
Tallinn 2023

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Dominik Zoltan Kovacs 202092IVSB

Automated Vulnerability Scanning of the Network Segments

of an Internet Service Provider

Bachelor's thesis

Supervisor: Tauseef Ahmed

 PhD

Co-Supervisor: József Tanárki

 BSc

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Dominik Zoltan Kovacs 202092IVSB

Haavatavuste automaatotsing internetiteenuse pakkuja

võrgusegmentidest

Bakalaureusetöö

Juhendaja: Tauseef Ahmed

 PhD

Kaasjuhendaja: József Tanárki

 BSc

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Dominik Zoltan Kovacs

29.12.2022

Abstract

A network automation solution is described in this paper to facilitate network auditing.

Since an Internet Service Provider’s infrastructure can be enormous and it is difficult to

validate each access list manually on each device, a collection of processes was created

to automate the handling of infrastructure access lists in an Internet Service Provider’s

infrastructure. Additionally, the research suggests a semi-automated solution based on

closed loop automation, which allows a process controller to understand feedbacks. As a

result, the more feedback a controller receives, the more intelligent the system will be.

Due to its not fully-automated nature, this thesis provides the basis for an open-source

semi-automated system. This thesis aims to answer questions such as, what is the purpose

of a semi-automated system, in what environment do they help, what are their key

components and procedures, and finally, what role does it play in network auditing.

Despite implementing the solution into this system, the author tried to emphasize the

importance of network automation and closed loop automation. This thesis is written in

English and is 47 pages long, including 7 chapters, 17 figures and 4 tables.

Annotatsioon

Käesolevas bakalaureusetöös käsitletakse võrguauditi korraldamiseks mõeldud

automatiseerimislahendust. Kuna Interneti teenusepakkuja taristu võib olla väga

laiaulatuslik ja iga juurdepääsunimistu käsitsi valideerimine on keeruline, loodi

teenusepakkuja taristu juurdepääsunimistute haldamiseks rida protsesse. Lisaks sellele

pakutakse välja suletud tsüklil põhinev poolautomaatne lahendus tagasiside

arvessevõtmiseks. Seega on loodav lahendus seda arukam, mida enam tagasisidet laekub.

Käesolevas bakalaureusetöö pakutakse välja avatud lähtekoodi põhine poolautomaatne

süsteem. Bakalaureusetöö püüab muuhulgas vastata järgnevateke küsimustele: mis on

poolautomaatse süsteemi otstarve, millistes oludes neist kasu on, millised on nende

peamised osad ja protseduurid ning viimaks, millist rolli nad võrguauditi juures

mängivad. Lisaks lahenduse väljapakkumisele püüdis autor rõhutada võrgu

automatiseerimise ja suletud tsükli kasutamise tähtsust.

See bakalaureusetöö on kirjutatud inglise keeles ja sisaldab teksti 47 leheküljel, 7

peatükki, 17 joonist ja 4 tabelit.

List of abbreviations and terms

ACL Access List

AS Autonomous System

AVS Active Vulnerability Scanner

BGP Border Gateway Protocol

CVE Common Vulnerabilities and Exposures

DOS Denial of Service

GUI Graphical User Interface

HLD High-Level Design

iACL Infrastructure Access List

IGP Interior Gateway Protocol

ISP Internet Service Provider

LER Label Edge Router

LDP Label Discovery Protocol

LSR Label Switching Router

MPLS Multiprotocol Label Switching

OSPF Open Shortest Path First

PVS Passive Vulnerability Scanner

QoS Quality of Service

SNMP Simple Network Management Protocol

SSOT Single Source of Truth

VRF Virtual Routing and Forwarding

VPN Virtual Private Network

Table of Contents

1 Introduction 1

1.1 Problem statement .. 1

1.2 Goals and objectives ... 2

1.3 Research Methodology ... 2

2 Background information 4

2.1 Internet Service Providers ... 4

2.2 Network Characteristics .. 5

2.2.1 Core Network .. 6

2.2.2 Access Network... 7

2.2.3 Content Delivery Network ... 7

2.2.4 Peering network... 8

2.3 Security requirements ... 8

2.4 Network Auditing ... 9

2.5 Stateless Firewalls .. 10

2.6 Infrastructure Access List.. 10

2.7 Ansible... 11

2.8 Python-Django ... 12

3 Background Research 15

3.1 Active and Passive Vulnerability Scanners .. 15

3.2 Nmap ... 18

3.3 Nessus and Nmap performance comparison ... 18

3.4 Comparison of OpenVAS and Nmap ... 20

4 Solution 22

4.1 Open and Closed Loop Automation ... 22

4.2 Possible solutions ... 23

4.2.1 Manual approach ... 23

4.2.2 Fully-automated approach .. 23

4.2.3 Semi-automated approach .. 24

4.3 Implementation requirements .. 24

4.4 Implementation... 25

4.5 Desired State ... 26

4.6 Practical implementation ... 27

4.6.1 Idempotence .. 27

4.6.2 Network scanning component .. 27

4.6.3 Access List management component .. 28

4.6.4 Configuration change detector helper component 30

4.6.5 Inventory update component .. 30

4.7 Connecting the components... 32

4.8 Error Handling.. 33

4.9 Environments ... 34

4.9.1 Test Environment .. 34

4.9.2 Production Environment .. 35

5 Results 36

5.1 Outcome... 36

5.2 Capabilities .. 37

5.3 Usability... 37

5.4 Security and performance.. 37

5.5 Network outages ... 38

5.6 Cost ... 38

6 Future works 39

6.1 Development .. 39

6.2 Logging.. 39

6.3 Security .. 40

6.4 Availability .. 40

6.5 Connecting services .. 41

7 Conclusion 42

Bibliography 43

Appendix 1 46

Appendix 2 47

List of Figures

Figure 1: Hierarchy of the Global Internet [3] .. 5

Figure 2: MPLS Service Provider Backbone model ... 5

Figure 3: Applying filter on the edge devices [11].. 11

Figure 4: GUI of Netbox storing prefixes [17] ... 14

Figure 5: Accuracy and precision result [19].. 17

Figure 6: Average scanning time on windows host... 20

Figure 7: Average scanning time on Linux Host .. 20

Figure 8: Open and Closed Loop Systems [25] .. 23

Figure 9: Desired State to be maintained.. 26

Figure 10: Process of network scanning component ... 28

Figure 11: Process of access list management component .. 29

Figure 12: Process of the inventory update component ... 31

Figure 13: Inventory update with connected components ... 32

Figure 14: Access list update with connected components .. 33

Figure 15: Network Scan with connected components.. 33

Figure 16: Test environment ... 34

Figure 17: Production environment ... 35

List of tables

Table 1: Classification on scanning results .. 19

Table 2: Calculation of accuracy and precision .. 19

Table 3: Comparison of scan results when firewall was present 19

Table 4: Comparison of Accuracy and Precision .. 19

1

1 Introduction

In any country's network infrastructure, Internet Service Providers (ISPs) play a crucial

role. Compromising even one device can result in downtime and data leaks. Keeping

networking devices secure is essential for ensuring integrity, availability, and

confidentiality. Since an ISP's network infrastructure is growing rapidly, it comes with

risks. Such risk can be a publicly visible device on the core infrastructure that can be a

threat and attack vector for malicious activities if not defended properly. However, there

are many ways to defend against threats. These are classified into proactive and reactive

approaches, where proactive is about preventing risks before they occur and being

prepared for most cases. As part of this thesis, proactive steps will be presented to mitigate

risks. Network auditing is part of these proactive steps that consist of three parts: network

scanning, vulnerability scanning and vulnerability analysis. Infrastructure Access Lists

(iACLs) are one of the most critical security controls that can be implemented in every

company. iACL only allows authorized access for infrastructure equipment, therefore

adds an extra layer of security for hosts that are publicly visible. In this thesis, an

automated way is proposed to test iACLs in a company’s infrastructure. To achieve this

goal, network scanners are compared and analysed by their performance in various use

cases. This document aims to construct and present a system using a popular automation

tool, called Ansible.

This chapter will describe the problem, goal, objective, research methodology and the

organization of the thesis.

1.1 Problem statement

Main motivation of the thesis was to fulfil a request of an ISP, where the author spent his

internship. The request was to help their network audit process, which is essential in every

infrastructure. This thesis provides help for the first step of network auditing, which is

network scanning and identifying devices, that allows to create a list of assets of the

infrastructure and to understand which devices can be attack vectors in the future. An

2

ACL is an object of managing network traffic that drops or allows packets based on rules,

but it is also used for hiding devices on infrastructures. Still, testing ACLs on an immense

networks like an ISP can be challenging, since as a result of regular network changes,

ACLs must be changed if their functionality in the network will change. The testing of

these ACLs on different segments of the network must therefore be automated.

1.2 Goals and objectives

During the internship of the author, the ISP had a request, which was to find a way to test

the functionality and correctness of iACL, sometimes also referred as stateless firewalls.

This thesis intends to create a process for automatically scanning network segments on

the ISP’s network. In addition to identifying devices, protocols and open ports, there are

side objectives such as comparing network scanners and explaining why Nmap is the best

tool to solve this problem.

1.3 Research Methodology

To gain the most appropriate and comprehensive solution for the company's

infrastructure, the following steps are followed in the research process, which consists of

consultations with engineers, literature review and modelling.

- Understanding the infrastructure

Wide Area Network technologies and each segments of the network of an ISP are very

complex. They have a very significant role to play in the network. For this reason, it is

important to conduct research to better understand each protocol and technologies used.

- Investigation of the problem.

The problem defined in the problem statement is critical, therefore analysing and properly

understanding the risks are essential. Second step of the research is to understand the role

of this problem in the ISPs infrastructure and the potential damage it can cause , if the

solution is not implemented correctly. Main method is to consult with the engineers.

- Discovering technologies

3

It is the literature review part of the research, that helps to determine the best solution, by

analysing number of technologies based on their performance, accuracy and usability.

Additionally, to achieve this, close collaboration with the ISP is required since a decision

has to be made based on the difficulty of implementing the system.

- Constructing the system

There must be comprehensive documentation of the solution’s development process,

which is used as a guide during the development. Besides that, this part of the research is

also important in terms of the project's time and cost. The research method is modelling,

where a testing environment has to be created to understand the necessary steps of the

processes.

- Development of the inventory and the playbooks

The case study of the thesis is the development. The process controller is implemented

with the help of Ansible, that is the connection between all events and orchestrates the

processes. The scope of the thesis is only to construct the automated process, however an

alpha version of the developed components can be found in Appendix 2.

4

2 Background information

In this section, the author aims to provide enough information to gain a deeper

understanding of the current situation and the problem. It is impossible to understand

the results of this thesis without understanding ISPs, their networks and roles,

configuration management tools, and ACLs.

2.1 Internet Service Providers

According to the United States Cybersecurity & Infrastructure Security Agency, the

Communication Sector is a critical infrastructure, as the Information Technology sector

plays a vital role in the nation's security, economy and public health and safety.

Businesses, governments, academia, and private citizens depend increasingly on IT

sector functions. [1]

ISPs are companies that route internet traffic, resolve domain names, and maintain

network infrastructure to provide internet access for a fee. [2]

There are different ISP Tiers, and the top of the pyramid is tier 1, like Deutsche

Telekom. Few of the key attributes of being a tier 1 ISP as follow, based on External

Publication of IDC Information and Data: [3]

- They have access to the entire Internet routing table through peering.

- They have at least one Autonomous System (AS) Number per continent.

- Owning a lease international fibre optic transport.

- They deliver packets between customers and peers.

Tier 2 and tier 3 ISPs do not have these attributes, however they peer with other tier 1

and tier 2 ISPs to have access to almost the entire Internet, so they can provide packet

delivery and reliable connections. In all tiers, the common technology used is Border

Gateway Protocol (BGP). BGP is used between Autonomous Systems (AS) to

communicate host reachability information. Since there can be many valid paths to

reach endpoints, external BGP (eBGP) learn routes of external prefixes from other

ASes. Internal BGP (iBGP) is then used for propagating routes among routers inside the

5

AS. It is necessary for routers within an AS to form a full mesh of sessions to be able to

announce routes via iBGP. [4]. An example can be seen on Figure 1.

Figure 1: Hierarchy of the Global Internet [3]

2.2 Network Characteristics

There is a representation of a traditional MPLS VPN network in the following figure.

Compared to the legacy hub and spoke model, MPLS overcomes many limitations. It

allows for the virtualization of routing and forwarding tables and it uses labels to forward

packets instead of network addresses. Through this technology, a single piece of hardware

can be shared and used by several independent peers at the same time.

Figure 2: MPLS Service Provider Backbone model

6

2.2.1 Core Network

In the model, each type of router has a different purpose in the network. By knowing

from Cisco’s official MPLS VPN introduction documentation [5], Label Switching

Router (LSR) is responsible to transport traffic across the MPLS backbone. It does not

have any Border Gateway Protocol (BGP) peer or knowledge about the customer routes,

which in this case the peering networks. LSR runs Open Shortest Path First (OSPF)

protocol as the interior gateway protocol that creates a layer 3 connection between the

devices and chooses the best path to forward traffic.

Label Edge Router (LER) is the device that has knowledge of the customer routes and

peers with the customer equipment, usually with external BGP. Each LER maintains a

Virtual Private Network (VPN) virtual routing and forwarding (VRF) table, that is

independent from every other routing table. These VRFs contain the directly connected

VPN sites only. When LER receives ingress traffic, it performs classification, assigns a

label, and uses the responsible VRF to forward IP packet, where each VRF is mapped to

a customer’s VPN. After the traffic crosses the backbone, labels from egress traffic

must be removed by LER and forward the traffic for the peers using native IP addresses

instead of labels. [5]

To make MPLS Backbone scalable, route reflectors are used, which are basically

dedicated routers only to announce routes for internal BGP peers. This implementation

is important, because without Route Reflectors each LER must be in full mesh to

exchange routes. As a result, each LER only needs to be BGP neighbours with the route

reflectors. Moreover, Route Reflectors allow LERs to exchange VPN-Ipv4 updates

through Multi-Protocol iBGP sessions. As part of the updates, VPN-Ipv4 addresses and

labels are located. Additionally, as part of the Multi-Protocol BGP, a route distinguisher

is added to every Ipv4 route, which makes VPN-unique addresses also unique in the

MPLS core. [5]

Then, by knowing the path from the route reflector, OSPF will have the responsibility to

deliver the packets to the correct router. Through OSPF, both LERs and LSRs have

BGP next-hop reachability. Labels then are distributed via the label discovery protocol

with their corresponding BGP next hops. As the packet travels across the provider

7

backbone, two labels are used. Label one is used to direct the packet to the appropriate

Egress LER. The second label indicates how that egress LER should forward the packet.

Additionally, MPLS VPNs require security measures such as Address Space Separation,

Routing Separation, and hiding the MPLS core structure. VPN-Ipv4 addresses can be

used to achieve Address Space Separation. For routing separation, LERs must maintain

a separate VRF for each VPN connected. [5] The thesis aims to hide MPLS core

structure by hiding each VPN's VRF on each LER. Due to the fact that every VPN

results in a separate VRF, there is no interference between VPNs on LERs. While

MPLS does not reveal unnecessary information to the outside, the infrastructure can

contain public IP addresses for several reasons. Since this Tier 2 ISP was established

quite some time ago, these reasons are historical in nature. At that time, public and

private networks were separated, and public IP addresses were plentiful. Engineers did

not considered building a public network using private IP addresses. Additionally, it

was not possible to create an outband management network, so it was necessary to

create a management backdoor from the side of the internet. It is a huge security risk,

however, after years, it would be very challenging to change all the public IP addresses,

because so many services and systems rely on them. Using ACLs to hide these

addresses from the external network is an easier solution. It is necessary, since by

knowing the IP addresses, it is much easier to carry out direct attacks, such as Denial-

of-Service attacks on LER and LSR. In order to completely mask the MPLS core,

packet filtering and using firewalls are required.

2.2.2 Access Network

In telecommunications, an access network is a user network that connects subscribers to

a service provider and, via the carrier network, to other networks. Connections such as

Ethernet, Wireless LAN, Fibre Optic and ADSL are options to connect to a service

provider. In the presented model on Figure 2, access networks mostly consist of small

office home office (SOHO) networks and are considered untrusted.

2.2.3 Content Delivery Network

In Cisco's Annual Internet Report (2018-2023) [6], it is evident that bandwidth demand

is increasing, mainly due to video traffic. Additionally, there is a need for convergence,

8

so that all network services can be delivered over the same network with consistent

performance. According to the report, Wi-Fi and cellular speeds will triple by 2023,

while broadband speeds will double. Content delivery networks help in this matter. In

order to maximise speed and connectivity, CDNs place servers at the crossroads

between different networks to work together to distribute content quickly, cheaply,

reliably, and securely. There are a number of Internet exchange points (IXPs) where

different Internet providers connect and share traffic originating on their different

networks with each other. High speed data delivery can be reduced in cost and transit

time when a CDN provider has access to these highly interconnected, high-speed

locations. [7] In terms of security, since the ISP is not managing the infrastrucuture, it

cannot be considered as secure.

2.2.4 Peering network

As described in section 2.1, ISPs are categorized into three tiers based on different

properties and size. There must be a network where other ISPs are peering with each other

and it is called Peering network in this document. In this research, the author was part of

a tier 2 ISP. Since any traffic can come across this network, it is also considered untrusted,

therefore traffic filtering and inspecting mechanisms must be implemented on this

network segment.

2.3 Security requirements

Today's ISPs have high operational security requirements, so they must follow a

framework that specifies profiles that collect all these requirements. The RFC3871 [8]

was created in September 2004 and is being updated, which defines the security

requirements for large ISP IP network infrastructure. The motivation of this document is

based on four conditions: Ability to Control Service Bindings for Listening Services,

Ability to Filter on Protocols, Identify Services That May Be Listening and Basic

Filtering Capabilities, which are the key takeaways of the RFC regarding this research.

- Identify services that may listening

Vendors must identify protocols and ports on which services are listenning, as well as

provide a list of all these services, that are active on devices. It mentions there may be

9

reasons why disclosing specifications of proprietary protocols isn't necessary, but in

those cases their existence must be disclosed. [8]

- Ability to filter based on protocols

A requirement in this section is that the traffic must be filtered according to the protocol

in the IP header. As a result, policies can be implemented, and operations can be made

more secure. Furthermore, it discusses Internet Control Message Protocol (ICMP) flood

attacks and proposes a way to mitigate Denial of Service (DOS) attacks by dropping all

ICMP traffic. Concluding this section, it is essential to know which protocols and ports

are in use to prevent these DOS attacks. [8]

- Ability to control service bindings for listening services

This requirement is about restricting access to management services. It is a good

practice that management services are bound only to the loopback interfaces, that are

only routed between managed devices and authorized management networks or hosts.

By following this requirement, the number of ports listening will be reduced and

complex filters will be less needed. Therefore, it is necessary to know what services are

running and what ports are open on the device interfaces. It can also bring an advantage

that since the management interface will be always up, till the device is running,

loopback interfaces never go down until the device is alive. [8]

- Basic filtering capabilities

Filtering IP packets on any interface, which is a filtering mechanism to control traffic

that goes inside and outside of any interfaces without significant performance

degradation. It is the goal of this thesis, to test these filtering capabilities by fulfilling

the first three requirements. [8]

2.4 Network Auditing

Enterprises must understand their infrastructure and audit it regularly, based on company

policies. Network auditing consists of three parts: Network scanning, vulnerability

scanning and vulnerability analysis. The purpose of network scanning is to identify which

hosts are alive within a computer network, what operating systems they run, and what

10

services they provide. By using this information, a list can be created of the devices,

which can then be used to conduct vulnerability analyses. As part of vulnerability

analysis, signatures are compared to information collected from network scanning, and

vulnerability scanning may also attempt to exploit vulnerabilities to verify their existence.

Finally, vulnerability assessment is the part where remediation and patching take place

by understanding the risks and acting based on the risk assessment. [9]

2.5 Stateless Firewalls

The purpose of stateless firewalls is to protect computers and networks. Stateless

Firewalls, also referred as ACLs, is a security mechanism that filters traffic that is

performed on incoming packets based on their UDP/TCP port numbers, source addresses,

and destination addresses. Generally, stateless firewalls are unable to view packets as part

of wider traffic and inspect them individually. They are also not capable of inspecting

application-level traffic types (such as HTTP, HTTPS, FTP, VoIP, SSH, etc.). This makes

them vulnerable to attacks that spread across many packets rather than being hidden

within one. Additionally, stateless firewalls do not keep track of the network's status or

its connections. Due to the fact that stateless firewalls only inspect the header portion of

an inspected packet, they are quicker and more efficient. [10]

2.6 Infrastructure Access List

From Cisco's best practices [11], it is known there are two types of traffic. Transit traffic,

which passes through a router to reach its destination, and traffic destined for the router,

like SSH or ICMP. To mitigate direct router attacks, it is necessary to restrict access to

infrastructure equipments from external sources. Excessive traffic is likely to raise CPU

usage and result in packet loss, that can cause DOS. There are, however, several filtering

techniques to prevent direct router attacks, including Receive ACLs, which filters traffic

destined for the router without affecting transit traffic. However, Receive ACLs must be

deployed on every router, which is a drawback. In hop-by-hop router ACLs, only

authorized traffic is permitted to the router interface, while all other traffic is denied.

Transit traffic is affected, causing forwarding performance issues. Using iACL edge

filtering, the ACL is applied at the edge of the network. In the case of an ISP, at the edge

11

of the AS. iACLs filter traffic specifically destined for infrastructure services. This

technique is the most flexible, since it only has to be deployed on the edge devices and

does not affect transit traffic.

In case of using iACLs, there are address spaces that must be denied, such as the private

address and special-use address. Additionally, anti-spoof filter must be applied, since the

infrastructure’s address space must never be the source of the packets from the external

network. [11] An example can be see on Figure 3.

Figure 3: Applying filter on the edge devices [11]

2.7 Ansible

Developed by Red Hat Enterprise, Ansible is an automation tool that is widely used to

deploy Infrastructure as a Service (IaaS). The original purpose of Ansible was to manage

configuration files on Linux systems before it was expanded to network applications.

12

Among the greatest advantages of Ansible is the ability to structure scripts, allowing a

collection of tasks to run simultaneously on several devices. One of the unique features

of Ansible is that it is a push-based configuration management tool. It means, the main

server pushes configuration to the target node. Additionally, Ansible is agentless,

meaning that no agent is required to be installed on each managed node. Due to the

research's flexible aim, this criterion played a critical role. This is because the scan has to

be conducted from any hosts device from any networks. Due to these two reasons, other

configuration management tools, like Puppet or Chef cannot be used. It is because they

are both push-based configuration tools, and agents must be present on managed devices,

therefore they would provide less flexibility.

There are a wide variety of pre-written modules for Ansible, that were written in Python

and are an easy to implement solutions for many problems. On the other side, Python

offers libraries such as netmiko and paramiko, which are also handy tools for network

automation. The advantage of Ansible over Python, however, is that it describes the

desired state of computer systems and services using a state-driven resource model, which

will be very important in this thesis. Additionally, it uses YAML, which is a human

readable format and easier to learn than Python.

Ansible uses four key components. Inventory that consists of nodes to manage by Ansible.

Modules do the actual work and are getting executed in each playbook. Playbooks consist

of tasks, called Ansible modules, which then orchestrates, configures, administers, or

deploys. Lastly, Ansible configuration, where the working configuration of Ansible is

located.

REST API and Ansible are frequently mentioned in this document. As a default state,

Ansible does not offer API functionality, but the AWX project provides a web-based user

interface, REST API, and task engine, making it one of the upstream projects for Ansible

Automation Platform. [12]

2.8 Python-Django

This open-source framework was released in 2005 and uses Python to create web

applications, supported by Django Software Foundation [13]. Their aim is to encourage

13

rapid development while maintaining a pragmatic design. The Django web framework

is one of the leading frameworks for Python web applications. It uses the Model-View-

Template software design, which is a variation of the widely spread Model-View-

Control design pattern. Django offers frontend, backend, and security solutions right out

of the box. During this study, Django was used to create the backend and provide the

API for the stored resources, like IP prefixes/addresses, devices and their interfaces.

There are plenty of popular projects that use Django, including Instagram, Mozilla

Firefox, Spotify, and even YouTube.

Organizations can use the single source of truth (SSOT) concept as part of their

information architecture to ensure that all employees in the organization are using the

same data when making business decisions. By adopting a SSOT, employees will have

access to a federated view of data, which is also known as a golden record or single

version of the truth [14].

According to their official documentation, Netbox is the leading solution for modelling

and documenting modern networks. It is an ideal SSOT option for network automation,

since it was designed specifically for network engineers and operators. Racks, devices,

device components, cables, wireless connections, data circuits, virtual machines, prefixes,

ranges, addresses, VRFs, L2VPN overlays, VLANs, etc., are just some of the network

technologies covered in the Netbox project. Also, Netbox is a Python -Django-based

open-source application that can be extended by adding custom fields, custom models,

templates, plugins, and REST APIs [15]. This project relies heavily on Netbox as the

SSOT, since it can store prefixes, providing REST APIs, and supports webhooks.

According to RedHat, Webhooks enable lightweight, event-driven communication

between two application programming interfaces (APIs) [16].

Figure 4 shows the attributes of each prefix object stored in the inventory. Initially, it

provides prefixes to be scanned by the REST API for Ansible, and webhooks can be

added to create trigger points, so it can react when a database change occurs.

14

The author was part of the development team that extended the functionality of Netbox

by implementing REST API endpoints. These endpoints provide the necessary

information about network segments and edge routers.

Figure 4: GUI of Netbox storing prefixes [17]

15

3 Background Research

The objective of this section is to perform a comparison of various technologies based on

available researches. Properties, such as active and passive vulnerability scanners,

performance, accuracy, precision, and difficulty to implement, were considered important

criteria in order to identify the right tool for this thesis.

Normally, network vulnerability scanners audit a network in three parts: network

scanning, vulnerability scanning, and vulnerability analysis. Network vulnerability

scanners as their name states, are both network and vulnerability scanners. The scanning

of a network involves identifying which computers in the network are alive, what

operating systems they are running, and what services they are providing. In most scanner

tools, vulnerabilities are verified by carefully constructed queries, which help confirm the

vulnerability's existence without interfering with the tool's operation. [9] The goal of this

thesis was to find a network scanner that would best suit testing the functionality of the

stateless firewall. The research methodology emphasized the need to find a tool that could

test the infrastructure of the ISP from the outside, which is already running a vulnerability

scanner, called Nessus. Tenable's Nessus vulnerability assessment solution, according to

them, is the industry's most trusted solution. In addition to having the lowest false positive

rate and six-sigma accuracy, Nessus has the deepest and broadest vulnerability coverage

in the industry with over 2 million downloads. [18] There are a few criteria to in order to

find a cost-effective vulnerability scanner. A vulnerability scanner is classified into two

main types based on the method it uses to identify vulnerabilities: Active Vulnerability

Scanners (AVS) and Passive Vulnerability Scanners (PVS).

3.1 Active and Passive Vulnerability Scanners

To detect vulnerabilities, AVS sends traffic to hosts on scanned networks and analyses

their response to determine if any vulnerabilities exist. As a result, active vulnerability

scanning is considered intrusive. In PVS three methods are possible to identify

vulnerabilities. First option is to capture and analyse traffic to determine which devices

and services are running in the infrastructure. Alternatively, one can analyse logs,

operating systems, and configurations to learn more about installed software and services.

16

Another alternative is to run sophisticated queries against known vulnerability databases

to identify the services and nodes affected. [19]

One of the leading industry vulnerability scanners, Nessus is an AVS tool, and they claim

more than 70.000 Common Vulnerabilities and Exposures (CVE) are covered by their

scanning scripts. However, as of September in 2022, the total number of CVE’s are more

than 185.000, which gives only an 38% coverage. On the other hand, PVS can cover all

the known vulnerabilities that are contained at the vulnerability database or repositories

[19].

AVS also has a side effect since it needs to send packets on the network, so it increases

network traffic, affecting performance and it varies by the size of the network. In addition,

scripts run by AVS can disrupt services on hosts. In contrast, PVS is not affected by this

problem. When the whole network is not visible, such as when separated by a firewall,

AVS may block some TCP/UDP traffic and produce false negatives. AVS and PVS can

both produce false positives and negatives, but their rates differ according to the factors

involved.

17

An AVS and PVS test are conducted for three main operating systems, covering the most

recent 100 CVEs. This research is conducted by Harun Ecik. Detected vulnerabilities are

considered accurate if all of them have been discovered within a target. Detecting only

existing vulnerabilities within a target (excluding false negatives) is called precision.

According to the study, accuracy, and the ability to detect all vulnerabilities were the most

important criteria for detection. The researchers conclude that PVS returns more accurate

and complete results. The result can be observed on Figure 5.

Figure 5: Accuracy and precision result [19]

Ron Gula summarizes the differences between AVS and PVS as follows: "Passive

vulnerability scanning is not a substitute for active scanning." PVS is a separate technique

that allows network and security engineers to use distributed network monitoring tools

for troubleshooting purposes. Still, PVS will not be able to generate the same amount of

18

raw data as AVS can. [20] From this summary, it is evident, using both PVS and AVS is

the best practice to secure any enterprise's network.

Additionally, Nessus as an AVS performs poorly in network scanning compared to other

network scanners. It is true that Tenable Network Security Inc. offers a PVS, however the

author needed to consider an easier, more robust, and open-source solution if it is

available. For this reason, to identify hosts that are not hidden by ACLs on the

infrastructure, Nmap is proposed as a network scanner in this thesis.

3.2 Nmap

In the official documentation, Nmap refers to their software as a Network Mapper, an

open-source tool for auditing networks. It is designed for scanning large networks rapidly,

however, can also be used on single hosts. Raw IP packets are used by Nmap in novel

ways to determine which hosts are available on the network, what services those hosts

offer (name and version of the application), which operating systems (and version of the

operating system) are used, what type of packet filters/firewalls are used, and several

other aspects. Besides network audits, Nmap is often used for routine tasks like creating

network inventory, service upgrade scheduling, and monitoring host and service

availability. [21]

A passive vulnerability detection solution is proposed by Ron Gula [20] in his research

by using passive network monitoring. For example, in the case of client-based

vulnerabilities, the client itself can be detected rather than the vulnerability itself. He

mentions, this solution also helps to reduce the scope of the hardware related

vulnerabilities, because if a company never bought, for example, a HP-UX server, there

is no need to search for HP-UX related vulnerabilities in the future. Additionally, he

discusses how to test firewall vulnerabilities with network scanners.

3.3 Nessus and Nmap performance comparison

In this research from 2016 [22], on a network consisting of 40 devices, the authors

compared the performance of Nessus and Nmap. The accuracy, precision, and scan time

of 20 Linux and 20 Windows hosts were measured regardless of whether a firewall was

19

present or not. Precision and accuracy were calculated based on the ratio of false

negatives, false positives, and true positives to all devices. They calculated it as follows:

Classificaiton Description

True Positive – Identification success Then scan result is equal to the actual operating

system

False Positive – Misidentification The scan result is not equal to the actual

operating system

False Negative – Identification Failure The scan failed

Table 1: Classification on scanning results

Accuracy Precision

TP/(TP + FP + FN) TP/(TP +FP)

Table 2: Calculation of accuracy and precision

Tool True Positive False Positive False Negative

Nmap 8 12 20

Nessus 3 0 37

Table 3: Comparison of scan results when firewall was present

Tool Accuracy (%) Precision (%)

Nmap 20 40

Nessus 7.5 100

Table 4: Comparison of accuracy and precision

Based on their summary of the results, Table 4 shows that Nmap has been able to identify

operating systems more efficiently than Nessus. Moreover, it is apparent Nessus had more

difficulty identifying Operating Systems on the devices, however its precision was 100%

accurate when it did. Table 3 shows that, Nmap was able to give less False Positives and

False Negatives, while giving more True Poisitives, when firewall was present, which is

considered a huge advantage in this study.

In the same study, their average scan time was also compared on both Windows and Linux

machines.

20

Figure 6: Average scanning time on windows host

Figure 7: Average scanning time on Linux Host

This means that Nessus takes longer on average to scan the operating system than Nmap.

3.4 Comparison of OpenVAS and Nmap

The OpenVAS vulnerability scanner is a comprehensive tool. In addition to

unauthenticated and authenticated testing, it supports high-level and low-level internet

and industrial protocols, performance tuning for large-scale scans, and a powerful internal

programming language for implementing all types of vulnerability tests. [23]

21

This comparison mentioned in the research made by Nikita Y Jhala [24], OpenVAS and

Nmap are compared by different properties, such as vulnerability assessment, complexity

to install, configure, report generation and scan duration.

In conclusion, Nmap offers less scripts for the Nmap Scripting Engine and vulnerability

scan results have a higher number of false positives than OpenVAS. As Nessus takes on

the role of AVS in the infrastructure, the author examined these tools as network scanners,

that can be later used as a PVS.

OpenVAS is complicated to setup and configure since it has a client-server architecture

over SSL, and users need to be created on the server where scans are performed. It means

OpenVAS has flexibility limitations, which results in a disadvantage over Nmap.

Due to the fact that both tools can generate an XML file or any other processable output

format, report generation ability is not considered decesive.

However, it takes significant time for OpenVAS to conduct vulnerability scans. Since

vulnerability scanning is out of scope, OpenVAS does not work well by conducting only

network scans without performing vulnerability assessments, since it is a vulnerability

assessment tool rather than a network scanner.

As a result of the comparison, Nmap is a more robust, lightweight network scanning tool,

whereas OpenVAS is a more complex solution with much more GUI output and useful

features. However, this isn't an important factor in this study, so Nmap is the perfect

solution.

22

4 Solution

Chapter 2 and 3 should give enough background knowledge for the reader in orde r to

understand the problem and solution in more depth. Hence, to conclude the problem, in

order to hide infrastructure devices, iACLs must be created to prevent access from

external networks. An ISP’s infrastructure is constantly changing and has many devices

around the world. It is therefore necessary to have a process which automatically detects

if ACLs do not function as expected

The internal network of an ISP is responsible for transporting traffic between its

customers, so optimal and undisturbed behavior is essential. If an iACL does not function

correctly or is missing, devices are visible from the Internet, making it possible to conduct

direct attacks. In addition, scanning infrastructure devices will be possible, which can

provide valuable information for an attacker. Moreover, an edge device should drop

unverified traffic when it enters the internal network, in order to save resources for the

core devices.

4.1 Open and Closed Loop Automation

During the thesis, the author had the opportunity to choose from two automation methods,

which are open and closed loop automation systems. Processes in closed loop systems are

able to provide feedbacks for the controller, that helps to maintain the desired state. In

contrast to open loop systems, which does not provide this possibility. Feedbacks were

essential in this project, since it is how the components communicate with each other

inside the system. Additionally, the process controller is able to understand its current

state by processing the feedbacks. It is important, since if the current state differs from

the desired state, some action must be taken in order to recover it. By using open loop

systems, it would be harder to maintain the desired state. Ansible is an excellent tool,

since it uses state-driven model, which means, it is possible to define the desired state of

the system by applying playbooks. At each run, Ansible tries to regain the state by

executing the playbooks, and a feedback is provided in case of the current state differs

from the desired state during the execution, or not. In case, there was a change in the

23

system, the process controller understands some action must be taken. On Figure 8 the

differences between Open and Closed Loop systems can be observed.

Figure 8: Open and Closed Loop Systems [25]

4.2 Possible solutions

Beside open and closed loop automation, other approaches had to be considered during

the research. Manual, fully automated and semi automated approach each have different

advantages over each other.

4.2.1 Manual approach

In this approach, engineers must manually check the visibility of the infrastructure using

network scanners. If a problem is detected, it must be rectified manually. As a result, if a

new device is added to the infrastructure, manual configuration must be created and

validated. Manual configurations have a high risk, as human errors can occur, such as

typos. Automation can prevent these errors, so a better approach is needed.

4.2.2 Fully-automated approach

Using this approach, infrastructure changes are detected automatically and the system

knows where to make the changes and on which devices they should take place. It is

entirely automated, and is controlled by an artificial algorithm. In addition, it can perform

scans, verify device configurations, and correct them as necessary. It is very close to a

software-defined network, however they are not identical. As Red Hat Enterprise

24

describes it, this is a self-healing infrastructure based on closed loop automation. [25] In

closed loop automation, an algorithm is used to ensure a system maintains the desired

state. In contrast to open loop automation, closed loop automation provides feedback to

the controller to assist it in understanding and monitoring its states. This approach is more

expensive than manual approach and requires a great deal of resources.

4.2.3 Semi-automated approach

Semi-automated systems are hybrid systems that combine the properties of manual and

fully-automated approaches. In other words, the system cannot recognize every change

in the infrastructure, such as the implementation of a new device. However, it can react

to it by knowing where and what needs to be changed. The system must, therefore, be

notified if a device is implemented, so that it can make the necessary changes to keep the

desired state. Due to this, some human interaction is necessary. However, a major

advantage of this system is that, unlike the fully-automated approach, it does not eliminate

the possibility of manual changes and also reduces the chance of human error. As well as

providing a sufficient solution, this system is the most cost-effective solution of all three.

A simple example of this system is an air conditioner, which uses a themometer as

feedback to maintain a desired room temperature, however the temperature must be

manually set. On the other hand, a fully-automated approach would remove this manual

step, since it is able to specify the desired state without human intervention by

understanding the resident's habits from additional feedbacks.

4.3 Implementation requirements

As part of this research, a semi-automated system is proposed as a solution. In order for

the system to work undisrupted and optimally, some requirements must be met.

- Valid and up-to-date data must be used in a system.

Data from un-updated databases should never be used in the system, since addresses,

rule constructions, and device reachability rely on that information. The system must be

able to detect if the data stored in the database is not consistent, so it can be valida ted

for the future. Netbox can be used for this purpose, to store addresses and prefixes.

- Communication with all networking devices must be possible.

25

The system needs an undisrupted, reliable communication in order to make changes on

the devices. The risk cannot be prevented if only half of the devices configuration can be

modified.

- Changes must be validated by the system.

Suppose, an engineer reserves a prefix for a new device in the inventory, but the address

configured on the device is completely different from the reserved prefix. Therefore, the

first requirement is not met, which results in the edge device configuration being

generated incorrectly. That is why, each change must be validated by the system, since it

cannot trust in manual modifications.

- System must know the current and desired states.

A desired state must be explicitly stated, that the system attempts to achieve. In

addition, the system must know the current state through various monitoring and

scanning tools. As a result of not knowing both states, the system is unable to make a

difference and then take the appropriate steps to recover.

- A possibility of manual modification must exist.

Depending on the situation, the system must offer the option of manually modifying the

configuration or database. Although manual modification is always available on

networking devices, the system must be capable of recognizing these changes and

responding accordingly. That cannot happen, after a manual configuration change the

database is not updated, because of human error. This must be updated and validated by

the system if needed.

4.4 Implementation

The proposed semi-automated system consists of three main and a helper component.

The first component is an inventory, which is an application that provides valid data inside

the system. This application is implemented using a web framework, like Fast API or

Django. It has API functionality, database capability and allows to create logic using its

backend. For this project, REST API was used, that allows other components to

communicate with it, using get, put, patch, and delete requests and to modify database

contents. On the other hand, the content can be also changed by a GUI, since it is where

engineers can interact with the system.

26

Next, is the iACL management component, that has the responsibility to generate and

load the configuration into the correct devices. It also has a helper component, that can

detect the manual configuration change on the edge devices. Network scan is always

triggered if a configuration change is applied.

Finally, the network scan component that is an Nmap scan to check the exposed hosts

from the external network. It also has the responsibility to notify the inventory if any hosts

are visible.

4.5 Desired State

Figure 9: Desired State to be maintained

On Figure 9, the requirement for the system to be in desired state can be observed . It

means, the database must store all prefixes that are in the running configurations.

Additionally, the running config has to include all prefixes that are stored in the database.

Consistency can only be achieved through this approach. Additionally, network scanning

must always return a positive result, meaning there are no internal hosts visible from the

external network. The connection between the states is important, as this is the reason for

the closed loop nature of this system. Network scanning and the inventory content

validates the ACL configuration. Network scanning and the actual running configuration

validates the inventory content. The network scan, however, does not need to be validated,

since it is a component for verifying configuration and database errors. In the following

sections these connection between states are described.

27

4.6 Practical implementation

It was the aim of this thesis to find a way to implement the solution into the ISP’s

infrastructure. In practice, three processes are demonstrated and these constitute the main

components of this practical implementation. Ansible has the responsibility to call the

necessary playbooks based on the feedbacks. Feedbacks are positive and negative results,

where positive means the system is in desired state, however negative result does not

neccessarly indicates undesired state. It can also indicate connection errors. Therefore,

the system is a collection of playbooks that are executed based on the state of the system.

It is based on the property of idempotence, since if the system is in desired state, no matter

how many times the playbooks are executed, the state must not be affected.

4.6.1 Idempotence

The property of idempotence in programming and mathematics is that a particular

operation produces the same result no matter how many times it is executed [26].

4.6.2 Network scanning component

In the first component, a network scan is carried out from an external network toward the

MPLS backbone using Nmap. The external network was explained in Chapter 2, and it

consists of a number of networks such as access, CDNs, and peering. Therefore, the first

step is to connect via SSH to a host on the external network using Ansible. As long as the

connection is successful, which is a basic requirement for implementation, then Ansible

tries to install Nmap. However, if it is already installed, nothing is changed. In the next

step, Ansible then asks for a list of devices that needs to be scanned from the inventory.

As a result, Ansible creates a get request for the inventory via its built-in get_url module.

Then, it reformats the received JSON file and converts it to a txt, which is then copied to

the target hots, via the built-in copy module. If the copied txt content matches the target

node’s txt, it can be concluded that no changes have occurred since the last scan.

Therefore, the process returns with a positive result, since the system is in desired state.

Alternatively, Ansible uses its shell module to perform an Nmap scan, which generates

an XML report afterwards. In the ideal case, no hosts are visible from the external

network, which means, in practice, the XML file contains the “hostup=0” tag, which can

be easily identified by regex search. This component is mostly used for validation, which

28

was an implementation requirement. If the regex appears in the file, the scan returns a

positive result, however, if it is not, the component returns with negative result. A

flowchart of this process can be observed on Figure 10.

Figure 10: Process of network scanning component

4.6.3 Access List management component

The second component is the management of ACLs on devices. In this process, Ansible

is triggered by the inventory via REST API. Ansible must be able to connect to the

networking devices, or else it will return a negative result. ACL can be managed using

several Ansible modules, including Juniper's junipernetworks.junos.junos_acls [27],

Cisco's cisco.iosxr.iosxr_acls [28], and Huawei's community edition [29]. The built-in

CLI module can also be used to achieve vendor neutrality in many cases. This process,

starts with Ansible pulls the current iACLs from the running configuration and compares

them to the inventory contents. If they do not differ, that means no changes have been

made, therefore the database and running configuration are consistent with each other, so

the component returns a positive result. Two possibilities exist in the other case. Firstly,

if the database is not updated, which is critical since it is one of the basic conditions, then

Ansible must be capable of reformatting the missing data and sending it to the inventory

29

via REST API. It can be done using the third component and will be described in more

details. If an engineer updated the ACL of the device but not the inventory, then this

solves the problem, since manually making changes if necessary was also among the basic

conditions. Another possibility is that, the inventory contains a network that is not hidden

by the edge devices. In this case, Ansible is responsible for generating the ACL

configuration and place them into the correct devices. Then, it must be validated through

the network scanning component, since the process can only return a positive result if

network scanning is also positive. It is how the generated configuration is validated and

the process sends feedback. If the network scanning result is negative, then manual

changes are needed, since the system is not yet prepared for that scenario. It would mean,

the generated ACL is wrong. This process can be observed on Figure 11.

Figure 11: Process of access list management component

30

4.6.4 Configuration change detector helper component

It is more difficult to implement this process in practice since Ansible is not able to react

when ACLs are manually changed, since by default it cannot detect when and what was

the change. One solution would be to continously pull the running configuration of the

devices, however an even better solution is to use a configuration change detector

program.

Located on a log collector node, this helper component is a simple progran that can

analyze logs and notify the iACL management component. It can be achieved by using

Simple Network Management Protocol (SNMP). One option is to use Cisco’s

Management Information Base (MIB) [30]. Using this MIB allows to create SNMP traps,

so devices can send logs for the colletor node. In that case, the node can understand if the

modification affects the ACL configuration, so it triggers the ACL management

component, by creating a HTTP request. However, in some cases these MIBs are not

supported. Another solution is to use the log message that is always generated after

commit. A part of the generated log message on a Cisco IOS XR looks the following:

%MGBL-CONFIG-6-DB_COMMIT : Configuration committed by user test.

In practice, if the “configuration commited” string can be found in the logs, the system

can start comparing the content of the inventory and the running configs, by triggering

the ACL management component. In case of the configuration did not change the ACL

config, the component returns with positive result, since the system is in desired state

already.

4.6.5 Inventory update component

The last component is the communication between Ansible and the Inventory. This

process manages the database and provides data between Ansible and the Inventory

through their REST API. The solution must allow engineers to manually interact with the

system, therefore they should be able to modify the database content using a Graphical

User Interface (GUI). When the modification is saved in the GUI, it triggers the ACL

management component via HTTP Request.

31

On the other hand, inventory update is also capable of receiving new prefixes through its

API. It can happen, as an example, when a network scan component finds an exposed

network or when the running configuration has networks that are not yet stored in the

Inventory. It starts, by the component receives the prefix and the action, which can be

either delete, put or post. Then, Ansible process this data and sends it for the web

application. In any cases, it will return with a positive result, however if the prefix is not

in the inventory yet, then the web application updates its database content. The process

can be seen on Figure 12.

Figure 12: Process of the inventory update component

32

4.7 Connecting the components

After connecting the components, the system can solve the problem defined in the

problem statement, since the generation of ACLs and their validation is automated.

Connected components can have three triggers points. If the inventory is updated, if

manual configuration change is detected or when a network scan returns with negative

result. The system is able to catch the trigger and call the necessary processes accordingly.

Each process of the connected components can be considered successful if they return

with positive result.

The main purpose of the system was invented for the case, when an engineer reserves a

perfix in the inventory and saves the modification in the GUI. In that case, Inventory

notifies the ACL management component, that understands there is a new prefix, which

is not in the running configuration of the devices. Therefore, it generates the config and

loads it. Later on, the generated configuration is validated with the network scan

component, that is always called after commits. In case of the all components return with

positive result, the process finishes. Otherwise, manual steps are required, since some

cases cannot be handled because of the nature of the hybrid system. Such case could be

if a device is not reachable.

Figure 13: Inventory update with connected components

Engineers must be able to manually modify running configurations if needed. Therefore,

by implementing the ACL management helper component, Ansible can be notified if

there was a change in the edge devices. In this case, the helper program will notify the

ACL management component, that understands by comparing the running config and the

inventory content, that they are inconsistent, therefore it must call the inventory update

component. In the end, a network scan is conducted, since that can happen, ACL is not

33

updated on each LERs. In case of negative result, manual steps are required. This process

can be observed on Figure 14.

Figure 14: Access list update with connected components

In order to help the network audit process, it is important to eventually start a network

scan, which is a passive vulnerability detection mechanism. In case of the scan result is

negative, it is possible to find the prefixes in the generated XML report and send it for the

inventory through its API. Then, the process from Figure 13 starts from the beginning.

An example diagram of the process can be seen on Figure 15.

Figure 15: Network Scan with connected components

4.8 Error Handling

Semi-automated systems have many advantages, but they also have some significant

disadvantages. As an example, if ACL generation was incorrect, then the scan process

would return negative results. Means, the system is not able to recover its desired state,

so manual changes must be made. The easiest solution is to create an email sending

component that alerts engineers if a process returns with a negative result, however there

can be many solutions, depending on the complexity of the processes and infrastructure.

34

4.9 Environments

To develop and debug software, a testing environment is required. Testing environments

can sometimes differ from production environments, since in some cases not all the

functionality of production environments is needed. This was also the case in this

research, since Netbox in this enterprise is quite advanced and only API Endpoints and

database functionality were critical for testing.

4.9.1 Test Environment

In order to replace Django and Netbox, the author used FastAPI, that functions the same

way as Django API, since both are written in Python. Therefore, FastAPI [31] were

handling API calls. In order to simulate the database, a simple JSON file was created, that

allowed to read, write and modify values as dictionary objects in Python. This side project

can be also found on the author’s github [GitHub FastAPI project], but is still in

development state. As an edge device, the company provided a Cisco CSR 1000V

Router’s virtual image. Additionally, a third machines was created to run Ansible to

orchestrate the processes. All applications and the router were running in a virtual,

hypervised Vmware vSphere environment that allowed them to communicate with each

other using its virtual switch methodology [32]. This test environment requires a lot of

resources.

Figure 16: Test environment

https://github.com/dokova/ansible_thesis_project/tree/main/fast_api

35

4.9.2 Production Environment

Although, the production environment is different. Ansible AWX, must be placed into

the infrastructure where it can reach every edge device and the Inventory. In this

environment, Django is used as the Inventory with MySQL database behind it.

Additionally, SSH reachable external nodes are connected to the infrastructure through

the edge devices.

Figure 17: Production environment

36

5 Results

In this research, there are sub-objectives, such as comparing network scanners and

describing the role and value of Nmap. Consider these as theoretical objectives, since the

entire project would not use the right tool for the solution without these comparisons.

Based on the research conducted, it is known that there are two major groups of

vulnerability scanners, Active and Passive vulnerability scanners. Network scanners are

a smaller group within these vulnerability scanners. According to reports, Nessus, a

market-leading AVS, is only able to cover about 38% of available CVEs. Therefore,

additional vulnerability scanning is needed, which allows engineers to broaden their

understanding of their infrastructure. According to Ron Gula [20], a PVS can be used in

conjunction with an AVS for hardening network infrastructures. He also mentions,

network scanners can be used as PVS in many cases. As a result, this research aimed to

find the right network scanner to function as a PVS in the enterprise infrastructure. In

section 3.4 of the thesis, a comparison has been conducted between OpenVAS and Nmap.

OpenVAS is more efficent in terms of vulnerability scanning, however Nmap is more

effective in terms of network scanning. As a result, for this research, Nmap is the right

choice. The main goal, was to create a process for automatically scanning network

segments on the ISP network. The author described the process and presented the solution

in chapter 4.

5.1 Outcome

Closed loop automation is the basis of the proposed system. The author created a hybrid

system that combines the advantages of closed loop automation with manual operations,

since closed loop automation itself is quite a costly implementation. It means sometimes

manual operation is required to restore the system to its desired state. Therefore the

system has disadvantages in error handling, since unexpected errors and combinations

may occur that the process controller does not yet understand. The system thus

significantly lowers the risk of human error while still providing the opportunity for

manual changes, and it has a lower implementation cost than a fully-automated system.

37

5.2 Capabilities

The system is capable of updating the content of the inventory, create or modify the ACL

configuration on edge devices, start a network scan and understand its result. Moreover,

it can check if the Inventory and the running configuration are consistent by comparing

their content. It can understand the feedbacks, by checking if the result is either negative

or positive and take necessary steps accordingly. In case of the database content is

incomplete, the system can send the necessary prefixes through API. Additionally, if the

running configuration is incomplete, the system can create or modify ACLs.

After connecting the components, three major use cases can happen. First, is to reserve a

prefix in the database and the system autonomously create the necessary ACLs and

validates it with a scan. Second, in case of the manual configuration change, the system

validates the config and sends missing prefixes for the inventory if it is incomplete.

Lastly, network scan can be conducted to check if each iACLs are working as expected.

Therefore, the system accomplishes much more than just checking for exposed hosts with

Nmap. It has validation and self-healing capabilities.

5.3 Usability

As the thesis title states, the scanning can cover different network segments, not just the

MPLS backbone. Due to the fact that the created process is not tied to the MPLS

infrastructure, it is possible. Edge routers are the prerequisite, since they play a crucial

role in the process as a whole, if the goal is to create iACLs. In the event that the purpose

of this process is not to manage iACLS, then this process may also be used to manage

any ACLs and any router may be used. Implementation can be handled even within Small

Office Home Office (SOHO) environments.

5.4 Security and performance

As the iACLs are in place and correct, which are validated by the content of the inventory

and the network scan, the result is increased performance and security enhancements. It

can be concluded, since if the network scan does not find any exposed hosts from the

38

external network, it means, those devices cannot be accessed, therefore conducting direct

attacks are less possible. Moreover, by generating the ACLs, human errors are less likely.

On the other hand, by dropping unverified traffic on the edge of the infrastructure, the

core devices does not have to process that traffic. As a result, less unwanted packet enters

the internal network, so increased performance can be expected on the core devices.

5.5 Network outages

As the management of access list is automated, network outages can be rectified in time,

since it has a strict validation procedure. In case of error, the system can notify the

enginers or tries to recover into desired state. [33] According to this article, 80% of

unplanned network outages are caused by changes to network configurations. These

outages cause $46 million in damage each year, and only 3% are rectified before they

cause disruptions. It is therefore, an automated validation mechanism should be

implemented into most infrastructures.

5.6 Cost

This project relies on only open-source tools and libraries, that are, Ansible AWX, Nmap,

Django, and MySQL. The whole system can be implemented without any cost, which can

be an advantage over other solutions, like software-defined implementations.

39

6 Future works

In chapter 4, a solution that is proposed is a semi-automated system and in chapter 5 some

of its disadvantages were described. Thus, error handling and process calling mechanisms

have difficulties in this system, since it has to be programmed to handle every scenario.

There is a straight line, where the starting point is a manually managed system, and the

ending point is a fully-automated system. The semi-automated system sits in the middle

of this straight line. In other words, the more developers adjust the system and prepare it

for unexpected errors, the closer the system gets to being fully-automated.

Nevertheless, every company must find the most cost-effective solution, since in many

cases, a fully-automated system is not even required. Still, logging, security and

availability solutions should be a high priority. These aspects were out of the scope of

this research, however it is relevant to discuss them in this section.

6.1 Development

The scope of the research was to construct the scan process that will provide the base for

the described Tier 2 ISP, where the author spent his internship. For this reason, the case

study of this research is not fully done yet, since the actual code is not yet implemented

into the production environment. However, an alpha version can be found in Appendix 2,

that was used for testing purposes and is still under development.

6.2 Logging

Logging solutions must be implemented into the system. Despite the fact that Ansible

provides feedbacks, sometimes its log messages do not explain the issue. To teach the

system in the future, the process path must be logged. This means that the logs should

indicate which step failed. As an example, Ansible may try to push configurations into

Juniper edge devices using a Cisco or Huawei module. In this case, the log message

simply tells the device that the configuration is invalid. In the event that the SSH

connection is logged, it is immediately apparent that the configuration has been generated

using the wrong module, since the IOS XR connection log message differs from the Junos

40

log message. By identifying the problem, the system can be prepared to handle it correctly

in the future.

As part of the configuration process, configuration files can also be saved for further

inspection to determine what went wrong. It is also important to record every action taken

by the Inventory so that engineers can eventually review the put, post, and delete requests

and take appropriate action if necessary. Specially, since it is hybrid system, so its

functionality must be eventually supervised.

6.3 Security

It is extremely important to protect the Ansible AWX server, since it has access for most

of the devices and has permission to change their configurations. Moreover, hardcoding

any login credentials into playbooks or variables is must be avoided at all cost. It should

be set up on every possible device to use public key authentication and a separate user

should be created for Ansible. This can also be automated where Ansible puts its key file

on each device and creates its own user.

Despite being able to reach external networks, this server must only be accessible by the

external hosts that start the scan, which is why an ACL is needed for an extra layer of

security.

It is also critical to protect the Inventory, since it contains sensitive information about the

infrastructure. Even though if access lists are in place and attackers cannot directly attack

the Ansible AWX server, however other attack vectors can be used, such as deleting a

prefix with an HTTP delete request. If that's the case, Ansible will also delete the iACL

creating a security hole in the infrastructure. Additionally, it is also important to give

reasonable expiration times for the API tokens, since API requests can cause significant

damage if used for attacks.

6.4 Availability

The least significant aspect of all is availability, since manual configuration is available

if an urgent change needs to be made. Nevertheless, availability is vital to the efficient

41

functioning of the system. Hence, redundancy between servers should be provided, and

it is mandatory not to run all services on the same server. If one server is down, all services

can go down. In addition, Netbox is a source of truth and other services rely on it, so high

availability is a must. Having separated the servers, a redundancy solution needs to be

implemented between them to handle failovers. Furthermore, creating backups, such as

snapshots in a virtual environment, is a good practice.

6.5 Connecting services

The main idea of the enterprise was to use a real-time and federated source for every

automation process, which is the SSOT. By connecting each automation processes, they

use up-to-date information. It is efficent, since many departments can use different data

source and not update them correctly. When the SSOT fully developed, it can serve as

the basis for automation of other processes, such as, managing firewall access policies,

summarise routes, create reports and so on. Using real-time and federated data source is

an essential part of network automation.

42

7 Conclusion

Security, economics, public health and safety rely heavily on Internet services and

Telecommunication. Network auditing is an important proactive approach to mitigate

risks. Since auditing a network can be difficult in a large network, automated methods

must be implemented. Due to its advanced network scanning capabilities and its ability

to act as a passive vulnerability scanner, Nmap was selected as a suitable network

scanning tool in this study. However, active vulnerability scanners should also be used in

every infrastructure. Closed loop automation is an approach that paves the way for self-

driving networks. This research was created based on this approach, and a semi-

automated process was developed for handling iACLs on edge devices, and then

validating their configurations and the central database content. As a result, the created

process is free, increases network security and performance, helps network auditing and

lowers the cost of network outages. There are still many future works available to advance

the process into a fully-automated approach, including logging, security, and availability

requirements. Moreover, connecting most of the automation solutions within the ISP to

the inventory would be an excellent addition. As a member of the ISP, the author was

involved in this project, and the process presented provides a basis for further

development. This project's alpha version, made only for this study, can be found on the

github link in the appendix.

43

Bibliography

[1] CISA, “https://www.cisa.gov,” [Online]. Available: https://www.cisa.gov/communications-sector.

[Accessed 29 December 2022].

[2] WhatIsMyIP, “WhatIsMyIP,” [Online]. Available: https://www.whatismyisp.com/articles/what-is-

an-isp. [Accessed 29 December 2022].

[3] M. Winther, “Tier 1 ISPs: What They Are and Why Are Important,” 2006.

[4] J. M. A. S. M. R. N. B. Ashley Flavel, “Computer Communications,” BGP route prediction within

ISPs, vol. 33, no. 10, pp. 1180-1190, 2010.

[5] Cisco, “Cisco,” 3 August 2007. [Online]. Available:

https://www.cisco.com/c/en/us/td/docs/net_mgmt/vpn_solutions_center/2-

0/mpls/provisioning/guide/PGmpls1.html#wp1018933. [Accessed 29 December 2022].

[6] Cisco, “Cisco Annual Internet Report (2018–2023) White Paper,” Cisco, 2020.

[7] Cloudflare, “Cloudflare,” [Online]. Available: https://www.cloudflare.com/learning/cdn/what-is-a-

cdn/. [Accessed 29 December 2022].

[8] G. J. Ed, “https://www.rfc-editor.org/,” September 2004. [Online]. Available: https://www.rfc-

editor.org/rfc/rfc3871. [Accessed 29 December 2022].

[9] H. Holm, “Performance of automated network vulnerability scanning at remediating security

issues,” in Computers & Security, 2012, pp. 164-175.

[10] Lanner-America, “Lanner-America,” [Online]. Available: https://www.lanner-
america.com/blog/stateless-vs-stateful-packet-filtering-firewalls-better/. [Accessed 29 December

2022].

[11] Cisco, “Cisco,” 21 October 2008. [Online]. Available:
https://www.cisco.com/c/en/us/support/docs/ip/access-lists/43920-iacl.html. [Accessed 29

December 2022].

[12] R. Hat, “github.com,” Red Hat, [Online]. Available: https://github.com/ansible/awx. [Accessed 29

December 2022].

[13] “geeksforgeeks,” 22 February 2022. [Online]. Available:

https://www.geeksforgeeks.org/difference-between-django-and-node-js/. [Accessed 29 December

2022].

44

[14] T. Contributor, “techtarget,” [Online]. Available:
https://www.techtarget.com/whatis/definition/single-source-of-truth-SSOT. [Accessed 29

December 2022].

[15] netbox-community, “github,” [Online]. Available: https://github.com/netbox-community/netbox.

[Accessed 29 December 2022].

[16] RedHat, “RedHat,” 1 June 2022. [Online]. Available:

https://www.redhat.com/en/topics/automation/what-is-a-webhook.

[17] netbox-community. [Online]. Available: https://docs.netbox.dev/en/stable/.

[18] Nessus, “Tenable,” Tenable, [Online]. Available: https://www.tenable.com/products/nessus.

[Accessed 29 December 2022].

[19] H. Ecik, “2021 International Conference on Information Security and Cryptology,” Comparison of

Active Vulnerability Scanning vs. Passive Vulnerability Detection, pp. 87-92, 2021.

[20] R. Gula, “Passive Vulnerability Detection,” 9 September 1999. [Online]. Available:
https://vodun.org/papers/net-papers/gula_passive_vulnerability_detection.pdf. [Accessed 29

December 2022].

[21] nmap, “nmap.org,” nmap, [Online]. Available: https://nmap.org/book/man.html. [Accessed 29

December 2022].

[22] S.-H. a. K. Y. R. a. B.-h. R. Sun-young Im and Shin, “Performance evaluation of network scanning
tools with operation of firewall,” in 2016 Eighth International Conference on Ubiquitous and

Future Networks (ICUFN), 2016, pp. 876-881.

[23] OpenVAS, “openvas.org,” [Online]. Available: https://www.openvas.org/. [Accessed 29 December

2022].

[24] N. Y. Jhala, Network Scanning & Vulnerability Assessment with Report Generation, 2014.

[25] S. B. Jerome Marc, “Redhat,” 28 September 2021. [Online]. Available:

https://www.redhat.com/en/blog/self-healing-infrastructure-red-hat-insights-and-ansible-

automation-platform. [Accessed 29 December 2022].

[26] I. Wigmore, “techtarget,” [Online]. Available:

https://www.techtarget.com/whatis/definition/idempotence. [Accessed 29 December 2022].

[27] D. Mellado, “docs.ansible.com,” [Online]. Available:
https://docs.ansible.com/ansible/latest/collections/junipernetworks/junos/junos_acls_module.html.

[Accessed 29 December 2022].

45

[28] N. Chakraborty, “docs.ansible.com,” [Online]. Available:
https://docs.ansible.com/ansible/latest/collections/cisco/iosxr/iosxr_acls_module.html#ansible-

collections-cisco-iosxr-iosxr-acls-module. [Accessed 29 December 2022].

[29] Q. Pan, “docs.ansible.com,” [Online]. Available:

https://docs.ansible.com/ansible/latest/collections/community/network/ce_acl_module.html.

[Accessed 29 December 2022].

[30] Cisco, “github,” [Online]. Available: https://github.com/cisco/cisco-mibs/blob/main/ME1200-

MIBS/15.4_3_SN/ME1200-ACL-MIB.mib. [Accessed 14 December 2022].

[31] FastAPI. [Online]. Available: https://fastapi.tiangolo.com/. [Accessed 29 December 2022].

[32] VMware, “docs.vmware.com,” [Online]. Available: https://docs.vmware.com/en/VMware-Smart-
Assurance/10.1.0/ip-manager-delopment-guide-101/GUID-C7E7752E-D122-44EA-83DE-

33F690B22313.html.

[33] D. Krisha, “anutanetwork,” 22 January 2019. [Online]. Available:

https://www.anutanetworks.com/5-real-world-use-cases-of-closed-loop-automation/.

[34] U. Team, “https://www.upguard.com/breaches/out-of-pocket-how-an-isp-exposed-administrative-

system-credentials,” UpGuard, 2019.

[35] D. Cramer, “hackertarget,” 22 August 2012. [Online]. Available: https://hackertarget.com/nessus-

openvas-nexpose-vs-metasploitable.

[36] M. Martinsson, “What is closed-loop automation?,” 9 April 2019. [Online]. Available:

https://www.ericsson.com/en/blog/2019/4/what-is-closed-loop-automation.

[37] R. H. Enterprise, “ansible.com,” [Online]. Available: https://www.ansible.com/products/awx-

project/faq. [Accessed 29 December 2022].

46

Appendix 1 - Non-exclusive licence for reproduction and

publication of a graduation thesis

I, Dominik Zoltan Kovacs,

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis Automated Vulnerability Scanning of the Network Segments of an Internet

Service Provider, supervised by Tauseef Ahmed and József Tanárki

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

05.01.2023

47

Appendix 2

Github link: dokova/ansible_thesis_project (github.com)

https://github.com/dokova/ansible_thesis_project

