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Justification of topic

The topic of research is Monte Carlo calculations in reactor physics, or more specifically, criticality
calculations. These are neutron transport calculations that are mostly used in reactivity analysis,
reactor design, and fuel cycle planning. As it is common for iterative calculations, their conver-
gence is dependent on various parameters. The end goal of the presented work is to improve the

efficiency of calculations so that better results are obtained in given computational time.

Purpose of work

The main goal of the work is to find a way to determine an optimal batch size for the cycles of
Monte Carlo calculations to provide optimal convergence to best possible results. The optimisation
is to be based on the error in cumulative results, and thus, a large part of the work focuses on error

analysis.

List of problems to be solved

The first task in this work is to study how errors change during calculations. Following that, the

errors are to be modeled, relating the changes of error to the parameter being optimised. When this



is accomplished, a method can be proposed for the optimal choice of this parameter. Finally, the

results should be applicable to actual Monte Carlo criticality calculations.

Initial data

The numerical data used in this work is obtained from calculations with the OpenMC code [29]
and the main supervisor’s personal Monte Carlo code. Calculation data is used to describe various

phenomena and to analyse efficacy of the developed methods.
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Chapter 1

Introduction

1.1 Neutron transport problems

Neutron transport, or neutronics, is a branch of reactor physics and nuclear engineering that studies
how neutrons behave in a system; where behaviour means the distribution and physical properties
of neutrons. The study of neutron transport is employed in various nuclear engineering applica-
tions. [37]

The distribution and properties of neutrons are commonly described by phase-space density (or
alternatively, angular flux), which is a mathematical quantity specifying the number of neutrons
at any point in time and space, with a certain energy and movement direction. This is the funda-
mental quantity in the neutron transport equation and its simplified variant, the neutron diffusion

equation—the mathematical models of neutron transport. [7]

In reactor physics, neutron transport is studied because the phase-space density (or flux) is related
to the power of the reactor, criticality of the system, and other phenomena. [7] It is also relevant
in other areas of nuclear engineering, like fuel and waste storage, radiation shielding, and other
applications. Transport calculations may also be coupled to thermal hydraulic and fuel burn-up

solvers.

Nuclear power plants, like many other types of power generating units, require tools for design,
analysis, and fuel planning. Neutron transport (and especially criticality) calculations play an
important part in both reactor design and analysis and fuel cycle management, making it important
to further develop the necessary tools. The work presented in this thesis concentrates on and

attempts to further improve one of these tools—the Monte Carlo criticality method.

11
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1.2 Characteristics of Monte Carlo criticality calculations

Most methods of solving the neutron transport equation make significant simplifications due to the
sheer complexity of the mathematical model. The approach of statistical sampling employed in
Monte Carlo calculations allows the quantities of interest to be estimated without actually solving
the transport equation. Individual neutrons are simulated by sampling events from known prob-
ability distributions and the expected behaviour is found as an average. [4] Different physical
phenomena can be described more realistically and the least number of simplifications is needed,
making the Monte Carlo method potentially the most accurate approach. However, due to its

simulative nature, it is also the most computationally demanding method.

The different physical phenomena and the geometry may be described in a very detailed manner,
but with today’s computers the number of simulated particles cannot come close to the actual
number of neutrons in the system. If a real system may have, to the order of magnitude, 10'® or
10'® neutrons per unit volume in unit time, then a longer Monte Carlo calculation may simulate
some millions of neutrons in the whole system per iteration cycle. A large number of cycles has
to be simulated to obtain good estimates for the averaged values. What is more, in criticality
calculations the fission source, where the neutrons are sampled from, is also not known and has to
be estimated iteratively during the calculation. If the fission source itself is not estimated correctly

enough, all other quantities become erroneous.

The precision of Monte Carlo calculations is determined by the total number of simulated neutrons
and commonly described by variances of estimated quantities. The time spent on the calculation
is also largely proportional to the total number of simulated particles, which is determined by the
product of iterated cycles and number of neutrons simulated per cycle (the neutron batch size).
The ratio of these two values, however, has two different implications on the accuracy of results.
Firstly, a large number of cycles may be needed to converge the fission source from the initial guess
to an accurate distribution. Secondly, simulating a small number of neutrons per cycle introduces
systematic errors in the fission source. These are systematic problems affecting accuracy and

neither of them is reflected in the calculated variance estimates. [13]

1.3 Objective and structure of thesis

The first aim of this thesis is to specify a quantity that captures real calculation errors introduced
by different phenomena and find ways to estimate these errors. All obtained results of Monte Carlo
criticality calculations are combined over a number of cycles, and are directly affected by the errors
in the fission source. Thus, the error in the cumulative fission source (the fission source combined
over all simulated cycles) is chosen to represent the error of the calculation. The second goal is
to find a simplified model for these errors and utilise it to optimise the calculations for increased

efficiency. The figure of merit is related to the modelled error and available computational time
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and maximised by optimising the neutron batch size.

The author of the thesis has prepared two publications, the first of which presents a new error
estimation method and the second proposes a way to improve the efficiency of calculations by
optimising the neutron batch size. The concepts introduced in these papers are presented as the
main part of the thesis.

Chapter 2 provides a background overview of the topic; it introduces the neutron transport equa-
tion and its eigenvalue variant, summarises the basics of statistical sampling, and describes the
concepts of Monte Carlo criticality methods. This is followed by a mathematical description of
Monte Carlo eigenvalue calculations in Chapter 3, where different aspects of fission source con-
vergence and errors of calculations are analysed. Chapter 4 proposes a way to estimate errors
in the cumulative Monte Carlo fission source, based on the eigenvector of the fission matrix. In
Chapter 5, a simplified model is derived for the error in the cumulative source and used to derive an
optimal value for the neutron batch size; additionally, a methodology is offered for implementation

of the optimisation. The work is summarised in Chapter 6.



Chapter 2

Monte Carlo methods in reactor physics

2.1 Neutron transport equation

The aim of neutron transport theory is to describe how neutrons move in space and interact with
materials. It attempts to determine where neutrons are, what velocity they have and which direction
they are moving in. The quantity that captures all of that information is called neutron phase-space
density and denoted as N(r, v, t), so that

N(r,v,t)drdv

is the expected number of particles located at r in volume dr moving with a velocity in a direction
specified by v in dv at time ¢. [7] Both r and v are three-dimensional vectors, one specifying

position and the other direction and speed.

This is a basic quantity containing the necessary information to analyse a nuclear system. By
knowing neutron phase-space density, one can determine the power distribution in a nuclear reac-

tor, calculate various reaction rates or evaluate some other quantity of interest.

Neutron density n(r,¢) in the system can be found as an integral quantity of the phase-space

density by integrating over velocity

n(r,t) = /N(rjv,t)dv (2.1)

When describing neutron transport, the velocity vector is often decomposed into a vector describ-
ing direction and a scalar term for velocity, or speed. The speed is taken as v = |v| and the
direction term is described as €2 = v/v. Often, instead of using speed as a variable, it is replaced

by the kinetic energy £ = muv?/2. [7]

14
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Now the following can be written
N(r,Q, E,t)drdQdE

as the number of neutrons at r in volume dr moving in the direction €2 in solid angle d€2 with

energy E in dFE at time ¢.

Having these initial formalisms laid out, the formation of the neutron transport equation can be
started. As a balance equation, it simply considers the gains and losses of particles. This balance
can be understood so that the sum of changes due to leakage, collisions, and sources is equal to the

time rate of change in phase-space particle density.

The equation can be derived in the simplest manner by assuming that the substantial derivative of
phase-space density along the particle trajectory is equal to changes due to collisions and sources.

[7] This is expressed as

dN(r,v,t) (8N

== 2.2
- o )wu +alr,v.1) 2.2)

where ¢ is the source term. Following that, it can be shown that

dN  ON ON F ON

= C— 23
dt ot v or + m Ov 2.3)
The last term in this equation describes effects caused by gravity, which can be considered negli-

gible and disregarded in neutron transport. [7]

Considering this result and denoting 0 N/Or = V N, the time rate of change in phase-space density

N becomes
ON(r,v,t) ON

ot ot

which is a mathematical representation of the previously stated balance of gains and losses. This

= —vVN(r,v,t) + ( ) + q(r,v,1t) (2.4)
coll

is a general form of the neutron transport equation. [7]

In order to describe the changes due to collisions, some additional definitions are called for. The
collisions or interactions with the surrounding medium are assumed to happen instantaneously at
some point in space. Particles are assumed to be streaming along until a point of collision, after

which they are either absorbed or scattered in a new direction at a new velocity.

Firstly, the probability for a particle to have an interaction at a location r per unit distance travelled
at velocity v is defined as the macroscopic cross section 3(r, v). It is also described as the inverse
of the mean free path mfp and related to the microscopic cross section! o by the number density

Np of the surrounding medium as

Y(r,v) = Np(r)o(v) = mfp! (2.5)

'The microscopic cross section is a quantity describing probabilities of interaction events as effective collision
areas
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Transport theory is used to describe how particles moving through a medium undergo collisions
and scatterings. In order to describe these interaction processes, where the incident particle is
absorbed and secondary particles are emitted, a scattering probability function f(r,v' — v) is
defined, so that

f(r,v — v)dv

gives the probability that an incident particle travelling at velocity v’ causes the emission of any

particles at r with velocity v in dv.

Following that, the quantity c(r, v) is defined as the mean number of secondary particles emitted
after an incident particle collides at r, travelling at v. The previous three definitions can then be

combined into a collision kernel, which is defined as
Y(r, v = v) =3(r,v)e(r,v) f(r, v — v) (2.6)

This kernel can be viewed as the probability that an incident particle travelling at v/ will have a
collision per unit distance which results in the emission of a particle with velocity v. Now, by
definition

Y(r,v) = /E(r,v/ — v)dv’ (2.7)

Next it can be noted that the products

vX(r,v)
v3(r, v)N(r,v,t)

describe collision frequency and reaction rate density, respectively. It can be reasoned that the
loss rate by collisions for particles with velocity v is then described by v3(r, v)N(r, v, t) and the
production of secondary particles travelling at v caused by particles with velocities v’ is given by
v'E(r, v — v)N(r, v’ t)dv’. This results in the following expression for the collision term

(%—f) - /U/E(I',v' — V)N (r, Vv, t)dv' — vX(r,v)N(r, v, 1) (2.8)
coll

so that the general form of the transport equation becomes [7]

N
aa—t +VvVN 4+ vEN = /U’Z(r,v’ — V)N(r, v, t)dv' + ¢ (2.9)

where N = N(r,v,t) and ¢ = q(r, v, t).

Due to the frequent use of the product v/NV in reaction rates, it is common to define the angular, or

phase-space, neutron flux as
O(r,v,t) =vN(r,v,t) (2.10)
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and the velocity integrated, or scalar, flux as

o(r,t) = /CID(r,v,t)dv = /vN(r,V,t)dv (2.11)
The transport equation can then be written in terms of angular flux

10P i
_%_t * Qave TRe= //Z(r’ Qla E, — Qa E)@(I‘7 Ql? Elvt)dQ,dEl + q (212)
v

4m 0

It is common to separate the collision kernel into two components, one describing fission events

and the other scatterings. This is done so that
X(r,QF - QFE) =%, F — QFE) + Z(r, ¥, E' - Q, F) (2.13)

where the index f denotes fission and sc scattering.

In general it is considered that as a good assumption fission neutrons can be treated as being
emitted isotropically in the laboratory reference system. Having this in mind, the related scattering

probability is described as

0@ B = Q, E)AQAE — %I/(r, E' = E)AQdE (2.14)

™

where v(r, E' — E) is referred to as the fission neutron energy spectrum, i.e. the probability that
a fission induced by a neutron at r with energy £’ will produce a neutron with energy F in dFE.

This spectrum is further separated into two components as
v(ir,E' - E)=x(r,E' — E)v(r, E') (2.15)

where v(r, E') = [v(r, E' — E)dE is the average number of neutrons produced by a fission
caused by a neutron with energy E’ at r. The term x(r, £’ — F) is the normalized fission spec-
trum. It has been established that the dependence of y on incident energy can be ignored. This
means x(r, ' — E) = x(r, E), which can be considered as the distribution of energies for

produced fission neutrons. [7]

Based on this, the fission term in the collision kernel becomes

x(r, E)

by Q. EF - QF)=
f(ra 3 — ) ) A

v(r, E")X¢(r, E) (2.16)
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This enables the transport equation to be written as

100 r
—%—t +QVO + TP = //Zsc(r, Q E — Q E)®r,Q E t)dYdE +
v
47 0
OB e, 2y, )0 2. B 0aaE + g 2.17)
m

47 0
which is then complemented by appropriate initial and boundary conditions.

In a case when the equation does not contain a source term, i.e. ¢ = 0, the equation is considered to
be homogeneous and linear. The linearity here means that any linear combination of some arbitrary

solutions ¢, and P of the transport equation is also a valid solution. [7]

2.1.1 k-eigenvalue equation

The criticality of nuclear systems is studied with eigenvalue equations. Firstly, a system is consid-
ered sub-critical if the fission reactions cannot sustain a neutron population without an extraneous
source and the population disappears over time. If the neutron population keeps growing over time,
the system is supercritical, and if it remains steady with no source present, it can be considered

critical.

One major type of eigenvalue equations is formed by introducing auxiliary eigenvalues into the
steady state homogeneous transport equation. This is commonly done by modifying the term
v(r, E') so that it reads v(r, E')/k. In effect, this means that the number of produced fission
neutrons is divided by a factor, commonly known as the effective multiplication factor k.. The

steady state (0P /0t = 0) k-eigenvalue equation can then be written as

[e.9] 1 o0
QVO + X0 = //Z;CCID’dQ’dE’ +y //%VZ}(I)/dQ’dE/ (2.18)
77
4m 0 4 0
where the quantities with primes are ® = ®(r, ', F'), 3{, = Y..(r, ', E' — Q, F) and 3} =
v(r, E")X(r, E'). [7]

The terms in this equation can be combined into two operators. Firstly, the transport operator is
formed as [33]

TO(r,Q, E) = QVP + S0 — / / S P AVAE (2.19)
47 0

and secondly, the fission source as [3]

s(r) = / / VS, @AY AE (2.20)

47 0
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Using these two operators, the k-eigenvalue equation can be written as

X(E)
47

kiT®;(r,Q,E) = s;(r) (2.21)
where £; are the eigenvalues and ®; (with the corresponding s;) the eigenfunctions of the steady-
state transport equation and x(F) is the energy spectrum of emitted fission neutrons. As a sim-
plification, y(F) is assumed to be independent of the energy of the neutrons causing fission; and

fission neutron emission is assumed to be isotropic. [3]

The eigenvalue spectrum is commonly ordered descendingly, starting with the highest modulus

eigenvalue being denoted by kg, so that
k0> |]€1| > ‘k’g‘ > ...

The highest modulus eigenvalue corresponds to the fundamental mode eigenfunction ®, and is
equated with the effective multiplication factor, i.e. ke = ko. Considering the nature of eigen-
functions, only the fundamental mode solution is positive throughout the system, which means that

only @ is related to a physically meaningful angular neutron flux. [7]

The k-eigenvalue is related to criticality so that k. = 1 implies that the system is critical, kg < 1

shows sub-criticality, and ke > 1 means the system is supercritical.

2.1.2 Solving the transport equation

The neutron transport equation is essentially an exact description of transport processes as long
as the cross sections are described sufficiently well. The solution for neutron phase space density
or angular neutron flux would provide all the information that could be required. However, in the

general case, this equation does not have an analytic solution.

The transport equation contains seven independent variables: position (x, y, z in r), direction (6, ¢
in €2), energy (F), and time (). In addition to that, the cross sections are dependent on materials
and particle energies. All of this combined with the nature of this integro-differential equation
makes it very difficult to solve. [7]

Possible approaches to solving the equation could be divided into three categories. The first way
would be to simplify the transport equation itself to an extent allowing it to be applied to realistic
problems. This group includes approximations like diffusion theory or Py equations. The second
type of approach would be to only consider problems that are possible to be analysed analytically.
This group contains problems with either very simple geometry or strong simplifications in energy
or angular dependence. The third approach would be to solve the transport equation numerically,
either by deterministic or stochastic methods. This group enables higher complexity in both the

mathematical representation of the transport equation and the system being studied. [7]
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The last of these groups includes solving the equation by stochastic or statistical sampling, also
known as the Monte Carlo method. The fundamentals of the Monte Carlo method and its applica-

tion to criticality problems are presented in the next sections.

2.2 Basics of statistical sampling

2.2.1 Stochastic quantities

A random variable X is a variable that obtains a value x (a realisation) by random selection from
a set of possible values. A discrete random variable may obtain a value x; from a finite set of
values {x1, z, ..., x,} with a probability p;, = P(X = z;). A continuous random variable may
obtain a value = from an infinite set of values with probabilities described by a probability distri-
bution function. [20] The cumulative distribution function (cdf) is defined as the probability of a

continuous random variable X obtaining a value that is smaller than or equal to x
Fele) = POX <) = [ fu@)ag @22

The probability density function (pdf) is expressed as

dFx(x
fx(z) = 5;( ) (2.23)
and is characterised by the following identity
/ fx(z)dz =1 (2.24)
For discrete random variables an analogous identity is given as
> pi=1 (2.25)
i=1
The expected value of a continuous random variable X is defined as
E[X] = / xfx(z)dz (2.26)

whereas the equivalent quantity for a discrete random variable X is [20]

E[X] =) pizi (2.27)
=1
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which is an average of all possible values weighted by their probabilities.

To measure how spread out a set of values is, a quantity known as variance is used. The variance

of a random variable X is defined as
Var[X] =E [(X - E[X]))’] =E[X?] - (E[X])? (2.28)

where the last equality can be verified by properties of the expected value. [20] Following that, the

ox =/ Var [X] (2.29)

which characterises the dispersion of realisations from the expected value.

standard deviation is defined as

To analyse how two different random variables, say X and Y, are related, the covariance is defined

Cov[X,Y] =E[(X —E[X]) (Y —E[Y])] = E[XY] - E[X]E[Y] (2.30)

Based on this, another measure, the correlation coefficient is defined as

pPxy = — (2.31)

which is a coefficient in the range [—1, 1]. Correlation is used to measure dependence between two
random variables. However, it has to be noted that dependence implies correlation but correlation

does not always mean dependence.

2.2.2 Sampling methods

A Monte Carlo procedure can be viewed in a simple manner by assuming an unknown random
variable Y that is estimated by a mathematical model g using samples of an input random variable
X, so that [8]

Y = g(X) (2.32)

Here the distribution function is known for X but unknown for Y, and the model g is complicated
enough to prevent the direct calculation of the expected value of Y. In order to estimate Y, some
n values are sampled for X and corresponding values of g(X) are calculated. This produces n

samples for Y as y; = g(x;).

Sampling is the act of drawing a random variable from a distribution function describing some
phenomenon. There is a large variety of sampling methods and algorithms to achieve this, the
description of which is not in the scope of this work. Sampling relies on random number generators
(RNG) for which there is also a wide range of algorithms. The purpose of an RNG is to provide

random (or seemingly random) values from a certain probability distribution. [20]

The expected value of the random variable Y is then estimated based on the sampled values by
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taking their mean, or ensemble average, value

1 n
5= () =~ D v (2.33)
=1

and the assumption E[Y] = g.

The variance of the mean is commonly estimated by the sample variance

n

1 1 —
Var [§] = o = WZ(% —7)? = — <y2 — 172> (2.34)

=1

which is a good estimate if the samples are not correlated or the correlation is weak. [22] However,
since this assumption is not always correct, it is important to note that this estimate does not always
capture the real error, even if the number of samples is increased. [13] The real variance would be,
according to the definition

0% =E[Y?] - (E[Y)) (2.35)

Different ways have been suggested [17, 22, 31, 33, 36] to evaluate the so-called variance bias

0% — 0%, but the problem is nevertheless present.

Commonly, the efficiency of a Monte Carlo calculation is described by the figure of merit, defined
as
FOM = % (2.36)
o4t
where ¢ is the computational time spent on the calculation and 0® = ¢ is the estimated variance

of the quantity of interest.

2.3 Monte Carlo criticality calculations

The idea of using statistical sampling to solve neutron transport problems was introduced in the

correspondence of J. von Neumann and R. D. Richtmyer as

“... amethod of solving neutron diffusion problems in which data are chosen at random
to represent a number of neutrons in a chain-reacting system. The history of these
neutrons and their progeny is determined by detailed calculations of the motions and
collisions of these neutrons, randomly chosen variables being introduced at certain
points in such a way as to represent the occurrence of various processes with the
correct probabilities. If the history is followed far enough, the chain reaction thus
represented may be regarded as a representative sample of a chain reaction in the
system in question. The result may be analyzed statistically to obtain various average
quantities of interest for comparison with experiments or for design problems. [—] It

is not necessary to restrict neutron energies to a single value or even to a finite number
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of values and one can study the distribution of neutrons or of collisions of any specified
type not only with respect to space variables but with respect to other variables, such

as neutron velocity, direction of motion, time.” [28]

The Monte Carlo method solves neutron transport problems by simulating individual particles and
recording aspects of their behaviour. The average behaviour of particles in the system is then found
based on the average behaviour of simulated particles. What sets the Monte Carlo method apart
from other ways of solving the neutron transport equation, is that the quantities it actually solves for
may be very different. Monte Carlo calculations only provide information for specified quantities
being estimated, or tallied, not necessarily the quantities generally present in the transport equation.

[4]

By the Monte Carlo method a stochastic process (such as neutron interactions) can be theoretically
mimicked. The individual statistical parts of the process are simulated consecutively, while the
probability distributions describing these events are sampled stochastically. Sampling is based on
random numbers, which is the inspiration for the name “Monte Carlo”. [4] Sampling of various
quantities is based on known physical phenomena and corresponding probability distribution func-
tions. The principles and techniques of sampling these different quantities are not in the scope of

this work and will not be discussed here.

Typically, a Monte Carlo criticality problem is specified by defining the geometry of the system,
all involved materials, quantities to be tallied, and some free parameters. The free parameters
are the number of active and inactive cycles, the neutron batch size, and the initial fission source
distribution. This information is then fed into a Monte Carlo solver, or code, which will iterate
a number of generations, or cycles. In every cycle, a number of neutrons, specified as the batch
size, is simulated. The inactive cycles are used to converge the guessed initial fission source to a
stationary distribution by the Monte Carlo power method. Every active cycle is similarly iterated to
obtain estimates for the tallies by sampling neutrons from the fission source distribution, obtained

in the preceding cycle.

2.3.1 Non-analog Monte Carlo

Neutron transport is one of the phenomena that can be modelled analogously to the actual process
in a natural way. In principle the simplest Monte Carlo neutron transport model is the analog
model. In this model natural probabilities of events are used and particles are followed, or tracked,

from event to event to accumulate information for tallies. [4]

The so-called analog Monte Carlo neutron transport model is effective when simulated particles
contribute significantly to quantities being estimated. However, in some cases large numbers of
particles are simulated that do not partake in accumulating data for specific tallies, increasing their
variance. Fortunately, it is possible to use different probability models for neutron transport, which

result in the same estimates as the analog model but with lower variance. [21]
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In non-analog Monte Carlo algorithms, particles are assigned different importances based on how
much they contribute to quantities being tallied. This is done to ensure that the computational
effort is spent on simulating particles that are relevant to the results. Any biasing of processes has
to be compensated for in order to make sure the results are still correct. If a particle’s importance
is increased by some factor, its weight has to be decreased accordingly. As estimates are obtained

by averaging, this weighting ensures identical results with analog Monte Carlo algorithms. [4]

To illustrate the concept of non-analog Monte Carlo, one can imagine a situation where a quantity
is being estimated in a region that only few particles enter. If a particle in this region is then split
into, for example, 10 identical particles, each of them contributes to the tally with their contribu-
tion weighted by 1/10. Results obtained by analog and non-analog algorithms are equal, however,
the non-analog approach provides more statistical samples for the estimate, meaning a lower vari-
ance and higher precision. Several so-called variance reduction techniques exist which utilize this

principle. [21]

2.3.2 Variance reduction

If one recalls the definition of the figure of merit, as in Eq. (2.36), it becomes understandable how
the efficiency of the calculation can be increased by decreasing the variance of estimated quantities.
This is true as long as any action taken to decrease variance does not increase the computational

time proportionally (or more).

Various variance reduction techniques have been devised that attempt to improve the efficiency and
precision of Monte Carlo calculations by decreasing variance. In essence the different techniques

can be divided into four categories, described below. [12]

The first type is the truncation methods, which are the simplest variance reduction schemes. Vari-
ance is decreased by truncating certain regions of phase-space, which are considered insignificant
for the estimation of results. Examples include geometry truncation (parts of geometry are not

modelled), time cut-off, and energy cut-off. [12]

The second group consists of population control methods, which utilise particle splitting and a
procedure called Russian roulette to control sampling intensity in various parts of phase space.
Like in the example given about the non-analog methods, weighting factors are used to specify
different importances. Different population control methods are, for example, geometry splitting,

energy splitting, weight cut-off, and weight windows. [21]

The third category consists of modified sampling methods, which are based on changing the sta-
tistical sampling in order to increase the number of tallies recorded per particle. Weighting factors
are used to un-bias the results, as with previous methods. Available modified sampling methods
are quite different from one another. Some examples are exponential transform (or path length

stretching), implicit capture, forced collisions, and source biasing. [12]
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The last group of variance reduction schemes is partially deterministic methods. These methods
partially bypass the normal random walk process by incorporating some deterministic schemes.
These are usually the most complex variance reduction methods. This category includes schemes

using deterministic transport estimates and methods like correlated sampling. [21]

The big question with variance reduction techniques is always the choice of the correct method. It
is not always known which method gives the best results and whether results will actually improve
or not. It is also important to remember that a decrease in the estimated variance means higher

precision but not necessarily higher accuracy. [13]



Chapter 3
Error analysis of Monte Carlo calculations

This chapter presents a mathematical description of Monte Carlo criticality calculations. The de-
scribed notation is then used to identify different aspects of source convergence to explain the
problems approached in the thesis. This is followed by error analysis which will be used as a base

for work presented later.

3.1 Mathematical description of Monte Carlo criticality calcu-

lations

The steady-state homogeneous neutron transport k-eigenvalue, or criticality, equation in operator

notation was presented in Eq. (2.21) as
E
k0,0, 1) = X

where

r) = / / V¥, (r, ¥, B')AQAE’
47 0

In order to find an eigenvalue equation given only by the fission source, firstly, a Green’s function
1s defined as [3]

TG(I’(), Qo, Ey — r, Q, E) = (5(1‘ — 1'0)5(9 — 90)5(E — E()) 3.1

where 0 is the Dirac’s delta function and index O denotes the initial point in phase-space. Then the

angular flux can be expressed as

o,(r,Q, E) / / / X0 5 (10) Godrod 2 d Ey (3.2)

V47'rO
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where Gy = G(rg, Qo, By — r,Q, FE) and xo = x(Fo). For this flux, the fission source can be

1 [o¢] oo
5(r) = — / dros; (o) / / AQAEVY / /dQOdEOZ—iGO (3.3)
J

|4 47 0 47 0

written as [3]

Finally, the fission kernel is defined as

Flry —r) = / / AQAEvY, / /dﬂOdEOZ—;GO (3.4)
47 0

47 0

which results in the following [3]

kjs;(r) = /drOF(ro — 1)s;(ro) (3.5)
v

By defining an integral operator H for the right hand side, the eigenvalue equation can be written

as
kjs;(r) = Hs;(r) (3.6)

Monte Carlo calculations solve the criticality equation (3.6) by sampling neutrons from the fission
sources and simulating their transport. In each of n iteration cycles a batch of m neutrons are

sampled, resulting in a total of mn samples, or neutron histories.

A cycle in the eigenvalue calculation can formally be described as [18]

. 1 . )

(i+1) — _—_ ) o )
S =10 Hs'" 4 ¢ 3.7
where s and stY are fission sources in consecutive cycles and € is the stochastic error com-
ponent resulting from sampling a finite number of histories per cycle. The eigenvalue, k), can be

estimated as an integral quantity of the fission source

. dr Hs(r
L@ — M (3.8)
Ji drs@(r)
Fission sources are normalized to the batch size m, i.e.
/dr s® (r)=m (3.9
1%

The estimates of quantities are then calculated as averages of obtained cycle-wise values. For any

quantity x, the estimate of n cycles is calculated as

(z)) = % > (3.10)
i=1
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where 2 is the 7" cycle estimate of .

3.2 Aspects of fission source convergence

It is characteristic for Monte Carlo calculations that the combined results contain errors of sta-
tistical sampling of the order O(1/y/mn), with mn being the total number of neutron histories
simulated over the cycles. [20] For any Monte Carlo process it is assumed that E[e(i)] = 0. [18]
This means that statistical errors are decreased by increasing the number of samples, and if there

were no systematic errors in the computational scheme, overall errors would be decreased accord-
ingly.

The process of solving the eigenvalue equation, as given in Eq. (3.7), is described as an iterative
process, very much like the power method. If the iterations are followed from the first to the n'”
cycle, the fission source can be written as
H"s© "I
D Nl (3.11)

IT1kG-D =1 J]k®

j=1 I=j
Keeping in mind Eq. (3.6), any fission source distribution can be expressed as a sum of eigenfunc-

tions, using some arbitrary weighting factors (a;-s and c)

s = gr Z a;js; 4+ ce™ = Z ajkis; + ce™ (3.12)
J J
To proceed, the eigenvalues are ordered descendingly by the modulus, starting with the highest

value (ko > |k1| > |k2| > ...). The equation above can then be divided by £ to obtain

S toso+ ) a4 (2 agsy £ ...+ ce™ (3.13)
kg ko ko

Based on the ordering of eigenvalues, it can be seen that the iterations converge to a multiple
of the fundamental mode eigenvector plus the remaining statistical error (which decays as \/mn
increases), and

1> |ki/ko| > |ko/ko| > ...

It becomes apparent that convergence of such a calculation is governed by k; / ko, also known as the
dominance ratio. More precisely, as Eq (3.13) shows, the convergence rate is related to (k1 /ko)",

which shows a dependence on the number of cycles.

It has also been shown that convergence of the Monte Carlo fission source to a multiple of the cor-
rect eigenvector is, in fact, governed by the dominance ratio. [34, 35] This fact plays an important

role in source convergence in systems with dominance ratios close to one.
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What is more, it has been long known that the results of Monte Carlo eigenvalue calculations also
contain systematic errors. [13, 14] The magnitude of these errors, known as biases, have been
shown to be of the order O(1/m). [1, 6, 11, 18, 38] By definition, the bias in the Monte Carlo

estimate of the fundamental mode eigenvector is [18]
. L o
Asy=55—50=(—s -l (3.14)
m

where s is the correct fundamental mode eigenvector of Eq. (3.18) and s is the biased estimate,
both normalised to identity. The definition of bias is based on the assumption that the calculation
has converged and the statistical errors have become negligible. An example of a biased eigenvec-
tor can be seen in Fig. 3.1, where it has been calculated with different batch sizes. Following suit,

the eigenvalue bias is defined as
Ako =k — ko = (kD) — ko (3.15)

where asterisk denotes a biased quantity, like above. [18]
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Figure 3.1: Two fission source distributions computed for the same system with different batch
sizes. The very low batch size has caused a significant bias in the fission source. The studied
system is a 10 m long fuel rod surrounded by water, with void boundary conditions set in axial
and reflective in radial direction.

It has been shown how to quantify the eigenvalue bias based on the real and estimated variances.

[1] The Brissenden—Garlick relation gives the eigenvalue bias as

n
Akg = o (07, — 0%) (3.16)

but the problem of calculating the source bias has remained open. Nevertheless, more can be learnt

about it by analysing cycle-wise error propagation, as presented in the next section.
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Considering the existence of the discussed biases, it is natural that relatively larger batch sizes are
preferred. [2] However, it must be kept in mind that the product of the batch size and number
of cycles determines the total number of histories simulated, which is a finite value limited by
available computational time. This means a large batch size limits the number of cycles that are
simulated, meaning the error originating from the initial fission source may not decrease enough,
corrupting the calculation results. It follows that for any Monte Carlo criticality calculation, there

is an optimal neutron batch size to balance these two effects.

3.3 Errors in the Monte Carlo fission source

The analysis of Monte Carlo eigenvalue calculations is often simplified by using discrete phase-
space notation. [15, 16, 18] This is a notation, where the system is divided into spatial regions,
also known as cells. If these cells are infinitesimally small, the discrete model is equivalent to the

continuous. [3] This approach makes it possible to describe the calculation using simpler notation.

Assuming the aforementioned discretisation, the operator in the eigenvalue equation can be de-
scribed as a matrix, here called the fission matrix. [5] Following suit, the fission source in the
system is represented as a vector. In this fission source vector, each element specifies the number

of fission neutrons in the corresponding box of the discretised phase-space. [18]

Elements of the fission matrix can be expressed as [5]

[dr [droF(ro — r)se(ro)

reZ; ro€Z;

v de‘O So(ro)

I'0€Zj

H

(3.17)

The (i,7)™ element of H represents the number of neutron births in space zone i, caused by a
fission neutron born in space zone j. Some of the Monte Carlo codes have a built-in capability
to calculate the fission matrix during standard Monte Carlo calculations (e.g. TRIPOLI-4 [27] or
KENO V.a [30]).

In the described notation, the eigenvalue equation (3.6) is transformed into

HSj = kij (318)
where H is the fission matrix and s; is the vector analog of s;(r). The cycles simulated to solve
this equation can then be modelled as

(+1) _ = (2)
S =0 +e€ (3.19)

which is the discrete space analog of Eq. (3.7) with s as the fission source vector. An integral
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operator is defined as a row vector 7 = (1,1, ...,1) so that
st = /dr s (r)=m (3.20)
1%
Based on this, the eigenvalue is calculated as

THs®" B THs®
s m

L@ —

(3.21)

which is the discrete space equivalent of Eq. (3.8).

The fission source distribution is one of the fundamental quantities in Monte Carlo calculations.
Like the eigenvalue, other quantities can be calculated from it. This is why the mathematical
description is centered around the fission source and the errors in it will be studied further. The

fission source error in cycle ¢ is introduced as

e =5 —m So (3.22)

In order to analyse such error vectors, Eq. (3.22) is substituted into (3.19) to produce

) H (msy +e®) :
@+ _ M 0 _ (@) 393
© T7H (m sy + e) mSo t € (3.23)

This can be rearranged into

, 1 H (mso +e®) A
(i+1) _ ‘ — @) 3.24
© 7He® [ THs, Mo (3-24)

mTHsg
. . 1 2 3 . . . .
Based on the identity 152 =1—x+x°—2°+...,1tis expanded in series as
x
. s He® \ [H (msy + e® .
e =3%" (— e ) (m 5o )| _ msy + € (3.25)
ay kfomTSO k’oTSO

The fundamental mode eigenvector is normalised to one as 7sy = 1. The first terms of the expan-
sion are written as
He® s,7He® He®WrHe® syrHeWrHe
= mSy + - - B} )
k’o kO k[)m kOm

+0(m™2) —msy + € (3.26)

i+1)

e(

Next, an operator—the noise propagation matrix—is formed by combining some of the terms in

the expansion, so that
I—
A—-—2TH (3.27)
ko
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where I is the identity matrix. Keeping in mind the knowledge that biases are of the order O(1/m),
the terms of the order O(1/m?) and smaller are disregarded. [1, 18] This yields

o) o Ao — TH ) A gl | () (3.28)
o

A more widely used error propagation equation (as seen in the works of Ueki, Sutton, Nease, and

others [25, 32, 33]) is obtained when a simpler, linear approximation is taken

el o2 Agl) 4 () (3.29)

Returning to the bias, it can be analysed by looking at the ensemble average value of Eq. (3.28).
After sufficiently many cycles n it can be assumed that the process is stationary, noted by (e(™) =
(e"=1), [18] This way Eq. (3.28) yields

r-a)"

(e = — — A (eMe™TyHT7T (3.30)
0

which shows that the iteration converges to a non-zero value—the bias. [18]

In addition to the error vector specified in Eq. (3.22), the relative error in one cycle is defined as

the error normalised to one neutron

—Sp (3.31)
m

To make these errors more easily quantifiable, any scalar relative error is defined as the norm of
the respective relative error vector
e = el (3.32)

If the relative errors are averaged over n cycles, the relative error in the fission source that is

combined over the cycles can be found as

n

1 e |, 1 ~
g=(em) = - Z e — — Z e (3.33)
=1

=1

It can also be seen that by definition the relative error in the cumulative fission source is equal to
the eigenvector bias when the calculation has become stationary. In other words, the relative error

decays into the bias in conditions matching its definition (i.e. no other errors are remaining).

Direct calculation of these errors is presented in Ch. 4, where it can be seen that this kind of
relative error estimate captures the presence of fission source bias and errors coming from the
initial source. This is also illustrated in Figs. 3.2 and 3.3. The first figure shows changes in the
relative error of the cumulative fission source in two individual Monte Carlo calculations and the
second shows the decrease of the relative error in averaged results of repeated calculations with

different batch sizes. Both the decrease of the initial error and reaching the bias can be seen.
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Figure 3.2: Changes of relative error in the cumulative fission source over the number of histo-
ries in two example calculations with a batch size of 100 neutrons. The studied system is a 4 m
long fuel rod surrounded by water, with void boundary conditions set in axial and reflective in
radial direction.
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Figure 3.3: Comparison of errors in calculations with different neutron batch sizes. Batches
of 50, 500, 5000, and 50 000 neutrons were used; all calculations were repeated 40 times and
results averaged. Calculations were made on the same system as in Fig. 3.2.
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3.4 Notes about the noise propagation matrix and fission

matrix

It has been shown that the highest modulus eigenvalue of the noise propagation matrix (NPM)
corresponds to the dominance ratio of the system, however, in somewhat different mathematical
notation than used in this work. [23, 26]

It can be verified that the vector notation used in this work is equivalent to the notation used by Ueki
et al. [23, 26, 32] This is done in order to make sure that the eigenvalues of the noise propagation

matrix correspond to &,/ ko ratios of the fission matrix (or the transport equation).

If Eq. (3.19) is multiplied by £®s®T from the right, it can be rearranged as
OGN OT — HgWg®T + JAOPOMOL (3.34)
Next, the mean of this equation is taken
H <S(n)S(n)T> — <k(”)s(”+1)s(”)T> _ <k(”)e(”)s(”)T> (3.35)
Assuming (e™e(™T) = 0, it is equivalent to [25]
H (s™Ws™T) = ([ (st ThgmT) (3.36)
from this, the fission matrix is expressed as
H=kL,L," (3.37)

where k = (k™) and the source correlation matrices L' and L/; are defined as

3.38
L, = <S(n+1)s(n)T> ( )
using notation consistent with [23]. Interestingly, this can be used to show
11 kj
L 1L 0 Sj = ?Sj (339)
From the definition of the NPM
l% r -1
A = k;_o (I — S(ﬂ') L 1L 0 (340)

Assuming no biasing, i.e. k = kg

A= (I—s,m)L,L! (3.41)
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which is equivalent to the result in [32]
A=(L,-ss") ;" (3.42)

where s = msy. This is enough to ensure that the noise propagation matrix is equivalent in both
notations. The equations above also offer a derivation for the NPM that is not affected by the

simplifications made in Eq.(3.29), which has hitherto been used for this purpose.

What is more, Eq. (3.37) offers a different kind of expression for the fission matrix, which can be
evaluated very similarly to the NPM as suggested by Sutton et al. [32] It has been shown that the
NPM method is not sensitive to mesh sizing, [32] unlike the fission matrix. [24] The fission matrix
in Eq. (3.37) can be expected to be affected by biased fission sources, however, it is possibly less
influenced by spatial meshing than the traditional way of evaluating the fission matrix. [9, 10] In
addition to that, Eq. (3.39) shows that the dominance ratio, or higher mode eigenpairs, can also be

calculated from the source correlation matrices.



Chapter 4

Estimation of errors in the cumulative

fission source

This chapter describes a way of estimating the scalar error in the cumulative Monte Carlo fission
source. It is known that the fission matrix can be estimated accurately even with a small batch
size if the spatial zones are sufficiently small. This suggests that it may be possible to estimate the
errors in the cumulative source based on the fundamental mode eigenvector of the fission matrix.

This method was published in Paper 1.

4.1 Fission matrix eigenvector method

It has been shown that the fission matrix becomes less sensitive to errors in the fission source as
the mesh zones are decreased. [9] Hence, the errors in the fission source become irrelevant for
sampling the fission matrix when the zones are small enough. This means that the fission matrix
and its fundamental-mode eigenvector can be correctly evaluated during a Monte Carlo criticality

calculation even if the fission source is biased.

What is more, it has been observed that fission matrix based criticality calculations converge faster
than standard Monte Carlo criticality calculations, i.e. the eigenvector of the matrix converges
faster than the cumulative fission source. [5, 9] These qualities of the fission matrix eigenvector

can be utilised in estimating the error in the cumulative fission source.

The relative error € in the cumulative fission source is defined as
€ =S.— Sg “4.1)

where s, is the cumulative fission source and s, the correct fundamental mode eigenvector of the

36
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system, both normalised to one (i.e. Ts. = 7sg = 1). The relative scalar error is then

£ = [lse = soll, = > _ |l (4.2)

(2

where the one-norm is defined as

Il =) lal:

7

The fundamental-mode source sy is unknown and the correct value of £ cannot be computed.

However, it is proposed that its value can be estimated as

e=|sc —dll, 4.3)
where q is the eigenvector of the fission matrix H that was sampled over the same cycles as the
cumulative fission source s, (also normalised to one as 7q = 1).

The fission matrix H can be expected to contain random errors of the order O(1/y/nm) that must

also be present in its eigenvector q. The errors in q are denoted by the vector 6, so that

0 =q—sp 4.4)
Then, Eq. (4.3) can be written as
e=lle—-4dl, (4.5)
or in another way
ST 6)

Here it has to be noted that € contains statistical errors, the bias, and the partly decayed errors

coming from the initial fission source.

Since both q and s are normalised to unity, it can be written that
Z |g;| = Z £ 4.7)
i i

which is equivalent to

> (gl = [s0i) =0 (4.8)

i
Since all elements in q and sy are non-negative, the absolute value signs in Eq. (4.8) can be re-

moved,

> (g — s0:) =0 (4.9)

which is equivalent to

E:@zo (4.10)
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Hence, the vector  must contain both positive and negative elements so that their sum would equal
zero. This quality of & suggests that the expected value of € equals

E@) =) lal=¢ (4.11)

assuming that § and € are not correlated. Hence, if this condition is satisfied then the error estimate
¢ given by Eq. (4.3) is normally distributed around £. It is, however, not apparent whether this

condition is satisfied or not.

4.2 Test calculations

4.2.1 Test model

Numerical test calculations were performed on a fuel pin cell with parameters summarised in
Table 4.1. Reflective boundary conditions were applied to radial surfaces and void boundary con-
ditions to axial faces. This model is based on a common PWR fuel pin cell, with the pin length
increased to 10 m in order to achieve a high dominance ratio. All numerical calculations were
performed by an in-house non-analog continuous-energy 3D Monte Carlo criticality code using

the JEFF3.1 point-wise neutron cross-section library.

Table 4.1: Specifications of the test model.

Fuel U02
Cladding material Zr
Moderator light water
Radius of fuel pellets 0.41cm
Outer radius of cladding  0.475cm
Rod pitch 1.26 cm
Length of the fuel rod 1000 cm
235U enrichment 3.1 wt%
Fuel density 10 g/cm?®

Moderator (water) density 0.7 g/cm?

An analytical fundamental mode fission source is not known and is thus estimated by a reference
calculation. Parameters of the reference calculation are summarised in Table 4.2. The reference
distribution of the fission source, s,.t, was evaluated using a fine uniform mesh with 100 axial
zones, and combined over all active cycles. As the test model is axially symmetrical, the accu-
racy of s, has further been improved by symmetrising it. During the reference calculation, the

dominance ratio of the test model was evaluated to be 0.9982 from the sampled fission matrix.

Table 4.3 specifies the test calculations (A-D). While the neutron batch size varied in calculations
A-D, all calculations simulated 10° neutron histories. The initial fission source was randomly

sampled from a uniform distribution in the first cycle of each calculation. In each calculation, the
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Table 4.2: Reference calculation.

Neutron batch size 50000
Number of active cycles 2000 000
Number of inactive cycles 2000
Initial fission source flat

fission matrix was sampled over all cycles; no cycles were skipped.

Table 4.3: Parameters of test cases A-D.

Calculation A B C D
Neutron batch size 50 500 5000 50000
Number of neutron histories 1 billion

For the purpose of the test calculations, the axial dimension of all zones are set to 10 cm; hence,
the fission matrix is evaluated on a spatial mesh with 100 zones. This mesh appears sufficient for
eliminating the bias in the fission matrix (that could possibly arise from the biased fission source).
This is demonstrated in Fig. 4.1 which compares the eigenvector of the fission matrix to the cu-
mulative fission source biased by the batch size of 50 neutrons; the fission matrix was sampled by
the actual biased fission source. While the fission source is strongly biased, the eigenvector of the

fission matrix is close to the reference solution in Fig. 4.1.

In calculations A-D, the real relative error € in the cumulative fission source distribution s, is
evaluated as
€ =8¢ — Srefll; - (4.12)

The estimation € of the relative error in a cumulative fission source is computed according to
Eq. (4.3).

4.2.2 Results

The values of € and ¢ obtained from all the test cases are compared in Tables 4.4-4.7. In each
calculation, the values of £ and ¢ are calculated at several stages, always after simulating 10°, 107,
108 and 10° neutron histories. To associate a certain value of € or € to a certain stage, we add a
superscript in square brackets to € and €, denoting the number of simulated neutron histories; e.g.,

the values of £10°) and £[1°] are computed after simulating 10° neutron histories.

Results from calculation A (with the batch size of 50 neutrons) are summarised in Table 4.4. As
the bias in the fission source is large due to the small neutron batch size (as depicted in Fig. 3.1),
el0 2[9°] and £[1°°] remain about equally large, close to 20%. This is correctly captured by the
corresponding values of £107, £[19°] and 019°], The value of £[1°] is less than half of that of £[1°]; in
this case, the relatively large random errors in the eigenvector of fission matrix (that was sampled

by only 10° neutron histories) decreased the estimated error.
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Figure 4.1: Comparison of the reference solution, the eigenvector of a fission matrix sampled
by a biased fission source, and the biased fission source obtained with the batch size m = 50.

Table 4.4: Comparison of < and ¢ in calculation A (with the batch size of 50 neutrons) [%].

h (# of neutron histories) ¢ &l
106 36.7 14.9
107 18.3 184
108 18.1 18.2
10? 20.2 18.6

Results from calculation B (with the batch size of 500 neutrons) are summarised in Table 4.5. Here,
values of ¢ also correspond well to e, with the exception of the value of £119°] that underestimated

the real error several times.

Table 4.5: Comparison of ¢ and ¢ in calculation B (with the batch size of 500 neutrons) [%].

h (# of neutron histories) ¢ &l
10° 24.0 19.8
107 124 8.21
108 378 1.10
10? 453 3.63

Results from calculation C (with the batch size of 5000 neutrons) are summarised in Table 4.6.
This case shows that £ may overestimate the real error several times as well; note the value of £ [10%]
and £197], The small bias in the cumulative fission source combined over 10° neutron histories was

correctly estimated.

Results from calculation D (with the batch size of 50 000 neutrons) are summarised in Table 4.7. In
this case, € estimated the real error in the cumulative fission source in all stages of the calculation

with a good accuracy.
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Table 4.6: Comparison of < and ¢ in calculation C (with the batch size of 5000 neutrons) [%].

h (# of neutron histories) ¢" &M
108 17.7 41.0
107 823 183
108 841 6.44
10° 1.17 1.25

Table 4.7: Comparison of < and ¢ in calculation D (with the batch size of 50 000 neutrons) [%].

h (# of neutron histories) ¢ &l
108 379 28.2
107 26.1 25.1
108 451 4.29
10° 1.15 1.25

It should be noted that the above results depend on the initial seed of the RNG; as such, € is a
random variable. Repeating the identical calculation with another seed would produce different re-
sults (both € and ). Nevertheless, the above results suggest clearly that £ can be used in estimating

the order of magnitude of the error in the cumulative fission source.

4.3 Conclusions

The fact that the fission matrix can be well sampled even by a biased or not fully converged Monte
Carlo fission source can be utilised for various purposes. In this chapter, the possibility of using
the fundamental-mode eigenvector of the fission matrix for estimating the error in the cumulative
fission source was analysed. The work also attempted to establish if the random errors, that are
naturally present in the eigenvector, hinder the estimation of the error in the cumulative fission

source.

It can be concluded that the estimation of the error in the cumulative fission source obtained from
the eigenvector of the fission matrix is distributed around the real error, assuming that the random
errors in the eigenvector and the cumulative fission source are not correlated. However, the va-
lidity of this assumption is not completely apparent. Nevertheless, the numerical test calculations
confirmed the error estimates were distributed around the real errors, which suggests the errors
are either not correlated or the correlation is weak. The error estimations correctly captured the

presence of the source bias, as well as the source errors coming from the initial fission source.



Chapter 5
Simplified error propagation model

Efficiency of the calculation can be improved by maximising the figure of merit. In this work, the
figure of merit is based on a simplified estimate of the error in the cumulative fission source (the
fission source combined over all simulated cycles). An equation is derived that relates this error to
the neutron batch size, total number of histories, dominance ratio of the system, and the relative
error committed by guessing the initial fission source. Knowing how the figure of merit is affected

by the choice of batch size allows its value to be optimised. This work was presented in Paper 2.

5.1 Derivation of simplified error model

First of all, the error vector is decomposed into three components
e = eﬁ) + eJ(B) + e}) (5.1)

where the first term describes the decay of the error coming from the initial fission source, the

second term includes the bias, and the third term is the stochastic error component.

Based on earlier definitions, the scalar relative error in cycle ¢ is expressed as
V=[] = lle} + e + €5 (52)

By properties of norms, the value on the right hand side has an upper bound of

1€} + €% + Wl < 1D + e + 11| (5.3)
so that
e® < W 4 ) 4 0 (5.4)
which implies
ELEpx+Ep+ER (5.5

42
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for the relative error in the cumulative fission source.

Eq. (5.1) was specified so that the eg) component describes the bias; thus, when the calculation

has become stationary, it can be expressed as

(n)
éB:AS(): <e—> (56)

m

Based on that and Eq. (3.30), it is continued as

1
om

€B

ko 5.7

e(n)e(n)T HT‘TT
m

a—m*A<

It is possible to show that this component is in fact of the order O(1/m), as it would be expected

from the bias.

As the fundamental mode eigenvalue of the noise propagation matrix is equivalent to the domi-
nance ratio of the system, it is known that the spectral radius of the noise propagation matrix is

less than one, allowing the inverse to be written as a Neumann series
o
(I-A)"=> A (5.8)
=0
From the definition of cycle-wise error it follows that

()
A<i—>=A%
m

<e(")T> H'+" = mAk,

and

The norm can then be expressed as

mAkg

0

1
H@HSP—‘ (5.9)
m

oo

Jo*
5 A’s
Jj=1

It has been proven that Aky € O(1/m), thus mAk is not dependent on m [1].

For an unbiased source, the product A’ Sy 18 a zero vector by definition; however, in case of a
biased source it contains non-zero elements. It can be expanded as a weighted sum of eigenvectors

(keeping in mind Asy = 0)

¥ kl 7 k2 7 kl J
A]SOZO+(11 ]{,‘_ S1 + a9 k_ So+ ...~ k_ S1 (5.10)
0 0 0

where a-s are coefficients not dependent on m. From this the norm of the power series is approxi-
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mated as

k o\
z|a1|k—;<1—k—;) 1] (5.11)

o oo
ZAjs(’g §ZHAjsg
j=1 Jj=1

which shows that the sum converges to a value of the order O(1) in m and the bias component
eg € O(1/m).

Now the bound on the scalar relative error introduced by the bias can be written as

ep < 1p (5.12)
m

where B is a constant dependent both on the system and the chosen norm type.

The £z component in Eq. (5.5) is the statistical error resulting from sampling of a finite number of
histories. As was discussed earlier, this error is of the order O(1/1/mn), and like for the component

describing the bias, the bound of this component can similary be written as

Er < R (5.13)
where I? is another system and norm dependent constant.
To proceed, Eq. (3.28), the error propagation equation, is simplified into
e = Ael™ M + 0 (m™") + el (5.14)

to overcome its non-linearity. Despite the simplification, The equation accounts for both the de-

crease of the error coming from the initial fission source and presence of the source bias.

This equation can be re-written as
e =A’e® +0(m™) + Z AiIel=) (5.15)
j=1

yielding a decomposed relative error vector
e — Alg0) gg) + sg) (5.16)

Next, the initial fission source error vector is denoted as ey = £©. From the previous it follows
that
e = Algg (5.17)

According to properties of norms, this component of the scalar relative error is bounded by

eQ = || A%eo|| < || AY|||eo]| = o]l A (5.18)
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Since the noise propagation operator is a square matrix, it is known that

ki

lim [|A7|[Y7 = p(A) =
J—00 ko

(5.19)

where p stands for spectral radius. From this an approximation is obtained that improves quickly,

J kl ’
|A7]| ~ T (5.20)
0

Finally, a bound for the €),” term in Eq. (5.4) is obtained as

cycle by cycle

i i )
eV < eol| A 2= & (k—;> (5.21)

which results in .

= () < %Z (%) & (5.22)

The scalar ¢ is the relative error committed by guessing the initial fission source. This quantity is

also norm dependent like the constants B and R.

From Eqgs. (5.5), (5.12), (5.13), and (5.22) a bound for the scalar relative error in the cumulative

fission source is obtained as

I<~(k\ B R
E<— (—1) g0+ —+ (5.23)
n = ko m  y/mn

This equation should be taken as a strong simplification, since the whole system is described
solely by the dominance ratio. Nevertheless, finding a simple model was the authors’ intention.
Considering the availability of methods for on-the-fly dominance ratio estimation [19, 32], the

model is certainly applicable.

5.2 STORM for batch size optimisation

In the following, a methodology is described for Monte Carlo ciritcality calculations with op-
timised values of neutron batch size. The method is dubbed STORM—the Stochastic rapidly

convergent criticality method.

Firstly, the total number of simulated neutron histories / and the neutron batch size m are chosen

to be the independent parameters, so that the total number of cycles n becomes

h (5.24)

n =

Based on the bound derived in Eq. (5.23), the equation used to model the changes in errors is
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written as

“h m  Vh

i=1
For larger values of n, this equation can be further simplified by treating the finite sum as infinite,

so that .
N mey k?l B B R
E=—11—— + —+ — 5.26
( ) mh ©:20)

which is a good approximation for the intended application of this equation, where the value of n

h/m i
B
;Mo (%) LB, R (5.25)
0

will be relatively large.
The efficiency of the calculation is described by the figure of merit, which is defined as

1

FOM =
0 E2h

(5.27)
where the standard deviation has been replaced with the relative error in the cumulative source and
the computational time assumed proportional to the number of histories.

The figure of merit can be maximised by minimising the denominator in the equation above. The

optimum condition is then written as

d(2h) o B\' B
-9 D1 _ =
om he [h ko m2

=0 (5.28)

This equation can be rearranged into an expression for the neutron batch size

- WE (-5 5.2
€0 ]{?0

which satisfies the optimum condition. The division in the term B/e, compensates for scaling

introduced by taking the norm of an error vector. The constant B describes how a certain system
is affected by source biasing and is not calculable in general. It can be expected that the maximum
relative error caused by the bias is one when a single neutron history is simulated per cycle; thus,
for practical applications a simplification is made and B is assumed equal to one to obtain an

equation for the optimal neutron batch size.

Miopt = 1| 2 (1 - @) (5.30)

€0

given the total number of simulated neutron histories, dominance ratio of the system, and relative
error in the initial fission source. This equation enables one to determine a value for the neutron

batch size that balances its effects on the speed of source convergence and biasing of results.

In order to apply Eq. (5.30), the dominance ratio and the error in the initial fission source are

needed. Fortunately, both quantities can be estimated with reasonable accuracy and effort during
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the initial stage of the Monte Carlo criticality calculation. Here it is suggested to evaluate these
parameters during the simulation of a small fraction f (e.g. 1%) of the specified total number of

neutron histories.

The dominance ratio can be evaluated by a number of methods, such as the NPM method [32], the
CMED based method [19], the CMPM [25] or even from the fission matrix. The error in the initial

fission source can be estimated by the eigenvector of the fission matrix as

~ HS(O)/mo —q
o —

5 (5.31)

where s(¥ is the initial fission source, my is the neutron batch size chosen for the first ng cycles,
and q is the eigenvector calculated from the fission matrix that was sampled during the initial
cycles (normalised to one). If the fission matrix is not available, a very rough approximation can,

instead, be taken as

-~ HS(O) —8¢/mol|1
80 =
2my

(5.32)
where s, is the cumulative fission source combined over n, cycles. The factor 2 in Egs. (5.31) and

(5.32) scales the maximum possible value of £, to one.

The estimation of dominance ratio is improved by simulating more cycles [24]; and since the bias
is of no concern in these initial cycles, it is recommended to set a small value for m,, for example
so that ny = mZ. This results in my = /hgy, where hq is the number of histories used in the
estimation stage. This will also ensure that the cumulative fission source is sufficiently different

from the initial source to estimate its error if Eq. (5.32) is used.

Additionally, the sufficiency of the number of cycles can be assessed after an estimate is obtained,
with a criterion adopted from [24]
(k1 /ko)™ < 6 (5.33)

where ¢ is a specified tolerance. This was suggested for the Coarse Mesh Projection method, but

can be expected to be suitable for other noise propagation matrix based methods as well.

If the CMFD based method is used, it is advised to actually run the CMFD cycles of OpenMC
[29] as the few last cycles (e.g. 10 or mg/2) of the first stage. Since the batch size is very low,
the CMFD solver makes the calculation of these cycles rather slow; what is more, it is necessary
for the calculation to have already converged to some extent to obtain accurate estimates of the

dominance ratio.

After the initial stage, the estimated values of £, and the dominance ratio are used in Eq. (5.30)
to evaluate the optimal neutron batch size that is then used in the following cycles. An exemplary

implementation is offered in Algorithm 1.
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Algorithm 1 Conceptual implementation of STORM

T T S e T e T T e

Rl A A e ey

input: 7, f, s

my <— ’7 Y fh —‘

Ng <— mg

s+ 0

141

while ; < ngy do
s(¥ « Run MC cycle
S, < s. + st
1—1+1

end while

: k1/ko < Estimate dominance ratio
. 80+ ||se/n0 — 8|1 /2mg

DM 4 (\/h(l —ki/ko)/é0 |

: n 4 [h/m]

: while 7 < n do

Run MC cycle
1 1+1

- end while

> Initial cycles

> Main cycles
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5.3 Test calculations

5.3.1 Numerical test model

Numerical test calculations were performed on a model of a common PWR fuel pin cell with
parameters specified in Table 5.1. Reflective boundary conditions were applied on radial faces and
void boundary conditions on axial faces. This model shares some features of a large core, e.g. a

large dominance ratio.

Table 5.1: Specifications of the pin cell model.

Fuel UOQ
Cladding material Zr
Moderator light water
Radius of fuel pellets 0.41 cm
Outer radius of cladding  0.475cm
Rod pitch 1.26cm
Length of the fuel rod 400 cm
235U enrichment 3.1 wt%
Fuel density 10 g/cm?

Moderator (water) density 0.7 g/cm?

All numerical calculations were performed by an in-house non-analogue continuous-energy 3D

Monte Carlo criticality code using the JEFF3.1 point-wise neutron cross-section library.

5.3.2 Reference calculation

The correct fission source distribution for the test system is not known and is estimated by a ref-
erence calculation specified in Table 5.2. As the test model is symmetrical, the source distribution
s, combined over the active cycles has been additionally symmetrised. The dominance ratio was
estimated at 0.989 during the reference calculation by the NPM method [32] with a 10 cell axial

mesh.

Table 5.2: Specifications of the reference calculation.

Number of histories per cycle 50,000

Number of active cycles 1,000,000
Number of inactive cycles 10,000
Initial fission source flat

The reference solution is used in evaluating the error in the cumulative fission source in the test

calculations. The scalar error in the cumulative fission source is computed as

_ “SC/h _ Sr/hTHl
¢ 2

(5.34)
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where s, and s, are the fission sources combined over the cycles of test and reference calculations,
respectively, and A, is the total number of neutron histories simulated in the reference calculation.

The factor in the denominator of Eq. (5.34) ensures the maximal possible value of . to be one.

It should be noted that while the simplified model of the scalar error in the cumulative fission
source captures the dependence of the error on the neutron batch size and other parameters, its
direct comparison to the error computed by Eq. (5.34) is not trivial. This is not a problem for the
presented optimisation methodology; it is merely an inconvenience when comparing the simplified

model to results from test calculations, as the values do not necessarily have to match.

5.3.3 Demonstration of the simplified error model

The purpose of the calculations presented in this section is to demonstrate the usability of the
simplified model of the scalar error in the cumulative fission source, given by Eq. (5.25). In
this test, the simplified model is supplied with the dominance ratio estimated by the reference

calculation; the constants B and R are assumed equal to one.

Four calculations, A-D, specified in Table 5.3, were repeated 40 times with various seeds for the
random number generator. All calculations were started with a point source placed at one end of
the pin, ensuring a large error in the initial fission source. Thus, the model assumes the maximum

value ¢g = 1.

Table 5.3: Specifications of calculations A-D.

Test calculation A B C D
Neutron histories per cycle 50 500 5000 50,000
Total number of histories 100 million

In Fig. 5.1, the scalar errors in calculations A—D, computed by Eq. (5.34), are compared to the
simplified model, given by Eq. (5.25). The results demonstrate that the simplified model correctly
captures the dependence of the error on the neutron batch size and the total number of simulated

neutron histories.

Fig. 5.1 also shows that performance of the calculation (given here by the error in the cumulative
fission source) depends strongly on the neutron batch size; for a specific allocated computing cost
(in terms of the total number of simulated neutron histories) the calculation performs best with
a specific neutron batch size. For instance, when 107 neutron histories are to be simulated, the
results achieved by simulating 500 neutron histories per cycle are significantly better than with

other chosen values.
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Figure 5.1: Top: scalar errors in calculations A—D computed by Eq. (5.34). Bottom: Scalar
errors predicted by the simplified model, as in Eq. (5.25) for m = 50, 500, 5000 and 50,000.

5.3.4 Performance of calculations with optimal neutron batch size

Point source as initial fission source

In this section, the performance of Monte Carlo criticality calculations with the optimal neutron

batch size estimated by Eq. (5.30) are demonstrated. In order to separate the effects of simplifi-

cations made in deriving Eq. (5.30) from the effects of errors present in the estimated parameters

in Eq. (5.30), the dominance ratio computed by the reference calculation is used. Such an accu-

rate estimate of the dominance ratio would not be available in standard calculations; therefore,

Sec. 5.3.5 includes numerical tests where the dominance ratio is computed in the beginning of the

calculation, using a relatively small number of neutron histories, as suggested in Sec. 5.2.
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Table 5.4: Specifications of calculations E-G.
Test calculation E F G

Total number of histories ~ 10® 107 108
Optimal neutron batch size 1050 333 105

Table 5.4 shows the optimal neutron batch size calculated by Eq. (5.30) for three values of allocated
computing cost (108, 107 and 10° simulated neutron histories); the three cases are marked as E, F,
and G. For this, the dominance ratio was set to 0.989, and the relative error in the initial fission

source was set to the maximum value £y = 1 (the same initial source was used as in Sec. 5.3.3).
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Figure 5.2: Results of calculations E-G. Neutron batch size optimisation is compared in calcu-
lations of different length.

Monte Carlo criticality calculations for cases E, F, and G were repeated 40 times with different
seeds, and the resulting errors were averaged. Fig. 5.2 compares the performance of these cases,
and demonstrates the effectiveness of the optimal neutron batch size computed by Eq. (5.30) for
various cases. For instance, when 10° neutron histories were simulated, the calculation with the
neutron batch size optimised for 10° neutron histories (case G) performed better than the calcula-
tion with the neutron batch size optimised for 10® neutron histories (case E). Nevertheless, we can
see that case F (optimised for 107 neutron histories) performed similarly to case G when 10° neu-
tron histories were simulated, which suggests that the optimal value of the neutron batch size does
not necessarily have to be computed very accurately in order to achieve good performance. This
simplifies the application of the methodology since the input parameters, such as the dominance
ratio or the error in the initial fission source, may be estimated less accurately in the beginning of

the calculation.

In this section, case E (with the neutron batch size optimised for 10® histories) is also compared
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to two additional calculations where the neutron batch size was set to suboptimal values of 10,000
(case H) and 100 (case I). Calculations H and I were also repeated 40 times and averaged. Fig. 5.3
shows that calculation E (optimal) achieved orders of magnitude smaller errors than calculations

H and I after simulating 10® neutron histories.
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Figure 5.3: Results of test calculations E, H, and 1. Results given by the optimal neutron batch
size (1050) are compared to results obtained by using unoptimised parameters.

Flat source as initial fission source

All test calculations presented so far used point sources as initial fission source guesses to ensure
large initial errors. This choice was made in favour of a more effective presentation of results and
does not mean the methodology is limited to such cases. The proposed batch size optimisation is

equally effective when flat initial sources are used.

An additional test case, J, was specified to test the batch size optimisation with flat initial sources.
It is compared to test case E, thus, the total number of histories was taken as 10® and calculations
were repeated 40 times. Reference dominance ratio was assumed and the error in the initial source

was assumed to be £y = 0.2. This resulted in the optimal value of 2 350 for the batch size.

Fig. 5.4 presents results from test calculations E and J, where different initial sources were com-
pared. It can be seen that a better initial source guess causes the errors to be smaller in the beginning
of the calculation. However, after simulating all of the neutron histories, the erroros caused by the
point source have decayed to an equally low value. No other batch size was found to produce

smaller errors.
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Figure 5.4: Results of calculations E and J. Neutron batch size optimisation is compared in
calculations with different initial fission sources.

5.3.5 Demonstration of STORM

The purpose of this section is to test the neutron batch size optimisation methodology for Monte
Carlo criticality calculations, or STORM, as suggested in Sec. 5.2, assuming no knowledge of the
correct dominance ratio or the error in the initial fission source. Therefore, as suggested in Sec. 5.2,
the calculation is split into two stages; the dominance ratio and the error in the initial fission source
are estimated in the short first stage, while the neutron batch size is corrected to the optimal value

for the second stage.

The total allocated computational cost was set to 10® neutron histories for this test. As suggested
in Sec. 5.2, 1% of the computing cost (10° neutron histories) was allocated to the first stage of the

calculation. According to suggestions in Sec. 5.2, the neutron batch size for the first stage was set

to v/ 106 = 100.

During the first STORM stage, the dominance ratio was estimated at 0.9876 by the NPM method;
in order to keep the method general and not optimised for a specific test model, a 3 x 3 x 3 spatial
mesh was used. The error in the initial fission source was estimated at 0.9941. Based on these
values, the optimal neutron batch size was evaluated at 1120, and the batch size was changed to
this value for the second stage of the calculation. The value of the dominance ratio estimated
during the first step of this calculation does not differ much from the value computed during the
reference calculation; hence, the optimal value of the neutron batch size calculated here (1120)
does not differ much from the test case E (1050).

The two-stage STORM calculation was repeated 40 times, and results were averaged, as in all

previous calculations. Fig. 5.5 compares the performance of the STORM calculation (marked as
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Figure 5.5: Results of calculations by STORM (K) and optimised by reference parameters (E).

case K) to the test case E (that used the neutron batch size optimised for 10® neutron histories).
As can be seen, both calculations perform equally well when 10® neutron histories are simulated.
Naturally, the two-stage STORM calculation converged faster during the first stage, as the neutron

batch size was forced to be small; however, this did not change the final results.

5.4 Conclusions

In this chapter, a simplified equation was derived to model the scalar relative error in the cumula-
tive source. The model relates the error to the chosen total number of neutron histories, neutron
batch size, dominance ratio of the system, and error in the initial fission source. Numerical test
calculations showed that even though the equation is strongly simplified, it describes the changes

sufficiently well, providing information that enables the optimisation of neutron batch size.

From the simplified error model, an equation was derived to determine an optimal neutron batch
size which maximises the efficiency of calculations. This is achieved by balancing the effects of
source convergence speed and biasing of results. In order to apply this result, a methodology was
suggested for neutron batch size optimisation. Subsequent test calculations demonstrated that the
calculated optimal batch size ensures the best possible results and that the methodology is usable
in practical applications. The method is general in nature and implementable in any power method

based Monte Carlo code that comes equipped with a dominance ratio estimation procedure.

It should be noted that the optimal neutron batch size may also be affected by the use of paral-
lelised calculations; for example, the master-slave parallel-computing scheme performs better with

a larger neutron batch size. However, the derived optimisation methodology does not consider the



efficiency of various parallel-computing schemes and differences in computer architectures.
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Chapter 6
Summary

The thesis at hand concentrates on Monte Carlo criticality calculations—a method of solving the
steady-state homogeneous k-eigenvalue neutron transport equation. The introductory part of the
text introduces the mentioned equation and discusses what it is commonly used for. Following
that, solving the transport equation by the stochastic sampling (Monte Carlo) method is explained

to the extent necessary for understanding the presented work.

The main objective of the presented research was to improve the efficiency of Monte Carlo critical-
ity calculations. It is known that the choice of the number of neutron histories that are simulated
in each cycle of the calculation (the neutron batch size) affects the overall efficiency. On one
hand, a small neutron batch size allows the calculation to converge faster from the guessed initial
fission source to a stationary source distribution; on the other hand, a systematic error, inversely

proportional to the batch size, is always present in the results.

In this work, it is suggested that the general calculation error can be characterised by the error in the
cumulative fission source, i.e. the fission source combined over all simulated cycles. This choice
was made because Monte Carlo calculations combine the results of all cycles to estimate quantities
of interest and errors in the fission source can affect all other possible results. The work establishes
that these errors describe both the decrease of errors introduced by the starting fission source and
the fission source bias. Additionally, if this error is combined with the allocated computational
time (in terms of the total number of simulated neutron histories) the efficiency of the calculation

can be described.

Existing theory about source convergence and error propagation in Monte Carlo criticality cal-
culations is summarised and a mathematical notation is adopted for further analysis of errors. A

mathematical treatment of the relative error in the cumulative fission source is given.

Following that, a method for direct estimation of errors in the cumulative Monte Carlo fission
source is suggested. The method proposes to utilise two qualities of the fission matrix. Firstly, it is
known that the fission matrix can be sampled correctly even if the fission source contains a large

bias, as long as the spatial mesh cells are sufficiently small. Secondly, it has been observed that the
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eigenvector of the fission matrix (which is equivalent to the fission source distribution) converges
faster than the cumulative fission source. The proposed method suggests to use the eigenvector
of the fission matrix to estimate errors in the cumulative fission source. Results of numerical test

calculations support the efficacy of the method.

The fission matrix eigenvector method gives important results in error estimation of Monte Carlo
criticality calculations. The traditional variance estimates fail to capture errors caused by system-
atic biases and errors caused by the starting fission source that remain in the results. The suggested
error estimation method allows one to estimate the order of magnitude of real errors, including
those caused by the two aforementioned phenomena. This is important for the credibility of re-
sults, since all calculated values, including the power distribution or the multiplication factor, are

affected by errors in the fission source distribution.

Undoubtedly, the method has its shortcomings. As it was said, the mesh used for sampling the
fission matrix has to be sufficiently fine; however, it is not known how to determine this sufficiency
in the general case. This is a topic that needs further study for any fission matrix based method to
be applied. Sec. 3.4 may offer possible ideas for this problem. What is more, the fission matrix
eigenvector method for error estimation needs further testing in calculations to confirm its validity

and to verify if its results are distributed normally around real errors.

The described direct estimation of errors does not provide analytic information that would allow
for any optimisation. For this reason, a simplified model is derived to describe the relative error
in the cumulative fission source. This model relates the error to the chosen neutron batch size, the
total number of simulated neutron histories, the dominance ratio of the system, and the relative
error in the initial fission source. The model is tested by numerical calculations and shown to be

sufficient for describing the changes in errors over the simulated cycles.

The simplified error model is further applied in finding an expression for the optimal value of
the neutron batch size for certain allocated computing time (in the form of the total number of
simulated neutron histories). An equation is derived giving the optimal batch size as a function
of the total number of simulated neutron histories, the dominance ratio, and the error in the initial

source. The optimum condition is verified by numerical test calculations.

As the dominance ratio and the error in the initial source are unknown in general, a new method is
proposed, dubbed STORM—the Stochastic rapidly convergent criticality method. The developed
methodology suggests a two-stage calculation, where the first stage uses a small fraction of the
total number of neutron histories to estimate the dominance ratio and the error in the initial source;
these estimates are then used to set the optimal neutron batch size for the second stage to ensure
maximum efficiency of the calculation. The method is tested and proven in practical applications

by numerical test calculations.

First of all, the analysis demonstrates that the choice of neutron batch size has significant effects
on the performance of calculations. As the neutron batch size is commonly not optimised, the

calculations either reach biased solutions or they converge slowly and errors originating from the
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initial source remain in results. The developed methodology ensures that for a certain allocated
computational time, the best possible results are obtained, thanks to the optimal choice of neutron

batch size. This is an important result for longer, computationally more expensive simulations.

The formulation of STORM has its shortcomings, too. The error model is strongly simplified and
may perform worse than expected in some cases. What is more, in deriving the optimal neutron
batch size, an additional simplification was made in one constant, which may require further study
and improvement. The correct implementation of STORM is dependent on the appropriate setup
of the initial stage and the dominance ratio estimation method to be used, which will require some

testing.

Both methods developed in this work, the fission matrix eigenvector method for error estimation
and STORM, are rather general in nature and implementable in any power method based Monte
Carlo criticality code. The fission matrix eigenvector method requires the fission matrix to be
sampled, and STORM is applicable with any dominance ratio estimation method. Both required
features are available in a variety of existing codes, making it possible to apply the developed
methods in practical applications.

The thesis met its objective in developing a method that improves the efficiency of Monte Carlo
criticality calculations. Neutron batch size optimisation and STORM have great potential in im-
proving the effectiveness of the computational time spent on Monte Carlo calculations; and the
fission matrix eigenvector error estimation method allows the monitoring of real calculation er-
rors. It is the hope of the author that both methods would be studied further and considered for

implementation in Monte Carlo criticality codes.



Peatikk 7

Kokkuvote

Kiesolev t66 keskendub Monte Carlo kriitilisusarvutustele: piisitalitltuse homogeense k-omavéir-
tuse neutrontranspordi vorrandi lahendamise meetodile. Teksti sissejuhatav osa tutvustab mainitud
vorrandit ning arutleb selle iile, milleks seda tavaliselt kasutatakse. Seejdrel on seletatud to6 maist-
miseks vajalikus ulatuses juhuslike valikute (ingl k stochastic sampling) ehk Monte Carlo meetodi

abil transpordivorrandi lahendamist.

Esitletud uurimuse pohieesmérgiks oli Monte Carlo kriitilisusarvutuste efektiivsuse suurendami-
ne. On teada, et arvutuste iildist efektiivsust mojutab tsiiklis simuleeritavate neutronite arv (tsiikli
populatsiooni suurus, ingl k neutron batch size). Uhest kiiljest voimaldab viiksema tsiikli popu-
latsiooni kasutamine arvutusel kiiremini koonduda esialgsest 10hustumisneutronite allikast (ingl
k fission source) statsionaarse jaotuseni. Teisest kiiljest on arvutustulemustes alati siistemaatiline

viga, poordvordeline tsiiklites kasutatava populatsiooni suurusega.

Antud t60s on pakutud kasutada iildiste arvutusvigade kirjeldamiseks viga kumulatiivses 16hustu-
misneutronite allikas ehk 10hustumisallikas, mis on kombineeritud koigist tsiiklitest. Valikut voib
pohjendada sellega, et Monte Carlo arvutustes kombineeritakse otsitud suuruste hindamiseks tule-
mused koigist tsiiklitest ning vead 10hustumisallikas mdjutavad koiki teisi saadud tulemusi. To6s
on ndidatud, et nimetatud viga kirjeldab esialgsest Iohustumisallikast pohjustatud vigade vihene-
mist ning siistemaatilist viga 1dhustumisneutronite allikas. Kui see arvutusviga kombineerida arvu-
tusteks eraldatud ajaga (kdigi simuleeritud neutronite arvu kujul), on vdoimalik kirjeldada arvutuse

efektiivsust.

Toos on kokku voetud olemasolev teooria I6hustumisallika koonduvusest ja vigade analiiiisist
Monte Carlo kriitilisusarvutustes ning iile voetud matemaatiline notatsioon vigade edasiseks ana-

litisiks. Lisaks on esitletud kumulatiivse 16hustumisallika suhtelise vea matemaatilist kédsitlust.

Seejirel on vilja pakutud meetod kumulatiivse Monte Carlo 16hustumisallika vigade otseseks hin-
damiseks. Meetod kasutab &ra kahte Iohustumismaatriksi (ingl k fission matrix) omadust. On teada,
et I0hustumismaatriksit on vdimalik korrektselt arvutada ka juhul, kui I8hustumisallikas on suur

siistemaatiline viga, eeldusel et diskreetimisvore (ingl k mesh) elemendid on piisavalt véiksed.
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Lisaks on tdheldatud, et Il6hustumismaatriksi omavektor (mis on ekvivalentne 16hustumisneutroni-
te allika jaotusega) koondub kiiremini kui kumulatiivne I6hustumisallikas. Viljatootatud meetod
kasutab I6hustumismaatriksi omavektorit kumulatiivse Iohustumisallika vigade hindamiseks. Kat-

searvutuste tulemused toetavad meetodi kasutatavust.

Lohustumismaatriksi omavektori meetod annab olulisi tulemusi Monte Carlo kriitilisusarvutus-
te vigade hindamises. Traditsioonilised dispersioonihinnangud ei ilmesta siistemaatilisi vigu ega
esialgsest 1dhustumisallikast pohjustatud arvutusvigu. Viljapakutud meetod vdimaldab hinnata
toeliste arvutusvigade suurusjirku, arvestades sealjuures kahest eelmainitud nihtusest pdhjustatud
vigu. See on oluline arvutustulemuste usaldusvéirsuse seisukohast, kuna 16hustumisallika jaotuse
vead mojutavad koiki arvutatud véartusi, kaasa arvatud voimsusjaotust voi paljundustegurit (ingl

k multiplication factor).

Kahtlemata on meetodil ka omad puudused. Nagu eelnevalt mainitud, peab 16hustumismaatriksi
arvutamisel kasutatav vOre olema piisavalt viikeste elementidega, kuid ei ole teada, kuidas nende
piisavat suurust midrata. See on teema, mis vajab tdiendavat uurimist, et iikskdik millist I5hus-
tumismaatriksil pohinevat meetodit kasutada. Alapeatiikk 3.4 pakub ideid, mida oleks sel teemal
voimalik edasi arendada. Lisaks sellele vajab 10hustumismaatriksi omavektori meetod tdiendavat

katsetamist ning kinnitust sellele, kas tulemused jaotuvad tdeliste vigade suhtes normaaljaotusega.

Kirjeldatud otsene vigade hindamine ei paku optimieerimiseks vajalikku analiiiitilist informatsioo-
ni. Seetdttu on tuletatud lihtsustatud mudel, kirjeldamaks suhtelist viga kumulatiivses 18hustumis-
neutronite allikas. Antud mudel pakub seose vea ja tsiikli populatsiooni suuruse, kdigi simuleeritud
neutronite arvu, siisteemi dominantsussuhte (ingl k dominance ratio) ning algse 16hustumisallika
vea vahel. Mudelit on katsetatud arvutustes ning nédidatud, et see on piisav kirjeldamaks vigade

muutumist arvutustsiiklite jooksul.

Lihtsustatud veamudelit on seejirel rakendatud, et leida vorrand teatud arvutuskestusele vasta-
vale tsiiklis simuleeritava neutronite populatsiooni optimaalsele suurusele. On tuletatud valem,
mis annab optimaalse populatsiooni suuruse funktsioonina kdigi simuleeritud neutronite arvust,
dominantsussuhtest ning veast esialgses 16hustumisallikas. Optimaalsustingimust on kontrollitud

katsearvutustega.

Kuna dominantsussuhe ja viga esialgses I6hustumisallikas on iildjuhul tundmatud suurused, on
arendatud vilja uus meetod: STORM (Stohhastiline kiiresti koonduv kriitilisusarvutuse meetod,
ingl k Stochastic rapidly convergent criticality method). Viljatootatud meetodis kasutatakse ka-
heastmelist arvutust, mille esimene osa kasutab murdosa koigist simuleeritavatest neutronitest, et
hinnata dominantsussuhet ja viga esialgses allikas; nende védrtuste alusel arvutatakse optimaalne
tsiikli populatsiooni suurus, mida kasutatakse arvutuse teises osas, et tagada maksimaalne efektiiv-

sus. Meetod on testitud ja selle kasutatavus tdestatud praktilistes arvutustes.

Kdigepealt demonstreerib analiiiis, et tsiiklis kasutataval neutronite populatsiooni suurusel on mér-
gatav moju arvutuste efektiivsusele. Kuna tsiikli populatsiooni suurust tavapéraselt ei optimeeri-

ta, jouavad arvutused iilemiira suure siistemaatilise veaga tulemusteni voi koonduvad aeglaselt
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ja algsest 16hustumisallikast jadb tulemustesse suurem viga kui voiks. Viljatootatud metoodika
kindlustab, et teatud kestusega arvutus saavutab parimad vdimalikud tulemused ténu tsiikli popu-
latsiooni optimaalsele suurusele. See on oluline tulemus pikemate ja arvutuslikult ndudlikumate

simulatsioonide jaoks.

Ka STORMil on omad puudused: veamudel on tugevalt lihtsustatud ja voib teatud juhtudel ooda-
tust halvemaid tulemusi anda. Lisaks sellele tehti optimaalset tsiikli populatsiooni suurust tuleta-
des tdiendav lihtsustus iihe konstandi késitluses, mis vdib vajada tdiendavat uurimist ja arendust.
STORMi korrektne rakendamine soltub arvutuse esimese osa digest seadistusest ning siisteemi

dominantsussuhte hindamise meetodist, mis vdib vajada tdiendavat katsetamist.

Mbdlemad t60s vilja arendatud meetodid, nii Iohustumismaatriksi omavektori meetod kui ka STORM,
on olemuselt universaalsed ja rakendatavad kasutuses olevates Monte Carlo arvutusprogrammides.
Lohustumismaatriksi omavektori meetodi kasutamiseks on vajalik 16hustumismaatriksi arvutus
ning STORM on rakendatav igasuguse dominantsussuhte hindamise meetodiga. Mdlemad ndu-
tud tingimused on mitmetes programmides juba tdidetud, mis muudab viljatéotatavad meetodid

praktikas rakendatavateks.

Too tditis oma eesmirgi, pakkudes vilja uudse meetodi, mis parandab Monte Carlo kriitilisusarvu-
tuste efektiivsust. Tsiikli populatsiooni suuruse optimeerimisel ja STORMIil on potentsiaali Monte
Carlo arvutuste jaoks vajalike arvutusressurside kasutuse efektiivsuse suurendamisel ning 16hustu-
mismaatriksi omavektori meetod voimaldab jélgida tdelisi arvutusvigu. Autor loodab, et mdlemat

meetodit uuritakse edasi ning kaalutakse nende rakendamist Monte Carlo arvutusprogrammides.
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Estimation of errors in the cumulative Monte Carlo fission source
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Abstract

We study the feasibility of estimating the error in the cumulative fission source in Monte Carlo criticality calculations by
utilising the fundamental-mode eigenvector of the fission matrix. The cumulative fission source, representing the source
combined over active cycles, contains errors of both statistical and systematic nature. Knowledge of the error in the
cumulative fission source is crucial as it determines the accuracy of computed neutron flux and power distributions.
While statistical errors are present in the eigenvector of the fission matrix, it appears that these are not (or they
are only weakly) correlated to the errors in the cumulative fission source. This ensures the suggested methodology gives
error estimates that are distributed around the real errors, which is also supported by results of our numerical test

calculations.

Keywords:

Monte Carlo, criticality, fission source, cumulative, convergence, error, bias

1. Introduction

Conventional Monte Carlo criticality calculations sim-
ulate subsequent neutron generations in so-called cycles.
The fission source is expected to converge to the steady-
state during a certain number of inactive cycles in which
no results are being collected. Results of interest are then
combined over a number of active cycles. While the fis-
sion source is supposed to be converged during the ac-
tive cycles, there is no diagnostics methodology that could
guarantee that with certainty, although progress has been
made in this field (Ueki and Brown, 2003). Hence, the fis-
sion source may be sampled during the active cycles from
a distribution that is far from steady-state; moreover, the
fission source may also contain a bias not decaying over
the cycles at all (Brissenden and Garlick, 1986). Conse-
quently, the fission source introduces errors into the results
sampled over the active cycles (such as the neutron flux
and power distributions). We could accept this fact if we
had the knowledge of the error in the cumulative fission
source (i.e., the error in the fission source that was com-
bined over the active cycles).

The purpose of this paper is to investigate the feasibil-
ity of estimating the error in the cumulative fission source.
The estimate should reflect not only the error due to the
convergence problems; it should also reflect the bias and
random errors. We investigate the possibility of achieving
this goal via utilising the fundamental-mode eigenvector
of the fission matrix. The fission matrix has been already
used in a number of unrelated methods (Carter and Mc-
Cormick, 1969; Kadotani et al., 1991; Kitada and Takeda,
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2001; Dufek and Gudowski, 2009; Brown et al., 2013a,b),
and a number of established Monte Carlo criticality codes
offer the fission matrix as an optional result. Naturally, the
fission matrix contains random errors that are also present
in its eigenvector; in this paper, we analyse whether these
errors allow using the eigenvector for estimating the error
in the cumulative fission source.

The paper is organised as follows. Aspects of con-
vergence of the Monte Carlo fission source are briefly de-
scribed in Section 2. The methodology of estimating the
error in the cumulative fission source is suggested in Sec-
tion 3. Results of the numerical test calculations are given
in Section 4. Our conclusions are summarised in Section 5.

2. Aspects of source convergence

The eigenvalue (criticality) equation for the fission source
can be written as

ks(r) = Hs(r), (1)

where k is the eigenvalue, s(r) is the concentration of fis-
sion neutrons at r, and

Hs(r) E/dST,f(I‘, —1)s(r’),

\%4

where f(r’ — r)d3r is an expected number of first gen-
eration fission neutrons produced in the volume element
d3r at r, resulting from a fission neutron born at r’. An-
gular dependence is not considered since fission neutrons
are emitted isotropically. The Monte Carlo fission source
is represented by a batch of m neutrons with specific po-
sitions, energies, and statistical weights.
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Eq. (1) has many eigen-pair solutions, s; and k;, but
only the fundamental-mode solution (corresponding to the
largest eigenvalue) has a physical meaning. The respec-
tive modes are commonly ordered according to the abso-
lute value of their eigenvalue, from the largest (associated
with the fundamental mode j = 0) to the smallest. To
simplify the notation in the following text, we denote the
fundamental-mode fission source as z; z = sg.

To obtain the fundamental-mode solution, Monte Carlo
criticality codes apply the power iteration on the fission
source; this iteration can be formally described as

S(l+1) = WHS(I) + G(l) (2)
) d3rH
g _ Jydr Hs(r) 3)

m

where the steps ¢ = 0,1,... are commonly referred to
as “cycles”, e (r) is the random error component result-
ing from sampling a finite number of neutron histories in
cycle i. The initial fission source s(9) must be guessed.
The above iteration assumes that the Monte Carlo fission
source is always normalised to m; i.e.,

/Vdgr s(r) =m.

In classical Monte Carlo criticality calculations, a num-
ber of inactive cycles must be performed just to decay the
error present in s(?), while results of interest are sampled
over the subsequent active cycles.

As with any Monte Carlo simulation, the random error
component € (r) is of the order O(1/y/m). Moreover, we
can assume that (Gelbard and Gu, 1994)

E[e?] = 0.

The random noise in the fission source can thus be reduced
by simulating more neutron histories, at the expense of a
larger computing time. The random noise in the fission
source € is, however, not a relevant problem as long as
the results are combined over a sufficiently large number
of active cycles n. The random noise in the cumulative

fission source N
Sgn) - Z s, (4)
i=ix+1

being of the order O(1/1/mn), can then be neglected. In
Eq. (4), ix denotes the number of inactive cycles.

Gelbard and Prael (1974) showed that the random er-
rors propagate over the cycles of Monte Carlo criticality
calculations, which results in the presence of a bias in the
fission source of the order O(1/m). Thus, the converged
Monte Carlo fission source is never sampled from the cor-
rect fundamental mode z, but from a biased fundamental
mode that we denote as z,,. This bias is indeed reflected
in the cumulative fission source. We show an example of
a biased cumulative fission source in Section 4.
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Ueki et al. (2003) have shown that convergence of the
Monte Carlo fission source s() to z,, is governed by the
dominance ratio k;/ko at the rate of O((k1/ko)?). This
is also a well known fact in deterministic calculations (al-
though the solution is not biased there). This has an im-
portant consequence to systems with dominance ratio close
to unity; if the initial fission source contains a large error
then many cycles are necessary to decay this error. There
is a risk then that active cycles (and hence the cumulative
fission source) will be corrupted.

3. Estimating the error in the cumulative Monte
Carlo fission source

In discrete phase-space notation, the eigenvalue (criti-
cality) equation for the fission source can be written as

Hs = ks (5)

where H is commonly referred to as the fission matrix
(Carter and McCormick, 1969). The fission matrix H is
the space-discretised operator H; The (i, j)*" element of H
represents the probability that a fission neutron born in
space zone j causes a subsequent birth of a fission neutron
in space zone 1,

JdBr[d3r' f(r' —1)2(r)
Zi 7

[ &3 2(x', E)

Z;

H[i,j] = (6)

The fundamental mode eigenvalue of H equals keg, and the
corresponding eigenvector h equals the discretised funda-
mental mode fission source z(r).

A number of Monte Carlo codes, e.g. TRIPOLI-4 (OE-
CD/NEA, 2008) and KENO V.a (RSICC, 2006), can op-
tionally calculate the fission matrix during standard Monte
Carlo calculations. Dufek and Gudowski (2009) showed
that the fission matrix becomes less sensitive to errors in
the fission source as the mesh zones get smaller. Hence, the
errors in the fission source become irrelevant for sampling
the fission matrix when the zones are sufficiently small.
This means that the fission matrix and its fundamental-
mode eigenvector can be correctly evaluated during a Monte
Carlo criticality calculation even with a biased fission source.
We suggest utilising this quality of the eigenvector of the
fission matrix in estimating the error in the cumulative
fission source.

We define the relative scalar error € in the cumulative
fission source sé”) discretised over a space mesh as

; (7)

where ~ denotes a normalisation operator defined for any

vector X as
bd

Il

)’v(:



and the one-norm is defined as
Ixl = Jal.
i

In Eq. (7), z is the fundamental-mode source discretised
over the same mesh as the cumulative fission source.

The fundamental-mode source z in Eq. (7) is unknown;
hence, the correct value of € cannot be computed. We
suggest to estimate its value as

s= Hggm BENC)

. ®)
where h(™ is the eigenvector of the fission matrix H()
that was sampled over the same cycles as the cumulative
fission source sﬁ”).

Naturally, the fission matrix H("™ contains random er-
rors of the order O(1/4/nm) that must also be present in
its eigenvector h(™. We denote the random errors in h("
by the vector 6™,

6™ =n" -z (9)
while we denote the errors in één) by the vector (™,
~™) = ggn) — 7z,

so that
7

c= S|,

(3

Then we can write Eq. (8) as

&= H7<n> _

, 10
L (10)
that can also be written as

Note that 4(™) contains not only statistical errors, but
also the bias and the partly decayed errors coming from
the initial fission source.

Since both h(™ and z are normalised to unity, we can

write ~
PIRIEDET (12)

Since all elements in h(™ and z are non-negative, the ab-
solute value signs can be removed,

3 (BE’” - z) —0, (13)

K2

; (11)

which is equivalent to

S =o. (14)
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Hence, the vector () must contain both positive and neg-
ative elements so that their sum would equal zero. This
quality of (™ suggests that the expected value of ¢ equals

E(¢) = Z

assuming that 6™ and (™ are not correlated. Hence, if
this condition is satisfied then the error estimate é given
by Eq. (8) is normally distributed around e. It is, how-
ever, not apparent whether this condition is satisfied. The
purpose in the numerical calculations in Section 4 is to
analyse this.

7" =e, (15)

4. Numerical test calculations

4.1. Numerical test model

The numerical test model represents a fuel pin cell with
parameters summarised in Table 1. Reflective boundary
conditions were applied to all radial faces; non-reflective
void boundary conditions were applied to the axial faces.
This model is based on a common PWR fuel pin cell; only
the pin length was increased to 10m in order to achieve
the dominance ratio of a large core.

Table 1: Specifications of the pin cell model.

Fuel U0,
Cladding material Zr
Moderator light water
Radius of fuel pellets 0.41cm
Outer radius of cladding 0.475cm
Rod pitch 1.26 cm
Length of the fuel rod 1000 cm
235U enrichment 3.1 wt%
Fuel density 10g/cm?
Moderator (water) density 0.7 g/cm?

Based on the fission matrix computed during the ref-
erence calculation (see Sec. 4.2), we have evaluated the
dominance ratio of the test model at 0.9982, which en-
sures that convergence of the fission source is similar to
that in large reactor cores and loosely-coupled systems.

All numerical calculations were performed by an in-
house non-analogue continuous-energy 3D Monte Carlo
criticality code using the JEFF3.1 point-wise neutron cross-
section library.

4.2. Reference calculation

The fundamental-mode of the fission source is not avail-
able in an analytical form for the numerical test model;
hence the need for a reference calculation. Parameters of
the reference calculation are summarised in Table 2. The
reference distribution of the fission source, s,.f, was eval-
uated via a sufficiently fine uniform mesh with 100 axial
zones, and combined over all active cycles. As the test



model is axially symmetrical, we have further improved
the accuracy of s.of by averaging its elements in symmet-
rical positions.

Table 2: Parameters of the reference calculation.

Neutron batch size 50,000
Number of active cycles 2,000,000
Number of inactive cycles 2000
Initial fission source flat

Fig. 1 depicts the reference solution together with an
example of a biased cumulative fission source obtained via
a criticality calculation with a batch size of only 10 neu-
trons. While the bias in the reference solution is negligible
(due to the large neutron batch size), the biased fission
source shows the typical flattening of its distribution.
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Figure 1: The reference fission source and an example of a biased
fission source (b denotes the neutron batch size, and h denotes the
total number of neutron histories simulated in active cycles).

4.8. Estimating the error in the cumulative source

Table 3 specifies the test calculations (A-D). While the
neutron batch size varied in calculations A-D, all calcula-
tions simulated 10° neutron histories. The initial fission
source was randomly sampled from a uniform distribution
in the first cycle of each calculation. In each calculation,
the fission matrix was sampled over all cycles; no cycles
were skipped.

Table 3: Parameters of calculations A-D.

Calculation A B C D

Neutron batch size 50 500 5000 50,000
Number of neut. hist. 10° 10° 10° 10°

For the purpose of the test calculations, we set the axial
dimension of all zones to 10cm; hence, we evaluate the
fission matrix via a spatial mesh with 100 zones. This mesh
appears sufficient for eliminating the bias in the fission
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Figure 2: Comparison of the reference solution and the eigenvector
of a fission matrix sampled by a biased fission source.

matrix (that could possibly arise from the biased fission
source). This is demonstrated in Fig. 2 that compares the
eigenvector of the fission matrix to the cumulative fission
source biased by the batch size of 50 neutrons; the fission
matrix was sampled by the actual biased fission source.
While the fission source is heavily biased, the eigenvector
of the fission matrix is close to the reference solution in
Fig. 2.

In calculations A-D, the real relative error ¢ in the cu-
mulative fission source distribution s, is evaluated as

e = 15 — Srerl, (16)

The estimation € of the relative error in a cumulative fis-
sion source is computed according to Eq. (8).

The values of € and ¢ obtained from all the test cases
are compared in Tables 4-7. In each calculation, the values
of ¢ and ¢ are calculated at several stages, always after
simulating 106, 107, 10® and 10° neutron histories. To
associate a certain value of € or € to a certain stage, we add
a superscript in square brackets to € and e, denoting the
number of simulated neutron histories; e.g., the values of
119" and £[10°] are computed after simulating 10° neutron
histories.

Results from calculation A (with the batch size of 50
neutrons) are summarised in Table 4. As the bias in the
fission source is large due to the small neutron batch size
(as depicted in Fig. 1), 6[107], £[19*) and £[19°) remain about
equally large, close to 20%. This is correctly captured by
the corresponding values of é[107], l10°] and &110°1. The
value of £10°] is less than half of that of £[9); in this
case, the relatively large random errors in the eigenvector
of fission matrix (that was sampled by only 10° neutron
histories) decreased the estimated error.

Results from calculation B (with the batch size of 500
neutrons) are summarised in Table 5. Here, values of &
also correspond well to e, with the exception of the value
of 2010°] that underestimated the real error several times.

Results from calculation C (with the batch size of 5000
neutrons) are summarised in Table 6. This case shows



Table 4: Comparison of € and € in calculation A (with the batch size
of 50 neutrons) [%)].

h (# of neutron histories) e’ &l
108 36.7 149
107 18.3 184
108 18.1 18.2
109 20.2 18.6

Table 5: Comparison of € and ¢ in calculation B (with the batch size
of 500 neutrons) [%)].

h (# of neutron histories) eltl &l

108 24.0 19.8
107 124  8.21
108 3.78 1.10
10° 4.53 3.63

that € may overestimate the real error several times as
well; note the value of 119 and 20197 The small bias in
the cumulative fission source combined over 10° neutron
histories was correctly estimated.

Table 6: Comparison of € and € in calculation C (with the batch size
of 5000 neutrons) [%].

h (# of neutron histories) et &l

108 17.7  41.0
107 8.23 18.3
108 8.41 6.44
10° 1.17 1.25

Results from calculation D (with the batch size of 50,000
neutrons) are summarised in Table 7. In this case, € esti-
mated the real error in the cumulative fission source in all
stages of the calculation with a good accuracy.

We wish to stress that the above results depend on
the initial seed value in the RNG; as such, € is a random
variable. Repeating the identical calculation with another
seed would produce different results (both & and ). Nev-
ertheless, the above results suggest clearly that € can be
used in estimating the order of magnitude of the error in
the cumulative fission source.

5. Conclusions

The fact that the fission matrix can be well sampled
even by a biased or not converged Monte Carlo fission
source can be utilised for various purposes. In this paper,
we have analysed the possibility of using the fundamental-
mode eigenvector of the fission matrix for estimating the
error in the cumulative fission source. The question we
attempted to answer was whether the random errors, that
are naturally present in the eigenvector, allow us to obtain
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Table 7: Comparison of € and € in calculation D (with the batch size
of 50,000 neutrons) [%)].

h (# of neutron histories) el &l

106 379  28.2
107 26.1 25.1
108 4.51 4.29
10° 1.15 1.25

a useful estimation of the error in the cumulative fission
source.

We can conclude that the estimation of the error in
the cumulative fission source obtained via the eigenvector
of the fission matrix is distributed around the real error,
assuming that the random errors in the eigenvector and
the cumulative fission source are not correlated. Validity
of this assumption is, however, not apparent. Neverthe-
less, our numerical test calculations confirmed the error
estimates were distributed around the real errors, which
suggests the errors are either not correlated or the corre-
lation is weak. The error estimations correctly captured
the presence of the source bias as well as the source errors
coming from the initial fission source.

The future research may consider testing of the sug-
gested methodology using better statistics on a variety
of systems, including radially heterogeneous, full-core sys-
tems. Further attention may also be devoted to analysing
the impact of the space mesh quality on the results.
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Abstract

We present a methodology that improves the efficiency of conventional Monte Carlo criticality calculations by optimising
the number of neutron histories simulated per criticality cycle (the so-called neutron batch size). The chosen neutron
batch size affects both the rate of convergence (in computing time) and magnitude of bias in the fission source. Setting
a small neutron batch size ensures a rapid simulation of criticality cycles, allowing the fission source to converge fast to
its stationary state; however, at the same time, the small neutron batch size introduces a large systematic bias in the
fission source. It follows that for a given allocated computing time, there is an optimal neutron batch size that balances
these two effects.

We approach this problem by studying the error in the cumulative fission source, i.e. the fission source combined
over all simulated cycles, as all results are commonly combined over the simulated cycles. We have derived a simplified
formula for the error in the cumulative fission source, taking into account the neutron batch size, the dominance ratio of
the system, the error in the initial fission source and the allocated computing time (in the form of the total number of
simulated neutron histories). Knowing how the neutron batch size affects the error in the cumulative fission source allows
us to find its optimal value. We demonstrate the benefits of the method on a number of numerical test calculations.

Keywords: Monte Carlo criticality, source convergence, source bias, error propagation, dominance ratio, optimisation

1. Introduction

Monte Carlo criticality calculations require the user to
set a number of free parameters, namely the number of ac-
tive and inactive cycles, neutron batch size, and the initial
fission source. The efficiency of calculations is affected by
the choice of these parameters, most of all by the neutron
batch size. Generally, a large neutron batch size is pre-
ferred in order to decrease the systematic biases (Brown,
2009; Gast, 1969; Gast and Candelore, 1974). However, a
large neutron batch size limits the number of cycles that
can be simulated in allocated computational time, hence,
the error originating from the initial fission source may
not decrease sufficiently, corrupting the accumulated re-
sults. Thus, the selection of neutron batch size represents
an optimisation problem.

The errors in the fission source, including the source
bias and the error originating from the initial fission source,
directly affect all possible results of Monte Carlo critical-
ity calculations that are collected over a number of cycles.
Hence, for the purpose of this paper, we find it reason-
able to define the general error of the calculation, that we
need in evaluating the computing efficiency (the figure of
merit), as the error in the cumulative fission source.

In this paper, we present a simplified model for the er-
ror in the cumulative fission source. The model estimates
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the error based on the neutron batch size, the chosen total
number of neutron histories to be simulated, the domi-
nance ratio of the system, and the estimated error in the
initial fission source. Using this model, we can determine
the optimal neutron batch size to achieve the maximum
figure of merit.

The existing source convergence theory is summarised
in Sec. 2 and the simplified error model is derived in Sec. 3.
Following that, the optimal batch size is derived in Sec. 4.
Sec. 5 contains the description and results of numerical
test calculations. Our conclusions are presented in Sec. 6.

2. Governing equations

Monte Carlo criticality calculations solve the steady-
state k-eigenvalue neutron transport equation. This equa-
tion, in operator notation, can be written as

Hs; = kjs; (1)

where k; and s; constitute the eigenpairs of H, an operator
comprising the terms of an angle and energy integrated
transport equation.

Eq. (1) presents an eigenvalue equation translated into
discretised phase-space (Gelbard, 1992; Gelbard and Gu,
1994; Gelbard and Prael, 1974). In this notation, the sys-
tem is divided into spatial regions. Such a notation is only
adopted to simplify the mathematical framework needed
to carry out the theoretical analysis.
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As a part of this discretisation, the operator in the
eigenvalue equation is described as a matrix, known as the
fission matrix (Brown et al., 2013; Carter and McCormick,
1969). In a similar manner, the fission source distribution
is represented as a vector where each element specifies the
number of fission neutrons in the corresponding discrete
space cell.

In the laid out notation, a cycle in the eigenvalue cal-
culation can be described as (Gelbard and Prael, 1974)

; Hs® ;
S('+1) = W + 6() (2)

where s and s"t1) are fission source vectors in consec-
utive cycles and € is the stochastic error component re-
sulting from sampling a finite number of histories per cycle.
The eigenvalue, k(9 is estimated as an integral quantity
of the fission source

THs®
m

L@ —

(3)

where m is the number of neutrons sampled in the cycle—
the neutron batch size—and the vector 7 = (1,1,...,1) is
an integral operator in the same dimension as the number
of discretisation cells. A normalisation is imposed on the
fission source in each cycle, ensuring that 7s(9 = m.

Estimates for quantities of interest are averaged over
the cycles. For any quantity x the mean, or ensemble
average, (2(™) over n cycles is defined as

<x(n)> = %i 2@ (4)
i=1

where z(® is the i*" cycle estimate of .

Eq. (2) presents an iterative process, very much like
the power method. Eigenvalue powering converges to the
fundamental mode eigenpair; and in this light, it is com-
mon to order the eigenvalues descendingly by the mod-
ulus, starting from the highest (kg > |k1| > ...). The
convergence of the power method is governed by the ra-
tio k1 /ko—the dominance ratio (Goult et al., 1975). Tt
has been reasoned that the dominance ratio also charac-
terises the convergence of Monte Carlo criticality calcula-
tions (Ueki et al., 2003, 2004).

As it is characteristic for Monte Carlo calculations, the
errors of statistical sampling in combined results are of
the order O(1/y/mn), with mn being the total number of
neutron histories simulated over n cycles. These errors are
always decreased by increasing the number of simulated
histories and are not dependent on the choice of neutron
batch size. For any Monte Carlo process it is assumed that
E[e®] = 0 (Gelbard and Prael, 1974).

It has been long known that the results of Monte Carlo
eigenvalue calculations contain systematic errors. The mag-
nitude of these errors, known as biases, have been shown to
be inversely proportional to the neutron batch size (Bris-
senden and Garlick, 1986; Dubi and Elperin, 1985; Enosh
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et al., 1990; Zolotukhin and Maiorov, 1983). By definition,
the bias in the Monte Carlo estimate of the fundamental
mode eigenvector is (Gelbard and Prael, 1974)

Asy =8 —sg = <;s(”)> — S (5)

where sg is the correct fundamental mode eigenvector of
Eq. (1) and s§ is the biased estimate, both normalised to
unity. The definition of bias is based on the assumption
that the calculation has converged and the statistical er-
rors have become negligible. Following suit, the eigenvalue
bias is defined as

Ak = ki) — ko = <k(")> — ko (6)

where asterisk denotes a biased quantity, like above.
Brissenden and Garlick (1986) have shown how to quan-
tify the bias in the eigenvalue; however, calculating the
bias in the fission source has remained an unsolved prob-
lem. Nevertheless, we can learn more about it by analysing
cycle-wise error propagation.
The fission source error in cycle 7 is introduced as

e = s _ms. (7)

In order to analyse such error vectors, Eq. (7) is substi-
tuted into (2) and the latter expanded in series as

eli+1) — i - THe" \' | H (mso + )
= komTsg koTso (8)

— mSg + e(i).

As the biases are of the order O(1/m), the terms of a
smaller order in m can be disregarded (Brissenden and
Garlick, 1986; Gelbard and Prael, 1974). After normalis-
ing the fundamental mode eigenvector to unity, 7so = 1,
Eq. (8) can be simplified to

elitD) =~ Al _ TH eMAe® 4 ) (9)
kom

The operator A—the noise propagation matrix—in Eq. (9)

is a result of combining terms in the expansion of the error
vector,

(10)

where I is the identity matrix (Gelbard and Prael, 1974).
It has been shown that the highest modulus eigenvalue
of the noise propagation matrix corresponds to the dom-
inance ratio of the system (Nease, 2008; Nease and Ueki,
2009).

Gelbard (1992) showed that after a large enough num-
ber of cycles, when the process is stationary, noted by
(e™) = (e("= 1) Eq. (9) yields

-1
<e(n)> __I-A) (11)

T A <e(")e(”)T> H'rT.



This shows that the iteration converges to a non-zero value—
the bias.

In addition to the error vector specified in Eq. (7), we
define the relative error in one cycle as the error normalised
to one neutron history

@

m m

— S0 - (12)
For any relative error vector €, we define its magnitude as
its norm

e = lell (13)

We define the error € in the cumulative fission source
(the source combined over all cycles) as the relative error
e averaged over n cycles,

_ n I, ) 1~
€:<€<>>:n;€<>:mn;e<>

For a stationary process, the relative error in the cumu-
lative fission source is equal to the bias Asg; hence, the
relative error decays into the bias in conditions matching
its definition (i.e. no significant contribution from other
sources of error). A method for direct estimation of the
error in the cumulative fission source was proposed by
Tuttelberg and Dufek (2014); however, such an approach
does not provide analytical information needed for neutron
batch size optimisation.

(14)

3. Simplified model of the error in the cumulative
fission source

First of all, we choose to decompose the error vector
into three components
el = ex) + eg) +el (15)
where the first term, el A , describes the decay of the error
coming from the initial fission source; the second term,
eg), includes the bias; and the third term, e%), is the
stochastic error component.
We express the scalar relative error in cycle ¢ as
e = [e@] = e} + i) + I (16)
By properties of norms, the value on the right hand side
has an upper bound of

(@)

1€} + e + DI < 1D+ €D+ 1) a7
so that ' _ _ _
@ < EX) + 5%) + 5%) (18)
which implies
E<és+ép+eér (19)
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We specified Eq. (15) so that the eg) component de-
scribes the bias; thus, when the calculation has become
stationary, we can write

(n)
en = Asy = <e> |
m

Based on that and Eq. (11

(20)

), we can continue by writing

—:rL(I—A)_lA<

(21)

Ep =

e(n)e(n)T HTTT
m .

ko

It is possible to show that this component is in fact of the
order O(1/m), as we would expect from the bias.

As the fundamental mode eigenvalue of the noise prop-
agation matrix is equivalent to the dominance ratio of the
system, we know that the spectral radius of the matrix is
less than one, allowing us to write the inverse as a Neu-
mann series

=> Al (22)
j=0
From the definition of cycle-wise error it follows that
(n)
A <e> = As}
m
and
<e(”)T> H'+" = mAkg.
The norm is then expressed as
1 > : mA/ﬂo
epl| < |—— Als; . 23
el < |- |5 A% |2 (23)

Brissenden and Garlick (1986) proved that Akg € O(1/m),
thus mAkg is not dependent on m.

For an unbiased source, the product A’s} is a zero
vector by definition; however, in case of a biased source it
contains non-zero elements. We expand it as a weighted
sum of eigenvectors (keeping in mind Asg = 0)

. kl J k2 !
AJSOZO+G1 - S1 + a2 So + ...
ko ko
, (24)

where a-s are coefficients not dependent on m. From this
we approximate the norm of the power series as

k
ZAJSO <Z||Aﬂs0|| ) (1k;> sl

(25)
which shows that the sum converges to a value of the order
O(1) in m; and the bias component e € O(1/m).



Now we can write the bound on the scalar relative error
introduced by the bias as
_ 1
Ep < —B (26)
m
where B is a constant dependent both on the system and
the chosen norm type. Similarly, we write the bound for
the £z component as

1
Er < —R 27
RS (27)
where R is another system and norm dependent constant.
To proceed, we simplify Eq. (9), the error propagation
equation, into

e = Ael"Y 4+ 0 (m™') + eli=b (28)
to overcome its non-linearity. This equation can be re-
written as

e =Ale® +0(m™!) + Z ATl (29)
j=1

yielding a decomposed relative error vector

e = Ale® 4 &) 4 D (30)

We denote gy = &(® and write
e(j) = A'gy. (31)

According to properties of norms, this component of the
scalar relative error is bounded by

eQ) = |A%eo|| < [|A[lleoll = ol AT . (32)

Since the noise propagation operator is a square ma-
trix, we know that

k1

ko (33)

lim [|A7]]Y7 = p(A) =
J—o0

where p stands for spectral radius. From this we obtain
an approximation that improves quickly, cycle by cycle

jaot = (B en

Finally, we obtain a bound for the EE;) term in Eq. (18)
as

i i (R
Q) < colafl e () )

which results in
€A <EA >*n E_l(ko)go' (36)

The scalar g is the relative error committed by guessing
the initial fission source. This quantity is also norm de-
pendent like the constants B and R.
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From Egs. (19), (26), (27), and (36) we obtain a bound
for the scalar relative error in the cumulative fission source

as
I GK (R B R
egn;<ko>so+m+m. (37)
This equation is presented as a strong simplification,
where the whole system is described solely by the domi-
nance ratio. Nevertheless, finding a simple model was the
authors’ intention. Considering the availability of methods
for on-the-fly dominance ratio estimation (Herman et al.,
2013; Sutton et al., 2011), the model is certainly applica-
ble.

4. Derivation of optimal neutron batch size

We choose the total number of simulated neutron his-
tories h and neutron batch size m to be independent pa-
rameters; hence, the total number of cycles n is

= . 38

n=" (39)

Based on the bound derived in Eq. (37), the equation
we use to model the changes in errors is written as

h/m i
N meo kl B R
€= —— — | +—=+—F. 39
AR S
For larger values of n, this equation can be further simpli-
fied by treating the finite sum as infinite, so that

—1
B
é:mso<1—k1> SREAE (40)

which is a good approximation for the intended application
of this equation, where the value of n will be relatively
large.
The efficiency of the calculation is described by the
figure of merit, which we will define as
FOM L 41
~ é2h (41)
where we have replaced the standard deviation with the
relative error in the cumulative source and assumed the
computational time proportional to the number of histo-
ries.
The figure of merit can be maximised by minimising
the denominator in the equation above. The optimum
condition is then written as

OER) _ e [60 (1 - kl>1 - B
h

o ko | = 0. (42)

This equation can be rearranged into an expression for the

neutron batch size
B k1
h—(1—-— 43
2 (1-3) (13)



which satisfies the optimum condition. The division in the
term B /ey compensates for scaling introduced by taking
the norm of an error vector. The constant B describes
how a certain system is affected by source biasing and is
not calculable in general. We can expect that the maxi-
mum relative error caused by the bias is one when a single
neutron history is simulated per cycle; thus, for practical
applications we make a simplification and assume B = 1
to obtain an equation for the optimal neutron batch size.

b (1 - ’“) (44)
€0 ko
given the total number of simulated neutron histories, dom-
inance ratio of the system, and relative error in the initial
fission source. This equation enables one to determine a
value for the neutron batch size that balances its effects
on the speed of source convergence and biasing of results.
In order to apply Eq. (44), the dominance ratio and
the error in the initial fission source are needed. Fortu-
nately, both quantities can be estimated with reasonable
accuracy and effort during an initial stage of the Monte
Carlo criticality calculation. We suggest to evaluate these
parameters during the simulation of a small fraction (e.g.
1%) of the specified total number of neutron histories.
The dominance ratio can be evaluated by a number of
methods, such as the NPM method (Sutton et al., 2011)
or the CMFD based method (Herman et al., 2013). The
error in the initial fission source can be estimated by the

eigenvector of the fission matrix as (Tuttelberg and Dufek,
2014)

Mopt =

s —aly

ST (45)

where s(©) is the initial fission source, mg is the neutron
batch size chosen for the first ng cycles, and q is the eigen-
vector calculated from the fission matrix that was sampled
during the initial cycles (normalised to the batch size mq).
If the fission matrix is not available, a very rough approx-
imation can, instead, be taken as

o o 159 = se/mol

5o (46)

where s, is the cumulative fission source combined over
ng cycles. The factor 2 in Eqs. (45) and (46) scales the
maximum possible value of £y to one.

The estimation of dominance ratio is improved by sim-
ulating more cycles (Nease et al., 2008); and since the bias
is of no concern in these initial cycles, we recommend to set
a small value for mo, for example so that ng = m3. This
results in mg = /hg, where hg is the number of histories
used in the estimation stage.

After the initial stage, the estimated values of &y, and
the dominance ratio are used in Eq. (44) to evaluate the
optimal neutron batch size that is then used in the follow-
ing cycles.
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5. Numerical test calculations

5.1. Numerical test model

Numerical test calculations were performed on a model
of a common PWR fuel pin cell with parameters specified
in Tab. 1. Reflective boundary conditions were applied on
radial faces and void boundary conditions on axial faces.
This model shares some features of a large core, e.g. a
large dominance ratio.

Table 1: Specifications of the pin cell model.
Fuel U02
Cladding material Zr
Moderator light water
Radius of fuel pellets 0.41cm
Outer radius of cladding 0.475 cm
Rod pitch 1.26 cm
Length of the fuel rod 400 cm
2351 enrichment 3.1wt%
Fuel density 10g/cm?

Moderator (water) density 0.7 g/cm?

All numerical calculations were performed by an in-
house non-analogue continuous-energy 3D Monte Carlo
criticality code using the JEFF3.1 point-wise neutron cross-
section library.

5.2. Reference calculation

The correct fission source distribution for the test sys-
tem is not known exactly; hence, we estimate it by a ref-
erence calculation specified in Tab. 2. As the test model is
symmetrical, we have additionally symmetrised the source
distribution s, combined over the active cycles. The dom-
inance ratio was estimated at 0.989 during the reference
calculation by the NPM method (Sutton et al., 2011) with
a 10 cell axial mesh.

Table 2: Specifications of the reference calculation.

Number of histories per cycle 50,000
Number of active cycles 1,000,000
Number of inactive cycles 10,000
Initial fission source flat

The reference solution is used in evaluating the error in
the cumulative fission source in the test calculations. The
scalar error in the cumulative fission source is computed

as

- lsc/h —sr/h|1

c 2

where s. and s, are the fission sources combined over the
cycles of test and reference calculations, respectively, and
h, is the total number of neutron histories simulated in
the reference calculation. The factor in the denominator
of Eq. (47) ensures the maximal possible value of €. to be
one.

(47)



Note that while the simplified model of the scalar error
in the cumulative fission source captures the dependence of
the error on the neutron batch size and other parameters,
its direct comparison to the error computed by Eq. (47) is
not trivial. This is not a problem for the presented opti-
misation methodology; it is merely an inconvenience when
comparing the simplified model to results from test calcu-
lations, as the values do not necessarily have to match.

5.83. Demonstration of the simplified error model

The purpose of the calculations presented in this sec-
tion is to demonstrate the usability of the simplified model
of the scalar error in the cumulative fission source, given
by Eq. (39). In this test, the simplified model is supplied
with the dominance ratio estimated by the reference cal-
culation; the constants B and R are assumed equal to one.

Four calculations, A-D, specified in Tab. 3, were re-
peated 40 times with various seeds for the random num-
ber generator. All calculations were started with a point
source placed at one end of the pin, ensuring a large error
in the initial fission source. Thus, the model assumes the
maximum value g5 = 1.

Table 3: Specifications of calculations A-D.
A B C D

Neutron histories per cycle 50 500 5000 50,000
Total number of histories 100 million

Test calculation

In Fig. 1, the scalar errors in calculations A-D, com-
puted by Eq. (47), are compared to the simplified model,
given by Eq. (39). The results demonstrate that the simpli-
fied model correctly captures the dependence of the error
on the neutron batch size and the total number of simu-
lated neutron histories.

Fig. 1 also shows that performance of the calculation
(given here by the error in the cumulative fission source)
depends strongly on the neutron batch size; for a specific
allocated computing cost (in terms of the total number of
simulated neutron histories) the calculation performs best
with a specific neutron batch size. For instance, when 107
neutron histories are to be simulated, the results achieved
by simulating 500 neutron histories per cycle are signifi-
cantly better than with other chosen values.

5.4. Performance of calculations with optimal neutron batch

size

In this section, we demonstrate the performance of
Monte Carlo criticality calculations with the optimal neu-
tron batch size estimated by Eq. (44). We wish to separate
the effects of simplifications made in deriving Eq. (44) from
the effects of errors present in the estimated parameters in
Eq. (44); therefore, we use the dominance ratio computed
by the reference calculation. Such an accurate estimate
of the dominance ratio would not be available in standard
calculations; therefore, Sec. 5.5 includes numerical tests
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Figure 1:  Top: scalar errors in calculations A-D computed by
Eq. (47). Bottom: Scalar errors predicted by the simplified model,
as in Eq. (39) for m = 50, 500, 5000 and 50,000.

where the dominance ratio is computed in the beginning
of the calculation, using a relatively small number of neu-
tron histories, as suggested in Sec. 4.

Tab. 4 shows the optimal neutron batch size calculated
by Eq. (44) for three values of allocated computing cost
(108, 107 and 10° simulated neutron histories); the three
cases are marked as E, F, and G. For this, the dominance
ratio was set to 0.989, and the relative error in the initial
fission source was set to the maximum value g = 1 (the
same initial source was used as in Sec. 5.3).

Table 4: Specifications of calculations E-G.
Test calculation E F G

Total number of histories 105 107 106
Optimal neutron batch size 1050 333 105

Monte Carlo criticality calculations for cases E, F, and
G were repeated 40 times with different seeds, and the re-
sulting errors were averaged. Fig. 2 compares the perfor-
mance of these cases, and demonstrates the effectiveness
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Figure 2: Results of calculations E-G.

of the optimal neutron batch size computed by Eq. (44)
for various cases. For instance, when 10° neutron histo-
ries were simulated, the calculation with the neutron batch
size optimised for 10% neutron histories (case G) performed
better than the calculation with the neutron batch size op-
timised for 10® neutron histories (case E). Nevertheless, we
can see that case F (optimised for 107 neutron histories)
performed similarly to case G when 10% neutron histo-
ries were simulated, which suggests that the optimal value
of the neutron batch size does not necessarily have to be
computed very accurately in order to achieve good perfor-
mance. This simplifies the application of our methodology
since the input parameters, such as the dominance ratio
or the error in the initial fission source, may be estimated
less accurately in the beginning of the calculation.

In this section, we also compare case E (with the neu-
tron batch size optimised for 10% histories) to two addi-
tional calculations where the neutron batch size was set
to suboptimal values of 10,000 (case H) and 100 (case I).
Calculations H and I were also repeated 40 times and av-
eraged. Fig. 3 shows that calculation E (optimal) achieved
orders of magnitude smaller errors than calculations H and
I after simulating 10% neutron histories (for which case E
was optimised).

5.5. Practical application of the optimisation methodology

The purpose of this section is to test the neutron batch
size optimisation methodology for Monte Carlo criticality
calculations, as suggested in Sec. 4, assuming no knowledge
of the correct dominance ratio or the error in the initial
fission source. Therefore, as suggested in Sec. 4, the cal-
culation is split into two stages; the dominance ratio and
the error in the initial fission source are estimated in the
short first stage, while the neutron batch size is corrected
to the optimal value for the second stage.

The total allocated computational cost was set to 10%
neutron histories for this test. As suggested in Sec. 4, we
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Figure 3: Results of calculations E, H, and I.

allocated 1% of the computing cost (10° neutron histories)
to the first stage of the calculation. According to sugges-
tions in Sec. 4, the neutron batch size for the first stage
was set to v/106 = 100.

During the first stage, the dominance ratio was esti-
mated at 0.9876 by the NPM method; in order to keep the
method general and not optimised for a specific test model,
a 3 x 3 x 3 spatial mesh was used. The error in the initial
fission source was estimated at 0.9941. Based on these val-
ues, the optimal neutron batch size was evaluated at 1120,
and the batch size was changed to this value for the second
stage of the calculation. The value of the dominance ratio
estimated during the first step of this calculation does not
differ much from the value computed during the reference
calculation; hence, the optimal value of the neutron batch
size calculated here (1120) does not differ much from the
test case E (1050).

100

-~

107!

1072

--- E (m = 1050)
—J (two-stage)

Scalar relative error in cumulative source

102 103 10% 10° 106 107 108
Number of simulated neutron histories

Figure 4: Results of calculations J (two-stage) and E.



The two-stage calculation was repeated 40 times, and
results were averaged, as in all previous calculations. Fig. 4
compares the performance of this two-stage calculation
(marked as case J) to the test case E (that used the neu-
tron batch size optimised for 108 neutron histories). As
can be seen, both calculations perform equally well when
10® neutron histories are simulated. Naturally, the two-
stage calculation converged faster during the first stage,
as the neutron batch size was forced to be small; however,
this did not change the final results.

6. Conclusions

The results of numerical test calculations showed that
the simplified model of the scalar error in the cumula-
tive fission source captures well both the convergence rate
and the presence of source bias. Also, the neutron batch
size optimisation methodology, that was derived from the
simplified error model, performed well in practical appli-
cations, ensuring maximal efficiency. The optimisation
method is general in nature and implementable in any
power method based Monte Carlo code that comes equipped
with a dominance ratio estimation procedure.

It should be noted that the optimal neutron batch size
may also be affected by the use of parallelised calculations;
for instance, the master-slave parallel-computing scheme
performs better with a larger neutron batch size. Nev-
ertheless, the optimisation methodology derived in this
paper does not consider the efficiency of various parallel-
computing schemes on different computer architectures.
This problem may be considered in future work.
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