
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Science

TUT Centre for Digital Forensics and Cyber Security

Tallinn 2016

ITC70LT

Mina Gerges - 114381IVCMM

LOG MONITORING AND EVENT

CORRELATION ON MICROSOFT
®

WINDOWS
™

 USING SIMPLE EVENT

CORRELATOR

Master thesis

Supervisor: Risto Vaarandi

Doctor of Philosophy

Senior Researcher

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Arvutiteaduse instituut

TTÜ Küberkriminalistika ja Küberjulgeoleku Keskus

Tallinn 2016

ITC70LT

Mina Gerges - 114381IVCMM

LOGIDE MONITOORING JA SÜNDMUSTE

KORRELATSIOON MICROSOFT
®

WINDOWS
™

 PLATVORMIL SEC

KORRELATSIOONIMOOTORI ABIL

Magistritöö

Juhendaja: Risto Vaarandi

Filosoofiadoktor

Vanemteadur

2

Declaration

I hereby declare that I am the sole author of this thesis. All the used materials, references to

the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Mina Gerges

……………………………………. ………………………………

(Date) (Signature)

3

Abstract

The aim of this thesis is providing a stable integration solution for Simple Event

Correlator (SEC) Perl process to run on Microsoft Windows operating system as a

service. The purpose of running SEC on Microsoft Windows is providing a reliable

correlation engine to monitor event logs of the operating system and other software for

critical alerts, malicious action, attack patterns and other anomalies, then to interact

proactively.

SEC is coded using Perl. However Microsoft does not provide a native Perl distribution

for Windows. A third party Perl distribution from the available shall be selected, based

on features and performance comparison. SEC is not capable of loading Microsoft

Windows event logs without the aid of a log collection tool. Miscellaneous applications

provide different log formats which require normalization to standardize parsing for

extracting information from events.

Features comparisons for commonly used event monitoring tools, correlation engines,

log collection tools and Windows Perl distribution were conducted. The author has

developed a Microsoft Windows application to wrap SEC Perl process in a Windows

service with a user interface to configure SEC command parameters. Example SEC

rulesets are provided as a proof of concept.

Using correlation engine on Microsoft Windows adds an extra dimension of security

and provides assistance to system administrators for detecting critical incidents and

other anomalies. Additionally it can be used for various tasks like software test

automation.

This thesis is written in English and is 101 pages long, including 4 chapters and 30

figures.

4

Annotatsioon

LOGIDE MONITOORING JA SÜNDMUSTE KORRELATSIOON

MICROSOFT® WINDOWS™ PLATVORMIL SEC

KORRELATSIOONIMOOTORI ABIL

Selle töö eesmärgiks on luua stabiilne integratsioonilahendus SEC (Simple Event

Correlator) rakenduse kasutamiseks Microsoft Windows platvormil. Töö kirjeldab SECi

kasutamist Microsoft Windows keskkonnas korrelatsioonimootorina, mis jälgib

operatsioonisüsteemi ja rakenduste logisid, avastamaks kriitilisi süsteemivigu,

pahatahtlikke tegevusi, ründeid ja muid anomaalseid sündmuseid, ning reageerimaks

avastatud sündmustele.

SEC on kirjutatud Perlis, kuid Microsoft Windows platvormil puudub standardne

Microsofti poolt loodud Perli distributsioon. Kuna SECil puudub vahetu tugi Microsoft

Windowsi logide lugemiseks ja logiformaatide rohkuse tõttu nõuavad logisündmused

normaliseerimist, vajab SEC logide kogumiseks ja teisendamiseks eraldi tööriista.

Töös võrreldakse erinevaid Windowsi jaoks loodud Perli distributsioone, logide

kogumise tööriistu, aga ka logisündmuste korrelatsiooni ja monitooringu tööriistu.

Võrdluse põhjal näidatakse, et SEC on logisündmuste korrelatsiooniks sobivaim, ja

samuti valitakse võrdluse põhjal logide kogumise tööriist ning SECi jaoks vajalik Perli

distributsioon. Töö peamiseks tulemuseks on autori poolt loodud integratsioonilahendus

SECwin, mis võimaldab SECil Microsoft Windows platvormil teenusena töötada ning

loob kasutajale mugava interfeisi SECi häälestamiseks ja juhtimiseks. Töös esitatakse

ka mõned SECi näidisreeglid, mis on mõeldud Microsoft Windowsi logide

monitooringuks ja korrelatsiooniks.

Loodud integratsioonilahenduse abil Microsoft Windows platvormil SECi kasutamine

suurendab süsteemi turvalisust ja annab süsteemiadministraatoritele täiendava

võimaluse turvaintsidentide ning anomaalsete sündmuste tuvastamiseks. Loodud

lahendust on võimalik kasutada ka teistel eesmärkidel, nagu näiteks tarkvaratestimise

automatiseerimine.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 101 leheküljel, 4 peatükki, 30

joonist.

5

List of acronyms and terms

API Application Program Interface

BSD Berkeley Software Distribution

CA Certificate Authority

CEE Common Event Expression

CEP Complex Event Processing

CLI Command Language/Line Interface

CPU Central Processing Unit

CRL Certificate Revocation List

C# C sharp – Programming language

DLL Dynamic Link Library

DMZ Demilitarized Zone

EPM End Point Management

GB Giga Byte

GELF Graylog Extended Log Format

GHz Giga Hertz

IETF Internet Engineering Task Force

IIS Internet Information Services

I/O Input / Output

IP Internet Protocol

IT Information Technology

6

ITIL Information Technology Infrastructure Library

ITMS Information Technology Management Suite

JSON JavaScript Object Notation

LDAP Lightweight Directory Access Protocol

LMS Log Management System

LTE Log Template Extraction

MS Microsoft

MSI Microsoft Installer package

OCSP Online Certificate Status Protocol

OS Operating System

OWASP Open Web Application Security Project

PE Portable Executable

PHP Hypertext Preprocessor / Personal Home Page

PID Process Identification number

PPM Perl Package Management

RAID Redundant Array of Inexpensive Disks

RAM Random Access Memory

REST Representational State Transfer

RFC Request For Comments

SEC Simple Event Correlator

SID Security Identification

7

SECwin Simple Event Correlator Windows Integration

SIEM Security Information and Event Management

SIGABRT Signal Abort

Sigcheck Signature Check tool

SIGHUP Signal Hangup

SIGINT Signal Interrupt

SIGTERM Signal Terminate

SIGUSR1 Signal User defined 1

SIGUSR2 Signal User defined 2

SSD Solid State Drive

SSL Secure Socket Layer

SQL Standard Query Language

Sysmon System Monitor tool

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

URI Uniform Resource Identifiers

URL Uniform Resource Locator

VB Visual Basic

VM Virtual Machine

XML Extensible Markup Language

8

Acknowledgments

The author would like to express his gratitude to Risto Vaarandi for his precious advice

and mentoring of this thesis, and for his efforts and contributions in the domain of log

mining and event correlation including the development of Simple Event Correlator.

9

Table of Contents

Declaration... 2

Abstract .. 3

Annotatsioon .. 4

List of acronyms and terms ... 5

Acknowledgments ... 8

Table of Contents .. 9

Table of Figures ... 12

1. Introduction .. 14

1.1. Problem statement .. 14

 Problems related to running SEC on MS Windows 15 1.1.1.

 Problems related to alternative solutions .. 15 1.1.2.

 Problems related to events format .. 15 1.1.3.

1.2. Contribution ... 16

2. Overview of existing solutions and related work ... 19

2.1. Events ... 19

 Event format ... 21 2.1.1.

2.2. Event collection ... 22

 Event collection, storage, retrieval and graphical representation 22 2.2.1.

 Event collection tools ... 23 2.2.2.

2.3. Event correlation and Log Management .. 24

 Properties of Event Correlation Engines .. 25 2.3.1.

 Event Correlation Techniques .. 26 2.3.2.

 Hybrid approach of Event Correlation architecture 27 2.3.3.

 Commonly used Log Monitoring and Event Correlation solution 28 2.3.4.

 NXLog-ce pm_evcorr module vs. SEC .. 31 2.3.5.

 Analysis of the previous attempt to run SEC as MS Windows service 32 2.3.6.

3. Log monitoring and proactive Event Correlation on Microsoft Windows using

Simple Event Correlator Windows Integration ... 34

3.1. Requirements of the correlation engine and event collection tool 34

10

3.2. Microsoft Windows Perl distributions features and performance 36

3.3. Simple Event Correlator Windows Integration - SECwin 40

 Design and development .. 42 3.3.1.

 Command Line Interface .. 44 3.3.2.

 Handling different Perl distributions .. 45 3.3.3.

 Terminating SEC Perl process gracefully .. 45 3.3.4.

 Watchdog: Handling SEC Perl process unexpected termination 46 3.3.5.

 Sending interrupt signals .. 48 3.3.6.

 Handling orphaned SEC Perl process ... 48 3.3.7.

 SECwin service status monitor ... 49 3.3.8.

 Windows paths case insensitivity effect on Cygwin Perl 49 3.3.9.

 SEC statistics dump file rotation .. 51 3.3.10.

 Auto-update feature .. 52 3.3.11.

 Roadmap ... 53 3.3.12.

3.4. Log collection tool configuration and infrastructure 54

 Log normalization .. 54 3.4.1.

 Distributed logging infrastructure .. 55 3.4.2.

 Centralized logging infrastructure .. 56 3.4.3.

3.5. SEC rules ... 60

 Simple Event Correlator rules and best practices 60 3.5.1.

 SEC rules for MS Windows event logs .. 62 3.5.2.

 SEC rules for Symantec Endpoint Management 65 3.5.3.

3.6. Final implementation layouts ... 65

3.7. Practical implementation use case ... 67

4. Conclusion .. 69

Bibliography .. 71

Appendices .. 81

Appendix 1 – NXLog-ce configuration files .. 81

1.1. Header and extensions (modules) .. 81

1.2 Log Server (inputs / outputs) ... 82

1.3 Clients logs collection and normalization (inputs / outputs & Routes) 83

11

Appendix 2 - OpenSSL configuration files .. 85

Appendix 2.1 - OpenSSL Certificate Authority Configuration file 85

Appendix 2.2 - OpenSSL Intermediate Certificate Authority Configuration file ... 86

Appendix 3 – SEC rules (POC) .. 88

Appendix 3.1 – Required Hierarchal rulesets for Windows Events 88

Appendix 3.2 – Detecting malware and ransomware activities 95

Appendix 3.3 – System compromise .. 97

Appendix 4 – Installation and Configuration scripts .. 100

Appendix 4.1 – Install NXLog-ce, SECwin .. 100

12

Table of Figures

Figure 1. Windows event log entry .. 20

Figure 2. IETF syslog format (RFC5424) .. 22

Figure 3.Perl performance using actual rulesets ... 38

Figure 4. Perl performance using looping rule, With Disk I/O 39

Figure 5. Perl performance using looping rule, no Disk I/O .. 39

Figure 6. SECwin UI: SEC configuration .. 41

Figure 7. SECwin UI: Systray icon context menu.. 41

Figure 8. SECwin UI: MainTab – Service control & log viewer 42

Figure 9. SECwin code metrics .. 44

Figure 10. SECwin flowchart: Terminating SEC gracefully .. 46

Figure 11. SECwin flowchart: Handling unexpected termination 47

Figure 12. SECwin code: Service watch class usage ... 49

Figure 13. SECwin code: building case sensitive path ... 50

Figure 14. SECwin code: Converting Windows path to Cygwin style 50

Figure 15. SECwin flowchart: SEC dump file roration ... 51

Figure 16. SECwin code: Update check ... 53

Figure 17. Symantec Management Agent log sample .. 54

Figure 18. NXLog-ce configuration: multiline defining .. 55

Figure 19. NXLog-ce configuration: parsing multilined xml input 55

Figure 20. NXLog-ce configuration: SMA log entry parsing .. 55

Figure 21. Mutual SSL certificate based authentication .. 57

Figure 22. OpenSSL: Structure preparation ... 58

Figure 23. OpenSSL: Creating Certificate Authority ... 58

Figure 24. OpenSSL: Creating Intermediate Certificate .. 58

Figure 25. OpenSSL: Creating Revocation List ... 59

13

Figure 26. OpenSSL: Creating server certificate.. 59

Figure 27. OpenSSL: Creating client certificate .. 59

Figure 28. OpenSSL: Revoking a certificate .. 60

Figure 29. Object audit for file changes ... 64

Figure 30. Hybrid event correlation architecture layout... 66

14

1. Introduction

Whether on home-user or corporate level, Microsoft Windows is the most commonly

used desktop/laptop operating system [1]. While Anti-Malware applications vary on

their level of protection, the need to monitor various logs for critical alerts handling,

malicious actions and attack pattern identification and then to interact proactively still

arise. On corporate level, the collection of event logs and log files form a very essential

part of network management, security assessment and forensics activities. The vast

amount of events data can be overwhelming and renders the process of finding

information quite difficult, thus log management and event correlation are essential for

administration tasks and providing an insight of incidents within a network.

In order to detect technical issues affecting productivity or security threats and

proactively trigger an action or alert, an event correlation solution is required. Event

correlation application matches events according to predefined schemes and patterns in

sequence within a period of time, in order to identify a situation and then triggers a

predefined action. A more advanced approach is implementing a centralized dedicated

infrastructure to perform monitoring, detection and log collection to have a wider image

of problems occurring on different nodes which might be related.

1.1. Problem statement

Many small to medium sized corporates depend on Microsoft products and do not

assign resources for UNIX operating systems to eliminate the cost required for human

resources to administrate such infrastructure. Unfortunately many corporates and home

users do not deploy a solution for log monitoring and malicious action identification [2],

and mainly depend on a single anti-malware solution.

The problem addressed within this thesis is providing a free and easily deployable

solution for small to medium sized corporates and home users, for log monitoring and

proactive event correlation. Event correlation assists on malicious actions detection,

attack patterns identification, and handling critical alerts by triggering predefined

actions.

15

 Problems related to running SEC on MS Windows 1.1.1.

Although Simple Event Correlator (SEC) [3] is based on Perl which renders it cross

platform, the following problems to run it on Microsoft Windows apply:

 Microsoft Windows does not integrate a native Perl engine [4], therefore several

different Windows Perl distributions have been developed by third parties.

 SEC requires MS Windows service to run on boot without user interaction.

 Previous attempt to run SEC as a service had several draw backs, covered in

section 2.3.6.

 SEC is a Perl script application, initiated using command line, lacking a user

interface to provide an easy and fast way to set the required command

parameters.

 Problems related to alternative solutions 1.1.2.

While several log monitoring solutions capable of running on MS Windows OS are

available, they mainly focus on providing analytical reports, logs archiving and alerts

generating, with very basic event correlation functionality. Most commercial event

management solutions are costly and target enterprise level. Free and open source

solution might lack features or flexibility. Event management solutions are centralized

and database driven, as a result they consume more computing, human and financial

resources. For these reasons, if the need is for threat incidents identification in real-time,

a correlation engine shall be used.

 Problems related to events format 1.1.3.

Another problem is the variety of log formats and formatting. Different vendors adopt

different log formats, such as, XML, Snare, BSD syslog, IETF syslog, JSON etc. Even

within same log format, different applications might build the raw event in different

ways, as an example, an xml event can have its fields in xml attributes or nodes. That

increases the difficulty of the process for extracting fields’ values from raw events.

Thus a standard format shall be adopted to facilitate the process of parsing logs. This

problem is addressed by log normalization.

Logs are written by developers, and each application has its own message formatting,

which prevents the ability to generalize event correlation and detection patterns across

16

different software. An example of different formatting styles is the message “Login

failed”, which can be seen as “Invalid login attempt”. Addressing such problem would

be by devoting specific correlation rules to each solution.

1.2. Contribution

This research intends to provide a reliable distributed, centralized or hybrid event

correlation implementation for small to medium sized corporates and home users

running MS Windows operating system using Simple Event Correlator - a well-known

mature correlation engine based on Perl.

An analytical comparison was conducted by the author covering the most common

correlation engines, log monitoring and alerting systems capable of running on

Microsoft Windows platform. Performing a test run and efficiency measuring for each

solution’s set of features or performance analysis is out of the scope of this thesis.

Therefore a comparative features analysis as per those solutions’ producers claim is

considered to be satisfactory for the conducted study. However a more detailed

analytical comparison was conducted between two free and claimed to be similar

solutions, NXLog-ce correlation module pm_evcorr [5] and Simple Event Correlator

[3].

Simple Event Correlator has been chosen by the author as the default correlation engine

for its wide acceptance academically and industrially, flexibility, capabilities, maturity

and being free of cost with open source. Although SEC is technically a Perl script,

which renders it cross platform, MS Windows is known to lack a native Perl engine [4],

resulting in third party developed Perl engines. The author conducted a comparison of

features and performance between common MS Windows Perl distributions. The

comparison promoted the use of Cygwin Perl for its UNIX system features emulation,

which some SEC features depend on and higher performance, especially for disk I/O

operations. In addition other available Cygwin binaries can be used for SEC actions to

avoid additional software installation or writing additional scripts.

A previous attempt to run SEC as a MS Windows service took place in 2008 by one of

SEC community members and has been published via SEC mailing list [6].

Unfortunately, that attempt was not of much success, as covered with more details in

17

section 2.3.6. Accordingly, the need for developing a new tool to wrap SEC Perl

process as a native MS Windows service became an essential requirement to run SEC

on MS Windows flawlessly. Therefore, a new tool has been developed by the author

using Microsoft .NET framework C# syntax. The installer package of the developed

tool includes SEC and selective Cygwin binaries provided as a MSI. The developed

application – SECwin, has been already published for general availability since June

2015 on GitHub and SourceForge. According to both sites statistics till end of April

2016, the application has been downloaded 114 times, from different worldwide

locations [7] [8].

SECwin provides additional features, including:

 User interface to configure SEC parameters

 Sending interrupt signals to SEC process via user interface

 Auto-update for both of the packages, SEC and SECwin

 SEC statistics dump file rotation

 SEC Perl process watchdog

 Service status control and monitor

 SEC logs and statistics dump viewer for faster access

 Supportability for other Perl distributions

 Log Perl process statistics for CPU time, memory, loaded modules etc.

The package is available as a single MSI file, which can be either installed manually or

distributed using MS group policy or equivalent for corporate usage. Furthermore the

application has been compacted as a MS Windows service, Windows forms and console

application all in one portable executable with no dependencies. In case a system has

been loaded earlier with a Perl distribution, SECwin PE only would be required.

To facilitate logs collection and transfer over network as required, NXLog community

edition has been chosen as a free logs processing tool. The author provided full

configuration set for NXLog-ce to facilitate the implementation of the solution. The

author as well covered the details for creating the required SSL digital certificates chain

to secure the transportation of logs over the network using TLS protocol.

18

A proof of concept rulesets for SEC are provided for proactive event monitoring and

event correlation on MS Windows. The rulesets are available online with hope of being

extended by SEC community members.

19

2. Overview of existing solutions and related work

This chapter provides an overview of current common academic and journal published

papers on log monitoring and proactive event correlation and comparison of available

log monitoring solutions capable of running on MS Windows operating system.

2.1. Events

An event in the context of IT is a record of incident or reporting of a status that occurs

at a specific time and provides a concise description what has happened. This

information is usually used for finding anomalies, detecting security threats, records for

auditing, measuring performance, applications debugging and profiling etc. Hence,

event logging plays an essential role in systems administration, security auditing and

forensics in addition to software and systems troubleshooting. OWASP foundation has

set the basic attributes for an event as: When, Where, Who, What and additional

considerable records [9], in their logging cheat-sheet, in which, they have also provided

many other considerations, like which events to log and where to log.

A log entry is a single event, which has been recorded and saved, thus logging is the

process of registering log entries to record an event. This research focuses on Microsoft

Windows platform logs whether generated by the operating system, its native

applications or other third party applications running on it. Usually applications running

on MS Windows write their logs either using Windows event log API or in text files

stored on disk, which is usually in custom format and occasionally events are also

recorded in databases. Microsoft defines an event as, any significant occurrence in the

computer or in a program that requires either users to be notified or an entry added to a

log [10]. Microsoft Windows event logs [11] are classified to five severities:

Informational, Warning, Error, Audit Success and Audit Failure, where the latest two

are security events specific. MS Windows events are based on categories known as log

name. There are several default log names, however only few are enabled by default,

which represents critical logging domains such as:

20

 Application: contains events from Generic application, events are classified as

informational, warning or error.

 Security: contains security audit events which are classified as success or failure

 Setup: contains events about MS Windows native applications setup, such as

roles, features, windows updates etc.

 System: contains events related to internal system operations and MS Windows

system services operation.

Event log settings can be modified using Group Policy Management Console under the

path (Computer Configuration\Windows Settings\Security Settings\Event Log\). Fine

tuning is usually required to enable more detailed logging, where changes can be

applied only for MS Windows native log names. Additionally, a tool like Sysmon [12] -

a background service that logs security-relevant process and network activities to

Windows event log, can be used to extend security audit logging. Any program can

write to MS Windows event log, usually to Application category; however a new log

name can be easily created to hold log data from specific program. Similarly an event

can be written by using eventcreate [13] console command.

Figure 1. Windows event log entry

Figure 1 demonstrates a screen shot of a windows log event, displayed using MS

Windows native Event Viewer.

21

 Event format 2.1.1.

The variety of log formats has been always an issue for collecting and correlating events

of different applications. There have been several approaches and extensive efforts by

researchers to resolve such problem, whether by defining log mining algorithms,

defining log normalization protocols or attempts to automate log normalization and

utilizing generic log format protocols. Practically the issue remains, especially when

attempting to parse custom event formats as a result of the lack of governing rules to

evaluate applications’ events format compliance against set of unified standards.

Most commercial and open source solutions, which perform log analysis, depend on

their preconfigured raw event structure parser. That means supporting undefined log

formats requires human interaction to define a newer log parser. While there have been

extensive efforts by researchers to utilize format structures [14] [15]. A recent research

[16] was conducted to define automated algorithms to extract information from generic

network and security event using a new approach named by the authors Log Template

Extraction (LTE), which is semantics aware of network and security logs to address the

problem. This approach is different approach from traditional ones that focus on

network protocol inferring.

This thesis’ proposed implementation adopts a more traditional way for normalizing

raw events, based on regular expressions and available modules in log collection tools

with normalization capabilities. The targeted format of normalization should have a set

of standards, which regulates the format and transportation, such as IETF syslog

protocol. That would allow sharing event correlation rulesets between community

members, as the event format is standardized.

While several researchers put noticeable efforts and effectively provided algorithms for

log mining and format identification [17] [18] [19] [20] [21], there are ongoing efforts

to come up with a unified log format. Perhaps one of the most appreciated is Common

Event Expression (CEE) [22] initiative, which has suspended its development since

November 2014 due to stopped funding. Another more matured log format is Graylog

Extended Log Format (GELF) [23], provided by Graylog - a log management software

producer, to overcome the shortcoming of syslog protocols. Other attempts have been

22

proposed, mostly for specific purposes to serve specific types of applications, such as,

web servers [15] or security application [24] [25].

One of the common log formats is IETF syslog [26] - RFC5424, which is mainly used

by UNIX based systems. IETF syslog format is the advanced version of the obsoleted

BSD syslog - RFC3164. Some of the advancements in IETF syslog are secure

transportation of logs using TLS over TCP/IP protocol and structured data with vendor

specific extensions, which allows adding additional fields to the events. Figure 2 shows

an IETF syslog entry, with fields’ names and basic structure.

Figure 2. IETF syslog format (RFC5424)

On MS Windows platform, event format is different [27]; it has different set of fields

and events are stored in binary files managed by dedicated log service. The main fields

in a Windows event are:

 LogName – the category of the log (Application, Security, System, etc.)

 Source – the source is the logging application or service.

 Level – the severity of the event (Informational, Warning or Error) and (Success

or Failure) for Security events

 Event ID – a unique event identification where each ID defines a specific

category.

 Logged – the date and time when the event was logged.

2.2. Event collection

 Event collection, storage, retrieval and graphical representation 2.2.1.

Events generated from applications are usually written in flat files on disk, while some

files might be different, like MS Windows event logs files that are stored in custom

23

binary format [27] under “%windir%\System32\winevt\Logs” and queried via API to

retrieve values. Other applications might store their events in a database like ISPConfig

- a web hosting management application based on PHP. A centralized logging system

can either store the received event on flat files on disk or to a database. Needless to say,

storing events in a database facilitates searching operations, in addition to the ability of

creating reports. Storing events in a database would come with the challenge of the

static structures of the tables, as each table contains a fixed number of columns

specified during its creation. While it remains possible to store many fields in one cell

using markup language such as XML, JSON or serialization in a document-oriented

database, that would definitely have drawbacks as it renders the search process based on

specific field in a combined cell very consuming of computing resources as a result of

markup data parsing process used. It is worth to mention that some software

successfully implemented such method using custom indexing, which in turn creates a

challenge in data storage operations. Most log management solutions create different

tables for each set of log types and perform normalization of collected events based on

preconfigured parsing of known event formats to the application. One of the known

event collection solution based on document-oriented database using JSON is

ElasticSearch [28], which resolves the overhead by performing a detection of the event

data structure and creates custom index.

 Event collection tools 2.2.2.

This section covers the commonly used, easy to configure and free log collection tools.

There are many other tools available in addition to those mentioned below, even some

scripts based on Visual Basic or PowerShell are present and used for log collection and

transportation.

NXLog-ce [29] is a free general purpose log collection tool targeting several operating

systems and capable of collecting events from various sources. Its main advantage relies

on dealing with events based on fields, which allows it to easily support various log

formats and easily normalize and filter events.

Beats [30] is an open source log collection tool, which supports various sources. Beats

is divided into four separated applications: Packetbeat collects network packets data,

24

Topbeat collects resource utilization data, Filebeat collects events from log files and

Winlogbeat collects Windows event logs.

Logstash [31] is another open source log collection, normalization and forwarding tool

by elastic, with real-time pipelining capabilities and support of custom plugins. It

depends on plugins for input, output and filtration.

Snare agent [32] is a log collection tool presented in two releases, a commercial one

which is capable of normalization and a free version which is limited to Snare own log

format.

Agentless native Event Forwarding [33] is a native method in MS Windows operating

system to forward events from one or more nodes to another single node, it can be

enabled manually or via group policy, and it can only transport events in Windows

Event Log.

Two very flexible tools should be highlighted from the list above, NXLog-ce and

Logstash, due to their support of various log formats, capability of normalization and

transportation.

2.3. Event correlation and Log Management

A recent study concluded that cybersecurity threats are on continuous increase, as 2014

survey reported that the total number of security incidents detected by respondents grew

globally by 48 percent from 2013 [34]. This highlights the importance of efficient log

monitoring Systems LMS and analysis techniques significance for understanding the

undergoing activities within a system. Initially, logs were used by IT specialists for

technical diagnosis [35], however nowadays, security audit logs are widely used in

corporations with high security awareness, and even some service providers are

required by law to keep an archive of logs.

Event correlation, as defined by Jakobson and Weissman [36], is a conceptual

interpretation procedure, where new meaning is assigned to a set of events that happen

within a predefined time interval. This also means that synthetic events can be

generated and supersede original set of correlated events. In the ITIL version three

25

framework, event correlation takes place in the Event Management process, where the

event correlator tool is called a correlation engine.

In the field of information technology, two or more events are correlated to each other if

they have a causal or other connection. On such assumption the bonds between those

events are mainly logical [37]. Accordingly, clear understanding of the causality

surrounding the production of a raw event is an essential preparation for building

proactive event correlation rules. The approach of quantifying temporal and spatial

failure correlation has been discussed [38] in an attempt to correlate failure in systems.

For example, if failed login attempts from a remote machine is accompanied by LDAP

system unreachable. Such two events shall be correlated logically to prevent the

creation of false positive brute force attacks alerts, in particular, if the login attempts

source is a node known to query the destination for service, which requires credentials

validation.

 Properties of Event Correlation Engines 2.3.1.

Depending on the approaches adopted by a correlation engine, it can be harnessed for

specific usage or can be rendered for general purpose. The properties of a correlation

engine play a role in its capabilities and flexibility to perform more advanced tasks.

However not all properties apply to all techniques and many techniques can be used

with different properties [39]. The main properties of correlation engines are:

 Domain Awareness: whether a correlation engine is built for a specific domain

(application usage), and knows what kind of information it processes.

 Self-Learning vs. External Knowledge: whether the correlated events are

predefined set by operator, or the engine might be able to assume correlation

based on preset knowledge base.

 Real-time vs. Stored Data: is the correlation engine capable of correlating time

based archived events or only based on current system clock.

 Stateless vs. Stateful: a correlation engine capable of maintaining a memory of

event history is considered statful.

 Passive vs. Active: A passive correlation engine can only correlate events based

on previous events and internal current state, however if the engine is capable of

gathering more information from external sources, it is considered active.

26

 Centralized vs. Distributed: whether the correlation is performed on a

centralized system or on endpoint devices. A hybrid approach also can be

adopted by centralizing specific events processed by distributed engines.

 Default Policy: Whether the correlation engine can perform an action on non-

matched events.

 Loss of Information: an event correlation engine is lossless, if all correlation

operations are lossless.

 Transparency: Whether the decisions taken by the correlation engine are

transparent to human operator, or there is no way for auditing such decisions.

 Robustness: the capability of handling new and unknown situations; however

this is mainly related to other adopted approaches and configured rules.

 Maintainability: mainly defined as the stability and meeting expected behavior

by the correlation engine within different environments.

 Deep vs. Surface Knowledge: correlation engines can further be discerned by

whether they rely on knowledge gained from observation and experience only

(surface knowledge), or on knowledge based on understanding the structure and

functioning of a system (deep knowledge).

 Event Correlation Techniques 2.3.2.

 Dependency Graph based [40]: a graph based event correlation method, where

the entire IT system is represented as a graph. Network devices, servers,

applications and other system components are represented as nodes; while

dependencies between system components are the arcs of the graph. When a

component of the system fails, the graph is used to define other affected system

components.

 Codebook based [41]: a human expert creates a so-called codebook which

consists of vectors. Each vector describes a common description (or root cause)

for specific error conditions in the IT system and the components of the vector

correspond to symptoms of this fault condition. When faults are observed within

an IT system, vector is calculated based on these faults, and codebook is

searched for finding a match or a partial match. The match is then reported to

the administrators.

27

 Bayesian Network based [42]: a directed acyclic graph, which models the

probabilistic relations between system components represented by random

variables.

 Neural Network based [43]: an artificial model of intelligence created by a

network of processing nodes, which performs operations on the evaluated inputs

to generate outputs, which are used as inputs for other nodes.

 Rule based [36] [44]: the rules specify a condition to action relation, when one

or more events match a condition, an action or more are triggered.

 Model based [45]: the representation of the structure and behaviors of a system

under observation in a model.

In addition to the list above, other event correlation approaches were discussed in [46].

 Hybrid approach of Event Correlation architecture 2.3.3.

A comparison between centralized and distributed event correlation approaches [47]

spots the light on the advantages and disadvantages for both architectures. While some

researchers might favor one over the other, there are no doubts that the desired

outcomes of an implementation are the final judge.

Distributed approach has been adopted using SEC by J. Myers et al. [48]. The authors

stated several disadvantages of such architecture, though they provided a good use case

example. The distributed approach is based on correlating events on the node producing

the events itself. It is needless to say that without a centralized log management system,

it will require extensive human operator resources to perform audit tasks. Furthermore,

a wider correlation between several nodes is not possible.

On the other hand, centralized event correlation provides a much wider picture of

incidents occurring within an environment. The centralized architecture is based on the

transportation of events through the network from nodes producing the logs. That

clearly generates intensive network traffic unless filtering of events takes place whether

on each node or on a log servers acting as gateways. In addition to the mentioned

impacts, high resources utilization is expected on the main event correlation server,

which might become a scalability obstruction.

28

A hybrid approach combines both centralized and distributed event correlation

approaches mainly on two stages. Firstly by following the distributed approach of

correlating events on each node, where local actions are triggered accordingly. Secondly

by transporting critical and synthetic events generated by the distributed correlation

engine to a centralized log server where a correlation engine resides to trigger wider

actions, which take place independently from the node. For example, if several

authentication failure events within a small window of time are generated by an IP, an

action is triggered to block that IP for few minutes. Then a synthetic event is generated

and transported to a centralized correlation engine. The centralized correlation engine

evaluates the amount of incidents received, their sources and destinations and correlates

with other forwarded events to take a wider action. Assuming that the source IP address

is external and attempting login on several servers in DMZ, an action can be triggered

on the firewall to blacklist the attacker IP.

 Commonly used Log Monitoring and Event Correlation solution 2.3.4.

Comparative analysis between existing event correlation tools, has received some

attention from researchers over the past years [49] [39]. However the assumption of

using UNIX based systems had been always adopted. To serve this research’s goal of

providing a free proactive event correlation solution, capable of running on MS

Windows operating system, a descriptive features comparison has been carried out

between commonly used log monitoring and event correlation solutions applicable on

MS Windows OS. The features collection is based on each product’s documentations

and capabilities claimed by their authors.

Splunk [50] is a log management solution, which supports several operating systems

with a dedicated installer for MS Windows. While it is a commercial solution it still

provides a free perpetual license with limited amount of logs to process daily.

Commercial licensing depends on the expected amount of processed logs per day.

Splunk provides graphical visualization and user interface for configuration. It uses

textual search for real-time alerts and triggers automatic responses, which is considered

as passive correlation.

ElasticSearch ELK Stack [28] is a collection set of utilities combined together to create

end-to-end search and analytics platform. The platform is regarded as a stable solution

29

by many institutions; it is used by Microsoft, Reuters, Netflix, Adobe Systems, CISCO,

eBay and others. The collection consists of the following main tools:

 Logstash: flexible, open source event collection and transportation tool based on

Java.

 ElasticSearch: distributed, open source search and analytics engine with high

scalability features.

 Kibana: open source data visualization platform with interactive graphical

interface and custom dashboards.

 Beats: set of log collection and transportation tools and framework.

 Other additional open source utilities: Beats, Watcher, Shield, Elastic Cloud,

Marvel, Elasticsearch for Apache Hadoop,

Pros:

 Free and open source

 Monitoring and alerting capabilities

 A well-designed collection of free tools, which are combined together to form a

powerful platform for event management

 Precise and easy to follow documentations and tutorials

Cons:

 Log filtering, which does not promote to the level of correlation engine

 Available correlation engine modules are commercial and costly

 Requires extensive resources

 Requires skilled specialists for fine tuning

LOGalyze [51] is a freeware centralized log management and network monitor with

real-time data analysis capabilities based on Java.

Pros:

 Agent and Agentless log collection

 Normalization capabilities

 Prepacked set of reports

 Free

30

Cons:

 Requires extensive resources

 Limited correlation engine features

 Java framework is known of lacking robust security.

Esper / NEsper [52] are open-source Java and .NET based frameworks for Complex

Event Processing (CEP).Esper and NEsper frameworks enable rapid development of

applications that process log events. They require development of a solution and cannot

act as event correlators out of the box. They also require additional third party libraries.

Simple Event Correlation [3] – SEC is a very powerful and lightweight real-time

correlation engine for network management, log file monitoring, security management,

fraud detection, and other tasks which involve event correlation. It is written in Perl,

which means it requires extra installation of Perl distribution on Windows. It can store

events to a database with the aid of extra Perl functions.

NXLog-ce (pm_evcorr) module [29] is a dedicated module within NXLog-ce log

collection tool, which acts as a correlation engine. It is coded using objective C

programming language. It is mentioned in its release notes that it was inspired by

Simple Event Correlator, and claims superiority over it.

The two latter solutions’ features are covered in a dedicated section in form of listed

comparison. Each of the solutions, SEC and NXLog-ce pm_evcorr module, represents a

lightweight event correlation solution, which can serve as a correlation engine for the

implementation proposed by this study.

It is obvious from comparing the information above that most event management

solutions are database dependent, focus on generating reports and visualized graphs, are

heavyweight with main focus on centralized approach. This study aim is providing a

lightweight free solution, which focuses on proactive event correlation by adopting

active correlation approach to validate correlated events and minimize false positives,

with scalability in mind. The implementation proposed within this thesis can leverage

free and open source log management solutions like Elastic and LOGalize to build a full

SIEM solution with powerful proactive correlation capabilities.

31

 NXLog-ce pm_evcorr module vs. SEC 2.3.5.

NXlog-ce provided in March 2013, release 2.3.1027 pm_evcorr [5] - a special processor

module for event correlation inspired by SEC. While the reference manual claims

several advantages over SEC, further analysis revealed weakness points overcoming its

advantages in particular to the current study use case. Below comparative analyses took

place between NXLog community edition version 2.9.1347 against SEC version 2.7.8.

 Regular expression vs. operating on fields’ values

Technically, querying Windows event logs programmatically using Windows API,

returns results as field-value pairs. NXlog-ce input module im_msvistalog used for

collecting Windows event logs, leverages the way results are retrieved to become fields

aware without parsing. This feature apparently gives NXLog-ce performance

superiority. However, taking into consideration collecting logs from various

applications, which might be in irregular formats, those logs will be parsed using

regular expressions. Furthermore, other applications can write to MS Windows event

log [53] with irregular message formatting, which keeps the need for parsing the log

message using regular expression. This feature in NXLog-ce can be used for filtering

events, but does not supersede using regular expression for further information

extraction.

 Offline time based event correlation

NXlog-ce pm_evcorr module uses time field for time based event correlation, which

allows stored data offline processing, unlike SEC capability of correlating event based

on real time only.

 Programming language

NXlog-ce pm_evcorr module is coded using objective C programming language, which

theoretically should be considerably faster than a scripting language requiring an engine

to parse and compile it to CPU instructions. SEC is coded as a Perl script, which is an

interpreted language. Perl 6 can compile its scripts for better performance, but is not

fully compatible with earlier releases scripts, and its compatibility mode is very limited.

 Actions triggering

32

NXlog-ce pm_evcorr module lacks first action trigger in a pair correlation rule, thus a

second rule is required to cover.

 Rules types

NXLog-ce correlation engine module rules types are roughly equivalent to Single,

Supress, Pair, PairWithWindow and SingleWithThreshold SEC rules types. SEC has

rich collection of additional rules types, such as, EventGroup and Jump rules.

Additionally, SEC rules can be combined together for more advanced correlation

operations.

 Synthetic events

SEC is capable of generating synthetic events, which are used to trigger other rules.

NXLog-ce correlation engine module does not provide a direct alternative.

 Maintenance

NXlog-ce pm_evcorr module received only one update on July 2014 according to

changlog.txt packed within version 2.9.1347 under doc folder. NXLog-ce mainly

concentrates on its core functionality as a log collection tool. While SEC as a dedicated

correlation engine still gets new features and more flexibility within irregular updates

cycle approximated to twice a year.

Considering the above comparison points, NXLog-ce pm_evcorr module can be used as

an alternative to SEC in some use cases. However, it is by no mean a substitution or

competitor in particular to the use case of the solution proposed by this thesis.

 Analysis of the previous attempt to run SEC as MS Windows service 2.3.6.

A previous attempt to run SEC as a MS Windows service has taken place in 2008 by

one of SEC community members and has been published via SEC mailing list [6].

However that attempt was not much of success for the following reasons:

 Upgrading SEC requires manual edit of its script file because the script was

modified to use a custom Perl module.

 It depends on ActiveState Perl, which limits the interaction with the process

resulted by the lack of UNIX systems features, such as, interrupt signals, spawn

action, etc.

33

 It depends on ActiveState Perl custom module Win32::Daemon [54] contributed

by Perl community member Dave Roth. The latest update of the module was in

June 2003, whereas ActiveState Perl latest update was on March 2013; at the

time of writing this study.

 A known issue of crash upon using shell command action shellcmd has not been

resolved.

Those drawbacks render the attempt unreliable, emphasizing the need of a reliable

solution to run SEC Perl process as a MS Windows service.

34

3. Log monitoring and proactive Event Correlation on

Microsoft Windows using Simple Event Correlator Windows

Integration

This chapter demonstrates a proposed implementation for using SEC correlation engine

on Microsoft Windows. The main aspects of the developed application, which integrates

SEC Perl process to run as a service, are covered. Using NXLog-ce as a log collection

tool, including securing the transportation of events securely, is covered precisely. SEC

rulesets are provided as a proof of concept. A final implementation layout is

demonstrated at the end of this chapter.

3.1. Requirements of the correlation engine and event collection tool

This section highlights the requirements of the correlation engine and log collection tool

needed for the implementation proposed in this thesis. Considering the use case and the

ability to provide a multipurpose event correlation solution, the required correlation

engine features are:

 Real-time processing of incoming events

 Flexible configuration

 Ability to generate synthetic events

 Efficiency

 Scalability

 Maintainability, more transparent correlation decisions and frequently updated

 Lightweight with lowest possible resource consumption

 Active correlation, ability to take additional queried information into account

 Distributable with capability of centralization

 Generalized distribution package, without separating server and client packages

Although Esper [52] provides a flexible framework, it would still require extensive

efforts for coding a mature general purpose correlation engine. The above requirements

were found to be met by SEC as it is more favored than NXlog-ce pm-evcorr module as

per section 2.3.5 conclusion. Splunk correlation is passive and its free version limits the

35

amount of logs processed daily. ElasticSearch correlation engine modules are

commercial and costly, and the solution is heavyweight.

SEC has been chosen as a correlation engine for its wide acceptance in industrial and

academic communities [3] [55], as a lightweight and flexible log monitoring and event

correlation engine. SEC is coded using Perl, while that allows it to be cross platform,

yet to run on MS Windows OS, the implementation process requires a lot of work

including the installation of a Perl distribution and manual interactions to run the

required command parameters. Like any application for Windows OS, it is not possible

to run on boot without user-interaction or an enabled Windows service, thus a solution

is required to provide a flexible and reliable integration.

For the reasons above, Simple Event Correlator Windows integrator “SECwin” [56]

was developed by the author to integrate SEC as a Windows OS service. By using

Cygwin Perl as default Perl distribution to leverage Cygwin UNIX emulation, yet the

package is flexible to support different Perl distributions as required. SECwin includes a

user interface to facilitate SEC and Perl commands’ parameters configuration and a live

viewer for SEC logs and statistics dump files.

Log collection tool requirements are:

 Ability to collect windows event logs

 Log normalization capabilities

 Log transportation in a secure manner, compliance with RFC5425 is favored

 Support of multiple common log formats in particular syslog format

 Lightweight

 Well documented and easy configuration

Beats consists of many executables, each for a specific purpose, which would consume

more computing resources and renders deployment harder. Snare free version supports

only its own format, and no normalization. Logstash is based on Java, which is known

for security issues. Java increases the consumed resources, and adds complexity to the

solution to insure regular updates. On the other hand, Windows OS native event

forwarding is not simple to configure, does not support other log sources, and would

still require a tool to feed its contents to the SEC, which was promoted earlier as

correlation engine.

36

NXLog community edition was selected as free log collection tool for its support for

several formats, logs normalization capabilities, compatibility with RFC5424 and

RFC5425, which are required for the proposed implementation. Additionally it is

lightweight and easy to configure.

The author built a syntax-highlighter configuration file for Notepad++ to facilitate

creating and editing NXLog-ce configuration file. The file is included in SECwin

package, and is located under utilities folder under installed SECwin directory.

3.2. Microsoft Windows Perl distributions features and performance

The main Perl distributions for MS Windows according to Perl.org download page are

ActiveState Perl [57], Strawberry Perl [58] and DWIM - an open source Strawberry Perl

derivative. In addition to those mentioned, Cygwin [59] - a collection of GNU and Open

Source tools which provide functionality similar to a Linux distribution on Windows,

provides Cygwin Perl distribution. Cygwin Perl runs on Windows in a virtually

emulated UNIX environment with aid of special Cygwin libraries. Other Windows Perl

distributions are available, mostly derived from the main distributions mentioned above.

This section provides features list for each main distribution, in particular the features

impact SEC operations and the proposed implementation.

ActiveState Perl 5.22.1.2201 features:

 Easy to install as a single MSI package

 Includes package management utility PPM, which allows the installation of

additional modules and adding extra repositories

 Availability of commercial support

 Supports user compilation modules

 Package size is 28.5 MB, on disk 117 MB

Strawberry Perl 5.22.1.2 features:

 Easy installation via single MSI package

 Includes gcc compiler plus related tools, all external libraries for compiling extra

modules

 uses cpan for extra modules installation

37

 Package size is 83 MB, on disk 112 MB plus tool-chain 311 MB

Cygwin Perl 5.22.1 features:

 Easy installation via single user interface installer

 Includes cpan, yet modules can be compiled via Cygwin gcc

 Portability: although by default Cygwin is provided as an executable installer,

which in turn installs the selected packages. The binaries were found to be fully

portable and able to run without installation as long as they are carried with their

required dependencies.

 Tarball sum size is 39 MB, on disk 129 MB

 Cygwin provides advanced UNIX emulation, which is required by a number of

SEC features, such as:

 udgram, ustream, closeudgr and closestr: used for SEC input

 Spawn, cspawn actions: run command and uses its output as SEC input

 Stdin: SEC input from standard input

 Named pipe: SEC input from named pipe

 Process fork: SEC detach and run in background

 Signals: interrupt signals used for various SEC commands

 Other Cygwin binaries can be used for various operations.

The conclusion from comparing the above features list is that ActiveState Perl and

Strawberry Perl distributions can be considered alike from the perspective of features

required to run SEC. On the other hand Cygwin Perl provides UNIX emulation features,

which SEC requires for some actions and for receiving signals. The actions triggered by

signals can be alternatively triggered by special SEC rules, which use lcall action to call

SEC internal functions. While using rules to emulate signals internally can be

considered an alternative, it is still not a very flexible solution. A critical issue which

occurs often with ActiveState and strawberry Perl, is that NXLog-ce fails to rotate the

log file because the handle created by Perl is not released efficiently. Thus the author

recommends using Cygwin for its superiority in provided features.

A performance comparison took place between the mentioned distributions as a stress

test using SEC rulesets. Three virtual machines were used, running simultaneously.

Each VM had a different Perl distribution installed, in addition to SECwin and NXLog-

38

ce. All VMs were assigned same virtual resources, were using same SEC rulesets and

input files source, which were transported via NXLog-ce.

Hardware and Virtual machines specifications:

Bare metal: Dell PowerEdge R515, 64GB RAM, AMD Opteron™ 4280 - 16 x 2.8GHz

CPU, 6 SSD RAID1 cluster, running ESXi 5.1U3.

Virtual machines: 4 virtual CPUs, 8GB RAM, running MS Windows server 2008 R2

enterprise edition.

All VMs started and stopped correlation operations on the same time, by sending

defined log entries, matched by NXLog-ce correlation engine, which triggered start and

stop of SECwin service. Performance information was collected from SEC statistic

dump, while memory consumption, modules and handles counts were collected by

SECwin. All tests were repeated many times. The rulesets were intentionally written to

overload SEC, all rules were of type single, processing all input events, using pattern

type RegExp. The performance test result, using actual SEC rulesets, within short period

of time are: total processed input lines 319, total matched events 317, by 29 rules, in

total run time of 428 seconds.

Figure 3.Perl performance using actual rulesets

In Figure 3, charts represent performance comparison. The lower numbers represent less

consumed resources. The charts show Cygwin Perl resources consumption is the lowest,

especially for the used CPU time.

On other attempts of running the test using same conditions described above. Whenever

the test ran for longer period of time, depending on the load caused by the amount of

0.374

0.093

0.468

0.202

0.015 0.031

0

0.1

0.2

0.3

0.4

0.5

CPU: user Time in seconds CPU: system Time in
seconds

ActiveState Strawberry Cygwin

28.255

86

35 28.493

94

37

20.789

82

15

0

20

40

60

80

100

ActiveState Strawberry Cygwin

39

events received from the source, the results were not identical. Numbers of processed

lines by SEC were not equal, and the run time differed by few seconds because SEC

took longer time to terminate due to the heavy load. For that reason, additional tests

were required using different method, to define the cause.

Another stress test took place using two SEC rules. One rule creates an event matched

again by itself in a loop of one million times, the other rule triggers the first one on SEC

startup. The Looping rule is configured to collect SEC statistics dump at the end of the

cycle.

Figure 4. Perl performance using looping rule, With Disk I/O

In Figure 4, chart of consumed CPU resources and total run time of the loop operation.

SEC log level was set to level 6- debug messages. Each loop produced three entries in

SEC log file, which is an intensive disk operation.

Figure 5. Perl performance using looping rule, no Disk I/O

In Figure 5, chart of consumed CPU resources and total run time of the same loop

operation with SEC log level set to 1- critical messages. The loop rule did not produce

411

97.828
61.105

383

96.081
61.105

110
83.413

16.614

0

100

200

300

400

500

Run time CPU: user Time CPU: system Time

ActiveState Strawberry Cygwin

50.731

0.046

54.865

0.062

50.575

0.015

0

10

20

30

40

50

60

CPU: user Time CPU: system Time

51 55 51

40

any log entries in SEC log file. The chart shows that consumed CPU resources are very

close, while strawberry Perl was a little behind by few seconds. CPU system time was

minimal, because there were no resource consuming operations performed by the OS

kernel on behalf of Perl.

The difference between CPU user time and total SEC run time was minimal when disk

operations were eliminated, while it was noticeably longer with intensive disk

operations. The comparison between eliminated and intensive disk operations using the

same looping SEC rule, justifies the unequal total SEC run time and processed lines

count between the three Perl distributions using actual rulesets. The conclusions of all

performance testing results highlight Cygwin Perl performance superiority with

intensive disk operations. Disk operations cannot be avoided because log entries are

usually read from files.

3.3. Simple Event Correlator Windows Integration - SECwin

As demonstrated in section 2.3.6, the previous attempt to create a MS Windows service

to wrap SEC Perl process was not much of success. Hence there were no other attempts

made, and such integration is required for the proposed implementation by this study.

Additionally SEC community members were querying the ability of such integration,

which indicates the existence of SEC usage on Microsoft Windows platform. These

reasons were enough motivation for developing SECwin [56] as a solution, using

Microsoft Windows .NET framework as it is the native programming framework for

Microsoft. SECwin PE itself has a very small disk foot print of approximately 300 KB

and consumes very small amount of memory approximately 6MB of private working set

for the service process. SECwin resources utilization is not affected by SEC load. To

facilitate the deployment process, SECwin full installer package was loaded with SEC

and Cygwin Perl within the same MSI. SECwin can also get deployed as a single

portable executable, using its CLI to it install itself, assuming that Perl is already

installed. While the main functionality of SECwin is to act as a service wrapper for SEC

Perl process, additional features were added, including:

 SEC Perl process watchdog for unexpected termination

 User interface to build SEC command’s parameters

 Sending signals to SEC via UI or System tray icon

41

 SEC statistics dump file rotation

 Display SEC Perl process statistics and information

 SEC log and statistics dump files viewers

 Automated update for SEC and SECwin

 Converting paths to Cygwin style

 System tray icon context menu for faster interactions

Figure 6. SECwin UI: SEC configuration

Figure 7. SECwin UI: Systray icon context menu

A screen shot in Figure 7 demonstrates system tray icon for easier and faster

interactions with SEC and SECwin.

42

Figure 8. SECwin UI: MainTab – Service control & log viewer

In Figure 6, there is a screen shot of SECwin user interface configuration tab of SEC

command parameters. Figure 8 displays the main tab in which the upper box group

monitors and provides control over SECwin service status and an extra button for

displaying SEC Perl process information. Second group box provides signal interactions

with SEC process followed by group box to launch life viewer for SEC logs and SEC

statistics dump. The lower two group boxes provide configurations for user interface

behavior, update settings and more advanced options for SECwin application.

 Design and development 3.3.1.

Technically SECwin is a MS Windows service which starts a Perl process running SEC

script as an external application. While the main functionality sounds simple, several

technical challenges were met during the development process. Whether these

challenges were related to SECwin ability to handle different Perl distribution or were

driven by limitations of the operating system or .NET platform, they had to be

addressed to produce a successful reliable solution.

43

SECwin solution consists of two projects, SECwin portable executable and SECwin

installer, which builds MSI package for installing SECwin and deploying SEC and

Cygwin. SECwin is compiled to a single portable executable to avoid having three

different executable files, one for user interface, second one for Windows service and a

third one as CLI. Also the coding avoided any dependency on third party dynamic

libraries. This design was adopted to achieve portability of a single PE file with no

dependencies, precisely for cases when a Perl distribution is already installed on the

system.

SECwin source code is approximately 3900 lines divided into several files, each

contains one or more classes as per the standards of object oriented programming. More

detailed coding metrics are displayed in Figure 9. The developed code generated sets of

internal API calls, which are demonstrated within the figures of code snippets in the

following sections. The internal API facilitates future development of the application,

and allows developing additional plugins.

SECwin configurations are stored in Windows registry, thus deploying or changing

configuration on several nodes can be achieved by group policy or Windows compatible

registry file.

44

Figure 9. SECwin code metrics

 Command Line Interface 3.3.2.

SECwin command line interface accepts the following parameters:

 Install – SECwin will copy itself to provided destination, and then registers the

copied PE as a Windows service. If there is no destination provided, the default

location is \Program Files\SECwin\. Upon the first launch of SECwin user

interface, it will offer to download SEC.

 Uninstall – unregisters the PE as a windows service.

 Update – performs update to the specified application, options are: SECwin,

SEC or all. Accepts an optional additional parameter checkonly, which provides

information about the availability of an update without any further actions.

 Console – displays a console window to print out debugging information

 Debug – attaches the process to a debugger by performing a debug break.

Accepts optional additional parameter wait to pause launching the application

till a debugger is attached instead of a debugger break action. Debugger break

causes the application to through a break exception.

45

 SvcWatchDog – monitors SECwin service and restarts it if stopped, unless

system is shutting down, or feature is disabled.

 Handling different Perl distributions 3.3.3.

Although SECwin default Perl distribution is Cygwin, it still fully supports other Perl

distributions, which are categorized by the code as UNIX emulated, like Cygwin and

non-emulated like ActiveState Perl or Strawberry Perl. It is very important to define the

distribution category to be able to handle different ways of handling Perl process. It

makes difference in the code flow if the running Perl process is UNIX emulated or not

as covered in the following section. An example of such code flow decision is to decide

the way of terminating SEC gracefully or if SEC parameters with paths, such as input

and conf, shall be converted to UNIX style.

Determining Perl distribution is performed by executing a new process of Perl with

parameter (-V) to retrieve version details. The output of the command is parsed and then

accordingly a public Boolean value is set in the configuration class to determine if

Cygwin Perl is used.

 Terminating SEC Perl process gracefully 3.3.4.

Terminating SEC Perl process gracefully has to be handled via an interrupt signal, as

any attempt to exit Perl process programmatically causes an ungraceful termination of

SEC. The method call Process.CloseMainWindow() fails because Perl is a console

application. Similarly using API call WINAPI::SendMessage(WM_CLOSE) causes an

unexpected termination of SEC. Microsoft Windows operating system is limited to two

types of interrupt signals only for console applications [60], CTRL+C and

CTRL+BREAK. The signal CTRL+C is equivalent to SIGINT, thus in case Cygwin Perl

is used and SEC process is forked using detach parameter, the signal will be treated for

log level change. Accordingly, to perform a graceful termination for SEC on Cygwin

Perl, an external process for Cygwin Kill.exe with appropriate parameters to send

SIGTERM to SEC must be executed. This process is covered with more details in

section 3.3.6. In both of the cases, using Cygwin kill.exe or sending CTRL+C signal,

watchdog functionality, which is covered in section 3.3.5, has to be internally

suspended to avoid restart loop.

46

Figure 10. SECwin flowchart: Terminating SEC gracefully

The flowchart in Figure 10 displays the code execution logic of terminating SEC

process gracefully.

 Watchdog: Handling SEC Perl process unexpected termination 3.3.5.

An unexpected termination of an application occurs with no deny, whether by a process

crash or other causes such as files corruption, misconfigured SEC ruleset, ruleset

subroutine, or defective Perl modules. Considering few reports on SEC mailing list

related to crash occurrences of SEC Perl process running on Windows platform,

precaution measures must be taken to handle such situations. Due to that, watchdog

feature was developed, which handles unexpected termination of SEC Perl process by

restarting it with threshold of maximum attempts as a safeguard. Tentatively the idea is

simple, however, this particular feature had several challenges, such as detach SEC

parameter, which forks SEC into a new process, causing false-positive detection for

unexpected termination.

47

Figure 11. SECwin flowchart: Handling unexpected termination

Figure 11 illustrates the flowchart for handling SEC Perl process exit. Depending on

Perl distribution type and the used SEC parameters, the logic can differentiate between

unexpected termination and a graceful termination resulted from fork action. If detach

SEC parameter is used in combination with Cygwin Perl, Daemonized – a Boolean

value in the configuration class constructed by combining both of the conditions, will

change the execution logic for handling SEC process exit. If the process is daemonized

and is not yet forked – new process is not created yet, SECwin will detach from the

exited process, reads new PID from SEC file, then attaches the new process. If process

is daemonized and was already forked – new process has been created earlier, or not

daemonized, that indicates an unexpected termination. In the latter case, if SECwin

watchdog feature is enabled, it will restart SEC process, while the restart attempts are

less than the threshold of restart counts.

48

 Sending interrupt signals 3.3.6.

Sending interrupt signal to SEC is only supported by Cygwin Perl for its UNIX

emulation feature. It is concluded from section 3.3.4 that sending interrupt signals is

performed by executing new process of Cygwin program kill.exe. Unfortunately it was

found by practice that the exit code from Cygwin kill is not reliable when captured from

Windows domain and there are no return values from the command upon success,

except for fail error. Thus if there are no errors returned, success is assumed. Because

MS Windows service context has no access to user context, to execute such process

successfully from a service, ProcessStartInfo.UseShellExecute value must be set to

false. At the time of writing this section, there is ongoing development of a new feature

to emulate sending interrupt signals to other Perl distributions by using SEC ruleset

which calls internal SEC subroutines sigx_handler() to emulate signal condition

internally for SEC and check_signals() to handle the emulated signal status.

 Handling orphaned SEC Perl process 3.3.7.

An orphaned SEC Perl process is an instance which SECwin is not aware of. Usually

this situation occurs as a result of unexpected termination of SECwin service process, as

graceful termination zeros Perl PID, which SECwin stores in registry. Another cause of

orphaned SEC processes is a failed graceful termination of SEC during SECwin service

stopping. To handle this scenario, all running processes are evaluated during SECwin

service start. If a Perl process is detected running SEC script from same path configured

by SECwin, it is considered orphaned. If SEC command parameters are identical to

SECwin configuration, the orphaned process it attached to SECwin, and then SIGHUP

signal is sent. If attaching fails or the orphaned process parameters do not match

SECwin configuration, SECwin will attempt to exit the process gracefully, if that fails,

the process is killed ungracefully.

As SECwin service is considered a sensitive operation, it is monitored by another

SECwin process instance using CLI SECwin.exe /svcWatchDog. SECwin service

watchdog is also monitored by the service process. That means there are two processes

monitoring each other for failure.

49

 SECwin service status monitor 3.3.8.

Microsoft .NET framework does not provide a service monitor class, though it provides

the ability for a thread to suspend, waiting for a service to be in a specific state. The

author has taken advantage of such feature and developed a new class, which can

monitor a service using EventWaitHandle and ServiceController.WaitForStatus(enum

ServiceControllerStatus) methods in a multithreaded operation. Each thread will be

monitoring one of the seven possible Windows service statuses. On status change, the

suspended thread loop proceeds and a delegate event is raised. This class is used by

simple initialization and event listener to any or specific service status.

ServiceWatch SECwinStatusWatch = new ServiceWatch("SECwin");

SECwinStatusWatch.OnStatusChanged +=new
 ServiceWatch.StatusChanged(OnStatusChanged);

SECwinStatusWatch.EnableRaisingEvents = true;

private void OnStatusChanged(ServiceController sc,
 ServiceWatchEvtArgs args)

{

this.Invoke((MethodInvoker)delegate

{

//Handle status change

});

}

Figure 12. SECwin code: Service watch class usage

The code snippet in Figure 12 demonstrates the use of the developed class for watching

SECwin service status. The class is used by the watchdog of SECwin service, and for

displaying notifications to administrator on service status change.

 Windows paths case insensitivity effect on Cygwin Perl 3.3.9.

Unlike UNIX systems, Windows paths are case insensitive. Cygwin emulation of UNIX

environment requires windows paths modification to case sensitive. Otherwise any

attempt of accessing files or folders will fail. Additionally, Cygwin emulates drives as

mounts in /cygdrive/x. Converting a Windows path to a Cygwin compatible path is

performed in two stages, first by converting the path to case sensitive, then prepend

Cygwin drives mount folder.

50

static String CaseSensetiveDirPath(DirectoryInfo dirInfo)

{

DirectoryInfo parentDirInfo = dirInfo.Parent;

if (null == parentDirInfo)
 return dirInfo.Name;

return Path.Combine(CaseSensetiveDirPath(parentDirInfo),
 parentDirInfo.GetDirectories(dirInfo.Name)[0].Name);

}

Figure 13. SECwin code: building case sensitive path

The code snippet in Figure 13 demonstrates a recursive programmatic method building

a case sensitive path, using DirectoryInfo object from .NET framework.

try

{

string parent = path.Substring(0, path.LastIndexOf("\\"));

string files = path.Substring(parent.Length +1,
 path.Length - parent.Length-1);

DirectoryInfo dirInfo = new DirectoryInfo(parent);

files = CaseSensetiveFile(files);

string CaseSensetivePath = (dirInfo.Exists) ?
 Path.Combine(CaseSensetiveDirPath(dirInfo),files):path;

string drive = path.Substring(0, 1).ToLower();

string CygwinizedPath = CaseSensetivePath.Remove(0, 3);

CygwinizedPath = CygwinizedPath.Replace('\\', '/')
 .Replace(" ", "\\ ");

return string.Format("\"/cygdrive/{0}/{1}\"", drive,
 CygwinizedPath);

}

catch (Exception ex)

{

Log.ToWinEvent(string.Format("Error Cygwinizing
 path:({0})\n\nException: {1}", path,ex.ToString()),
 EventLogEntryType.Error);

return path;

}

Figure 14. SECwin code: Converting Windows path to Cygwin style

The case sensitive path is converted to Cygwin style path. In Figure 14, a code snippet

to prepend Cygwin drives mount and correct folders separator to slash. The path end is

checked, if it is a folder, an existing file, or files filter using asterisk.

51

 SEC statistics dump file rotation 3.3.10.

During the time of SECwin development, SEC was creating a single statistics dump file

and overwrites it each time it receives SIGUSR1 to dump statistics. Thus, keeping

historical statistics information required manual copying and renaming each time a

dump file is created. SECwin implemented statistics dump file rotation, which copies

the file to a different destination, while appending to its name the creation timestamp. A

feature to specify maximum amount of rotated files is configurable by the user

interface. When maximum allowed count of rotated files is reached, the oldest files get

deleted based on actual creation time not the tailed timestamp in file name. SEC has

integrated similar approach later on, inspired by SECwin feature. SEC enables

appending UNIX timestamp to file name if parameter dumpfts is used, however it does

not provide the ability to set the maximum amount of files to keep.

Figure 15. SECwin flowchart: SEC dump file roration

The flowchart in Figure 15 shows the basic actions taken when end user sends USR1

signal to SEC process via SECwin user interface. Statistics dump files are stored and

rotated in a dedicated folder.

52

 Auto-update feature 3.3.11.

Automated update feature is divided into two stages for both applications, SEC and

SECwin. First stage is checking for update availability using github.com API, and then

casting JSON response to objects for gathering full information about latest release, as

Figure 16 shows. The current version of the installed application is compared against

the latest release information. If latest release version value is higher than the currently

installed one, the second stage is initiated by executing a new SECwin process instance

for downloading and installing the newer version.

Updating SEC comes with a small technical challenge. Microsoft .NET framework

lacks a native tarball handler, which is required for unpacking SEC tarball. This issue

was resolved by using a third party .NET class [61].

Checking for available updates is performed on the basis of a configurable period of

time, every one day by default, as well as on SECwin service start and on user interface

launch if not disabled by user. The update process is performed by launching new

process instance of SECwin in console mode, to be able to control the service running

state without interruption of the update process. End users can disable the automated

update and update manually using SECwin CLI, to avoid unexpected service

interruption.

Updating SECwin package is performed under two conditions, depending on the file

extension of latest release, which is retrieved from the update server. If an update only

affects the SECwin portable executable, it is published as the first file in the release

assets list. Only the PE file will be downloaded, and then installed via console

command, as demonstrated in section 3.3.2. This method saves bandwidth and performs

a fast update. The other variant is when many files are affected, such as including a

newer Perl release, or adding more Cygwin binaries. A full SECwin package upgrade

requires downloading the latest release of MSI package, which is installed silently using

Windows native installer msiexec.

53

WebClient webClient = new WebClient();

webClient.Encoding = Encoding.UTF8;

webClient.Headers.Add("User-Agent", "Mozilla/5.0 (Windows NT
6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)");

Log.ToDebugger("Checking for update at: " + this._gitURL);

String JSONstr = webClient.DownloadString(this._gitURL);

Log.ToDebugger("WebClient response:\n" +
 webClient.ResponseHeaders.ToString());

JavaScriptSerializer jss = new JavaScriptSerializer();

GitRelease gitrelease = jss.Deserialize<GitRelease>(JSONstr);

UpdateCheckResultEventArgs UpdateResultArgs = new
 UpdateCheckResultEventArgs(this._AppAlias,
 this._currentVersion, gitrelease);

if (UpdateCheckResult != null)

UpdateCheckResult(this, UpdateResultArgs);

Figure 16. SECwin code: Update check

The code snippet in Figure 16 demonstrates a call to github.com API domain. Github

API is based on REST, returning responds in JSON markup. The returned JSON string

is serialized to a custom objects. Object composition is used for serializing release

structure. The object GitRelease contains other custom objects, such as ReleaseAssets -

a list of assets which represents full information about files in the release.

 Roadmap 3.3.12.

The current roadmap for SECwin package is to add an aditional tab, which provides a

categorized collection of SEC rulesets, retrieved from online repository. That would

allow users to download ready rulesets.

An under investigation feature is including NXLog-ce installer, its configuration file

and script to enable critical audit logs to SECwin MSI package. Adding auto-update

feature for NXLog-ce, comes with a challenges. NXLog-ce does not use github or any

equivilant hosted API to retrieve latest version information. Checking for update

availability can be achieved by parsing the download page at nxlog.org website, which

is considered an unreliable solution .

Adding the ability to simulate SEC signals via rulesets, when other Perl distribution is

used instead of Cygwin Perl, is current work in progress.

54

During the design stage of SECwin, the author has missed the feature of running

multiple instances of SEC simultaneously. This feature was not found to be a launch

stopper, thus it is reserved for future release as it requires few design changes.

3.4. Log collection tool configuration and infrastructure

A log collection tool is required to read logs from several sources, transfer logs from

client to server as required and normalize logs formats.

 Log normalization 3.4.1.

Log entries shall be normalized to facilitate event information extraction. The author

has adopted IETF syslog [26], for its wide usage, utilization of layered architecture,

which allows several transmit protocols, providing vendor-specific extensions and

detailed description of minimum requirements for messages transporting. While

performing log normalization via NXLog-ce is very simple, it becomes a challenge in

case of normalizing unknown raw event format by the log normalizer. This case

requires manual normalization using regular expressions side by side with other native

NXLog-ce format parsers, For example, to determine the start and end indexes of an

event in markup language. A practical example of this method is normalizing Symantec

Management Agent logs. Events of Symantec EPM agent are in custom xml format,

unlike the traditional way, xml attributes are used instead of nodes.

<event date='03/27/2016 08:00:09.8860000 +03:00' severity='4'
hostName='MG75LAB' source='NetworkMonitor'
module='AeXNetMon.dll' process='AeXNSAgent.exe' pid='4432'
thread='2304' tickCount='498743886' >

 <![CDATA[Server up [0x00010001]:
https://mg75lab:443:{6E97D571-F3C1-4ec4-AEDE-DD9719B02277}]]>

</event>

Figure 17. Symantec Management Agent log sample

An xml log entry sample is shown in Figure 17 from Symantec Management Agent

logs. Because the event field-value pairs are in custom format, the log entry in such case

usually passes by four stages for normalization as following:

1. Enabling multiline parser and defining header and end lines.

55

<Extension multiline>

 Module xm_multiline

 HeaderLine /^<event.*/

 EndLine /^<\/event>/

</Extension>

Figure 18. NXLog-ce configuration: multiline defining

2. Parsing input as xml, using xm_xml module and drop mismatches, such as line

breaks.

<Input AexAgent_in>

 Module im_file

 File "c:\ProgramData\Symantec\Agent\Logs\Agent.log"

 SavePos FALSE

 ReadFromLast TRUE

 InputType multiline

 Exec if ($raw_event !~ /^<event/) { drop(); } \

 else { parse_xml(); }

</Input>

Figure 19. NXLog-ce configuration: parsing multilined xml input

3. Use regular expression to extract fields’ values

<Processor parse_AexAgent_IETF>

 Module pm_null

 Exec if $raw_event =~ /date=\'(\S+\s\S+)\s\S+\'
severity=\'([0-9]{1,2})\' hostName=\'(\S+)\' source=\'(.*)\'
module=\'(.*)\' process=\'(\S+)\' pid=\'(\d+)\'
thread=\'(\d+)\'
tickCount=\'(\d+)\'\s?>\s+<!\[CDATA\[((.*\R?)+)\]\]/ \

....

 Exec to_syslog_ietf();

</Processor>

Figure 20. NXLog-ce configuration: SMA log entry parsing

4. Output to IETF syslog format using native normalizer as shown in Figure 20

using to_syslog_ietf().

 Distributed logging infrastructure 3.4.2.

On each node within an environment, NXLog-ce is installed to collect events from

various sources. These logs are normalized to IETF syslog and saved on disk to serve as

56

inputs for SEC, which correlates events and triggers actions locally. The distributed

logging architecture represents a part of the proposed implementation by forwarding

critical and synthetic events to a centralized log server.

 Centralized logging infrastructure 3.4.3.

In most cases, when dealing with logs on a corporation level, centralized log collection

is required for administration, forensics, reporting and analysis purposes. This study

focuses on event correlation, thus, the main purpose of establishing a centralized

logging infrastructure is to achieve event correlation within the entire network scope. A

typical centralized infrastructure would be a client to server relation, where logs are

transferred from clients to log server. Log entries contain confidential information, thus,

transporting logs must be secured. Secure transportation of syslog formatted events is

governed by RFC5425 [62]. Transporting events through unsecured connection exposes

the environment to several types of attacks as described in RFC5425 section two. Types

of attacks on unsecured transportation of logs are:

 Masquerade: an unauthorized transport sender may send messages to a

legitimate transport receiver, or an unauthorized transport receiver may try to

deceive a legitimate transport sender into sending syslog messages to it.

 Modification: an attacker between the transport sender and the transport

receiver may modify an in-transit syslog message and then forward the message

to the transport receiver. Such modification may make the transport receiver

misunderstand the message or cause it to behave in undesirable ways.

 Disclosure: an unauthorized entity may examine the contents of the syslog

messages, gaining unauthorized access to the information. Some data in syslog

messages is sensitive and may be useful to an attacker, such as an SID or

session hash of an authorized administrator or user.

 Message stream modification: an attacker may delete one or more syslog

messages from a series of messages, replay a message, or alter the delivery

sequence. The syslog protocol itself is not based on message order. However,

an event in a syslog message may relate semantically to events in other

messages, so message ordering may be important to understanding a sequence

of events.

57

 Denial of Service: an attacker might cause log servers to stop performing their

tasks of collecting log messages.

 Traffic Analysis: an attacker may perform espionage on the traffic and get

detailed infrastructure information.

To secure log transportation in compliance with RFC5425 section three [63], the

proposed implementation relies on a self-signed certificate authority, an optional but

recommended intermediate CA, server certificates and client-side certificates. The use

of client-side certificates guarantees the authenticity of log entries from clients as the

server requires trusted client-certificate to establish the connection prior the acceptance

of any log entries. Although NXLog-ce im_ssl module supports disabling the

requirement for client-side certificate, it is highly recommended not to disable

RequireCert option, as it exposes the log server to logs exploitation.

Figure 21. Mutual SSL certificate based authentication

Figure 21 illustrates a mutual SSL certificate based authentication. During the

authentication process both, server and client, provide digital certificate which is

validated on the other node against the local store as configured in NXLog-ce

configuration file. While RequireCert option is enabled on the log server within

NXLog-ce configuration, any client attempts to authenticate without a certificate or

with an invalid certificate its authentication is denied.

58

Building certificates chain for SSL mutual authentication can be done using OpenSSL

for Windows 0.9.8h [64]. To create a certificate chain, the use of configuration files in

appendices 2.1, 2.2 are required for identifying certificate requesting, creation and

signing, based on the following steps:

1. Prepare files and directory structure

>md ca\private ca\certs ca\newcerts ca\crl

>type nul > ca\index.txt

>type nul > ca\rand

>echo 01 > ca\serial

>md intermediate\private intermediate\certs
intermediate\newcerts intermediate\crl

>type nul > intermediate\index.txt

>type nul > intermediate\rand

>echo 01 > intermediate\serial

Figure 22. OpenSSL: Structure preparation

2. Creating self-signed Certificate Authority

>openssl genrsa -aes256 -out ca\private\ca.key 8192

>openssl req -config ca\ca-openssl.cnf -key
ca\private\ca.key -new -x509 -days 7300 -sha256 -extensions
v3_ca -out ca\ca.pem

Figure 23. OpenSSL: Creating Certificate Authority

3. Creating Intermediate certificate (optional)

>openssl genrsa -aes256 -out
intermediate\private\intermediate.key 4096

>openssl req -config intermediate\intmdt-openssl.cnf -new -
sha256 -key intermediate\private\intermediate.key -out
intermediate\intermediate.csr

>openssl ca -config ca\ca-openssl.cnf -extensions
v3_intermediate_ca -days 3650 -notext -md sha256 -in
intermediate\intermediate.csr -out
intermediate\intermediate.pem

>copy /b intermediate/intermediate.pem + ca/ca.pem
intermediate/chain.pem

Figure 24. OpenSSL: Creating Intermediate Certificate

It is highly recommended to create an intermediate CA for each group of clients.

59

4. Certificate Revocation List (mind crlDistributionPoints value in config file)

>openssl ca -config ca\ca-openssl.cnf -gencrl -out
ca\crl\ca-crl.pem

>openssl ca -config intermediate\intmdt-openssl.cnf -gencrl
-out intermediate\crl\intermediate-crl.pem

Figure 25. OpenSSL: Creating Revocation List

 Check crlDistributionPoints value in config file

 Check default_crl_days value, CRL must be renewed periodically

 Each Intermediate CA must have its own CRL and configuration

5. Creating a server certificate

>openssl genrsa -aes256 -out certs/server/FQDN001.key 2048

>openssl req -config certs/intmdt-openssl.cnf -key
certs/server/FQDN001.key -new -sha256 -out
certs/server/FQDN001.csr

>openssl ca -config certs/intmdt-openssl.cnf -extensions
server_cert -days 365 -notext -md sha256 -in
certs/server/FQDN001.csr -out certs/server/FQDN001.pem

Figure 26. OpenSSL: Creating server certificate

6. Creating a client certificate

>openssl genrsa -aes256 -out certs/client/client001.key 2048

>openssl req -config certs/intmdt-openssl.cnf -key
certs/client/client001.key -new -sha256 -out
certs/client/client001.csr

>openssl ca -config certs/intmdt-openssl.cnf -extensions
client_cert -days 365 -notext -md sha256 -in
certs/client/client001.csr -out certs/client/client001.pem

Figure 27. OpenSSL: Creating client certificate

In the steps provided for creating the required digital certificates chain, Certificate

Revocation List creation in Figure 25, is critical. In case one or more of the certificates

private keys, in particular client certificates keys, are exposed to an attacker. To

mitigate the risk of logs exploitation by any of the means described in section two of

RFC5435 compliance, the exposed clients’ certificates or the intermediate certificate

must be revoked immediately. Clients’ certificates are in higher risk for exposure for

their wider distribution on each logs forwarding node. Figure 28 provides the required

OpenSSL commands for certificates revocation. Revocation shall be followed by

60

replacing of CRL file on log servers to overcome the lack of CRL URI validation and

total lack of OCSP protocol support by NXLog-ce.

 Revoking a certificate and create CRL

>openssl ca -config intermediate/intmdt-openssl.cnf -
revoke intermediate/newcerts/01.pem

>openssl ca -config intermediate/intmdt-openssl.cnf –
gencrl -out intermediate/crl/intermediate-crl.pem

Figure 28. OpenSSL: Revoking a certificate

During the validation of client-side certificate, typically a server should check the

certificate’s CRL / OCSP values then perform a query according to the used protocol to

ensure the validity of the certificate. While CRL is an old method for digital certificates

revocation inquiry, at this point, speaking of NXLog-ce 2.0.928, it does not support

OCSP protocol, which adds an extra burden to periodically update CRL on each node.

3.5. SEC rules

To facilitate the creation and editing of SEC rules, the author built a syntax-highlighter

configuration file for Notepad++, packed within SECwin MSI package and also

available on github SECwin project page.

 Simple Event Correlator rules and best practices 3.5.1.

Simple Event Correlator is a rule-based [36], CLI correlation engine written in Perl.

SEC loads its configuration by command parameters or from a text file, and loads its

correlation rules from one or more text files, in format of key-value pairs. Each file can

contain one or more rules, where rulesets from several files are applied virtually in

parallel [65]. SEC is a single threaded application, therefore, several instances can run

in parallel within separated domains to leverage multi-core CPUs [66] and achieve

higher scalability. Such scale has been practically proven to process hundred thousand

event log per second [67].

SEC best practices [68] paper was published in 2015 by the author of SEC. The paper

provides methods to leverage the full power of the correlation engine with minimal

computing resources utilization. The paper highlights the following methods:

61

 Joining rules into event correlation schemes

Using contexts, synthetic events and other data sharing measures, leverage joining

several rules together into more powerful event correlation scheme. Rules can create,

modify or delete contexts, while other rules validate those contexts side by side to event

matching. Another way is generating synthetic events by ruleset which triggers other set

of rules.

 Advanced event matching using Perl function

Using regular expressions allows flexible parsing of event, but it has drawbacks, such

as, intensive resources utilization and the lack of mathematical operations capability.

SEC allows the use of Perl function as pattern type, this feature allows a very flexible

way to match events and leverage Perl modules, to perform evaluation process such as

defining the network of an IP address.

 Using named match variables and match caching

SEC supports named match variables and match caching, to minimize resources

utilization by using variable maps and cached pattern types. For example one rule can

parse an event using a Perl function and then creates a hash table of field-value pairs.

The hash table can be used by other rules for matching. This method avoids redundant

parsing of events.

 Arranging rulesets hierarchically

Normally, each event from all input sources is matched against all rules, which exhausts

computing resources when using big sets of rules. Using hierarchically arranged rulesets

allows triggering desired rulesets only for specific inputs. SEC best practices guide

addresses this issue in the following ways:

a. By command parameter –intcontext, this creates a temporary context, which

reflects the source of the event. Thus, if some rulesets are designed to match

events from specific source, they use the temporary context, which is validated

prior to pattern.

b. By using Jump rule type, to submit input events to specific rulesets for further

processing, where desired rulesets can be configured to accept input from Jump

rules only.

62

 SEC rules for MS Windows event logs 3.5.2.

An event correlation library can be built with the aid of an official description of

security events [69] from Microsoft support knowledge base, or more detailed papers,

which target detecting security incidents using MS Windows event logs [70]. Also

hardening guides for MS Windows with the aid of event logs [71], represents a source

for administrators depending on the corporate infrastructure. Depending on the

corporate security policies, system administrators can deploy distributed event

correlation rules which perform local actions and forward critical and synthetic events

to a centralized server to trigger wider action and for wider security audit.

Many security events are disabled by default, however it depends on the distribution, as

MS Windows server family has some audit logs enabled by default unlike workstation

family, for example Account Logon and Account Management. Enabling advanced audit

logs is mandatory for giving an insight of occurring incidents.

Enabling advanced audit logs is done via group policy in a network managed by a

domain controller or by Local Security Policy console or auditpol command for

standalone computers. Microsoft provides a guide to monitor signs of compromise [72],

which discusses in details, which audit policies to enable and means of achieving that in

different way. To validate currently applied security audit settings, auditpol /get

/category:* command provides more accurate results [73] than Local Security Policy

console.

A more advanced events logging can be forced by using Sysmon [12] tool from

Sysinternals suite. The tool allows logging more details about processes creation, in

addition to other suspicious activities on the system, such as, changes in files creation

timestamps, loading of drivers, open of raw read of disks and other malicious actions.

Sysmon tool is installed as a system driver, to generate events during the operating

system boot process which allows detection of kernel-mode malware.

Another essential tool from Sysinternals, is Sigcheck, which has the ability to perform a

virus scan by virustotal.com using command line. The output is correlated to previous

events and accordingly and action is triggered.

 Detecting malware infection

63

Usually sophisticated malware gets repacked to change its file signature and to avoid

detection by antimalware applications. Detecting malware infection activity is possible

with thye aid of Sysmon and Sigcheck tools from Sysinternal suite. Usually, when a

malware launches for the first time it copies itself to a new location in system folders,

then attempts to register the new file to auto-run on system reboot. SEC ruleset in

appendix 3.1 detects such malicious activity when a launched process by a valid system

application, such as Explorer, creates an additional process. That action is a normal case

whenever a user launches an application, but when the launched application starts an

additional process, that additional action can be considered an abnormal activity. If both

second and third processes hash matches, or if a file is created inside system folders,

then files are checked using Sigcheck tool for signature and hash with aid of virustotal.

If the files are not signed or are signed with an invalid certificate, or their hashes match

with a malware in virustotal repository, their processes are killed and an alert is

generated. If the log server receives more than three similar events from different nodes,

the network connection must be disabled for those nodes to prevent further spread of the

malware.

 Detecting ransomware (crypto-locker) activities.

Adopting the same concept for detecting malware infection, ransomware-like suspicious

activities can be detected. Ransomware encrypts files on a system then requests a

ransom to provide the decryption key. Original files are either deleted or overwritten

with the encrypted version. To detect such malicious action, Object Access – Audit File

System success logging, must be enabled. On the folder to be monitored, auditing must

be enabled as well, by folder properties, Security tab - Advanced, Audit tab - Edit, Add

Everyone account, then enable successful access as shown in Figure 29.

Once these configurations are applied on a system, all write activities performed on the

monitored folder are logged in Windows Security Audit event logs. Information logged

includes, what object has been changed, in which way, by who (user) and which

process. Such events are correlated for reoccurrence and any suspicious process

performs changes on those files is killed. If the process is signed and trusted, an alert is

generated and optionally, a handle can be opened to all objects inside the monitored

folder recursively, to prevent further changes till a human interacts with the system to

64

approve the process. Such event correlation ruleset is provided as an example in

appendix 3.

Figure 29. Object audit for file changes

 Detecting system compromise and suspicious actions

While Microsoft provides list of events to monitor [74], further actions which can be

considered suspicious, shall be monitored as well. Appendix 3 provides some examples

such as detecting access to a hidden network share, detecting network login using a

local administrator account and Detecting privilege escalation of process then evaluate

the process authenticity.

An example of suspicious action is a network login to a workstation followed by several

failed attempts to access files, which indicates a possibility of credential compromise.

While attacker might be attempting to access unauthorized local files.

 Mitigating spread of malware

Whenever a malicious action is detected locally on a machine, the local correlation

engine handles the threat by killing suspected process. SEC generates synthetic events

which are forwarded by NXLog-ce to log server. The log server correlates all received

events for unusual traffic or failed login attempts on other nodes from the infected

machine then triggers an action by isolating the infected node. Further network wide

65

action can be performed, such as, taking an image of the operating system for further

analysis.

 SEC rules for Symantec Endpoint Management 3.5.3.

Symantec Endpoint Management [75] is commercial software with several products

provided as suite for endpoints inventory, software installation, patch management, OS

deployment etc. the platform which acts as the core component is a free software which

can still be used to manage endpoints. Like other endpoint management software it

depends on client side application. Because of the critical operations handled by the

client side such as installing updates, security patches, software etc. proactive detection

of any interruption or faults occurring provides a value to system administrators.

 Detecting failed client to server communication

Client agent logs are monitored for failed communication and crashes, if a crash is

detected its memory dump is uploaded for further investigation, and if a failed

communication or registration is detected a notification is sent to administrator.

 Detecting failed registration to task service

Clients are required to register to their site task server, if a client is not registered fail

reasons are send to the main server. Forwarded events are correlated and evaluated

against the site task server; if many clients are affected within specific site the main

server resets the site task server services to force connections.

 Quality Assurance Test Automation

During the Quality Assurance cycle of releases prior to general availability, thousands

of test automation tasks are performed. Integrating event correlation to the process

provides more efficiency.

3.6. Final implementation layouts

The final deployment on a standalone MS Windows machine is very simple. First step

is installing NXlog-ce and SECwin MSI. Second step is deploying SEC rulesets files

and NXLog-ce configuration file then run required commands to set audit policies. A

66

VB script or batch script can be used to perform all these actions as per the provided

example in appendix 4.1.

The deployment within a network requires more steps for securing the logs

transportation to the log server by creating required certificates chain, which was

covered precisely in section 3.4.3. Deploying software to workstations can be done via

group policy [76], or end point management software if present.

Each node within a network shall receive software installation policy or script for

installing SECwin MSI, NXLog-ce MSI and selective Sysinternal suite tools (Sysmon,

Sigcheck etc.). Second step is deploying NXLog-ce configuration file and certificates,

SEC rulesets and SECwin configuration registry file.

Figure 30. Hybrid event correlation architecture layout

Figure 30 illustrates the proposed layout implementation of a hybrid event correlation

architecture. On workstations, NXLog-ce captures events from various sources then

normalizes to Syslog format. NXLog-ce saves all normalized events to disk and filters

events to forwards critical ones to log server. SEC reads locally stored normalized

events as input then correlates events according to local rulesets, and then triggers

67

actions locally to mitigate threats. Correlated events and triggered actions by SEC

generate synthetic events stored locally on disk. NXLog-ce reads SEC generated event

then forwards them to log server. The log server correlates all incoming events from all

workstations, and then triggers wider actions. Optionally event management software

can be used, where the log server can feed it with all captured events for storage and

generating reports.

3.7. Practical implementation use case

The layout architecture proposed in section 3.6 has been practically applied for

Symantec EPM testing automation. Example implementation architecture is multi-tier

Symantec EPM servers hierarchy consists of a parent and 3 children servers. Each child

server has two site servers and eight clients. All nodes are joined to the same domain

controller. SECwin, NXLog-ce and their configuration files were installed on all nodes

using software delivery policy from parent server. Logs normalization is performed on

clients to balance resources consumption. Logs are transported between nodes in binary

mode to allow filtering on destination based on fields’ values without reparsing.

Received events are saved on different files based on node name and Message ID.

Several policies and tasks are created programmatically on the parent server for test

automation purposes, such as, software and hardware inventory policies, software

patches policies, and then replicated down the hierarchy to children server to be applied

on their clients. The correlation engine residing on the endpoint clients correlates

Windows event logs and Symantec EPM client logs for critical incidents then trigger

local action such as, restarting services, killing hanging process etc. Clients’ critical

events are transported to their server, which correlates all received events side by side

with its events including IIS logs, then accordingly triggers wider actions, such as

refreshing its hosted software packages snapshots, when many clients fail to download

them or redirects clients to a different site server if theirs is faulty. Child servers

transport critical, actual and synthetic events to the parent server, which correlates all

events at its end. If faults are noticed, the failed operations are repeated. All events

received by the parent server are passed to ElasticSearch for storage and generating

reports.

68

During testing automation, a lot of failed operations are expected, which produce

enormous amount of events, especially when log level is set to verbose for debugging

purposes. The applied implementation used the child servers as correlation gateways to

balance resources load.

The applied implementation adopted the hybrid event correlation approach with 34

correlation engines in total, and has proven success for processing thousands of events

per second, distributed on all nodes with minimal resource consumption.

69

4. Conclusion

The proposed implementation promotes free software and does not require any

additional hardware or dedicated resources. Home users and small to medium sized

corporates with limited budgets can benefit from the proposed implementation.

Simple Event Correlator was proven to work reliably on Microsoft Windows operating

system using Cygwin Perl and SECwin. However it is very important to follow SEC

best practices especially on large scales.

Using event correlation hybrid approach represents a robust and reliable solution for

detecting various types of incidents, whether these incidents are security related or

critical alerts. The distributed part shall be capable of handling local incidents, while the

centralized part can correlate wider set of incidents from various sources and mitigate

threats before breaches occur. On the level of home users, using an event correlation to

detect malicious actions adds an additional security dimension. Usually regular users do

not regularly examine the logs on their computers, and mostly would not have the skills

to extract critical information. Thus, proactive event correlation can be considered as

critical as antimalware solutions for home users and small to medium corporates.

While this study presented an implementation layout for the proposed solution, it is by

no mean the only way such solution can be implemented. Depending on the activity of a

corporate, and its security policies, free and open source log management solutions like

Elastic and LOGalize can be integrated to build a SIEM solution with powerful

proactive correlation capabilities with no cost. The applied implementation documented

in section 3.7 has used event correlation gateways to balance the load, and successfully

processed thousands of events per second with minimal resources consumption.

It is required to spread the awareness of undetectable threats, like repacked and new

malware, and spot the light on the concept of using proactive event correlation for

enhancing security, and various IT operations.

70

This study serves as a gateway in the field of event correlation and attack pattern

recognition on Microsoft Windows platform. Further SEC rulesets can be built for

malicious actions detection, to expand the current published SEC rulesets.

71

Bibliography

[1] StatCounter, "Top 7 Desktop Oss from July 2008 to Dec 2015," [Online].

Available: http://gs.statcounter.com/#desktop-os-ww-monthly-200807-201602-bar.

[Accessed 2016].

[2] J. Shenk, "Ninth Log Management Survey Report," SANS survey : InfoSec Reading

Room, October 2014.

[3] R. Vaarandi, "SEC – a Lightweight Event Correlation Tool," in IEEE/IFIP

Network Operations and Management Symposium, pp. 907-910, 2002.

[4] The Perl Programming Language, "Download Perl Distribution," Perl.org,

[Online]. Available: https://www.perl.org/get.html#win32. [Accessed 2016].

[5] B. Botyanszki, "nxlog-community-edition-reference-manual-v20928," NXLog.oeg,

December 2009. [Online]. Available: https://nxlog.org/documentation/nxlog-

community-edition-reference-manual-v20928#pm_evcorr. [Accessed 2016].

[6] T. Beverly, "Windows version of SEC," SEC mailing list, April 2008. [Online].

Available: https://sourceforge.net/p/simple-evcorr/mailman/message/19156366/.

[Accessed 2015].

[7] Github API, "API SECwin releases," [Online]. Available:

https://api.github.com/repos/minagerges/SECwin/releases. [Accessed April 2016].

[8] Sourceforge, "SECwin, download statistic - All files," [Online]. Available:

https://sourceforge.net/projects/secwin/files/stats/map?dates=2015-06-

72

18%20to%202016-04-29. [Accessed April 2016].

[9] OWASP, "Logging Cheat Sheet," January 2016. [Online]. Available:

https://www.owasp.org/index.php/Logging_Cheat_Sheet. [Accessed 2016].

[10] Microsoft, "How to use the event log management script tool," 2015. [Online].

Available: https://support.microsoft.com/en-us/kb/318763. [Accessed 2016].

[11] TechNet, "Event Log," Microsoft, October 2008. [Online]. Available:

https://technet.microsoft.com/en-us/library/cc722385%28v=ws.10%29.aspx.

[Accessed 2016].

[12] TechNet, "Sysmon," Microsoft, [Online]. Available:

https://technet.microsoft.com/en-ie/sysinternals/sysmon. [Accessed 2016].

[13] TechNet, "Eventcreate," Microsoft, [Online]. Available:

https://technet.microsoft.com/en-us/library/bb490899.aspx. [Accessed 2016].

[14] A. Sapegin, D. Jaeger, A. Azodi, M. Gawron, F. Cheng and C. Meinel,

"Hierarchical object log format for normalisation of security events," in 9th

International Conference on Information Assurance and Security (IAS), 2013.

[15] P. Sharma, S. Yadav and B. Brahmdutt, "A Review Study of Server Log Formats

for Efficient Web Mining," in International Conference on Green Computing and

Internet of Things (ICGCIoT), 2015.

[16] J. Ya, T. Liu, H. Zhang, J. Shi and L. Guo, "An automatic approach to extract the

formats of network and security log messages," in Military Communications

Conference, 2015.

73

[17] R. Vaarandi and M. Pihelgas, "LogCluster - A Data Clustering and Pattern Mining

Algorithm for Event Logs," in International Conference on Network and Service

Management, 2015.

[18] J. H. a. M. Kamber, in Data mining concept and technology, 2007, p. 3.

[19] J. Lv, "Research on the application of web log mining," Journal of Chonqqing

Normal University, vol. 12, no. 23, pp. 39-44, 2006.

[20] J. Kezhong and W. Chengwen, "An improved algorithm with key attributes

constraints for mining interesting association rules in network log," in Business

Management and Electronic Information (BMEI), 2011.

[21] M. P. Yadav, P. K. Keserwani and S. G. Samaddar, "An efficient web mining

algorithm for Web Log analysis: E-Web Miner," in Recent Advances in

Information Technology (RAIT), 2012.

[22] "Common Event Expression," Mitre, 2014. [Online]. Available:

https://cee.mitre.org. [Accessed 2016].

[23] "GELF - Graylog 2.0.0 documentation," Graylog, [Online]. Available:

http://docs.graylog.org/en/latest/pages/gelf.html. [Accessed 2016].

[24] A. Sapegin, D. Jaeger, A. Azodi, M. Gawron, F. Cheng and C. Meinel,

"Hierarchical object log format for normalisation of security events," in 9th

International Conference on Information Assurance and Security (lAS), 2013.

[25] F. Cheng, A. Azodi, D. Jaeger and C. Meinel, "Pushing the Limits in Event

Normalisation to," in International Conference on Advanced Cloud and Big Data,

74

2013.

[26] R. Gerhards, "RFC5424 - The Syslog protocol," March 2009. [Online]. Available:

https://tools.ietf.org/html/rfc5424. [Accessed 2016].

[27] MSDN: Developer technologies, "Event Log Format (Windows)," [Online].

Available: https://msdn.microsoft.com/en-

us/library/windows/desktop/bb309026(v=vs.85).aspx. [Accessed 2016].

[28] "ElasticSearch | Elastic," Elastic corp., [Online]. Available:

https://www.elastic.co/products/elasticsearch. [Accessed 2016].

[29] NXLog.co, "NXLog community edition," [Online]. Available:

http://nxlog.org/products/nxlog-community-edition. [Accessed 2016].

[30] Elastic, "beats | Elastic," [Online]. Available:

https://www.elastic.co/products/beats. [Accessed 2016].

[31] Elastic, "Logstash | Elastic," [Online]. Available:

https://www.elastic.co/products/logstash. [Accessed 2016].

[32] intersectalliance, "Snare agent for Windows," [Online]. Available:

https://www.intersectalliance.com/our-product/snare-agent/operating-system-

agents/snare-agent-for-windows/. [Accessed 2016].

[33] Microsoft MSDN, "Configure computers to forward and collect events," February

2015. [Online]. Available: https://msdn.microsoft.com/en-

us/library/cc748890.aspx. [Accessed 2016].

75

[34] "State of Cybersecurity: Implications for 2015," An ISACA and RSA Conference

Survey - CyberSecurity Nexus, 2015.

[35] A. Sah, "A New Architecture for Managing Enterprise Log Data," in LISA, 2002.

[36] G. Jakobson and M. Weissman, "Real-time telecommunication network

management: Extending event correlation with temporal constraints," in

International Symposium on Integrated Network Management, pp. 290, 1995.

[37] N. Dwivedi and A. Tripathi, "Event Correlation for Intrusion Detection Systems,"

in International Conference on Computational Intelligence & Communication

Technology, 2015.

[38] S. Fu and C.-Z. Xu,

"Quantifyingeventcorrelationsforproactivefailuremanagementinnetworked,"

J.ParallelDistrib.Comput., no. 70, 2010.

[39] A. Muller, "Survey of Existing Event Correlation Approaches," in Event

Correlation Engine, MSc. Thesis, Zurich, Swiss Federal Institute of Technology,

2009.

[40] B. Gruschke, "Integrated Event Management: Event Correlation using Dependency

Graphs," in 9th IFIP/IEEEInternational Workshop on Distributed Systems:

Operations and Management (DSOM), 1998.

[41] S. A. Yemin, S. Kliger, E. Mozes, Y. Yemini and D. Ohsie, "High speed and robust

event correlation," IEEE Communications Magazine 34(5), pp. 82-90, May 1996.

[42] M. Steinder and A. S. Sethi, "End-to-end Service Failure Diagnosis Using Belief

76

Networks," in IEEE/IFIP Network Operations and Management Symposium, 2002.

[43] H. Wietgrefe, K.-D. Tuchs, K. Jobmann, G. Carls, P. Froehlich, W. Nejdl and S.

Steinfeld, "Using Neural Networks for Alarm Correlation in Cellular Phone

Networks," in International Workshop on Applications of Neural Networks in

Telecommunications, 1997.

[44] R. N. Cronk, P. H. Callahan and L. Bernstein, Rule-based expert systems for

network management and operations: an introduction, IEEE, 1988.

[45] R. Davis, H. Shrobe, W. Hamscher, K. Wieckert, M. Shirley and S. Polit,

"Diagnosis based on description of structure and function," in American

Association for Artificial Intelligence, 1982.

[46] A. Hanemann and M. Sailer, "A framework for service quality assurance using

event correlation techniques," in AICT/SAPIR/ELETE, 2005.

[47] J. Myers, in A Dynamically Configurable Log-based Distributed Security Event

Detection Methodology using Simple Event Correlator, MSc. Thesis, US Air Force

Institute of Technology, 2010.

[48] J. Myers, G. R. Michael and R. F. Mills, "Log-Based Distributed Security Event

Detection Using Simple Event Correlator," in 44th Hawaii International

Conference on System Sciences, 2010.

[49] M. Kont, "Comparative analysis of open-source log collection and correlation

tools," in Event Management and active defense framework for small companies,

MSc Thesis, Tallinn University of Technology, 2014, pp. 24 - 44.

[50] "Log Management | Log Analysis | Splunk," Splunk Inc., [Online]. Available:

77

https://www.splunk.com/en_us/solutions/solution-areas/log-management.html.

[Accessed 2016].

[51] ZURIEL Kft., "LOGalyze - Open Source Log Management Tool, SIEM, Log

Analyzer," ZURIEL Kft., [Online]. Available: http://www.logalyze.com/.

[Accessed 2016].

[52] EsperTech, "EsperTech - Esper," EsperTech, 2006. [Online]. Available:

http://www.espertech.com/esper/. [Accessed 2016].

[53] TechNet, "Event Logs," Microsoft, [Online]. Available:

https://technet.microsoft.com/en-us/library/cc722404.aspx. [Accessed 2016].

[54] Roth Consulting, "Official Win32::Daemon home page," 12 2001. [Online].

Available: http://www.roth.net/perl/Daemon/. [Accessed 2016].

[55] R. Vaarandi, "Simple Event Correlator faq," November 2013. [Online]. Available:

http://simple-evcorr.sourceforge.net/FAQ.html#1. [Accessed 2016].

[56] M. Gerges, "SECwin: Simple Event Correlator Windows Integration," June 2015.

[Online]. Available: https://sourceforge.net/projects/secwin/. [Accessed 2016].

[57] A. Perl, "Active Perl," ActiveState, 2015. [Online]. Available:

http://www.activestate.com/activeperl. [Accessed 2016].

[58] StrawberryPerl, "The Perl for MS Windows, free of charge!," StrawberryPerl.com,

2015. [Online]. Available: http://strawberryperl.com/. [Accessed 2016].

[59] "Cygwin," [Online]. Available: https://www.cygwin.com/. [Accessed 2015].

78

[60] MSDN, "GenerateConsoleCtrlEvent function," Microsoft, [Online]. Available:

https://msdn.microsoft.com/en-

us/library/windows/desktop/ms683155(v=vs.85).aspx. [Accessed 2016].

[61] Cheeso, "tar .NET class," Cheeso - CodePlex, October 2011. [Online]. Available:

http://cheesoexamples.codeplex.com/. [Accessed 2015].

[62] e. a. Miao, "tools.ietf.org," IETF org., March 2009. [Online]. Available:

http://tools.ietf.org/html/rfc5425. [Accessed 2016].

[63] e. a. Miao, "tools.ietf.org," IETF org., March 2009. [Online]. Available:

http://tools.ietf.org/html/rfc5425#section-3. [Accessed 2016].

[64] GnuWin32, "OpenSSL for Windows," OpenSSL.org, December 2008. [Online].

Available: http://gnuwin32.sourceforge.net/packages/openssl.htm. [Accessed

2016].

[65] R. Vaarandi, Tools and Techniques for Event Log Analaysis, PhD. Thesis, Tallinn

University of Technology, 2005.

[66] F. Cheng, A. Azodi, D. Jaeger and C. Meinel, "Security Event Correlation

Supported by Multi-Core Architecture," in IT Convergence and Security (ICITCS),

2013.

[67] D. Lang, "Building a 100K log/sec logging infrastructure," in USENIX, Large

Installation System Administration Conference, 2012.

[68] R. Vaarandi, "Simple Event Correlator - Best Practices for Creating Scalable

Configurations," in IEEE CogSIMA Conference, 2015.

79

[69] Miscrosoft Support, "Description of security events in Windows 7 and in Windows

Server 2008 R2," February 2011. [Online]. Available:

https://support.microsoft.com/en-ie/kb/977519. [Accessed 2016].

[70] R. Anthony, "Detecting Security Incidents Using Windows," SANS Institute -

InfoSec Reading Room, June 2013.

[71] Information Assurance Directorate, "Spotting the Adversary with Windows,"

National Security Agency of Unitied States of America, 2013.

[72] Technet - Microsoft, "Monitoring Active Directory for Signs of Compromise,"

Microsoft, July 2013. [Online]. Available: https://technet.microsoft.com/en-

us/library/dn487458.aspx. [Accessed 2016].

[73] Support - Microsoft, "AuditPol and Local Security Policy results may differ," May

2014. [Online]. Available: https://support.microsoft.com/en-ie/kb/2573113.

[Accessed 2016].

[74] Technet - Microsoft, "Appendix L: Events to Monitor," July 2013. [Online].

Available: https://technet.microsoft.com/en-us/library/dn535498.aspx. [Accessed

2016].

[75] Symantec corporation, "Endpoint Management," Symantec corporation, 1995.

[Online]. Available: https://www.symantec.com/products/threat-

protection/endpoint-management. [Accessed 2016].

[76] Support - Microsoft, "How to use Group Policy to remotely install Software,"

December 2013. [Online]. Available: https://support.microsoft.com/en-

us/kb/816102. [Accessed 2016].

80

81

Appendices

Appendix 1 – NXLog-ce configuration files

1.1. Header and extensions (modules)

define ROOT C:\Program Files (x86)\nxlog

Moduledir %ROOT%\modules

CacheDir %ROOT%\data

Pidfile %ROOT%\data\nxlog.pid

SpoolDir %ROOT%\data

LogFile %ROOT%\data\nxlog.log

Modules ##

Open WinEventLog

<Extension _syslog>

 Module xm_syslog

</Extension>

XML parsing

<Extension xml>

 Module xm_xml

</Extension>

MultiLine rowLog declaration (SMP & AexAgent)

<Extension multiline>

 Module xm_multiline

 HeaderLine /^<event.*/

 EndLine /^<\/event>/

</Extension>

For rotating internal log file

<Extension fileop>

 Module xm_fileop

 # Rotate log file every hour if larger than 1Mb

 <Schedule>

 Every 1 hour

 Exec if (file_size('%ROOT%\data\nxlog.log') >= 1M) { \
 file_cycle('%ROOT%\data\nxlog.log', 2);
 }

 </Schedule>

</Extension>

82

1.2 Log Server (inputs / outputs)

<Input SSLin>

 Module im_ssl

 Host 0.0.0.0

 Port 23456

 CAFile C:\Program Files (x86)\nxlog\cert\ca.crt

 CertFile C:\Program Files (x86)\nxlog\cert\server.crt

 CertKeyFile C:\Program Files (x86)\nxlog\cert\server.key

 CRLFile C:\Program Files (x86)\nxlog\cert\CRL.crt

 KeyPass passphrase

 InputType Binary

</Input>

<Output SSL_toDisk>

 Module om_file

 File 'D:\ReceivedLogs\data\' + "$Hostname_$MessageID.txt"

 Exec if SSL_toDisk->file_size() > 10M { \

 $newfile = 'D:\ReceivedLogs\Rotated'+"$Hostname_$MessageID.txt";\

 SSL_toDisk->rotate_to($newfile); \

 }

</Output>

83

1.3 Clients logs collection and normalization (inputs / outputs & Routes)

<Input WinEventLog_in>

 Module im_msvistalog

 Exec to_syslog_ietf();

</Input>

<Input AexAgent_in>

 Module im_file

 File "c:\ProgramData\Symantec\Symantec Agent\Logs\Agent.log"

 SavePos FALSE

 ReadFromLast TRUE

 InputType multiline

 Exec if ($raw_event !~ /^<event/) { drop(); } \

 else { parse_xml(); }

</Input>

<Input SMP_in>

 Module im_file

 File 'C:\ProgramData\Symantec\SMP\Logs\a.log'

 SavePos FALSE

 ReadFromLast TRUE

 InputType multiline

 Exec if ($raw_event !~ /^<event/) { drop(); } \

 else { parse_xml(); }

</Input>

IETF, BSD compliance

<Processor parse_SMP_IETF>

 Module pm_null

 Exec if ($raw_event =~ /date="(\S+\s\S+)\s\S+" severity="([0-9]{1,2})"
hostName="(\S+)" source="(.*)" module="(.*)" process="(\S+)" pid="(\d+)"
thread="(\d+)" tickCount="(\S+)"><!\[CDATA\[((.*\R?)+)\]\]/) \

 { \

 $EventTime = strptime($1, '%m/%d/%Y%t%H:%M:%S'); \

 $Hostname = $3; \

 $SourceName = $6; \

 $ProcessID = $7; \

 $MessageID = "SMP"; \

 if $2 == "1" { $Severity = "Error"; $AexSeverity = "Error"; } \

 else if $2 == "2" { $Severity = "Warning"; $AexSeverity =
"Warning"; } \

 else if $2 == "4" { $Severity = "Informational"; $AexSeverity =
"Informational"; } \

84

 else if $2 == "8" { $Severity = "Notice"; $AexSeverity = "Trace";
} \

 else if $2 == "16" { $Severity = "Debug"; $AexSeverity =
"Verbose"; } \

 if ($2 == "1" OR $2 == "2") { $SyslogFacilityValue = 14; } \

 else { $SyslogFacilityValue = 13; } \

 $Source = $4; \

 $Thread = $8; \

 $TickCount = $9; \

 $Message = $10; \

 } \

 else { $Message = "No Regex match!"; $STATUS = "A7A neek";}

 Exec delete($EventReceivedTime); \

 delete($SourceModuleType);

 Exec to_syslog_ietf();

</Processor>

<Output SSL_out>

 Module om_ssl

 Host 10.31.24.133

 Port 23456

 CAFile C:\Program Files (x86)\nxlog\cert\ca.crt

 CertFile C:\Program Files (x86)\nxlog\cert\client.crt

 CertKeyFile C:\Program Files (x86)\nxlog\cert\client.key

 CRLFile C:\Program Files (x86)\nxlog\cert\CRL.crt

 KeyPass passphrase

 OutputType Binary

</Output>

<Route WinEventLog>

 Path WinEventLog_in => WinEventLog_out, TCP_out, SSL_out

</Route>

<Route SMP>

 Path SMP_in => parse_SMP_IETF => SMP_out, SSL_out

</Route>

<Route Agent>

 Path AexAgent_in => parse_AexAgent_IETF => AexAgent_out, SSL_out

</Route>

85

Appendix 2 - OpenSSL configuration files

Appendix 2.1 - OpenSSL Certificate Authority Configuration file

OpenSSL root CA configuration file.

[ca]

default_ca = CA_default

[CA_default]

dir = d:/certs/ca

certs = $dir/certs

crl_dir = $dir/crl

new_certs_dir = $dir/newcerts

database = $dir/index.txt

serial = $dir/serial

RANDFILE = $dir/private/.rand

private_key = $dir/private/ca.key

certificate = $dir/ca.pem

crlnumber = $dir/crlnumber

crl = $dir/crl/ca-crl.pem

crl_extensions = crl_ext

default_crl_days = 365

default_md = sha256

name_opt = ca_default

cert_opt = ca_default

default_days = 3650

preserve = no

policy = policy_match

[policy_match]

countryName = match

stateOrProvinceName = match

organizationName = match

organizationalUnitName = optional

commonName = supplied

emailAddress = optional

[req]

default_bits = 4096

distinguished_name = req_distinguished_name

string_mask = utf8only

default_md = sha256

x509_extensions = v3_ca

[req_distinguished_name]

countryName = Country Name (2 letter code)

stateOrProvinceName = State or Province Name

localityName = Locality Name

0.organizationName = Organization Name

organizationalUnitName = Organizational Unit Name

commonName = Common Name

emailAddress = Email Address

countryName_default = EE

stateOrProvinceName_default = Harjumaa

localityName_default =

0.organizationName_default =

organizationalUnitName_default =

emailAddress_default =

86

[v3_ca]

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer

basicConstraints = critical, CA:true

keyUsage = critical, digitalSignature, cRLSign, keyCertSign

[v3_intermediate_ca]

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer

basicConstraints = critical, CA:true, pathlen:0

keyUsage = critical, digitalSignature, cRLSign, keyCertSign

crlDistributionPoints = URI:http://www.minagerges.com/certs/ca-01.crl

authorityInfoAccess = OCSP;URI:http://www.minagerges.com/certs/ocsp/ca-01/

[crl_ext]

authorityKeyIdentifier = keyid:always

Appendix 2.2 - OpenSSL Intermediate Certificate Authority Configuration file

OpenSSL root CA configuration file.

[ca]

default_ca = Intermediate_CA_default

[Intermediate_CA_default]

dir = d:/certs/intermediate

certs = $dir/certs

crl_dir = $dir/crl

new_certs_dir = $dir/newcerts

database = $dir/index.txt

serial = $dir/serial

RANDFILE = $dir/private/.rand

private_key = $dir/private/intermediate.key

certificate = $dir/intermediate.pem

crlnumber = $dir/crlnumber

crl = $dir/crl/intermediate-crl.pem

crl_extensions = crl_ext

default_crl_days = 365

default_md = sha256

name_opt = intermediate_ca_default

cert_opt = intermediate_ca_default

default_days = 3650

preserve = no

policy = policy_no_match

[policy_no_match]

countryName = optional

stateOrProvinceName = optional

organizationName = optional

organizationalUnitName = optional

commonName = optional

emailAddress = optional

[req]

default_bits = 4096

distinguished_name = req_distinguished_name

87

string_mask = utf8only

default_md = sha256

x509_extensions = v3_ca

[req_distinguished_name]

countryName = Country Name (2 letter code)

stateOrProvinceName = State or Province Name

localityName = Locality Name

0.organizationName = Organization Name

organizationalUnitName = Organizational Unit Name

commonName = Common Name

emailAddress = Email Address

countryName_default = EE

stateOrProvinceName_default = Harjumaa

localityName_default =

0.organizationName_default =

organizationalUnitName_default =

emailAddress_default =

[v3_ca]

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer

basicConstraints = critical, CA:true

keyUsage = critical, digitalSignature, cRLSign, keyCertSign

[server_cert]

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid,issuer:always

basicConstraints = CA:FALSE

keyUsage = critical, digitalSignature, keyEncipherment

extendedKeyUsage = serverAuth

crlDistributionPoints = URI:http://www.minagerges.com/certs/intermediate-01.crl

authorityInfoAccess = OCSP;URI:http://www.minagerges.com/certs/ocsp/intermediate-ca-01/

[usr_cert]

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid,issuer

basicConstraints = CA:FALSE

keyUsage = critical, nonRepudiation, digitalSignature, keyEncipherment

extendedKeyUsage = clientAuth, emailProtection

crlDistributionPoints = URI:http://www.minagerges.com/certs/intermediate-01.crl

authorityInfoAccess = OCSP;URI:http://www.minagerges.com/certs/ocsp/intermediate-ca-01/

[crl_ext]

authorityKeyIdentifier = keyid:always

88

Appendix 3 – SEC rules (POC)

Appendix 3.1 – Required Hierarchal rulesets for Windows Events

File: WinEvt_Dispatcher.sec

rem=Windown Event Logs Dispatcher

rem= Requires accepting Sysmon.exe, SigCheck.exe and Virus total EULA,

USING SAME ACCOUNT RUNNING SECWIN (SYSTEM ACCOUNT)

rem= Install Sysmon cmd: Sysmon.exe -i -l -n -accepteula

type=jump

ptype=perlfunc

pattern=sub { my(%hash); my($line) = $_[0]; \

 if ($line !~ /Channel="Microsoft-Windows-Sysmon/) {

return 0; } \

 @array = $line =~ /\[NXLOG@\d+\s(.*)\](.*)/; $input =

$array[0]; \

 @pairs = split('" ', $input); \

 foreach my $item(@pairs) { \

 my ($i,$j)= split('="', $item); \

 $hash{$i} = $j;} \

 $hash{"Message"} = $array[1]; \

 return \%hash;\

 }

varmap=Sysmon_ht

desc=Parse Sysmon events to hashtable

cfset=SYSMON

rem=SecurityAudit

type=jump

ptype=perlfunc3

pattern=sub { my(%hash); my($line) = $_[0]; \

 if ($line !~ /Channel="Security"/) { return 0; } \

 if ($line !~ /EventID="4663"/) { return 0; } \

 $line = $_[0].$_[2]; \

 @array = $line =~ /\[NXLOG@\d+\s(.*)\](.*)/; $input =

$array[0]; \

 @pairs = split('" ', $input); \

 foreach my $item(@pairs) { \

 my ($i,$j)= split('="', $item); \

 $hash{$i} = $j;} \

 $hash{"Message"} = $array[1]; \

 return \%hash;\

 }

varmap=SecurityAudit_ht

desc=Parse SecurityAudit 4663 events to hashtable

cfset=SECURITYAUDIT

type=jump

ptype=perlfunc19

pattern=sub { my(%hash); my($line) = $_[0]; \

 if ($line !~ /Channel="Security"/) { return 0; } \

 if ($line !~ /EventID="4656"/) { return 0; } \

 $line = $_[0].$_[18]; \

 @array = $line =~ /\[NXLOG@\d+\s(.*)\](.*)/; $input =

$array[0]; \

 @pairs = split('" ', $input); \

 foreach my $item(@pairs) { \

89

 my ($i,$j)= split('="', $item); \

 $hash{$i} = $j;} \

 $hash{"Message"} = $array[1]; \

 return \%hash;\

 }

varmap=SecurityAudit_ht

desc=Parse SecurityAudit 4656 events to hashtable

cfset=SECURITYAUDIT

rem=Other SecurityAudit

type=jump

ptype=perlfunc

pattern=sub { my(%hash); my($line) = $_[0]; \

 if ($line !~ /Channel="Security"/) { return 0; } \

 @array = $line =~ /\[NXLOG@\d+\s(.*)\](.*)/; $input =

$array[0]; \

 @pairs = split('" ', $input); \

 foreach my $item(@pairs) { \

 my ($i,$j)= split('="', $item); \

 $hash{$i} = $j;} \

 $hash{"Message"} = $array[1]; \

 return \%hash;\

 }

varmap=SecurityAudit_ht

desc=Parse SecurityAudit Other events to hashtable

cfset=SECURITYAUDIT

rem=Application

type=jump

ptype=perlfunc

pattern=sub { my(%hash); my($line) = $_[0]; \

 if ($line !~ /Channel="Application"/) { return 0; } \

 @array = $line =~ /\[NXLOG@\d+\s(.*)\](.*)/; $input =

$array[0]; \

 @pairs = split('" ', $input); \

 foreach my $item(@pairs) { \

 my ($i,$j)= split('="', $item); \

 $hash{$i} = $j;} \

 $hash{"Message"} = $array[1]; \

 return \%hash;\

 }

varmap=Application_ht

desc=Parse Application events to hashtable

cfset=APPLICATION

rem=Other, mind multiline events and perlfuncN

type=jump

ptype=perlfunc

pattern=sub { my(%hash); my($line) = $_[0]; \

 if ($line !~ /Channel=".*"/) { return 0; } \

 @array = $line =~ /\[NXLOG@\d+\s(.*)\](.*)/; $input =

$array[0]; \

 @pairs = split('" ', $input); \

 foreach my $item(@pairs) { \

 my ($i,$j)= split('="', $item); \

 $hash{$i} = $j;} \

 $hash{"Message"} = $array[1]; \

 return \%hash;\

 }

90

varmap=WinEvtOther_ht

desc=Parse other Win events to hashtable

cfset=WINEVTOTHER

File: Sysmon.sec

type=Options

procallin=no

joincfset=SYSMON

type=single

ptype=cached

pattern=Sysmon_ht

context=Sysmon_ht:>(sub { return $_[0]->{"EventID"} eq "1" ; })

desc=Process Created by [$+{User}] image:$+{Image}

parentImage:$+{ParentImage}

action=logonly; \

 create PROCESS_$+{Hashes} 1 ;\

 event

ProcessStarted_Image=[$+{Image}]_Hash=[$+{Hashes}]_Parent=[$+{ParentIm

age}] $+{_inputsrc}

type=single

ptype=cached

pattern=Sysmon_ht

context=Sysmon_ht:>(sub { return $_[0]->{"EventID"} eq "2" ; })

desc=Process Changed file creation tTimeStamp image:$+{Image}

parentImage:$+{ParentImage} Hash:[$+{Hashes}]

action=logonly; \

 create PROCESS_$+{Hashes} 1 ;\

 event ProcessChanged-File-

tTimeStamp_Image=[$+{Image}]_Hash=[$+{Hashes}]_FILE=[$+{File}]

type=single

ptype=cached

pattern=Sysmon_ht

context=Sysmon_ht:>(sub { return $_[0]->{"EventID"} eq "3" && $_[0]-

>{"ProcessId"} ne "4" ; })

desc=NetworkConnectionActivity by [$+{User}] image:$+{Image}

SRCIP=[$+{SourceIp}] DSTIP=[$+{DestinationIp}]

DSTport=[$+{DestinationPort}] DSTportName=[$+{DestinationPortName}]

action=event

NetworkConnectionActivity_Image=[$+{Image}]_IsInitiated=[$+{Initiated}

]_Protocol=[$+{Protocol}]_SRCIP=[$+{SourceIp}]_DSTIP=[$+{DestinationIp

}]_DSTport=[$+{DestinationPort}]_DSTportName=[$+{DestinationPortName}]

type=single

ptype=cached

pattern=Sysmon_ht

context=Sysmon_ht:>(sub { return $_[0]->{"EventID"} eq "4"; })

desc= <<URGENT>> Sysmon service state changed State:[$+{State}]

action=logonly; create SYSMON_SERVICE_STATE 2; event

SysmonService_StatusChanged_$+{State}

type=single

ptype=cached

pattern=Sysmon_ht

context=Sysmon_ht:>(sub { return $_[0]->{"EventID"} eq "5" ; })

91

desc=Process Terminated image:[$+{Image}] processID:[$+{ProcessId}]

UtcTime:[$+{UtcTime}]

action=logonly;

type=single

ptype=cached

pattern=Sysmon_ht

context=Sysmon_ht:>(sub { return $_[0]->{"EventID"} eq "6" ; })

desc=Driver loaded ImageLoaded:$+{ImageLoaded} Signed:$+{Signed}

Signature:$+{Signature} HashType$+{HashType} Hash:$+{Hash}

action=logonly; create DriverLoaded_$+{Hash} 1; event

Driver_Loaded_Signed=[$+{Signed}]_ImageLoaded=[$+{ImageLoaded}]_Hash=[

$+{Hash}]

type=single

ptype=cached

pattern=Sysmon_ht

context=Sysmon_ht:>(sub { return $_[0]->{"EventID"} eq "7" ; })

desc=Image Loaded Image:[$+{Image}] Hash:[$+{Hashes}]

ImageLoaded:[$+{ImageLoaded}] Signed;[$+{Signed}]

action=create PROCESS_$+{Hashes} 1 ;\

 event

ImageLoaded_Image=[$+{Image}]_Hash=[$+{Hashes}]_ImageLoaded=[$+{ImageL

oaded}]_Signed=[$+{Signed}]

type=single

ptype=cached

pattern=Sysmon_ht

context=Sysmon_ht:>(sub { return $_[0]->{"EventID"} eq "8" ; })

desc=<<Suspeciouse activity>> Created Remote Thread

SourceImage:$+{SourceImage} id:$+{SourceProcessId}

TargetImage:$+{TargetImage} id:$+{TargetProcessId}

ThreadID:$+{NewThreadId} Function:$+{StartFunction}

action=logonly;

type=single

ptype=cached

pattern=Sysmon_ht

context=Sysmon_ht:>(sub { return $_[0]->{"EventID"} eq "9" ; })

desc=Raw Disk Access Read image:[$+{Image}] PID=[$+{ProcessId}]

Device=[$+{Device}]

action=event

RawAccessRead_Image=[$+{Image}]_PID=[$+{ProcessId}]_Device=[$+{Device}

]

type=single

ptype=cached

pattern=Sysmon_ht

context=Sysmon_ht:>(sub { return $_[0]->{"EventID"} eq "255" ; })

desc=<<Critical>> Sysmon ERROR id:$+{ID} Description:[$+{Description}]

action=logonly;

File: WinEvt_SecurityAudit.sec

type=Options

procallin=no

joincfset=SECURITYAUDIT

92

rem=Detailed event information

https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event

.aspx?eventID=0000

type=single

ptype=cached

pattern=SecurityAudit_ht

context=SecurityAudit_ht:>(sub { return $_[0]->{"EventID"} eq "1006"

; })

desc=<<EXTREMELY URGENT>> Malware Detected by Win_Defender

action=logonly; event WinDefenderMalwareDetected

type=single

ptype=cached

pattern=SecurityAudit_ht

context=SecurityAudit_ht:>(sub { return $_[0]->{"EventID"} eq "1008"

; })

desc=<<EXTREMELY URGENT>> anActionon Malware failed by Win_Defender

action=logonly; event WinDefenderActionFailed

type=single

ptype=cached

pattern=SecurityAudit_ht

context=SecurityAudit_ht:>(sub { return $_[0]->{"EventID"} eq "1102"

; })

desc=<<EXTREMELY URGENT>> EventLog cleared by User:[$+{SecurityID}]

action=logonly; event WINEVT_AUDIT_LOG_CLEARED_User=[$+{SecurityID}]

type=single

ptype=cached

pattern=SecurityAudit_ht

context=SecurityAudit_ht:>(sub { return $_[0]->{"EventID"} eq "1104"

; })

desc=<<EXTREMELY URGENT>> EventLog is full

action=logonly; event WINEVT_AUDIT_LOG_Full

type=single

ptype=cached

pattern=SecurityAudit_ht

context=SecurityAudit_ht:>(sub { return $_[0]->{"EventID"} eq "4624"

; })

desc=An account was successfully logged on

action=logonly; create SuccessfulLogon_$+{LogonID} ; event

SuccessfulLogon_User=[$+{SecurityID}]_LogonID=[$+{LogonID}]_LogonType=

[$+{LogonType}]_ProcessName=[$+{ProcessName}]_SourceIP=[$+{SourceNetwo

rkAddress}]

type=single

ptype=cached

pattern=SecurityAudit_ht

context=SecurityAudit_ht:>(sub { return $_[0]->{"EventID"} eq "4648"

; })

desc=A logon was attempted using explicit credentials by

User:$+{SecurityID}

action=none; Create EXPLICIT_LOGON_ID_$+{LogonID} ; event

ExplicitLogon_Process=[$+{ProcessName}]_User=[$+{SecurityID}]_Credenti

als=[{$+{AccountDomain}\$+{AccountName}}]_TargetServer=[$+{TargetServe

rName}]

type=single

93

ptype=cached

pattern=SecurityAudit_ht

context=SecurityAudit_ht:>(sub { return $_[0]->{"EventID"} eq "4656"

; })

desc=A handle to an object was requested:

ProcessName:[$+{ProcessName}] ObjectName:[$+{ObjectName}]

User:[$+{SecurityID}] Message:[$+{Message}]

action=logonly;

rem=correlated with 4663 to define object name based on HandleID

>>>>NOT DONE YET

type=single

ptype=cached

pattern=SecurityAudit_ht

context=SecurityAudit_ht:>(sub { return $_[0]->{"EventID"} eq "4660"

; })

desc=An object was deleted object: ProcessName:[$+{ProcessName}]

ObjectName:[$+{ObjectName}] User:[$+{SecurityID}]

Message:[$+{Message}]

action=logonly; create ObjectDeleted_$+{HandleID} ; event

ObjectDeleted_HandleID=[$+{HandleID}]_ProcessName=[$+{ProcessName}]_Us

er=[$+{SecurityID}]

type=single

ptype=cached

pattern=SecurityAudit_ht

context=SecurityAudit_ht:>(sub { return $_[0]->{"EventID"} eq "4663"

; })

desc=An attempt was made to access an object:

ProcessName:[$+{ProcessName}] ObjectName:[$+{ObjectName}]

User:[$+{SecurityID}] Message:[$+{Message}]

action=logonly; create ObjectAccess_$+{HandleID}; event

ObjectAccess_HandleID=[$+{HandleID}]_ProcessName=[$+{ProcessName}]_Obj

ectName=[$+{ObjectName}]_User=[$+{SecurityID}]

rem=event

AccessesObject_4463_ProcessName=[$+{ProcessName}]_ObjectName=[$+{Objec

tName}]_User=$+{SecurityID}_Message=[$+{Message}]

continue=takenext

type=single

ptype=cached

pattern=SecurityAudit_ht

context=SecurityAudit_ht:>(sub { return ($_[0]->{"EventID"} eq "4663"

&& $_[0]->{"Message"} =~ /Accesses\:\tWriteData.*AddFile/) ; })

desc= <<WRITEDATA>> An attempt was made to access an object:

ProcessName:[$+{ProcessName}] ObjectName:[$+{ObjectName}]

User:[$+{SecurityID}] Message:[$+{Message}]

action=logonly; event

ObjectAccess_WriteData_HandleID=[$+{HandleID}]_ProcessName=[$+{Process

Name}]_ObjectName=[$+{ObjectName}]_User=[$+{SecurityID}] ;\

 delete SCANNED_$+{ObjectName}

rem=Correlated with 4624:An account was successfully logged on

type=single

ptype=cached

pattern=SecurityAudit_ht

context=SecurityAudit_ht:>(sub { return $_[0]->{"EventID"} eq "4672"

; })

desc=<<Privileges Escalation>> Special privileges assigned to new

logon: User:[$+{SecurityID}] Message:[$+{Message}]

94

action=logonly; create PrivilegesEscalation_$+{LogonID} ; event

PrivilegesEscalation_User=[$+{SecurityID}]_LogonID=[$+{LogonID}]

type=single

ptype=cached

pattern=SecurityAudit_ht

context=SecurityAudit_ht:>(sub { return $_[0]->{"EventID"} eq "4719"

; })

desc=Audit Policy Changed: Category:$+{Category}

Subcategory:$+{Subcategory} Changes:$+{Changes}

action=logonly;

type=single

ptype=cached

pattern=SecurityAudit_ht

context=SecurityAudit_ht:>(sub { return ($_[0]->{"EventID"} eq "5140"

&& $_[0]->{"EventID"} !~ /\\IPC\$/); })

desc=<<SUSPICIOUSE ACTIVITY>> Network share has been accessed

action=logonly; Create

NetworkShareAccessed_SourceIP_$+{SourceAddress} ; event

NetworkShareAccessed_SourceIP=[$+{SourceAddress}]_User=[$+{SecurityID}

]_Share=[$+{ShareName}]

File: WinEvt_Application.sec

type=Options

procallin=no

joincfset=APPLICATION

type=single

ptype=cached

pattern=Application_ht

context=Application_ht:>(sub { return $_[0]->{"EventType"} eq "Error"

; })

desc=WinEvt Application Error EventID:$+{EventID} Source:$+{Source}

Message:$+{Message}

action=logonly;

type=single

ptype=cached

pattern=Application_ht

context=Application_ht:>(sub { return $_[0]->{"EventType"} eq

"Warning" ; })

desc=WinEvt Application Error EventID:$+{EventID} Source:$+{Source}

Message:$+{Message}

action=logonly;

File: WinEvt_Other.sec

type=Options

procallin=no

joincfset=WINEVTOTHER

type=single

ptype=cached

pattern=WinEvtOther_ht

95

context=WinEvtOther_ht:>(sub { return $_[0]->{"EventType"} eq "Error"

; })

desc=<<Critical>> WinEvt Error Channel:[$+{Channel}]

EventID:$+{EventID} Source:[$+{Source}] Message:[$+{Message}]

action=logonly;

type=single

ptype=cached

pattern=WinEvtOther_ht

context=WinEvtOther_ht:>(sub { return $_[0]->{"EventType"} eq

"Warning" ; })

desc=<<Warning>> WinEvt Warning Channel:[$+{Channel}]

EventID:$+{EventID} Source:[$+{Source}] Message:[$+{Message}]

action=logonly;

Appendix 3.2 – Detecting malware and ransomware activities

File: Malware.sec

rem=process started another instance of itself

type=Single

ptype=RegExp

pattern=ProcessStarted_Image=\[(.*)\]_Hash=\[(.*)\]_Parent=\[(.*)\]

context=PROCESS_SHA1=62952E85C608B68EDE624F1F1C3AB6BB0CD6B092 ||

PROCESS_SHA1=4CB74DC73887907F1EFD67CF6690DD037D88F95D

desc=TRUSTED Process $1 started by $3 [HASH:$2]

rem= TRUSTED processes hashes to avoid dead loop (Perl & SigCheck)

action=none

type=Single

ptype=RegExp

pattern=ProcessStarted_Image=\[(.*)\]_Hash=\[(.*)\]_Parent=\[(.*)\]

context=PROCESS_$2 &&

!PROCESS_SHA1=62952E85C608B68EDE624F1F1C3AB6BB0CD6B092 &&

!PROCESS_SHA1=4CB74DC73887907F1EFD67CF6690DD037D88F95D

desc=Process $1 started by $3 [HASH:$2]

continue=takenext

action=create HASH_$2_IMAGE_$1 60

type=Single

ptype=RegExp

pattern=ProcessStarted_Image=\[(.*)\]_Hash=\[(.*)\]_Parent=\[(.*)\]

context=HASH_$2_IMAGE_$3 && !SCANNED_$2

desc=<<Maliciouse Activity>> Process $3 forked itself as $1 [Hash:$2]

action=logonly; cspawn FileSigChecked sigcheck -q -c -vs "$1"; create

SCANNED_$2 86400

type=jump

ptype=perlfunc2

context=FileSigChecked

pattern=sub { if ($_[0] =~ /^.Path,Verified,/) { return 0; } \

 my(%hash); @fields = split(',', $_[0]); @values =

split(',', $_[1]);\

 @hash{@fields} = @values;\

 foreach $key (keys \%hash) { $keyns = $key; $keyns=~s/

/_/g; $hash{$keyns}=$hash{$key}; } \

 return \%hash; }

varmap=SigCheck_VThashtable

desc=Parse SigCheck csv output to hashtable

cfset=sigcheck

96

rem=Warn about semi trusted processes

type=single

ptype=RegExp

pattern=ProcessStarted_Image=\[(.*)\]_Hash=\[(.*)\]_Parent=\[(.*)\]

desc=THIS MUST BE A TRUST PROCESS!!!: Process $1 started by $3

[HASH:$2]

rem=must return csv

action=logonly

type=Single

ptype=RegExp

pattern=ImageLoaded_Image=\[(.*)\]_Hash=\[(.*)\]_ImageLoaded=\[(.*)\]_

Signed=false

context=HASH_$2_IMAGE_$3 && !SCANNED_$2

desc=<<Suspicious Activity>> Unsigned library [$3] LoadedBy [$1]

[Hash:$2]

action=logonly; cspawn FileSigChecked sigcheck -q -c -vs "$1"; create

SCANNED_$2 86400

type=Single

ptype=RegExp

pattern=RawAccessRead_Image=\[(.*)\]_PID=\[(.*)\]_Device=\[(.*)\]

context=!SCANNED_$1

desc=<<Suspicious Activity>> RAW DISK ACCESS READ from process [$1]

PID:[$2] Device:[$3]

action=logonly; cspawn FileSigChecked sigcheck -q -c -vs "$1"; create

SCANNED_$1 86400

rem=RansomWare, Change count and time periods

type=SingleWithThreshold

ptype=RegExp

pattern=AccessesObject_WriteData_4463_ProcessName=\[(.*)\]_ObjectName=

\[(.*)\]_User=\[(.*)\]

rem=context=AccessesObject_WriteData

desc=<<Suspected RansomWare>> Many DataWrite by process $1 within very

shorttime

action=logonly; cspawn FileSigChecked sigcheck -q -c -vs "$1"; create

SCANNED_$1 86400

thresh=5

window=3

rem= Port Scan

type=SingleWithThreshold

ptype=RegExp

pattern=NetworkConnectionActivity_Image=\[(.*)\]_IsInitiated=\[false\]

_Protocol=\[(.*)\]_SRCIP=\[(.*)\]_DSTIP=\[(.*)\]_DSTport=\[(.*)\]_DSTp

ortName=\[(.*)\]

desc=Five UnInitiated connection from $3

action=event 5_UNINITIATED_CONNECTIONS_PORT_$5_FROM_$3; create

UNINITIATED_CONNECTIONS_SRC_$3

window=60

thresh=5

type=EventGroup

init=create UNINITIATED_CONNECTION_COUNTING

end=delete UNINITIATED_CONNECTION_COUNTING

ptype=RegExp

pattern=5_UNINITIATED_CONNECTIONS_PORT_(\d+)_FROM_(.*)

97

context=!UNINITIATED_CONNECTION_$2_COUNTED

count=alias UNINITIATED_CONNECTION_COUNTING

UNINITIATED_CONNECTION_$2_COUNTED

desc=Repeated UnInitiated connection from $2 for 20 distinct ports

within 1 minute

action=logonly

window=60

thresh=20

File: SigCheck.sec

type=Options

procallin=no

joincfset=SIGCHECK

type=single

ptype=cached

pattern=SigCheck_VThashtable

context=SigCheck_VThashtable:>(sub { return exists($_[0]-

>{"Verified"}) ; })

desc=SigCheck result: process image is [$+{Verified}] image:[$+{Path}]

VirusTotal_detection:[$+{VT_detection}] VirusTotal_link:[$+{VT_link}]

continue=takenext

action=logonly

type=single

ptype=cached

pattern=SigCheck_VThashtable

context=SigCheck_VThashtable:>(sub { @array = $_[0]-

>{"VT_detection"} =~ /(\d+)\|(\d+)/ ; return $array[0] > 0 })

desc=<<Known malware detected by VirusTotal>> process image is

[$+{Verified}] image:[$+{Path}]

VirusTotal_detection:[$+{VT_detection}] VirusTotal_link:[$+{VT_link}]

action=logonly

rem=rerun Sigcheck to get result after 5 minutes

type=single

ptype=cached

pattern=SigCheck_VThashtable

context=SigCheck_VThashtable:>(sub { return $_[0]->{"Verified"} eq

"Submitted" ; })

desc=>>Submitted [$+{Verified}] file to VirusTotal image:$+{Path}

VirusTotal_detection:$+{VT_detection} VirusTotal_link:$+{VT_link}

action=logonly; delete SCANNED_$+{Path}; cspawn FileSigChecked ping

127.0.0.1 -n 300 > nul && sigcheck -q -c -vs "$+{Path}"

Appendix 3.3 – System compromise

File: Compromise.sec

rem=Monitor Sysmon service for stopped status

type=single

ptype=RegExp

pattern=SysmonService_StatusChanged_Stopped

context=SYSMON_SERVICE_STATE

98

desc=<<Suspeciouse incident>> Sysmon Service Stopped, will be started

again

action=logonly; cspawn STARTING_SYSMON net start Sysmon

continue=takenext

type=PairWithWindow

ptype=RegExp

pattern=SysmonService_StatusChanged_Stopped

context=SYSMON_SERVICE_STATE

desc=<<EXTREMELY URGENT>> Sysmon service stopped and failed to start

again within 30 seconds

action=logonly;

ptype2=RegExp

pattern2=The Sysmon service was started successfully

context2=STARTING_SYSMON

desc2=Sysmon service was restarted by correlation engine after it was

stopped

action2=logonly

window=30

rem=NetworkShareAccessed

type=single

ptype=RegExp

pattern=NetworkShareAccessed_SourceIP=\[(.*)\]_User=\[(.*\\localadmin)

\]_Share=\[(.*)\]

context=NetworkShareAccessed_SourceIP_$1

desc=<<VERY Suspeciouse incident>> Network share access by local admin

from IP:$1 user:$2 on share:$3

action=logonly;

continue=takenext

type=single

ptype=RegExp

pattern=NetworkShareAccessed_SourceIP=\[(.*)\]_User=\[(.*)\]_Share=\[(

.*\$)\]

context=NetworkShareAccessed_SourceIP_$1

desc=<<VERY Suspeciouse incident>> Network share access to a hidden

share from IP:$1 user:$2 on share:$3

action=logonly;

rem=Privileges Escalation

type=Pair

ptype=RegExp

pattern=SuccessfulLogon_User=\[(.*)\]_LogonID=\[(.*)\]_LogonType=\[(.*

)\]_ProcessName=\[(.*)\]_SourceIP=\[(.*)\]

context=SuccessfulLogon_$2

desc=Successfull Logon for user $1

action=none

ptype2=RegExp

pattern2=PrivilegesEscalation_User=[$+{SecurityID}]_LogonID=[$+{LogonI

D}]

context2=PrivilegesEscalation_$2

desc2=<<Attention required>> Privileges Escalation by user:[$1]

processName:%4 SourceIP:%5

action2=logonly

window=0

rem=Deleted Object

type=Pair

ptype=RegExp

99

pattern=ObjectAccess_HandleID=\[(.*)\]_ProcessName=\[(.*)\]_ObjectName

=\[(.*)\]_User=\[(.*)\]

context=ObjectAccess_$1

desc=ObjectAccess object:[$3] ProcessName:[$2] User:[$4]

continue=takenext

action=none

ptype2=RegExp

pattern2=ObjectDeleted_HandleID=\[(.*)\]_ProcessName=\[(.*)\]_User=\[(

.*)\]

context2=ObjectDeleted_$1

desc2=<<Attention required>> Objected was deleted ObjectName:[%3]

ProcessName:[$2] user[$3]

action2=logonly;

window=0

100

Appendix 4 – Installation and Configuration scripts

Appendix 4.1 – Install NXLog-ce, SECwin

'Download NXLog-ce

dim xHttpNXmsi: Set xHttpNXmsi = createobject("Microsoft.XMLHTTP")

dim bStrm: Set bStrm = createobject("Adodb.Stream")

xHttpNXmsi.Open "GET",

"http://nxlog.org/system/files/products/files/1/nxlog-ce-

2.9.1504.msi", False

xHttpNXmsi.Send

with bStrm

 .type = 1

 .open

 .write xHttpNXmsi.responseBody

 .savetofile "c:\windows\temp\nxlog-ce-2.9.1504.msi", 2

end with

'Install NXLog-ce

Set WshShell = WScript.CreateObject("WScript.Shell")

sCmd = "msiexec /qn /i c:\windows\temp\nxlog-ce-2.9.1504.msi"

WshShell.Run sCmd , 1, True

'Deploy NXLog-ce config file

dim xHttpNXcfg: Set xHttpNXcfg = createobject("Microsoft.XMLHTTP")

dim bStrm1: Set bStrm1 = createobject("Adodb.Stream")

xHttpNXcfg.Open "GET", "http://10.31.24.123/nxlog-ce_config.txt",

False

xHttpNXcfg.Send

with bStrm1

 .type = 1

 .open

 .write xHttpNXcfg.responseBody

 .savetofile "C:\Program Files (x86)\nxlog\conf\nxlog.conf", 2

end with

'Enable All Audit Log

sCmd = "auditpol /set /category:* /success:enable /failure:enable"

WshShell.Run sCmd , 1, True

'Start NXLog-ce service

sCmd = "net start nxlog"

WshShell.Run sCmd , 1, True

'Download SECwin

dim xHttp: Set xHttp = createobject("Microsoft.XMLHTTP")

dim bStrm: Set bStrm = createobject("Adodb.Stream")

xHttp.Open "GET",

"https://github.com/minagerges/SECwin/releases/download/1.2.1450/SECwi

n-setup-1.2.1450.msi", False

xHttp.Send

with bStrm

 .type = 1 '//binary

 .open

 .write xHttp.responseBody

 .savetofile "c:\windows\temp\SECwin-setup-1.2.1450.msi", 2

end with

'Install SECwin

Set WshShell = WScript.CreateObject("WScript.Shell")

sCmd = "msiexec /qn /i c:\windows\temp\SECwin-setup-1.2.1450.msi"

WshShell.Run sCmd , 1, True

'Deploy SECwin config

dim xHttp1: Set xHttp1 = createobject("Microsoft.XMLHTTP")

dim bStrm1: Set bStrm1 = createobject("Adodb.Stream")

101

xHttp1.Open "GET", "http://10.31.24.123/SECwin_config.txt", False

xHttp1.Send

with bStrm1

 .type = 1

 .open

 .write xHttp1.responseBody

 .savetofile "C:\Program Files\SECwin\Config.reg", 2

end with

'Apply SECwin Config

sCmd = ’regedit /s "C:\Program Files\SECwin\Config.reg"’

WshShell.Run sCmd , 1, True

'Start SECwin service

sCmd = "net start SECwin"

WshShell.Run sCmd , 1, True

