
Tallinn 2021

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Shamchi Hoque Kaify 195667IASM

Analysis of Using Different Databases and

integration of SQL and NOSQL database

Master's thesis

Supervisor: Vladimir Viies

 Associate Professor

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Shamchi Hoque Kaify 195667IASM

Erinevate andmebaaside kasutamise võimaluste

analüüs ja SQL ning NOSQL ühildamine

Magistritöö

Juhendaja: Vladimir Viies

 Dotsent

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Shamchi Hoque Kaify

20.12.2021

4

MASTER`S THESIS TASK SPECIFICATION

Date: 25.11.2021

Student name: Shamchi Hoque Kaify

Student code: 195667IASM

Topic: Analysis of using different databases and integration of SQL and NOSQL

database

Topic background: With the fast advancement of technology, interaction between

application and user increased. Also, the need for faster interaction between the user and

application increased as well. For this increasing demand and trend of object-oriented

programming database connection and selection of appropriate database has become

one of the important research topics. In this thesis, we will analyse different types of

databases, different methods of database connection and integration. We will also

develop a Smart Prescription System on top of two different database integration

methods: polyglot persistence and multi-model database and evaluate their performance.

Supervisor: Vladimir Viies

Additional specifications: By the end of this project, it is expected that an application

would be developed, and we can see the performance of each kind of database

integration.

Issues to be resolved according to the following learning outcomes:

A) System aspects:

i. Analysis of different types of databases and methods of database

connection.

ii. Analysis of different methods of database integration.

iii. Implementation of two different methods and compare their performance

B) Software aspects:

i. Web application

Student’s signature:

Shamchi Hoque Kaify

5

Abstract

The uprising of the Internet of Things (IoT) has led to an exponential increase in volume,

velocity, and variety of data. This big data which needs to be handled is affecting the

performance of databases. Until recently, the relational database was the dominant

database for working with structured data, but sometimes it seems inefficient to handle

large unstructured data. Nowadays, NoSQL databases are becoming a more popular

solution for handling unstructured data. As some core features like ACID properties are

compromised in NoSQL databases, relational databases cannot be discarded, and they

still occupy a large part of the industry. To satisfy the business needs, it was needed to

use the best features of RDBMS (Relational Database Management System) and NoSQL,

and at that point, the idea of joining both the data models came. There are two mainstream

methods for integrating RDBMS and NoSQL databases: Polyglot Persistence and Multi-

model Database. This research aims to provide the reader with an up-to-date analysis of

different kinds of databases, how to connect them with an application, integration

methods of Relational and NoSQL databases, and introducing some such models. A

simple web application of Smart Prescription System was developed to evaluate the

performance of using database integration methods of both kinds, and future research

directions are discussed.

This thesis is written in English and is 71 pages long, including 3 chapters, 25 figures and

9 tables.

6

List of abbreviations and terms

IoT

NoSQL

ACID

RDBMS

Internet of Things

Not only SQL

Atomicity, Consistency, Isolation, and Durability

Relational Database Management System

ML

IBM

ACM

Machine Learning

International Business Machines Corporation

Association for Computing Machinery

BASE

DBMS

Basically Available, Soft State and Eventual Consistency

Database Management System

SQL

JSON

XML

YAML

BSON

JDBC

DCP

CGI

ASP

MySQL

API

HTTP

JDBC

ODBC

ORM

JTA

JNDI

JPA

ORDBMS

REST API

N1QL

DSE

GUI

Structured Query Language

JavaScript Object Notation

Extensible Markup Language

Yet Another Markup Language

Binary JSON

Java Database Connectivity

Database connection pool

Common Gateway Interface

Active Server Page

My Structured Query Language

Application programming interfaces

Hypertext Transfer Protocol

Java Database Connectivity

Open Database Connectivity

Object Relational Mapping

Java Transaction API

Java Naming Directory

Java persistence API

Object relational Database Management System

Representational State Transfer Application programming

interfaces

Non-first Normal Form Query Language

Dataset Enterprise

Graphical User Interface

7

CLI

UML

RAM

GPU

Command Line Interface

Unified Modeling Language

Random access memory

Graphics processing unit

8

Table of contents

Introduction ... 12

1 Analysis of different databases and connection of database with application 15

1.1 Analysis of Different Databases ... 15

1.1.1 Relational Databases ... 16

1.1.2 NOSQL Model .. 17

1.2 Connecting Database with Application .. 25

1.2.1 CGI .. 28

1.2.2 PHP3 .. 29

1.2.3 Python .. 30

1.2.4 JAVA ... 31

2 Database Integration ... 39

2.1 Polyglot Persistence .. 39

2.1.1 BigDAWG .. 41

2.1.2 Polybase ... 43

2.1.3 RHEEM ... 44

2.2 Multi-modal Database .. 45

3 Application Development and Performance Evaluation .. 48

3.1 Proposed Application ... 48

3.1.1 Front-end ... 49

3.1.2 Backend ... 49

3.1.3 System Modelling .. 50

3.1.4 System Development: .. 53

3.2 Description of Data ... 60

3.3 Experimentation and result ... 60

Summery .. 63

References ... 64

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis .. 66

Appendix 2 – Description and Manual .. 67

9

Appendix 3 – Source Code .. 68

10

List of figures

Figure 1: Web application architecture using SQL and NoSQL Data 13

Figure 2: State of Database Landscape... 16

Figure 3: The principle working diagram of the database connection pool 26

Figure 4: Connection pool workflow diagram ... 27

Figure 5: Architecture of JDBC ... 34

Figure 6: JPA ORM .. 38

Figure 7: BigDAWG Architecture ... 42

Figure 8 BigDAWG Middleware components and workflow.. 42

Figure 9: RHEEM Architecture .. 45

Figure 10: Proposed system architecture with polystore database of the Smart

Prescription System .. 48

Figure 11: Proposed system architecture with multi-model database of the Smart

Prescription System .. 49

Figure 12: Activity diagram of Smart Medicine Prescription System 50

Figure 13: Use case diagram of Smart Medicine Prescription System 51

Figure 14: System using SQLite and MongoDB integration (Polystore) 52

Figure 15: System using OrientDB (Multi-model Database) ... 53

Figure 16 : User Profile Controller (API) ... 54

Figure 17: User Profile Service .. 54

Figure 18: User Profile Repository ... 55

Figure 19: Prescription Model class ... 55

Figure 20: OrientDB Establishing Connection ... 56

Figure 21: OrientDB UserProfile saving .. 57

Figure 22: Sign in page of Smart Prescription System ... 58

Figure 23: Doctor’s Home Page ... 58

Figure 24 : Patient’s homepage .. 59

Figure 25: Pharmacist’s Homepage .. 59

11

List of tables

Table 1. Difference between Relational and NoSQL Databases 18

Table 2. Features of different Relational Databases ... 21

Table 3. Features of different Wide-Column Databases .. 22

Table 4. Features of different Key-Value Databases .. 23

Table 5. Features of different Document Databases .. 24

Table 6. Average Read response time for both type of data stores 60

Table 7. Shows write performance for both kind of database solutions 61

Table 8. Average Query response time for both type of data stores 61

Table 9. Shows Memory and RAM usage while performing read and write operation on

both kind of database solutions .. 62

12

Introduction

In recent times, with fast advancement in technology, rapid industrialization, accessibility

of devices brought us to the time when we observe a sudden growth in mobile and

compact devices usage. Accommodation and streamlining of these devices are followed

by the evaluation of the Internet of Things (IoT), Cloud computing, etc., which eventually

generate an immense amount of data, i.e., Big Data, and most of them are unstructured

data. In general, the characteristics of Big Data are defined by the 3 V’s, which are

Volume, Velocity, and Variety. It is an evolving term that describes a large volume of

structured, semi-structured, and unstructured data, and these data are beneficial for future

ML (Machine Learning) and analytics projects. The generation of these enormous

amounts of data introduced new challenges, and one of the biggest challenges is the

storage of these data. While facing the Data storage challenges, we have to consider

scalability, performance, and interoperability.

For data storage, the relational database is being used for almost 40 years, and after

decades of experimentation and development of RDBMS (Relational Database

Management System), we are now using the fully-fledged model, and it has been the

industry standard till now. The theoretical concept of RDBMS was first introduced in

June 1970 by Edgar Frank Codd, a researcher of the company IBM. He published the

famous paper, i.e., A Relational Model of Data for Large Shared Data Banks, in

Communications of ACM [1]. According to Paradaens et al., a database system is a

collection of programs that run on a computer and help the user to collect, change, protect,

and manage information [2]. RDBMS are undoubtedly useful for storing tabular data that

can fit in a predefined schema and using SQL queries. They also support complex queries.

The property of RDBMS is defined by ACID, which stands for atomicity, consistency,

isolation, and durability. Nevertheless, while handling a large amount of highly connected

data, these databases show performance issues such as more extended query time return

and complex SQL queries. SQL seems to be less suitable for storing big data and

interconnected data, resulting in the NoSQL movement. NoSQL is schema-less, and for

better performance and scalability, they have discarded ACID compliance. The properties

13

of NoSQL databases are defined by the BASE, which stands for Basically Available, Soft

State, and Eventual Consistency. These types of databases are easy to design, have

horizontal scalability, are highly available and open source. NoSQL databases provide

less assurance than RDBMS, but they react quickly to rapid data changes and scale very

well.

Also, using a NoSQL database in many cases brings difficulties while storing ideal

relational data. Both have their pros and cons. To handle the ever-increasing needs of

users and enterprises, relying on only one kind of storage solution is not efficient. For

solution, lots of research performed in recent years to utilize or combine both kinds of

databases and data models, which proved that integration of RDBMS for structured data

and NoSQL databases for unstructured data makes development, data management, and

maintenance easier. Figure 1 shows such a scheme where the use of both SQL and NoSQL

databases is required to provide optimal performance utilizing the best features of each

type of database for optimal performance.

As the number of interactions increases, the load on the application increases as well,

which leads to a rise in response time. Object-oriented design is the current trend in

Figure 1: Web application architecture using SQL and NoSQL Data

14

software design patterns, and the database connection pool is an essential research issue

and how the application is connected with the database can impact this response time. In

this study, we analyzed different databases, discussed different methods of connecting

the application with a database, database connection pool, and different methods of

database integration, e.g., multi-model database and polystores. Finally, a web application

of Smart Prescription System is developed to compare the 2 types of database integration

models based on different factors. Ongoing research works, finished research, and

database and application development skills helped perform the research.

15

1 Analysis of different databases and connection of database

with application

Every digital computing device generates data in today’s fast-paced environment, and

these data can be monitored and analyzed by different users and enterprises for different

purposes and the system that serves these services are called databases. These data can

appear in structured or unstructured form, contain various data types, and need to be

analyzed in real-time. Depending on this nature, the selection of a database is crucial.

Also, how the database is connected to the application can affect response time. In this

section, different types of databases are analyzed, and several methods of connecting

databases with the application are discussed.

1.1 Analysis of Different Databases

The software that extracts helpful information and stores them from a collection of

electronic and digital records is called Database Management Systems or DBMS. DBMS

can save and retrieve user data while taking adequate security actions, including

manipulating the database by several programs. The DBMS accepts the request from the

applications and directs the OS (operating system) to supply the data. Data can be saved

and retrieved on DBMS through users and other third-party applications, and through

DBMS, businesses, and enterprises can get valuable insights and deep analytics. It serves

as a link between the data and the software. This part will discuss the most popular types

of DBMS in detail. There are more than 343 database engines available, and it is a huge

challenge to choose the proper database engine to fit the business application. Figure 2

shows the database technology available on the market till January 2016 to help navigate

the complex array of data platform providers [3].

16

1.1.1 Relational Databases

These are the traditional database systems that use standardized Structured Query

Language (SQL) for queries, and for this reason, they are also called SQL databases. They

manage data using a relational model [2]. The relational model is designed based on the

mathematical term relation, i.e., a subset of Cartesian products. The data are logically

represented as tuples that describe types of entities forming relations and follow strict

schema, preventing unnecessary data from entering the database. The property of

Relational Database Management System (RDBMS) is defined by ACID, ensuring data

validity in case of system failure and data validity. The relational data can be defined and

queried using Structured Query Language (SQL). There are some basic rules for relational

databases [1]. They are:

▪ Tables containing rows and columns must be used to store data and information.

▪ The name of the table, column, and primary key must be stated in order to access

the content of a column.

▪ Cases of absence and improper entry must be treated differently from expected

entries and must not be based on the type of data inserted.

▪ An active online index should be supported by the Database Management System.

Figure 2: State of Database Landscape [3]

17

▪ The Database Management System must support at least one language, which may

be used independently or in conjunction with other applications.

▪ Views must be able to be updated by the Database Management System.

▪ The Database Management System must support basic operations such as

insertion, updating, and deletion.

▪ Changes to the logical structure, such as adding or deleting columns from tables,

must not have an impact on user perspective.

▪ Physical changes, such as storage, must not have an impact on the overall

application.

▪ Integrity constraints should be separated from the application.

▪ The user must experience the impact of database distribution in a

distributed system.

1.1.2 NOSQL Model

With the advancement of technology and usage of big unstructured data, RDBMS failed

to show required performance, scalability, and flexibility when dealing with unstructured

and semi-structured data. As analysis of these data became very important for research

and innovation and RDBMS was not suitable for this task, NoSQL database systems were

developed. NoSQL, which is also referred to as “Not Only SQL,” is a non-relational

Database Management System (DBMS) capable of accommodating a wide variety of data

models. NoSQL is flexible, scalable, schema-agnostic, and data can be clustered in this

kind of database. NoSQL databases do not guarantee ACID properties such as RDBMS;

instead, they have Base properties that stand for Basically Available, Soft State, Eventual

consistency. The meaning of basically available is the system will be available even

though some parts are not. Soft state indicates the system can be used at the time of

inconsistent states, and the system can tolerate these states without application

interaction. Eventually, consistency indicates that the system will be consistent after the

application input because data is replicated in different nodes, leading to a consistent state.

Table-1 shows some key distinctions between RDBMS and NoSQL databases.

18

Table 1. Difference between Relational and NoSQL Databases

Properties Relational Database NoSQL Database

Data Model ▪ Relational

▪ Stored in rows and

Columns

▪ Domain Specific

▪ Includes wide range

of databases and

each type has

different data models

Database Schema ▪ Strictly follows

schema

▪ Less flexible due to

following schema

▪ Shema agnostic

▪ More flexible data

model

Integrity Database level Application level

Scalability Centralized (vertical scaling)

and distributed (sharding)

which is time sometimes time

consuming and expensive

Horizontally scaled and

replication features

Properties ACID properties guarantee

transections are processed

reliably to ensure data

integrity

BASE properties does not

guarantee data integrity

Normalization Yes Some NoSQL database does

not support normalization

Querying SQL Simple API. Some of them

supports SQL

There are many categories of NoSQL Databases. The basic four categories [5] are:

Key/Value Model

The key/value store is the simplest data model among the NoSQL databases. The goal

of this kind of database is quick access to data. It corresponds to associative arrays,

dictionaries, or hashes. Each record in this type of database consists of an arbitrary

value and its unique key. This key is required to store, retrieve, and modify the value.

The Key-Value model has no data schema, and the records are arranged into collections.

The keys can only retrieve the values as they do not contain any reference. These values

are independent of one another, stored as bytes. The data stored in these databases can

be any kind of binary object which may include JSON documents, text, video, etc.

These data are accessed by key, and it is the application's responsibility to understand

19

what is stored inside each record. While a large number of small read and write

operation needs to be performed on singular values or continuous streaming, these types

of databases are very much efficient [6]. Key-value databases generally show excellent

performance and have easy scalability [7]. Popular Key-value stores are Redis,

Memcached, etcd, Hazelcast, etc.

Wide Column Database

A wide-column database or column family store is usually a NoSQL database that

organizes storage data into different flexible columns, and these columns can be spread

across multiple database nodes or servers. This type of database uses a concept called

keyspace, similar to RDBMS. Keyspace contains all the column families, which is like

tables in RDBMS, and these column families contain rows, and these rows contain

columns. The number of column families is strictly defined. The values of some column

families are located together, and the rest of the row resides elsewhere [8]. Multi-

dimensional mapping is used to reference columns, rows, and timestamps data. This kind

of database is easily scalable; data can be partitioned easily and have a flexible data

model. Also, queries for a particular column are swift. These databases are very effective

for the application where data needs to be the number of attributes in the dataset varies

hugely. Some popular wide-column databases are Cassandra, HBase, Microsoft Azure

Table Storage, etc.

Document Stores

Document storage is the storage unit of a document database, and it is the most general

NoSQL data model. The idea of this semi-structured model is to represent the data without

an explicit and separate definition of its schema. Instead, the particular pieces of

information are interleaved with structural/semantic tags that define their structure,

nesting, etc., and it ensures that processing and exchanging data is becoming more

flexible. This type of database is more similar to Key-value stores, and for this case, value

is a whole document related to a specific key. The document can be in different formats

such as XML (Extensible Markup Language), YAML (Yet Another Markup Language),

JSON (JavaScript Object Notation), BSON (Binary JSON), etc. and these documents can

contain different datatypes even in nested form. Document stores are very efficient when

the application handles structured data with some variance in the number of columns or

data types. They structure the data when necessary as well as provide flexibility.

20

Graph Model

The graph data model is built based on the mathematical definition of a graph which is a

collection of vertices (nodes)V and edges E that correspond to pairs of vertices from V.

These kinds of database stores data in node and edge object, which refers to the

relationship. Graph stores are devoted to efficient storage, mapping, and management of

the graph data. Graphs stores are not an extension of the Key-value pair. They are very

much efficient in handling relational querying and storing interconnected data. Though

RDBMS also handles relationships efficiently when the data is densely interconnected,

the performance issue arises queries become more and more complex. Graph databases

can perform these tasks in a constant time, for which they are more effective for social

networking scenarios and dependency analysis. Graphs stores can be distinguished into 2

types [9]. The first type is Transactional databases which deal with a large set of smaller

graphs, for example, a set of linguistic trees or chemical compounds. Generally, the

operations search for super graphs, subgraphs, or similar graphs. On the other hand, the

second type, non-transactional databases, target a single large graph (e.g., a Covid contact

tracing), which may contain several components. This kind of operation includes

searching for the (shortest) path, locations (i.e., subgraphs with specific features), and so

on. Table 2, 3, 4, and 5 shows different features of 3 most accepted representatives of

Relational, wide column, key-value, and Document databases.

21

Table 2. Features of different Relational Databases
D

B
M

S
 N

a
m

e

O
ff

er
ed

 d
a

ta
b

a
se

 m
o

d
el

s

S
u

p
p

o
rt

ed

P
ro

g
ra

m
m

in
g

L
a

n
g

u
a

g
es

P
a

rt
it

io
n

in
g

 m
et

h
o

d

Q
u

er
y
 l

a
n

g
u

a
g

es

S
u

p
p

o
rt

ed
 D

a
ta

 f
o

rm
a

ts

(f
o

r
re

a
d

in
g

)

A
cc

es
s

M
et

h
o

d
s

SQLit

e

Relational C, C++, Ruby,

Ada, Forth,

Delphi, Lua, D,

OCaml, Ruby,

Haskell, Java,

JavaScript, C#,

Lisp, Lua, Perl,

PHP, Python, R

etc.

None SQL CSV,

TSV

JDBC,

ODBC,

ADO.NET

MySQ

L

Relational,

Document

Store,

Spatial

DBMS

Ada, C, C#, C++,

D, Delphi,

Haskell, Java,

JavaScript

(Node.js),

OCaml, Perl,

PHP, Python,

Ruby etc.

Sharding

with MySQL

Cluster or

MySQL

Fabric,

horizontal

partitioning

SQL,

Mem

cache

d

API

CSV,

XML,

Native

JSON,

Avro,

text,

Parquet

ADO.NET,

JDBC,

ODBC,

Proprietary

native API

Micro

soft

SQL

Server

Relational,

document

store, Graph

DBMS,

Spatial

DBMS

C#, C++, Delphi,

Go, Java,

JavaScript

(Node.js), PHP,

Python, R, Ruby

etc.

Horizontal

Partitioning,

Sharding

through

federation

T-

SQL

XML,

text,

JSON

Binary

ADO.NET,

JDBC,

ODBC, OLE

DB, Tabular

Data Stream

(TDS)

22

Table 3. Features of different Wide-Column Databases

D
B

M
S

 N
a

m
e

O
ff

er
ed

 d
a

ta
b

a
se

m
o

d
el

s

S
u

p
p

o
rt

ed

P
ro

g
ra

m
m

in
g

L
a

n
g

u
a

g
es

P
a

rt
it

io
n

in
g

 m
et

h
o

d

Q
u

er
y
 l

a
n

g
u

a
g

es

S
u

p
p

o
rt

ed
 D

a
ta

fo
rm

a
ts

 (
fo

r
re

a
d

in
g

)

A
cc

es
s

M
et

h
o

d
s

Cassa

ndra

Wide column stores C#, C++,

Clojure,

Erlang, Go,

Haskell,

Java,

JavaScript

(Node.js),

Perl, PHP,

Python,

Ruby, Scala

Shardi

ng

SQL like

CQL

JSON,

CSV,

Parqu

et

using

spark,

TSV

Proprietary protocol,

Thrift

HBase Wide column store C, C#, C++,

Groovy,

Java, PHP,

Python, Scala

Shardi

ng

Does not

support

SQL.

Can

query

data

using

Drill.

Avro,

JSON,

CSV,

TSV

Java API, Restful

http API, Thrift

Crate

DB

Relational DBMS

(Columnar store

based on Lucene

and Elasticsearch),

Document Store,

Time Series DBMS

Erlang, Go,

Perl, Java,

JavaScript

(Node.js),

PHP, Python,

Ruby, Scala

Shardi

ng

SQL

(without

trigger

and

constraint

s)

JSON,

CSV

ADO.NET, JDBC,

MQTT, Postgre wire

protocol,

Prometheus Remote

Read/Write, Restful

HTTP API

23

Table 4. Features of different Key-Value Databases

D
B

M
S

 N
a

m
e

O
ff

er
ed

 d
a

ta
b

a
se

m
o

d
el

s

S
u

p
p

o
rt

ed

P
ro

g
ra

m
m

in
g

L
a

n
g

u
a

g
es

P
a

rt
it

io
n

in
g

 m
et

h
o

d

Q
u

er
y
 l

a
n

g
u

a
g

es

S
u

p
p

o
rt

ed
 D

a
ta

fo
rm

a
ts

 (
fo

r
re

a
d

in
g

)

A
cc

es
s

M
et

h
o

d
s

Redi

s

Key-Value

Store,

Document

Store, Graph

DBMS,

Spatial

DBMS,

Search

Engine,

Time Series

DBMS

C, C#, C++, Clojure,

Crystal, D, Dart, Elixir,

Fancy, Go, Haskell,

Haxe, Java, JavaScript

(Node.js), Lisp, Lua,

Perl, PHP, Prolog, Pure

Data, Python, R, Rebol,

Ruby, Rust, Smalltalk

etc.

Automat

ic hash

based

sharding

Using

Dataframe API

with the help of

Spark-Redis

Library

CSV,

JSON

as key

or hash

structur

e

Propr

ietary

proto

col

Mem

cach

ed

Key-Value

Store

.Net, C, C++,

ColdFusion, Erlang,

Java, Lisp, Lua, OCaml,

Perl, PHP, Python, Ruby

Data can

be

stored in

different

nodes

Using telnet

(get, set, add,

replace etc.

commands can

be executed)

CSV,

JSON

as hash

structur

e

Propr

ietary

proto

col

etcd Key-Value

Store

.Net, C, C++, Clojure,

Erlang, Haskell, Java,

Go, PHP, JavaScript

(Node.js), Perl, Python,

R, Ruby, Scala etc,

Network

partition

Using etcdctl,

gRPC APIs or

client library

API (get, watch

etc. command

used)

CSV,

JSON

as hash

structur

e,

binary

gRP

C

JSO

N

over

http

24

Table 5. Features of different Document Databases

D
B

M
S

 N
a

m
e

O
ff

er
ed

 d
a

ta
b

a
se

m
o

d
el

s

S
u

p
p

o
rt

ed

P
ro

g
ra

m
m

in
g

L
a

n
g

u
a

g
es

P
a

rt
it

io
n

in
g

 m
et

h
o

d

Q
u

er
y

 l
a

n
g

u
a

g
es

S
u

p
p

o
rt

ed
 D

a
ta

fo
rm

a
ts

 (
fo

r
re

a
d

in
g

)

A
cc

es
s

M
et

h
o

d
s

Mongo

DB

Document

Store,

Spatial

DBMS,

Search

engine,

Time Series

DBMS

Actionscript, C,

ColdFusion, D,

Dart, Erlang, Go

Haskell, R, Java,

Lisp, C#,

JavaScript, Lua,

MatLab, Perl, PHP,

Prolog, Python,

Ruby, Rust,

Smalltalk, Swift,

C++ etc.

Sharding

(Hashed,

range or

zoned

Sharding

Keys)

JSON-based

MongoDB

query

language(MQL)

Avro,

Parquet,

ORC,

JSON,

Mongo

DB

Extende

d JSON,

BSON,

CSV.

Proprietary

protocol

using JSON

Couchb

ase

Document

Store, Key-

value store,

Spatial

DBMS

.Net, C, Clojure,

Erlang, Go, Java,

JavaScript

(Node.js), Perl,

PHP, Python,

Ruby, Scala etc.

Sharding N1QL AVRO,

JSON,

CSV,

TSV

Native

language

bindings for

CRUD,

Query,

Search and

Analytics

APIs

Firebase

Real-

time

Databas

e

Document

Store

Java, JavaScript,

Objective-C

Sharding Cloud Firestore

can be queried

using SQL

syntex

JSON Android,

IOS,

Javascript

API, RESTful

HTTP API

25

1.2 Connecting Database with Application

In database access, the database connection plays an important role. The first step of

database access is to establish a connection with the database, and the last step is to

disengage from the database [11]. Each connection must perform user authentication,

establish transactional context, security context configuration, and other aspects of

sessions required for successful database usage. To perform all these tasks requires a

certain amount of communication and memory. As a result, database access is frequently

the most time-consuming and expensive process. Moreover, if the connections are left

open after completion of the session, it may result in more severe issues such as memory

leakage, which may lead the application to crushing [12]. That is why the best database

connection option should be chosen, significantly increasing the system's database

performance.

To solve the problems that comes with the traditional method of accessing a database, the

database connection pool is used. A database connection pool is a collection of live

connections from application to database systems. This is done by establishing a buffer

pool where a certain number of connection objects can be stored. The applications

maintain the database connection pool because they frequently need to establish and

terminate connections with the database. When a connection request is made, a

connection is pulled from the buffer pool if the demand is high enough, and if there are

unused connection objects, the connection pool allocates that unused connection to the

system. This improves application speed, reduces system overhead, and allows for more

efficient concurrency and scalability. It significantly decreases or eliminates the number

of times programs must wait for a connection. Additionally, the usage of connection

pooling is transparent; it has no negative impact on business applications as no

modification is needed to communicate with the database pools. Application

administrators can tweak and tune the connection pool at any time, and for that, they do

not need extensive knowledge about the application. After finishing operation through

that connection, the database connection pool releases the connection to avoid waste of

resources and reduce excessive overhead. It is possible to direct the connections to various

types and vendor’s databases if the applications use generic JDBC connections, and for

that, no code is required.

26

It is very much flexible to create, close, and configure connection pools. For the database

connection pool, there is no need to create and close the database connection repeatedly;

rather same connection is reused, which enhances the performance and stability of the

system.

The primary and most crucial requirement of database connection pooling is to

predetermine the number of connections offered by the database system during the

application system’s initialization stage. This predetermined number of connections is

accommodated within the memory, called the database connection pool. These pools are

to be organized using container objects such as vectors, stacks, etc. [12] This way, the

apps only incur the overhead of creating these connections at the start and closing them

at the end of the tasks. Through these processes of acquiring and terminating connections

using a database connection pool, massive quantities of system resource usage are

reduced, and execution speed is enhanced.

The database access operation primarily includes establishing connections, sending

objects to connections, read and write databases, and closing connections [13]. The

database connection pool is one of the most efficient solutions that will enhance the run-

time performance of IoT/web/database transactional activities. The basic model of the

database connection pool is a “resource pool” or buffer pool for the connections. To solve

the optimization problem of connection, increase the speed of the system, and close issues

of the database, this is used. A collection of connections that are established in advance

and placed in-memory object, and are ready for the database operation are a database

connection pool. When a program needs to access a database, first it needs to establish a

database connection, and after using close the connection, which requires time and

generates more overhead. With DCP (Database connection Pool) application does not

Figure 3: The principle working diagram of the database connection pool [13]

27

create a new connection; rather, it just picks up an idle connection from memory and puts

the connection back into the memory after use. Thus, it saves time because there is no

need to create and close a new connection. Fig 3 shows the principle working diagram of

the database connection pool [13]. In this diagram, the connection pool has N number of

connection objects for database access, and each of these connection objects is commonly

regarded as a heavy-weight data structure. Considering some of the connections are

already in use and others are in an idle state if a client through the Servlet accesses the

database, the connection pool management first looks for the idle connections, and when

it detects Con1 is idle, the connection pool management allows the application to use

Con1 connection to access the database. After completion of access operation, the

connection pool management restores the idle state of Con1 and automatically puts it back

to the connection pool.

The connection pool uses its management mechanism, which can realize and decide about

establishing connections, disconnecting, and managing state judgment. The connection

pool workflow diagram is shown in figure 4 [13]. The connection pool maintains the

Figure 4: Connection pool workflow diagram [13]

28

usage counters for each of the connections, and there is a minimum and a maximum limit

of usage for each connection. When a connection’s usage counter exceeds the maximum

limit, the connection is removed from the connection pool by the connection pool

management system to ensure the stability of the system. When an application needs to

connect with the database, the connection pool management looks for the idle connections

from the ergodic connection state from the connection pool as well as the number of

usages of the idle connections. Based on its state judgment, connection pool management

decides which connection to allocate for the operation.

When using a database connection pool, some factors should be considered for efficiency.

Firstly, the number of connections should be predefined, and the connection pool can only

establish a certain number of connections because the more connection, the more

considerable time it takes to connect. So, the constraint management through the

maximum and the minimum number of connections should be effective to serve all the

use cases of the system. This also helps to manage the idle connections effectively.

Another factor is allowing threads to access the connection pool synchronously when the

connection pool is locked. This is an exclusive mechanism of the connection pool. Some

of the approaches for connecting database with application are discussed below

1.2.1 CGI

CGI stands for Common Gateway Interface. It is an interface specification that allows

web servers to execute external programs. It is trivial in design, and developing a CGI

script can be simple. C, C++, Java, Perl, Visual Basic, PHP, etc., languages are used to

develop CGI programs, and these programs are called CGI scripts and have the extension

“.cgi”, and are placed under some particular directory typically called “cgi-bin”. CGI

programs exchange data with web servers via special library files. These library files

function as parsers and translate coding information into an understandable format for the

web servers. In this way, the application can fetch information from the database in an

understandable way for the users.

A CGI program must generate a separate process for each user request, and this process

will be stopped once the data transmission is completed. This is CGI's huge performance

problem because a separate program instance for each client request takes a lot of time

and resources. The operating system has to load the program, allocate memory for the

program, and then deallocate and unload the program from memory [14]. As the operating

29

system is performing all these tasks, there is no room for other programs to run; as a

result, CGI programs are not efficient in handling concurrent client requests. Therefore,

CGI programs are appropriate for small applications but not suitable for applications

where a large amount of data needs to be handled.

1.2.2 PHP3

PHP stands for recursive initialism PHP: Hypertext Pre-processor. PHP is a general-

purpose server-side, cross-platform HTML embedded scripting language for web

development. Rasmus Lerdorf, a Danish-Canadian programmer, developed it in 1994 to

keep track of visitors to his online resume. The first public version consisted of a few

special macros and several common utilities, which were known as PHP tools or Personal

Home Page Tools. Later, this interpreter was revised and renamed as Professional Home

Page and made available as open source. PHP3 has become a very attractive tool for web

to database application development as it contains some excellent tools such as

Stronghold web server and Redhat Linux. Additionally, PHP can be used in other contexts

such as Graphical Applications and Control systems, etc.

PHP provides broad support for databases which offers it an advantage over VBSCripts

[1]. PHP code can be directly placed in an HTML page or as binary image data and

executed on the server. Object-oriented programming can be done using PHP, which

helps to create a large project and can be built on Apache module or as binary to run on

CGI.

PHP developed as an Apache module: Apache and PHP are an effective and dependable

combination for websites that do not require a vast, robust web application. The web

server Apache is responsible for processing requests and serving web assets and content

through HTTP. Apache is a multiprocessing web server that uses a parent-child

relationship for request handling. The parent process is used by the webserver to

coordinate the handling of requests by its child processes. When a request arrives, the

parent process passes it to one of its available child processes, and the request is handled

by that child process. Following requests from the same client may be serviced by

different child processes. When built as an Apache module, PHP offers excellent

connectivity to various kinds of databases and persistent database connections [15]. By

taking advantage of Apache’s microprocessing features, it is possible to improve the

program efficiency and increase throughput. As there is no process creation overhead in

30

there, the result is returned very quickly. This way, PHP built as an Apache module is

very lightweight, and the processing speed is excellent. Database connections are

maintained persistently in this process and are shared among the child processes.

PHP3 built as binary to run as CGI: In the CGI solution, no connection is stored after

the script has finished. For each PHP3 page request to the web server, a new instance of

the PHP3 interpreter is produced and discarded afterward. All assigned resources, such

as a link to a server, are closed when the instance is destroyed after each request. So, it is

not feasible if PHP3 is implemented as a CGI solution because this will fail to get the

benefit of a persistent connection since no connection persists once the script has finished.

1.2.3 Python

Python is one of the most popular high-level, general-purpose programming languages.

Essentially, it was developed with code readability in mind, and programmers may

express their notions in fewer lines of code. Python DB-API is the python standard for

database interfaces. This standard is followed by most Python database interfaces. Python

Database API works with various database servers, including MySQL, PostgreSQL,

Microsoft SQL Server, Oracle, SQLite, IBM DB2, etc. For a python connection with a

database, first, a connection request is sent to the Database connector python, then it gets

accepted by the database, and finally, the curser is executed with result data. For database

connection, using python middleware should be considered. Middleware maintains

multiple connections to several Database servers and relies on those connections being

readily accessible. In the case of a MySQL database, establishing a MySQL connection

using python is both resource-intensive and time-consuming, especially when the

MySQL connector Python API is utilized in a middle-tier server context. To configure a

connection pool using python, we should consider the following factors:

▪ The number of maximum connections a Database module can support.

▪ The application's size and type, as well as how database-intensive the application

is.

▪ The size of the database connection pool.

The number of connection objects is determined by the factors mentioned above.

31

Handling a single HTTP request with one connection per thread is adequate in many

circumstances. Alternatively, fewer may be required if not every HTTP request requires

database access. It is possible to determine how to configure the connection pool by

reviewing the past request history and analyzing the nature of the application. To create

a connection pool using python, first, we need to create a connection pool the get

connection from the connection pool. After the connection, perform some database

operations on it and finally close the connection instance. Steps of using a connection

pool in python are:

1.2.4 JAVA

Among the programming available today, Java is considered one of the mainstream

programming languages. Java programming language can work with various databases

such as SQL server, Oracle, Sybase, MySQL, SQLite, etc. Java uses Java Servlets in a

server application and JDBC, JPA, etc., to work with a database. The following part

discusses in detail the database connection using JAVA.

Server-Side JAVA Servlets

Java Servlets are pieces of server-side Java class executed in a server application to

respond to client requests. Servlets are not connected to any particular client-server

protocol; however, they are most typically used with HTTP. Thus, the term "Servlet"

frequently refers to "HTTP Servlet." Essentially, the programmer selects which servlet

will be used to execute which client request or kind of request. As a result, when the Web

server receives a request, it finds the appropriate servlet for the request. Because servlets

are built in the highly portable Java language and adhere to a standard architecture, they

enable the creation of complex server extensions that are server and operating system

independent [15].

When a client initiates a request to the webserver, the webserver receives it, passes it to

the corresponding servlet. The first time a servlet program is called, it is loaded into

memory. The request is then processed by the servlet, and a response is returned back to

the server. The servlet remains in memory after the request is handled and will not be

unloaded until the webserver is shut down. Once a servlet is activated, it runs in the

background and lives as long as the webserver does because usually, a web server runs

continuously without any interruption.

32

The advantage of implementing servlets as Java classes is that they may easily remain in

memory and be called on repeatedly. To obtain a performance advantage, most web

servers allow loading some commonly used servlet programs as the webserver boots up.

In this manner, servlets may already be in memory for the initial client request, avoiding

first-time access costs. Loading the servlets at startup ensures that response time for all

requests is maintained to a minimum.

JDBC for interacting with Database

JDBC (Java Database Connectivity) is a Java API that manages connecting to a database,

executing queries and commands, and dealing with the database's result set. It is

considered a component of Java SE, or Java Standard Edition. JDBC was one of the initial

components built for the Java persistence layer, and it was released as part of JDK 1.1 in

1997. This technology is still intensively used in numerous projects [16], despite the

inherently close coupling that is required between the source code and the database

schema.

JDBC was designed to be a client-side API that allowed a Java client to communicate

with a data source. This changed with the introduction of JDCB 2.0, which included a

package that permitted server-side JDBC connections as an option. Since then, every

major JDBC release has included improvements to both the client-side (java.sql) and

server-side (java.sql) packages (javax.sql). The most recent version, JDBC 4.3, was

published in September 2017 as part of Java SE 9 [17]. In order to connect to the database,

the JDBC API makes use of JDBC drivers. There are four types of JDBC drivers which

mentioned below:

▪ JDBC-ODBC Bridge Driver

▪ Thin Driver

▪ Native Driver and

▪ Network Protocol Driver

JDBC is the standard API with which application code communicates. Underneath that

is the JDBC-compliant driver for the database. To access the tabular data stored in any

relational databases, JDBC API can be used. Usage of JDBC API provides the ability to

save, update, delete, and fetch the data from the database. Before JDBC API, Open

33

Database Connectivity or ODBC API was used to connect and perform queries along

with the database. ODBC API uses ODBC driver in C language, which is platform-

dependent and unsecured. Considering all these Java

However, ODBC API makes use of ODBC drive in C language. Also, it is platform-

dependent and, in addition, unsecured. Using JDBC drivers, Java built its own API in

Java known as the JDBC API.Several operations may be carried out utilizing the JDBC

API, which is necessary to interact with the database:

1. Connection to database

2. Execution of queries as well as update statements to the database

3. Retrieving results fetched from the database.

JDBC makes it simple to connect to an application or a data source, send queries,

update statements, and process results. JDBC helps to establish a connection with a data

source very easily; updating statements and sending queries has become accessible by

using JDBC and simplified data fetching processing data from the data source.

JDBC driver that helps in the execution of the JDBC API. It makes it possible to submit

the SQL statements and queries and retrieve the results by calling the JDBC classes and

interfacing with the help of the Java Application. This driver is made up of a collection

of classes that implement the JDBC interfaces, which helps in processing the JDBC

calls and sending output/results to the Java application.

JDBC supports both two-layer and three-layer processing models to access databases.

Figure 5 shows the architecture of JDBC. Below the architecture of two-layer

architecture is discussed:

▪ JDBC API: The Java Database Connectivity (JDBC) API provides universal

data access from the Java programming language. Using the JDBC API, you can

access virtually any data source, from relational databases to spreadsheets and

flat files [18]. This layer supports the application-to-JDBC Manager connection.

To provide transparent connection to heterogeneous databases, It makes use of

the driver management as well as database-specific drivers.

34

▪ JDBC Driver API: To use the JDBC API with a particular database management

system, a JDBC technology-based driver is needed to mediate between JDBC

technology and the database. This layer connects the JDBC Manager to the

driver. This driver may be written in Java, a mixture of the Java programming

language and Java Native Interface (JNI). This driver manager ensures that the

correct driver is used when accessing each data source. It may also handle a

large number of concurrent drivers that are linked to numerous heterogeneous

databases.

Figure 5: Architecture of JDBC [17]

35

JDBC consists of the following interfaces and classes:

• Driver Manager: Driver Manager is a static class in the Java™ 2 Platform,

Standard Edition (J2SE) and Java SE Development Kit (JDK) [19]. The driver

Manager class manages the list of drivers of the database and uses a sub-protocol

of communication to match connection requests from the java application and the

database driver. The first driver, which recognizes subprotocol under the JDBC,

is used to establish a database connection [17].

• Driver: The Driver is the interface that manages interactions between the

program and the database server. The odds of directly interacting with Driver

objects are pretty low since most of the time, the objects of the Driver Manager

are used to handle objects of this sort.

• Connection: For contacting the database a connection interface is used. The

context of communication is represented by the object of connection; that is, all

contact with the database is done only through the object of connection.

• Statement: The objects produced by this interface will allow you to send SQL

queries to the database. While executing some stored procedures, some of the

derived interfaces take arguments.

• ResultSet: ResultSet objects are used to retain data that has been fetched from the

database. However, this occurs after a SQL query has been conducted using

Statement objects. It also serves as an iterator, allowing us to traverse the data.

• SQL Exception: This class handles errors that occur in a database application.

The steps for connecting to a database with JDBC are as follows:

1. Installing or locating the database.

2. Loading drivers and including the JDBC library.

3. Registering JDBC driver using Driver Manager.

4. Establishing a connection to the database.

5. Using the connection to create SQL query.

6. Executing the query.

7. Closing the connection.

36

JAVA Hibernate

Java Hibernate is one of the most popular Java object-relational mapping (ORM) tools.

ORM is the process that maps Java objects to database tables for web applications by

providing a framework. It also transfers Java data types to SQL data types. The developer

does not have to handle the database manually, and data can be inquired or retrieved using

Hibernate.

Hibernate facilitates the interface between a database and the Java application under

development. It is a JAVA Object-Relational Mapping (ORM) framework built-in 2001

by Gavin King. It is an open-source, high-performance, powerful, and lightweight ORM

tool. Hibernate is a widely used implementation of the Java Persistence API specifications

that provides a very sophisticated object-relational persistence and query service for Java

applications.

Hibernate allows Java objects and database servers to communicate with one

another.[20]. Hibernate will strive to persist Java objects based on the appropriate object-

relational patterns and recognition techniques. Hibernate's design is built in such a way

that for operating, the user does not need to know the underlying APIs. Hibernate is able

to give persistence services and objects to the application by using the database and

configuration data. Hibernate framework makes use of various objects such as session

factory, session, transaction, and so on, as well as existing Java API such as JTA (Java

Transaction API), JDBC (Java Database Connectivity), and JNDI (Java Naming

Directory).

There four layers in Hibernate architecture are:

▪ Layer 1 – Java Application Layer

▪ Layer 2 – Hibernate Framework Layer

▪ Layer 3 – Backend API Layer

▪ Layer 4 – Database Layer

Java Hibernate is an ORM tool that helps ease issues such as writing the same line of

code repeatedly, database switching, implementing object-oriented programming in

JDBC, the association between database tables, etc. These problems are faced while using

JDBC for database connectivity.

37

Hibernate connects itself with the database and uses HQL for the query. After executing

queries, hibernate performs the mapping of the results to their respective application layer

according to the configuration XML file in Hibernate. A session not only assists an

application in establishing a connection with the database but also functions to save and

retrieve the persistent object in Hibernate. The session allows to the construction of an

instance of a session and utilizes it. However, there should only be one session factory

per database.

JPA ORM

It is Java ORM standard to store, access, and manage Java objects in relational databases.

JPA stands for the Java persistence API. It is not a tool or framework; rather it is a

guideline that any tool or framework can enforce. The Java persistence API is a standard

for persistence which is a method through which Java objects outlive their application

process. Its definition allows you to specify which items must persist in Java programs

and how they should persist. Although it was basically designed to be used with relational

databases, certain JPA implementations with NoSQL datastores have been enhanced.

Each JPA implementation provides some ORM layer that has differences during

execution. The ORM layer is responsible for translating program objects into a relational

database, which is a component of the framework architecture, and for that reason,

developers do not have to map manually.

The ORM layer turns Java classes and objects into relational databases, which may then

be stored and managed in Java. The name of the item kept by design becomes the name

of the table, and fields are turned into columns. [21].

The ORM layer is an interface layer that converts Object Graph languages to SQL and

relational tables. The ORM layer enables object-driven developers to design data-

collection apps without leaving the object-driven paradigm.

Rather than how the objects are stored and retrieved, the mapping between the objects

and the database is established, and the JPA is triggered to persist. When using a reference

database, JDBC can handle a large portion of the connection between the application code

and the server. Each JPA implementation has its own engine for JPA annotations for

metadata to describe the mapping of objects to the database in a precise fashion.

38

To decrease the responsibilities of developing code for connection object maintenance,

the JPA Provider structure is followed, allowing simple interaction with the database case.

The architecture of JPA ORM is shown in Figure 6.

Figure 6: JPA ORM [21]

39

2 Database Integration

There are many research on how to integrate different kinds of databases. Following

Section will discuss different methods for database integration.

2.1 Polyglot Persistence

With technological advancement, business needs and analysis of data guided us to

develop different database management systems in the past decades. The majority of them

are specialized to address particular problems. Relational database handles structured data

exceptionally well where security is strictly ensured, and they have proven to be helpful

for most business cases. On the other hand, NoSQL databases can handle a large amount

of unstructured data and organize them effectively. As both of them have their distinct

features and are effective in solving particular business cases, they cannot replace each

other, and we can see that big enterprises using complex system relies on both kinds of

databases. Doing so, they have to face problems such as integrating different kinds of

databases, because there are several solutions out there and they have to choose the best

one which suits their business needs such as Polyglot Persistence, Multi-model database,

etc. Polyglot Persistence means that while storing data, it is better to employ several data

storage technologies that are selected based on how data is used by individual apps or

components of a single application, and the system which uses polyglot persistence is

called polystore. Polystore works as a unit so that different systems under it can be

managed easily and they can function effectively. It is basically picking the right tool for

the proper use case, i.e., storing data to different data stores based on the nature and use

of data and integrating them via a simple application, and this can be done using multiple

languages. This is a distributed system focused on combining the capabilities of different

database engines to ensure application-wide consistency and integrity. It's the same

concept as Polyglot Programming, which holds that applications should be built in a

variety of languages to take advantage of the fact that different languages are better suited

to address different challenges. For implementing this type of system, middleware is

designed which works on top of a database. This middleware handles queries by sending

them to the relevant databases and integrating the partial results, and this middleware is

accessed by the users to receive data in one place.

40

Polystores can fuel data from different storage engines, and these storage engines can be

accessed through their own interface. While designing a polystore, multiple use cases are

considered and combined effectively so that each data has a specific purpose regarding

data. Building a polyglot persistence system is a complex task, so it is crucial to be

concerned about some factors while designing the system. Some of the things that should

be considered are data types, volume, and velocity of data, selection of right data storage

technology, data storage type, access pattern, organizational needs, etc.

Polyglot persistence helps businesses to deal more effectively with scalability by using

the capabilities of several data stores. An organization usually goes for polystores when

a large amount of structured and unstructured data needs to be dealt with in a unified

system, analysis of these data is needed, there is a need to provide transparency to the

system, etc. Before moving to polyglot persistence, we must have to comprehend the

nature of data and how those should be manipulated. Though Polyglot persistence makes

it easy to store a large amount of data having different natures, it comes with complexity,

higher cost, and there is always an issue with consistency. In the following part, we will

discuss several polystore implementations and discuss multi-model databases. Polystores

can fuel data from different storage engines, and these storage engines can be accessed

through their own interface. While designing a polystore, multiple use cases are

considered and combined effectively so that each data has a specific purpose regarding

data. Building a polyglot persistence system is a complex task, so it is vital to be

concerned about some factors while designing the system. Some of the things that should

be considered are data types, volume, and velocity of data, selection of suitable data

storage technology, data storage type, access pattern, organizational needs, etc.

Polyglot persistence helps businesses to deal more effectively with scalability by using

the capabilities of several data stores. An organization usually goes for polystores when

a large amount of structured and unstructured data needs to be dealt with in a unified

system, analysis of these data is needed, there is a need to provide transparency to the

system, etc. Before moving to polyglot persistence, we must have to comprehend the

nature of data and how those should be manipulated. Though Polyglot persistence makes

it easy to store a large amount of data having different natures, it comes with complexity,

higher cost, and there is always an issue with consistency. In this section, we will discuss

several polystore implementations and discuss multi-model databases.

41

2.1.1 BigDAWG

One of the common polystore implementation is BigDAWG which provides an array data

model for three different database engines. For example, their D4M island provides

common interface for relational database PostgreSQL, array database SciDB and text

database Accumulo [22]. It is an opensource solution for polystore which is a single back

end to support location transparency for the storage of objects and ensure semantic

completeness which ensures that the user will not lose capabilities over the storage

engines.

The BigDAWG architecture consists of four distinct layers as described in Figure 7:

database and storage engines; islands; middleware and API; and applications [22].

The BigDAWG middleware design is built on a high-level common API. Applications

use the Common API to interface with BigDAWG. Islands are components that give

general-purpose interfaces to a specific data model. They may be queried using a

particular query language or set of actions. Currently, BigDAWG supports three Islands.

SQL is used by Relational Island to query PostgreSQL databases. Array Island is used

to query SciDB databases using AFL, the query language of SciDB. Text Island queries

Accumulo using SQL or a D4M language. BigDAWG Common API offers an interface

across the Islands. It is made up of four parts: the Planner, the Executor, the Monitor,

and the Migrator. The API also connects with a separate component known as Catalog,

which stores all database and object schema information. Shims connect Islands to

database engines by converting queries from the Island query specification into native

queries for each database engine. Casts are used to transport data between database

engines when using multi-model queries.

42

The Catalog is a component that includes two Postgres databases: a primary catalog

database and a schema database. The catalog database stores information about the

engine, database, object, shim, and cast, whereas the schema database keeps information

about the object schema. Engine connection characteristics such as hostnames and ports

are stored in the engines table. The database table includes information on the databases

that are operating in each engine, as well as their credentials. The Objects table provides

the names of the objects in each database as well as their field names. The schema

database holds object schema globally, allowing casting from one database type to

another while without breaking restrictions.

Figure 8 depicts the components and operation of middleware. The Planner is in charge

of coordinating query execution. It parses queries, plans them, and optimizes them. When

Figure 7: BigDAWG Architecture [22]

Figure 8 BigDAWG Middleware components and workflow [15]

43

optimizing queries, performance data from the Monitor is used. It communicates

execution plans to the Executor. It also has a separate Training mode for collecting

execution plan statistics prior to launching into production. While in Training mode, the

Planner examines all alternative execution plans that give the same outcome and sends

them to the Monitor to collect all conceivable metric data. The quickest plan is then

picked from among them. The correct production mode just evaluates the query's

characteristics and asks the Monitor for the optimal plan.

The Executor executes queries that have been created by the Planner and Monitor. It

moves through execution plans, issuing sub-queries to the various islands. When data

must be transferred across islands, it invokes the Migrator. The Migrator is in charge of

migrating data across databases. When casting data from one island to another, it

searches the Catalog for the schema information required. The Monitor keeps track of

the execution timings of query plans. It executes training queries to learn result metric

execution time characteristics in order to predict execution times for future queries.

2.1.2 Polybase

PolyBase is a technology designed to enhance Microsoft SQL Server applications by

allowing T-SQL queries to read and process data from external data sources [23] such

as SQL Server, Oracle, Teradata, MongoDB, Hadoop clusters, Cosmos DB, and others.

PolyBase supports the polyglot persistence concept by enabling queries to

simultaneously target a SQL server instance and an external data source. Polybase

targets external data sources works with external tables or external data sources without

the requirement to establish the target system. Parallel computing with several SQL

Server instances is also possible with PolyBase. PolyBase additionally supports query

computation pushdown by connecting additional providers to other systems through

generic ODBC connectors and constructing SQL Server clusters for concurrent query

processing. It is possible to avoid relocating data from its native location and format while

using Polybase for data virtualization. Using Polybase connections, external data may

be virtualized through the SQL Server instance, reducing the ETL process of data

migration.

Apart from linking data to external data sources, the following are the reasons for

adopting PolyBase: Transfer half of the data so that all the data is in one place and query

both data sources, then create custom query logic at the client level to combine and

44

integrate the data. PolyBase different kinds of data formatssuch as: structured data,

semi-structured document data, as well as unstructured data. Some examples of such

data are: delimited text data and Hadoop HDFS files. Previously to integrate or join data

in a client application, data needed to be moved to a single location, but polyglot solved

it efficiently only by using T-SQL.

PolyBase implements computation pushdown in Hadoop. It means that the query

optimizer can make the decision to either perform query computations in Hadoop or in

the main SQL Server system. The decision is made by estimating the performance cost.

Pushing down computation can utilize Hadoop’s optimized distributed computing with

MapReduce jobs, for example. This can also be forced on or off in queries. PolyBase

also allows parallel computing with multiple SQL Server instances. The query optimizer

may choose whether to do query calculations in Hadoop or in the main SQL Server

system In Hadoop, this is referred to as compute pushdown. Pushing computation down

can take use of Hadoop's efficient distributed computing, such as MapReduce tasks.

2.1.3 RHEEM

With the philosophy of “one size does not fit all”, REEM was developed. This system

allows a large variety of applications to achieve processing platform independence and

multi-platform task execution. RHEEM Architecture is a 3-layer data processing

system that lies between applications and data processing systems like Hadoop and

Spark: (i) an application layer that models all application-specific logic; (ii) a core layer

that acts as an intermediary between applications and processing platforms; and (iii) a

platform layer that incorporates the underlying processing platforms [24]. The

architecture is shown in figure 9.

45

Operators defined as user defined functions enable communication between these three

levels or UDFs. At each tier, Rheem provides a collection of logical operators, Rheem

operators, and execution operators. The application layer generates a collection of

feasible optimal Rheem plans using user-supplied implementations of the logical

operators unique to the application. An application sends these Rheem plans, together

with the cost functions, to the core layer to assist the optimizer in selecting the optimum

plan. Applications receive these cost functions and provide them to the core layer.

Rheem conducts many multi-platform optimizations and generates an execution plan at

the core layer.

2.2 Multi-modal Database

One of the most difficult problems for study and practice in data management systems is

the variety of data. Structured data, semi-structured data, and unstructured data are all

naturally arranged in different formats and models. Despite the fact that multi-model

databases are a relatively new domain, we have seen numerous database systems embrace

Figure 9: RHEEM Architecture [24]

46

this category in recent years. We see a significant growth in demand to analyze and handle

multi-model data, including structured, semi-structured, and unstructured data, since data

of many sorts and forms is critical for optimum business choices. Structured data, in

particular, encompasses relational, key/value, and graph data. XML and JSON documents

are examples of semi-structured data. Either the data is kept in multiple database

management systems (DBMSs) according to the four data models, or the data is translated

into a single format.

Multi-model database management systems integrate many database systems into a single

database system. It is only possible due to the use of a single back-end. Multi-model

databases provide a single engine for numerous database types, eliminating the need to

work with multiple models and figure out how to combine them. It enables developers to

program in an agile and flexible manner. Another significant benefit of this type of

database is that it decreases redundancy. Multi-model databases are capable of storing,

querying, and indexing data from many models. The modeling benefits provided by a

multi-model database eliminate the need to discover a way to merge disparate models,

and data may be stored in a variety of ways. To use a single multi-model DBMS to get

the benefits of both SQL and NoSQL solutions: (1) The data are stored in the most

efficient manner for the specific models, and (2) just a single DBMS is used to query

across all models. Users benefit from a single data platform for multi-model data by

offering not just an uniform query interface, but also a single database platform to

simplify query operations, decrease integration concerns, and remove migration issues.

Many vendors are offering different multi-model DBMS products, such as:

• OrientDB is a multimodal database management system that supports geographic,

graph, full-text, and key–value data formats. It is essentially a distributed unique

graph database of the second generation that provides document flexibility. On

typical hardware, it is 220,000 records per second [25]. It supports schema-

agnostic, full, and mixed SQL modes. In OrientDB, OO ideas are employed for

user domain modeling. A record is the most fundamental (and smallest) data unit.

There are four different types of records: byte record (BLOB), document, node,

and edge.

• ArangoDB is a native multimodel database that supports key–value, document,

and graph data models. A document can have an unlimited number of attributes

47

with simple and complex values. ArongoDB can employ more than a declarative

model for safety. ArangoDB has two types of collections: document (node)

collections and edges collections. Edge is a type of document that has two distinct

characteristics: from and to are used to indicate the relationship between

documents. As a result, documents are arranged in a directed graph.

• Couchbase Server is compatible with both key–value and document techniques.

This database is relatively simple to set up and operate. This geographically

distributed database offers unrivaled developer agility and management. It also

has unrivaled performance. For key–value operations, Couchbase Server employs

the memcached binary protocol, whereas N1QL and view queries are handled via

REST APIs. N1QL is a sophisticated declarative language that can query, alter,

and manipulate JSON data. This type of database has replication as a standard

feature.

• MarkLogic allows you to save and search JSON, XML, and RDF triples. It

supports JavaScript and JSON on the server. It includes several strong enterprise

features, such as semantics and bitemporal, that assist businesses reduce risk. It

can also store photographs, movies, and other data. Not only is the database

scalable, but it also provides corporate security and ACID transactions.

48

3 Application Development and Performance Evaluation

3.1 Proposed Application

For experimentation, we developed a Smart Prescription System web application. It is a

simple web application where doctors, patients, and medicine shops are connected to the

system. This application intends to bring doctors, patients, and medicine shops to a single

platform, and if the prescribed medicine by the doctor is not in the inventory of the

medicine shop, they can offer alternative medicine of the same genre. The system is a

client-server system where the front-end or client-end will be used by the doctors,

patients, and pharmacists, and the system uses the back-end for accessing necessary

information. For experimentation, we developed the system with 2 separate back-ends.

In the first case, we used Ploystore built on SQLite and MongoDB, and for the latter case,

we used a multi-model database (OrientDB) commercially used. The system will handle

different kinds of structured data such as patient, doctor’s, medicine, medicine store,

appointment, transaction, etc. The system also receives data from patients’ smartwatches,

transections, account credentials, and unstructured logs, which have higher volume,

velocity, and a lot of variety. The architecture of the system with polystore database is

shown in figure 10, and the architecture of the system with a multi-model database is

shown in figure 11.

Figure 10: Proposed system architecture with polystore database of the Smart Prescription System

49

The following part describes the modules of the system architecture.

3.1.1 Front-end

The front-end is the interactive part of a website visible to users, such as Graphical User

Interface (GUI) and Command Line Interface (CLI). In our system, the front-end consists

of the application software and computer or laptop, which belongs to either doctor,

patient, or pharmacist. The front-end is developed using Next.js Through the application

software, the doctors can search in the dashboard, add patients, lookup for appointments

and accept them, lookup for patients, their records, including their smart device data,

inquire about performing a test, and prescribe medicine. The patient can make and modify

appointments, view prescriptions. The medicine stores or pharmacists can search for a

patient, view their health record and prescription, and offer alternative medicine of the

same generic name if the prescribed medicine is not available. When either of the users

attempts to sign in to the system, the application software authenticates and verifies the

user credentials.

3.1.2 Backend

The back-end is the code that runs on the webserver and which is not visible to the users.

Back-end may include webserver, application software, and databases. A website is a

Figure 11: Proposed system architecture with multi-model database of the Smart Prescription System

50

collection of raw materials such as images, database contents, images, etc. and a

webserver is a software that serves the webpages of that website. When a user requests

for webpage access, the webserver puts all those raw materials in a webpage on its own

or fetches from the database and sends it back to the user via a web browser. The purpose

of back-end is to generate dynamic web pages. In our system, as mentioned earlier, we

have 2 separate back-ends. For the first one with polystore built on MongoDB and

SQLite, all the medicine or drug information and prescription which comes in a structured

way will be stored in SQLite database, and all the other information such as user data,

user health data, wearable device data of the user, diagnosis, appointments, previous

appointments, etc. are stored in MongoDB. For the second case, we selected OrientDB as

our multi-model database. We stored all the data in this database as it can handle both

structured and unstructured data.

3.1.3 System Modelling

At first, the system was modeled using Unified Modelling Language (UML). Figure 12

shows the system's activity diagram, which shows the possible interaction between the

system and the users.

Figure 12: Activity diagram of Smart Medicine Prescription System

51

Figure 13 shows the use case diagram of the system where actors of the system are

patients, doctors, and pharmacists. This figure also shows how the roles of these actors

within the system.

The purpose of developing two separate back-ends keeping the front-end same so that we

could compare the performance of polystore and multi-model database. The interaction

between application and polystore is shown in Figure 14.

Figure 13: Use case diagram of Smart Medicine Prescription System

52

For the second case we used a multi-model database which is OrientDB. The frontend

remained same and the interaction between the application and multi-model database is

shown in Figure 15.

Figure 14: System using SQLite and MongoDB integration (Polystore)

53

3.1.4 System Development:

For the front-end, we developed an authentication-based dashboard user interface to

maintain user profiles, prescriptions, medical histories, medicine information, etc. It was

developed using NextJS. The back-end is developed using used Spring Boot on top of

Java. Spring boot is an extension of the Spring Framework. The Relational Database

SQLite is connected with the application using JDBC, and MongoDB is connected using

proprietary protocol using JSON or Mongo API. For the other back-end with multi-model

database, the application is connected using JDBC. Below, some screenshots of the code,

interface along with their description, are given.

Figure 15: System using OrientDB (Multi-model Database)

54

Figure 16 shows the code for the UserProfileController. This part of the code shows how

the main APIs are called. We can see that inside the UserProfileController class, there are

some APIs such as verify_identity, which is used while logging in to verify the user

credentials, get_patient_identity, which is used for searching patients by id from doctor

and pharmacist interface. These APIs are used to call different user profile services.

Figure 17 shows how we defined the UserProfileService Class.

Figure 16 : User Profile Controller (API)

Figure 17: User Profile Service

55

This service aims to get data from the database according to the service call. Some of

such services are getUserByuserName used to collect user profile information by name

and getUserByNid used to collect user profile information by id. Services get data from

the database using UserProfileRepository. Figure 18 shows the interface and repository

contents for UserProfileRepository using MongoRepository.

When UserProfileService requests access to data, UserProfileRepository helps to access

the database. UserProfileRepository communicates with the database using queries.

Figure 18: User Profile Repository

Figure 19: Prescription Model class

56

Figure 19 shows the creation of the Prescription class using MongoDB, the information

needed for prescription, and libraries that are used for this. For prescription, we initially

used information such as doctor’s information, patient’s information, appointment date,

list of medicine, etc.

Figure 20 shows how the connection with OrientDB is created. OrientDBConfiguration

class was created inside which OrientDB Bean for Document API was connected and

built.

Figure 20: OrientDB Establishing Connection

57

Figure 21 shows how userProfile is saved using data such as username, password, full

name, date of birth, role, etc. Once a user provides this information, a user profile can be

created.

Figure 22 shows the login page of the website. Here the users provide their credentials;

after verifying by the system, users are redirected to the home page based on their role.

In case of wrong credentials, the system will show an error message.

Figure 21: OrientDB UserProfile saving

58

When the doctor is signed in, the appointment of that particular day appears on the

homepage. A doctor can click on an appointment and view patient information, health

record, order test, view test report, prescribe medicine. The doctor can also add new

patients, approve/cancel an appointment, view previous appointments, etc. Figure 23

shows the homepage when a doctor is signed in. Once a doctor generates a prescription,

it is automatically saved in the SQLite database.

Figure 22: Sign in page of Smart Prescription System

Figure 23: Doctor’s Home Page

59

When the patient is signed in, he or she can only see his personal information, family

doctor’s information, previous reports, prescription, appointment history, upcoming

appointments, etc. Figure 24 shows the patent homepage.

Figure 25 shows the homepage when the pharmacist is logged in. A pharmacist can

search for a patient in the system using their id code. Once the patient is found in the

database and selected, the system shows all the prescriptions about the patient, some

information from health records such as allergy and drug immunology. In the

prescription, if the pharmacist clicks on a specific drug, the system will show alternative

medicines with the same generic name. This way, he can provide other medicine if the

prescribed medicine is not in inventory.

Figure 24 : Patient’s homepage

Figure 25: Pharmacist’s Homepage

60

3.2 Description of Data

We collected the data from various sources. Medicine data is collected from the Github

repository https://github.com/WSAyan/medicinedb/tree/main/csv where we accessed

various data such as different manufacturing companies and id, generic name of medicine

and id, the form of medicine, strength of medicine, prices, and packet size, etc. The total

number of data accessed from this database is 17590 lines. For the user data, we used

https://namso-gen.com/ to generate data of 5000 users, which offered us data such as:

name, email, username, gender, age, birthdate, street, city, state, postal code, phone, cell.

We also added some other information such as id code, blood group, email address, role,

etc.

3.3 Experimentation and result

For evaluating the performance of both kinds of data models, we performed some read,

write, query, and delete operations on the system separately for both kinds of data stores.

We performed these operations 5 times for each of them and measured the average value.

For evaluating the read-write performance of both models, we took three different-sized

datasets of user data which have 1100, 2335 and 3671 items respectively. For sql datasets

are 9542, 15769 and 17589 respectively.

For performance analysis, the specification of the machine which was used is:

Processor: i5-8400

RAM: 32 GiB

GPU: Zotac GTX 1050Ti

Table 6 Shows the read response time for both types of database solutions.

Table 6. Average Read response time for both type of data stores

Database Model Average read response time (s)

First Dataset Second Dataset Third dataset

61

Polystore (SQLite and

MongoDB)

MongoDB: 905 ms

SQLite: 262 ms for

MongoDB: 6806 ms

SQLite: 228 ms for

MongoDB: 10521

ms

SQLite: 286 ms

Multi-model Database

(OrientDB)

108 ms 201 ms 138 ms

Table 7. Shows write performance for both kind of database solutions

Database Model Average write response time (s)

First Dataset Second Dataset Third dataset

Polystore (SQLite and

MongoDB)

SQLite: 193 ms

MongoDB: 2709 ms

SQLite: 265 ms

MongoDB 3282 ms

SQLite 306 ms

MongoDB: 5516

ms

Multi-model Database

(OrientDB)

227 ms 378 ms 469 ms

We performed read and write operations on all the databases, where Medicine data in

SQLite, prescription, appointment, and user data in MongoDB and all of them

separately in OrientDB. From here, we can see that performance of SQLite and

OrientDB is much better than MongoDB where we are reading and writing data. When

the size of the dataset is increased, read-write performance decrease for all of them, but

MongoDB’s performance is significantly poor, which will ultimately affect the

performance of our Polystore.

Some query operations were performed to fetch information of 1000 users and delete

data of 1000 users. Table 5 Shows performance for both kinds of database solutions

while performing the query and delete operation.

Table 8. Average Query response time for both type of data stores

Database Model Query operation Delete Operation

Polystore (SQLite and

MongoDB)

MongoDB: 1612 ms MongoDB: 248340 ms

Multi-model Database

(OrientDB)

209 ms 30792

62

It is clearly visible that performance of OrientDB is much better than MongoDB while

querying and as a result it will also affect the performance of the polystore. In this case

we also can say that OrientDB is a better solution than Polystore.

Dataset Polystore (SQLite and MongoDB) Multi-model Database (OrientDB)

Read Operation Write Operation Read Operation Write Operation

First

dataset

58% 48% 105% 98%

Though MongoDB has shown worse performance in all the criteria, when it comes to

memory usage OrientDB has utilized much more memory than MongoDB which we can

see from table 9. This performance test shows that with suitable optimization strategies,

multi-model databases can be better than system developed using polyglot persistence.

Table 9. Shows Memory and RAM usage while performing read and write operation on both kind of

database solutions

63

Summery

Database selection should be based on the merit of data. Due to lack of flexibility, it is

not possible to use a relational database for all business use cases, and for that reason,

NoSQL databases evolved. But NoSQL databases cannot fully replace Relational

databases because some features provided by Relational databases, such as security,

consistency and strict schema etc. cannot be provided by NoSQL databases. So, both have

their own use cases in the industry. But when it is about big data, which comes with its V

properties, brings new and unique challenges, and to tackle these challenges, we cannot

solely depend on a single type of storage solution. Businesses should eventually move to

complex systems which use the capabilities of both Relational and NoSQL databases.

Integration of database is a topic of concern, and both multi-model and polyglot

persistence is developing and dealing with new challenges. Nowadays many vendors are

providing multi-model database services though none of them has proven to be efficient

in handling all the challenges. On the other hand, though polyglot persistence database is

in an early stage, but some existing models have proven to be promising. Both can serve

as excellent beginning points for future research to handle big data.

In this thesis, our developed Smart prescription system was helpful to compare both

database integration systems. The system can provide doctors and pharmacists with a

well-informed prescription document by using patient health records, appointment

records, and medicine knowledgebase. The pharmacist can offer alternative medicine

based on the information provided. Though in this system, multi-model database seems

to be more efficient but there is other polyglot persistence models that shows promising

result. In the future, we can investigate other database integration methods with larger

amount of data for better evaluation. Also, we can make the application supported for

mobile platform.

64

References

[1] F. CODD, E. "A relational model of data for large shared data banks". Communications of

the ACM. 1983, vol 26, núm. 1, p. 64–69.

[2] PAREDAENS, Jan, VAN GUCHT, Dirk, GYSSENS, Marc y BRA, Paul De. The Structure

of the Relational Database Model. Springer Berlin Heidelberg, 2012.

[3] “State of the database access” [Online] Available: https://451research.com/state-of-the-

database-landscape (Accessed on: 25.07.21)

[4] CODD, E. F.. The relational model for database management: version 2. Reading, Mass:

Addison-Wesley, 1990.

[5] INDRAWAN-SANTIAGO, Maria. Database Research: Are We at a Crossroad? Reflection

on NoSQL. IEEE. 2012.

[6] LAKHE, Bhushan. Re-Architecting for NoSQL: Design Principles, Models and Best

Practices. Apress, 2016, 117–148.

[7] “NoSQL Database: An Overview” [Online] Available:

https://www.thoughtworks.com/insights/blog/nosql-databases-overview (Accessed on

05.08.21)

[8] GESSERT, Felix, WOLFRAM WINGERATH, STEFFEN FRIEDRICH, y NORBERT

RITTER. "NoSQL database systems: a survey and decision guidance". Computer Science -

Research and Development. 2016, vol 32, núm. 3-4, p. 353–365.

[9] Graph Data Management. Sherif Sakr and Eric Pardede. IGI Global, 2012.

[10] LU, Jiaheng y IRENA HOLUBOVÁ. "Multi-model Databases". ACM Computing

Surveys. 2019, vol 52, núm. 3, p. 1–38.

[11] Qu, Xiaona. "Application of Java Technology in Dynamic Web Database Technology."

Journal of Physics: Conference Series. Vol. 1744. No. 4. IOP Publishing, 2021.

[12] Shaikh, Sohel S., and Vinod K. Pachghare. "A Comparative Study of Database

Connection Pooling Strategy." (2017).

[13] SHUN JING, Xiang y YOU HUO, Meng. "The Application of Database Connection

Pool Based on Java in Things Networking". Applied Mechanics and Materials. 2013, vol

432, p. 622–625.

[14] WILLIAMSON, Alan. Java servlets by example. Greenwich, CT: Manning, 1999.

[15] Wu, Amanda, Haibo Wang, and Dawn Wilkins. "Performance Comparison of

Alternative Solutions For Web-To-Database Applications–." Proceedings of the Southern

Conference on Computing. 2000.

[16] GOEMINNE, Mathieu y TOM MENS. Towards a survival analysis of database

framework usage in Java projects. IEEE. 2015.

[17] “What is JDBC? Introduction to Java Database Connectivity” [Online] Available:

https://www.infoworld.com/article/3388036/what-is-jdbc-introduction-to-java-database-

connectivity.html (Accessed on 06.08.21)

https://451research.com/state-of-the-database-landscape
https://451research.com/state-of-the-database-landscape
https://www.thoughtworks.com/insights/blog/nosql-databases-overview
https://www.infoworld.com/article/3388036/what-is-jdbc-introduction-to-java-database-connectivity.html
https://www.infoworld.com/article/3388036/what-is-jdbc-introduction-to-java-database-connectivity.html

65

[18] “Java JDBC API” [Online] Available:

https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/ (Accessed on 06.08.21)

[19] “Java DriverManager class” [Online] Available:

https://www.ibm.com/docs/en/i/7.1?topic=connections-java-drivermanager-class (Accessed

on: 06.08.21)

[20] “What is Java Hibernate” [Online] Available: https://www.educba.com/what-is-java-

hibernate/ (Accessed on: 06.08.21)

[21] “What is JPA? Introduction to the Java Persistence API” [Online] Available:

https://www.infoworld.com/article/3379043/what-is-jpa-introduction-to-the-java-

persistence-api.html (Accessed on: 06.08.21)

[22] GADEPALLY, Vijay, PEINAN CHEN, JENNIE DUGGAN, AARON ELMORE, BR,

HAYNES, on, JEREMY KEPNER, SAMUEL MADDEN, TIM MATTSON, y MICHAEL

STONEBRAKER. The BigDAWG polystore system and architecture. IEEE. 2016

[23] “Microsoft Polybase Documentation.” [Online] Available:

https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-

guide?view=sql-server-ver15 (Accessed on: 14.08.21)

[24] AGRAWAL, Divy, LAMINE BA, LAURE BERTI-EQUILLE, SANJAY CHAWLA,

AHMED ELMAGARMID, HOSSAM HAMMADY, YASSER IDRIS, ZOI KAOUDI,

ZUHAIR KHAYYAT, SEBASTIAN KRUSE, MOURAD OUZZANI, PAOLO PAPOTTI,

JORGE-ARNULFO QUIANE-RUIZ, NAN TANG, y J. ZAKI, Mohammed. Rheem. ACM.

2016.

[25] “Top 7 multi-model database” [Online] Available:

https://www.predictiveanalyticstoday.com/top-multi-model-databases/ (Accessed on:

18.08.21)

https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
https://www.ibm.com/docs/en/i/7.1?topic=connections-java-drivermanager-class
https://www.educba.com/what-is-java-hibernate/
https://www.educba.com/what-is-java-hibernate/
https://www.infoworld.com/article/3379043/what-is-jpa-introduction-to-the-java-persistence-api.html
https://www.infoworld.com/article/3379043/what-is-jpa-introduction-to-the-java-persistence-api.html
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-guide?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-guide?view=sql-server-ver15
https://www.predictiveanalyticstoday.com/top-multi-model-databases/

66

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Shamchi Hoque Kaify

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Analysis of Using Different Databases and integration of SQL and NOSQL

database”, supervised by Vladimir Viies, PhD, Associate Professor.

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

20.12.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

67

Appendix 2 – Description and Manual

This section describes how our application interested. It contains a step-by-step

explanation of how Smart Prescription System works and how to access the codes and

demo.

1. The codes of the system can be found in the following Github Repository.

SQL Backend: https://github.com/ShamchiKaify/final-project.git

MongoDB Backend: https://github.com/ShamchiKaify/final-project-mongo.git

FrontEnd: https://github.com/ShamchiKaify/final-project-next

OrientDB Backend: https://github.com/ShamchiKaify/springboot-orientdb.git

2. The application can be accessed using a web-browser.

3. Video Demo of the project can be found in the following link:

https://drive.google.com/drive/folders/1Dn_OIEOWT0faUR4dezQynCgLJQtxcuv4?

usp=sharing

https://github.com/ShamchiKaify/final-project.git
https://github.com/ShamchiKaify/final-project-mongo.git
https://github.com/ShamchiKaify/final-project-next
https://github.com/ShamchiKaify/springboot-orientdb.git
https://drive.google.com/drive/folders/1Dn_OIEOWT0faUR4dezQynCgLJQtxcuv4?usp=sharing
https://drive.google.com/drive/folders/1Dn_OIEOWT0faUR4dezQynCgLJQtxcuv4?usp=sharing

68

Appendix 3 – Source Code

Following is the SAVE / INSERT method to create a new user:

public UserProfile insertUserProfile(UserProfile userProfile) {
 Optional<UserProfile> byUserName =
userProfileRepository.findByUserName(userProfile.getUserName());

 if (!byUserName.isPresent()) {

 return userProfileRepository.save(userProfile);

 }

 return null;

}

It checks through the repository if any user already exists or not and then, conditionally,

it saves the new user.

The below code is for fetching a user by NID:

public UserProfile getUserByNid(String nid) {
 Optional<UserProfile> byNid = this.userProfileRepository.findByNid(nid);

 return byNid.orElse(null);

}

It fetches a user through the repository and if found, it returns the user, else it returns

NULL.

This is what the Repository looks like:

@Repository
public interface UserProfileRepository extends MongoRepository<UserProfile,
String> {

 UserProfile findAllByUserName(String userId);

 Optional<UserProfile> findByUserName(String userName);

 Optional<UserProfile> findByNid(String nid);

 List<UserProfile> findAllByFullNameStartingWith(String startingPrefix);

 List<UserProfile> findAllByRoleContaining(String role);

}

In case of an INSERT method with Generic Medicine, this is how it was done in my

project using JPA Repository:

@Transactional
public Generic insertGeneric(Generic generic) {

 Generic genericById = getGenericById(generic.getGenericId());

 return genericRepository.save(genericById);

}

69

And this is what the JpaRespository looks like:

@Repository

public interface GenericRepository extends JpaRepository<Generic, Long> {

 Optional<Generic> findGenericByGenericId(Long id);

 Optional<Generic> findGenericByGenericNameContaining(String search);

 List<Generic> findAllByGenericId(String id);

}

This is the Class definition of Generic (Generic Brand Name):

@Data

@Entity

public class Generic {

 @Id

 private Long genericId;

 private String genericName;

 private String precaution;

 private String indication;

 private String contraIndication;

 private String dose;

 private String sideEffect;

 private String pregnancyCategoryId;

 private String modeOfAction;

 private String interaction;

}

Note that the @Data annotation is from lombok to implement the getter and setter

automatically, to reduce redundant coding. And the @Entity is to tell our code that this

model class is an Entity of the SQL Database.

This is what the Appointment model class looks like:

@Data

@AllArgsConstructor

@NoArgsConstructor

public class Appointment {

 @Id

 private String id;

 private String doctorUserName;

 private String patientNid;

 private UserProfile patientProfile;

 private LocalDateTime dateOfAppointment;

 private String dateString;

 private boolean appointmentStatus;

}

70

And this is the UserProfile model class:

@Data

@NoArgsConstructor

@AllArgsConstructor

public class UserProfile {

 @Id @Indexed

 private String id;

 @NotNull(message = "Username cannot be null")

 private String userName;

 private String password;

 private String fullName;

 private String dateOfBirth;

 @Indexed

 private String nid;

 @NotBlank(message = "Role cannot be null")

 private ROLE role;

}

The following is the API through which we can get an Patient with NID:

@GetMapping("/get_patient_by_nid")

public ResponseEntity getPatientByNid(HttpServletRequest httpServletRequest,
@RequestParam("nid") String nid) {

 UserProfile userByNid = userProfileService.getUserByNid(nid);

 HttpStatus httpStatus;

 if(userByNid!=null) {

 httpStatus = HttpStatus.OK;

 } else {

 httpStatus = HttpStatus.NO_CONTENT;

 }

 return new ResponseEntity(userByNid, httpStatus);

}

It asks the userProfileService to return the user of the given NID. If it is found, we are

returning a response with HttpStatus.OK but if the user is not found, we are returning

HttpStatus.NO_CONTENT.

71

Below is the source API code to get the Alternative Medicine of any given
medicine:

@GetMapping("get_alternative_medicine/{searchMedicine}")

public ResponseEntity getAlternativeList(HttpServletRequest
httpServletRequest, @PathVariable String searchMedicine) {

 List<Brand> list = brandService.getAlternateList(searchMedicine);

 HttpStatus httpStatus;

 if(list!=null) {

 httpStatus = HttpStatus.OK;

 } else {

 httpStatus = HttpStatus.NO_CONTENT;

 }

 return new ResponseEntity(list, httpStatus);

}

It receives a medicine name as @PathVariable and through the BrandService, it fetches

a list of alternate medicine list and returns it to the user.

