this, the author browses the subsection of the forum called Bases (i.e.

databases, ñɹʘʟòr in Russian) and located two channels of interest to be used with the

scraper of this thesis.

Table 3. Analysis of the selected channels found from XSS.

Channel name Authorôs description Activity

37

AgressorDB FREE

ComboLists | ɹʝʩʧʣʘʪʥʳʝ

ʙʘʟʳ email:pass

Channel for only sharing

credential leaks. Often files

are of increments of 50

thousand lines (i.e. 50, 100 or

150 thousand lines per file).

Hosting over 200 files as of

April 2024.

Daily, without pauses.

 OBSERVER CLOUD -

BEST FREE LOGS CLOUD

Channel for mainly sharing

info stealer logs but might

contain some credential leak

files. Hosting over 10 000

files as of April 2024.

Daily, many posts in a day.

3.2 Telegram scraper and alert bot

The application developed as a solution to the problem is divided into two parts:

¶ Telegram scraper ï An automatic tool, used to iterate through the channels

present on an account, download all of the found credential leak files, filter and

clean the contents and save the results to a local database.

¶ Telegram alert bot ï A Telegram bot, useable by the operator of the scraper.

Allows to search the database created and populated in the first part by various

parameters (such as username, password and URL).

In the following subsections, an overview of the tools, packages and technologies used

to develop both parts of the solution are presented.

3.2.1 Telegram scraper

For the scraper development, the programming language Python 3.12 is used. Python

package Telethon version 1.30 (used to interact with Telegram) and Python libraries

Sqlite3 version 3.0 (used to interact with the local SQL database) and Collections

version 3.3 (used for better datatypes and their structuring) are used. Also, Python

modules os, re and hashlib are imported to the program for various tasks.

A Telegram account is controlled via the official API to scrape the channels, available

at my.telegram.org for each account for free.

38

3.2.2 Telegram alert bot

For the alert bot development, there are not many differences. Python package

Tldextract version 5.1.2 (used for separating URLs to various parts) and standard

module Asyncio (used for asynchronous loops for the bot) are used.

Another Telegram account, separate from the scraper account, is deployed via the

official API to act as a front-end, allowing the user to easily receive the scraped

information in an easily comprehensible way.

39

4 Development and usage

This section focuses on the more technical side of developing the scraper and the bot,

showing important functions, methods and solutions used to build both of the products.

The author only demonstrates the most important functionality and code of the scraper

and bot.

The usage of the whole system together is also demonstrated in a way of a ñtest-runò,

beginning from launching the scraper and ending with formatted leaked credentials

being sent back to the user querying them from the bot.

4.1 Development of the scraper

The main task of the scraper is to iterate through the channels the account is subscribed

to, gather credential leak files and add them to the local database in a formatted way.

As shown in Figure 20, various API tokens need to be used of the Telegram account.

Due to privacy concerns, they are redacted from this paper. A local database is

established and populated with a simple table to house the formatted credentials.

Establishing the client .

api_id = [REDACTED BY AUTHOR]

api_hash = [REDACTED BY AUTHOR]

client = TelegramClient(' session ', api_id, api_hash)

Establishing the database.

conn = sqlite3.connect(credentialsDatabase .db')

cursor = conn.cursor()

cursor.execute('''

CREATE TABLE IF NOT EXISTS credential_lines (

 id INTEGER PRIMARY KEY,

 url TEXT NOT NULL,

 username TEXT NOT NULL,

 password TEXT NOT NULL,

 link TEXT NOT NULL

)

''')

Figure 20. Setting up the scraper.

40

After the initial setup, the iteration process of the channels may begin. As seen on

Figure 21, the iteration function first loads any MD5 file hashes or file links on a

channel present on the system to avoid downloading a duplicate credential leak file in

the future. This is due to the fact that two separate channels might post the same

credential leak, thus a basic link comparison is not sufficient. A MD5 hash check allows

the program to generate a string relative to the contents of the file, no matter the name

of it. The ñload_downloads_info()ò function simply returns hashes and message links

separately from the local file ñdownload/fileHashes.txtò.

async def download_files_from_subscriptions(client: TelegramClient):

 # Defining the hash - link file path.

 hashes_file_path = os.path.join('downloads', 'fileHashes.txt')

 # Reading from the hash - link file path.

 downloaded_files_hashes, downloaded_message_links =
load_downloads_info(hashes_file_path)

Figure 21. Gathering local information about already downloaded files.

After these actions, the iteration begins. A channel is selected and a subfolder in the

ñ/downloadsò directory is created for that unique channel and future downloaded

credential leak files.

The iteration goes over every message present on a channel. It checks against the

message ID and compares it to the local list (present in the file

ñdownload/fileHashes.txtò). If it finds a message ID that has already been downloaded,

it skips the message. If the program has not seen that message ID, it checks if a text file

is included with that message and starts a download of it to the subfolder of that

channel.

After downloading it, the MD5 hash of it is generated and compared against the local

list. If the hash is already present, the new file is deleted, and the iteration continues. If

it is not present, the code saves the information of a new credential leak file to the local

list and starts processing the file. These steps are illustrated in Figure 22.

41

Checking if the file in the Telegram message is a text file.

if message.file and message.file.name.endswith('.txt'):

temp_file_path = os.path.join(download_directory, message.file.name)

 # Downloading the file and calculating the MD5 hash.

print(f"Starting download: {temp_file_path}")

await message.download_media(file=temp_file_path)

file_hash = compute_md5(temp_file_path)

 # Deleting the file if already logged as downloaded.

if file_hash in downloaded_files_hashes:

print(f"File with the same hash already exists:
{downloaded_files_hashes[file_hash]}")

os.remove(temp_file_path)

Saving the download info locally, starting processing.

else:

print(f"Downloaded: {temp_file_path}")

downloaded_files_hashes[file_hash] = temp_file_path

downloaded_message_links.add(message_link)

save_download_info(hashes_file_path, file_hash, temp_file_path,
message_link)

process_file(temp_file_path, channel_username, message.id)

Figure 22. Downloading a .txt file with subsequent processing.

The ñprocess_file()ò function is a loop for each line inside of the downloaded file. After

a line is cleaned of whitespaces, it is sent to the ñinsert_line_into_database()ò function,

which acts as the processing and cleaning function of the lines. This allows them to be

inserted into correct sections of the database for later querying via the bot.

This function starts off by processing the line in the format of ñURL

username:passwordò and moves on to processing it as ñemail:passwordò, if a match for

that format is not found. This implementation is shown on Figure 23.

42

Using lines formatted as URL username:password.

if ' ' in line and ':' in line.split(' ')[- 1]:

parts = line.split(' ')

if len(parts) == 2:

 url, credentials_part = parts

 credentials = credentials_part.split(':', 1)

 if len(credentials) == 2:

 username, password = credentials

 else:

 return

else:

 # Using lines as email:password.

 credentials = line.split(':', 1)

 if len(credentials) == 2:

 email, potential_password = credentials

 if re.match(r"[^@]+@[^@]+ \ .[^@]+", email):

 username, password = email, potential_password

 else:

return

 else:

 return

Figure 23. Ways of processing a line.

If no match for the format is found with these two attempts, the program tries to

categorize the line as of Android origin (credential lines saved from Android

applications, starting with the prefix ñandroid://ò).

If still no match is found, the system is almost confident that the credential leak is of the

format ñurl:username:passwordò. As seen on Figure 24, it starts processing it like this.

Locating URL start points.

scheme_end = line.find('://') + 3 if '://' in line else 0

first_colon = line.find(':', scheme_end)

Determining URL type.

if first_colon != - 1 and (line.find('/', scheme_end) < first_colon or
line.find('/', scheme_end) == - 1):

Separating username from URL.

url = line[:first_colon]

credentials = line[first_colon+1:].split(':', 1)

if len(credentials) == 2:

 username, password = credentials

 else:

 return

else:

url = line

Figure 24. Another way of processing a line.

username:password

43

After fully processing a single line and determining that at least the username and

password have been extracted (URL is not mandatory), an SQL INSERT command is

executed, successfully attaching the valid line to the local database. This part of the

code is displayed on Figure 25. After all of the lines are added to the database, a SQL

ñcommit()ò function is used at the end of processing each file, thus saving the entries to

the local DB.

Validating the existance of the needed parts.

if username and password:

cursor.execute("INSERT INTO file_lines (url, username, password, link)
VALUES (?, ?, ?, ?)", (url, username, password, link))

Figure 25. Adding the line to the database.

As mentioned at the start of this subsection, the full code file of the scraper is not

present in this topic, as the author hopes to give an overview of only the most crucial

parts of the inner workings of this Telegram spider.

4.2 Development of the alert bot

The main task of the alert bot is to serve as an easy-to-use front end for the credential

leak database, allowing the user to interact with it without any deep technical or

programming knowledge. As seen on Figure 26, the setup is quite alike to the scraper,

with some adjustments made to serve as a bot, not a default Telegram account. Sensitive

data and tokens are redacted by the author.

Establishing the bot client.

bot_sername = [REDACTED BY AUTHOR]

api_id = [REDACTED BY AUTHOR]

api_hash = [REDACTED BY AUTHOR]

bot_token = [REDACTED BY AUTHOR]

client = TelegramClient('bot', api_id, api_hash).start(bot_token=bot_token)

Connecting the to the database.

conn = sqlite3.connect('credentialsDatabase.db', check_same_thread=False)

cursor = conn.cursor()

Figure 26. Setting up the bot.

Telegram bots are interacted with by using custom commands. The author has added

three commands to be used withing the bot:

44

¶ Command ñ/startò ï Sending a welcome text to the user, with instructions on

using the bot.

¶ Command ñ/queryò ï Querying data from the DB, returning results.

¶ Command ñ/statsò ï Calculating statistics of the present results in the DB.

The ñ/startò command is quite trivial and only transmits two messages to the user of the

bot, as seen on Figure 27.

The ñ/queryò command is a bit more sophisticated. It features a checker, to ensure that

the user has sent the correct full command and hasnôt skipped any parts (see Figure 28).

The correct field (url, username or password) must be selected before starting the query.

Figure 27. The ñ/startò command.

