
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Vita Krainik 165637IVCM

DISTRIBUTED CONSENSUS PROBLEMS

AND PROTOCOLS: A SYSTEMATIC

LITERATURE REVIEW

Master’s thesis

Supervisors:

Ahto Buldas

Dirk Draheim

Tallinn 2019



TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Vita Krainik 165637IVCM

HAJUSLEPPE PROBLEEMID JA

PROTOKOLLID: SÜSTEMAATILINE

KIRJANDUSÜLEVAADE

Magistritöö

Juhendajad:

Ahto Buldas

Dirk Draheim

Tallinn 2019



Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Vita Krainik

May 13, 2019

2



Abstract

Consensus problems are fundamental in distributed computing. Depending on a system,

fault model or additional requirements, consensus problems can become harder, or even

impossible to solve. They emerged in the late 1970s – early 1980s and have been studied

in different shapes under various assumptions since. This thesis provides a Systematic

literature review on consensus and its forms. The paper aims to collect various problems

that emerged over time, and the solutions – original protocols and their improved ver-

sions. The review results in a survey on consensus and is focused primarily on problem

definitions, rather than protocols. We present the reviewed problems in style composed

of the motivation of the proposed consensus problem, its system and fault models, goals

to achieve consensus and known solutions – consensus protocols. Such structure outlines

the significant aspects of consensus and allows further comparison of consensus problems.

This thesis provides a theoretical ground for researchers who wish to learn what are the

different problems of consensus and what has been achieved in this area so far.

The thesis is in English and contains 55 pages of text, 6 chapters, 2 figures, 2 tables.
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1 Introduction

This chapter is to introduce the master’s thesis topic to the reader, describe the aim of the

thesis, relevance and novelty of the research and provide the research questions. First,

a background of the subject is given along with an informal introduction to consensus

in distributed computing. Then, the research problem is presented, the motivation and

reasoning why this research is important. Finally, the purpose of the thesis and thesis

overview is specified. This chapter aims to provide clearly what this thesis is about, what

is its contribution and novelty, why it is relevant and what exactly has been done in the

research.

This thesis is a study on the formal definitions of consensus, problems and their solu-

tions proposed during 1980 – 2019. The research method for collecting the papers on

the topic is based on the systematic literature review methodology described by Barbara

Kitchenham [1]. In her paper, Barbara Kitchenham provides guidelines for performing lit-

erature reviews on software engineering topics and defines the methodology as following:

“A systematic literature review is a means of identifying, evaluating and interpreting all

available research relevant to a particular research question, or topic area, or phenomenon

of interest.” [1]

In terms of the research scope, formal consensus problem proposals, original protocols,

and improved solutions are themain focus during the review process. The general overviews

of consensus problem and informal description are not relevant for this thesis since in this

way the research questions cannot be answered. Further selection criteria one can find

listed in the research methodology chapter.

1.1 Background

Consensus is a problem in distributed computing field, it derives straight from the design

of a distributed system. Unlike centralized systems, in distributed environment data is

maintained among processors, which have to synchronize and agree on the correct version

of this data. Informally, agreeing on a common value between participants is considered

a consensus (or agreement) problem.
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Reaching consensus becomes less trivial if some of the processors are faulty. Faults in

real-case scenario may include system errors, network issues or even malicious intent.

Therefore, correct processes need to be able to achieve consensus even where there are

faulty processes in the system.

Consensus has many faces. Besides the various environments of distributed systems,

over time, technology changes, introducing mobile networks, faster internet, so consensus

problems and algorithms need adjustment to the new environments, thus, generating new

definitions. Therefore, the consensus in distributed computing is not one problem, it is a

family of problems modeled under various assumptions.

Reaching consensus in distributed systems with failures has been an interesting subject

to many researchers for the past 40 years. Consensus underlines the technology behind

nowadays popular distributed applications for cryptocurrencies, smart contracts etc. This

popularity motivates researchers to improve the technical properties of existing consensus

protocols and design new algorithms. Therefore, a study about consensus problems and

protocols is relevant to the academic community, as well as engineers.

1.2 Research problem

To our knowledge, a proper literature review on consensus definitions is missing. While

searching for similar work, only brief surveys on consensus problem have appeared but

no systematic literature review related to the topic. The existing surveys on consensus are

rather old or focused mostly on protocols. At the same time searching papers by keywords

“consensus (problem OR protocol)” gives us about half a million results. This amount of

literature highlights the need in performing a systematic literature review on consensus

problems and protocols – there are numerous studies in this area, which points on high

interest, and there are attempts to write a basic consensus review in forms of short surveys.

So the researchers’ community would benefit from a comprehensive systematic literature

review on consensus problems and protocols.

There is another argument to why this review is necessary. As distributed consensus de-

veloped, researchers discovered additional issues, for example, scalability, performance,

other flaws in definitions and algorithms. The problems were either spotted by academics

or derived directly from real-world applications’ issues. These findings, however, might

be missed in a pile of articles. Therefore, it would be valuable to see the progress that has

been made on consensus theory over time in one place.

In this thesis, we use a systematic approach to find and evaluate the papers with the consen-
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sus problem proposals. We also search for the improvements in solutions of this problem

and present our collection of problem-solution consensus groups.

1.3 Purpose of the research

This thesis aims to gain insight into this grey area and provide an up-to-date literature

review of consensus definitions in distributed computing. We try to grasp a picture on

existing consensus problems and link themwith up-to-day solutions. By saying consensus

definitions, wewant to emphasize that the focus is made on consensus problem itself rather

than on algorithms. We study motives behind a problem, the modeled environment, and

the technical properties of the proposed protocols.

This paper is to encourage researchers and developers to learn, exploit and improve theo-

retical aspects of consensus, revisit definitions, problem statements and consensus proto-

cols. Practitioners can get a better understanding of consensus and apply gained knowl-

edge in their applications. Theoreticians can review and compare one consensus problem

to another, learn about the achievements in the distributed consensus and identify the op-

portunities for further research.

The novelty of the thesis is in 1) the subject itself – consensus algorithms have been a

trending topic for the past few years; 2) the methodology – systematic literature review

has not been used (to our knowledge) for a study on consensus problems and protocols; 3)

an up-to-date review on consensus – the rising popularity of consensus is the perfect time

to revisit theoretical achievements in this area.

1.4 Research questions

The following research questions are to be answered:

1. What are the definitions of consensus?

2. What are the motives behind the definitions?

3. What are the additional assumptions that allow achieving the consensus?

4. What are the fault models of the given consensus problem?

5. What are the technical properties of the consensus protocols (e.g., space, commu-

nication, time complexity – memory, messages sent, computations)?

8



1.5 Thesis overview

Chapter 2 describes the chosen research methodology – Systematic literature review, the

justification of the method and the detailed steps of the performed research. The followed

procedure includes search keywords for paper selection, inclusion and exclusion criteria,

research questions to be answered and the list of papers selected for the review.

Chapter 3 contains related work on consensus, which inspired to write this thesis. It is

also mentioned there why this thesis is different from the existing papers and how this

literature has formed a direction of the current research.

In Chapter 4 one can find the result of the aforementioned systematic literature review. The

data extracted from the review is structured into a survey (or a study), which describes the

establishment of consensus, reviews the definitions of honest and malicious parties and

lists various consensus agreement problems proposed during 1980 – 2019.

Chapter 5 and 6 provide analysis and conclusions of the systematic literature review, the

findings, and suggestions for future research.
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2 Research Methodology

In this chapter the protocol for the systematic review is described step-by-step. As men-

tioned previously, for the researchmethod, a systematic literature review is chosen, follow-

ing the guidelines from Barbara Kitchenham’s paper [1], where she thoroughly describes

how to conduct systematic reviews for software engineering researches.

By definition, “A systematic literature review is a means of identifying, evaluating and

interpreting all available research relevant to a particular research question, or topic area,

or phenomenon of interest” [1]. This research method helps to develop a plan for finding

and evaluating the papers on the current thesis’s topic. A detailed description of themethod

and the research procedure justifies the paper selection for this study.

The current chapter is structured as follows. First the plan for performing the research

is presented. Secondly, the actual execution of the protocol is described along with the

outcomes of each step of the protocol. The final list of the papers is presented in the

table 2.1, which are later used for composing a survey in Chapter 4. The analysis section

describes how the final papers are classified and groupped around a consensus problem.

2.1 Introduction to the methodology

The general guidelines provided by Barbara Kitchenham [1] are adopted to the needs of

this thesis and three main stages of the protocol are presented below:

1. Planning:

(a) search for related work, define the need in performing a review;

(b) define research questions;

(c) select resources – tools, databases;

(d) define search keywords for primary selection;

(e) define inclusion and exclusion criteria for further filtering of papers.

2. Execution:

(a) select primary papers based on search keywords;

(b) perform secondary search by reading titles and abstracts;

(c) select the relevant papers considering inclusion/exclusion criteria;
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(d) add papers from the references, if needed;

(e) extract the data.

3. Analysis:

(a) process the collected data;

(b) answer research questions;

(c) aggregate the results and present the outcome.

2.2 Planning

The need for a systematic literature review coincides with setting a problem statement and

relevance of the thesis mentioned in the previous chapter. The main task here is to verify

if there is similar work and what is missing in the existing literature. While performing the

search, there was no systematic literature review found on consensus, only a few surveys,

which we describe in the literature review chapter. Therefore, we assume that systematic

literature review is needed and we can proceed further.

The materials for the thesis itself (e.g., articles to support the relevance of the topic, prob-

lem statement) are found through communication with supervisors, taking into account

the feedback of the reviewer, and trial searches online via Google Scholar and PRIMO

portal. However, the paper selection for a systematic literature review is more struc-

tured, and it follows the pre-defined protocol. The review is conducted online, with tools

and e-resources available in TalTech library, mainly through PRIMO search portal, also

TORU.ttu.ee VPN to access the resources. PRIMO allows searching through all the e-

databases available in TalTech network but, of course, only some of them are relevant for

this thesis meaning the papers are selected only from e-resources related to Information

Technology. To reproduce the steps of the research, one can use any search engine that

provides access to Lecture Notes in Computer Science, ACM Digital Library, Springer-

Link, Taylor and Francis, Wiley Online Library, ScienceDirect, IEEE Xplore, and Safari

databases.

Search keywords is one of the essential components of the systematic review. We defined

the search query while preparing for the thesis, which included reading materials related

to the consensus to understand the topic better. We discovered that various searches in

PRIMO solely by keywords “consensus”, “distributed consensus”, “consensus problems”,

“consensus protocols”, “byzantine agreement” result in thousands of papers physically im-

possible to process in a limited amount of time. Considering the time frames and realistic

expectations of the number of papers one person can process in one semester, the expec-

tation was that the search keywords would be specific enough to produce a result of up
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to 1000 papers as a primary selection. Therefore, it was decided to take advantage of

PRIMO’s feature to search by subject. Most of the more or less relevant papers on the

consensus we found were in the Computer science category, also Distributed computing,

Consensus problem and that was a solid ground to generate search keywords.

The term “consensus” was found to be also studied in Control theory and Pure Mathemat-

ics disciplines. Even though the concepts looked similar, in Distributed computing they

approach the topic differently. It would be interesting to compare these concepts, but that

would overextend the study. So the research scope was limited to Distributed computing

field of study.

Thus, the final version of the search pattern is the following:

Any field contains “consensus”

AND

Subject contains “(Computer Science OR Distributed computing OR Distributed

Systems) AND (Consensus OR Distributed OR Byzantine) NOT Control”

Apply filter: peer-reviewed Journals, English language, exclude online collections

arXiv, PMC(PubMed Central).

To guarantee the quality of the research, we consider only peer-reviewed papers for this

systematic review. Surprisingly, including a “peer-reviewed journals” filter cut the search

results in half. Perhaps, failing to follow standard academic requirements by researchers

in this field is another issue that needs addressing. Filter by the English language has

removed less than 2% of the total results, so this is not crucial for this research.

We particularly exclude PubMed Central (PMC) archive as the collection is not relevant

to computer science. Also, arXiv was assumed not to be a reliable source, so we filtered

it out. However, even if there are some relevant papers published and peer-reviewed in

arXiv, they will likely to appear in other more influential journals, so those can still end

up in our search results.

After the primary papers are selected, the next step is to filter them by the pre-defined in-

clusion and exclusion criteria. Therefore, every paper is evaluated based on the following

inclusion criteria:

1. The research is done in the distributed computing field.

2. A formal definition of the consensus problem is studied in the paper.

3. The paper contains the answers to the research questions of the thesis.

Also, If the paper matches the exclusion criteria below, it is removed:

1. Duplicate papers and content – if some papers appear multiple times, only one of
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them ends up in the final selection.

2. Consensus used in another context than about distributed computing, for exam-

ple, control theory consensus, the consensus in pure mathematics, medicine or eco-

nomics related.

3. The paper has an informal description of the consensus problem, with no formalized

consensus model, definitions, its assumptions, and technical properties.

The strategy also includes a backward reference search by searching for relevant litera-

ture through references. We assume that the references would be an excellent source to

find the consensus definitions and their origins. Many papers can lead us to the original

concepts proposed in 80s, which can show us where the consensus definitions come from.

Therefore, we include the reference search to perform the study.

Finally, the research questions for this thesis are the following:

1. What are the definitions of consensus?

2. What are the motives behind the definitions?

3. What are the additional assumptions that allow achieving the consensus?

4. What are the fault models of the given consensus problem?

5. What are the technical properties of the consensus protocols (e.g., space, commu-

nication, time complexity – memory, messages sent, computations)?

2.3 Execution

This systematic literature review consists of several rounds. For the primary selection of

papers, PRIMO search portal is used. Running the search string specified earlier resulted

in 1073 papers, as of January 18th, 2019. For convenience, the secondary selection results

were kept in BibDesk tool. During secondary selection, these 1073 papers were checked

for relevance by reading the title and, if needed, the abstract. Also, the duplicated results

were ignored. After the first round, 171 publications were filtered for further research.

The second round resulted in 136 papers.

The next step included going through the remaining papers and selecting those that contain

the answers to the research questions of this thesis, namely consensus definitions. The key

interest is the papers that have formal definitions of consensus under different assumptions,

first proposals of consensus problems and improvements on the topic. These 136 papers

were reviewed more closely, by reading through the content to see if there is relevant data

for extraction. Simultaneously, the references were checked, and some of those articles

we added to the list. We expected that many papers would point to the original definitions
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primary

>1073

round 1

>171

round 2

>136

round 3

>32

reference search

+20

Figure 2.1: Summary of paper selection procedure

or the places where these definitions were first mentioned. Finally, there were 32 papers

left, plus some added through citation search. So there were 52 papers selected in total for

further research.

To summarize, the paper selection can be presented in a diagram 2.1. A full list of the

papers, which ended up in final selections, are presented in a table 2.1.

Table 2.1: Summary of the review

NoRef.

no

Year Authors Title Publisher Ref.

search

1 [2] 1980 Pease et al. Reaching Agreement in the Presence of

Faults

ACM 1

2 [3] 1982 Dolev et al. Requirements for agreement in a dis-

tributed system

DDB 1

3 [4] 1982 Lamport et al. The Byzantine Generals Problem ACM 1

4 [5] 1983 Rabin Randomized byzantine generals IEEE 1

5 [6] 1985 Bracha &

Toueg

Asynchronous Consensus and Broadcast

Protocols

ACM 0

6 [7] 1985 Fischer et al. Impossibility of Distributed Consensus

with One Faulty Process

ACM 0

7 [8] 1986 Dolev et al. Reaching approximate agreement in the

presence of faults

ACM 1

8 [9] 1987 Loui et al. Memory requirements for agreement

among unreliable asynchronous processes

JAI press 1

9 [10] 1987 Patnaik & Bal-

aji

Byzantine-resilient distributed computing

systems

Springer 0

10 [11] 1988 Abrahamson On achieving consensus using a shared

memory

ACM 1

11 [12] 1988 Dwork et al. Consensus in the presence of partial syn-

chrony

ACM 1

12 [13] 1989 Berman &

Garay

Asymptotically optimal distributed consen-

sus: Extended abstract

Springer 1

13 [14] 1993 Berman &

Garay

Randomized distributed agreement revis-

ited

IEEE 1

14 [15] 1993 Barborak et al. The consensus problem in fault-tolerant

computing

ACM 0
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Table 2.1: Summary of the review

NoRef.

no

Year Authors Title Publisher Ref.

search

15 [16] 1994 Hadzilacos

&Toueg

A Modular Approach to Fault-Tolerant

Broadcasts and Related Problems

Cornell

Univer-

sity

1

16 [17] 1994 Neiger, Gil Distributed consensus revisited Elsevier 1

17 [18] 1994 Attiya et al. Bounds on the time to reach agreement in

the presence of timing uncertainty

ACM 0

18 [19] 1995 Guerraoui, R. Revisiting the Relationship between Non-

Blocking Atomic Commitment and Con-

sensus

Springer 1

19 [20] 1996 Chandra &

Toueg

Unreliable failure detectors for reliable dis-

tributed systems

ACM 1

20 [21] 1999 Krings & Feyer The Byzantine agreement problem: opti-

mal early stopping

IEEE 1

21 [22] 1999 Gärtner Fundamentals of fault-tolerant distributed

computing in asynchronous environments

ACM 0

22 [23] 2002 Nesterenko &

Arora

Dining philosophers that tolerate malicious

crashes

IEEE 1

23 [24] 2002 Hsiao et al. Reaching strong consensus in a general net-

work

Inst In-

formation

Science

0

24 [25] 2002 Castro &

Liskov

Practical byzantine fault tolerance and

proactive recovery

ACM 0

25 [26] 2002 Attie Wait-free Byzantine consensus Elsevier 0

26 [27] 2003 Charron-Bost

et al.

Comparing the Atomic Commitment and

Consensus Problems

Springer 1

27 [28] 2003 Keidar & Rajs-

baum

A simple proof of the uniform consensus

synchronous lower bound

Elsevier 0

28 [29] 2004 Charron-Bost

& Schiper

Uniform consensus is harder than consen-

sus

Elsevier 1

29 [30] 2004 Défago &

Schiper

Semi-passive replication and Lazy Consen-

sus

Elsevier 0

30 [31] 2004 Izumi & Ma-

suzawa

Synchronous condition-based consensus

adapting to input-vector legality

Springer 0

31 [32] 2005 Lamport Generalized Consensus and Paxos Microsoft

Research

1

32 [33] 2005 Wang et al. A bivalency proof of the lower bound for

uniform consensus

Elsevier 0
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Table 2.1: Summary of the review

NoRef.

no

Year Authors Title Publisher Ref.

search

33 [34] 2005 Izumi & Ma-

suzawa

An improved algorithm for adaptive

condition-based consensus

Springer 0

34 [35] 2006 Martin&Alvisi Fast Byzantine Consensus IEEE 0

35 [36] 2007 Anceaume et

al.

Managed Agreement: Generalizing Two

Fundamental Distributed Agreement Prob-

lems

Elsevier 0

36 [37] 2008 Mizrahi &

Moses

Continuous consensus via common knowl-

edge

Springer 1

37 [38] 2008 Okun & Barak Efficient Algorithms for Anonymous

Byzantine Agreement

Springer 0

38 [39] 2008 Correia et al. On Byzantine generals with alternative

plans

Elsevier 0

39 [40] 2009 Kotla et al. Zyzzyva: Speculative Byzantine fault tol-

erance

ACM 0

40 [41] 2010 Mizrah &

Moses

Continuous consensus with ambiguous

failures

Elsevier 0

41 [42] 2011 Bouzid et al. Anonymous Agreement: The Janus Algo-

rithm

Springer 0

42 [43] 2012 Cheng & Tsai Eventual strong consensus with fault detec-

tion in the presence of dual failure mode on

processors under dynamic networks

Elsevier 0

43 [44] 2012 Ramesh & Ku-

mar

An Optimal Novel Byzantine Agreement

Protocol (ONBAP) for Heterogeneous Dis-

tributed Database Processing Systems

Elsevier 0

44 [45] 2012 Widder et al. Consensus in the presence ofmortal Byzan-

tine faulty processes

Springer 0

45 [46] 2013 Delporte-

Gallet et al.

Byzantine agreement with homonyms Springer 0

46 [47] 2013 Veronese et al. Efficient Byzantine Fault-Tolerance IEEE 0

47 [48] 2015 Cheng & Tsai A recursive Byzantine-resilient protocol Elsevier 0

48 [49] 2015 Mostéfaoui et

al.

Signature-Free Asynchronous Binary

Byzantine Consensus with t < n
3 , O(n2)

Messages, and O(1) Expected Time

ACM 0

49 [50] 2017 Gramoli From blockchain consensus back to Byzan-

tine consensus

Elsevier 0

50 [51] 2017 Pires et al. Generalized Paxos Made Byzantine (and

Less Complex)

Springer 0
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Table 2.1: Summary of the review

NoRef.

no

Year Authors Title Publisher Ref.

search

51 [52] 2018 Alchieri et al. Knowledge Connectivity Requirements for

Solving Byzantine Consensus with Un-

known Participants

IEEE 0

52 [53] 2019 Liu et al. Scalable byzantine consensus via

hardware-assisted secret sharing

IEEE 0

The analyzed papers propose a consensus problem, a solution to it – a consensus protocol,

or some improvements on either of those. The consensus problem components, which

would answer the research questions of the current thesis are the following:

• system model – an environment for the protocol, e.g., synchronous/asynchronous;

• fault model;

• conditions – goals to achieve consensus, e.g. agreement, validity;

• a proposed solution – a consensus protocol, its technical properties;

• an improved solution if any.

For a survey, all found consensus problems are tried to put into the structure above. Such

consistency would help to see the differences between those problems.

2.4 Analysis

The collected data from the papers we selected for our research can be put into classifica-

tion by its content:

A: A consensus problem and a solution to this problem are proposed.

B: A consensus problem defined in another paper is revisited and studied from a dif-

ferent angle.

C: A new protocol is designed, which solves the consensus problem defined in another

paper, and improves the complexity of the previous protocols.

D: A new protocol is designed, which solves the consensus problem defined in another

paper, and offers a solution under different assumptions (e.g., in Byzantine fault

model).

E: Other improvements on the topic on consensus problems and protocols – new up-

per/lower bounds, impossibility results and so on.
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This classification helped us structure the main outcome of this systematic literature re-

view – a survey on consensus problems and protocols. The data extracted during the

review has been grouped around each consensus problem definition. On the example of

strong consensus [17], we can observe how we aggregated the data. First, we have a paper

with the original definition of a strong consensus of 1994 [17]. Secondly, another paper

of 2002 ended up in our search results, which describes strong consensus in a general net-

work [24]. Finally, we found a study of 2012, which proposes an early-stopping protocol

for the strong consensus problem [43]. In the survey, these papers go together and provide

a general review of the strong consensus. The rest of consensus problems are structured

similarly.

The research questions concern each consensus problem definition separately meaning we

look at the research questions and try to answer them every time we have a new consen-

sus problem. The collected data is grouped into consensus problem-solution sections, and

every section follows the same structure – a motivation behind the new problem, environ-

ment, conditions, and solutions. The outcome is a well-structured consensus study, which

is presented further below in this thesis.
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3 Related Work

This chapter provides a list of papers that are similar to this thesis topic in some way. Here

one can find out how the topic, the research scope, the research problem have developed

and why this research is different from the existing literature reviews. This review was

the preliminary study to find the ideas for the thesis.

The majority of the papers below are surveys on consensus related topics. A short descrip-

tion of each paper is presented, its limitations and how this thesis contributes to improve

the current state of things. The last two articles are to support the idea of the review,

namely the motivation to revisit distributed consensus theory.

The consensus problem in unreliable distributed systems (a brief survey) byMichael.

J. Fischer

The author in [54] provides a summary of the traditional consensus problem. The article

has been published in 1983 and included most prominent studies on consensus at that time.

In his paper, M.J. Fischer explains basic concepts of the consensus problem, requirements

to solve it, upper/lower bounds and models of computation.

The survey can serve as a starting point for those who begin discovering consensus prob-

lems. It is short and easy to read; the author considers simplified models like systems with

only {0, 1}-bit messages. This paper also discusses some essential concepts, which help
understand the general picture.

On the downside, the article has many limitations since it was published more than thirty

years ago. It covers only the work of the late 70s/early 80s and distributed systems have

been improved significantly since then. The survey is also brief, as specified in the title, so

it covers only basic ideas of the consensus problem and refers to other articles for detailed

proofs. The outdated results lack applicability of the concepts and protocols learned from

the paper. M.J. Fischer also points on that: “The abstract versions of agreement prob-

lems considered in this survey are not general enough to be directly applicable to many

practical situations.”[54]. A more comprehensive study of the consensus including recent

articles and modern applications would expand the topic and provide a fresh overview of

the problem.
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The consensus problem in fault-tolerant computing by Michael Barborak, Anton

Dahbura, and Miroslaw Malek

This paper [15] is focused mostly on system diagnosis, faulty elements detection and pro-

vides a comparison of Byzantine agreement and system diagnosis approaches. It is thor-

ough and detailed about fault models classification, which gives practical input to the

developers of consensus protocols.

However, in the paper, the main focus is put on Byzantine agreement, not on the consensus

problems in general like in [54]. Moreover, again, this work is of June 1993, which means

nowadays there is much more content to include on the subject. Therefore, there are ways

to expand the topic, for example, an up-to-date review with a focus on different consensus

problems.

Consensus in asynchronous distributed systems: A concise guided tour

Rachid Guerraoui et al. covers one of the chapters on consensus problems in asynchronous

environments [55]. The primary focus of the paper is the classical consensus problem

in crash/recovery and crash/no recovery fault models. It was published in 2000, so the

paper is neither new nor old. This paper is rather short and covers only a small part of the

consensus problems. So the existence of this paper does not eliminate the need for another

survey on consensus problems, which could be more extensive.

Consensus in synchronous systems: a concise guided tour

In 2002 [56] another surveywas presented byMichel Raynal. Despite the title overlapwith

the previous paper, this study is different – it is twice shorter, 8 pages long in total, and it

reviews mostly the consensus protocols, rather than formalized problems. The consensus

problem did not seem to be the primary interest of the author, the definition takes only a

few paragraphs in the survey. This review on consensus protocols lacks more information

on consensus problems, and this is what we offer in our thesis.

Survey of consensus protocols on blockchain applications by Lakshmi Siva Sankar,

Sindhu M., and M. Sethumadhavan

This survey [57] is 4 pages long, it introduces the reader to different concepts related to

blockchain, where blockchain is defined as “a distributed, transparent, immutable ledger”[57],

and compares how some mainstream blockchain applications work. However, this paper

does not provide much formal terminology to a reader or answer any of the research ques-

tions set in the current thesis.

The main difference between this paper and our thesis is in the approach to the distributed
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consensus. This paper is one of the many studies with the focus shifted to the implemen-

tations of consensus algorithms, rather than theoretical research backed by peer-reviewed

academic literature. Additionally, while the authors do not explain why they selected those

particular projects, the papers for our systematic review are selected based on the inclu-

sion/exclusion criteria, which maximizes the probability that the collected data reflects

the general picture on the subject. Thus, the existence of this paper does not eliminate the

value of the current research.

Bitcoins academic pedigree by Arvind Narayanan and Jeremy Clark

Narayanan and Clark [58] offer a direction for thinking and further research. On the ex-

ample of the history of bitcoin’s key components, they point on a gap between academics

and practitioners while both could benefit from the knowledge of each other: “Both prac-

titioners and academics would do well to revisit old ideas to glean insights for present

systems”[58]. Indeed, instead of reinventing the wheel, it is useful to see if the existing

theoretical base already has any ideas related to the problem.

From blockchain consensus back to Byzantine consensus by Vincent Gramoli

The author in [50] outlines the gap between consensus theoretical base and existing im-

plementations of consensus protocols. This gap is particularly noticeable in blockchain

protocols, where a significant number of white papers are not peer-reviewed, and the def-

initions are often skipped or vaguely defined: “While the source code of most blockchain

protocols is publicly available, the theoretical ramifications of the blockchain abstraction

are rather informal” [50]

The author points out on the need for having formal definitions for modern protocols

and designing proper theoretical models before implementing those. He proposes a new

consensus problem definition in context of blockchain and attempts to formalize the con-

sensus models of some mainstream blockchain algorithms. The theoretical base for these

algorithms is far behind, at the same time when proper definitions would allow to avoid

potential problems caused by design errors: ”Very little work has however been devoted

to explore its theoretical ramifications. As a result, existing proposals are sometimes mis-

understood and it is often unclear whether the problems arising during their executions are

due to implementation bugs or more fundamental design issues.” [50]

The problems highlighted by Vincent Gramoli support the ideas mentioned in this thesis.

Although it is hard to force engineers to start using proper definitions and formalized mod-

els for their algorithms, let us revisit the achievements on consensus theory and provide

an easier access to the existing consensus problems.
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4 Consensus Study

This chapter presents the result of the research, and it is also the main contribution of

the thesis. The data, collected during the systematic literature review, has been extracted,

analyzed and put into a survey. First, we introduce the consensus, how it emerged andwhat

are the most prominent achievements of the 1980s on this topic. Secondly, we talk about

fault models and types of participants in a protocol. Finally, a collection of consensus

problems is presented, along with their solutions.

The review of consensus problems resulted in the majority results to have a message-

passing model, where processes communicate via exchanging messages. However, we

also found a few problems in a shared-memory model, where processes communicate

not directly but through a shared-memory [11] (first studies on consensus using shared

memory appear in [9, 11]).

4.1 Introduction

What is a distributed consensus? In distributed systems, processors communicate with

each other to keep their data in sync. The fundamental problem is to agree, even when

some of the processors are not honest. The more participants in the system, the more

likely it is that some of them behave arbitrarily. This basic problem generates many other

consensus problems, modeled in various environments.

Sowhat differentiates one consensus problem from another? Themodel consists of several

components, one of them is the value processes need to agree on. The simplest form of

consensus is binary consensus, where the processes decide on a value from {0, 1} range.
In another case, they try to achieve consensus on a set of values, which is called multi-

valued consensus. Another extension of consensus, where processes aim to agree to a set

of values, is called k-set agreement [59]. However, the k-set agreement is outside of the

scope of the current thesis. These are the basic consensus types which differentiate the

values to agree on.

Another different category is whether processes communicate synchronously or asyn-

chronously. Here we have to mention another significant paper in the world of distributed
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systems – the proof of the impossibility of consensus in asynchronous settings by M.J.

Fischer [7]. According to Google Scholars, this article is cited by nearly 5000 academic

papers. The results in this paper are prominent because they show that no protocol can

achieve consensus in a completely asynchronous environment in the presence of even a

single fault; therefore, there must be further conditions and additional assumptions about

the environment to reach agreement.

To cope with the impossibility result above, one of the options introduced is partial syn-

chrony [12]. The authors of the concept model a system, where processes are synchronous

and their communication is partially synchronous (communication bound ∆ is either un-

known or holds eventually [12]). Furthermore, as a response to Fischer’s work, Gabriel

Bracha and SamToueg described a model where the protocol is assumed to terminate with

probability 1 [6]. They also showed in this paper that the majority (n+1
2
) of correct pro-

cesses is the lower bound to reach agreement in a fail-stop model, and for the malicious

model it is 2n+1
3

[6].

4.2 Participants

In consensus protocols, good and bad processes may participate. When talking about

good processes, there are not many definitions of a well-behaved process, but generally

speaking it is considered that “a good process is a process that behaves as expected” [55],

or essentially fault-free. The meaning of a faulty (or bad, malicious, corrupted) process

varies from article to article, for example, Felix Gärtner [22] gives a formal definition to

a fault as “action on the possibly extended state of a process” [22]. Consensus problems

particularly depend on how bad processes are assumed to behave, that is why we want to

mention what failure models are out there.

When setting a consensus problem, the assumptions about the behavior of a faulty process

affects further restrictions and the complexity of the consensus algorithm. There are sev-

eral failure classifications, Michael Barborak et al. [15] presented a detailed taxonomy of

fault types in 1993. These types are fail-stop, crash, omission, timing, incorrect compu-

tation, authenticated Byzantine and Byzantine [15] (see the summary on [15] in the table

4.1).

From the Barborak’s classification [15], a Byzantine fault looks like it implies other kinds

of faults, e.g., crash, however, in different papers, authors put their own meaning into this

concept, often Byzantine means controlled by the adversary but not corrupted in a “natu-

ral” manner. It makes sense to distinguish arbitrary faults from others as crash, omission
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Table 4.1: Fault-model types

fault main characteristics

fail-stop terminates, other processes are aware of termination

crash
terminates due to corruption, other processes do not know

from a failed process about its termination

omission
process fails partially(e.g., sending or receiving message

fails)

timing(or performance) process fails to perform a task at a specified time

incorrect computation process miscalculates the output

authenticated Byzantine

(arbitrary, malicious)

controlled by the adversary, can behave in an arbitrary man-

ner

Byzantine any kind of a fault

faults, which can be recognized by fault-detection mechanisms. In such cases, protocol

bounds can be significantly improved as the fault model turns to be more specific and re-

alistic. This division to malicious/nonmalicious fault can also allow modeling single and

dual failure modes, where either one type of fault can occur or both [43].

The participants in consensus protocol typically consist of n – the total amount of pro-

cesses, t – the tolerated amount of faulty processes, f – the actual amount of faults during

protocol execution. The f allows to take into account that in practice the number of failures

may differ fromwhat is assumed or allowed, and this assumption can help with developing

a more optimized protocol.

4.3 Consensus Problems and Protocols

4.3.1 Traditional Consensus Variations

Consensus problems form a whole class of problems. Let us talk about the original con-

sensus problem definition, as well as some of the problems very similar to consensus.

These problems are atomic commit and atomic broadcast.

Chandra et al. [20] have formalized the consensus problem, by defining two properties

propose(υ) and decide(υ), which are executed by processes pi, i ∈ 0, n [20]. Here υ is

some value υi, i ∈ 0, n proposed or decided by a prosess pi.

Based on these primitives, Chandra et al. specify uniform consensus by following the

conditions:
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“Termination. Every correct process eventually decides some value.

Uniform integrity. Every process decides at most once.

Agreement. No two correct processes decide differently.

Uniform validity. If a process decides υ, then υ was proposed by some process.” [20]

This paper [20] also introduces an unreliable failure detector abstraction – a component in

a system able to detect crash failures with some probability. Some of the consensus prob-

lems listed further specifically assume the presence of one or multiple failure detectors,

or similar abstractions.

Atomic commit is the problem of agreeing on committing/aborting a transaction. An ex-

tended version of the atomic commit is non-blocking atomic commit (NB-AC). Atomic

commit and consensus have been compared by Rachid Guerraoui in 1995 [19] and by

Bernadette Charron-Bost in 2003 [27]. NB-AC and consensus have a similar goal – to

make a decision despite failures. In [19], Rachid Guerraoui shows that in an asynchronous

system with failure detectors as described in [20], NB-AC cannot be solved as opposed to

consensus. In the same paper, on the other hand, Rachid Guerraoui defines a weak form

of atomic commit (NB-WAC) that can be reduced to uniform consensus in this system

model. The conditions to satisfy NB-AC and NB-WAC are then following [19]:

“Uniform Agreement. No two participants AC-decide different outcomes.

Uniform Validity. If a participantAC-decides commit, then all participants have voted yes.

Termination. Every correct participant eventually AC-decides.

NonTriviality. If all participants vote yes, and there is no failure, then every correct par-

ticipant eventually AC-decides commit.

(Weak form) NonTriviality. If all participants vote yes, and no participant is ever suspected,

then every correct participant eventually AC-decides commit.” [19]

More updates on the atomic commit problem are collected in the paper of Bernadette

Charron-Bost [27]. The results of the work show that non-blocking atomic commit and

consensus are very similar in synchronous environments in terms of complexity but again,

in asynchronous systems NB-AC is non-solvable.

Atomic broadcast is another problem that is proven to be redundant to consensus and vice

versa in asynchronous systems with crash failures [20]. The formal definition of atomic

broadcast is characterized by the properties:

“Validity. If a correct process R-broadcasts a messagem, then it eventually R-deliversm.

Agreement. If a correct process R-delivers a message m, then all correct processes even-

tually R-deliverm.

Uniform integrity. For any messagem, every process R-deliversm at most once, and only
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if m was previously R-broadcast by sender(m).” [20], this definition Chandra et al. cite

from [16].

“Total order. If two correct processes p and q deliver two messages m and m‘, then p

deliversm beforem‘ if and only if q deliversm beforem′” [20]

Validity, agreement and uniform integrity define reliable broadcast, adding total order con-

dition transforms it to atomic broadcast [20].

4.3.2 Byzantine Generals/Byzantine Agreement

The Byzantine agreement is a huge topic, and researchers put a significant amount of ef-

fort into developing Byzantine consensus protocols, which are getting better, faster, more

efficient, optimal, scalable over time. Let us review the original definition and then list

some of its variations and researches made on the topic.

The original Byzantine agreement definition comes from Pease, Shostak and Lamport’s

paper “The byzantine generals problem” of 1982 [4]. They describe a problem of agreeing

on a common battle plan (reaching consensus) among generals (processors) in the pres-

ence of traitors (failures). A few years earlier, Pease, Shostak and Lamport introduce the

interactive consistency [2] which is, in fact, the same Byzantine agreement problem; even

though the authors did not use the terms “byzantine fault” or consensus, they implied that

bad processes might behave arbitrarily or “may lie”, and processors need to reach agree-

ment on a value.

System environment: Processes (Generals) need to agree on a value (a battle plan) no

matter how malicious processes (Byzantine generals) try to conflict the parties. Pease,

Shostak and Lamport [4] describe a synchronous model, where processes exchange mes-

sages in rounds.

Goals: The problem relies on the interactive consistency properties:

“IC1. All loyal lieutenants obey the same order.

IC2. If the commanding general is loyal, then every loyal lieutenant obeys the order he

sends.” [4]

Proposed solution/protocol: The proposed algorithms are not efficient in terms of time

and message complexities. They require (n−1)(n−2)...(n−m−1)message exchanges

to achieve agreement.

Fault model: Pease, Shostak, and Lamport introduce the concept of a Byzantine fault,

which can behave in an arbitrary manner. This fault type is the most generic in distributed
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systems. The authors of the concept show that the solution to the Byzantine generals

problem requires more than 2
3
of the processes to be correct if messages are not signed.

They also show that with signedmessages the agreement can be achieved with any number

of faulty processes.

Consensus problems and Byzantine generals: Patnaik and Balaji [10] in 1987 re-

viewed distributed agreement problems and highlighted three main classes of agreement

problems – consensus problem, interactive consistency, and Byzantine generals. They

mention the classical definitions of consensus, namely two conditions must be satisfied

for the protocol to achieve consensus [10]:

“Agreement. All non-faulty processes agree on a common value.

Validity. If all non-faulty processes choose the same initial value, then all non-faulty pro-

cesses agree on this value.” [10]

The conditions to solve generals problem are very similar to the consensus problem, al-

lowing us to focus on both of the terms, and defined as following [10]:

“Agreement. All non-faulty processes agree on a common value.

Validity. If the general does not fail, then all nonfaulty processes agree on x.” [10]

One solution can solve both problems as we can convert one to another: “Given a protocol

for the ’consensus problem’, the Byzantine generals problem may be solved by having

each process choose the value broadcast by the general as its initial value. On the other

hand, given a protocol for the Byzantine generals problem, the consensus problem may be

solved allowing each process to execute a copy of the ’Byzantine agreement protocol’.”

[10]

Updates on the protocols: Since in this paper the focus is on problem definition and

there are tons of Byzantine agreement protocols, we mention only some of them, which

ended up in our search results and which seem prominent in this area.

Axel W. Krings and Thomas Feyer have designed an early-stopping algorithm in non-

authenticated Byzantine model [21]. The protocol is a modification of the original Byzan-

tine generals problem solution [4]. This protocol takes into account that there might be

less than the tolerated amount of faults f ≤ t. The proposed algorithm terminates at max-

imum min {f + 2, t+ 1} rounds [3], where f is the number of actual faults, and t is the

number of tolerated faults.

When talking about anonymous systems, there is an interesting study of the year 2013 on

Byzantine agreement with homonyms [46]. The target of the research is the identifiers

of the processes, where processes with distinct and same (homonyms) identifiers can be
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present in a system. The authors of the article claim that for synchronous Byzantine agree-

ment there has to be at least 3t + 1 identifiers, and for a partially synchronous case it is

more than n+3t
2
. This numbers can be improved to t+1 if there is a restriction that a faulty

process cannot send more than one message to the same process in one round [46].

Optimal novel Byzantine agreement protocol (ONBAP) [44] is proposed in 2012 by Dhar-

avath Ramesha and Chiranjeev Kumar. They claim to improve the results of the protocols

proposed in the 80-s in the articles of Pease, Wang, Lamport, and Fischer and develop a

Byzantine consensus protocol with reduced time complexity. ONBAP solves traditional

Byzantine agreement in three rounds of message exchanges and with quadratic message

complexity (O(n2)). Here we can see that the technical properties of this protocol are

better than in the original BA papers.

A recursive Byzantine-resilient protocol (RBR) [48] improves the classical Byzantine con-

sensus protocols in terms of time and space complexity. The novel protocol can achieve

consensus with time complexity O(lgn) and space complexity O(nklgn). The protocol

can tolerate less than n−1
3

Byzantine faults, specifically 2h(
n

4h
−1

3
+1)− 1 with h = lgn−2

2
.

The authors claim that in practice the amount of faulty Byzantine processors is much less

than the estimated amount in the original papers, and they improve the complexity by

lowering this number.

Practical Byzantine Fault Tolerant (PBFT) consensus protocol [25] is an algorithm widely

used in practice, for example, its implementation is a foundation of Hyperledger Fabric

[60] at IBM. PBFT uses state machine replication mechanism, which is “a general method

for implementing a fault-tolerant service by replicating servers and coordinating client

interactions with server replicas” [61], and tolerates up to n−1
3

of Byzantine faults [25].

A couple more protocols have been proposed, that are claimed to be more efficient than

PBFT. On the contrast of PBFT that require 3t + 1 replicas, algorithms MinBFT and

MinZyzzyva require only 2t+ 1 and have better throughput and latency [47].

To address the issue of scalability of Byzantine consensus protocols, a FastBFT was in-

troduced in 2019 [53]. To improve performance, FastBFT uses message aggregation to

achieve linear message complexity O(n), and follows optimistic paradigm with f + 1

nodes expected to participate in the protocol actively. The creators of the protocol claim

that it can process 100000 transactions per second “assuming 1 MB blocks and 250 byte

transaction records” [53], and it is claimed to be 6 times faster than Zyzzyva [40] – a

speculative BFT protocol that also targets to achieve better performance than previous

protocols.

Solida [62] protocol is designed using Byzantine consensus with added reconfiguration.

Solida implements PBFT algorithm with a reconfiguration step to satisfy permissionless
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settings. The protocol is designed in a synchronous environment, and PBFT provides

responsiveness and therefore improves the protocol performance. Malicious party here is

assumed to be less than 1
3
of all participants.

To cover some of the Byzantine consensus protocols in the asynchronous message-passing

system, let us mention a signature-free binary consensus protocol [49], that tolerates up to
n−1
3

Byzantine failures withO(n2)message exchanges per round andO(1) bit complexity.

The protocol foundation is a double synchronized binary value broadcast abstraction [49],

and it is actually a randomized consensus algorithm (the details on the randomization are

in other sections).

4.3.3 Byzantine Generals with Alternative Plans

In 2008 another variation of Byzantine generals problemwas proposed byMiguel Correia,

Alysson Neves Bessani and Paulo Veríssimo called “Byzantine generals with alternative

plans” [39]. It is essentially a multi-valued Byzantine consensus problem.

Motivation: This problem has a practical use for scenarios where Byzantine consensus

problem is needed.

System environment: BGAP has asynchronous message-passing model, where pro-

cesses are required to satisfy n ≥ 3t + 1. An oracle is present to avoid the impossibility

of consensus in asynchronous systems.

Goals: BGAP is described by the following conditions:

“Validity 1. If there is a value v such that for any correct process pi , vGi , then any correct

process that decides, decides a value v′ such that v′ ∈ Gj for a correct process pj .

Validity 2. No correct process pi decides a value v if there is a correct process pj with

v ∈ Bj .

Agreement. No two correct processes decide differently.

Termination. Every correct process eventually decides.” [39]

It is worth to mention that in this problem variation processes may have a set of good

values Gi = {vi1, ..., viki} and a set of bad values Bi = {v′i1, ..., v′ili} [39].

Fault model: Byzantine generals with alternative plans use the same Byzantine fault

model as all Byzantine consensus problems.

Proposed solution/protocol: Authors have proposed several solutions to the problem.

The most difficult case, when there are no additional restrictions on good and bad value
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sets, is claimed to be unsolvable [39]. Another non-trivial variation holds the following

assumption: ∀i, j : (correct(i)∧ correct(j)) ⇒ (Bi = Bj). The proposed algorithm has

the same time complexity as Byzantine binary agreement, and the message complexity is

binary consensus complexity multiplied by V – the size of possible decisions.

4.3.4 Anonymous Byzantine Agreement

Motivation: In 2008 Michael Okun andAmnon Barak proposed an anonymous Byzan-

tine consensus [38] and explain their motivation as follows: “The predominant motiva-

tion of this study is to find the minimal conditions which still allow to reach BA” [38].

Additionally, the authors point out on the enhanced privacy due to the anonymity of the

processors.

System environment: The binary consensus in the synchronous system is considered

in the paper. All processes are anonymous, meaning the receiver of the messages does not

know who the sender is.

Goals: The goal of the problem is to achieve Byzantine eventual agreement:

“Termination. Every correct processor eventually decides.

Agreement. All the correct processors decide on the same value from V .

Validity. If the input to all the correct processors is v ∈ V , then v is the only possible

output value.” [38]

Fault model: The problem is set in Byzantine environment, which makes sense as this

consensus problem is an extension of the original Byzantine consensus.

Proposed solution/protocol: The authors [38] offer their solution to anonymous Byzan-

tine agreement and provide the following technical properties of the algorithms. The pro-

posed algorithm tolerates t < n
3
Byzantine faults in anonymous network and time com-

plexity is
3(n−t)t
n−2t

+ 4 rounds. Regarding communication complexity, the paper shows that

it is O(n2t) messages and O(n2t · logn) message bits. In the same work [38], there is
also an early-stopping version of the protocol where the maximum amount of rounds is

min {3(n−t)t
n−2t

+ 4, 3(n−f)f
n−t−f

+ 3f + 9} and communication complexity is O(n2f) messages

and O(n2f · logn) message bits.
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4.3.5 Mortal Byzantine Consensus

Motivation: Byzantine fault model is known to be too pessimistic while the crash model

does not reflect many scenarios in practice [45]. Therefore, a consensus problem in the

mortal Byzantine failure model has been introduced, as a compromise to the fault types

mentioned above, by JosefWidder et al. in 2012 [45]. This fault type is taken from earlier

research by Nesterenko and Arora [23] where they name it “malicious crashes”.

System environment: The described problem is a binary consensus in the message-

passing model. The system is synchronous and round-based.

Goals: To solve Byzantine consensus with mortal Byzantine failures, a protocol must

meet the following requirements:

“Agreement. No two correct processes decide differently.

Validity. If some correct process decides v, then v is the initial value of some correct

process.

Decision. Every correct process eventually decides.

Halting. Every correct process eventually halts.” [45]

Fault model: Fault model of this consensus pattern is what differentiates it from other

consensus definitions. By mortal Byzantine fault the authors [45] mean a fault that even-

tually crashes, but before that can behave arbitrarily. Such behavior reflects some of the

real faulty behaviors in practice.

Proposed solution/protocol: A proposed protocol solves consensus with up to t < n
2

failures, it is claimed to be an optimal number of faulty processes in this model [45].

Improvements: This paper also shows that in partially synchronous systems the lower

bound on the number of faults for mortal Byzantine consensus protocols is t < n
3
[45].

4.3.6 Byzantine Consensus with Unknown Participants (BFT-CUP)

Motivation: Alchieri et al. in 2018 study consensus in a system with the unknown num-

ber of participants [52], reasoning that while static networks are studied the most in dis-

tributed systems, the technology dictates different – wireless mobile ad-hoc, P2P networks

might not be aware of the exact number of participants.

System environment: Processes communicate in a network in the message-passing

model via authenticated reliable channels. A process knows about a subset of partici-
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pants. The authors of the paper [52] state that the system model does not require any

synchronization besides what is necessary to implement Byzantine consensus black box.

Goals: The definition of consensus is used from [20]; it is a traditional definition with

propose and decide functions. A safe Byzantine failure pattern assumption is added in

[52].

Faultmodel: Fault model used is Byzantine – a process that does not follow the protocol

is considered faulty, otherwise – correct. Even though the total amount of participants is

unknown, it is expected that at most f processes are faulty and at least 2f + 1 processes

in a sink are correct.

Proposed solution/protocol: BFT-CUP protocol reaches consensus in an asynchronous

system with 2f + 1 correct processes in a sink and must satisfy a safe Byzantine failure

pattern [52].

4.3.7 Generalized Consensus and Paxos Protocols

Motivation: The very first generalized paxos was proposed by Lamport in 2005 [32].

Lamport explains that the weak consensus (or generalized consensus) can be achieved at

lower costs and proposes protocol named Paxos that solves it. But we can get intomore de-

tails of it in its simplified version byMiguel Pires et al. [51] first published in 2017, which

also extends generalized paxos to Byzantine model. Interestingly, generalized paxos has

weakened traditional consensus problem definition to achieve better communication com-

plexity [51].

System environment: The environment is asynchronous and processes communicate

via exchanging messages over reliable channels. A process may play learner, proposer or

acceptor roles.

Goals: The following requirements [51] are defined for the generalized consensus prob-

lem:

“Nontriviality. learnedl can only contain proposed commands.

Stability. If learnedl = v then, at all later times, v is a eq-prefix of learnedl , for any l

and v.

Consistency. At any time and for any two correct learners li and lj , learnedli and learnedlj
can subsequently be extended to equivalent sequences.

Liveness. For any proposal s and correct learner l, eventually learnedl contains s.”[51]
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Fault model: This problem is set in authenticated Byzantine model meaning that pro-

cesses may follow the protocol, crash or behave maliciously.

Proposed solution/protocol: The proposed Byzantine fault tolerant generalized paxos

protocol [51] solves agreement with acceptor processes ≥ 3f + 1 and quorums of N − f

processes. By definition, “quorums are any set of N−f processes” [51] where N is the

total size of the system and f is the tolerated number of faults.

Improvements: Paxos is a family of protocols, let us mention some of its developments

below. In 2006 a Fast Byzantine (FaB) consensus protocol was proposed [35] (>200 ci-

tations), where the authors improve Paxos to reach agreement in two rounds for the com-

mon case in Byzantine fault model. The motives behind FaB protocol is to improve per-

formance for the common case in Byzantine environment. The system has synchronous

settings, so-called common case. By common case the authors mean a scenario that will

most likely happen in the majority of executions, more specifically “1) there is a unique

correct leader, 2) all correct acceptors agree on its identity, and 3) the system is in a pe-

riod of synchrony.” [35]. FaB runs in unreliable network with unreliable channels and

“authenticated asynchronous fair links” [35], the protocol tolerates f tolerated faulty pro-

cesses, out of 5f + 1 total. This solution is a two-step protocol, which terminates in 2

steps in common case.

Also, Paxos consensus algorithm has been implemented at Google in their fault-tolerant

system called Chubby [63]. Chandra, Griesemer and Redstone in this paper point out on

the complexity of the implementation theoretical algorithms into the real-world systems.

4.3.8 Consensus with Timing Uncertainty

Goals: Another consensus problem definition extends the classical round-based model

to a more realistic case with “timing uncertainty” [18]:

“Agreement. No two different processes decide on different values;

Validity. If some process decides on υ, then an event input(i, υ) occurs in α;

Termination and Time Bound. Every process either has a failure event or makes a decision

by time start(α)+B(delay(α)).” [18], where υ is the decision value, B is the time during

which the protocol terminates, α – a timed execution prefix.

Motivation: The motivation behind this definition is related to the common case when

participants do not start or receive input at the same time. The authors claim that the

“initial synchronization is not very realistic in a distributed network” [18], hence the input

events are introduced to the definitions.
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System environment: The protocols run in message-passing settings, where commu-

nication is based on rounds. The system is neither completely synchronous nor asyn-

chronous. The authors propose a compromise claiming that both those settings are “too

extreme” [18].

Fault model: This consensus problem is described in a fail-stop model, and these fail-

ures can be detected by introducing a failure detector [18].

Solution: The particular focus in this paper is put on the time complexity of the algo-

rithms which solve this agreement problem. While for classic round-based model the

upper and lower bounds to reach an agreement are f + 1 synchronous round, the authors

aim to study how introducing timing uncertainty C affects the time complexity of the pro-

tocols. The results have shown that the lower bound for the worst case scenario in the

timing-based model is (f − 1)d+Cd and the upper bound 2fd+Cd, where d is message

delivery time, and C is timing uncertainty [18].

4.3.9 Uniform Consensus

Goals: Uniform consensus is a more strict version of traditional consensus. Uniform

consensus keeps the termination and validity of the consensus problem and adds a uniform

agreement requirement: “every two processes (correct or faulty) that decide, decide on the

same output” [28].

System environment: Uniform consensus described in [33] and [28] runs in a syn-

chronous round-based environment.

Fault model: Idit Keidar, Sergio Rajsbaum [28] and Xianbing Wang et al. [33] proved

that reaching uniform consensus in synchronous crash-prone system requires at least f+2

rounds (lower bound), if 0 ≤ f ≤ t− 2, here f – number of failures during protocol exe-

cution, t – maximum tolerated amount of failures. On the other hand, uniform consensus

does not have solutions in Byzantine fault model [29]. Thus, most of the protocols that

aim to solve uniform consensus would likely assume crash failures only.

Solutions: Let us name some of the consensus protocols that solve uniform consensus

problem. [31] describes an algorithm that runs in a synchronous message-passing system

with reliable channels, where processes may crash, and correct processes remain a major-

ity. It is a condition-based protocol and it is solved “(1) in 1 round if f = 0 and l(I) ≥ t

holds, (2) within 2 rounds if l(I) ≥ f holds, and (3) within min {f + 2− l(I), t+ 1}
rounds otherwise” [31]. Here l(I) is a difficulty of input vectors, time complexity of the

protocol is adapting to (depending on) its value. Authors claim this protocol to be the
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fastest from existing ones (as for 2004 when the paper was published). A year later the

time complexity of the same protocol has been improved for f = t and l > f by one

round [34].

4.3.10 Randomized Consensus

Motivation: Randomization is one of the solutions to avoid the impossibility consensus

in an asynchronous system shown by Fischer et al. [7]. In 1983 a randomized Byzantine

generals problemwas considered [5], and the definition of the problem in the current thesis

is based on this paper by Michael O. Rabin. This consensus variation was proposed as a

solution to the original Byzantine generals problem [4].

System environment: The message-passing model is used for randomized consensus;

the system is asynchronous but can be as well modified to synchronous one [5]. The

current description is applied to the asynchronous model, if not stated otherwise. Ran-

domization is assumed to be present in a system – the lottery model is described in the

paper. Participants in consensus use authentication.

Goals: The requirements to reach randomized Byzantine consensus are the same as in

the original Byzantine agreement problem and are described by the following definitions:

Agreement. Correct processes reach agreement if message(i) = message(j) for all cor-

rect processes Gi and Gj [5].

Termination and Validity. “All the proper processes reach an agreement. If all proper Gi

have the same initial messageMi = M then the proper processes agree onM as the value

of the message.” [5]

Here Gi, 1 ≤ i ≤ n are processes, and a proper message means the correct behavior of

the process.

Fault model: The authors of the randomized consensus consider a Byzantine agreement

model. Therefore faulty processes may behave arbitrarily.

Proposed solution/protocol: The original protocol proposed is BAP – Byzantine agree-

ment protocol [5], is claimed to reach agreement in four rounds and requires cnt message

exchanges in total, where n is the number of processes, t – faulty processes, c – a small

constant. Also, according to the paper, synchronous case requires n > 4t processes.

Improvements on the topic, more protocols: The randomized consensus has certainly

been studied further, let us name one of the examples. One protocol was proposed by

Berman and Garay in 1993 [14], it reaches agreement in asynchronous systemwith n > 5t
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participants and θ(logn) message complexity.

4.3.11 Approximate Consensus

An approximate consensus is also a variation of Byzantine generals problem. The defini-

tion is discussed in the context of [8] that was published in 1986.

Motivation: The motivation behind the approximate consensus is to reach agreement

on approximate values within some margin, rather than the exact value. This consensus

problem can be used, for example, for clock synchronization [8]. Comparing to Byzantine

generals, an approximate algorithm may terminate in less than t+ 1 rounds, furthermore,

approximation allows achieving consensus in some cases, where exact consensus is not

possible [8].

System environment: Dolev et al. [8] considers both synchronous and asynchronous

model. Processes communicate through reliable channels by exchanging messages with

each other.

Goals: Approximate consensus problem is solved when a protocol satisfies the condi-

tions:

“Agreement. All nonfaulty processes eventually halt with output values that are within ε

of each other.

Validity. The value output by each nonfaulty process must be in the range of values of the

nonfaulty processes.” [8]

Fault model: Dolev et al. [8] describes approximate consensus in the Byzantine fault

model. The total number of processes must be n > 5t in asynchronous case. For syn-

chronous system it is n > 3t, these are the lower bounds.

Proposed solution/protocol: A proposed synchronous consensus algorithm success-

fully reaches an agreement with n > 3t (optimal solution) [8]. An asynchronous protocol,

defined in the same paper, terminates in logc (
δ(V )
ε
) rounds with n > 5t, plus initializa-

tion round, where V is multiset of values from initialization round, δ(V ) is the diameter

δ(V ) = max (V )−min (V ) and c is a factor c = n−3t−1
2t

+ 1 [8].

4.3.12 Strong Consensus

Motives behind the definition: The definition of strong consensus originates from Gil

Neiger’s article published in 1994 [17]. Strong consensus adds value in case of multi-
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valued consensus when input values are not only 0 or 1, but there are more options. This

definition is more reasonable than the traditional version and the author claim that classical

consensus validity condition fits fine to binary consensus while formulti-valued consensus

strong validity is more appropriate.

System environment: Strong consensus problem is set in synchronous message passing

model in a fully connected network with a known number of participants.

Goals: While keeping the original Termination and Agreement conditions to reach an

agreement as it is, this problem modifies Validity into Strong Validity:

“Strong Validity. The output value of each correct processor must be the input value of

some correct processor” [17].

Fault model: Correct process behaves according to protocol – send messages and up-

dates its state following the specs. A faulty process is defined as the one that is not cor-

rect, and Byzantine faulty behavior is assumed. Gil Neiger’s strong consensus requires

n > max {mt, 3t} of total processes, where m is the number of values in multi-valued

agreement, t – the number of faulty processes.

Proposed solutions: The adjusted version of exponential-time algorithm to solve Byzan-

tine generals problem [4] and phase-king algorithm [13] solve strong consensus if n >

max {mt, 3t} and n > max {2mt, 4t} respectively.

Further improvements: Hsiao et al. in 2002 [24] have added up a study on strong

consensus in general network. By general network, authors mean that the networkmay not

be fully connected as assumed in the original problem statement. Also, the failure model

in this paper assumes the possibility of both processes and link failures. The motivation

behind this paper is to model a more realistic and practical environment. Therefore, the

updated fault model on link and process failures looks like following [24] :

Process failures – Pa arbitrary, Ps symmetric, Pm manifest;

Link failures – La arbitrary, Lm manifest.

Hsiao et al. as a solution to strong consensus problem in general network proposed gener-

alized protocol with minimum t + 1 message exchange rounds for correct processes and

(t+ 1)cn2 messages, and maximum number of faulty components.

There are a couple more protocols that solve strong consensus, but it is worth to mention

the most recent to our knowledge article on SC. In 2012 eventual strong consensus has

been introduced [43] with a focus on dynamic networks. Here time and space complexity

have been improved for protocols, that satisfy strong consensus, with adding an early
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stopping rule.

The dynamic network reflects the development of network technologies over the past 25

years when the strong consensus was initially proposed. Chien-Fu Cheng and Kuo-Tang

Tsai explicitly point on the outdated environmental assumptions regarding system settings

of the previous studies on strong consensus: “Static networks built upon coaxial cables,

twisted pair cables, and optical fibers have been gradually replaced by dynamic networks.”

[43]

For eventual strong consensus the definitions of faults are kept the same as original –

correct process must behave correctly, otherwise it is faulty. The authors classify faults

into Byzantine and dormant faults: crash, omission or invariant and consider dual failure

mode [43]. Regarding the technical properties of the new protocol, the researchers in [43]

claim that n > max {mfm + fd + fa, 3fm + fd + fa} – constraints on total number of

participants, where fa – away processor, fd – dormant processor, fm –malicious processor,

m – size of the domain range of initial values. The number or message exchange rounds

required is min {fm + 2, t# + 1} , where t# = (n−1−fd−fa)
max {m,3} + 1. This protocol is well-

performing, the complexity is reduced comparing to the original paper.

From analyzing strong consensus problem, we can conclude that there is a need to keep

up the consensus problem and protocols with the speed of technological advancement and

update their environment assumptions and fault models, which would satisfy the realistic

conditions.

4.3.13 Wait-free Consensus

This section is on a wait-free Byzantine consensus problem described in 2002 by Paul

Attie [26]. This problem is one of the few problems in the shared-memory model studied

in this thesis.

System model: Wait-free consensus model is different from all the previous ones in

terms of process communication – instead of passing messages to each other, they perform

operations on shared data objects [26].

Fault-model: The primary motivation of the author is to combine Byzantine consensus

in asynchronous shared-memory settings. Naturally, the problem adopts Byzantine fault

model, and the behavior of the fault may be malicious.

Conditions: To solve wait-free Byzantine consensus problem in the proposed model, a

protocol must satisfy the further conditions, besides traditional Agreement and Validity:
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“Wait-free termination. If process Pi is nonfaulty in an infinite fair execution α, then Pi

decides exactly once in α.

Uniform-initial-state. Every combination of the initial local state for each process and

initial local state for each shared object is a possible initial global state.” [26]

A weak form of wait-free consensus contains weak validity requirement:

“Weak validity. If there are no faulty processes and all processes start with the same initial

value val ∈ V , then val is the only possible decision value.” [26]

Bounds, Impossibility results: There is no protocol in the paper but there are some

impossibility results presented, for instance, only a weak form of wait-free consensus can

be achieved and only if shared objects cannot be reset to the initial local state [26].

4.3.14 Lazy Consensus

Motivation: Lazy consensus problem was discussed in 2004 by Xavier Défago andAn-

dré Schiper [30]. The motivation behind this problem mentioned in the paper is to allow

processes to compute their initial values when needed. From the paper we can guess

that lazy consensus works efficiently for semi-passive replication algorithm defined in the

same paper [30], where the cost of input value computation is high, and lazy consensus

allows to perform it when requested.

Environment: The problem is described in the asynchronous message-passing model.

The impossibility result can be avoided with failure detectors [30].

Fault model: Xavier Défago and André Schiper define lazy consensus in crash/no re-

covery fault model, while a correct process is specified as the one that does not crash.

Conditions: Lazy consensus is achieved when uniform consensus is satisfied along with

one of the invented laziness properties:

“Termination. Every correct process eventually decides some value.

Uniform integrity. Every process decides at most once.

Agreement. No two correct processes decide differently.

Uniform validity. If a process decides v, then v was proposed by some process.

Proposition integrity. Every process proposes a value at most once.”[30]

The authors provide definitions for weak, quazi-strong and strong lazy consensus, there-

fore generate three new consensus problems.
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“Weak laziness. If two processes p and q propose a value, then at least one of p and q is

suspected by some process in the set of processes PS .

Quasi-strong laziness. If two processes p and q propose a value, then p and q are not both

correct.

Strong laziness. If a process p proposes a value, then no process q proposes a value before

p has crashed unless q has crashed before p proposes a value.” [30]

Protocol: The proposed solution is a protocol adapted from [20]. As in the original

protocol, lazy consensus protocol requires the majority of the processes to be correct.

Overall, all other assumptions remain the same.

4.3.15 Managed Agreement

A managed agreement was presented by Emmanuelle Anceaume et al. [36] in 2007. It

is a concept for generalizing non-blocking atomic commit and consensus problem. The

managed agreement is a family of problems, where consensus and NBAC are the two

special cases of it.

Motivation: The motivation behind this new definition is not very clear to us, but it is

probably about generalizing two significant problems in distributed computing.

System environment: The problem is set in the asynchronous system, message-passing

model, where processes communicate via reliable channels. A protocol is equipped with

one or multiple failure detectors.

Goals: To achieve managed agreement the following conditions must be satisfied:

“(Uniform) Agreement. No two processes decide differently.

Termination. Every correct process eventually decides on some value.

Managed-Obligation If the decision value is M(Default), then either one of the aristo-

crats proposes Default or crashes.

Managed-Justification If the decision value v is different fromM(Default), then v cor-

responds to a proposed value and all aristocrats propose a non default value.” [36]

The interesting elements of the problem is a default value and a subset of participants called

aristocrats. Managed agreement equals to NBAC when all nodes are aristocrats [36]. So,

in case of NBAC, if any aristocrat proposes default(“abort”) or crashes, the decided value

is default(“abort”). The decision to commit is made when no aristocrat has crashed, and

none of them proposed a default value. Regarding the traditional consensus problem, it is

a case when there are no aristocrats in the system [36].
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Fault model: Lazy consensus described in [36] uses crash model, where a process may

crash permanently and f < n processes may be faulty. A correct process follows the specs

and does not crash.

Proposed solution/protocol: The authors introduce their own failure detector along

with the schema of a generic managed agreement protocol, that would use the aforemen-

tioned failure detector and solve the managed agreement problem.

4.3.16 Anonymous Consensus

Motivation: In 2011 the anonymous consensus problemwas studied by François Bonnet

andMichel Raynal [64]. Anonymity often implies user’s privacy, and researching this area

is a reasonable motive.

System environment: The problem in [64] describes an asynchronous message-passing

system. Processes are anonymous and communicate via reliable channels. The failure

detector is also present in a system.

Goals: This consensus model is using the uniform agreement goals.

Fault model: The authors of the article claim to be the first ones who studied asyn-

chronous anonymous consensus with crash failures. Processes may crash but not recover

during the run, where 0 ≤ t ≤ n− 1 (at least one process must be correct) [64].

Proposed solution/protocol: The protocol in the paper terminates in 2t+1 asynchronous

rounds, an early-deciding version reaches consensus in min {2f + 2, 2t+ 1} rounds.

4.3.17 Anonymous Consensus in a Shared-Memory System

Motivation: In 2011 a Janus algorithm was presented, which solves the consensus in

a shared-memory model with anonymous processors [42]. The particular interest of the

study was to investigate the write step complexity of the specified consensus [42].

System environment: This consensus problem has an asynchronous shared-memory

model with anonymous processes.

Goals: The authors mention propose and decide functions, which seems like a defini-

tion from Chandra et al. [20]. The following goals must be achieved to reach consensus:

“(Agreement) two processes cannot decide different values; (Validity) if a process decides

some value v, then v was proposed before; and (Termination) every correct process even-
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tually decides.” [42]

Fault model: It is assumed that processes can crash, but the system is equipped with a

failure detector.

Proposed solution/protocol: The authors propose an anonymous consensus algorithm

called Janus, which solves the previously defined problem in O(
√
n) individual writes

[42].

4.3.18 Continuous Consensus

Motivation: Continuous consensus problem was introduced in 2008 by Tal Mizrahi and

YoramMoses [37]. They describe a problem ofmaintaining consistency of the information

among nodes in distributed systems prone to failures. This problem is exciting to us, as it

is not the typical problem of agreeing on a value. If searching for the roots of the problem

in the literature, Tal Mizrahi and Yoram Moses explain: “Continuous consensus is a strict

generalization of simultaneous agreement.”[37]

System environment: The protocol to solve continuous consensus must run in a syn-

chronous network, where processes communicate by sending messages.

Goals: Formally continuous consensus problem is presented as follows. Each process i

maintains a copy of events E. A protocol to solve continuous consensus must satisfy the

requirements:

“Accuracy. All events inMi[k] occurred in the run.

Consistency. Mi[k] =Mj[k] at all times k.

Completeness. If an event e ∈ E is known to process j at any point, then e ∈ Mi[k] must

hold at some time k.” [37]

Here k is time step,Mi[k] is a core list of events, that have to maintained by each correct

process continuously.

Fault model: The paper describes continuous consensus in crash and omission fault

models. Later in 2010 continuous consensus was studied by the same authors in a system

with ambiguous failures, namely general omissions and authenticated Byzantine [41].

Proposed solution/protocol: The ConCon protocol is an optimal protocol that solves

continuous consensus in crash and omission failure models [37].

42



Improvements on the topic, more protocols: In 2010 a few more protocols were con-

sidered by Tal Mizrahi and Yoram Moses [41]. The authors present authenticated con-

tinuous consensus protocol, which solves CC for n > 3t processes. Another protocol

proposed in the same paper called AccD is an early-stopping protocol and solves CC for

n > t. These algorithms are claimed to be valid for both general omissions and authenti-

cated Byzantine models.

4.3.19 Blockchain Consensus

Motivation: One of the latest consensus problems is blockchain consensus [50]. Vin-

cent Gramoli in his paper points out that the main reasons of defining a separate definition

for blockchain related protocols is that it is put more in the context of blockchain applica-

tions and it is claimed to improve the model in terms of scalability, on the contrast of using

the classical Byzantine consensus. The blockchain consensus is specifically designed for

the blockchain environment and, therefore, has more relaxed conditions than the Byzan-

tine consensus.

Goals: The blockchain consensus also requires agreement, termination and validity con-

ditions but the definitions are adapted to use the language of blockchain applications:

“Agreement: no two correct processes decide different blocks; Termination: all correct

processes eventually decide a block; Validity: a decided block is valid, it satisfies the

predefined predicate valid.” [50]

Solution: Vincent Gramoli does not offer his own solution to blockchain consensus in

this paper. However, he mentions that one protocol already solves blockchain consensus,

namely Democratic BFT [65].
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5 Analysis

In the previous chapter, a systematic survey of consensus problems and protocols have

been presented. Here the aim is to show our findings in a diagram and demonstrate how

these problems are interconnected.

This survey is a collection of consensus problems for the past 40 years. To see the progress

on consensus problems in each decade, a timeline of consensus problems is presented

below, which shows the earliest (to our knowledge) study on this particular problem:

• 1980 – 1989: interactive consistency, Byzantine generals, uniform consensus, ran-

domized Byzantine consensus, approximate consensus;

• 1990 – 1999: consensus with timing uncertainty, consensus by Chandra et al., strong

consensus;

• 2000 – 2009: wait-free Byzantine consensus, lazy consensus, generalized consen-

sus, managed agreement, Byzantine generals with alternative plans, anonymous

Byzantine agreement, continuous consensus;

• 2010 – 2019: anonymous consensus, anonymous consensus in a shared-memory

system, mortal Byzantine consensus, blockchain consensus, Byzantine consensus

with unknown participants.

A consensus problem has many components. A formalized consensus problem must spec-

ify how the system looks like, how processes can behave and so on. However, one con-

sensus problem is mainly distinguished from another by its conditions, which are required

to reach an agreement. Termination, validity, agreement conditions and their extensions

– these are the goals that define a consensus problem, and this is the main interest in this

chapter.

Thus, a goal-based map of consensus definitions is presented (see fig. 5.1). This research

has collected 17 problems in a message-passing system and 2 other consensus problems in

a shared-memory model, 19 problems in total. This map contains all consensus problems

in a message-passing model found during the systematic literature review. For a compre-

hensive taxonomy on consensus in a shared-memory model, more data than collected is

needed, that is why these problems have not been included in the map, though they are still

present in the survey. The rectangles on the map demonstrate the goals introduced by the

problems and oval shapes are the consensus problems themselves. The arrows show the
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links between problems and point to the additional goals defined by the child problems.

When aggregating the data, the attention is put on the links between the problems. Some

of the papers explicitly state that the proposed problem extends the already existing con-

sensus definition (e.g., it was noticed that many problems were variations of the Byzantine

generals problem). On the other hand, it is possible to guess from the goals, that the new

consensus problem solves, for example, the uniform consensus as well, so it is considered

it as its extension.

From the diagram, one can see that a high amount of consensus problems extends the

Byzantine consensus. The anonymousByzantine agreement, randomized consensus, Byzan-

tine consensus with unknown participants have the same goals, while mortal Byzantine

consensus adds halting condition, approximate consensus redefines agreement and valid-

ity to reach consensus on the approximate value, and Byzantine generals with alternative

plans plot their battle based on the newly introduced validity 1 and validity 2 requirements.

The continuous consensus is defined by consistency, accuracy and completeness proper-

ties, which is different from other problems studied in this thesis, therefore the goal-links

between continuous consensus and any other one were not established. When the problem

uses whether a uniform agreement or uniform validity conditions, it is put to the uniform

consensus branch. The generalized consensus is considered a weakened form of the tradi-

tional consensus but in the reviewed papers it was not clear what exact goals are specified,

therefore on the map, it is only mentioned where the roots come from.

To summarize, this map is an additional contribution to this thesis, besides the survey.

The visual representation shows how the consensus has evolved and what are the differ-

ent goals proposed by the authors of the consensus problems. It reveals the connections

between these problems, which might not be obvious from solely reviewing the literature.
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6 Conclusion

Researchers strive to define a valid consensus problem, which would be based on realistic

assumptions and reflect the modern system environment. Engineers are interested in hav-

ing a protocol, which is secure, scalable and well-performed. With the amount of research

done for the past 40 years, it makes sense to revisit consensus problems and protocols, see

what has been achieved so far and make updates reflecting the technological development.

The current thesis presents such a study.

This systematic literature review is research on distributed consensus, which brings the

various consensus problems and protocols in one place. In total 52 papers on consensus

are analized, they were published during 1980 – 2019 and 19 different consensus problems

found, each of them serves its purpose. Additionally, a goal-based map of the consensus

problems in message-passing model is presented.

For future research, more consensus problems in a shared-memorymodel can be reviewed.

Another suggestion is to evaluate the models of the existing consensus problems. One

could check if the system model reflects the nowadays network architecture, how measur-

able are the assumptions in the consensus problems, if it is realistic, for example, to assume
2n
3
or 4n

5
correct processors. Answering these questions could significantly improve the

current state of distributed consensus. It could also bring returns in forms of practical

protocols, that would serve its purpose not only on paper but also in real applications.
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