
Tallinn 2018 

TALLINN UNIVERSITY OF TECHNOLOGY 
School of Information Technologies 

 

 

Martin Talimets 163584IAPM 

END-TO-END SPEECH RECOGNITION FOR 
ESTONIAN 

Master’s thesis 

Supervisor: Tanel Alumäe 

 Senior Researcher 

  

  
  

  

  

  

  

  



Tallinn 2018 

TALLINNA TEHNIKAÜLIKOOL 
Infotehnoloogia teaduskond 

 

 

Martin Talimets 163584IAPM 

TÄIELIKULT NÄRVIVÕRKUDEL PÕHINEV 
KÕNETUVASTUS EESTI KEELELE 

Magistritöö 

Juhendaja: Tanel Alumäe 

 Vanemteadur 

  

  
  

  

  

  

  

  



3 

Author’s declaration of originality 

I hereby certify that I am the sole author of this thesis. All the used materials, references 

to the literature and the work of others have been referred to. This thesis has not been 

presented for examination anywhere else. 

Author: Martin Talimets  

07.05.2018 

 



4 

Abstract 

The thesis is about end-to-end speech recognition system for Estonian language. This 

method makes training a speech recognition system a lot simpler. It does not require many 

complex neural network layers or knowledge about a language to train. 

We test a few different approaches for end-to-end speech recognition. These tested end-

to-end systems include a recurrent neural network (RNN) with connectionist temporal 

classification (CTC) or an attention based encoder-decoder architecture. These methods 

result in much lower speech recognition accuracy than the traditional hybrid model that 

uses hidden Markov models and deep neural networks. Instead, we use a combination of 

both architectures.  

Our experiments show that the proposed method for Estonian language speech 

recognition system does not perform as good as the traditional method yet. The trained 

model achieves a word error rate (WER) of 21.9% and a character error rate (CER) of 

7.5% on test set. However, when combining this system with the traditional approach, it 

gave results that are statistically significant improvements to the current best Estonian 

speech recognition system. The achieved results were 12.0% for WER and 4.0% for CER. 

This thesis is written in English and is 46 pages long, including 6 chapters, 10 figures and 

4 tables. 
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Annotatsioon 

Täielikult närvivõrkudel põhinev kõnetuvastus eesti keelele 

Magistritöö eesmärgiks on uurida täielikult närvivõrkudel põhinevat kõnetuvastust eesti 

keelele. Täielikult närvivõrkudel põhineva kõnetuvastuse süsteemi treenimine on oluliselt 

lihtsam kui traditsioonilise sügaval närvivõrgul põhineva süsteemi puhul. See ei vaja 

mitmeid keerulisi närvivõrkude kihte või teadmisi treenitava keele sõnade, käänete või 

kasutuse kohta. 

Antud magistritöös testitakse erinevaid lähenemisi täielikult närvivõrkudel põhineva 

kõnetuvastuse süsteemi jaoks. Kõik testitavad süsteemid baseeruvad rekurrentsetel 

närvivõrkudel, millele on lisatud connectionist temporal classification (CTC) või 

tähelepanu mehhanismil põhinev enkooder-dekooder arhitektuur (attention based 

encoder-decoder architecture). Antud süsteemide tulemused olid silmnähtavalt 

halvemad traditsioonilisest kõnetuvastusest, mis põhineb sügaval närvivõrgul koos 

varjatud Markovi mudeliga. Seetõttu kasutame arhitektuuri, mis koosneb rekurrentsest 

närvivõrgust koos CTC ja tähelepanu mehhanismil põhineva enkooder-dekooder 

arhitektuuri hübriidiga.  

Tehtud eksperimendid näitavad, et välja pakutav täielikult närvivõrkudel põhinev 

kõnetuvastuse süsteem ei saavuta nii häid tulemusi nagu traditsiooniline kõnetuvastus. 

Treenitud mudel saavutas sõnade veamääraks (word error rate) 21,9% ja tähtede 

veamääraks (character error rate) 7,5% testandmete peal. Traditsioonilise ja täielikult 

närvivõrkudel põhineva kõnetuvastuse kombineerimisel saavutatud tulemused olid 

statistiliselt oluliselt paremad praegusest parimast eesti keele kõnetuvastuse süsteemist. 

Antud süsteem saavutas sõnade veamääraks 12,0% ja tähtede veamääraks 4,0%. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 46 leheküljel, 6 peatükki, 10 

joonist, 4 tabelit. 
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List of abbreviations and terms 

BLSTM Bidirectional Long Short-Term Memory 

BRNN Bidirectional recurrent neural network 

CER Character error rate 

CTC Connectionist temporal classification 

DNN Deep neural network 

HMM Hidden Markov model 

LAS Listen, attend and spell 

LSTM Long Short-Term Memory 

LVCSR Large Vocabulary Continuous Speech Recognition 

WER Word error rate 

WTN Word transition network 

RNN Recurrent neural network 
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1 Introduction 

The thesis investigates using end-to-end speech recognition system for Estonian 

language. The model is trained with ESPnet end-to-end speech recognition toolkit using 

the data acquired mostly from Estonian TV or radio programs and news. It mainly consists 

of a deep neural network and a hybrid CTC/attention based encoder-decoder architecture. 

This chapter describes the problem and methodology for solving it. It outlines the basic 

differences between using the traditional and end-to-end approach for speech recognition.  

We define the problem, set a hypothesis for solving it and set target goals for validating 

the results. 

1.1 Problem 

The thesis investigates using end-to-end speech recognition for Estonian language. End-

to-end method has not been previously researched on Estonian language. 

The current research on speech recognition for Estonian language is done using the 

traditional approach. Traditional speech recognition systems are currently based on very 

complex components. These components are acoustic models based on hidden Markov 

models, Gaussian mixture models, deep neural networks, n-gram and neural network 

based language models, complicated training and decoding algorithms. End-to-end 

speech recognition replaces all these different components in the traditional pipeline with 

a single end-to-end deep recurrent neural network (RNN). 

1.2 Objective 

The objective for this thesis is to test a deep recurrent network model with hybrid 

CTC/attention based encoder-decoder architecture for Estonian speech recognition.. The 

model is trained using about 216 hours of Estonian speech recordings from approximately 

3500 unique speakers. 
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The results are evaluated using word error rate and character error rate on n-best lists. 

Word error rate measures the accuracy by comparing the exact match of words. Character 

error rate compares each character individually, which usually gives a correctness score 

better than with word error rate. These scores are calculated for end-to-end speech 

recognition system and then combined with the traditional approach. 

The goal is to achieve a word error rate below 25% and a character error rate below 5% 

for only using end-to-end speech recognition. For combining end-to-end with traditional 

approach, the goal is to achieve better results than with traditional approach alone. 

1.3 Methodology 

The model is trained using different end-to-end speech recognition systems. These 

systems all include a deep neural network. The difference is the method used for scoring 

the output of a neural network. 

Various systems are tested to see which architecture works best. The results from the best 

working model are then combined with the results from existing traditional approach. All 

results are compared and analysed to emphasize main differences between different 

systems. 

1.4 Outline 

The first chapter describes the problem and methodology for solving Estonian language 

end-to-end speech recognition. It outlines the basic differences between using the 

traditional and end-to-end approach for speech recognition.  We define the problem, set 

a hypothesis for solving it and set target goals for validating the results. 

The second chapter gives a detailed overview of the main component used for using an 

end-to-end speech recognition system, e.g. feature extraction, RNN, LSTM, CTC, 

attention based encoder-decoder and evaluation metrics. 

The third chapter introduces previous related works that are related to this thesis’ 

problem. These alternative works have used end-to-end speech recognition for other 

languages. The only Estonian language related work concentrates on the traditional 

method for speech recognition.  
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The fourth chapter specifies the solution part of the thesis. It gives a detailed overview of 

the methods used with training the end-to-end speech recognition system. The hybrid 

CTC/attention based end-to-end architecture and ROVER method is explained. 

The fifth chapter is about the experiments. It describes the data used in the experiments, 

why the ESPnet toolkit is chosen, the used model for training, the results of the 

experiments and the analysis of the results.  

The sixth chapter draws conclusion on how the end-to-end speech recognition system 

performs on Estonian language. The objectives and hypothesis are analysed whether they 

were achieved as initially planned. 
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2 Background 

This chapter gives a detailed overview of the main component used for using an end-to-

end speech recognition system, e.g. feature extraction, RNN, LSTM, CTC, attention 

based encoder-decoder and evaluation metrics. 

2.1 End-to-end speech recognition 

Speech recognition is the process of automatically extracting the word conveyed by 

speech wave. Traditional speech recognition systems are currently based on very complex 

components. These systems use components such as hidden Markov models, Gaussian 

mixture models, deep neural networks, n-gram and neural network based language 

models. End-to-end speech recognition replaces all these different components in the 

traditional pipeline with a single end-to-end deep recurrent neural network. 

End-to-end speech recognition does not know anything about words or how they are used. 

It tries to guess each letter on a given audio and combine those to form words. This is 

different from the traditional approach where vocabulary and n-grams are used. The 

traditional approach then tries to calculate probabilities of what a person might have said 

compared to a given vocabulary and n-grams.  

The main benefit of using end-to-end speech recognition is that is simplifies the process 

of training and deployment. Because of the fact that end-to-end does not need a 

vocabulary or n-gram, it can be used with different languages more easily, when only 

training data is available. It will also simplify deployment on mobile devices, because it 

does not use a typical n-gram language model, which takes a lot of disk space.  

End-to-end speech recognition system has one important downside. Even though training 

the system is a lot simpler than in traditional approach, it needs a lot of training data. The 

system will have to learn different characteristics of a language by itself and that is why 

it needs to have a sufficient amount of data. Usually, the system needs to have thousands 

of hours of data to train on. It is possible to train with less data, but the results will not be 

as good as the system is capable of achieving.  
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End-to-end speech recognition is mainly based on deep recurrent neural network. A deep 

recurrent neural network alone is not enough for a speech recognition system. The first 

attempts used CTC, but it is incapable of learning the language and needs language model 

to clean up common mistakes. Instead of CTC, attention-based models were tested and 

they proved to be outperforming previous models, due to the ability of learning all 

components of a speech recognizer. Both methods still have some benefits over one 

another and recent works have started using a hybrid CTC/attention based architecture, 

which is also used in this thesis. 

2.2 Feature extraction 

The first step in recognizing speech from audio is to extract features. Feature extraction 

is for removing background noise, emotion and all other useless information to get only 

the components that can be used for identifying linguistic content. This pre-processing is 

needed for making neural network’s processing easier to recognize text from audio [1]. 

 

For extracting features from audio, the signal is usually framed into 20-40ms frames. 

Each frame is selected after 10ms, which means that the next frame will have some of its 

 
Figure 1. An audio signal wave 
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contents from the previous frame. All of these frames still contain redundant information 

that require filtering. To remove all sudden endings of an audio signal in each frame, a 

window function is used, such as the Hamming window. The Hamming window function 

also allows to counteract the assumption made by the discrete Fourier transform that the 

signal is infinite and to reduce spectral leakage. 

By using discrete Fourier transform, each complex sound wave is broken apart into simple 

sound waves. It takes a windowed signal as input and outputs a complex number for each 

frequency band. Each of those sound waves’ contained energy is added up to get a score 

of how important each frequency band is. To better visualize the output of this process, a 

spectrogram is created using each frame’s contained energy scores. 

After using the discrete Fourier transform, the spectrogram still has too much information. 

Triangular filters are applied on a Mel-scale to the power spectrum for extracting 

frequency bands. The Mel-scale’s purpose is to mimic the non-linear human ear 

perception of sound. Lower frequencies are filtered with narrower and higher frequencies 

with wider bands. Each of those filters collect energy from a number of frequency bands 

in discrete Fourier transform. 

 

The spectrogram in Figure 2 visualizes the patterns of low and high pitch frequency 

ranges. This data is better for a neural network to process, because it can find patterns 

 
Figure 2. Spectrogram of an audio clip 
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more easily. That is why this is the actual representation of audio data that gets fed into 

the neural network. The neural network will then try to figure out the best possible letter 

for each of these 20ms frames. 

2.3 Recurrent neural network (RNN) 

RNN is a type of deep learning model that works best for handling sequential information. 

RNN assumes, that all inputs and outputs are dependent on each other, unlike the 

traditional neural network. It keeps a memory of previous outputs and passes those as 

inputs from one step of the network to the next (Figure 3). This way the network can have 

a deeper understanding of the statement [2]. 

 

The above figure shows a chunk of neural network (A), that takes (Xt) and previous output 

as inputs and outputs a value (ht). The recurrence allows the network to pass information 

from one step to the next [3]. This is the basic workflow of a RNN, but it is often used 

with bidirectional to get more accurate results. 

 
Figure 3. An unrolled RNN [3] 
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It is often beneficial to know some information about the future as well as past context. 

Usually, when classifying a letter in a word, it is beneficial to know about the previous 

and next letters. This is something that bidirectional RNNs will help to solve. The idea 

behind BRNN is to have two hidden layers (Figure 4), one for forward and one for 

backward layer. This way the output layer will have both the past and future context for 

every point in the input sequence [4].  

Standard RNN does not always perform very well. The problem is that RNNs cannot 

preserve memory from far away in the sequence. RNN makes predictions based on the 

most recent sequences. This means that the context about the start of a sentence might be 

lost while predicting the end of the sentence. To solve this problem, RNN is often used 

with long short-term memory (LSTM) architecture to have the context of a whole 

sentence always available in memory [5]. 

2.4 Long Short-Term Memory (LSTM) 

Standard RNN architectures have a problem with multiple hidden layers. When passing 

information from one hidden layer to another, the information might get lost, if there are 

many layers. LSTM handles this kind of situation and enables RNN to preserve memory 

throughout the whole learning process.  

 
Figure 4. Bidirectional RNN (BRNN) [4] 
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LSTM architecture consists of memory blocks, which are all recurrently connected to 

each other. Each memory block contains at least one self-connected memory cell [6]. The 

memory cell allows information to be stored in, written to or read from. It also decides, 

which information to store and when to allow reading, writing and erasing. This is done 

using input, output and forget gates that open and close as shown in Figure 5.  

 

 
Figure 5. LSTM memory block with one cell [4] 

 
Figure 6. Preservation of gradient information by LSTM [4] 
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Figure 6 shows the preservation of gradient information by LSTM. Input state, forget and 

output gates are shown below, to the left and above the hidden layer respectively. (O) 

represents an entirely open gate and (-) is for a closed gate. Looking at the diagram, LSTM 

memory cell can preserve information as long as the input gate is closed and forget gate 

is open. Getting information from output gate does not have any affect memory cell’s 

data. 

When using LSTM architecture with bidirectional RNN gives bidirectional LSTM 

(BLSTM) [4]. Using BLSTM allows to preserve information from the past as well as 

from the future. This is important, when the understanding of past and future context is 

needed to find the correct next word in any time. 

For better understanding of BLSTM, it can be explained with a simple speech recognition 

example. Let us say, we need to detect the next word for a sentence starting with “I will 

go to “. Currently the only available information about the sentence’s context is in the 

past. Finding the correct next word can be difficult, when there are almost limitless 

possibilities. Now, the BLSTM allows to get context from the future as well. When the 

sentence continues with “and learn machine learning”, the detection for the missing word 

becomes simpler, because of the extra context about the whole sentence [7]. 

2.5 Connectionist temporal classification (CTC) 

People talk with very different rates of speed which makes training an ASR system a lot 

more difficult. That is why the alignment between characters in the transcript and audio 

is always unknown. One way of solving this problem is to manually align all characters 

to their location in the audio. The major downside is that it’s very time consuming when 

dealing with large datasets. Another option is to use connectionist temporal classification 

(CTC) which has become a very popular among RNNs [8]. 

CTC is a type of neural network output and associated scoring function. It is used with 

RNNs to handle sequential problems. CTC sums over the probability of all possible 

alignments between the input and the output [4]. Assuming that an input has a length 

greater than the actual word’s length, one option for solving the problem is to collapse all 

repeating characters.  
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Collapsing all repeating words is not the best way of tackling this problem, because it will 

remove all repeating characters even when there should be a repetition. That is why CTC 

uses a token called blank (here referred as _). This token is always removed from the 

output, but used in alignment process.  

  

Firstly, CTC merges all repeating characters and secondly, removes all blank tokens. The 

remaining output will be ‘hello’ not ‘helo’, which would be the output without the token. 

There are a lot of possible ways of character alignment for every input. CTC loss 

functions combines all alignments where the output is the same. It then calculates the 

score for each of these combinations and sums over all scores. While decoding, a 

character with the highest score for each time step is picked. After that, the duplicate 

characters are merged and blank tokens removed to get the final output [9]. 

2.6 Attention based encoder-decoder architecture 

Encoder-decoder architectures are mostly used to deal with sequences where the input 

and output length size in unknown. Both encoder and decoder are RNNs. The encoder 

transforms the input to a higher level representation where the length size is fixed. The 

decoder then uses this representation and generates output sequences. 

 
Figure 7. Merging repeated characters 

 
Figure 8. Merging repeated characters with blank token 
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When dealing with a simple encoder-decoder architecture, the decoder generates a 

transcription based on the last hidden state from the encoder. This is not a reasonable 

approach, because when dealing with sentences containing many words, the encoder will 

have to encode every information into a single vector. The decoder must then produce a 

valid output only based on this single vector. While decoding, the decoder has to consider 

information from the beginning of the sentence and when dealing with RNNs, it is known 

that long-range information might get lost. 

Attention based encoder-decoder architecture solves the problem of encoding everything 

into one single vector. The attention mechanism allows decoder to get information from 

all parts of the source sentence at every step of output generation. The model will learn 

by itself what information is important and should be considered. Each decoder output 

does not depend on the last vector anymore, but instead on a weighted combination of all 

the input states [10]. 

2.7 Evaluation metrics for speech recognition 

2.7.1 Word error rate (WER) 

WER is a method for calculating the performance of a speech recognition software. This 

is not always easy to measure, because the correct input length can be different from the 

detected value length.  

𝑊𝐸𝑅 =	
𝑆 + 𝐷 + 𝐼

𝑁  

Equation 1. WER calculation 

 

Equation 1 shows the equation for calculating WER. S shows the number of substitutions, 

D is for deletions, I is for insertions and N is for words in the reference [11]. 

There are three possibilities for an automated speech recognition (ASR) software to make 

mistakes that WER will calculate: 

1) Deletion – ASR system deletes a word  

Correct input: Machines can think 

ASR result: Machines think 
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2) Insertion – ASR system inserts an unneeded word 

Correct input: Machines can think 

ASR result: Machines can not think 

3) Substitution – ASR system substitutes a correct word with an incorrect one 

Correct input: Machines can think 

ASR result: Machines can learn 

 

WER can sometimes give very unreasonable results when dealing with compound words. 

Sentences like “water melon tastes good” and “watermelon tastes good” are both very 

well understandable. But the calculated WER would be 50%, which is unfair considering 

that the actual mistake is only adding an unnecessary white space. This is where character 

error rate will give more adequate results.   

2.7.2 Character error rate (CER) 

Another method for calculating the performance of ASR is character error rate. CER is 

calculated with the minimum number of operations necessary to transform the original 

text into ASR output. The smaller the number, the more accurate both texts are. 

The equation for calculating CER is the same for WER as shown in Equation 1. But for 

CER, N is for the total number of characters and the minimal number of character 

substitutions as S, deletions as D and insertions as I, required for transforming original 

text into automatic transcription [12]. 

White space and case are also important for CER. While contiguous white spaces are 

usually considered as one, a word pair “auto   mobile” with more than one space between 

them still gives an accuracy of 10%. When comparing words with different case like 

“Hello World” and “hello world”, CER sees them as substitutions and calculates an 

accuracy of 18%.  

CER is most commonly used when dealing with languages that have difficult declensions. 

When the original reference in Estonian is “koerast” and ASR recognises it as “koeras”, 

the WER would be 100%, but CER is only 14%. For these kind of languages, where a 

word has many different cases, WER might show a bit unfair results compared to CER. 

Although the result of WER is high, the word is still readable and in the meaning of the 

sentence would still be understandable.
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3 Related works 

The problem of using end-to-end speech recognition for Estonian language has not been 

investigated in any earlier research.  

This chapter introduces previous related works that are related to this thesis’ problem. 

These alternative works have used end-to-end speech recognition for other languages. 

The only Estonian language related work concentrates on the traditional method for 

speech recognition.  

3.1 End-to-end speech recognition 

Deep Speech 2: End-to-end Speech Recognition in English and Mandarin was created in 

2015 to show the possibilities of implementing end-to-end speech recognition on very 

different languages [13]. The system consists of three main components: 

1) RNN with one or more convolutional input layers 

2) Multiple recurrent layers and one fully connected layer 

3) CTC 

 

For training the models, this research uses 11940 hours of labeled speech, which contains 

8 million utterances, for English model and for Mandarin, there are 9400 hours of labelled 

speech, which contains 11 million utterances.  

The trained model’s WER for English language is comparable with human WER, when 

the audio is clearly understandable. In these cases, the WER differs between 3-13% using 

different datasets. When testing with accented or noisy audio, the WER becomes 

understandably bigger. The difference between human level and the trained model 

becomes clearer when dealing with accented or noisy audio.  

The results for Mandarin language show that end-to-end speech recognition can give 

better results than an average human speaker. When transcribing short voice-query like 

utterances, the trained system for Mandarin language works better than human level 
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performance. The system achieves a WER of 3.7% for 100 random utterances labelled by 

a committee of 5 and 5.7% for 250 utterances labelled by a single person. A typical 

Mandarin Chinese speaker achieves approximately 4% for committee labelled utterances 

and 9.7% for utterances labelled by an individual. 

Listen, attend and spell (LAS) is research done in 2015 and has a key improvement over 

previous end-to-end CTC models. LAS uses a neural network, that transcribes speech 

utterances to characters. The system has two components: a listener and a speller, which 

are both jointly learned. The listener is a pyramidal recurrent network encoder that uses 

filterbank spectra for inputs. The speller is an attention-based recurrent network decoder 

that sends out characters as outputs [14]. 

Without using a language model or a dictionary, LAS achieves a WER of 14.1% on a 

subset of the Google voice search task. The result is not as good as the traditional DMM-

HMM models, but still quite good for a system that has not been fully researched and 

developed. 

There have also been many other recent researches about end-to-end speech recognition 

using LAS, such as [15] [16] [17] [18] [19]. 

Joint CTC/attention decoding for end-to-end speech recognition is another research for 

end-to-end speech recognition created in 2017 [20]. Previous works on end-to-end ASR 

systems have used either CTC or attention architecture. This research has created an end-

to-end speech processing toolkit called ESPnet which proposes a hybrid CTC/attention 

architecture to utilize both advantages in decoding [21]. 

The testing is done on spontaneous Japanese and Mandarin Chinese datasets. For getting 

better results, the train set is expanded by linearly scaling the audio lengths by factors of 

0.9 and 1.1. It eventually achieved a WER of 29.9% which is better than systems using 

only CTC.  

Using CTC in end-to-end speech recognition is also researched by many others, such as 

[22] [23] [24] [25] [26]. 
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3.2 Estonian language 

Recent improvements in Estonian LVCSR is a paper from 2014 by Tanel Alumäe which 

uses the traditional method for solving Estonian language speech recognition [27]. This 

paper is from 2014. 

This paper describes a speech-to-text transcription system for semi-spontaneous speech. 

The system is based on the Kaldi toolkit and uses deep neural network based hidden 

Markov models (DNN-HMM) as main acoustic models. For restoring the final lattices, 

the system uses neural network based phone duration models, which gives significant 

improvements over the basic DNN-HMM architecture. 

For training the model, over 100 hours of speech was transcribed and used. The audio 

contains various speakers and no special processing has been made with it. This system 

achieves WER of 17.9% on broadcast conversations and 26.3% on conference speeches. 
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4 Method 

This chapter specifies the solution part of the thesis. It gives a detailed overview of the 

methods used with training the end-to-end speech recognition system. The hybrid 

CTC/attention based end-to-end architecture and ROVER method is explained. 

4.1 Hybrid CTC/attention-based end-to-end architecture 

In machine translation, where word order for input and output can be different, the 

attention-based encoder-decoder works fairly well. It allows nonsequential alignments 

between each element of the output sequence and acoustic encoder network generated 

hidden states for each frame of acoustic input. But for speech recognition, word order is 

the same for input and output except some small within-word deviations that may happen.  

Another problem is the different lengths of input and output sequences. The difference in 

length comes from each speaker’s speaking rate and writing system. That makes it 

difficult for the ASR to track the alignment between input and output. The attention 

mechanism could solve all these problems, but for better results, a CTC-based alignment 

will be used for training the model [28]. 
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Hybrid CTC/attention-based end-to-end architecture, as shown in Figure 9, solves both 

the word order and alignment problem between input and output. This architecture uses 

a CTC objective function as an auxiliary task for training the attention model encoder. 

The BLSTM encoder network is shared between CTC and attention model.  

The decoding process uses both attention-based and CTC scores. Because of the fact that 

CTC and attention-based decoder computes scores differently, combining them is 

nontrivial. A rescoring/one-pass beam search algorithm is used to combine those scores. 

The outcome of this would eliminate all irregular alignments.  

Using this joint architecture, the learning process of the network is quicker and it works 

better in noisy conditions or with long sentences. The forward-backward algorithm of 

CTC enforces monotonic alignment between speech and label sequences. This helps to 

acquire more accurate alignments in noisy conditions. Using CTC as an auxiliary task 

also improves the speed in estimating alignments without the aid of rough estimates. That 

way the estimations for alignments in long sequences are not solely dependent on data-

driven attention methods [20]. 

 
Figure 9. Hybrid CTC/attention-based end-to-end architecture [20] 
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4.2 Combining n-best lists with ROVER method 

N-best list is generated by the ASR system and it contains a list of likely possibilities for 

input sentence which is sorted by the best score. Each possibility is different and has a 

score of how sure the system is in its correctness. N-best list allows to combine multiple 

different ASR systems to achieve better results. 

For combining multiple n-best lists, a ROVER system is used. The first step for this 

system is to align all hypothesis transcripts from ASR systems to get one word transition 

network (WTN). It firstly creates WTNs for all ASR system outputs to be able to combine 

them. 

 

A base WTN is chosen from which the composite WTN is developed. All other WTNs 

are aligned according to the base WTN as shown in Figure 10. For example, if there are 

3 different systems, a base WTN is chosen and then one of the remaining WTN is aligned 

with the base WTN to form a new base WTN. The process is repeated with all other 

remaining WTNs to eventually get one final composite WTN. 

When the final composite WTN is found, a voting module is used to find the best scoring 

word sequence. The voting module finds the occurrences of each word and accumulates 

them.  

𝑆𝑐𝑜𝑟𝑒(𝑤) = 	𝛼 3
𝑁(𝑤, 𝑖)
𝑁𝑠 7 + (1 − 𝛼)𝐶(𝑤, 𝑖) 

Equation 2. Scoring formula  

 

The Equation 2 show how the voting is performed. The number of occurrences of word 

type w is accumulated in correspondence set i in the array N(w,i). To scale the frequency 

of occurrence to unity, the array is then divided by the number of combined systems Ns. 

 
Figure 10. WTNs alignment 
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The measured confidence scores for word w create an array C(w,i). The parameter a is 

trained to be the trade-off between using word frequency and confidence scores. 

The voting can be done in three different ways. When setting the a parameter to 1, the 

information about confidence scores become irrelevant. This way the voting is made by 

frequency of occurrence. When training the parameter a a priori on the training data, the 

voting will use confidence scores to find either average or maximum confidence scores. 

The parameter a can be trained by quantizing the parameter space into a grid of possible 

WER values and then exhaustively searching for the lowest WER [29]. 
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5 Experiments 

This chapter is about the experiments. It describes the data used in the experiments, why 

the ESPnet toolkit is chosen, the used model for training, the results of the experiments 

and the analysis of the results.  

5.1 Data 

Table 1. Used dataset description 

Origin Speech type Hours 

Radio and TV programs, 

radio interviews 

Semi spontaneous 109 

Lectures and conference 

presentations 

Not spontaneous 38 

Radio and TV news  Dictated, semi spontaneous 30 

A spontaneous phonetic 

speech corpus from 

University of Tartu 

Spontaneous 29 

Speech database from 

BABEL 

Dictated 8 

Android app “Kõnele” real 

spoken data 

Dictated 2 

Sum  216 

   

This thesis uses about 216 hours of Estonian speech from approximately 3500 unique 

speakers. Most of the data contains spontaneous speech. Spontaneous speech gives better 
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results for training the model, because of the different talking speeds and pronunciations 

of words by various speakers.  

Table 1 shows the distribution of used data over different origins. This dataset is divided 

between training, test and validation sets. Test and validation sets use data from TV news, 

interviews, talk shows and radio shows. Test data contains 8 hours and 27 minutes of data 

from approximately 170 unique speakers which is equivalent to 3027 utterances. 

Validation set contains 7 hours and 28 minutes of data from approximately 190 unique 

speakers which is equivalent to 2954 utterances. All other data is for training set. 

5.2 Traditional approach for Estonian speech recognition 

The previous work for solving Estonian speech recognition is made using traditional 

approach. It uses deep neural network based hidden Markov models (DNN-HMM) as 

main acoustic models. For better results, a neural network based phone duration models 

are used for rescoring final lattices.  

The system uses the Kaldi toolkit and contains 43 phoneme models, a silence/noise model 

and a garbage model that collects foreign language and unintelligible words during 

training. A single silence/noise model is used to map different noises and fillers. The 

acoustic model is trained using Kaldi Switchboard recipe. 

Language model for traditional approach is one of the key components. It consists of 

bigrams, trigrams and also 4-grams that occur more than once. Before creating the 

language model, a text normalization is performed, where recapitalization and changing 

numbers to words are mainly done. The language model vocabulary consists of 200 000 

most likely case-sensitive compound-slip units. 

This thesis uses n-best list from traditional speech recognition approach to combine this 

with end-to-end approach. The results for combining the results of two different systems 

are described in chapter 5.6. 

5.3 Choosing the best library 

Because of the increasing interest in developing end-to-end speech recognition systems, 

there are quite many projects related to it. This theses trained models on three different 
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systems. End-to-end automatic speech recognition system implemented in Tensorflow, 

an open source project called DeepSpeech by Mozilla and ESPnet end-to-end speech 

recognition toolkit [30] [31]. 

Training models on all three systems showed that ESPnet performs significantly better. 

The use of hybrid CTC/attention architecture has proven to perform better than CTC or 

attention based alone. ESPnet has got many benefits over the other two systems apart 

from just performing better. It has been developed by many highly valued experts with a 

lot of experience in the field of speech recognition. The documentation is very good and 

includes scripts with different training parameters for some popular data corpuses. One 

of the other advantages is the fact that ESPnet has similar structure to Kaldi toolkit and 

uses its functionality. Kaldi toolkit has been widely recognized and used by speech 

recognition researchers [32].  

5.4 Model description 

The model is trained by using various parameters. All parameters are taken from the 

ESPnet script that trains a model for TED talks corpus. This is done because the TED 

corpus is very similar to the data used in this thesis and has proven itself. Table 2 lists 

most important parameters used in training the model. 

Table 2. Trained model parameters 

Parameter Value 

Type of encoder network architecture vggblstmp 

Number of encoder layers 6 

Number of encoder hidden units 320 

Number of encoder projection units 320 

Encoder subsampling 1_2_2_1_1 

Type of CTC implementation to 

calculate loss 

Chainer 
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Number of decoder layers 1 

Number of decoder hidden units 300 

Type of attention architecture location 

Number of attention transformation 

dimensions 

320 

Number of attention convolution 

channels 

10 

Number of attention convolution filters 100 

Multitask learning coefficient 0.5 

Batch size 30 

Batch size is reduced if the input 

sequence length is greater than max 

length 

800 

Batch size is reduced if the output 

sequence length is greater than max 

length 

150 

Optimization AdaDelta 

Number of maximum epochs 15 

  

5.5 Data augmentation 

End-to-end speech recognition requires a lot of data to train a model that has as low as 

possible WER and CER. Collecting data for training is not that easy and takes a lot of 

time and resources. That is why data augmentation is used for generating more training 

data. 
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There are many options for data augmentation. This thesis uses speed modifications, noise 

and reverberation to generate more data. The original dataset is modified by decreasing 

speed by 10% and increasing it by 10%. Noise and reverberation is added for each of 

these datasets. The used background noises are extended by repetition to cover the whole 

audio input. Reverberations are only added at a specified time. 

By doing these simple modifications, the initial dataset has given 5 more datasets that can 

all be used during model training. This kind of data augmentation gives more real life 

data to train on and the trained model actually achieves better results. 

The model is trained using original dataset, original dataset with speed modifications and 

original dataset with speed modifications, noise and reverberation. The results are shown 

in Table 3.  

Table 3. WER and CER results for different datasets 

System Validation set Test set 

WER % CER % WER % CER % 

Original dataset 24.7 8.2 23.3 7.8 

Original dataset with speed 

modifications 

24.2 8.1 23.5 8.0 

Original dataset with speed 

modifications, noise and reverberation 

22.8 7.7 21.9 7.5 

     

As shown in Table 3, WER and CER improves when adding speed modifications to 

original dataset and testing against validation set. The results for testing against test set 

show slightly worse results. Using only speed modifications for simulating data does not 

always give better results. By adding noise and reverberation, the results show promising 

improvement for both test set and validation set. WER is improved by almost 2% and 

CER by 0.5%.  
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5.6 Combining n-best lists 

N-best list allows to combine the result of different systems to achieve more accurate 

results. We use the ROVER method to combine n-best lists from the traditional and end-

to-end system which contain 100 different predictions with confidence scores.  

Table 4. WER and CER results for combined systems 

System Validation set Test set 

WER % CER % WER % CER % 

Traditional approach alone 12.4 4.7 12.7 4.5 

Combined with end-to-end system 12.0 4.0 12.0 4.0 

     

As Table 4 shows, the combined system achieves slightly better WER and CER. The 

combined system benefits from end-to-end system’s ability of recognising unknown out 

of vocabulary words. Traditional approach outputs only words in its vocabulary, therefore 

commonly making mistakes with names and different cases of a word. 

At first thought, the improvement might not look that great. But when looking at the 

relative improvement on test set, for example, WER improves by 5.5% and CER by 

11.1%. This improvement is actually statistically significant according to speech 

recognition benchmark tests by Makhoul [33].  

5.7 Analysis 

This chapter analyses the results of previous work done with traditional approach (Kaldi), 

end-to-end approach (ESPnet) and the combined result of those two methods (ROVER). 

Each example starts with the original reference (REF). Spelling errors and completely 

wrong words are underlined. Asterisk is used when a word is completely missing. 

5.7.1 Combined n-best lists better than traditional approach 

Combining n-best lists from Kaldi and ESPnet can sometimes improve WER or CER. 

Both methods have their advantages and when put together, can improve the outcome of 
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speech recognition. Here are some of the examples where ROVER gives better results 

than Kaldi. 

REF: te rääkisite jah et pooltel tegevus aladel palgad tõusid pooltel ei tõusnud 

KALDI: te rääkisite jah et pooltel tegevus aladel palgad tõusid POOLTELE ei tõusnud 

ROVER: te rääkisite jah et pooltel tegevus aladel palgad tõusid pooltel ei tõusnud 

 

REF: ja rüüstamistest on need on pildid londoni ees linnadest 

KALDI: ja RÜÜSTAMISTE SEDA on need on pildid londoni ees linnadest 

ROVER: ja rüüstamistest on need on pildid londoni ees linnadest 

 

REF: eesti meedikud jõuavad afganistani lahingu tegevuse kõrg punktiks ja ühtlasi kõige 

palavamaks 

KALDI: eesti meedikud jõuavad afganistani lahingu tegevuse kõrg punktiks ja ühtlasi 

kõige PALAVA MAKS 

ROVER: eesti meedikud jõuavad afganistani lahingu tegevuse kõrg punktiks ja ühtlasi 

kõige palavamaks 

 

REF: maht selliseks et see rahuldaks ka kõiki abi vajajaid 

KALDI: maht selliseks et see RAHUL PEAKS ka kõiki abi EI VAJA   

ROVER: maht selliseks et see rahuldaks ka kõiki abi EI VAJA 

 

REF: aasta aegade vaheldudes kohtume me enamasti palju like 

KALDI: aasta aegade VAHELDUS kohtume MEIE enamasti palju like 

ROVER: aasta aegade vaheldudes kohtume MEIE enamasti palju like 

 

REF: kosmose agentuur nasa kinnitas kosmose sondi doon jõudmist kääbus planeedi 

seres orbiidile 

KALDI: kosmose AGENTUURI nasa kinnitas kosmose sondi TOON jõudmist 

KAEBUS planeedi SEE RES orbiidile 

ROVER: kosmose AGENTUURI nasa kinnitas kosmose sondi TOON jõudmist 

KAEBUS planeedi seres orbiidile 
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REF: õppima saabuval noorel peab olema selge ette kujutus sellest mis teda ees ootab 

KALDI: õppima saabuval noorel peab olema SELG ette kujutus sellest mis teda ees ootab 

ROVER: õppima saabuval noorel peab olema selge ette kujutus sellest mis teda ees ootab 

 

REF: tüdrukud olid vanematele öelnud et nad teevad päevase välja sõidu 

KALDI: tüdrukud olid VANEMATEL  öelnud et nad teevad päevase välja sõidu 

ROVER: tüdrukud olid vanematele öelnud et nad teevad päevase välja sõidu 

These examples show some of the benefits of combining the results from two different 

approaches to speech recognition. The most common mistake here, that Kaldi system 

does, is the use of wrong case for a word. Most of the times, ROVER will fix this when 

ESPnet has a better recognition for the word. The other problem is when Kaldi’s language 

model has no knowledge about a word used in audio. Kaldi then proposes words close to 

the original, but is unable to come up with a correct word. ESPnet does not depend on 

language model and therefore ROVER will use a more accurate transcription for the input 

audio, when dealing with a word missing from train set. 

5.7.2 Traditional approach better than combined n-best lists 

Combining n-best lists does not always give better results. When combined systems have 

significantly different results for input, a wrong presumption could get selected by 

ROVER method. Some of these use cases are listed below. 

REF: siis ma nagu pöördun komisjoni poole et las nemad siis seletavad 

KALDI: siis ma nagu pöördun komisjoni poole et las nemad siis SELETAVAT 

ROVER: siis ma nagu pöördun komisjoni poole et las NÄEVAD siis SELETAVAT 

 

REF: raik küla lähedal oli leitud  pink mis bio voolude abil ise liikuma hakanud 

KALDI: raik küla lähedal oli LEIDNUD pink mis bio KUULUDA abil ise liikuma 

hakanud 

ROVER: raik küla lähedal oli LEIDNUD pink mis PEO KUULUDA abil ise liikuma 

hakanud 

 

REF: leiavad eeldatavalt kasutust riigi ameteis 

KALDI: leiavad eeldatavalt kasutust riigi AMETIS 

ROVER: leiavad eeldatavalt KASUTUSTE riigi AMETIS 
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REF: isas linde kohtab emastega just nii kaua kui neid tarvis on 

KALDI: isas HINDA kohtab HAMMASTEGA just nii kaua kui NEED tarvis on 

ROVER: ISA HINDA kohtab HAMMASTEGA just nii kaua kui NEED tarvis on 

These results show that on some occasions, the ROVER method will choose the wrong 

result. This happens when one of the systems higher confidence in a word even when it 

is not a correct assumption. The system with a correct word might not be too confident 

about it and that is why it will not be selected by ROVER method.  

5.7.3 Traditional approach better than end-to-end approach 

This sections compares some of the results where traditional approach works better than 

end-to-end approach. 

REF: tegelikult tähendab see väljend korraldust kõige kõrgemalt ülemuselt   

KALDI: tegelikult tähendab see väljend korraldust kõige kõrgemalt ülemuselt 

ESPNET: tegelikult tähendab see väljend korraldust kõige kõrgemalt ÜLAMUSELT 

 

REF: riigi kogu liikmetele see eetika koodeks noh ütleme koostada ja kehtivaks 

tunnistada 

KALDI: riigi kogu liikmetele see eetika koodeks noh ütleme koostada ja kehtivaks 

tunnistada 

ESPNET: riigi kogu liikmetele * SEETIKA POODEKS noh ütleme koostada ja 

kehtivaks TUNNISTAB 

 

REF: kas riigi kogu liikmetel on siis vaja seda eetika koodeksit üldse 

KALDI: kas riigi kogu liikmetel on siis vaja seda eetika KOODEKS SIIT üldse   

ESPNET: kas riigi kogu liikmetel on siis vaja * EETIKU KOODEKSITE üldse 

 

REF: lihtsate lausetega saab jutu ära rääkida 

KALDI: lihtsate lausetega saab jutu ära rääkida 

ESPNET: LIHTSATELE ASETEGA saab JUTTU ära rääkida 
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REF: kolm ilvest ühe korraga 

KALDI: kolm ilvest ühe korraga 

ESPNET: kolm ILMEST ühe korraga 

 

REF: õpilas kodude vajadus on igas maakonnas kõigest kolmekümne koha ringis 

KALDI: õpilas kodude vajadus on igas maakonnas kõigest kolmekümne koha ringis 

ESPNET: õpilas kodude VAEDUS  on igas maakonnas kõigest kolmekümne koha ringis 

 

REF: riik võib taolist tegevust hukka mõista aga tõele au andes 

KALDI: riik võib taolist tegevust hukka mõista aga tõele au andes 

ESPNET: riik võib TAOLIS tegevust hukka mõista aga TÕE LAUANDES 

Traditional approach works better, when dealing with specific expressions. When an 

audio contains an expression made out of 2, 3 or more successive words that are also in 

Kaldi’s vocabulary, the system easily outputs correct results. Because ESPnet does not 

have any vocabulary, it can make mistakes more often even with very simple and short 

words, when the word is not pronounced clearly or the audio has some background noise. 

ESPnet also makes mistakes, when previous word ends with the same letter as the next 

word starts. In these situations, when the speaker speaks very fast or does not make a 

pause between those words, mistakes will often occur. Traditional approach knows how 

to fix these problems with misspelling more efficiently because of its vocabulary and 

language model.  

5.7.4 End-to-end approach better than traditional approach 

End-to-end speech recognition has its own advantages over traditional approach. Some 

of the examples, where end-to-end speech recognition works better are listed below. 

REF: et kuidas on teie arvamus ivar tallo kas 

KALDI: et kuidas on teie ARVAMUSI VALD ALLA kas 

ESPNET: et kuidas on teie ARMAS ILMAR tallo kas 

 

REF: jean paul nerriere’ile tuli mõte et keel mida üle ilmselt räägitakse 

KALDI: RUUM POOLNE ERI AIRILE tuli mõte et keel mida üle ilmselt räägitakse 

ESPNET: SOOM POOL NERIEERILE tuli mõte et keel mida üle ilmselt räägitakse 
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REF: ja selle kulutused suureneksid kümme protsenti 

KALDI: ja selle kulutused SUURENESID kümme protsenti 

ESPNET: ja selle kulutused suureneksid kümme protsenti 

 

REF: ja üüri raha liigub omaniku taskusse sula rahas 

KALDI: ja JÜRI raha liigub omaniku taskusse sula rahas 

ESPNET: ja üüri raha liigub omaniku taskusse sula rahas 

 

REF: kuidas paigutuvad kõiksuses ümber nii sugused asjad mida me nimetame 

pakenditeks 

KALDI: kuidas PAIGUTAVAD KÕIKSUSE SEE ümber nii sugused asjad mida me 

nimetame PAKENDITE EKS 

ESPNET: kuidas paigutuvad kõiksuses ümber nii sugused asjad mida me nimetame 

AKENDITEKS 

 

REF: need eksisteerisid serbias georgias ukrainas 

KALDI: need EI EKSISTEERI SIIT serbias georgias ukrainas 

ESPNET: need eksisteerisid serbias georgias ukrainas 

These results show that ESPnet performs better with words which are not in Kaldi’s 

vocabulary. Especially when dealing with names, ESPnet will output more accurate result 

than Kaldi, which just outputs a word closest to the input its processing. ESPnet still 

makes mistakes transcribing names, because of the pronunciation. Also, recognizing 

unknown words is more accurate in end-to-end approach, because it will not try to find a 

similar word to it, when no match is found. 



42 

6 Summary 

This chapter draws conclusion on how the end-to-end speech recognition system 

performs on Estonian language and whether the objectives were achieved as initially 

planned. The thesis is constructed around end-to-end speech recognition system, which 

is trained on ESPnet speech recognition toolkit using available Estonian speech 

recordings. 

The best performing model was created using RNN with hybrid CTC/attention based 

encoder-decoder architecture. The model’s main part is the use of both CTC and attention 

based encoder-decoder. This allowed the use of both methods’ advantages and achieve 

better results. The parameters used for training the model were taken from ESPnet’s 

example project which has a similar amount of training data. 

The model was trained using 216 hours of Estonian speech audio. The audio contains 

mostly programmes, news and interviews from TV and radio. For better results, the data 

is augmented using speed manipulation, noise and reverberation. 

Analysis showed some situations, where end-to-end speech recognition makes common 

mistakes and where it performed better than traditional approach. The system makes 

mistakes, when dealing with noisy audio or when the previous word ends with the same 

letters as the next one starts. However, it proved to be more accurate with words not 

existing in training set and with names.  

This thesis set a goal to create an end-to-end speech recognition system that can achieve 

a WER below 25% and CER below 5%. Only one of those goals was met. The goal for 

WER was met as the system achieved a WER of 21.9% on test set. Unfortunately, the 

best achieved CER was 7.5% on test set. Another objective was to achieve a better result 

when combining two different methods. This came out positive and a combination of two 

systems achieved a WER of 12.0% and a CER of 4.0%. This result is statistically 

significant improvement from the current traditional approach for Estonian speech 

recognition system. 
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The thesis proves that end-to-end speech recognition can be used on Estonian language. 

However, the results are not as good as the traditional approach, it is not ruled out that 

the growing popularity of end-to-end speech recognition can improve over the years to 

achieve greater results. It also proved, that using a combination of traditional and end-to-

end approach can improve the accuracy of recognising Estonian language from speech. 

For future work, it is recommended to gather more data for Estonian language. The thesis 

did not actually have as much data as end-to-end speech recognition system needs. By 

only increasing training data, the system could possibly achieve more accurate results. 

End-to-end speech recognition is also itself a fast growing area. It is not excluded, that in 

a few years, end-to-end speech recognition would achieve better results than traditional 

approach.
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8 Appendix 1 – Code for applying the model 

#! /bin/bash 
 
. cmd.sh 
. path.sh 
 
stage=1 # general configuration 
backend=pytorch 
stage=-1       # start from -1 if you need to start from data download 
gpu=-1         # use 0 when using GPU on slurm/grid engine, otherwise -1 
debugmode=1 
dumpdir=dump   # directory to dump full features 
N=0            # number of minibatches to be used (mainly for debugging). "0" 
uses all minibatches. 
verbose=0      # verbose option 
resume=        # Resume the training from snapshot 
 
# feature configuration 
do_delta=false # true when using CNN 
 
# network archtecture 
# encoder related 
etype=vggblstmp     # encoder architecture type 
elayers=6 
eunits=320 
eprojs=320 
subsample=1_2_2_1_1 # skip every n frame from input to nth layers 
 
# loss related 
ctctype=chainer 
 
# decoder related 
dlayers=1 
dunits=300 
 
# attention related 
atype=location 
adim=320 
aconv_chans=10 
aconv_filts=100 
 
# hybrid CTC/attention 
mtlalpha=0.5 
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# minibatch related 
batchsize=30 
maxlen_in=800  # if input length  > maxlen_in, batchsize is automatically 
reduced 
maxlen_out=150 # if output length > maxlen_out, batchsize is automatically 
reduced 
 
# optimization related 
opt=adadelta 
epochs=15 
 
# rnnlm related 
lm_weight=1.0 
 
# decoding parameter 
beam_size=20 
penalty=0.0 
maxlenratio=0.0 
minlenratio=0.0 
ctc_weight=0.3 
recog_model=acc.best # set a model to be used for decoding: 'acc.best' or 
'loss.best' 
 
# exp tag 
tag="1a" # tag for managing experiments. 
 
num_data_reps=1 
echo "$0 $@"  # Print the command line for logging 
. parse_options.sh || exit 1; 
set -e 
set -u 
set -o pipefail 
train_set=train_trim 
train_dev=dev_trim 
recog_set="dev test" 
 
if [ $stage -le 0 ]; then 
  ./local/00_prepare_data.sh 
fi 
 
feat_tr_dir=${dumpdir}/${train_set}/delta${do_delta}; mkdir -p ${feat_tr_dir} 
feat_dt_dir=${dumpdir}/${train_dev}/delta${do_delta}; mkdir -p ${feat_dt_dir} 
 
if [ ${stage} -le 1 ]; then 
    echo "stage 1: Feature Generation" 
    # Generate the fbank features; by default 80-dimensional fbanks with 
    # pitch on each frame 
    for x in test dev train; do 
        steps/make_fbank_pitch.sh --cmd "$train_cmd" --nj 32 data/${x} || \ 
        exit 1; 
    done 
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    remove_longshortdata.sh --maxchars 400 data/train data/${train_set} 
    remove_longshortdata.sh --maxchars 400 data/dev data/${train_dev} 
 
    # compute global CMVN 
    compute-cmvn-stats scp:data/${train_set}/feats.scp \ 
    data/${train_set}/cmvn.ark || exit 1; 
    dump.sh --cmd "$train_cmd" --nj 32 --do_delta $do_delta \ 
    data/${train_set}/feats.scp data/${train_set}/cmvn.ark \ 
    exp/dump_feats/train ${feat_tr_dir} 
    dump.sh --cmd "$train_cmd" --nj 32 --do_delta $do_delta \ 
    data/${train_dev}/feats.scp data/${train_set}/cmvn.ark exp/dump_feats/\ 
    dev ${feat_dt_dir} 
fi 
 
dict=data/lang_1char/${train_set}_units.txt 
echo "dictionary: ${dict}" 
 
if [ ${stage} -le 2 ]; then 
    ### Task dependent. You have to check non-linguistic symbols used in the 
    # corpus. 
    echo "stage 2: Dictionary and Json Data Preparation" 
    mkdir -p data/lang_1char/ 
    echo "<unk> 1" > ${dict} # <unk> must be 1, 0 will be used for "blank" \ 
    in CTC 
    echo "<space> @ a b c d e f g h i j k l m n o p q r s t u v w x y z ü õ \ 
    ö ä A B C D E F G H I J K L M N O P Q R S T U V W X Y Z š ž Š Ž Ü Õ Ö Ä \ 
    - '" | tr " " "\n" \ 
    | sort | uniq | grep -v -e '^\s*$' | awk '{print $0 " " NR+1}' \  
    >> ${dict} wc -l ${dict} 
 
    # make json labels 
    data2json.sh --feat ${feat_tr_dir}/feats.scp \ 
    data/${train_set} ${dict} > ${feat_tr_dir}/data.json 
    data2json.sh --feat ${feat_dt_dir}/feats.scp \ 
    data/${train_dev} ${dict} > ${feat_dt_dir}/data.json 
fi 
 
if [ -z ${tag} ]; then 
    expdir=exp/${train_set}_${etype}_e${elayers}_subsample${subsample}\ 
    _unit${eunits}_proj${eprojs}_ctc${ctctype}_d${dlayers}_unit${dunits}\ 
    _${atype}_adim${adim}_aconvc${aconv_chans}_aconvf${aconv_filts}\ 
    _mtlalpha${mtlalpha}_${opt}_bs${batchsize}_mli${maxlen_in}\ 
    _mlo${maxlen_out} 
 
    if ${do_delta}; then 
        expdir=${expdir}_delta 
    fi 
else 
    expdir=exp/${train_set}_${tag} 
fi 
 



50 

mkdir -p ${expdir} 
 
if [ ${stage} -le 4 ]; then 
    echo "stage 3: Network Training" 
    ${cuda_cmd} ${expdir}/train.log \ 
    asr_train.py \ 
    --gpu ${gpu} \ 
    --backend ${backend} \ 
    --outdir ${expdir}/results \ 
    --debugmode ${debugmode} \ 
    --dict ${dict} \ 
    --debugdir ${expdir} \ 
    --minibatches ${N} \ 
    --verbose ${verbose} \ 
    --resume ${resume} \ 
    --train-feat scp:${feat_tr_dir}/feats.scp \ 
    --valid-feat scp:${feat_dt_dir}/feats.scp \ 
    --train-label ${feat_tr_dir}/data.json \ 
    --valid-label ${feat_dt_dir}/data.json \ 
    --etype ${etype} \ 
    --elayers ${elayers} \ 
    --eunits ${eunits} \ 
    --eprojs ${eprojs} \ 
    --subsample ${subsample} \ 
    --ctc_type ${ctctype} \ 
    --dlayers ${dlayers} \ 
    --dunits ${dunits} \ 
    --atype ${atype} \ 
    --adim ${adim} \ 
    --aconv-chans ${aconv_chans} \ 
    --aconv-filts ${aconv_filts} \ 
    --mtlalpha ${mtlalpha} \ 
    --batch-size ${batchsize} \ 
    --maxlen-in ${maxlen_in} \ 
    --maxlen-out ${maxlen_out} \ 
    --opt ${opt} \ 
    --epochs ${epochs} 
Fi 
 
if [ ${stage} -le 5 ]; then 
    echo "stage 5: Decoding" 
    nj=4 
    for rtask in ${recog_set}; do 
    ( 
        decode_dir=decode_${rtask}_beam${beam_size}_e${recog_model}_p\ 
        ${penalty}_len${minlenratio}-${maxlenratio}_ctcw${ctc_weight} 
 
        # split data 
        data=data/${rtask} 
        split_data.sh --per-utt ${data} ${nj}; 
        sdata=${data}/split${nj}utt; 
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        # feature extraction 
        feats="ark,s,cs:apply-cmvn \ 
        --norm-vars=truedata/${train_set}/cmvn.ark \ 
        scp:${sdata}/JOB/feats.scp ark:- |" 
 
        if ${do_delta}; then 
            feats="$feats add-deltas ark:- ark:- |" 
        fi 
 
        # make json labels for recognition 
        data2json.sh ${data} ${dict} > ${data}/data.json 
 
        #### use CPU for decoding 
        gpu=-1 
 
        ${decode_cmd} JOB=1:${nj} ${expdir}/${decode_dir}/log/decode.JOB.log\ 
            asr_recog.py \ 
            --gpu ${gpu} \ 
            --backend ${backend} \ 
            --debugmode ${debugmode} \ 
            --verbose ${verbose} \ 
            --recog-feat "$feats" \ 
            --recog-label ${data}/data.json \ 
            --result-label ${expdir}/${decode_dir}/data.JOB.json \ 
            --model ${expdir}/results/model.${recog_model}  \ 
            --model-conf ${expdir}/results/model.conf  \ 
            --beam-size ${beam_size} \ 
            --penalty ${penalty} \ 
            --maxlenratio ${maxlenratio} \ 
            --minlenratio ${minlenratio} \ 
            --ctc-weight ${ctc_weight} \ 
            --nbest 100 \ 
            --lm-weight ${lm_weight} & 
        wait 
        score_sclite.sh --wer true ${expdir}/${decode_dir} ${dict} 
    ) & 
    done 
    wait 
    echo "Finished" 
fi 
 
if [ ${stage} -le 6 ]; then 
    echo "stage 5: Speech speed-augmentation" 
    utils/data/perturb_data_dir_speed_3way.sh data/train data/train_sp 
fi 
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if [ ${stage} -le 7 ]; then 
    echo "stage 1: Feature Generation for speed-augmented data" 
    # Generate the fbank features; by default 80-dimensional fbanks with 
    #pitch on each frame 
    remove_longshortdata.sh --maxchars 400 data/train_sp data/${train_set}_sp 
    dump.sh --cmd "$train_cmd" --nj 8 --do_delta $do_delta \ 
    data/${train_set}_sp/feats.scp data/${train_set}/cmvn.ark \ 
    exp/dump_feats/train_sp ${feat_tr_dir}_sp 
fi 
 
if [ ${stage} -le 8 ]; then 
    # make json labels 
    data2json.sh --feat ${feat_tr_dir}_sp/feats.scp \ 
    data/${train_set}_sp ${dict} > ${feat_tr_dir}_sp/data.json 
fi 
 
if [ -z ${tag} ]; then 
    expdir=exp/${train_set}_${etype}_e${elayers}_subsample${subsample}\ 
    _unit${eunits}_proj${eprojs}_ctc${ctctype}_d${dlayers}_unit${dunits}\ 
    _${atype}_adim${adim}_aconvc${aconv_chans}_aconvf${aconv_filts}\ 
    _mtlalpha${mtlalpha}_${opt}_bs${batchsize}_mli${maxlen_in}\ 
    _mlo${maxlen_out} 
    if ${do_delta}; then 
        expdir=${expdir}_delta 
    fi 
else 
    expdir=exp/${train_set}_sp_${tag} 
fi 
 
mkdir -p ${expdir} 
 
if [ ${stage} -le 9 ]; then 
    echo "stage 3: Network Training" 
    ${cuda_cmd} ${expdir}/train.log \ 
    asr_train.py \ 
    --gpu ${gpu} \ 
    --backend ${backend} \ 
    --outdir ${expdir}/results \ 
    --debugmode ${debugmode} \ 
    --dict ${dict} \ 
    --debugdir ${expdir} \ 
    --minibatches ${N} \ 
    --verbose ${verbose} \ 
    --resume ${resume} \ 
    --train-feat scp:${feat_tr_dir}_sp/feats.scp \ 
    --valid-feat scp:${feat_dt_dir}/feats.scp \ 
    --train-label ${feat_tr_dir}_sp/data.json \ 
    --valid-label ${feat_dt_dir}/data.json \ 
    --etype ${etype} \ 
    --elayers ${elayers} \ 
    --eunits ${eunits} \ 



53 

    --eprojs ${eprojs} \ 
    --subsample ${subsample} \ 
    --ctc_type ${ctctype} \ 
    --dlayers ${dlayers} \ 
    --dunits ${dunits} \ 
    --atype ${atype} \ 
    --adim ${adim} \ 
    --aconv-chans ${aconv_chans} \ 
    --aconv-filts ${aconv_filts} \ 
    --mtlalpha ${mtlalpha} \ 
    --batch-size ${batchsize} \ 
    --maxlen-in ${maxlen_in} \ 
    --maxlen-out ${maxlen_out} \ 
    --opt ${opt} \ 
    --epochs $[${epochs}/2] 
fi 
 
if [ ${stage} -le 10 ]; then 
    echo "stage 10: Decoding using speed-perturbed model" 
    nj=4 
 
    for rtask in ${recog_set}; do 
    ( 
        decode_dir=decode_${rtask}_beam${beam_size}_e${recog_model}\ 
        _p${penalty}_len${minlenratio}-${maxlenratio}_ctcw${ctc_weight} 
 
        # split data 
        data=data/${rtask} 
        split_data.sh --per-utt ${data} ${nj}; 
        sdata=${data}/split${nj}utt; 
 
        # feature extraction 
        feats="ark,s,cs:apply-cmvn --norm-vars=true\ 
        data/${train_set}/cmvn.ark scp:${sdata}/JOB/feats.scp ark:- |" 
 
        if ${do_delta}; then 
            feats="$feats add-deltas ark:- ark:- |" 
        fi 
 
        # make json labels for recognition 
        data2json.sh ${data} ${dict} > ${data}/data.json 
 
        #### use CPU for decoding 
        gpu=-1 
 
        ${decode_cmd} JOB=1:${nj} ${expdir}/${decode_dir}/log/decode.JOB.log\ 
        asr_recog.py \ 
        --gpu ${gpu} \ 
        --backend ${backend} \ 
        --debugmode ${debugmode} \ 
        --verbose ${verbose} \ 
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        --recog-feat "$feats" \ 
        --recog-label ${data}/data.json \ 
        --result-label ${expdir}/${decode_dir}/data.JOB.json \ 
        --model ${expdir}/results/model.${recog_model}  \ 
        --model-conf ${expdir}/results/model.conf  \ 
        --beam-size ${beam_size} \ 
        --penalty ${penalty} \ 
        --maxlenratio ${maxlenratio} \ 
        --minlenratio ${minlenratio} \ 
        --ctc-weight ${ctc_weight} \ 
        --nbest 100 \ 
        --lm-weight ${lm_weight} & 
        wait 
 
        score_sclite.sh --wer true ${expdir}/${decode_dir} ${dict} 
 
    ) & 
    done 
    wait 
    echo "Finished" 
fi 
 
 
if [ ${stage} -le 11 ]; then 
    echo "stage 5: Doing noise and reverberation augmentation" 
     
    if [ ! -d "RIRS_NOISES" ]; then 
        # Download the package that includes the real RIRs, simulated RIRs, 
        #isotropic noises and point-source noises 
        wget --no-check-certificate\ 
        http://www.openslr.org/resources/28/rirs_noises.zip 
        unzip rirs_noises.zip 
    fi 
 
    rvb_opts=() 
    rvb_opts+=(--rir-set-parameters "0.5,\ 
    RIRS_NOISES/simulated_rirs/smallroom/rir_list") 
    rvb_opts+=(--rir-set-parameters "0.5,\ 
    RIRS_NOISES/simulated_rirs/mediumroom/rir_list") 
    rvb_opts+=(--noise-set-parameters\ 
    RIRS_NOISES/pointsource_noises/noise_list) 
 
    python steps/data/reverberate_data_dir.py \ 
    "${rvb_opts[@]}" \ 
    --prefix "rev" \ 
    --foreground-snrs "20:10:15:5:0" \ 
    --background-snrs "20:10:15:5:0" \ 
    --speech-rvb-probability 1 \ 
    --pointsource-noise-addition-probability 1 \ 
    --isotropic-noise-addition-probability 1 \ 
    --num-replications ${num_data_reps} \ 
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    --max-noises-per-minute 1 \ 
    --source-sampling-rate 16000 \ 
    --include-original-data true \ 
    data/train_sp data/train_sp_rvb${num_data_reps}_tmp || exit 1; 
       
    local/persist_wav_data_dir.sh --cmd "$train_cmd" --nj 8 \ 
    data/train_sp_rvb${num_data_reps}_tmp \ 
    data/train_sp_rvb${num_data_reps} \ 
    data/train_sp_rvb${num_data_reps}/data || exit 1; 
fi 
 
if [ ${stage} -le 12 ]; then 
    echo "stage 12: Feature Generation for noise-augmented data" 
     
    #Generate the fbank features; by default 80-dimensional fbanks with pitch 
    #on each frame 
    steps/make_fbank_pitch.sh --cmd "$train_cmd" --nj 8\ 
    data/train_sp_rvb${num_data_reps} 
     
    remove_longshortdata.sh --maxchars 400 data/train_sp_rvb${num_data_reps}\ 
    data/${train_set}_sp_rvb${num_data_reps} 
 
    # compute global CMVN 
    compute-cmvn-stats \ 
    scp:data/${train_set}_sp_rvb${num_data_reps}/feats.scp \ 
    data/${train_set}_sp_rvb${num_data_reps}/cmvn.ark || exit 1; 
    
    dump.sh --cmd "$train_cmd" --nj 8 --do_delta $do_delta \ 
    data/${train_set}_sp_rvb${num_data_reps}/feats.scp \ 
    data/${train_set}_sp_rvb${num_data_reps}/cmvn.ark\ 
    exp/dump_feats/train_sp_rvb${num_data_reps}\ 
    ${feat_tr_dir}_sp_rvb${num_data_reps} 
fi 
 
 
if [ ${stage} -le 13 ]; then 
    # make json labels 
    data2json.sh --feat ${feat_tr_dir}_sp_rvb${num_data_reps}/feats.scp \ 
    data/${train_set}_sp_rvb${num_data_reps} ${dict} > \ 
    ${feat_tr_dir}_sp_rvb${num_data_reps}/data.json 
fi 
 
if [ -z ${tag} ]; then 
    expdir=exp/${train_set}_${etype}_e${elayers}_subsample${subsample}\ 
    _unit${eunits}_proj${eprojs}_ctc${ctctype}_d${dlayers}_unit${dunits}\ 
    _${atype}_adim${adim}_aconvc${aconv_chans}_aconvf${aconv_filts}\ 
    _mtlalpha${mtlalpha}_${opt}_bs${batchsize}_mli${maxlen_in}\ 
    _mlo${maxlen_out} 
 
    if ${do_delta}; then 
        expdir=${expdir}_delta 
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    fi 
else 
    expdir=exp/${train_set}_sp_rvb${num_data_reps}_${tag} 
fi 
mkdir -p ${expdir} 
 
if [ ${stage} -le 14 ]; then 
    echo "stage 14: Network Training" 
    ${cuda_cmd} ${expdir}/train.log \ 
    asr_train.py \ 
    --gpu ${gpu} \ 
    --backend ${backend} \ 
    --outdir ${expdir}/results \ 
    --debugmode ${debugmode} \ 
    --dict ${dict} \ 
    --debugdir ${expdir} \ 
    --minibatches ${N} \ 
    --verbose ${verbose} \ 
    --resume ${resume} \ 
    --train-feat scp:${feat_tr_dir}_sp_rvb${num_data_reps}/feats.scp \ 
    --valid-feat scp:${feat_dt_dir}/feats.scp \ 
    --train-label ${feat_tr_dir}_sp_rvb${num_data_reps}/data.json \ 
    --valid-label ${feat_dt_dir}/data.json \ 
    --etype ${etype} \ 
    --elayers ${elayers} \ 
    --eunits ${eunits} \ 
    --eprojs ${eprojs} \ 
    --subsample ${subsample} \ 
    --ctc_type ${ctctype} \ 
    --dlayers ${dlayers} \ 
    --dunits ${dunits} \ 
    --atype ${atype} \ 
    --adim ${adim} \ 
    --aconv-chans ${aconv_chans} \ 
    --aconv-filts ${aconv_filts} \ 
    --mtlalpha ${mtlalpha} \ 
    --batch-size ${batchsize} \ 
    --maxlen-in ${maxlen_in} \ 
    --maxlen-out ${maxlen_out} \ 
    --opt ${opt} \ 
    --epochs $[${epochs}/3] 
fi 
 
if [ ${stage} -le 15 ]; then 
    echo "stage 15: Decoding using noise and speed-perturbed model" 
    nj=4 
 
    for rtask in ${recog_set}; do 
    ( 
        decode_dir=decode_${rtask}_beam${beam_size}_e${recog_model}\ 
        _p${penalty}_len${minlenratio}-${maxlenratio}_ctcw${ctc_weight} 
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        # split data 
        data=data/${rtask} 
        split_data.sh --per-utt ${data} ${nj}; 
        sdata=${data}/split${nj}utt; 
 
        # feature extraction 
        feats="ark,s,cs:apply-cmvn --norm-vars=true\ 
        data/${train_set}_sp_rvb${num_data_reps}/cmvn.ark\ 
        scp:${sdata}/JOB/feats.scp ark:- |" 
 
        if ${do_delta}; then 
            feats="$feats add-deltas ark:- ark:- |" 
        fi 
 
        # make json labels for recognition 
        data2json.sh ${data} ${dict} > ${data}/data.json 
 
        #### use CPU for decoding 
        gpu=-1 
 
        ${decode_cmd} JOB=1:${nj} ${expdir}/${decode_dir}/log/decode.JOB.log\ 
        asr_recog.py \ 
        --gpu ${gpu} \ 
        --backend ${backend} \ 
        --debugmode ${debugmode} \ 
        --verbose ${verbose} \ 
        --recog-feat "$feats" \ 
        --recog-label ${data}/data.json \ 
        --result-label ${expdir}/${decode_dir}/data.JOB.json \ 
        --model ${expdir}/results/model.${recog_model}  \ 
        --model-conf ${expdir}/results/model.conf  \ 
        --beam-size ${beam_size} \ 
        --penalty ${penalty} \ 
        --maxlenratio ${maxlenratio} \ 
        --minlenratio ${minlenratio} \ 
        --ctc-weight ${ctc_weight} \ 
        --nbest 100 \ 
        --lm-weight ${lm_weight} & 
        wait 
 
        score_sclite.sh --wer true ${expdir}/${decode_dir} ${dict} 
 
    ) & 
    done 
    wait 
    echo "Finished" 
fi 
 


