
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Science

UT Centre for Digital Forensics and Cyber Security

Tallinn 2016

ITC70LT

Vjatšeslav Panov

IMPLEMENTATION OF A HASH FUNCTION

FOR PORTABLE EXECUTABLE BASED ON

STRUCTURAL INFORMATION

Master's thesis

Supervisor: Truls Ringkob

Supervisor’s degree: TUT master’s degree

Supervisor’s position: IT College and visiting TUT lecturer

2

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Vjatšeslav Panov

30.04.2016

3

Abstract

Malware is big security threat on the Internet in current epoch. Anti-virus and security

companies receive large number of malware samples every day. Malware samples need

to be classified and grouped for further analysis. There are different types of malware

analysis, clustering and classification methods available.

This thesis focuses on static analysis of malware by implementation of hash function for

Portable Executable based on structural information of file introduced by Georg

Wicherski from RWTH Aachen University. Main idea is to use selected properties of

file headers and complexity of section contents in PE file for hash. Even if algorithm

was described, example of implementation was given in pseudo code. Source code from

author was never published. In addition, it does not have a strict definition and

examples of test usage.

Goals of this work are trying to correctly implement pehash algorithm in python

programming language, make a strict format definition, analyze and adapt algorithm for

latest PE file examples and make it public with example of usage.

This thesis is written in English and is 47 pages long, including 6 chapters, 11 figures

and 21 tables.

4

Annotatsioon

Räsifunktsiooni juurutamine kaasaskantav käivitatava failil struktuurse

informatsiooni baasil.

 Õelvara Internetis on meie ajastu suureks ohuks. Viiruse-tõrje ja IT-turvalisuse firmad

iga päev saavad suure hulka kahjuvara näiteid. Järgse analüüsi õelvara pead olema

klassifitseeritud ning grupeeritud. õelvara analüüsimiseks olemas erinevad meetodid,

näiteks grupeerimine ja klassifitseerimine.

 Antud diplomitöö fokuseeritud õelvara staatilise analüüsile räsi funktsiooni

juurutamisel kaasaskantav käivitatava failile struktuurse informatsiooni põhjal mis on

kehtestatud Georg Wicherski poolt RWTH Aachen Ülikoolist. Põhi idee on kasutada

failipäise valitud omadused ja PE faili sektsiooni sisu keerukust räsi jaoks. Isegi kui

algoritm oli kirjeldatud, juurutamise näite oli rakendatud pseudokoodis. Autor pole

kunagi lähtekoodi avaldanud. Samuti definitsioon ja test kastutamine ei ole rangelt

määratud.

Töö eesmärgiks on katsetada õigesti juurutada PE räsi algoritmi Python

programmeerimiskeeles, rangelt määrata definitsiooni, analüüsida ja kohandada

algoritmi hiljemalt PE faili näited ning avalikustada..

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 47 leheküljel, 6 peatükki, 11

joonist, 21 tabelit.

5

Table of abbreviations and terms

Abbreviation Definition

COFF Common Object File Format

MD5 Message Digest Algorithm

PE Portable Executable

PE+ Portable Executable 64 bits version

SHA1 Secure Hash Algorithm 1

SHA256 Secure Hash Algorithm 256

VA Virtual Address

6

Table of contents

1. Introduction .. 10

2. Portable Executable File Format .. 12

2.1. MZ header and DOS stub .. 13

2.2. PE Signature .. 13

2.3. PE (COFF) File Header ... 13

2.3.1. Machine Types ... 14

2.3.2. Image Characteristics ... 15

2.4. Optional Header ... 16

2.4.1. Standard fields .. 17

2.4.2. Windows specific fields.. 17

2.4.3. Data directories ... 21

2.5. Section Table (Section Headers) .. 22

2.5.1. Section Characteristics ... 23

2.6. Section Data ... 25

3. peHash function design .. 27

4. Implementation and issues.. 29

4.1. Incorrect padding ... 29

4.2. Issue in bitstring module .. 30

4.3. Wrong value for field "Subsystem" ... 30

4.4. Missing round up ... 31

4.5. Incorrect slicing ... 31

4.6. Compression ratio scaling .. 32

5. Proposed implementation ... 34

5.1. Corrected improper implementation .. 34

7

5.2. Extended implementation .. 35

6. Statistics and conclusions ... 37

References .. 40

Appendix 1 – peHash source code ... 42

Appendix 2 – peHashNG source code .. 45

8

List of figures

Figure 1. PE file format structure. [7] .. 12

Figure 2. IMAGE_DATA_DIRECTORY structure. [7] .. 21

Figure 3. Pseudo-code for header. [6] .. 28

Figure 4. Pseudo-code for section. [6] .. 28

Figure 5. Incorrect padding. ... 29

Figure 6. Issue in bitstring module. .. 30

Figure 7. Wrong value for field "Subsystem" [10] [12] ... 30

Figure 8. Slicing of multi-byte BitArray. ... 31

Figure 9. Compression ratio. [10], [12] .. 32

Figure 10. Slicing of float value. .. 33

Figure 11. Data Directories usage. .. 38

9

List of tables

Table 1. PE (COFF) File Header .. 14

Table 2. Machine Types. .. 15

Table 3. Image Characteristics ... 16

Table 4. Optional header structure. .. 16

Table 5. Optional header standard fields. ... 17

Table 6. Optional Header Windows-Specific Fields. ... 19

Table 7. Optional header Windows Subsystem. ... 20

Table 8. Optional header DLL characteristics. ... 21

Table 9. Optional header Data directories. ... 22

Table 10. Section table entry .. 23

Table 11. Section Characteristics field. .. 25

Table 12. Hashes for modified file. .. 32

Table 13. peHash buffer for file header. ... 34

Table 14. peHash buffer for section properties. ... 34

Table 15. peHashNG buffer for file header. ... 36

Table 16. peHashNG buffer for section properties.. 36

Table 17. Image Characteristics unique counters ... 37

Table 18. Subsystem unique counters. ... 37

Table 19. SizeOfStackCommit unique counters... 37

Table 20. SizeOfHeapCommit unique counters. .. 38

Table 21. Counts of hashes with different numbers of files in cluster. 39

10

1. Introduction

 As described in "Symantec 2016 Internet Security Threat Report Vol. 21" [1] which

provides an overview and analysis of the year in global threat activity, Symantec

discovered more than 430 million new unique pieces of malware in 2015, up 36 percent

from the year before. As real life and online become indistinguishable from each other,

cybercrime has become a part of our daily lives.

Every day of the week, there are thousands of new viruses annoying to put in danger

your computer. However, from other side, rarely someone writes new malware from

scratch. Most frequently, they are so named mutating and polymorphic malware or the

new malware is just some transformation of previously written malware, thus it is

usually similar to its predecessor. Finding this similarity is like to malware

classification, which allows detecting malware family and then effectively finding the

activities for it.

Nowadays we have different hash types for executable files like classical MD5, SHA-1,

and SHA-256. More interesting for malware analyze are hash functions based not

directly on the file's bits stream but on selected structural information fields of

executable file. Most public well-known hashes of such type are "peHash" and "Import

Hash".

"Import Hash" (imphash) was created and implemented by Mandiant and is a hash

based on library/API names and their specific order within the executable. [2] It has a

good definition and is implemented in python language and submitted as a patch to Ero

Carrera's pefile. [3] It enables the calculation of the imphash value for a given PE.

Imphash used in VirusTotal [4] and in lots of open-source malware analysis frameworks

and utilities [5].

"peHash" (pehash) was introduced by Georg Wicherski in the paper "peHash: A Novel

Approach to Fast Malware Clustering" [6]. “peHash” is a function for binaries in the

Portable Executable (PE) format that makes hash of the structural information. Central

idea is to use selected properties of file headers and complexity of section’s contents in

PE file for hash.

11

The main goal of this thesis is to make correct and good defined variant of

implementation of hash function for Portable Executable based on pehash algorithm

suitable for the task of malware classification.

12

2. Portable Executable File Format

The PE (Portable Executable) file format is used for executable files on 32 and 64- bit

Windows platforms. Not only EXE but also, for example, DLL, SYS and SCR files

have the PE file structure, which is a modified version of the COFF format [7]. The PE

file header consists of a MZ-DOS header and MS-DOS stub, the PE signature, the

COFF (PE) file header, and an optional header, the file headers are followed by section

headers and sections. Typical PE file layout shown on Figure 1.

Figure 1. PE file format structure. [7]

13

2.1. MZ header and DOS stub

The first two bytes within the MZ-DOS header are always “MZ”, followed by some

fields containing additional information and the offset to the actual PE header -

e_lfanew (offset 0x3c). This is the PE header offset (in bytes) from the beginning of the

file. This must point to the first byte of the PE signature, PE\x0\x0, aligned using the

double-word boundary. In case the file is executed in DOS mode, the MS-DOS stub

will be ran and will print out a sentence like “This program cannot be run in DOS

mode”.

2.2. PE Signature

At the file offset specified at e_lfanew, is a 4-byte signature that identifies the file as a

PE format image file. This signature is “PE\0\0”

2.3. PE (COFF) File Header

A standard PE (COFF) file header is immediately after the PE signature of an image

file. Format of this header shown in Table 1. [7]

Offset Size Field Description

 0 2 Machine The number that identifies the type of target
machine. More details in Table 2.

 2 2 NumberOfSections The number of sections. This indicates the size of the
section table, which immediately follows the
headers.

 4 4 TimeDateStamp The low 32 bits of the number of seconds since
00:00 January 1, 1970 that indicates when the file
was created.

 8 4 PointerToSymbolTable This value should be zero for an image because
COFF debugging information is deprecated.

12 4 NumberOfSymbols This value should be zero for an image because
COFF debugging information is deprecated.

16 2 SizeOfOptionalHeader The size of the optional header, which is required for
executable files but not for object files. This value
should be zero for an object file.

14

Offset Size Field Description

18 2 Characteristics The flags that indicate the attributes of the file. For
specific flag values. More details in Table 3.

Table 1. PE (COFF) File Header

2.3.1. Machine Types

The Machine field has one of the following values that specifies its CPU type. Format

of this field shown in Table 2. [7]

Constant Value Description

IMAGE_FILE_MACHINE_UNKNOWN 0x0 The contents of this field are assumed to
be applicable to any machine type

IMAGE_FILE_MACHINE_AM33 0x1d3 Matsushita AM33

IMAGE_FILE_MACHINE_AMD64 0x8664 x64

IMAGE_FILE_MACHINE_ARM 0x1c0 ARM little endian

IMAGE_FILE_MACHINE_ARMNT 0x1c4 ARMv7 (or higher) Thumb mode only

IMAGE_FILE_MACHINE_ARM64 0xaa64 ARMv8 in 64-bit mode

IMAGE_FILE_MACHINE_EBC 0xebc EFI byte code

IMAGE_FILE_MACHINE_I386 0x14c Intel 386 or later processors and
compatible processors

IMAGE_FILE_MACHINE_IA64 0x200 Intel Itanium processor family

IMAGE_FILE_MACHINE_M32R 0x9041 Mitsubishi M32R little endian

IMAGE_FILE_MACHINE_MIPS16 0x266 MIPS16

IMAGE_FILE_MACHINE_MIPSFPU 0x366 MIPS with FPU

IMAGE_FILE_MACHINE_MIPSFPU16 0x466 MIPS16 with FPU

IMAGE_FILE_MACHINE_POWERPC 0x1f0 Power PC little endian

IMAGE_FILE_MACHINE_POWERPCFP 0x1f1 Power PC with floating point support

IMAGE_FILE_MACHINE_R4000 0x166 MIPS little endian

IMAGE_FILE_MACHINE_SH3 0x1a2 Hitachi SH3

IMAGE_FILE_MACHINE_SH3DSP 0x1a3 Hitachi SH3 DSP

IMAGE_FILE_MACHINE_SH4 0x1a6 Hitachi SH4

IMAGE_FILE_MACHINE_SH5 0x1a8 Hitachi SH5

IMAGE_FILE_MACHINE_THUMB 0x1c2 ARM or Thumb (“interworking”)

15

Constant Value Description

IMAGE_FILE_MACHINE_WCEMIPSV2 0x169 MIPS little-endian WCE v2

Table 2. Machine Types.

2.3.2. Image Characteristics

The Characteristics field contains flags that indicate attributes of the object or image

file. The following flags are currently defined. [7]

Flag Value Description

IMAGE_FILE_RELOCS_STRIPPED 0x0001 Image only, Windows CE, and
Windows NT® and later. This
indicates that the file does not contain
base relocations and must therefore be
loaded at its preferred base address. If
the base address is not available, the
loader reports an error. The default
behavior of the linker is to strip base
relocations from executable (EXE)
files.

IMAGE_FILE_EXECUTABLE_IMAGE 0x0002 Image only. This indicates that the
image file is valid and can be run. If
this flag is not set, it indicates a linker
error.

IMAGE_FILE_LINE_NUMS_STRIPPED 0x0004 This flag is deprecated and should be
zero.

IMAGE_FILE_LOCAL_SYMS_STRIPPED 0x0008 This flag is deprecated and should be
zero.

IMAGE_FILE_AGGRESSIVE_WS_TRIM 0x0010 This flag is deprecated for Windows
2000 and later and must be zero.

IMAGE_FILE_LARGE_ADDRESS_
AWARE

0x0020 Application can handle > 2-GB
addresses.

 0x0040 This flag is reserved for future use.

IMAGE_FILE_BYTES_REVERSED_LO 0x0080 This flag is deprecated and should be
zero.

IMAGE_FILE_32BIT_MACHINE 0x0100 Machine is based on a 32-bit-word
architecture.

IMAGE_FILE_DEBUG_STRIPPED 0x0200 Debugging information is removed
from the image file.

16

Flag Value Description

IMAGE_FILE_REMOVABLE_RUN_
FROM_SWAP

0x0400 If the image is on removable media,
fully load it and copy it to the swap
file.

IMAGE_FILE_NET_RUN_FROM_SWAP 0x0800 If the image is on network media, fully
load it and copy it to the swap file.

IMAGE_FILE_SYSTEM 0x1000 The image file is a system file, not a
user program.

IMAGE_FILE_DLL 0x2000 The image file is a dynamic-link
library (DLL). Such files are
considered executable files for almost
all purposes, although they cannot be
directly run.

IMAGE_FILE_UP_SYSTEM_ONLY 0x4000 The file should be run only on a
uniprocessor machine.

IMAGE_FILE_BYTES_REVERSED_HI 0x8000 This flag is deprecated and should be
zero.

Table 3. Image Characteristics

2.4. Optional Header

Optional header specifies the structure of the page image in more detail. The term

“optional” is not an appropriate choice for this header because it does not reflect reality.

In fact, the file cannot be loaded without this header. This header is mandatory, not

optional! This header has 3 parts. [7]

Offset

(PE32/PE32+)

Size

(PE32/PE32+)

Header part Description

0 28/24 Standard fields Fields that are defined for all
implementations of COFF, including
UNIX. Table 5.

28/24 68/88 Windows-
specific fields

Additional fields to support specific
features of Windows. Table 6

96/112 Variable Data directories Address/size pairs for special tables that
are found in the image file and are used
by the operating system (for example,
the import table and the export table).
Table 9

Table 4. Optional header structure.

17

2.4.1. Standard fields

These fields contain general information that is useful for loading and running an

executable file. They are unchanged for the PE32+ format. [7]

Offset Size Field Description

 0 2 Magic The unsigned integer that identifies the state of the
image file.

 0x10B identifies it as a PE executable.

0x107 identifies it as a ROM image,

0x20B identifies it as a PE32+ executable.

 2 1 MajorLinkerVersion The linker major version number.

 3 1 MinorLinkerVersion The linker minor version number.

 4 4 SizeOfCode The size of the code (text) section, or the sum of all
code sections if there are multiple sections.

 8 4 SizeOfInitializedData The size of the initialized data section, or the sum of
all such sections if there are multiple data sections.

12 4 SizeOfUninitializedData The size of the uninitialized data section (BSS), or
the sum of all such sections if there are multiple BSS
sections.

16 4 AddressOfEntryPoint The address of the entry point relative to the image
base when the executable file is loaded into memory.
For program images, this is the starting address. For
device drivers, this is the address of the initialization
function. An entry point is optional for DLLs. When
no entry point is present, this field must be zero.

20 4 BaseOfCode The address that is relative to the image base of the
beginning-of-code section when it is loaded into
memory.

24 4

BaseOfData

PE file only, absent in

PE32+

The address that is relative to the image base of the
beginning-of-data section when it is loaded into
memory.

Table 5. Optional header standard fields.

2.4.2. Windows specific fields

Fields are an extension to the COFF optional header format. They contain additional

information that is required by the linker and loader in Windows. [7]

18

Offset

(PE32/

PE32+)

Size

(PE32/

PE32+)

Field Description

28/24 4/8 ImageBase The preferred address of the first byte of
image when loaded into memory; must
be a multiple of 64 K.

32/32 4 SectionAlignment The alignment (in bytes) of sections
when they are loaded into memory. It
must be greater than or equal to
FileAlignment. The default is the page
size for the architecture.

36/36 4 FileAlignment The alignment factor (in bytes) that is
used to align the raw data of sections in
the image file. The value should be a
power of 2 between 512 and 64 K,
inclusive. The default is 512. If the
SectionAlignment is less than the
architecture’s page size, then
FileAlignment must match
SectionAlignment.

40/40 2 MajorOperatingSystemVersion The major version number of the
required operating system.

42/42 2 MinorOperatingSystemVersion The minor version number of the
required operating system.

44/44 2 MajorImageVersion The major version number of the image.

46/46 2 MinorImageVersion The minor version number of the image.

48/48 2 MajorSubsystemVersion The major version number of the
subsystem.

50/50 2 MinorSubsystemVersion The minor version number of the
subsystem.

52/52 4 Win32VersionValue Reserved, must be zero.

56/56 4 SizeOfImage The size (in bytes) of the image,
including all headers, as the image is
loaded in memory. It must be a multiple
of SectionAlignment.

60/60 4 SizeOfHeaders The combined size of an MS-DOS stub,
PE header, and section headers rounded
up to a multiple of FileAlignment.

19

Offset

(PE32/

PE32+)

Size

(PE32/

PE32+)

Field Description

64/64 4 CheckSum The image file checksum. The algorithm
for computing the checksum is
incorporated into IMAGHELP.DLL. The
following are checked for validation at
load time: all drivers, any DLL loaded at
boot time, and any DLL that is loaded
into a critical Windows process.

68/68 2 Subsystem The subsystem that is required to run this
image. Table 7

70/70 2 DllCharacteristics DLL Characteristics. Table 8

72/72 4/8 SizeOfStackReserve The size of the stack to reserve. Only
SizeOfStackCommit` is committed; the
rest is made available one page at a time
until the reserve size is reached.

76/80 4/8 SizeOfStackCommit The size of the stack to commit.

80/88 4/8 SizeOfHeapReserve The size of the local heap space to
reserve. Only SizeOfHeapCommit is
committed; the rest is made available one
page at a time until the reserve size is
reached.

84/96 4/8 SizeOfHeapCommit The size of the local heap space to
commit.

88/104 4 LoaderFlags Reserved, must be zero.

92/108 4 NumberOfRvaAndSizes The number of data-directory entries in
the remainder of the optional header.
Each describes a location and size.

Table 6. Optional Header Windows-Specific Fields.

Subsystem

Values for the Subsystem field of the optional header determine which Windows

subsystem is required to run the image. [7]

Constant Value Description

IMAGE_SUBSYSTEM_UNKNOWN 0 An unknown subsystem

IMAGE_SUBSYSTEM_NATIVE 1 Device drivers and native Windows
processes

IMAGE_SUBSYSTEM_WINDOWS_GUI 2 The Windows graphical user interface
(GUI) subsystem

20

Constant Value Description

IMAGE_SUBSYSTEM_WINDOWS_CUI 3 The Windows character subsystem

IMAGE_SUBSYSTEM_POSIX_CUI 7 The Posix character subsystem

IMAGE_SUBSYSTEM_WINDOWS_CE_
GUI

 9 Windows CE

IMAGE_SUBSYSTEM_EFI_APPLICATI
ON

10 An Extensible Firmware Interface (EFI)
application

IMAGE_SUBSYSTEM_EFI_BOOT_
SERVICE_DRIVER

11 An EFI driver with boot services

IMAGE_SUBSYSTEM_EFI_RUNTIME_
DRIVER

12 An EFI driver with run-time services

IMAGE_SUBSYSTEM_EFI_ROM 13 An EFI ROM image

IMAGE_SUBSYSTEM_XBOX 14 XBOX

Table 7. Optional header Windows Subsystem.

DLL Characteristics

Values defined for the DllCharacteristics field of the optional header. [7]

Constant Value Description

 0x0001 Reserved, must be zero.

 0x0002 Reserved, must be zero.

 0x0004 Reserved, must be zero.

 0x0008 Reserved, must be zero.

IMAGE_DLL_CHARACTERISTICS_

DYNAMIC_BASE

0x0040 DLL can be relocated at load time.

IMAGE_DLL_CHARACTERISTICS_

FORCE_INTEGRITY

0x0080 Code Integrity checks are enforced.

IMAGE_DLL_CHARACTERISTICS_

NX_COMPAT

0x0100 Image is NX compatible.

IMAGE_DLLCHARACTERISTICS_
NO_ISOLATION

0x0200 Isolation aware, but do not isolate the
image.

IMAGE_DLLCHARACTERISTICS_
NO_SEH

0x0400 Does not use structured exception
(SE) handling. No SE handler may be
called in this image.

IMAGE_DLLCHARACTERISTICS_
NO_BIND

0x0800 Do not bind the image.

 0x1000 Reserved, must be zero.

21

IMAGE_DLLCHARACTERISTICS_
WDM_DRIVER

0x2000 A WDM driver.

IMAGE_DLLCHARACTERISTICS_
TERMINAL_SERVER_AWARE

0x8000 Terminal Server aware.

Table 8. Optional header DLL characteristics.

2.4.3. Data directories

This is one of the most important structures in the optional header. It is the array of

directory structures with pointer and size. Each data directory gives the address and size

of a table or string that Windows uses. Structure defined as: [7]

typedef struct _IMAGE_DATA_DIRECTORY {

DWORD VirtualAddress;

DWORD Size;

} IMAGE_DATA_DIRECTORY,*PIMAGE_DATA_DIRECTORY;

Figure 2. IMAGE_DATA_DIRECTORY structure. [7]

The data directories fields are: [7]

Offset

(PE/PE32+)

Size Field Description

 96/112 8 Export Table The export table address and size (Image Only).

104/120 8 Import Table The import table address and size.

112/128 8 Resource Table The resource table address and size.

120/136 8 Exception Table The exception table address and size.

128/144 8 Certificate Table The attribute certificate table address and size. (Image
Only).

136/152 8 Base Relocation
Table

The base relocation table address and size (Image
Only).

144/160 8 Debug The debug data starting address and size.

152/168 8 Architecture Reserved, must be 0

160/176 8 Global Ptr The RVA of the value to be stored in the global
pointer register. The size member of this structure
must be set to zero.

168/184 8 TLS Table The thread local storage (TLS) table address and size.

176/192 8 Load Config
Table

The load configuration table address and size.

184/200 8 Bound Import The bound import table address and size.

192/208 8 IAT The import address table address and size.

22

200/216 8 Delay Import
Descriptor

The delay import descriptor address and size.

208/224 8 CLR Runtime
Header

The CLR runtime header address and size.

216/232 8 Reserved, must be zero

Table 9. Optional header Data directories.

2.5. Section Table (Section Headers)

The section table, which holds an entry for every section of the file, its location is

always determined as “the first byte behind the header”. The number of entries in the

section table is given by the NumberOfSections field in the file header. Entries in the

section table are numbered starting from one (1). Each section header (section table

entry) has the following format, for a total of 40 bytes per entry. [7]

Offset Size Field Description

 0 8 Name An 8-byte, null-padded UTF-8 encoded string. If the
string is exactly 8 characters long, there is no
terminating null. Long names in object files are
truncated if they are emitted to an executable file.

 8 4 VirtualSize The total size of the section when loaded into
memory. If this value is greater than SizeOfRawData,
the section is zero-padded.

12 4 VirtualAddress For executable images, the address of the first byte of
the section relative to the image base when the
section is loaded into memory.

16 4 SizeOfRawData The size of the section (for object files) or the size of
the initialized data on disk (for image files). For
executable images, this must be a multiple of
FileAlignment from the optional header. If this is less
than VirtualSize, the remainder of the section is zero-
filled. When a section contains only uninitialized
data, this field should be zero.

20 4 PointerToRawData The file pointer to the first page of the section within
the COFF file. For executable images, this must be a
multiple of FileAlignment from the optional header.
When a section contains only uninitialized data, this
field should be zero.

24 4 PointerToRelocations The file pointer to the beginning of relocation entries
for the section. This is set to zero for executable
images or if there are no relocations.

23

Offset Size Field Description

28 4 PointerToLinenumbers The file pointer to the beginning of line-number
entries for the section. This value should be zero for
an image because COFF debugging information is
deprecated.

32 2 NumberOfRelocations The number of relocation entries for the section. This
is set to zero for executable images.

34 2 NumberOfLinenumbers The number of line-number entries for the section.
This value should be zero for an image because
COFF debugging information is deprecated.

36 4 Characteristics The flags that describe the characteristics of the
section (Section Flags).

Table 10. Section table entry

2.5.1. Section Characteristics

The section flags in the Characteristics field defined as: [7]

Flag Value Description

 0x00000000 Reserved for future use.

 0x00000001 Reserved for future use.

 0x00000002 Reserved for future use.

 0x00000004 Reserved for future use.

IMAGE_SCN_TYPE_NO_PAD 0x00000008 The section should not be padded
to the next boundary. This flag is
obsolete and is replaced by
IMAGE_SCN_ALIGN_1BYTES
. This is valid only for object
files.

 0x00000010 Reserved for future use.

IMAGE_SCN_CNT_CODE 0x00000020 The section contains executable
code.

IMAGE_SCN_CNT_INITIALIZED_DAT
A

0x00000040 The section contains initialized
data.

IMAGE_SCN_CNT_UNINITIALIZED_
DATA

0x00000080 The section contains uninitialized
data.

IMAGE_SCN_LNK_OTHER 0x00000100 Reserved for future use.

IMAGE_SCN_LNK_INFO 0x00000200 The section contains comments or
other information. The .drectve
section has this type. This is valid
for object files only.

24

Flag Value Description

 0x00000400 Reserved for future use.

IMAGE_SCN_LNK_REMOVE 0x00000800 The section will not become part
of the image. This is valid only
for object files.

IMAGE_SCN_LNK_COMDAT 0x00001000 The section contains COMDAT
data. This is valid only for object
files.

IMAGE_SCN_GPREL 0x00008000 The section contains data
referenced through the global
pointer (GP).

IMAGE_SCN_MEM_PURGEABLE 0x00020000 Reserved for future use.

IMAGE_SCN_MEM_16BIT 0x00020000 For ARM machine types, the
section contains Thumb code.
Reserved for future use with
other machine types.

IMAGE_SCN_MEM_LOCKED 0x00040000 Reserved for future use.

IMAGE_SCN_MEM_PRELOAD 0x00080000 Reserved for future use.

IMAGE_SCN_ALIGN_1BYTES 0x00100000 Align data on a 1-byte boundary.
Valid only for object files.

IMAGE_SCN_ALIGN_2BYTES 0x00200000 Align data on a 2-byte boundary.
Valid only for object files.

IMAGE_SCN_ALIGN_4BYTES 0x00300000 Align data on a 4-byte boundary.
Valid only for object files.

IMAGE_SCN_ALIGN_8BYTES 0x00400000 Align data on an 8-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_16BYTES 0x00500000 Align data on a 16-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_32BYTES 0x00600000 Align data on a 32-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_64BYTES 0x00700000 Align data on a 64-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_128BYTES 0x00800000 Align data on a 128-byte
boundary. Valid only for object
files.

25

Flag Value Description

IMAGE_SCN_ALIGN_256BYTES 0x00900000 Align data on a 256-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_512BYTES 0x00A0000
0

Align data on a 512-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_1024BYTES 0x00B00000 Align data on a 1024-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_2048BYTES 0x00C00000 Align data on a 2048-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_4096BYTES 0x00D0000
0

Align data on a 4096-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_8192BYTES 0x00E00000 Align data on an 8192-byte
boundary. Valid only for object
files.

IMAGE_SCN_LNK_NRELOC_OVFL 0x01000000 The section contains extended
relocations.

IMAGE_SCN_MEM_DISCARDABLE 0x02000000 The section can be discarded as
needed.

IMAGE_SCN_MEM_NOT_CACHED 0x04000000 The section cannot be cached.

IMAGE_SCN_MEM_NOT_PAGED 0x08000000 The section is not pageable.

IMAGE_SCN_MEM_SHARED 0x10000000 The section can be shared in
memory.

IMAGE_SCN_MEM_EXECUTE 0x20000000 The section can be executed as
code.

IMAGE_SCN_MEM_READ 0x40000000 The section can be read.

IMAGE_SCN_MEM_WRITE 0x80000000 The section can be written to.

Table 11. Section Characteristics field.

2.6. Section Data

Typical sections contain code or data that linkers and loaders process without special

knowledge of the section contents. A section consists of simple blocks of bytes.

However, for sections that contain all zeros, the section data does not need to be

included. The data for each section is located at the file offset that was given by the

PointerToRawData field in the section header. The size of this data in the file is

26

indicated by the SizeOfRawData field. If SizeOfRawData is less than VirtualSize, the

remainder is padded with zeros. In an image file, the section data must be aligned on a

boundary as specified by the FileAlignment field in the optional header.

27

3. peHash function design

Generic hash function for Portable Executable files that generates a per-binary specific

hash value based on structural data found in the file headers and structural information

about the executable’s section data was described in the paper “peHash: A Novel

Approach to Fast Malware Clustering” [6]. The following Portable Executable

properties are taken into account as well:

� Image Characteristics: General flags for the Portable Executable, e.g. whether

the given file is a DLL or can only be run on a single processor machine. (Table

3)

� Subsystem: Indicates the Windows Subsystem this binary is to be run in, such

as GUI, CLI or device driver.(Table 7)

� Stack Commit Size: The initial size of program stack to be allocated in bytes.

This value is rounded up to a value divisible by 4096, Windows’ page boundary,

before inclusion in the hash as the Windows Portable Executable Loader does

the same.(Table 5)

� Heap Commit Size: Initial size of program heap to be allocated, also rounded

up to page boundary size. (Table 5)

For each section in the Portable Executable, the following structural information is

included:

� Virtual Address: The address, the section’s content is going to be loaded.

(Table 10)

� Raw Size: Size of the section in the Portable Executable file itself; can be

smaller than the actual size occupied in memory after loading due to rounding to

page boundaries. (Table 10)

� Section Characteristics: Section flags describing initial privileges for the

allocated memory, such as reading, writing and execution of code. (Table 11)

� Result of bzip2 compression ratio of section data scaled to [0 ... 7].

The following pseudo-code describes the exact generation for the hash value from the

global properties, where v[8..24] means bits 8 to 24 of value v and ⊕ means XOR: [6]

28

Figure 3. Pseudo-code for header. [6]

 Additionally, for each section, the following sub-hash is appended to the

hash:[6]

Figure 4. Pseudo-code for section. [6]

The last step is to calculate the SHA1 value of the above hash buffer and use this as the

final hash value.

29

4. Implementation and issues

There are some public implementation of this hash where made, but looks like there are

programming and algorithm mistakes in the code realization. In the current

implementation, quality for clustering instances of the same polymorphic malware is

lower in comparison with the original idea.

Probably the first public usage and code implementation in python of peHash was made

by #totalhash [8], currently this blog post is not available online, but it can be accessed

by Google cache [9]. Later, some other frameworks [10] include pehash implementation

based on #totalhash into code base. Most known are Viper Framework [11] and CRITs

Services Collection [12]. Also one standalone implementation not based on #totalhash

was found - pehashd from GitHub user endgameinc. [14] Let us look what the

problems are in #totalhash implementation.

4.1. Incorrect padding

As far as implicit variant (bitstring.BitArray(hex(X))) is used for converting integer

value to bits string, for fields "image characteristics" and "subsystem" wrong padding

method is in place. When value of X in bitstring.BitArray(hex(X)) is smaller than 256,

then XORing parts of result will fail, as far as result will be 8 bits. Padding is for byte

boundary only. An example of step by step execution shown on Figure 5.

Figure 5. Incorrect padding.

30

As result, getting pehash will fail for many files.

4.2. Issue in bitstring module

Third-party python bitstring [13] module have some issues when handling output of

hex() function with argument greater than 2147483647 (0x7fffffff). An example is

shown on Figure 6.

Figure 6. Issue in bitstring module.

As result, getting pehash will fail for small amount of files.

4.3. Wrong value for field "Subsystem"

Field "Subsystem" has wrong value. It has value from FILE_HEADER.Machine of PE

file instead of OPTIONAL_HEADER.Subsystem as shown on Figure 7.

Figure 7. Wrong value for field "Subsystem" [10] [12]

31

4.4. Missing round up

Missing rounding up to a value divisible by 4096 for SizeOfStackCommit and

SizeOfHeapCommit fields

4.5. Incorrect slicing

Another issue is in incorrect slicing. peHash pseudo-code means slicing as of bits in

multi-byte fields. In #totalhash implementation, we can see that the same slicing order

used for BitArray structure. That structure is in Big Endian format, as far as implicit

method used for conversion from integer to BitArray and Python slicing working from

index 0 for inerrable object. Result of slicing looks like:

• pseudo-code: X[0:7], [closed Interval], 8 Least Significant bits

• python: X[0:8], [half-closed intervals), 8 items from index 0

As shown on Figure 8 Python slicing start from left to right and does not maps to

pseudo code meaning.

Figure 8. Slicing of multi-byte BitArray.

Totalhash implementation does not take care about that for SizeOfStackCommit,

SizeOfHeapCommit, VirtualAddress and SizeOfRawData fields. As result, Least

Significant Bits are NOT ignored. PE files with small different in RawSize value will

have different hash. Example - virus [15] has made changes by adding into value of

“RawSize" field incremental numbers in section header (second section), note that

hashes are different, but they should be the same:

peHash File name

b2e0cb11d4f398d98dfd3e05a398de39e4a69204 .\Backdoor.Win32.Agent.adwz

dfc119cf023c3ba276a87af20e81b21aa09b4861 .\Backdoor.Win32.Agent.+16.adwz

4fee405c231f2dc0f9e33033099d26eac3caa34b .\Backdoor.Win32.Agent.+32.adwz

32

peHash File name

61a6f71c1154dfda7fbad57667a41207d4396f44 .\Backdoor.Win32.Agent.+48.adwz

4cf16f817d1d106b6eca1b8d23ab200c09f279eb .\Backdoor.Win32.Agent.+64.adwz

Table 12. Hashes for modified file.

4.6. Compression ratio scaling

Another issue with implementation is related to missing scale up of the result of the

bzip2 section data compression ratio up to 7 (Figure 9).

Figure 9. Compression ratio. [10], [12]

Even more, incorrect float format for converting into BitArray is in place. Therefore

slicing for bit presentation of float value is incorrectly used too. As result, value of this

field have only 4 variants, instead of 8 as shown in Figure 10.

33

Figure 10. Slicing of float value.

34

5. Proposed implementation

5.1. Corrected improper implementation

Implementation based on original idea with fixed known issues was made [appendix 1]

[17]. Hash buffer defined as file header data and one or more section data as shown in

Table 13 and Table 14. Sections are sorted by VirtualAddress, that friendly done by

“pefile” module. All multi-byte values stored as unsigned integers in Big Endian

format. Result of peHash function is SHA1 hash in hex-digest format of that buffer.

Field length in bytes Value

1 Image Characteristics, bytes are XOR-ed.

1 Subsystem, bytes are XOR-ed.

1 Stack Commit Size, rounded up to a value divisible by 4096,
one least significant byte is discarded, all other bytes are
XOR-ed.

1 Heap Commit Size, rounded up to a value divisible by 4096,
one least significant byte is discarded, all other bytes are
XOR-ed.

Table 13. peHash buffer for file header.

Field length in bytes Value

3 VirtualAddress, right shift by 9 bits.

3 SizeOfRawData, right shift by 8 bits (one least significant
byte is discarded).

1 Characteristics, right shift by 16 bits, (two least significant
byte are discarded), all other bytes are XOR-ed.

1 Complexity, compression ratio of section data, scaled up to 7:
complexity = int(round(lenCompressedData * 7.0 / lenData))

- 0 if SizeOfRawData is 0

- 7 if complexity > 7

- Complexity

Table 14. peHash buffer for section properties.

35

5.2. Extended implementation

In additional to the original idea, some changes and enhancements are proposed. Main

goal is to make fine-tuning for properties used in hash and add some new ones that can

be changed only by relinking object files.

� Image Characteristics field – masking of deprecated and reserved bits was

added. (Table 3)

� Section Characteristics – masking of reserved and not used for PE image file

bits was added. (Table 11)

� Remove XOR-ing bytes for values of Image Characteristics, Sybsystem, Stack

Commit Size, Heap Commit Size and Section Characteristics to prevent

collisions.

� SizeOfRawData – do not skip eight least significant bits (1 byte) but round

value up to 512 bits boundary. SizeOfRawData can be directly edited and data

added up to 512 bits boundary value (to be correct – up to FileAlignment value)

without relink object files.

� VirtualAddress - do not skip nine least significant bits but round value up to

512 bits boundary.

� Compression ratio for section data – fixed value 8 added for situation when

size of compressed data is bigger than size of data itself.

� SectionAlignment and FileAlignment fields added into hash. The values

rounded down to power of two. Round down selected to prevent overflow of

four bytes integer. These values cannot be changed without relink object files.

Default values are 4096 and 512 bytes.

� Data Directories (Table 9) status added into hash. Value is a bit flags, bit set to

1 when VirtualAddress for data directory is not zero, else set to 0. Data

directories entries with index 7, 8, 15 ignored, as far as index 15 is reserved and

system loader ignores indexes 7 and 8.

Hash buffer is defined as file header data and one or more section data as shown in

Table 15 and Table 16. Sections are sorted by VirtualAddress, that friendly done by

“pefile” module. All multi-byte values stored as unsigned integers in Big Endian

format. Result of peHash function is SHA256 hash in hex-digest format of that buffer.

[Appendix 2]

36

Field length in bytes Value

2 Image Characteristics, masked for unwanted bits.
mask: 0b0111111100100011

2 Subsystem.

4 SectionAlignment, rounded down to power of two

4 FileAlignment, rounded down to power of two

8 SizeOfStackCommit, rounded up to a value divisible by 4096.

8 SizeOfHeapCommit, rounded up to a value divisible by 4096.

2 Data Directory Status, masked bit flags for data directories
with index from 0 to value of NumberOfRvaAndSizes -1, but
not bigger than 15 :

- 1 if VirtualAddress for directory is not 0

- 0 if VirtualAddress for directory is 0

- Mask: 0b0111111001111111

Table 15. peHashNG buffer for file header.

Field length in bytes Value

4 VirtualAddress, rounded up to a value divisible by 512.

4 SizeOfRawData, rounded up to a value divisible by 512.

1 Characteristics, right shift by 24 bits, (3 least significant byte
are discarded).

1 Complexity, compression ratio of section data, scaled up to 7:
complexity = lenCompressedData * 7.0 / lenData

- 0 if SizeOfRawData is 0

- 8 if complexity > 7

- int(round(complexity))

Table 16. peHashNG buffer for section properties.

37

6. Statistics and conclusions

Currently we have two implementation of pehash – one correct (I hope) “peHash” [17]

implementation based on original idea and one extended “peHashNG” [18]. During

development of extended version, Windows 10,500 system files with 38,000 sections

and collection of 235,000 malware PE examples [18] with about 1 million sections total

were analyzed.

For Image Characteristics in Table 17 we can see counters of unique values in windows

system and malware files. XOR-ing of bytes in this field has many collisions, so the

masking of unwanted bits for this field is better for clustering.

Type of data Malware Windows

Raw (as is in the file) 102 22

XOR-ed (as in peHash) 22 6

Masked (as in peHashNG) 37 18

Table 17. Image Characteristics unique counters

The same story is with Subsystem, collisions again, so we will store raw values into

hash (Table 18).

Type of data Malware Windows

Raw (as is in the file) 8 4

XOR-ed (as in peHash) 2 1

Table 18. Subsystem unique counters.

SizeOfStackCommit and SizeOfHeapCommit fields - with round up only we have more

accurate clustering (Table 19, Table 20)

Type of data Malware Windows

Raw (as is in the file) 93 21

Round up and XOR-ed (as in peHash) 58 20

Round up only (as in peHashNG) 72 21

Table 19. SizeOfStackCommit unique counters.

38

Type of data Malware Windows

Raw (as is in the file) 53 3

Round up and XOR-ed (as in peHash) 35 3

Round up only (as in peHashNG) 40 3

Table 20. SizeOfHeapCommit unique counters.

SectionAlignment and FileAlignment fields - for Windows 7 PE system files in

“sysnative” and “sysWOW64” directories we have only eight combinations of Section

and File alignments. For malware collection, the number of combinations increased to

35. Therefore, we have additional stable parameters for clustering in peHashNG.

Data Directory field is another interesting and useful one for clustering. It is very

important for PE file area. In, probably, all cases of any incorrect data in it, system

loader will fail to load PE file. Note, that we do not store values from Data Directory

into hash, we only detect – is that directory existing (used by PE) or not by checking

VirtualAddress. If VA is not zero we set bit flag to 1 for this directory, otherwise – set it

to 0. Windows and malware files statistic for Data Directory status is shown on Figure

11. As we can see, this data can be useful for clustering. Unused by system loader and

reserved directory numbers are ignored by masking bits.

Figure 11. Data Directories usage.

39

Comparison of counts of hashes with different numbers of files in cluster is shown in

Table 21. As we can see even if peHashNg has a more strictly algorithm for hash, total

count of hashes and count of clusters with one file are smaller than ones for totalhash.

At the same time counts of hashes for clusters with 2...100 files are bigger, so we can

make a conclusion that grouping files by peHashNg is more accurate in comparison

with totalhash.

Hash 1 file in

cluster

2...10 files in

cluster

11...100 files

in cluster

> 100 files in

cluster

Total hashes

#totalhash 113815 21024 1832 62 136733

peHashNg 106061 23059 2011 50 131181

Table 21. Counts of hashes with different numbers of files in cluster.

Implementation is made using Python programming language. Source code of peHash

and peHashNG hashes is published on GitHub. [17], [18]. That hash can be used

independently or in cooperation with "imphash" [2] and classical bits stream

(black/white lists) hashes for quick classification of PE files.

40

References

[1] Symantec, "Internet Security Threat Report (ISTR), Volume 21," 13 April 2016.
[Online]. Available: https://www.symantec.com/about/newsroom/media-
resources/press-kits/istr-21.

[2] FireEye, "Tracking Malware with Import Hashing," 23 Jan 2014. [Online].
Available: https://www.fireeye.com/blog/threat-research/2014/01/tracking-
malware-import-hashing.html.

[3] E. Carrera, "pefile is a Python module to read and work with PE (Portable
Executable) files," 15 Apr 2016. [Online]. Available:
https://github.com/erocarrera/pefile. [Accessed 15 Apr 2016].

[4] VirusTotal, "VirusTotal += imphash," 3 Feb 2014. [Online]. Available:
http://blog.virustotal.com/2014/02/virustotal-imphash.html. [Accessed 12 03
2016].

[5] GitHub, "GitHub search imphash," 2016. [Online]. Available:
https://github.com/search?l=python&q=imphash&type=Code.

[6] G. Wicherski, "peHash: A Novel Approach to Fast Malware Clustering," 7
December 2018. [Online]. Available:
https://www.usenix.org/legacy/event/leet09/tech/full_papers/wicherski/wicherski
_html/. [Accessed 12 03 2016].

[7] Microsoft, "Microsoft Portable Executable and Common Object File Format
Specification," 6 Feb 2013. [Online]. Available: https://msdn.microsoft.com/en-
us/windows/hardware/gg463119.aspx. [Accessed 12 Feb 2016].

[8] OSDev.org, "PE," 11 March 2016. [Online]. Available: http://wiki.osdev.org/PE.
[Accessed 25 March 2016].

[9] #totalhash, " PEhash Source Code," 9 Oct 2013. [Online]. Available:
https://totalhash.cymru.com/blog/pehash-source-code. [Accessed 24 Feb 2016].

[10] #totalhash, "google cached version of https://totalhash.cymru.com/blog/pehash-
source-code/," 29 Feb 2016. [Online]. Available:

41

https://webcache.googleusercontent.com/search?q=cache:https://totalhash.cymru
.com/blog/page/5/. [Accessed 24 April 2016].

[11] Github, "Search result for pehash," 29 Feb 2016. [Online]. Available:
https://github.com/search?l=python&q=pehash&ref=searchresults&type=Code&
utf8=%E2%9C%93. [Accessed 05 April 2016].

[12] Viper Framework, "Viper is a binary analysis and management framework,"
[Online]. Available: https://github.com/viper-
framework/viper/blob/master/viper/modules/pehash/pehasher.py. [Accessed 15
March 2016].

[13] CRITs Services Collection, "Services for CRITs that allow you to extend its
functionality," [Online]. Available:
https://github.com/crits/crits_services/blob/master/peinfo_service/__init__.py.
[Accessed 21 March 2016].

[14] engameinc, "pehashd," 29 Jun 2013. [Online]. Available:
https://github.com/endgameinc/pehashd. [Accessed 18 Jan 2016].

[15] S. Griffiths, "A Python module to help you manage your bits," 21 Mar 2016.
[Online]. Available: https://github.com/scott-griffiths/bitstring. [Accessed 28
Mar 2016].

[16] VirusTotal, "Antivirus scan," 20 Jan 2016. [Online]. Available:
https://virustotal.com/en/file/510b0eb1d98c544dcf4d7ddf594a89c2fbbf76e335fe
f093324f06c999afbd71/analysis/. [Accessed 4 March 2016].

[17] AnyMaster, "pehash for PE file, sha1 of PE structural properties.," 03 May 2015.
[Online]. Available: https://github.com/AnyMaster/pehash. [Accessed 27 Mar
2016].

[18] AnyMaster, "revised "peHash: A Novel Approach to Fast Malware Clustering","
30 Apr 2016. [Online]. Available: https://github.com/AnyMaster/pehashng.
[Accessed 1 May 2016].

[19] J. Scott, "VX Heavens Snapshot (2010-05-18)," 22 Nov 2013. [Online].
Available: https://archive.org/details/vxheavens-2010-05-18. [Accessed 28 Mar
2015].

42

Appendix 1 – peHash source code

Listing of "pehash.py" file:

43

#!/usr/bin/env python
-*- coding: utf-8 -*-
"""
pehash, Portable Executable hash of structural properties

@author: AnyMaster
https://github.com/AnyMaster/pehash
"""
__version__ = '1.1.0'
__author__ = 'AnyMaster'

from hashlib import sha1
from bz2 import compress

from pefile import PE
from bitstring import pack

def get_pehash(pe_file):
 """ Return pehash for PE file, sha1 of PE structural properties.

 :param pe_file: file name or instance of pefile.PE() class
 :rtype : string SHA1 in hexdigest format
 """

 if isinstance(pe_file, PE): # minimize mem. usage and time of execution
 exe = pe_file
 else:
 exe = PE(pe_file, fast_load=True)

 # Image Characteristics
 img_chars = pack('uint:16', exe.FILE_HEADER.Characteristics)
 pehash_bin = img_chars[0:8] ^ img_chars[8:16]

 # Subsystem
 subsystem = pack('uint:16', exe.OPTIONAL_HEADER.Subsystem)
 pehash_bin.append(subsystem[0:8] ^ subsystem[8:16])

 # Stack Commit Size, rounded up to a value divisible by 4096,
 # Windows page boundary, 8 lower bits must be discarded
 # in PE32+ is 8 bytes
 stack_commit = exe.OPTIONAL_HEADER.SizeOfStackCommit
 if stack_commit % 4096:
 stack_commit += 4096 - stack_commit % 4096
 stack_commit = pack('uint:56', stack_commit >> 8)
 pehash_bin.append(
 stack_commit[:8] ^ stack_commit[8:16] ^
 stack_commit[16:24] ^ stack_commit[24:32] ^
 stack_commit[32:40] ^ stack_commit[40:48] ^ stack_commit[48:56])

 # Heap Commit Size, rounded up to page boundary size,
 # 8 lower bits must be discarded
 # in PE32+ is 8 bytes
 heap_commit = exe.OPTIONAL_HEADER.SizeOfHeapCommit
 if heap_commit % 4096:
 heap_commit += 4096 - heap_commit % 4096
 heap_commit = pack('uint:56', heap_commit >> 8)
 pehash_bin.append(
 heap_commit[:8] ^ heap_commit[8:16] ^

44

 heap_commit[16:24] ^ heap_commit[24:32] ^
 heap_commit[32:40] ^ heap_commit[40:48] ^ heap_commit[48:56])

 # Section structural information
 for section in exe.sections:
 # Virtual Address, 9 lower bits must be discarded
 pehash_bin.append(pack('uint:24', section.VirtualAddress >> 9))

 # Size Of Raw Data, 8 lower bits must be discarded
 pehash_bin.append(pack('uint:24', section.SizeOfRawData >> 8))

 # Section Characteristics, 16 lower bits must be discarded
 sect_chars = pack('uint:16', section.Characteristics >> 16)
 pehash_bin.append(sect_chars[:8] ^ sect_chars[8:16])

 # Kolmogorov Complexity, len(Bzip2(data))/len(data)
 # (0..1} ∈ R -> [0..7] ⊂ N
 kolmogorov = 0
 if section.SizeOfRawData:
 kolmogorov = int(round(
 len(compress(section.get_data()))
 * 7.0 /
 section.SizeOfRawData))
 if kolmogorov > 7:
 kolmogorov = 7
 pehash_bin.append(pack('uint:8', kolmogorov))

 assert 0 == pehash_bin.len % 8
 if not isinstance(pe_file, PE):
 exe.close()

 return sha1(pehash_bin.tobytes()).hexdigest()

if __name__ == '__main__':
 import sys
 if len(sys.argv) < 2:
 print "Error: no file specified"
 sys.exit(0)
 print get_pehash(sys.argv[1]), sys.argv[1]

45

Appendix 2 – peHashNG source code

Listing of "pehashng.py" file:

46

#!/usr/bin/env python
-*- coding: utf-8 -*-
"""
peHashNG, Portable Executable hash of structural properties

@author: AnyMaster
https://github.com/AnyMaster/pehashng
"""

import logging
from bz2 import compress
from hashlib import sha256
from struct import pack

from pefile import PE, PEFormatError

__version__ = '1.0.0'
__author__ = 'AnyMaster'

def pehashng(pe_file):
 """ Return pehashng for PE file, sha256 of PE structural properties.

 :param pe_file: file name or instance of pefile.PE() class
 :return: SHA256 in hexdigest format, None in case of pefile.PE() error
 :rtype: str
 """

 if isinstance(pe_file, PE):
 exe = pe_file
 else:
 try:
 exe = PE(pe_file, fast_load=True)
 except PEFormatError as exc:
 logging.error("Exception in pefile.PE('%s') - %s", pe_file, exc)
 return

 def align_down_p2(number):
 return 1 << (number.bit_length() - 1) if number else 0

 def align_up(number, boundary_p2):
 assert not boundary_p2 & (boundary_p2 - 1), \
 "Boundary '%d' is not a power of 2" % boundary_p2
 boundary_p2 -= 1
 return (number + boundary_p2) & ~ boundary_p2

 def get_dirs_status():
 dirs_status = 0
 for idx in range(min(exe.OPTIONAL_HEADER.NumberOfRvaAndSizes, 16)):
 if exe.OPTIONAL_HEADER.DATA_DIRECTORY[idx].VirtualAddress:
 dirs_status |= (1 << idx)
 return dirs_status

 def get_complexity():
 complexity = 0
 if section.SizeOfRawData:
 complexity = (len(compress(section.get_data())) *
 7.0 /
 section.SizeOfRawData)

47

 complexity = 8 if complexity > 7 else int(round(complexity))
 return complexity

 characteristics_mask = 0b0111111100100011
 data_directory_mask = 0b0111111001111111

 data = [
 pack('> H', exe.FILE_HEADER.Characteristics & characteristics_mask),
 pack('> H', exe.OPTIONAL_HEADER.Subsystem),
 pack("> I", align_down_p2(exe.OPTIONAL_HEADER.SectionAlignment)),
 pack("> I", align_down_p2(exe.OPTIONAL_HEADER.FileAlignment)),
 pack("> Q", align_up(exe.OPTIONAL_HEADER.SizeOfStackCommit, 4096)),
 pack("> Q", align_up(exe.OPTIONAL_HEADER.SizeOfHeapCommit, 4096)),
 pack('> H', get_dirs_status() & data_directory_mask)]

 for section in exe.sections:
 data += [
 pack('> I', align_up(section.VirtualAddress, 512)),
 pack('> I', align_up(section.SizeOfRawData, 512)),
 pack('> B', section.Characteristics >> 24),
 pack("> B", get_complexity())]

 if not isinstance(pe_file, PE):
 exe.close()
 data_sha256 = sha256("".join(data)).hexdigest()

 return data_sha256

if __name__ == '__main__':
 import sys
 if len(sys.argv) < 2:
 print "Usage: pehashng.py path_to_file"
 sys.exit(0)
 print pehashng(sys.argv[1]), sys.argv[1]

