
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Martin Talimets 163584IAPM

END-TO-END SPEECH RECOGNITION FOR
ESTONIAN

Master’s thesis

Supervisor: Tanel Alumäe

 Senior Researcher

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Martin Talimets 163584IAPM

TÄIELIKULT NÄRVIVÕRKUDEL PÕHINEV
KÕNETUVASTUS EESTI KEELELE

Magistritöö

Juhendaja: Tanel Alumäe

 Vanemteadur

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Martin Talimets

07.05.2018

4

Abstract

The thesis is about end-to-end speech recognition system for Estonian language. This

method makes training a speech recognition system a lot simpler. It does not require many

complex neural network layers or knowledge about a language to train.

We test a few different approaches for end-to-end speech recognition. These tested end-

to-end systems include a recurrent neural network (RNN) with connectionist temporal

classification (CTC) or an attention based encoder-decoder architecture. These methods

result in much lower speech recognition accuracy than the traditional hybrid model that

uses hidden Markov models and deep neural networks. Instead, we use a combination of

both architectures.

Our experiments show that the proposed method for Estonian language speech

recognition system does not perform as good as the traditional method yet. The trained

model achieves a word error rate (WER) of 21.9% and a character error rate (CER) of

7.5% on test set. However, when combining this system with the traditional approach, it

gave results that are statistically significant improvements to the current best Estonian

speech recognition system. The achieved results were 12.0% for WER and 4.0% for CER.

This thesis is written in English and is 46 pages long, including 6 chapters, 10 figures and

4 tables.

5

Annotatsioon

Täielikult närvivõrkudel põhinev kõnetuvastus eesti keelele

Magistritöö eesmärgiks on uurida täielikult närvivõrkudel põhinevat kõnetuvastust eesti

keelele. Täielikult närvivõrkudel põhineva kõnetuvastuse süsteemi treenimine on oluliselt

lihtsam kui traditsioonilise sügaval närvivõrgul põhineva süsteemi puhul. See ei vaja

mitmeid keerulisi närvivõrkude kihte või teadmisi treenitava keele sõnade, käänete või

kasutuse kohta.

Antud magistritöös testitakse erinevaid lähenemisi täielikult närvivõrkudel põhineva

kõnetuvastuse süsteemi jaoks. Kõik testitavad süsteemid baseeruvad rekurrentsetel

närvivõrkudel, millele on lisatud connectionist temporal classification (CTC) või

tähelepanu mehhanismil põhinev enkooder-dekooder arhitektuur (attention based

encoder-decoder architecture). Antud süsteemide tulemused olid silmnähtavalt

halvemad traditsioonilisest kõnetuvastusest, mis põhineb sügaval närvivõrgul koos

varjatud Markovi mudeliga. Seetõttu kasutame arhitektuuri, mis koosneb rekurrentsest

närvivõrgust koos CTC ja tähelepanu mehhanismil põhineva enkooder-dekooder

arhitektuuri hübriidiga.

Tehtud eksperimendid näitavad, et välja pakutav täielikult närvivõrkudel põhinev

kõnetuvastuse süsteem ei saavuta nii häid tulemusi nagu traditsiooniline kõnetuvastus.

Treenitud mudel saavutas sõnade veamääraks (word error rate) 21,9% ja tähtede

veamääraks (character error rate) 7,5% testandmete peal. Traditsioonilise ja täielikult

närvivõrkudel põhineva kõnetuvastuse kombineerimisel saavutatud tulemused olid

statistiliselt oluliselt paremad praegusest parimast eesti keele kõnetuvastuse süsteemist.

Antud süsteem saavutas sõnade veamääraks 12,0% ja tähtede veamääraks 4,0%.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 46 leheküljel, 6 peatükki, 10

joonist, 4 tabelit.

6

List of abbreviations and terms

BLSTM Bidirectional Long Short-Term Memory

BRNN Bidirectional recurrent neural network

CER Character error rate

CTC Connectionist temporal classification

DNN Deep neural network

HMM Hidden Markov model

LAS Listen, attend and spell

LSTM Long Short-Term Memory

LVCSR Large Vocabulary Continuous Speech Recognition

WER Word error rate

WTN Word transition network

RNN Recurrent neural network

7

Table of contents

1 Introduction ... 11

1.1 Problem ... 11

1.2 Objective ... 11

1.3 Methodology ... 12

1.4 Outline .. 12

2 Background.. 14

2.1 End-to-end speech recognition .. 14

2.2 Feature extraction .. 15

2.3 Recurrent neural network (RNN) ... 17

2.4 Long Short-Term Memory (LSTM) ... 18

2.5 Connectionist temporal classification (CTC) ... 20

2.6 Attention based encoder-decoder architecture .. 21

2.7 Evaluation metrics for speech recognition ... 22

2.7.1 Word error rate (WER) ... 22

2.7.2 Character error rate (CER) .. 23

3 Related works .. 24

3.1 End-to-end speech recognition .. 24

3.2 Estonian language ... 26

4 Method .. 27

4.1 Hybrid CTC/attention-based end-to-end architecture ... 27

4.2 Combining n-best lists with ROVER method... 29

5 Experiments ... 31

5.1 Data .. 31

5.2 Traditional approach for Estonian speech recognition .. 32

5.3 Choosing the best library ... 32

5.4 Model description.. 33

5.5 Data augmentation .. 34

5.6 Combining n-best lists ... 36

5.7 Analysis .. 36

8

5.7.1 Combined n-best lists better than traditional approach 36

5.7.2 Traditional approach better than combined n-best lists 38

5.7.3 Traditional approach better than end-to-end approach 39

5.7.4 End-to-end approach better than traditional approach 40

6 Summary ... 42

7 References ... 44

8 Appendix 1 – Code for applying the model .. 47

9

List of figures

Figure 1. An audio signal wave ... 15

Figure 2. Spectrogram of an audio clip .. 16

Figure 3. An unrolled RNN [3] ... 17

Figure 4. Bidirectional RNN (BRNN) [4].. 18

Figure 5. LSTM memory block with one cell [4]... 19

Figure 6. Preservation of gradient information by LSTM [4] 19

Figure 7. Merging repeated characters ... 21

Figure 8. Merging repeated characters with blank token .. 21

Figure 9. Hybrid CTC/attention-based end-to-end architecture [20] 28

Figure 10. WTNs alignment .. 29

10

List of tables

Table 1. Used dataset description .. 31

Table 2. Trained model parameters ... 33

Table 3. WER and CER results for different datasets .. 35

Table 4. WER and CER results for combined systems .. 36

11

1 Introduction

The thesis investigates using end-to-end speech recognition system for Estonian

language. The model is trained with ESPnet end-to-end speech recognition toolkit using

the data acquired mostly from Estonian TV or radio programs and news. It mainly consists

of a deep neural network and a hybrid CTC/attention based encoder-decoder architecture.

This chapter describes the problem and methodology for solving it. It outlines the basic

differences between using the traditional and end-to-end approach for speech recognition.

We define the problem, set a hypothesis for solving it and set target goals for validating

the results.

1.1 Problem

The thesis investigates using end-to-end speech recognition for Estonian language. End-

to-end method has not been previously researched on Estonian language.

The current research on speech recognition for Estonian language is done using the

traditional approach. Traditional speech recognition systems are currently based on very

complex components. These components are acoustic models based on hidden Markov

models, Gaussian mixture models, deep neural networks, n-gram and neural network

based language models, complicated training and decoding algorithms. End-to-end

speech recognition replaces all these different components in the traditional pipeline with

a single end-to-end deep recurrent neural network (RNN).

1.2 Objective

The objective for this thesis is to test a deep recurrent network model with hybrid

CTC/attention based encoder-decoder architecture for Estonian speech recognition.. The

model is trained using about 216 hours of Estonian speech recordings from approximately

3500 unique speakers.

12

The results are evaluated using word error rate and character error rate on n-best lists.

Word error rate measures the accuracy by comparing the exact match of words. Character

error rate compares each character individually, which usually gives a correctness score

better than with word error rate. These scores are calculated for end-to-end speech

recognition system and then combined with the traditional approach.

The goal is to achieve a word error rate below 25% and a character error rate below 5%

for only using end-to-end speech recognition. For combining end-to-end with traditional

approach, the goal is to achieve better results than with traditional approach alone.

1.3 Methodology

The model is trained using different end-to-end speech recognition systems. These

systems all include a deep neural network. The difference is the method used for scoring

the output of a neural network.

Various systems are tested to see which architecture works best. The results from the best

working model are then combined with the results from existing traditional approach. All

results are compared and analysed to emphasize main differences between different

systems.

1.4 Outline

The first chapter describes the problem and methodology for solving Estonian language

end-to-end speech recognition. It outlines the basic differences between using the

traditional and end-to-end approach for speech recognition. We define the problem, set

a hypothesis for solving it and set target goals for validating the results.

The second chapter gives a detailed overview of the main component used for using an

end-to-end speech recognition system, e.g. feature extraction, RNN, LSTM, CTC,

attention based encoder-decoder and evaluation metrics.

The third chapter introduces previous related works that are related to this thesis’

problem. These alternative works have used end-to-end speech recognition for other

languages. The only Estonian language related work concentrates on the traditional

method for speech recognition.

13

The fourth chapter specifies the solution part of the thesis. It gives a detailed overview of

the methods used with training the end-to-end speech recognition system. The hybrid

CTC/attention based end-to-end architecture and ROVER method is explained.

The fifth chapter is about the experiments. It describes the data used in the experiments,

why the ESPnet toolkit is chosen, the used model for training, the results of the

experiments and the analysis of the results.

The sixth chapter draws conclusion on how the end-to-end speech recognition system

performs on Estonian language. The objectives and hypothesis are analysed whether they

were achieved as initially planned.

14

2 Background

This chapter gives a detailed overview of the main component used for using an end-to-

end speech recognition system, e.g. feature extraction, RNN, LSTM, CTC, attention

based encoder-decoder and evaluation metrics.

2.1 End-to-end speech recognition

Speech recognition is the process of automatically extracting the word conveyed by

speech wave. Traditional speech recognition systems are currently based on very complex

components. These systems use components such as hidden Markov models, Gaussian

mixture models, deep neural networks, n-gram and neural network based language

models. End-to-end speech recognition replaces all these different components in the

traditional pipeline with a single end-to-end deep recurrent neural network.

End-to-end speech recognition does not know anything about words or how they are used.

It tries to guess each letter on a given audio and combine those to form words. This is

different from the traditional approach where vocabulary and n-grams are used. The

traditional approach then tries to calculate probabilities of what a person might have said

compared to a given vocabulary and n-grams.

The main benefit of using end-to-end speech recognition is that is simplifies the process

of training and deployment. Because of the fact that end-to-end does not need a

vocabulary or n-gram, it can be used with different languages more easily, when only

training data is available. It will also simplify deployment on mobile devices, because it

does not use a typical n-gram language model, which takes a lot of disk space.

End-to-end speech recognition system has one important downside. Even though training

the system is a lot simpler than in traditional approach, it needs a lot of training data. The

system will have to learn different characteristics of a language by itself and that is why

it needs to have a sufficient amount of data. Usually, the system needs to have thousands

of hours of data to train on. It is possible to train with less data, but the results will not be

as good as the system is capable of achieving.

15

End-to-end speech recognition is mainly based on deep recurrent neural network. A deep

recurrent neural network alone is not enough for a speech recognition system. The first

attempts used CTC, but it is incapable of learning the language and needs language model

to clean up common mistakes. Instead of CTC, attention-based models were tested and

they proved to be outperforming previous models, due to the ability of learning all

components of a speech recognizer. Both methods still have some benefits over one

another and recent works have started using a hybrid CTC/attention based architecture,

which is also used in this thesis.

2.2 Feature extraction

The first step in recognizing speech from audio is to extract features. Feature extraction

is for removing background noise, emotion and all other useless information to get only

the components that can be used for identifying linguistic content. This pre-processing is

needed for making neural network’s processing easier to recognize text from audio [1].

For extracting features from audio, the signal is usually framed into 20-40ms frames.

Each frame is selected after 10ms, which means that the next frame will have some of its

Figure 1. An audio signal wave

16

contents from the previous frame. All of these frames still contain redundant information

that require filtering. To remove all sudden endings of an audio signal in each frame, a

window function is used, such as the Hamming window. The Hamming window function

also allows to counteract the assumption made by the discrete Fourier transform that the

signal is infinite and to reduce spectral leakage.

By using discrete Fourier transform, each complex sound wave is broken apart into simple

sound waves. It takes a windowed signal as input and outputs a complex number for each

frequency band. Each of those sound waves’ contained energy is added up to get a score

of how important each frequency band is. To better visualize the output of this process, a

spectrogram is created using each frame’s contained energy scores.

After using the discrete Fourier transform, the spectrogram still has too much information.

Triangular filters are applied on a Mel-scale to the power spectrum for extracting

frequency bands. The Mel-scale’s purpose is to mimic the non-linear human ear

perception of sound. Lower frequencies are filtered with narrower and higher frequencies

with wider bands. Each of those filters collect energy from a number of frequency bands

in discrete Fourier transform.

The spectrogram in Figure 2 visualizes the patterns of low and high pitch frequency

ranges. This data is better for a neural network to process, because it can find patterns

Figure 2. Spectrogram of an audio clip

17

more easily. That is why this is the actual representation of audio data that gets fed into

the neural network. The neural network will then try to figure out the best possible letter

for each of these 20ms frames.

2.3 Recurrent neural network (RNN)

RNN is a type of deep learning model that works best for handling sequential information.

RNN assumes, that all inputs and outputs are dependent on each other, unlike the

traditional neural network. It keeps a memory of previous outputs and passes those as

inputs from one step of the network to the next (Figure 3). This way the network can have

a deeper understanding of the statement [2].

The above figure shows a chunk of neural network (A), that takes (Xt) and previous output

as inputs and outputs a value (ht). The recurrence allows the network to pass information

from one step to the next [3]. This is the basic workflow of a RNN, but it is often used

with bidirectional to get more accurate results.

Figure 3. An unrolled RNN [3]

18

It is often beneficial to know some information about the future as well as past context.

Usually, when classifying a letter in a word, it is beneficial to know about the previous

and next letters. This is something that bidirectional RNNs will help to solve. The idea

behind BRNN is to have two hidden layers (Figure 4), one for forward and one for

backward layer. This way the output layer will have both the past and future context for

every point in the input sequence [4].

Standard RNN does not always perform very well. The problem is that RNNs cannot

preserve memory from far away in the sequence. RNN makes predictions based on the

most recent sequences. This means that the context about the start of a sentence might be

lost while predicting the end of the sentence. To solve this problem, RNN is often used

with long short-term memory (LSTM) architecture to have the context of a whole

sentence always available in memory [5].

2.4 Long Short-Term Memory (LSTM)

Standard RNN architectures have a problem with multiple hidden layers. When passing

information from one hidden layer to another, the information might get lost, if there are

many layers. LSTM handles this kind of situation and enables RNN to preserve memory

throughout the whole learning process.

Figure 4. Bidirectional RNN (BRNN) [4]

19

LSTM architecture consists of memory blocks, which are all recurrently connected to

each other. Each memory block contains at least one self-connected memory cell [6]. The

memory cell allows information to be stored in, written to or read from. It also decides,

which information to store and when to allow reading, writing and erasing. This is done

using input, output and forget gates that open and close as shown in Figure 5.

Figure 5. LSTM memory block with one cell [4]

Figure 6. Preservation of gradient information by LSTM [4]

20

Figure 6 shows the preservation of gradient information by LSTM. Input state, forget and

output gates are shown below, to the left and above the hidden layer respectively. (O)

represents an entirely open gate and (-) is for a closed gate. Looking at the diagram, LSTM

memory cell can preserve information as long as the input gate is closed and forget gate

is open. Getting information from output gate does not have any affect memory cell’s

data.

When using LSTM architecture with bidirectional RNN gives bidirectional LSTM

(BLSTM) [4]. Using BLSTM allows to preserve information from the past as well as

from the future. This is important, when the understanding of past and future context is

needed to find the correct next word in any time.

For better understanding of BLSTM, it can be explained with a simple speech recognition

example. Let us say, we need to detect the next word for a sentence starting with “I will

go to “. Currently the only available information about the sentence’s context is in the

past. Finding the correct next word can be difficult, when there are almost limitless

possibilities. Now, the BLSTM allows to get context from the future as well. When the

sentence continues with “and learn machine learning”, the detection for the missing word

becomes simpler, because of the extra context about the whole sentence [7].

2.5 Connectionist temporal classification (CTC)

People talk with very different rates of speed which makes training an ASR system a lot

more difficult. That is why the alignment between characters in the transcript and audio

is always unknown. One way of solving this problem is to manually align all characters

to their location in the audio. The major downside is that it’s very time consuming when

dealing with large datasets. Another option is to use connectionist temporal classification

(CTC) which has become a very popular among RNNs [8].

CTC is a type of neural network output and associated scoring function. It is used with

RNNs to handle sequential problems. CTC sums over the probability of all possible

alignments between the input and the output [4]. Assuming that an input has a length

greater than the actual word’s length, one option for solving the problem is to collapse all

repeating characters.

21

Collapsing all repeating words is not the best way of tackling this problem, because it will

remove all repeating characters even when there should be a repetition. That is why CTC

uses a token called blank (here referred as _). This token is always removed from the

output, but used in alignment process.

Firstly, CTC merges all repeating characters and secondly, removes all blank tokens. The

remaining output will be ‘hello’ not ‘helo’, which would be the output without the token.

There are a lot of possible ways of character alignment for every input. CTC loss

functions combines all alignments where the output is the same. It then calculates the

score for each of these combinations and sums over all scores. While decoding, a

character with the highest score for each time step is picked. After that, the duplicate

characters are merged and blank tokens removed to get the final output [9].

2.6 Attention based encoder-decoder architecture

Encoder-decoder architectures are mostly used to deal with sequences where the input

and output length size in unknown. Both encoder and decoder are RNNs. The encoder

transforms the input to a higher level representation where the length size is fixed. The

decoder then uses this representation and generates output sequences.

Figure 7. Merging repeated characters

Figure 8. Merging repeated characters with blank token

22

When dealing with a simple encoder-decoder architecture, the decoder generates a

transcription based on the last hidden state from the encoder. This is not a reasonable

approach, because when dealing with sentences containing many words, the encoder will

have to encode every information into a single vector. The decoder must then produce a

valid output only based on this single vector. While decoding, the decoder has to consider

information from the beginning of the sentence and when dealing with RNNs, it is known

that long-range information might get lost.

Attention based encoder-decoder architecture solves the problem of encoding everything

into one single vector. The attention mechanism allows decoder to get information from

all parts of the source sentence at every step of output generation. The model will learn

by itself what information is important and should be considered. Each decoder output

does not depend on the last vector anymore, but instead on a weighted combination of all

the input states [10].

2.7 Evaluation metrics for speech recognition

2.7.1 Word error rate (WER)

WER is a method for calculating the performance of a speech recognition software. This

is not always easy to measure, because the correct input length can be different from the

detected value length.

𝑊𝐸𝑅 =	
𝑆 + 𝐷 + 𝐼

𝑁

Equation 1. WER calculation

Equation 1 shows the equation for calculating WER. S shows the number of substitutions,

D is for deletions, I is for insertions and N is for words in the reference [11].

There are three possibilities for an automated speech recognition (ASR) software to make

mistakes that WER will calculate:

1) Deletion – ASR system deletes a word

Correct input: Machines can think

ASR result: Machines think

23

2) Insertion – ASR system inserts an unneeded word

Correct input: Machines can think

ASR result: Machines can not think

3) Substitution – ASR system substitutes a correct word with an incorrect one

Correct input: Machines can think

ASR result: Machines can learn

WER can sometimes give very unreasonable results when dealing with compound words.

Sentences like “water melon tastes good” and “watermelon tastes good” are both very

well understandable. But the calculated WER would be 50%, which is unfair considering

that the actual mistake is only adding an unnecessary white space. This is where character

error rate will give more adequate results.

2.7.2 Character error rate (CER)

Another method for calculating the performance of ASR is character error rate. CER is

calculated with the minimum number of operations necessary to transform the original

text into ASR output. The smaller the number, the more accurate both texts are.

The equation for calculating CER is the same for WER as shown in Equation 1. But for

CER, N is for the total number of characters and the minimal number of character

substitutions as S, deletions as D and insertions as I, required for transforming original

text into automatic transcription [12].

White space and case are also important for CER. While contiguous white spaces are

usually considered as one, a word pair “auto mobile” with more than one space between

them still gives an accuracy of 10%. When comparing words with different case like

“Hello World” and “hello world”, CER sees them as substitutions and calculates an

accuracy of 18%.

CER is most commonly used when dealing with languages that have difficult declensions.

When the original reference in Estonian is “koerast” and ASR recognises it as “koeras”,

the WER would be 100%, but CER is only 14%. For these kind of languages, where a

word has many different cases, WER might show a bit unfair results compared to CER.

Although the result of WER is high, the word is still readable and in the meaning of the

sentence would still be understandable.

24

3 Related works

The problem of using end-to-end speech recognition for Estonian language has not been

investigated in any earlier research.

This chapter introduces previous related works that are related to this thesis’ problem.

These alternative works have used end-to-end speech recognition for other languages.

The only Estonian language related work concentrates on the traditional method for

speech recognition.

3.1 End-to-end speech recognition

Deep Speech 2: End-to-end Speech Recognition in English and Mandarin was created in

2015 to show the possibilities of implementing end-to-end speech recognition on very

different languages [13]. The system consists of three main components:

1) RNN with one or more convolutional input layers

2) Multiple recurrent layers and one fully connected layer

3) CTC

For training the models, this research uses 11940 hours of labeled speech, which contains

8 million utterances, for English model and for Mandarin, there are 9400 hours of labelled

speech, which contains 11 million utterances.

The trained model’s WER for English language is comparable with human WER, when

the audio is clearly understandable. In these cases, the WER differs between 3-13% using

different datasets. When testing with accented or noisy audio, the WER becomes

understandably bigger. The difference between human level and the trained model

becomes clearer when dealing with accented or noisy audio.

The results for Mandarin language show that end-to-end speech recognition can give

better results than an average human speaker. When transcribing short voice-query like

utterances, the trained system for Mandarin language works better than human level

25

performance. The system achieves a WER of 3.7% for 100 random utterances labelled by

a committee of 5 and 5.7% for 250 utterances labelled by a single person. A typical

Mandarin Chinese speaker achieves approximately 4% for committee labelled utterances

and 9.7% for utterances labelled by an individual.

Listen, attend and spell (LAS) is research done in 2015 and has a key improvement over

previous end-to-end CTC models. LAS uses a neural network, that transcribes speech

utterances to characters. The system has two components: a listener and a speller, which

are both jointly learned. The listener is a pyramidal recurrent network encoder that uses

filterbank spectra for inputs. The speller is an attention-based recurrent network decoder

that sends out characters as outputs [14].

Without using a language model or a dictionary, LAS achieves a WER of 14.1% on a

subset of the Google voice search task. The result is not as good as the traditional DMM-

HMM models, but still quite good for a system that has not been fully researched and

developed.

There have also been many other recent researches about end-to-end speech recognition

using LAS, such as [15] [16] [17] [18] [19].

Joint CTC/attention decoding for end-to-end speech recognition is another research for

end-to-end speech recognition created in 2017 [20]. Previous works on end-to-end ASR

systems have used either CTC or attention architecture. This research has created an end-

to-end speech processing toolkit called ESPnet which proposes a hybrid CTC/attention

architecture to utilize both advantages in decoding [21].

The testing is done on spontaneous Japanese and Mandarin Chinese datasets. For getting

better results, the train set is expanded by linearly scaling the audio lengths by factors of

0.9 and 1.1. It eventually achieved a WER of 29.9% which is better than systems using

only CTC.

Using CTC in end-to-end speech recognition is also researched by many others, such as

[22] [23] [24] [25] [26].

26

3.2 Estonian language

Recent improvements in Estonian LVCSR is a paper from 2014 by Tanel Alumäe which

uses the traditional method for solving Estonian language speech recognition [27]. This

paper is from 2014.

This paper describes a speech-to-text transcription system for semi-spontaneous speech.

The system is based on the Kaldi toolkit and uses deep neural network based hidden

Markov models (DNN-HMM) as main acoustic models. For restoring the final lattices,

the system uses neural network based phone duration models, which gives significant

improvements over the basic DNN-HMM architecture.

For training the model, over 100 hours of speech was transcribed and used. The audio

contains various speakers and no special processing has been made with it. This system

achieves WER of 17.9% on broadcast conversations and 26.3% on conference speeches.

27

4 Method

This chapter specifies the solution part of the thesis. It gives a detailed overview of the

methods used with training the end-to-end speech recognition system. The hybrid

CTC/attention based end-to-end architecture and ROVER method is explained.

4.1 Hybrid CTC/attention-based end-to-end architecture

In machine translation, where word order for input and output can be different, the

attention-based encoder-decoder works fairly well. It allows nonsequential alignments

between each element of the output sequence and acoustic encoder network generated

hidden states for each frame of acoustic input. But for speech recognition, word order is

the same for input and output except some small within-word deviations that may happen.

Another problem is the different lengths of input and output sequences. The difference in

length comes from each speaker’s speaking rate and writing system. That makes it

difficult for the ASR to track the alignment between input and output. The attention

mechanism could solve all these problems, but for better results, a CTC-based alignment

will be used for training the model [28].

28

Hybrid CTC/attention-based end-to-end architecture, as shown in Figure 9, solves both

the word order and alignment problem between input and output. This architecture uses

a CTC objective function as an auxiliary task for training the attention model encoder.

The BLSTM encoder network is shared between CTC and attention model.

The decoding process uses both attention-based and CTC scores. Because of the fact that

CTC and attention-based decoder computes scores differently, combining them is

nontrivial. A rescoring/one-pass beam search algorithm is used to combine those scores.

The outcome of this would eliminate all irregular alignments.

Using this joint architecture, the learning process of the network is quicker and it works

better in noisy conditions or with long sentences. The forward-backward algorithm of

CTC enforces monotonic alignment between speech and label sequences. This helps to

acquire more accurate alignments in noisy conditions. Using CTC as an auxiliary task

also improves the speed in estimating alignments without the aid of rough estimates. That

way the estimations for alignments in long sequences are not solely dependent on data-

driven attention methods [20].

Figure 9. Hybrid CTC/attention-based end-to-end architecture [20]

29

4.2 Combining n-best lists with ROVER method

N-best list is generated by the ASR system and it contains a list of likely possibilities for

input sentence which is sorted by the best score. Each possibility is different and has a

score of how sure the system is in its correctness. N-best list allows to combine multiple

different ASR systems to achieve better results.

For combining multiple n-best lists, a ROVER system is used. The first step for this

system is to align all hypothesis transcripts from ASR systems to get one word transition

network (WTN). It firstly creates WTNs for all ASR system outputs to be able to combine

them.

A base WTN is chosen from which the composite WTN is developed. All other WTNs

are aligned according to the base WTN as shown in Figure 10. For example, if there are

3 different systems, a base WTN is chosen and then one of the remaining WTN is aligned

with the base WTN to form a new base WTN. The process is repeated with all other

remaining WTNs to eventually get one final composite WTN.

When the final composite WTN is found, a voting module is used to find the best scoring

word sequence. The voting module finds the occurrences of each word and accumulates

them.

𝑆𝑐𝑜𝑟𝑒(𝑤) = 	𝛼 3
𝑁(𝑤, 𝑖)
𝑁𝑠 7 + (1 − 𝛼)𝐶(𝑤, 𝑖)

Equation 2. Scoring formula

The Equation 2 show how the voting is performed. The number of occurrences of word

type w is accumulated in correspondence set i in the array N(w,i). To scale the frequency

of occurrence to unity, the array is then divided by the number of combined systems Ns.

Figure 10. WTNs alignment

30

The measured confidence scores for word w create an array C(w,i). The parameter a is

trained to be the trade-off between using word frequency and confidence scores.

The voting can be done in three different ways. When setting the a parameter to 1, the

information about confidence scores become irrelevant. This way the voting is made by

frequency of occurrence. When training the parameter a a priori on the training data, the

voting will use confidence scores to find either average or maximum confidence scores.

The parameter a can be trained by quantizing the parameter space into a grid of possible

WER values and then exhaustively searching for the lowest WER [29].

31

5 Experiments

This chapter is about the experiments. It describes the data used in the experiments, why

the ESPnet toolkit is chosen, the used model for training, the results of the experiments

and the analysis of the results.

5.1 Data

Table 1. Used dataset description

Origin Speech type Hours

Radio and TV programs,

radio interviews

Semi spontaneous 109

Lectures and conference

presentations

Not spontaneous 38

Radio and TV news Dictated, semi spontaneous 30

A spontaneous phonetic

speech corpus from

University of Tartu

Spontaneous 29

Speech database from

BABEL

Dictated 8

Android app “Kõnele” real

spoken data

Dictated 2

Sum 216

This thesis uses about 216 hours of Estonian speech from approximately 3500 unique

speakers. Most of the data contains spontaneous speech. Spontaneous speech gives better

32

results for training the model, because of the different talking speeds and pronunciations

of words by various speakers.

Table 1 shows the distribution of used data over different origins. This dataset is divided

between training, test and validation sets. Test and validation sets use data from TV news,

interviews, talk shows and radio shows. Test data contains 8 hours and 27 minutes of data

from approximately 170 unique speakers which is equivalent to 3027 utterances.

Validation set contains 7 hours and 28 minutes of data from approximately 190 unique

speakers which is equivalent to 2954 utterances. All other data is for training set.

5.2 Traditional approach for Estonian speech recognition

The previous work for solving Estonian speech recognition is made using traditional

approach. It uses deep neural network based hidden Markov models (DNN-HMM) as

main acoustic models. For better results, a neural network based phone duration models

are used for rescoring final lattices.

The system uses the Kaldi toolkit and contains 43 phoneme models, a silence/noise model

and a garbage model that collects foreign language and unintelligible words during

training. A single silence/noise model is used to map different noises and fillers. The

acoustic model is trained using Kaldi Switchboard recipe.

Language model for traditional approach is one of the key components. It consists of

bigrams, trigrams and also 4-grams that occur more than once. Before creating the

language model, a text normalization is performed, where recapitalization and changing

numbers to words are mainly done. The language model vocabulary consists of 200 000

most likely case-sensitive compound-slip units.

This thesis uses n-best list from traditional speech recognition approach to combine this

with end-to-end approach. The results for combining the results of two different systems

are described in chapter 5.6.

5.3 Choosing the best library

Because of the increasing interest in developing end-to-end speech recognition systems,

there are quite many projects related to it. This theses trained models on three different

33

systems. End-to-end automatic speech recognition system implemented in Tensorflow,

an open source project called DeepSpeech by Mozilla and ESPnet end-to-end speech

recognition toolkit [30] [31].

Training models on all three systems showed that ESPnet performs significantly better.

The use of hybrid CTC/attention architecture has proven to perform better than CTC or

attention based alone. ESPnet has got many benefits over the other two systems apart

from just performing better. It has been developed by many highly valued experts with a

lot of experience in the field of speech recognition. The documentation is very good and

includes scripts with different training parameters for some popular data corpuses. One

of the other advantages is the fact that ESPnet has similar structure to Kaldi toolkit and

uses its functionality. Kaldi toolkit has been widely recognized and used by speech

recognition researchers [32].

5.4 Model description

The model is trained by using various parameters. All parameters are taken from the

ESPnet script that trains a model for TED talks corpus. This is done because the TED

corpus is very similar to the data used in this thesis and has proven itself. Table 2 lists

most important parameters used in training the model.

Table 2. Trained model parameters

Parameter Value

Type of encoder network architecture vggblstmp

Number of encoder layers 6

Number of encoder hidden units 320

Number of encoder projection units 320

Encoder subsampling 1_2_2_1_1

Type of CTC implementation to

calculate loss

Chainer

34

Number of decoder layers 1

Number of decoder hidden units 300

Type of attention architecture location

Number of attention transformation

dimensions

320

Number of attention convolution

channels

10

Number of attention convolution filters 100

Multitask learning coefficient 0.5

Batch size 30

Batch size is reduced if the input

sequence length is greater than max

length

800

Batch size is reduced if the output

sequence length is greater than max

length

150

Optimization AdaDelta

Number of maximum epochs 15

5.5 Data augmentation

End-to-end speech recognition requires a lot of data to train a model that has as low as

possible WER and CER. Collecting data for training is not that easy and takes a lot of

time and resources. That is why data augmentation is used for generating more training

data.

35

There are many options for data augmentation. This thesis uses speed modifications, noise

and reverberation to generate more data. The original dataset is modified by decreasing

speed by 10% and increasing it by 10%. Noise and reverberation is added for each of

these datasets. The used background noises are extended by repetition to cover the whole

audio input. Reverberations are only added at a specified time.

By doing these simple modifications, the initial dataset has given 5 more datasets that can

all be used during model training. This kind of data augmentation gives more real life

data to train on and the trained model actually achieves better results.

The model is trained using original dataset, original dataset with speed modifications and

original dataset with speed modifications, noise and reverberation. The results are shown

in Table 3.

Table 3. WER and CER results for different datasets

System Validation set Test set

WER % CER % WER % CER %

Original dataset 24.7 8.2 23.3 7.8

Original dataset with speed

modifications

24.2 8.1 23.5 8.0

Original dataset with speed

modifications, noise and reverberation

22.8 7.7 21.9 7.5

As shown in Table 3, WER and CER improves when adding speed modifications to

original dataset and testing against validation set. The results for testing against test set

show slightly worse results. Using only speed modifications for simulating data does not

always give better results. By adding noise and reverberation, the results show promising

improvement for both test set and validation set. WER is improved by almost 2% and

CER by 0.5%.

36

5.6 Combining n-best lists

N-best list allows to combine the result of different systems to achieve more accurate

results. We use the ROVER method to combine n-best lists from the traditional and end-

to-end system which contain 100 different predictions with confidence scores.

Table 4. WER and CER results for combined systems

System Validation set Test set

WER % CER % WER % CER %

Traditional approach alone 12.4 4.7 12.7 4.5

Combined with end-to-end system 12.0 4.0 12.0 4.0

As Table 4 shows, the combined system achieves slightly better WER and CER. The

combined system benefits from end-to-end system’s ability of recognising unknown out

of vocabulary words. Traditional approach outputs only words in its vocabulary, therefore

commonly making mistakes with names and different cases of a word.

At first thought, the improvement might not look that great. But when looking at the

relative improvement on test set, for example, WER improves by 5.5% and CER by

11.1%. This improvement is actually statistically significant according to speech

recognition benchmark tests by Makhoul [33].

5.7 Analysis

This chapter analyses the results of previous work done with traditional approach (Kaldi),

end-to-end approach (ESPnet) and the combined result of those two methods (ROVER).

Each example starts with the original reference (REF). Spelling errors and completely

wrong words are underlined. Asterisk is used when a word is completely missing.

5.7.1 Combined n-best lists better than traditional approach

Combining n-best lists from Kaldi and ESPnet can sometimes improve WER or CER.

Both methods have their advantages and when put together, can improve the outcome of

37

speech recognition. Here are some of the examples where ROVER gives better results

than Kaldi.

REF: te rääkisite jah et pooltel tegevus aladel palgad tõusid pooltel ei tõusnud

KALDI: te rääkisite jah et pooltel tegevus aladel palgad tõusid POOLTELE ei tõusnud

ROVER: te rääkisite jah et pooltel tegevus aladel palgad tõusid pooltel ei tõusnud

REF: ja rüüstamistest on need on pildid londoni ees linnadest

KALDI: ja RÜÜSTAMISTE SEDA on need on pildid londoni ees linnadest

ROVER: ja rüüstamistest on need on pildid londoni ees linnadest

REF: eesti meedikud jõuavad afganistani lahingu tegevuse kõrg punktiks ja ühtlasi kõige

palavamaks

KALDI: eesti meedikud jõuavad afganistani lahingu tegevuse kõrg punktiks ja ühtlasi

kõige PALAVA MAKS

ROVER: eesti meedikud jõuavad afganistani lahingu tegevuse kõrg punktiks ja ühtlasi

kõige palavamaks

REF: maht selliseks et see rahuldaks ka kõiki abi vajajaid

KALDI: maht selliseks et see RAHUL PEAKS ka kõiki abi EI VAJA

ROVER: maht selliseks et see rahuldaks ka kõiki abi EI VAJA

REF: aasta aegade vaheldudes kohtume me enamasti palju like

KALDI: aasta aegade VAHELDUS kohtume MEIE enamasti palju like

ROVER: aasta aegade vaheldudes kohtume MEIE enamasti palju like

REF: kosmose agentuur nasa kinnitas kosmose sondi doon jõudmist kääbus planeedi

seres orbiidile

KALDI: kosmose AGENTUURI nasa kinnitas kosmose sondi TOON jõudmist

KAEBUS planeedi SEE RES orbiidile

ROVER: kosmose AGENTUURI nasa kinnitas kosmose sondi TOON jõudmist

KAEBUS planeedi seres orbiidile

38

REF: õppima saabuval noorel peab olema selge ette kujutus sellest mis teda ees ootab

KALDI: õppima saabuval noorel peab olema SELG ette kujutus sellest mis teda ees ootab

ROVER: õppima saabuval noorel peab olema selge ette kujutus sellest mis teda ees ootab

REF: tüdrukud olid vanematele öelnud et nad teevad päevase välja sõidu

KALDI: tüdrukud olid VANEMATEL öelnud et nad teevad päevase välja sõidu

ROVER: tüdrukud olid vanematele öelnud et nad teevad päevase välja sõidu

These examples show some of the benefits of combining the results from two different

approaches to speech recognition. The most common mistake here, that Kaldi system

does, is the use of wrong case for a word. Most of the times, ROVER will fix this when

ESPnet has a better recognition for the word. The other problem is when Kaldi’s language

model has no knowledge about a word used in audio. Kaldi then proposes words close to

the original, but is unable to come up with a correct word. ESPnet does not depend on

language model and therefore ROVER will use a more accurate transcription for the input

audio, when dealing with a word missing from train set.

5.7.2 Traditional approach better than combined n-best lists

Combining n-best lists does not always give better results. When combined systems have

significantly different results for input, a wrong presumption could get selected by

ROVER method. Some of these use cases are listed below.

REF: siis ma nagu pöördun komisjoni poole et las nemad siis seletavad

KALDI: siis ma nagu pöördun komisjoni poole et las nemad siis SELETAVAT

ROVER: siis ma nagu pöördun komisjoni poole et las NÄEVAD siis SELETAVAT

REF: raik küla lähedal oli leitud pink mis bio voolude abil ise liikuma hakanud

KALDI: raik küla lähedal oli LEIDNUD pink mis bio KUULUDA abil ise liikuma

hakanud

ROVER: raik küla lähedal oli LEIDNUD pink mis PEO KUULUDA abil ise liikuma

hakanud

REF: leiavad eeldatavalt kasutust riigi ameteis

KALDI: leiavad eeldatavalt kasutust riigi AMETIS

ROVER: leiavad eeldatavalt KASUTUSTE riigi AMETIS

39

REF: isas linde kohtab emastega just nii kaua kui neid tarvis on

KALDI: isas HINDA kohtab HAMMASTEGA just nii kaua kui NEED tarvis on

ROVER: ISA HINDA kohtab HAMMASTEGA just nii kaua kui NEED tarvis on

These results show that on some occasions, the ROVER method will choose the wrong

result. This happens when one of the systems higher confidence in a word even when it

is not a correct assumption. The system with a correct word might not be too confident

about it and that is why it will not be selected by ROVER method.

5.7.3 Traditional approach better than end-to-end approach

This sections compares some of the results where traditional approach works better than

end-to-end approach.

REF: tegelikult tähendab see väljend korraldust kõige kõrgemalt ülemuselt

KALDI: tegelikult tähendab see väljend korraldust kõige kõrgemalt ülemuselt

ESPNET: tegelikult tähendab see väljend korraldust kõige kõrgemalt ÜLAMUSELT

REF: riigi kogu liikmetele see eetika koodeks noh ütleme koostada ja kehtivaks

tunnistada

KALDI: riigi kogu liikmetele see eetika koodeks noh ütleme koostada ja kehtivaks

tunnistada

ESPNET: riigi kogu liikmetele * SEETIKA POODEKS noh ütleme koostada ja

kehtivaks TUNNISTAB

REF: kas riigi kogu liikmetel on siis vaja seda eetika koodeksit üldse

KALDI: kas riigi kogu liikmetel on siis vaja seda eetika KOODEKS SIIT üldse

ESPNET: kas riigi kogu liikmetel on siis vaja * EETIKU KOODEKSITE üldse

REF: lihtsate lausetega saab jutu ära rääkida

KALDI: lihtsate lausetega saab jutu ära rääkida

ESPNET: LIHTSATELE ASETEGA saab JUTTU ära rääkida

40

REF: kolm ilvest ühe korraga

KALDI: kolm ilvest ühe korraga

ESPNET: kolm ILMEST ühe korraga

REF: õpilas kodude vajadus on igas maakonnas kõigest kolmekümne koha ringis

KALDI: õpilas kodude vajadus on igas maakonnas kõigest kolmekümne koha ringis

ESPNET: õpilas kodude VAEDUS on igas maakonnas kõigest kolmekümne koha ringis

REF: riik võib taolist tegevust hukka mõista aga tõele au andes

KALDI: riik võib taolist tegevust hukka mõista aga tõele au andes

ESPNET: riik võib TAOLIS tegevust hukka mõista aga TÕE LAUANDES

Traditional approach works better, when dealing with specific expressions. When an

audio contains an expression made out of 2, 3 or more successive words that are also in

Kaldi’s vocabulary, the system easily outputs correct results. Because ESPnet does not

have any vocabulary, it can make mistakes more often even with very simple and short

words, when the word is not pronounced clearly or the audio has some background noise.

ESPnet also makes mistakes, when previous word ends with the same letter as the next

word starts. In these situations, when the speaker speaks very fast or does not make a

pause between those words, mistakes will often occur. Traditional approach knows how

to fix these problems with misspelling more efficiently because of its vocabulary and

language model.

5.7.4 End-to-end approach better than traditional approach

End-to-end speech recognition has its own advantages over traditional approach. Some

of the examples, where end-to-end speech recognition works better are listed below.

REF: et kuidas on teie arvamus ivar tallo kas

KALDI: et kuidas on teie ARVAMUSI VALD ALLA kas

ESPNET: et kuidas on teie ARMAS ILMAR tallo kas

REF: jean paul nerriere’ile tuli mõte et keel mida üle ilmselt räägitakse

KALDI: RUUM POOLNE ERI AIRILE tuli mõte et keel mida üle ilmselt räägitakse

ESPNET: SOOM POOL NERIEERILE tuli mõte et keel mida üle ilmselt räägitakse

41

REF: ja selle kulutused suureneksid kümme protsenti

KALDI: ja selle kulutused SUURENESID kümme protsenti

ESPNET: ja selle kulutused suureneksid kümme protsenti

REF: ja üüri raha liigub omaniku taskusse sula rahas

KALDI: ja JÜRI raha liigub omaniku taskusse sula rahas

ESPNET: ja üüri raha liigub omaniku taskusse sula rahas

REF: kuidas paigutuvad kõiksuses ümber nii sugused asjad mida me nimetame

pakenditeks

KALDI: kuidas PAIGUTAVAD KÕIKSUSE SEE ümber nii sugused asjad mida me

nimetame PAKENDITE EKS

ESPNET: kuidas paigutuvad kõiksuses ümber nii sugused asjad mida me nimetame

AKENDITEKS

REF: need eksisteerisid serbias georgias ukrainas

KALDI: need EI EKSISTEERI SIIT serbias georgias ukrainas

ESPNET: need eksisteerisid serbias georgias ukrainas

These results show that ESPnet performs better with words which are not in Kaldi’s

vocabulary. Especially when dealing with names, ESPnet will output more accurate result

than Kaldi, which just outputs a word closest to the input its processing. ESPnet still

makes mistakes transcribing names, because of the pronunciation. Also, recognizing

unknown words is more accurate in end-to-end approach, because it will not try to find a

similar word to it, when no match is found.

42

6 Summary

This chapter draws conclusion on how the end-to-end speech recognition system

performs on Estonian language and whether the objectives were achieved as initially

planned. The thesis is constructed around end-to-end speech recognition system, which

is trained on ESPnet speech recognition toolkit using available Estonian speech

recordings.

The best performing model was created using RNN with hybrid CTC/attention based

encoder-decoder architecture. The model’s main part is the use of both CTC and attention

based encoder-decoder. This allowed the use of both methods’ advantages and achieve

better results. The parameters used for training the model were taken from ESPnet’s

example project which has a similar amount of training data.

The model was trained using 216 hours of Estonian speech audio. The audio contains

mostly programmes, news and interviews from TV and radio. For better results, the data

is augmented using speed manipulation, noise and reverberation.

Analysis showed some situations, where end-to-end speech recognition makes common

mistakes and where it performed better than traditional approach. The system makes

mistakes, when dealing with noisy audio or when the previous word ends with the same

letters as the next one starts. However, it proved to be more accurate with words not

existing in training set and with names.

This thesis set a goal to create an end-to-end speech recognition system that can achieve

a WER below 25% and CER below 5%. Only one of those goals was met. The goal for

WER was met as the system achieved a WER of 21.9% on test set. Unfortunately, the

best achieved CER was 7.5% on test set. Another objective was to achieve a better result

when combining two different methods. This came out positive and a combination of two

systems achieved a WER of 12.0% and a CER of 4.0%. This result is statistically

significant improvement from the current traditional approach for Estonian speech

recognition system.

43

The thesis proves that end-to-end speech recognition can be used on Estonian language.

However, the results are not as good as the traditional approach, it is not ruled out that

the growing popularity of end-to-end speech recognition can improve over the years to

achieve greater results. It also proved, that using a combination of traditional and end-to-

end approach can improve the accuracy of recognising Estonian language from speech.

For future work, it is recommended to gather more data for Estonian language. The thesis

did not actually have as much data as end-to-end speech recognition system needs. By

only increasing training data, the system could possibly achieve more accurate results.

End-to-end speech recognition is also itself a fast growing area. It is not excluded, that in

a few years, end-to-end speech recognition would achieve better results than traditional

approach.

44

7 References

[1] H. Xuedong, A. Alex and H. Hsiao-Wuen, “Spoken Language Processing: A

guide to theory, algorithm, and system development,” 2001.
[2] D. Britz, “WILDML,” 17 September 2015. [Online]. Available:

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-
introduction-to-rnns/. [Accessed 21 March 2018].

[3] C. Olah, “Colah's blog,” 27 August 2015. [Online]. Available:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/. [Accessed 21 March
2018].

[4] A. Graves, Supervised Sequence Labelling with Recurrent Neural Networks,
Berlin: Springer-Verlag Berlin Heidelberg, 2012.

[5] S. Kostadinov, “Towards Data Science,” 2 December 2017. [Online]. Available:
https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-
84e975feaaf7. [Accessed 13 February 2018].

[6] “A Beginner’s Guide to Recurrent Networks and LSTMs,” [Online]. Available:
https://deeplearning4j.org/lstm.html. [Accessed 13 March 2018].

[7] S. Hochreiter and S. Jürgen, “Long short-term memory,” Neural Computation, pp.
1735-1780, September 1997.

[8] A. Hannun, “Sequence Modeling with CTC,” Distill, 2017.
[9] A. Graves, S. Fernandez, F. Gomez and J. Schmidhuber, Connectionist Temporal

Classification: Labelling Unsegmented Sequence Data with Recurrent Neural
Networks, Pittsburgh, Pennsylvania: ICML '06 Proceedings of the 23rd
international conference on Machine learning, 2006.

[10] D. Britz, “WILDML,” 3 January 2016. [Online]. Available:
http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-
nlp/. [Accessed 12 March 2018].

[11] Y. Park, S. Patwardhan, K. Visweswariah and S. C. Gates, “An Empirical
Analysis of Word Error Rate and Keyword Error Rate,” in Ninth Annual
Conference of the International Speech Communication Association, Brisbane,
2008.

[12] I. S. MacKenzie and S. R. William, “A character-level error analysis technique for
evaluating text entry methods,” in Proceedings of the second Nordic conference
on Human-computer interaction, Aarhus, 2002.

[13] D. Amodei, S. Ananthanarayanan, R. B. J. Anubhai, E. Battenberg, C. Case, J.
Casper, B. Catanzaro, Q. Cheng, G. Chen and J. Chen, “Deep Speech 2 : End-to-
End Speech Recognition in English and Mandarin,” in International Conference
on Machine Learning, New York City, 2016.

[14] W. Chan, N. Jaitly, Q. V. Le and O. Vinyals, “Listen, Attend and Spell,” in arXiv
preprint arXiv:1508.01211, 2015.

45

[15] C. C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen, Z. Chen, A.
Kannan, R. J. Weiss, K. Rao, K. Gonina and N. Jaitly, “State-of-the-art speech
recognition with sequence-to-sequence models,” arXiv, 2017.

[16] A. Tjandra, S. Sakti and S. Nakamura, “Local Monotonic Attention Mechanism
for End-to-End Speech and Language Processing,” in In Proceedings of the
Eighth International Joint Conference on Natural Language Processing, Taipei,
2017.

[17] R. Prabhavalkar, T. N. Sainath, B. Li, K. Rao and N. Jaitly, “An analysis of
“attention” in sequence-to-sequence models,” in Interspeech, Stockholm, 2017.

[18] J. Hou, Z. Shiliang and D. Lirong, “Gaussian Prediction based Attention for
Online End-to-End Speech Recognition,” in Interspeech, Stockholm, 2017.

[19] P. M. H. R. S. Doetsch and Ney, “Inverted Alignments for End-to-End Automatic
Speech Recognition,” IEEE Journal of Selected Topics in Signal Processing , vol.
11, no. 8, pp. 1265-1273, 2017.

[20] S. Kim, T. Hori and S. Watanabe, “Joint CTC/attention decoding for end-to-end
speech recognition,” in Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics, Vancouver, 2017.

[21] S. Watanabe, “ESPnet,” 2017. [Online]. Available:
https://espnet.github.io/espnet/. [Accessed 3 January 2018].

[22] H. Soltau, H. Liao and H. Sak, “Neural Speech Recognizer: Acoustic-to-Word
LSTM Model for Large Vocabulary Speech Recognition,” in Interspeech,
Stockholm, 2017.

[23] T. Zenkel, R. Sanabria, F. Metze, J. Niehues, M. Sperber, S. Stüker and A.
Waibel, “Comparison of Decoding Strategies for CTC Acoustic Models,” in
Interspeech, Stockholm, 2017.

[24] O. Siohan, “CTC Training of Multi-Phone Acoustic Models for Speech
Recognition,” in Interspeech, Stockholm, 2017.

[25] R. Collobert, C. Puhrsch and G. Synnaeve, “Wav2letter: an end- to-end convnet-
based speech recognition system,” arXiv, 2016.

[26] Y. Zhou, C. Xiong and R. Socher, “Improving End-to-End Speech Recognition
with Policy Learning,” arXiv, 2017.

[27] T. Alumäe, “Recent improvents in Estonian LVCSR,” in Fourth International
Workshop on Spoken Language Technologies for Under-Resourced Languages,
St. Petersburg, 2014.

[28] S. Watanabe, T. Hori, S. Kim, J. R. Hershey and T. Hayashi, “Hybrid
CTC/Attention Architecture for End-to-End Speech Recognition,” IEE Journal,
vol. 11, no. 8, pp. 1240-1253, 2017.

[29] J. G. Fiscus, “A post-processing system to yield reduced word error rates:
Recognizer Output Voting Error Reduction (ROVER),” in IEEE Workshop on
Automatic Speech Recognition and Understanding Proceedings, Santa Barbara,
CA, USA, 1997.

[30] P. Hitesh, “Automatic Speech Recognition,” 2017. [Online]. Available:
https://github.com/zzw922cn/Automatic_Speech_Recognition. [Accessed 13
November 2017].

[31] A. Hannun, C. Case and J. Casper, “Project DeepSpeech,” 2017. [Online].
Available: https://github.com/mozilla/DeepSpeech. [Accessed 4 December 2017].

46

[32] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M.
Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer and K.
Vesely, “The Kaldi Speech Recognition Toolkit,” IEEE Signal Processing
Society, Hilton Waikoloa Village, Big Island, Hawaii, US, 2011.

[33] D. Pallett, J. Fiscus and J. Garofolo, “Resource Management Corpus: September
1992 Test Set Benchmark Test Results,” Proceedings of ARPA Microelectronics
Technology Office Continuous Speech Recognition Workshop, Stanford, CA,
1992.

[34] A. Geitgey, “How to do Speech Recognition with Deep Learning,” Medium, 2016.

47

8 Appendix 1 – Code for applying the model

#! /bin/bash

. cmd.sh
. path.sh

stage=1 # general configuration
backend=pytorch
stage=-1 # start from -1 if you need to start from data download
gpu=-1 # use 0 when using GPU on slurm/grid engine, otherwise -1
debugmode=1
dumpdir=dump # directory to dump full features
N=0 # number of minibatches to be used (mainly for debugging). "0"
uses all minibatches.
verbose=0 # verbose option
resume= # Resume the training from snapshot

feature configuration
do_delta=false # true when using CNN

network archtecture
encoder related
etype=vggblstmp # encoder architecture type
elayers=6
eunits=320
eprojs=320
subsample=1_2_2_1_1 # skip every n frame from input to nth layers

loss related
ctctype=chainer

decoder related
dlayers=1
dunits=300

attention related
atype=location
adim=320
aconv_chans=10
aconv_filts=100

hybrid CTC/attention
mtlalpha=0.5

48

minibatch related
batchsize=30
maxlen_in=800 # if input length > maxlen_in, batchsize is automatically
reduced
maxlen_out=150 # if output length > maxlen_out, batchsize is automatically
reduced

optimization related
opt=adadelta
epochs=15

rnnlm related
lm_weight=1.0

decoding parameter
beam_size=20
penalty=0.0
maxlenratio=0.0
minlenratio=0.0
ctc_weight=0.3
recog_model=acc.best # set a model to be used for decoding: 'acc.best' or
'loss.best'

exp tag
tag="1a" # tag for managing experiments.

num_data_reps=1
echo "$0 $@" # Print the command line for logging
. parse_options.sh || exit 1;
set -e
set -u
set -o pipefail
train_set=train_trim
train_dev=dev_trim
recog_set="dev test"

if [$stage -le 0]; then
 ./local/00_prepare_data.sh
fi

feat_tr_dir=${dumpdir}/${train_set}/delta${do_delta}; mkdir -p ${feat_tr_dir}
feat_dt_dir=${dumpdir}/${train_dev}/delta${do_delta}; mkdir -p ${feat_dt_dir}

if [${stage} -le 1]; then
 echo "stage 1: Feature Generation"
 # Generate the fbank features; by default 80-dimensional fbanks with
 # pitch on each frame
 for x in test dev train; do
 steps/make_fbank_pitch.sh --cmd "$train_cmd" --nj 32 data/${x} || \
 exit 1;
 done

49

 remove_longshortdata.sh --maxchars 400 data/train data/${train_set}
 remove_longshortdata.sh --maxchars 400 data/dev data/${train_dev}

 # compute global CMVN
 compute-cmvn-stats scp:data/${train_set}/feats.scp \
 data/${train_set}/cmvn.ark || exit 1;
 dump.sh --cmd "$train_cmd" --nj 32 --do_delta $do_delta \
 data/${train_set}/feats.scp data/${train_set}/cmvn.ark \
 exp/dump_feats/train ${feat_tr_dir}
 dump.sh --cmd "$train_cmd" --nj 32 --do_delta $do_delta \
 data/${train_dev}/feats.scp data/${train_set}/cmvn.ark exp/dump_feats/\
 dev ${feat_dt_dir}
fi

dict=data/lang_1char/${train_set}_units.txt
echo "dictionary: ${dict}"

if [${stage} -le 2]; then
 ### Task dependent. You have to check non-linguistic symbols used in the
 # corpus.
 echo "stage 2: Dictionary and Json Data Preparation"
 mkdir -p data/lang_1char/
 echo "<unk> 1" > ${dict} # <unk> must be 1, 0 will be used for "blank" \
 in CTC
 echo "<space> @ a b c d e f g h i j k l m n o p q r s t u v w x y z ü õ \
 ö ä A B C D E F G H I J K L M N O P Q R S T U V W X Y Z š ž Š Ž Ü Õ Ö Ä \
 - '" | tr " " "\n" \
 | sort | uniq | grep -v -e '^\s*$' | awk '{print $0 " " NR+1}' \
 >> ${dict} wc -l ${dict}

 # make json labels
 data2json.sh --feat ${feat_tr_dir}/feats.scp \
 data/${train_set} ${dict} > ${feat_tr_dir}/data.json
 data2json.sh --feat ${feat_dt_dir}/feats.scp \
 data/${train_dev} ${dict} > ${feat_dt_dir}/data.json
fi

if [-z ${tag}]; then
 expdir=exp/${train_set}_${etype}_e${elayers}_subsample${subsample}\
 _unit${eunits}_proj${eprojs}_ctc${ctctype}_d${dlayers}_unit${dunits}\
 _${atype}_adim${adim}_aconvc${aconv_chans}_aconvf${aconv_filts}\
 mtlalpha${mtlalpha}${opt}_bs${batchsize}_mli${maxlen_in}\
 _mlo${maxlen_out}

 if ${do_delta}; then
 expdir=${expdir}_delta
 fi
else
 expdir=exp/${train_set}_${tag}
fi

50

mkdir -p ${expdir}

if [${stage} -le 4]; then
 echo "stage 3: Network Training"
 ${cuda_cmd} ${expdir}/train.log \
 asr_train.py \
 --gpu ${gpu} \
 --backend ${backend} \
 --outdir ${expdir}/results \
 --debugmode ${debugmode} \
 --dict ${dict} \
 --debugdir ${expdir} \
 --minibatches ${N} \
 --verbose ${verbose} \
 --resume ${resume} \
 --train-feat scp:${feat_tr_dir}/feats.scp \
 --valid-feat scp:${feat_dt_dir}/feats.scp \
 --train-label ${feat_tr_dir}/data.json \
 --valid-label ${feat_dt_dir}/data.json \
 --etype ${etype} \
 --elayers ${elayers} \
 --eunits ${eunits} \
 --eprojs ${eprojs} \
 --subsample ${subsample} \
 --ctc_type ${ctctype} \
 --dlayers ${dlayers} \
 --dunits ${dunits} \
 --atype ${atype} \
 --adim ${adim} \
 --aconv-chans ${aconv_chans} \
 --aconv-filts ${aconv_filts} \
 --mtlalpha ${mtlalpha} \
 --batch-size ${batchsize} \
 --maxlen-in ${maxlen_in} \
 --maxlen-out ${maxlen_out} \
 --opt ${opt} \
 --epochs ${epochs}
Fi

if [${stage} -le 5]; then
 echo "stage 5: Decoding"
 nj=4
 for rtask in ${recog_set}; do
 (
 decode_dir=decode_${rtask}_beam${beam_size}_e${recog_model}_p\
 ${penalty}_len${minlenratio}-${maxlenratio}_ctcw${ctc_weight}

 # split data
 data=data/${rtask}
 split_data.sh --per-utt ${data} ${nj};
 sdata=${data}/split${nj}utt;

51

 # feature extraction
 feats="ark,s,cs:apply-cmvn \
 --norm-vars=truedata/${train_set}/cmvn.ark \
 scp:${sdata}/JOB/feats.scp ark:- |"

 if ${do_delta}; then
 feats="$feats add-deltas ark:- ark:- |"
 fi

 # make json labels for recognition
 data2json.sh ${data} ${dict} > ${data}/data.json

 #### use CPU for decoding
 gpu=-1

 ${decode_cmd} JOB=1:${nj} ${expdir}/${decode_dir}/log/decode.JOB.log\
 asr_recog.py \
 --gpu ${gpu} \
 --backend ${backend} \
 --debugmode ${debugmode} \
 --verbose ${verbose} \
 --recog-feat "$feats" \
 --recog-label ${data}/data.json \
 --result-label ${expdir}/${decode_dir}/data.JOB.json \
 --model ${expdir}/results/model.${recog_model} \
 --model-conf ${expdir}/results/model.conf \
 --beam-size ${beam_size} \
 --penalty ${penalty} \
 --maxlenratio ${maxlenratio} \
 --minlenratio ${minlenratio} \
 --ctc-weight ${ctc_weight} \
 --nbest 100 \
 --lm-weight ${lm_weight} &
 wait
 score_sclite.sh --wer true ${expdir}/${decode_dir} ${dict}
) &
 done
 wait
 echo "Finished"
fi

if [${stage} -le 6]; then
 echo "stage 5: Speech speed-augmentation"
 utils/data/perturb_data_dir_speed_3way.sh data/train data/train_sp
fi

52

if [${stage} -le 7]; then
 echo "stage 1: Feature Generation for speed-augmented data"
 # Generate the fbank features; by default 80-dimensional fbanks with
 #pitch on each frame
 remove_longshortdata.sh --maxchars 400 data/train_sp data/${train_set}_sp
 dump.sh --cmd "$train_cmd" --nj 8 --do_delta $do_delta \
 data/${train_set}_sp/feats.scp data/${train_set}/cmvn.ark \
 exp/dump_feats/train_sp ${feat_tr_dir}_sp
fi

if [${stage} -le 8]; then
 # make json labels
 data2json.sh --feat ${feat_tr_dir}_sp/feats.scp \
 data/${train_set}_sp ${dict} > ${feat_tr_dir}_sp/data.json
fi

if [-z ${tag}]; then
 expdir=exp/${train_set}_${etype}_e${elayers}_subsample${subsample}\
 _unit${eunits}_proj${eprojs}_ctc${ctctype}_d${dlayers}_unit${dunits}\
 _${atype}_adim${adim}_aconvc${aconv_chans}_aconvf${aconv_filts}\
 mtlalpha${mtlalpha}${opt}_bs${batchsize}_mli${maxlen_in}\
 _mlo${maxlen_out}
 if ${do_delta}; then
 expdir=${expdir}_delta
 fi
else
 expdir=exp/${train_set}_sp_${tag}
fi

mkdir -p ${expdir}

if [${stage} -le 9]; then
 echo "stage 3: Network Training"
 ${cuda_cmd} ${expdir}/train.log \
 asr_train.py \
 --gpu ${gpu} \
 --backend ${backend} \
 --outdir ${expdir}/results \
 --debugmode ${debugmode} \
 --dict ${dict} \
 --debugdir ${expdir} \
 --minibatches ${N} \
 --verbose ${verbose} \
 --resume ${resume} \
 --train-feat scp:${feat_tr_dir}_sp/feats.scp \
 --valid-feat scp:${feat_dt_dir}/feats.scp \
 --train-label ${feat_tr_dir}_sp/data.json \
 --valid-label ${feat_dt_dir}/data.json \
 --etype ${etype} \
 --elayers ${elayers} \
 --eunits ${eunits} \

53

 --eprojs ${eprojs} \
 --subsample ${subsample} \
 --ctc_type ${ctctype} \
 --dlayers ${dlayers} \
 --dunits ${dunits} \
 --atype ${atype} \
 --adim ${adim} \
 --aconv-chans ${aconv_chans} \
 --aconv-filts ${aconv_filts} \
 --mtlalpha ${mtlalpha} \
 --batch-size ${batchsize} \
 --maxlen-in ${maxlen_in} \
 --maxlen-out ${maxlen_out} \
 --opt ${opt} \
 --epochs $[${epochs}/2]
fi

if [${stage} -le 10]; then
 echo "stage 10: Decoding using speed-perturbed model"
 nj=4

 for rtask in ${recog_set}; do
 (
 decode_dir=decode_${rtask}_beam${beam_size}_e${recog_model}\
 _p${penalty}_len${minlenratio}-${maxlenratio}_ctcw${ctc_weight}

 # split data
 data=data/${rtask}
 split_data.sh --per-utt ${data} ${nj};
 sdata=${data}/split${nj}utt;

 # feature extraction
 feats="ark,s,cs:apply-cmvn --norm-vars=true\
 data/${train_set}/cmvn.ark scp:${sdata}/JOB/feats.scp ark:- |"

 if ${do_delta}; then
 feats="$feats add-deltas ark:- ark:- |"
 fi

 # make json labels for recognition
 data2json.sh ${data} ${dict} > ${data}/data.json

 #### use CPU for decoding
 gpu=-1

 ${decode_cmd} JOB=1:${nj} ${expdir}/${decode_dir}/log/decode.JOB.log\
 asr_recog.py \
 --gpu ${gpu} \
 --backend ${backend} \
 --debugmode ${debugmode} \
 --verbose ${verbose} \

54

 --recog-feat "$feats" \
 --recog-label ${data}/data.json \
 --result-label ${expdir}/${decode_dir}/data.JOB.json \
 --model ${expdir}/results/model.${recog_model} \
 --model-conf ${expdir}/results/model.conf \
 --beam-size ${beam_size} \
 --penalty ${penalty} \
 --maxlenratio ${maxlenratio} \
 --minlenratio ${minlenratio} \
 --ctc-weight ${ctc_weight} \
 --nbest 100 \
 --lm-weight ${lm_weight} &
 wait

 score_sclite.sh --wer true ${expdir}/${decode_dir} ${dict}

) &
 done
 wait
 echo "Finished"
fi

if [${stage} -le 11]; then
 echo "stage 5: Doing noise and reverberation augmentation"

 if [! -d "RIRS_NOISES"]; then
 # Download the package that includes the real RIRs, simulated RIRs,
 #isotropic noises and point-source noises
 wget --no-check-certificate\
 http://www.openslr.org/resources/28/rirs_noises.zip
 unzip rirs_noises.zip
 fi

 rvb_opts=()
 rvb_opts+=(--rir-set-parameters "0.5,\
 RIRS_NOISES/simulated_rirs/smallroom/rir_list")
 rvb_opts+=(--rir-set-parameters "0.5,\
 RIRS_NOISES/simulated_rirs/mediumroom/rir_list")
 rvb_opts+=(--noise-set-parameters\
 RIRS_NOISES/pointsource_noises/noise_list)

 python steps/data/reverberate_data_dir.py \
 "${rvb_opts[@]}" \
 --prefix "rev" \
 --foreground-snrs "20:10:15:5:0" \
 --background-snrs "20:10:15:5:0" \
 --speech-rvb-probability 1 \
 --pointsource-noise-addition-probability 1 \
 --isotropic-noise-addition-probability 1 \
 --num-replications ${num_data_reps} \

55

 --max-noises-per-minute 1 \
 --source-sampling-rate 16000 \
 --include-original-data true \
 data/train_sp data/train_sp_rvb${num_data_reps}_tmp || exit 1;

 local/persist_wav_data_dir.sh --cmd "$train_cmd" --nj 8 \
 data/train_sp_rvb${num_data_reps}_tmp \
 data/train_sp_rvb${num_data_reps} \
 data/train_sp_rvb${num_data_reps}/data || exit 1;
fi

if [${stage} -le 12]; then
 echo "stage 12: Feature Generation for noise-augmented data"

 #Generate the fbank features; by default 80-dimensional fbanks with pitch
 #on each frame
 steps/make_fbank_pitch.sh --cmd "$train_cmd" --nj 8\
 data/train_sp_rvb${num_data_reps}

 remove_longshortdata.sh --maxchars 400 data/train_sp_rvb${num_data_reps}\
 data/${train_set}_sp_rvb${num_data_reps}

 # compute global CMVN
 compute-cmvn-stats \
 scp:data/${train_set}_sp_rvb${num_data_reps}/feats.scp \
 data/${train_set}_sp_rvb${num_data_reps}/cmvn.ark || exit 1;

 dump.sh --cmd "$train_cmd" --nj 8 --do_delta $do_delta \
 data/${train_set}_sp_rvb${num_data_reps}/feats.scp \
 data/${train_set}_sp_rvb${num_data_reps}/cmvn.ark\
 exp/dump_feats/train_sp_rvb${num_data_reps}\
 ${feat_tr_dir}_sp_rvb${num_data_reps}
fi

if [${stage} -le 13]; then
 # make json labels
 data2json.sh --feat ${feat_tr_dir}_sp_rvb${num_data_reps}/feats.scp \
 data/${train_set}_sp_rvb${num_data_reps} ${dict} > \
 ${feat_tr_dir}_sp_rvb${num_data_reps}/data.json
fi

if [-z ${tag}]; then
 expdir=exp/${train_set}_${etype}_e${elayers}_subsample${subsample}\
 _unit${eunits}_proj${eprojs}_ctc${ctctype}_d${dlayers}_unit${dunits}\
 _${atype}_adim${adim}_aconvc${aconv_chans}_aconvf${aconv_filts}\
 mtlalpha${mtlalpha}${opt}_bs${batchsize}_mli${maxlen_in}\
 _mlo${maxlen_out}

 if ${do_delta}; then
 expdir=${expdir}_delta

56

 fi
else
 expdir=exp/${train_set}_sp_rvb${num_data_reps}_${tag}
fi
mkdir -p ${expdir}

if [${stage} -le 14]; then
 echo "stage 14: Network Training"
 ${cuda_cmd} ${expdir}/train.log \
 asr_train.py \
 --gpu ${gpu} \
 --backend ${backend} \
 --outdir ${expdir}/results \
 --debugmode ${debugmode} \
 --dict ${dict} \
 --debugdir ${expdir} \
 --minibatches ${N} \
 --verbose ${verbose} \
 --resume ${resume} \
 --train-feat scp:${feat_tr_dir}_sp_rvb${num_data_reps}/feats.scp \
 --valid-feat scp:${feat_dt_dir}/feats.scp \
 --train-label ${feat_tr_dir}_sp_rvb${num_data_reps}/data.json \
 --valid-label ${feat_dt_dir}/data.json \
 --etype ${etype} \
 --elayers ${elayers} \
 --eunits ${eunits} \
 --eprojs ${eprojs} \
 --subsample ${subsample} \
 --ctc_type ${ctctype} \
 --dlayers ${dlayers} \
 --dunits ${dunits} \
 --atype ${atype} \
 --adim ${adim} \
 --aconv-chans ${aconv_chans} \
 --aconv-filts ${aconv_filts} \
 --mtlalpha ${mtlalpha} \
 --batch-size ${batchsize} \
 --maxlen-in ${maxlen_in} \
 --maxlen-out ${maxlen_out} \
 --opt ${opt} \
 --epochs $[${epochs}/3]
fi

if [${stage} -le 15]; then
 echo "stage 15: Decoding using noise and speed-perturbed model"
 nj=4

 for rtask in ${recog_set}; do
 (
 decode_dir=decode_${rtask}_beam${beam_size}_e${recog_model}\
 _p${penalty}_len${minlenratio}-${maxlenratio}_ctcw${ctc_weight}

57

 # split data
 data=data/${rtask}
 split_data.sh --per-utt ${data} ${nj};
 sdata=${data}/split${nj}utt;

 # feature extraction
 feats="ark,s,cs:apply-cmvn --norm-vars=true\
 data/${train_set}_sp_rvb${num_data_reps}/cmvn.ark\
 scp:${sdata}/JOB/feats.scp ark:- |"

 if ${do_delta}; then
 feats="$feats add-deltas ark:- ark:- |"
 fi

 # make json labels for recognition
 data2json.sh ${data} ${dict} > ${data}/data.json

 #### use CPU for decoding
 gpu=-1

 ${decode_cmd} JOB=1:${nj} ${expdir}/${decode_dir}/log/decode.JOB.log\
 asr_recog.py \
 --gpu ${gpu} \
 --backend ${backend} \
 --debugmode ${debugmode} \
 --verbose ${verbose} \
 --recog-feat "$feats" \
 --recog-label ${data}/data.json \
 --result-label ${expdir}/${decode_dir}/data.JOB.json \
 --model ${expdir}/results/model.${recog_model} \
 --model-conf ${expdir}/results/model.conf \
 --beam-size ${beam_size} \
 --penalty ${penalty} \
 --maxlenratio ${maxlenratio} \
 --minlenratio ${minlenratio} \
 --ctc-weight ${ctc_weight} \
 --nbest 100 \
 --lm-weight ${lm_weight} &
 wait

 score_sclite.sh --wer true ${expdir}/${decode_dir} ${dict}

) &
 done
 wait
 echo "Finished"
fi

