
Tallinn 2020

 TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Shaymaa Mamdouh Mohammed Radwan Khalil 177237IVCM

ANALYSIS OF WINDOWS 10

HIBERNATION FILE

Master’s thesis

Supervisor: Hayretdin Bahsi

Ph.D., Research

Professor

Pavel Tšikul

 Ph.D. Researcher

https://www.ttu.ee/en/personnel-search/&kood=T0067478?id=30029&amet=Research%20Professor
https://www.ttu.ee/en/personnel-search/&kood=T0067478?id=30029&amet=Research%20Professor

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Shaymaa Mamdouh Mohammed Radwan Khalil 177237IVCM

WINDOWS PUHKEOLEKUFAILIDE

ANALÜÜS

magistritöö

Juhendaja: Hayretdin Bahsi

Ph.D., Research

Professor

Pavel Tšikul

 Ph.D. Researcher

https://www.ttu.ee/en/personnel-search/&kood=T0067478?id=30029&amet=Research%20Professor
https://www.ttu.ee/en/personnel-search/&kood=T0067478?id=30029&amet=Research%20Professor

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Shaymaa Mamdouh Mohammed Radwan Khalil

19.05.2020

4

Abstract

Since the reveal of Windows hibernation file structure by Mattieu Suiche late in 2007,

the hibernation file became a valuable source of artifacts for digital forensics examiners.

Starting from Windows 8, Microsoft changed the hibernation file structure. Therefore,

many digital forensics tools are no longer supporting the direct analysis of modern

hibernation files. The literature shows that the modern hibernation file almost loses its

value once the system is resumed, as all the file’s content is zeroed, except the header.

Such behavior modification of hibernation file content toward power state changes has

caused some digital forensics practitioners to lose interest in including the file in their

investigations.

One of the aims of presenting this study is to raise awareness about the forensic value of

Windows 10 hibernation file and highlight special considerations to be taken when

processing the file. The study analyses the hibernation file structure of Windows 10

versions 1809, 1903, 1909, and provides an updated layout of the file. Moreover, this

research documents the impact of different Windows 10 configurations on the hibernation

file content. A predefined list of evidence was created to compare the output of

hibernation file analysis using BEC, Magnet Axiom, and BlackLight tools. The thesis

also evaluates alternative tools that could be used in the analysis of Windows 10

hibernation file.

 The study demonstrates that Windows 10 hibernation file is a valuable source of volatile

evidence. The results of this research show that Windows 10 hibernation file contains

valuable data related to running processes, opened connections, private browsing history,

and other types of evidence that might not be found in a disk image. This research

recommends considering the hibernation file as a memory image substitute, in case the

memory image was not taken from live evidence, memory image corruption, or the device

was found in hibernation or shutdown state.

This thesis is written in the English language and is 121 pages long, including 7 chapters,

63 figures, and 30 tables.

5

List of abbreviations and terms

ACPI Advanced Configuration and Power Interface

BCD

BEC

BIOS

CR

DFRWS

DHCP

EXIF

FAQ

GDT

HORM

IDT

MBR

N/A

OS

Boot Configuration Database

Belkasoft Evidence Center

Basic Input Output System

Control Register

Digital Forensics Research Workshop

Dynamic Host Configuration Protocol

Exchangeable Image File Format

Frequently Asked Questions

Global Descriptor Table

Hibernate Once/Resume Many

Interrupt Descriptor Table

Master Boot Record

Not Available

Operating System

PC

POST

RAM

SKM

UEFI

VAD

Personal Computer

Power-on self-test

Random Access Memory

Secure Kernel Mode

Unified Extensible Firmware Interface

Virtual Address Descriptors

6

Table of contents

Author’s declaration of originality ... 3

Abstract ... 4

List of abbreviations and terms .. 5

Table of contents .. 6

List of figures ... 10

List of tables ... 12

1 Introduction ... 14

1.1 Research Objectives ... 16

1.2 Scope .. 17

1.3 Novelty ... 18

2 Background .. 19

2.1 Memory forensics ... 19

2.2 Power Management basics ... 20

2.3 Hibernation file ... 22

2.3.1 Entering hibernation state .. 24

2.3.2 Resuming system from hibernation ... 24

2.3.3 File size and types ... 25

2.3.4 Usage ... 26

2.3.5 File structure .. 27

2.3.6 Hibernation file security .. 35

2.4 Related work ... 36

2.5 Introduction to analysis Tools .. 39

2.5.1 WinDbg ... 39

2.5.2 FTK Imager ... 40

2.5.3 Hibr2Bin .. 40

2.5.4 Hibernation Recon ... 42

2.5.5 Volatility .. 43

2.5.6 Rekall ... 44

2.5.7 Bulk_extractor ... 46

7

2.5.8 Passware Kit Forensic ... 47

2.5.9 Belkasoft Evidence center ... 48

2.5.10 BlackLight ... 50

2.5.11 Magnet Axiom ... 51

2.5.12 Hive Recon .. 53

3 Research Methods ... 55

3.1 Variables ... 55

3.1.1 Windows Version .. 55

3.1.2 Hibernation file type .. 57

3.1.3 System power state .. 57

3.2 Analysis Types ... 58

3.2.1 Manual analysis ... 58

3.2.2 Analysis of hibernation file using tools ... 60

3.3 Test Cases ... 61

3.3.1 Test Case A .. 61

3.3.2 Test case B ... 62

3.3.3 Test case C ... 62

3.3.4 Test case D .. 63

4 Manual analysis of Windows 10 hibernation file .. 66

4.1 Default Windows 10 settings .. 66

4.2 Definitions of the known structures .. 68

4.2.1 File header ... 68

4.2.2 Processor context ... 72

4.3 Test case A analysis .. 73

4.3.1 Undocumented structures .. 74

4.3.2 Restoration Sets ... 75

4.3.3 Understanding the file structure with the support of Hibr2Bin 78

4.4 Test case B analysis .. 85

4.5 Test case C analysis .. 88

4.6 Results of the manual analysis .. 89

5 Analysis of Windows 10 hibernation file using tools ... 92

5.1 Tools findings and insights ... 92

5.1.1 Volatility .. 92

5.1.2 Bulk_extractor ... 94

8

5.1.3 Passware Kit Forensic ... 96

5.1.4 Belkasoft Evidence Centre .. 97

5.1.5 BlackLight ... 100

5.1.6 Magnet Axiom ... 102

5.1.7 Hive Recon .. 104

5.2 Comparing Group A tools .. 105

5.2.1 Total number of artifacts ... 105

5.2.2 Search for the Evidence list ... 106

5.2.3 Extracted artifacts types .. 107

5.3 Summary of analysis using tool and results ... 109

6 Discussion .. 110

6.1 Manual analysis results ... 110

6.2 Tools analysis results .. 111

6.3 Hibernation file layout .. 111

6.4 Example of evidence types available in hibernation file 112

6.5 Hibernation file life cycle in digital forensics .. 115

6.6 Research Questions Results .. 116

6.7 Strengths of the study ... 118

6.8 Weaknesses and limitations of the study .. 118

6.9 Future Work .. 120

7 Conclusion ... 121

References .. 122

Appendix 1 – Partial manual analysis for a Windows 7 SP1 hibernation file 132

Appendix 2 – List of output files of Hibernation Recon .. 133

Appendix 3 – Results of Rekall tests .. 134

Appendix 4 – Minimum system requirement ... 135

Appendix 5 – Supported types of artifacts ... 136

Appendix 6 – Hardware and OS Build specifications .. 137

Appendix 7 – Hibernation file header .. 138

Windows 10 version 1809 .. 138

Windows 10 versions 1903 and 1909 ... 140

Appendix 8 – Comparing the header’s fields across the versions 144

Appendix 9 – “ _ KPROCESSOR_STATE” structure ... 145

Appendix 10 – Comparing the processor context field’s names 148

9

Appendix 11 – Comparison between Hibr2Bin and the free mode of Hibernation Recon

 .. 150

Appendix 12 – List of successfully tested Volatility plugins 151

10

List of figures

Figure 1. Summary of Global system state as per ACPI standard [4]. 20

Figure 2. System power state transitions [16]. ... 22

Figure 3. Hibernation file type. .. 23

Figure 4. Some of the factors to be considered before acquiring memory [21]. 26

Figure 5. Example of Windows 7 hiberfil.sys layout [11]. .. 28

Figure 6. Definition of the “PO_MEMORY_IMAGE” for Windows 7 SP1 x64 [11]. . 28

Figure 7. Definition of “table page” structures [11]. .. 30

Figure 8. “_IMAGE_EXPRESS_HEADER” structure definition [11]. 31

Figure 9. “IMAGE_EXPRESS_HEADER” structure definition [28]............................ 31

Figure 10. XPRESS “compression block” signature of Windows 7 SP1 x64. 32

Figure 11. Modern Windows hibernation file layout [11].. 33

Figure 12. Definition of “compression set” header [11]. ... 34

Figure 13. Page descriptors definitions for 32 and 64 Windows versions [11].............. 35

Figure 14. Search for known strings in a converted binary file using Hibr2Bin. 41

Figure 15. Searching for $MFT file entry in the proof of concept hiberfil.sys. 42

Figure 16. Search for $MFT entry in decompressed hibernation file. 42

Figure 17. Volatility - Windows 10 x64 profiles using the GitHub source code. 44

Figure 18. Bulk Extractor Viewer options.. 46

Figure 19. Passware Memory Analysis options. .. 48

Figure 20. Belkasoft Evidence Center - list of installed plugins. 49

Figure 21. Belkasoft Evidence Center - loading a Hibernation file. 49

Figure 22. BEC - artifacts search options. .. 50

Figure 23. BlackLight - list of supported Windows 10 versions. 50

Figure 24. BlackLight - default processing options (a) versus chosen options (b). 51

Figure 25. Magnet Axiom - supported memory images extensions. 52

Figure 26. Magnet Axiom Process - Creating new case options. 52

Figure 27. Hive Recon 1.0.0.58 GUI. ... 53

Figure 28. Components of the controlled experiment. ... 55

Figure 29. The Default available sleep states in a Windows 10 v1903. 66

Figure 30. Default Windows power registries(a), disabled the hibernation option(b). .. 67

Figure 31. Default Shut-down setting for Windows 10 x64. ... 68

file:///C:/Users/WINDOWS/Desktop/finals%20thesis/ShaymaaKhalil_177237IVCM_HIBR.docx%23_Toc40950415
file:///C:/Users/WINDOWS/Desktop/finals%20thesis/ShaymaaKhalil_177237IVCM_HIBR.docx%23_Toc40950419
file:///C:/Users/WINDOWS/Desktop/finals%20thesis/ShaymaaKhalil_177237IVCM_HIBR.docx%23_Toc40950420
file:///C:/Users/WINDOWS/Desktop/finals%20thesis/ShaymaaKhalil_177237IVCM_HIBR.docx%23_Toc40950424

11

Figure 32. Windows 10 v1903 x64 - “PO_MEMORY_IMAGE” structure definition. . 69

Figure 33. Win10 version 1903 x64 - “PO_MEMORY_IMAGE” with recursion. 69

Figure 34. “_KPROCESSOR_STATE” structure - Win10 v1903 x64. 72

Figure 35. Part of the third page of the hibernation file, extracted from v1903 x64. 74

Figure 36. Second undocumented structure, extracted from Win10 v1903 x64. 74

Figure 37. Hibernation file header of a Windows 10 version 1903 x64. 76

Figure 38. Fields total number of pages in each restoration set. 76

Figure 39.The first page of the first Restoration set. .. 76

Figure 40. Second compression set header of Windows 10 version 1903 x64. 78

Figure 41. Output files of Hibernation Recon (a) and Hibr2Bin (b). 81

Figure 42. Compression set entries extracted from hiberfil.sys. 81

Figure 43. Decompressed data using Hibr2Bin (a), Hibernation Recon (b). 83

Figure 44. The output file of Hibernation Recon (a), output file of Hibr2Bin (b) 83

Figure 45. Content of "HighestPhysicalPage" extracted from a test hibernation file. ... 84

Figure 46. Second undocumented structure contains free memory pages addresses. 84

Figure 47. Volatility – Comparing the output of the netscan plugin. 93

Figure 48. Bulk_extractor - url_searches - Hibernation Recon (a) , hiberfil.sys (b) 95

Figure 49. Example of OneDrive Token recovered by Passware................................... 96

Figure 50. BEC - example of data extracted from Windows 10 v1909. 98

Figure 51. BEC - output of a Windows 10 v1809 decompressed hibernation file. 99

Figure 52. BEC - Example of false positives extracted by search results. 99

Figure 53. BlackLight - List of extracted processes from v1809 hiberfil.sys. 100

Figure 54. Example of carved files using BlackLight .. 101

Figure 55. Magnet Axiom Dashboard. ... 102

Figure 56. Magnet Axiom - Timeline explorer. ... 103

Figure 57. Magnet Axiom - World map view. ... 103

Figure 58. Magnet Axiom – Decompressed hiberfil.sys extracted from v1809. 104

Figure 59. Updated Windows 10 hibernation file layout. .. 112

Figure 60. Hibernation file life cycle.. 115

Figure 61. “FirstTablePage” entry - Windows 7 SP1 x64 hibernation file. 132

Figure 62. Windows 7 SP1 x64 - “_PO_MEMORY_RANGE_ARRAY” 132

Figure 63. Example of statistics shown by the free mode of Hibernation Recon CLI. 150

12

List of tables

Table 1. Lists the ACPI power states from highest to lowest power consumption [15]. 21

Table 2. Hibernation file types and default sizes [15]. ... 26

Table 3. Control Register Functions as defined by [30] and [11]. 29

Table 4. Modern hibernation file signatures value as defined by [11]. 34

Table 5. Explanation of the “compression set” header’s fields as defined by [11]. 34

Table 6. Explanation of the page descriptors fields as defined by [11].......................... 35

Table 7. Windows 10 versions [8], [80]. .. 56

Table 8. List of evidence of test case D. ... 64

Table 9. List of evidence created only on v1903. ... 65

Table 10. Hibernation file header datagram for Win10 v1903 and 1909 x64. 71

Table 11. Part of “_KPROCESSOR_STATE” datagram v1809, 1903, 1909 x64. 73

Table 12. Test hibernation file - first compression_set_header analysis. 77

Table 13. The number of pages in each page descriptor contiguous set. 77

Table 14. Data extracted from hibernation files using Passware. 97

Table 15. Group A - Quantitative results of test case D. .. 105

Table 16. A list of evidence that was only created on v1903. 106

Table 17. Search for test case D evidence list. ... 107

Table 18. Group A - findings and features when processing hiberfil.sys. 108

Table 19. Example of artifacts types and proposed tools to extract it. 114

Table 20. List of output filenames of Hibernation Recon as described in [48]. 133

Table 21. Rekall - Tests results. ... 134

Table 22. Rekall - Tests results of FireEye plugins .. 134

Table 23. Minimum system requirements of some of the used commercial tools. 135

Table 24. Features comparison between some of the commercial tools. 136

Table 25. List of hardware used during the research. ... 137

Table 26. Comparing the content of PO_MEMORY_IMAGE structure. 144

Table 27. Content of the _KSPECIAL_REGISTERS structure (without recursion). .. 148

Table 28. “ _CONTEXT” structure (without recursion). ... 149

Table 29. Comparison between Hibr2Bin and the free mode of Hibernation Recon. .. 150

13

Table 30. List of Volatility plugins successfully tested on Test case D files. 151

14

1 Introduction

Digital Forensics is a modern science as it all started in the late 80’s. During the first

decade, digital forensics investigations were focused on data recovery, as users frequently

deleted data due to the high cost of storage media. Many commercial tools were designed

initially for data recovery and file management, then later adapted for digital forensics

use. A few years later, digital forensics examiners were able to see the past by recovering

deleted data, emails, and instant messages, months after it happened. Nowadays, more

and more commercial and open source forensics tools are developed, targeting different

types of systems, and allow individuals with limited training to extract valuable data [1].

Memory forensics is a great source of evidence for forensic examiners and incident

responders. The use of memory forensics is not just related to law enforcement. Malware

analysts also have a huge interest in memory forensics, as well as red teams, and pen

testers. Hibernation (also known as suspend to disk and S4 system power state by ACPI

nomenclature) is a feature related to computer power management. The hibernation

power state is not related to a specific operating system. This feature is available on

Windows (starting from Windows 2000), Linux systems [2], and macOS. However, on

Mac devices, this power state is named safe sleep or deep sleep [3]. Once the hibernation

command is provided to the system, the operating system will write all system context to

a file on non-volatile storage media and leave appropriate context markers [4]. Such

functional behavior of the hibernation feature has turned it into a great source of

information in the memory forensics investigations.

 The hibernation file is a hidden system file located in the root folder of Windows OS

drive. Windows uses the Hiberfil.sys file to store a copy of the system memory on the

hard disk. Enabling hibernation is easy and does not require system reboot or any special

physical requisites [5].

Statistics show that the Windows operating system is the dominant desktop operating

system. The statistics of December 2019, published by StatCounter web analysis service,

show that Windows OS has a market share of 77,64% of the desktop operating system

market share [6]. Statistics for the same month show that Windows 10 consumers are

65.4% of the number of Windows operating system users [7], followed by Windows 7

15

with 26.79%. The combined rates of Windows 8.1, XP, and 8 are less than 8% of

Windows operating system market share. It is to be noticed that Windows 8 and Windows

7 officially end of sales for a few years. The end of extended support for Windows 7,

service pack 1 was January 2020. End of support and retired Windows versions would

give a huge market share for Windows 10. By the time of writing this thesis, Microsoft

has officially released nine versions of Windows 10, starting from July 2015 till the end

of 2019. The most recent version of Windows is currently version 1909, which was

released in November 2019 [8].

The idea of this thesis first came during the system forensics course provided by Pavel

Laptev, who raised the need for reconsideration of Windows 10 hibernation files in digital

forensics investigations, as they seem to become useless. We proceeded by creating a

survey about the use of the hibernation file in digital forensics investigations and malware

analysis. Convincing digital forensics experienced individuals to fill such a survey was a

difficult mission. Despite the use of LinkedIn and personal network, only eight feedbacks

were collected. The collected feedbacks include four persons with less than one year of

experience in the digital forensics field. On the other hand, the other four survey

respondents had from one to five years of experience as digital forensics specialists or

malware analysts. The survey’s feedback shows that individuals with limited experience

in digital forensics investigations - less than one year of experience - have never used the

hibernation file in their investigations. On the contrary, professionals’ answers show that

they have used this file at least once during their years of experience. It was motivating

to find that six out of the eight received feedbacks were interested in some guidelines to

demonstrate how they can include the hibernation file to their investigations.

The results of an interview that we did with two forensics examiners working at the

Estonian Forensic Science Institute1, showed that experienced forensics examiners are

aware of the importance of the hibernation file in digital forensics investigations, the two

examiners confirmed that they previously used the hibernation file in their investigations,

using Magnet IEF tool [9], while they did not get the chance to test the tool on a Windows

10 hibernation file. They clarified that in most of the cases they receive in real life, no

memory image is acquired at the crime scene, while it happens that some Windows

1 https://www.ekei.ee/en

https://www.ekei.ee/en

16

devices are found hibernated on the scene. The examiners stated that they included the

hibernation file to their investigations to extract data related to web browsing, and they

also used it to recover some files from ransomware infection with CryptoLocker, as they

extracted the encryption keys from the hibernation file.

1.1 Research Objectives

For Windows versions before Windows 8, the hibernation file was used as a substitute

for memory analysis in many cases. Some examples include the first responder who did

not take a memory image for the running computer, the evidence was found powered off,

hibernated, or the memory image collected from the evidence was corrupted. For some

Windows versions before Windows 8, the hibernation file (even old hibernation file taken

for backup) was a great support in forensic investigations. The use of the hibernation file

made it possible to recover chat sessions, running processes, login credentials, encryption

keys for encrypted devices, web history, program, and email data. It was also helpful in

some cases of malware analysis, especially memory-only malware and rootkits [10].

The structure of the hibernation file was dramatically modified starting from Windows 8.

For the legacy hibernation file format, when the device is resumed, only the headers of

the files are replaced by zeros. The rest of a legacy file content remains as it is, so the

file’s data might be kept for months or years in some special cases. An example of such

a case was a device that was not hibernated for a long period. On the contrary,

Windows8+ hibernation file keeps only the headers once the system is resumed, while

the whole content of the file after the first page is replaced by zeros [11]. Such behavior

makes the new versions almost useless once the device is resumed. When talking about

the new structure of hibernation file, used starting from windows 8, we would refer to it

as “modern hibernation file”, this name was first introduced in the “Modern Windows

hibernation file analysis” paper [11].

The goal of this thesis is to answer to the below list of questions:

1. Is a hibernation file created by default by Windows 10?

2. Could we document the known hibernation file structures in a clear

mapping/datagram?

17

3. Is the Modern hibernation file layout [11] still applicable for the latest versions

of Windows 10 hibernation file?

4. Do the free tools decompressing Windows 10 hibernation file have the same

output file when processing the same input hibernation file?

5. What are the impacts of the modifications of power configurations, as well as

power states on a hibernation file content?

6. What is the effect of enabling the “HORM” feature on the hibernation file

characteristics?

7. Could we extract artifacts from Windows 10 hibernation files using free tools?

8. Are there any differences found between commercial tools outputs?

9. What kind of artifacts could be collected from a Windows 10 hibernation file?

10. In which Windows 10 power state, a hibernation file would contain the

maximum number of artifacts?

1.2 Scope

This thesis topic aims to analyze hibernation files collected from different Windows 10

versions, document the current file structure, propose a list of currently available tools

that could support the file analysis, and list some types of artifacts that could be extracted

from the file. As the thesis scope is Windows 10 hibernation file, we would use the

modern hibernation file layout proposed in [11], as they already did a proof of concept

for their findings on older versions of Windows 10. We aim to confirm if the latest

versions of Windows 10 still use the same proposed structure in [11] or not.

The limitations of this study should take into consideration that the hibernation file is

Microsoft proprietary, and they have not released documents about the structure of this

file. Most of the academic papers related to Windows hibernation base their analysis on

Suiche reverse engineering for the legacy hibernation file structure [12], and his

documents about Microsoft compression. The legacy file structure is not applicable

anymore for Windows 10 hibernation file.

18

The online available system forensics documents are not widely spread. Besides, the

available free cheat sheets do not seem to be relevant for Windows 10 hibernation file

analysis. The manual analysis of Windows 10 hibernation file was not easily achievable,

considering our limited knowledge about the computer’s memory structure, and the

system forensics field. In the first period of this study, we performed some manual

analysis and got blocked in the first steps, so we had to read more about memory forensics,

volatile and physical memories as well as Windows 10 operating system. The researcher's

background experience was another limitation as most of the tools used during this

research were used for the first time. Such limitation is time-consuming to learn how to

use each tool and explore its capabilities. Taking into consideration the limited time of

trial versions of the commercial tools, and the research period, it was challenging to

overcome these technical knowledge limitations.

1.3 Novelty

The number of papers directly related to Windows 10 hibernation files are very limited.

The main paper on the modern Windows hibernation file is [11], and it was released with

cooperation with Blackbag technologies. The paper introduced the modern hibernation

file structure, while also promoting the hibernation file analysis feature added to

BlackLight commercial software. As on the 8th of December 2019, Google scholar

indicated only one citation for paper [11], in a paper named “Memory forensics: the path

forward” [13] that was also released in 2017. The paper [13] did not contain new

information about the modern hibernation files structure. Our literature shows that the

paper [11] is currently the only paper discussing the modern hibernation file structure.

We found some other papers with misleading titles, that describe legacy hibernation file

structures as Windows 10 file structure, this point would be discussed in more detail in

section 2.4 (Related work). There is a clear research gap in the studies related to Windows

10 hibernation file. Some commercial tools claim that they can extract artifacts data from

the modern hibernation files. However, there has not been any research yet to test the

efficiency of these tools or compare them. At the time of writing, we have not found a

document to confirm if all the previously identified artifacts are still collectible from a

Windows 10 hibernation file. There are also no documents that propose a list of tools to

be used in Windows 10 hibernation file analysis and compare the performance of these

tools.

19

2 Background

This chapter includes terminologies and concepts that would be used during the research.

It provides background about memory forensics, power management, and the hibernation

file. The hibernation file sections provide details about the hibernation power state, the

hibernation file size, type, usage, legacy and modern file structures, the legacy hibernation

file security and a literature review. An introduction to the tools used during this research

is also included in this background chapter.

2.1 Memory forensics

Memory analysis for forensics investigations first appeared in the early 2000s. By this

time, digital forensics investigators were using system administration tools like grep,

strings, and hex editors in their investigations. This investigation technique was named

“unstructured analysis” and was useful for extracting information related to user activity,

passwords, and encryption keys. In 2005, the DFRWS1 released a challenge that requires

the analysis of a Windows memory sample. This challenge led to the creation of many

memory analysis tools. Since then, many commercial tools and open-source frameworks

were developed targeting memory forensics with capabilities of extracting attacker

activities, defeating anti-forensics techniques and the scope of some of these tools were

extended to detect some types of malware and malicious activities [13].

Analysis of the hibernation file is a part of memory forensics techniques. Memory

forensics techniques could extract data that is not available in network or disk forensics.

For example, browsers that implement “private browsing”, do not save many artifacts to

disk. Another type of artifacts that could be found using memory forensics is the chat

sessions related to chat applications that use end-to-end encryption, with chat logging

disabled, like Adium and Pidgin [13].

1 https://dfrws.org/about-us/

https://dfrws.org/about-us/

20

2.2 Power Management basics

The Advanced Configuration and Power Interface (ACPI) [14] is an open standard, with

two primary roles of device configuration and power management. This standard helps to

reduce market fragmentation using its open framework. ACPI defines the global system

states (G0-G3), which are applied to the system and visible to the user; it also includes

different system Sx states (S0-S5). The sleeping states (S1-S4) are types of sleeping states

within the global system state G1 [4]. Figure 1 shows the global system states defined by

ACPI.

Figure 1. Summary of Global system state as per ACPI standard [4].

Microsoft applied the ACPI standard in Windows systems power management. The

hibernation state (S4), first used mainly to extend a mobile device battery life, as it saves

the user state by preserving the operating system, applications, and devices states. All the

content of physical memory is saved to hiberfil.sys on the primary system drive. The

hibernation file should be large enough to ensure that it would save all the content of the

physical memory. Once hibernated, the volatile memory does not require refreshing

anymore, and it is powered-off, which makes the hibernation state the lowest power-

consuming state in the sleep states [15].

The hibernation file is not only used by the hibernation power state. Table 1 shows that

the hibernation file is also used in the hybrid sleep state, which is a combination between

the hibernation power state and the sleep state. Starting from Windows 8, a full shutdown

(S5) occurs when a system restart is requested, while when a system shutdown is

requested using the Windows startup menu, the system will transition to a fast startup,

which uses the hibernation file [15].

21

Table 1. Lists the ACPI power states from highest to lowest power consumption [15].

Power state

ACPI

state Description

Working S0 The system is fully usable. Hardware components that are not

in use can save power by entering a lower power state.

Sleep

(Modern

Standby)

S0 low-

power

idle

In this state, the system remains partially running, it can very

quickly switch from a low-power state to a high-power state.

Systems that support Modern Standby do not use S1-S3, as it

is faster than the S1-S3 sleep states.

Sleep S1

S2

S3

The system appears to be off. Power consumed in these states

(S1-S3) is less than S0 and more than S4; S3 consumes less

power than S2, and S2 consumes less power than S1. Systems

typically support one of these three states, not all three. In

these states (S1-S3), volatile memory is kept refreshed to

maintain the system state. Some components remain powered

so the computer can wake from input from the keyboard,

LAN, or a USB device.

Hybrid sleep, used on desktops, is where a system uses a

hibernation file with S1-S3. The hibernation file saves the

system state in case the system loses power while in sleep.

Hibernate S4 The system appears to be off. Power consumption is reduced

to the lowest level. The system saves the contents of volatile

memory to a hibernation file to preserve the system state.

Some components remain powered so the computer can wake

from input from the keyboard, LAN, or a USB device. The

working context can be restored if it is stored on non-volatile

media.

Fast startup is where the user is logged off before the

hibernation file is created. This allows for a smaller

hibernation file, more appropriate for systems with fewer

storage capabilities.

Soft Off S5 The system appears to be off. This state is comprised of a full

shutdown and boot cycle.

Mechanical

Off

G3 The system is completely off and consumes no power. The

system returns to the working state only after a full reboot.

22

Fast startup is a type of shutdown that uses a reduced sized hibernation file, to speed up

the booting time. The user session is not included in the hibernation file created for a fast

startup, as the user is logged off before the creation of the file, while the content of kernel

(session 0) is written to the hard disk, which generates a small hibernation file size.

Starting from Windows 8, a fast startup is the default response to a system shutdown

request [15].

The computer cannot do a direct transition between any states from S1 to S4 (sleeping

states). Instead, it always comes back to the S0 state (working state), which is shown in

Figure 2. System moving from S1-S5 states to S0 is waking, the system moving from S0

state to S1-S5 is said to be sleeping (in fact, for S5, it would be fully powered off) [16].

Figure 2. System power state transitions [16].

2.3 Hibernation file

It is important to differentiate between the physical and the virtual memory of a computer

system. The virtual memory purpose is to compensate for the limited space of physical

memory by reserving a part of the computer hard disk for memory usage. Once the system

detects high usage of RAM space, some of the physical memory content is written to the

hard drive to free up some memory space. This content is then retrieved from the virtual

memory once the system needs to process these data again by the memory [17].

The root directory of a Windows 10 system contains three system files that store memory

content. The three files are hidden files. To view these files, users must modify the default

23

Windows view of folder options, display hidden files, and unmark the “Hide protected

operating system files” option. The three files are:

1. “pagefile.sys”: This file is a part of the virtual memory of a computer. “Page files

enable the system to remove infrequently accessed modified pages from physical

memory to let the system use physical memory more efficiently for more frequently

accessed pages. Page files can be used to "back" (or support) system crash dumps

and extend how much system-committed memory (also known as “virtual

memory”) a system can support” [18].

For Windows 10 Pro and Enterprise editions, there is a group policy option

“Shutdown: Clear virtual memory pagefile” that clears the memory Pagefile on

shutdown [19], this group policy is disabled by default. Such an option is

enhancing the security of sensitive data available on the pagefile. The same

functionality could be enabled for Windows Home edition users using a registry

key “ClearPageFileAtShutdown”.

2. “swapfile.sys”: The swap file first appeared in Windows 8, with the introduction

of Windows modern applications [also named as “Universal Windows Platform

Apps”, “Windows Store Apps”, “Metro Apps” [13], which are applications that

could be downloaded from Microsoft store [20]. The swap file is a part of the

virtual memory, so it is used to save physical memory space, like the paging file,

while the swap file is currently dedicated to suspending modern applications.

3. “hiberfil.sys”: “A hibernation file (hiberfil.sys) contains a compressed copy of

memory that the system dumps to disk during the hibernation process” [21]. The

hibernation file is a protected file system, copying the file from the root drive

would fail. Exporting the file using FTK imager (with run as administrator

option) for example, might be, in some cases, a solution to overcome the system

protection for the file. The hibernation file is binary. Figure 3 shows the output

of the “file” command when running on a hibernation file.

Figure 3. Hibernation file type.

24

2.3.1 Entering hibernation state

The following steps are published by Microsoft [15], to explain what happens when a

hibernation request is received by the Windows system:

1. Notifications sent to applications and services.

2. Notifications sent to drivers.

3. User and system state are saved to disk (hibernation file) in a compressed format.

4. Notifications sent to the firmware.

This hibernation request is done through a Windows function named SetSuspendState1.

2.3.2 Resuming system from hibernation

When the system is powered on from hibernation, and the boot manager detects a valid

hibernation file, the content of system memory is resumed using the data saved in the

hibernation file, and the system is resumed to the exact state it was in before hibernation.

Microsoft briefed in [15] what happens when a system is resumed from hibernation. It

might be advantageous for forensics investigators and malware researchers to understand

the whole startup process of Windows 10, as this might support their investigations.

Below the Windows 10 startup process as identified by [22] and [15].

1. Once the computer is powered on, it performs some checks named power-on self-

test (POST), these checks are done by the UEFI in case of modern computers, or

by the BIOS in case of older devices. The POST check search for a configured

boot device that contains a valid master boot record (MBR), which stores the

partition information on the bootable device (hard disk for example). Once these

data is retrieved, the computer access the primary active partition (often referred

as system partition and it does not have an assigned drive letter), and loads the

boot manager file BOOTMGR from the root directory of the active partition [22].

2. BOOTMGR checks the boot configuration data available in the BCD database,

which could be found on the same path as the BOOTMGR. The BCD database

1 https://docs.microsoft.com/en-us/Windows/win32/api/powrprof/nf-powrprof-setsuspendstate

https://docs.microsoft.com/en-us/windows/win32/api/powrprof/nf-powrprof-setsuspendstate

25

helps the boot manager to determine if one or more operating systems are installed

on the device, and also it detects if the system is in the hibernation state [22].

3. If a Hibernation file is found by the boot manager, it passes the control to

Winresume.exe to restore the system to its previous state. Otherwise, the control

is given to Winload.exe. These activities end by initializing the operating system

kernel (Ntoskrnl.exe) [22].

4. Drivers are restored to their previous state in case of hibernation restoration [15].

5. Services are restored to the state they were in before hibernation [15]. At this

stage, the Windows session is loaded, and the display is switched to graphical

mode [22].

6. The system becomes available for login [15].

2.3.3 File size and types

Windows systems compress the memory content before saving it to the hibernation file,

to reduce disk space usage. The default proportion between the hibernation file size and

the total physical memory on the system may differ from a Windows version to another.

For example, for Windows 7, the hibernation is enabled by default on the system, the

actual size of Hiberfil.sys is equal to 75% of the total physical memory on the system (for

a computer of 2 GB RAM, the default hibernation file size would be 1.5 GB RAM). On

the other hand, the hibernation is disabled by default on Windows server 2008 R2, and

once enabled the hibernation file size is equal to 100% of the total physical file size.

Windows provide an option of adjustment of the size of the Windows hibernation file

using the built-in PowerCfg command-line utility [23].

As for Windows 10, we already mentioned that the system creates a hibernation file in

the case of three power states: hybrid sleep, fast startup, and the standard hibernation. The

size of the hibernation file has two types: full and reduced size files and each type of file

supports power sleep mode as clarified in Table 2 [15].

26

Table 2. Hibernation file types and default sizes [15].

Hibernation file type Default size Supports

Full 40% of physical memory hibernate, hybrid sleep, fast

startup

Reduced 20% of physical memory fast startup

2.3.4 Usage

The Art of Memory Forensics book [21] proposed factors to consider before acquiring

memory. In Figure 4, The book recommends considering the hibernation file in case the

computer was found “not running”. Such action matches the modern hibernation file

characteristics, as the file should be collected offline to contain a useful amount of data

into the file.

Figure 4. Some of the factors to be considered before acquiring memory [21].

The book highlights that before hibernating, the DHCP configuration would be released

and the active connection would be terminated, which leads to incomplete networking

data of the hibernation file. Some malware might remove themselves from memory

during the hibernation, so the hibernation file would not detect the presence of such

malware. Such behavior favors the full memory image to the hibernation file; for this

reason, the book recommended using the hibernation file in case of unavailability of a

memory image[21].

27

2.3.5 File structure

2.3.5.1 Windows XP-7 Hibernation file structure

Mattieu Suiche and Nicolas Ruff were the first to publicly document the hibernation file

format in PacSec 20071 [24]. Later Suiche provided another presentation during the Black

Hat Briefings in the USA in 2008 [25]. Suiche presentations were essential to understand

the legacy (also named as Windows XP-7 by [11]) hibernation file format.

Figure 5 shows the hibernation file layout of Windows 7, as per [11]. We noticed that this

structure has some modifications when compared to the structure described by Suiche in

[24] and [26]. The described layout in Suiche’s documents seems to be more relevant to

Windows XP and Vista. Suiche mentioned that some pages order modifies depending on

the Windows versions [27], while we also noticed that some pages mentioned in Suiche

documentations are not available in Windows XP-7 hibernation file layout presented by

[11] (for example the FreeMap page is not available in the Figure 5 layout). As [11] is

our primary reference paper, and the most recent published paper related to the

hibernation file layout topic, we decided to use the layout presented in [11], while

highlighting the differences between this layout and other documentations layouts and

naming conventions.

The first page of a hibernation file is named the file header, and its content is defined by

the “PO_MEMORY_IMAGE” structure. The first four bytes segment of the headers are

the file signature (also named magic bytes), and it varies depending on the system state.

While the system is resuming from hibernation, the signature value changes to rstr/RSTR,

once the system is successfully resumed, the header content is lost as the first page of the

hibernation file is zeroed [11]. The value of the “Signature” of a hibernated file would be

hibr/HIBR (depending on the OS version) in the hibernation state [11]. The header

contains interesting information about the system, such as the system time, the page size,

and the “FirstTablePage” that contains the address of the first memory table [28].

1 This presentation was available on Suiche’s website in the past, while the website is no longer available,

the last archive for the website is dated for the 4th of October 2017, and the domain msuiche.net is currently

owned by another person. This is an example of references previously mentioned in academic papers

related to hibernation file, that are not valid anymore. In such cases we used the search in the web archive

(https://web.archive.org/) to find the required resources.

https://web.archive.org/

28

Figure 5. Example of Windows 7 hiberfil.sys layout [11].

The “PO_MEMORY_IMAGE” structure may vary depending on the Windows version.

The header structure definition could be found in debugging symbols and could be

extracted using WinDbg [29]. Figure 6 shows the definition of

“PO_MEMORY_IMAGE” for Windows 7 SP1 x64.

Figure 6. Definition of the “PO_MEMORY_IMAGE” for Windows 7 SP1 x64 [11].

29

The processor context becomes the second page of the hibernation file starting from

Windows Vista. This page is composed of the structure “_KPROCESSOR_STATE”,

where Windows store a copy of every processor register value. The

“_KPROCESSOR_STATE” structure is defined in the debugging symbols and could be

extracted using WinDbg. The offset of this page gets modified depending on the OS

versions [the starting offset is 0x1000 for Windows versions starting from Windows Vista

SP1] [11].

The processor context page contains information about the registers saved by ntoskrnl.exe

[27], similar to:

▪ Control registers: These registers determine the operating mode of the processor

and the characteristics of the currently executing task, they are 32 or 64 bits

depending on the processor. Table 3 provide examples of control registers and

their function that we created based on [30] and [11].

▪ Global descriptor table (GDT)1 offset.

▪ Interrupt Descriptor Table (IDT)2 offset.

Table 3. Control Register Functions as defined by [30] and [11].

Control

Register

Function

CR0 It contains system control flags that control operating mode and states of the

processor.

CR2 It contains the page-fault linear address (the linear address that caused a page

fault).

CR3 It contains the physical address of the system’s page tables.

CR4 It contains a group of flags, like the page address extensions (PAE).

CR8 Provide read and write access to the Task Priority Register (TPR).

1 When operating in protected mode, all memory accesses pass through either the GDT or an optional local

descriptor table (LDT), these tables contain entries called segment descriptors. Segment descriptors provide

the base address of segments well as access rights, type, and usage information [30].
2 External interrupts, software interrupts and exceptions are handled through the IDT. The IDT stores a

collection of gate descriptors that provide access to interrupt and exception handlers [30].

30

The system needs to reconstruct data extracted from the "table pages” and “XPRESS sets”

to restore the content of Windows XP-7 hibernation file. A “table page”1 contains two

structures that start with “_PO_MEMORY_RANGE_ARRAY”2. Each “table page” is

followed by the “XPRESS set” of compression blocks. The combination of data available

in “table pages” and “XPRESS sets” provide all the meta-data and data required for

restoring the state of physical memory [11].

Figure 7 shows that the “table page” is composed of two structures. The header consists

of the “_PO_MEMORY_RANGE_ARRAY_LINK” structure, which contains the fields

“NextTable” and “EntryCount”. A “table page” cannot exceed 4KB, so the “NextTable”

field points to the offset of the next “table page” in the hibernation file. The value of

“NextTable” should be multiplied by 4096 or 0x1000 to find the offset of the next table

page. The last “table page” has the “NextTable” entry as zero [11].

Figure 7. Definition of “table page” structures [11].

As per [11], the header is followed by a “number” of entries of the structure

“_PO_MEMORY_RANGE_ARRAY_RANGE” (same number as “EntryCount”3), each

1 The “table page” is a terminology used only in [11], while [12] and [27] named these pages “memory

range array”, on the other hand [35], [36] and [28] named it “memory table”.
2 By searching for the structure name “_PO_MEMORY_RANGE_ARRAY” in a site publishing different

versions of Windows kernel structure, we found that this structure name was last found in Windows Vista

SP1 [31]. As legacy hibernation file as out of the scope of this research, no further analysis was done to

double-check this information and understand what replaced the “_PO_MEMORY_RANGE_ARRAY”

structure in Windows 7 for example, in case the information published on [31] is correct. We mentioned

such information to highlight that the proposed XP-7 hibernation file layout in [11] doesn’t seems to be a

standard for all Windows versions earlier than Windows 8.
3 Papers [28] and [36] mentioned that the header cannot contains more than 255 entries in the field that was

named “EntryCount” by [11]. They base their calculations on calculating the header length as 16 bytes and

they consider each “_PO_MEMORY_RANGE_ARRAY_RANGE” length 16 bytes. Maximum Number of

EntryCount in a table page = 4096 bytes – 16 bytes (header) = 4080 /16 = 255 Entries (16 bytes each).

https://www.vergiliusproject.com/kernels/x64/Windows%20XP%20%7C%202003/SP2/_PO_MEMORY_RANGE_ARRAY
https://www.vergiliusproject.com/kernels/x64/Windows%20XP%20%7C%202003/SP2/_PO_MEMORY_RANGE_ARRAY
https://www.vergiliusproject.com/kernels/x64/Windows%20XP%20%7C%202003/SP2/_PO_MEMORY_RANGE_ARRAY

31

range has a field for “StartPage” and another for “EndPage”. The StartPage” and

“EndPage” fields define the range of physical memory pages stored in an “XPRESS set”.

We mentioned earlier that the definition of a structure is modified depending on the

Windows version. We notice that the definition of the structures starting with

“_PO_MEMORY_RANGE_ARRAY”1 for Windows Vista SP1 in [31], is not the same

as the structure in [11]. To clearly understand these structures, we installed Windows 7

SP1 x64, and we did some quick checks on a test hibernation file extracted from the

Windows 7 version2. We applied the definition of the “table page” defined in Figure 7 to

this test hibernation file, and the definition seems to be valid for Windows 7 SP1 x64

version. Appendix 1 shows parts of the manual analysis that we applied on Windows 7

SP1 x64 hibernation file.

Each “table page” is followed by an “XPRESS set” of compression blocks. The

compression block starts with the structure “_IMAGE_EXPRESS_HEADER” [11] –

Figure 8 (named “IMAGE_XPRESS_HEADER” in [28] - Figure 9) and has 8 bytes of

signature equals to “\x81\x81xpress”.

Figure 8. “_IMAGE_EXPRESS_HEADER” structure definition [11].

Figure 9. “IMAGE_EXPRESS_HEADER” structure definition [28].

1 Some papers replace these structures starting with “_PO_MEMORY_RANGE_ARRAY” with structures

that starts with “MEMORY_TABLE” referencing this structure to P. Kleissner [36]. In Suiche

documentations, these structures starts with “MEMORY_RANGE_ARRAY” [27].
2 Unfortunately, it was not possible to run WinDbg on this version, due to technical limitations. The only

way to confirm the structure definition was to perform a manual analysis on the file, as demonstrated in

this section.

https://www.vergiliusproject.com/kernels/x64/Windows%20XP%20%7C%202003/SP2/_PO_MEMORY_RANGE_ARRAY
https://www.vergiliusproject.com/kernels/x64/Windows%20XP%20%7C%202003/SP2/_PO_MEMORY_RANGE_ARRAY

32

It is clear from Figures 8 and 9 that structures names are not coherent in the XP-7

hibernation file layout. The definition of the same structure varies, we may refer this

variation to the dependency of field names and lengths on the Windows version. The

references of Figures 8 and 9 did not clarify the Windows version of each structure. Figure

10 shows the “compression block” signature that we extracted from a Windows 7 SP1

x64 hibernation file.

Figure 10. XPRESS “compression block” signature of Windows 7 SP1 x64.

The content of a compression block might be uncompressed or compressed using the

XPRESS compression algorithm[32].

From the described structure of the legacy XP-7 hibernation file layout, we can see that

this structure was vulnerable for recovering its content at any time. The file content was

kept after restoring the file from hibernation, only the header (first 4096 bytes) was

zeroed. Deleting the header seems to be a blocking point from recovering the legacy

hibernation file, due to the missing details about the “FirstTablePage”. However, our tests

on Windows 7 SP1 x64 hibernation file shows that the missing header is not a problem.

The “FirstTablePage” entry could be found by searching for the first XPRESS header

signature in the file (\x81\x81xpress). Going backwards for 4096 bytes offset from the

beginning of the first XPRESS header would lead to the “FirstTablePage”. Once the

FirstTablePage is found, it is possible to extract the “NextTable” entries as well as the

“XPRESS sets” and restore the memory content saved in the hibernation file, even after

its restoration.

2.3.5.2 Modern Hibernation file structure

A new hibernation file structure was used by Microsoft starting from Windows 8. To the

Author's knowledge, the new structure was only documented by [11], and they named

this structure the “Modern hibernation file structure”. This section would describe the

modern hibernation file layout as per [11]. Figure 11 shows the modern hibernation file

layout.

33

Similar to the legacy hibernation file, the first page of a modern hibernation file contains

the structure “PO_MEMORY_IMAGE”, while the content of the structure was modified,

as many fields were added to it [11].

Figure 11. Modern Windows hibernation file layout [11].

The processor context has the same structure “_KPROCESSOR_STATE”, and it is

always available at offset 0x1000 in the modern hibernation file layout [11].

The storage of the content of the physical memory in the modern hibernation file is the

major change that was done to the new file structure. The “table pages” and “XPRESS

sets” were replaced by “restoration sets” that contain many “compression sets” [11].

The modern hibernation file header has four valid signature values [11]. “HORM”[33] is

a feature that enables the system to be resumed using the same hibernation file. This

feature is supported by IoT Core Editions. “HORM” feature is supported by Windows 10

Enterprise and Education starting from Windows 1709, which was released after

publishing [11]. For this reason, the HORM signature was not included in [11] research.

Once the system is resumed from hibernation, the “hiberfil.sys” signature is changed to

“WAKE”, the rest of the header content is kept unmodified (First 4096 bytes), while all

other data in the file is zeroed. Such behavior makes a restored modern hibernation file

almost useless, once restored [11].

34

Table 4 describes the four modern hibernation file signatures.

Table 4. Modern hibernation file signatures value as defined by [11].

Signature Value System State

HIBR The system is in the hibernation state

RSTR The system is actively being resumed from hibernation

WAKE The system was resumed successfully from hibernation

HORM The system has the feature Hibernate Once/Resume Many enabled

The modern hibernation file contains mainly two “restoration sets” related to

“FirstBootRestorePage” and “FirstKernelRestorePage” entries. There is a potential third

restoration set related to the” FirstSecureRestorePage” field, where the content always

consisted of zeroes during [11] research. Each “restoration set” contains one or more

“compression sets” (terminology proposed by [11]) with a maximum size of 64KB of

data (4K physical memory pages). Since the structure of “restoration sets” is

undocumented, the paper [11] proposed naming and terminologies. A “compression set”

starts with a 32-bit little-endian “compression_set_header”, as described in Figure 12 and

Table 5.

Figure 12. Definition of “compression set” header [11].

Table 5. Explanation of the “compression set” header’s fields as defined by [11].

Field name Size in bits Description

NumberOfDescs 8 The number of page descriptors that follow the

header (0 < NumberOfDescs <= 16).

SizeOfCompressionData 22 the size (in bytes) of the compressed data that

follows the descriptors.

HuffmanCompressed 1 When its value equals 1, the data is compressed

using the “LZ77 + Huffman XPRESS” algorithm.

When its value equals 0, The data is compressed

using the “Plain LZ77 XPRESS” algorithm.

35

A “NumberOfDescs” of “page descriptors” follow each “compression_set_header”.

Figure 13 and Table 6 define the “page descriptor”. A “page descriptor” is composed of

64 bits (8bytes) for x64 Windows versions, while for 32-bit Windows versions, the “page

descriptor” length is 4 bytes. Each “page descriptor” defines a set of 4KB “contiguous

pages” [11].

Figure 13. Page descriptors definitions for 32 and 64 Windows versions [11].

Table 6. Explanation of the page descriptors fields as defined by [11].

NumPages Number of contiguous pages in the contiguous

page set = “NumPages” + 1

PageNum physical page address of the first page in the

contiguous page = “PageNum” * 0x1000, to

obtain the address offset in hex decimal.

The sum of the number of contiguous pages in each contiguous page set determines the

total number of pages in the compression set. An example of manual investigations of a

compression set would be demonstrated in section 4.3.2.

2.3.6 Hibernation file security

Windows system provides its user with an option of encrypting the hard drive volumes

using Bitlocker, while pen testers proved that the Bitlocker encryption key could be

compromised during the sleep mode as the machine would be vulnerable to a cold boot

attack. For better security for the memory data, pen tests recommend using the hibernation

option instead of the sleep power state option, besides the hard disk encryption [34].

More than 10 years ago, Suiche claimed that the XP-7 hibernation file could be modified

to bypass Windows authentication using an exploit that he created [12], [25].

Unfortunately, during Suiche live presentation of this attack, it did not work. We were

not able to find any demonstration for this hibernation file authentication bypass attack

36

online. While the Sandman framework documents mention that the framework gave users

the possibility of writing data in the hibernation file [27], on the other hand, Kleissner

provided presentations about the proof of concept of another type of Windows XP-7

hibernation file attack [35], [36], [37]. Kleissner created bootkit (a bootable rootkit)

named Stoned, that can inject some code into the memory while booting the Windows

system. He discussed the possibility of injecting a code into the hibernation file to resume

Windows using a modified hibernation file. As per Kleissner's presentations, the code

would be injected into the memory, as far as the checksum is set to zero. In such a case,

no checks would be done by Windows to confirm that the file was not modified. Kleissner

also clarified that such a way of attack could load any unsigned code into the kernel, and

he has reported this issue to Microsoft by the time. As per Kleissner in [37], no real attack

was done against the hibernation file, it was just a proof of concept. It is not clear if the

file is still vulnerable to such kinds of attacks or not. We did not find any academic

researches or online demonstrations discussing similar kinds of attacks, except the

presentations done by Suiche and Kleissner during the period from 2007 to 2010. It is

important to highlight that Kleissner's presentation about Stoned bootkit [35] stated

clearly that his tests were successful only on the legacy BIOS.

2.4 Related work

The white paper [27] published by Suiche in 2008, introduced the forensics value of the

hibernation feature. The paper considered the hibernation file as an efficient way to save

physical memory content, without the need for external tools that might perform changes

on the system. The paper discussed two points related to the hibernation files. The first

discussed point was the use of the hibernation file in defensive computing, and read the

undocumented structure of the hibernation file. The second discussed point was the

offensive usage of this file and the possibility of writing data in a hibernation file. As per

the paper, there are two processes related to hibernation. The Windows kernel

(ntoskrnl.exe) process is responsible for hibernation file creation, and writing the physical

memory dump into it, when the hibernation is required. The second process is OSLoader

(osloader.exe), which read the content of the hibernation file and load the data into the

physical memory. Suiche provided in the paper Windows XP-7 hibernation file structure

and introduced the SandMan framework, which aimed to read and write the hibernation

file.

37

The research [10] published in 2015, covered a wide range of topics related to Windows

XP-7 hibernation file. The study aimed to demonstrate the importance of the hibernation

file in memory forensics. The research was very informative. However, it did not include

new details about the file structure and based all its information on other references.

Despite mentioning some analysis tools in the study, no tests were done on those tools.

The study could be considered as a useful literature review for the Windows XP-7

hibernation file.

The paper [38] was released In 2016. This paper was one of the first papers claiming

discussing Windows 10 hibernation file values. The research stated that the hibernation

file is advantageous even when a memory image is available. The study explained such

an advantage as the file might contain data from the past, especially in the case of

scheduled system backups. Multiple backup versions of a stored hibernation file might be

utilized as various memory snapshots for different times in the past. This behavior is

advantageous in malware analysis, sessions usernames, and passwords as well as disk

encryption keys, while it was not mentioned in the paper that this functionality is not

applicable on a Windows 10 hibernation file. By the time the research was published,

there was no clear vision about the structure change of the hibernation file. the study

described the XP-7 hibernation file structure and functionalities, as the role of hibernation

file in memory forensics of Windows 10. The modifications of the hibernation file

structure were not even highlighted in this paper, which gives misleading information to

the reader. The study context leads to conclude that Windows 10 hibernation file is using

the same Windows XP-7 hibernation file structure. The study also discussed some tools

that are used in hibernation file analysis and stated their options, while some of these

options are not supporting Windows 10 hibernation file, which was not clarified in the

paper. An example of misleading information in that study is stating that MoonSols

Windows Memory Toolkit can convert hiberfil.sys into a crash dump format, which does

not apply for a Windows 10 hibernation file. Also, our tests show that when applying the

Volatility profile “ Win10x64_17763”, for example, on a” hiberfil.sys”, the plugin

“hibinfo” would state that this profile is an Incompatible profile. Contrarily, [38] stated

that the plugin could be used for Windows 10 hibernation file analysis. The paper also

stated that Volatility supports Windows 10 hibernation file analysis in its native format,

while it is published on the GitHub wiki of volatility foundation that “Volatility

currently does not support hibernation files from Windows 8 and newer

38

machines. Support for modern hibernation files will be released sometime in the future”

[39].

The paper [11] was published in 2017. To our knowledge, this paper is the first paper to

study the new structure of the hibernation file. The study also clarified the impacts of the

file layout modifications on memory forensics. We have referred to paper [11] in many

sections of this research, as we find it very informative. The paper first discussed the

legacy hibernation file layout, named it as “XP-7 hibernation file format”, and provided

its file structure in detail, which was mentioned earlier in the file structure section 2.3.5.1.

Hence, the study introduced the hibernation file layout used starting from Windows 8,

and named the new layout as “the modern hibernation file”. As the paper was released by

BlackLight, verifications of the newly revealed file format were performed by

decompressing different hibernation files using BlackLight 2016R3, then compared

BlackLight output to Hibr2Bin output. The results of [11] showed that the modern

hibernation files converted by Hibr2Bin were identical to the files converted by

BlackLight, except for Windows 10 version 1607. Hibr2Bin converted hibernation files

of Windows 10 version 1607 were missing the “KernelRestorePages”. The results of the

research also showed that the behavior changes introduced starting from Windows 8, has

reduced the lifetime of valuable artifacts available in a modern Windows hibernation file.

The artifacts’ lifetime of a modern hibernation file is limited to the time between

hibernation and the first power-on. The study explained that hibernation file content is

zeroed once the Windows is resumed, and only the file header is preserved, which makes

collecting a hibernation file from a running machine almost useless. The results of [11]

mentioned that shutting down the Windows8+ using shutdown /s, or pulling the plug,

would not leave a hibernation file. While shutting down the machine using the shutdown

GUI button would contain a hibernation file that includes the Kernel session only. As per

the research, powering down a machine using the “Hibernate” option preserve the largest

amount of data.

The paper [13], released in 2017, stated that memory forensics could reveal many volatile

artifacts, such as the list of running processes, network connections, chat messages, and

encryption keys. Such valuable evidence could be lost in case of following the traditional

“pull the plug” forensics technique. The research discussed many problems impacting

memory acquisition and analysis. Also, future directions for each of the discussed

problems were proposed. One of the discussed problems was the modification of the

39

hibernation file format and function based on [11] research, which makes the analysis of

a hibernation file captured from a running system almost useless. Paper [13] proposed to

exclude the hibernation file from live acquisition, to speed up the process due to the large

size of the hibernation file. The research also recommended adding warning messages to

the memory analysis tools when users tend to analyze hibernation files. One of the

interesting problems discussed in [13] was the use of swapfile.sys by Windows 10, which

is used for swapping out metro applications, instead of the traditional pagefile.sys. The

paper proposed further researches to understand the impact of such a new feature on

memory forensics. The study covered many other issues related to memory acquisition as

well as memory analysis, while they are considered out of the scope of this research.

2.5 Introduction to analysis Tools

This section introduces the main tools used during the research and provides a briefing

about each tool. For each tool, we would mention the used versions, and we would

highlight some notes about the tool. For instance, we found many contradictions in

volatility and Passware documentations that would be stated in this section. The section

also includes challenges faced during the setup of some free tools. For commercial tools,

we would clarify how we knew that the tool could analyses Windows 10 hibernation files,

how the trial version was requested, what are the limitations of the trial version, and we

would also clarify any special configuration options that were applied during the testing

period.

2.5.1 WinDbg

The debugging tool for Windows (WinDbg) is a free tool that makes part of Windows of

the Software Development Kit (SDK) [29] published by Microsoft. WinDbg supports

kernel mode and user mode, it uses Visual Studio debug symbol formats and helps in

debugging Windows internal structures. WinDbg was published by Microsoft to help

developers in creating Windows applications. The application was used in [11] to extract

names and locations of known structures’ fields.

The Debugging tool supports Kernel mode debugging using different types of

connections between a host computer (a computer that runs the debug) and a target

computer (computer being debugged) [40]. Examples of media used for establishing

connections required for Windows kernel-debug are serial cables, USB 2.0, and 3.0

40

cables. Windows debugger also allows local kernel-debug, to enable kernel-debug using

a single computer. The local kernel-debug way was used during this study, as all other

types of connections are not supported by the analysis laptops. The local kernel-debug

was enabled on each Windows version as per instructions provided in [41]. WinDbg

version 10.0.18362.1 used for that research.

2.5.2 FTK Imager

FTK imager is a free tool released by “AccessData”. The tool is used for forensics

imaging and data preview [42]. This tool is an excellent support for manual analysis, and

it was used to check the content of the hibernation files, calculate their hashes, and capture

memory and disk images from the test laptop when required.

2.5.3 Hibr2Bin

The credit of decompressing the legacy hibernation file, and highlighting its forensics

values goes to Matthieu Suiche, who was the first to present and publish the hibernation

file structure back to 2007, as a part of his open-source SandMan project [43]. In 2008,

he stopped open-sourcing his projects after the theft of the source code by a company

[44]. In 2016, Matthieu announced the return of his toolkit that included DumpIt and

Hibr2Bin CLI utilities [45]. Comae toolkit includes other tools like Hibr2Dmp, which

could convert a legacy hibernation file to a Microsoft crash dump format, while

Hibr2Dmp does not support Windows 10 hibernation files format. The utilities are

available to download from Comae website for free, after registration [46].

Following the release of [11] in 2017, Suiche announced opening the source of Hibr2Bin

on GitHub [44], the compiled version is still downloadable for free from Comae website.

During our research Hibr2Bin role was not only as a conversion tool, but we also took

advantage of the availability of the source code on GitHub and used the code to confirm

our understanding of the hibernation file structure. the open-source code of Hibr2bin

helped us to spot the reason of differences between the resulted output file of Hibr2Bin

and Hibernation Recon.

During our first studies of the feasibility of our research, we did a proof of concept test,

to confirm that it is possible to extract some data from a hibernation file extracted from

recent Windows 10 versions. During that time we did not have any visibility about what

kind of tools support processing hibernation files extracted from the latest Windows 10

41

versions. Tests were done on hibernation files extracted from x64 Windows 10 Pro,

version 10.0.17763 built 17763, RAM size 4GB. For the proof of concept, we created a

WordPad draft document in which it was written: “This is a test hibernation file!”. Then,

the machine was hibernated using the hibernation power option in Windows start menu,

after enabling this option. The machine was then booted using another Windows 10,

installed on a bootable drive, and the hibernation file of our target machine was extracted

using FTK imager that run as administrator. We opened the extracted hibernation file

using FTK imager. The file signature (the first 4 bytes of the file) was "HIBR", and when

searching for the strings “this is a test” in the extracted hiberfil.sys, the strings were not

found. The file was then converted using Hibr2Bin included in Comae-Toolkit-

3.0.20191016.4. The output of Hibr2Bin is a single binary file. A per Figure 14, when

searching for the strings “this is a test” in the binary file converted by Hibr2Bin, we were

able to find our test file’s content. The result of this proof of concept confirmed that

Hibr2Bin could convert the hibernation file to a format that we could process later by

other programs, as the converted file content is not compressed anymore.

Figure 14. Search for known strings in a converted binary file using Hibr2Bin.

From a quick analysis of this proof of concept hibernation file, we noticed that the header

of a converted file using Hibr2Bin was replace by zeros, from this information we

understand that a converted hibernation file does not contain the exact information

available in the hiberfil.sys. Also, we noticed that the converted file contains an example

of known file structures, like $MFT entries (searched for “FILE0” string), and registry

fragments (searched for “hbin” string). While the original hiberfil.sys also contains the

strings (“FILE0” and “hbin”), the entries layout seems to be compressed and doesn’t have

the known layout for these files type. Figure 15 shows the result of searching for an $MFT

entry in hiberfil.sys, while Figure 16 shows the result of a search for the same string in a

hibernation file that was covered by Hibr2bin.

42

Figure 15. Searching for $MFT file entry in the proof of concept hiberfil.sys.

The result shown in Figure 16 is promising, as the data has a valid $MFT entry layout

that could be carved manually. While in such case we would carve separate segments of

the $MFT file. The segments length would equal to a hibernation file page size. This part

of the proof of concept aims to prove that we can find known structure files in a

decompressed hibernation file, that could be used to carve some known files types. While

this research would not include carving any data manually. The examples of “hbin”

entries found in compressed and decompressed hibernation file are similar to the

screenshots available in [47].

Figure 16. Search for $MFT entry in decompressed hibernation file.

We proceeded the rest of the tests done during this research, using Hibr2Bin included in

Comae-Toolkit-3.0.20200224.1.

2.5.4 Hibernation Recon

Hibernation Recon is a tool produced by Arsenal Recon. The tool has a GUI and CLI

interfaces. As per the product FAQ page [48], the software can export a “.bin” file that

contains Active memory decompressed & reconstructed from a hibernation file.

Hibernation Recon also extracts decompressed and raw Slack data in a “.bin” file. The

software can also extract NTFS Metadata in two separates .csv files. Similar to Hibr2Bin,

the output binary file of Hibernation Recon requires processing by a memory forensics

toolkit to extract artifacts from the decompressed hibernation file. Both Hibernation

43

Recon and Hibr2Bin, do not provide any analysis options. Hibernation Recon offers two

running modes: Free (When Hibernation Recon runs without a license) and Professional

modes (Paid service). As per [48], Hibernation Recon does not currently support

processing BitLocker and TPM-impacted hibernation files. Arsenal Recon mentioned on

[48] that the hibernation files content is zeroed out when the clear page file setting is

enabled or when Windows 8+ is resumed, while for our understanding, in win XP-7 case

the hibernation file was zeroed out only in case of disabling the hibernation option [49].

Appendix 2 shows the expected output files when processing a hiberfil.sys using

Hibernation Recon, as listed on [48]. We eliminated the file names related to the legacy

format of the hibernation file, as they are out of the scope of the thesis.

The tests done during this research used the Hibernation-Recon-v1.2.0.70_Beta version,

with Free Mode. We received a full version testing license during our testing period,

which extracts more data as clarified in Table 10.

2.5.5 Volatility

Volatility was first released in 2007. The software is an open framework for

advanced volatile memory analysis. Volatility is the most widely used memory forensics

software in the world. It is a free open source CLI platform that supports memory analysis

of Windows systems, Mac OS, and Linux, the Volatility foundation is open for the

contribution of developers [50]. Volatility does not support the analysis of modern

hibernation files in its original format.

When processing a memory image with Volatility, it is required to choose the

correct operating system profile, to obtain an accurate output of Volatility analysis. The

analysis of a memory image extracted from a Windows version 1809, for example, using

the generic Windows 10 x64 profile (win10x64) on Volatility would not show a correct

output. Volatility Foundation website [50] shows that the latest official version is

Volatility 2.6 (release 2016) improve the support of Windows 10. As per the website, this

version supports Windows 10 including built 14393.447 (version 1607). While the

GitHub source page[39] mention that Volatility supports Windows 10 profiles up to OS

built 10.0.18362 (version 1903). On the other hand, the wiki page of Volatility’s GitHub

page mentions that volatility only supports analyzing memories of three versions for

Windows 10 x64 (1511, 1607, 1703). Such non-coherence in the published information

44

about the list of Windows 10 profiles that are currently supported by volatility, might

cause massive confusion for users with limited experience with Volatility.

Tests done during that research shows that available Volatility 2.6 profiles vary

depending on the way the program was installed. The user should be aware of such

profiles availably incoherence to achieve maximum usability of Volatility. For example,

downloading the Windows executable of Volatility 2.6 from [51] has outdated Windows

10 x64 profiles (supports Windows versions 1511 and 1607, in plus of the generic

Windows 10 profile). On the other hand, Volatility 2.6 version that is automatically

included in Kali Linux release 2019.4(released 20th of November 2019), supports the

generic Windows 10 x64 profile plus six other versions of Windows 10 (up to version

17134). Figure 17 shows the available profile on Volatility GitHub source code [39], as

on the 19th of January 2020. The GitHub code includes Windows 10 x64 profiles up to

version 1903 (released in the first half of 2019). Volatility currently does not support only

a single version of Windows 10 x64 (version 1909 that was released November 2019).

Figure 17. Volatility - Windows 10 x64 profiles using the GitHub source code.

For this research, Volatility GitHub source code was installed on a Windows 10 [52], to

run the last updates of Volatility v2.6 version on the analysis laptop. Volatility released a

Beta version of Volatility v3.0 in October 2019, and they plan to officially release this

version in August 2020 [53]. The new release would not be required to mention an

operating system profile for each command.

2.5.6 Rekall

The Rekall Forensic and Incident Response Framework is an open collection of

tools to extract and analyze digital artifacts computer systems [54]. Rekall source code

was implemented to be a part of volatility, and then a decision was made to treat the

45

project as a stand-alone project and call it Rekall. The Framework has the capability of

memory acquisition and live forensics analysis. The last release is 1.7.2 RC1, released in

December 2017. We installed the Windows installer of Rekall using the last version

available on GitHub. Rekall’s GitHub page mention that it can support the analysis of a

64bit Windows 10 memory image. No clear information found on Rekall official pages

[54], [55], [56] about the support for hibernation file analysis in its original form. We

found in the GitHub code a python file named “hibernate.py” in the path “rekall/rekall-

core/rekall/plugins/addrspaces/hibernate.py”, while we were not able to find any plugin

with the name of “hibernate” or includes “hiber” when searching in the list of Rekall

plugins [56]. Searching for the keywords “hibernate”, “hiberfil.sys”, “hiber” in [55]

would only return a single result pointing to [57], where it is mentioned under “Address

Spaces” section, “Rekall uses an address space to abstract the handling of different

images and formats and therefore allow plugins to support multiple kinds of input images

(or indeed live memory) easily. An address space is an object which can satisfy a read

request for data at a certain offset.” “There are a number of simple address spaces which

simply provide access to a specific data source:

FileAddressSpace - Simply opens a file and satisfies read requests from it.

WindowsHiberFileSpace - Supports Windows hibernation files” [57] .

From this description, we understand that recall could proceed with a hibernation file

directly, while the definitions mentioned in “hibernate.py” seem to be related to old

versions of the Windows profile.

During our searches about Rekall, we found that in July 2019, FireEye published an

update for volatility and Rekall to support memory compression up to Windows 10

version 1809 x64 [58], [59]. FireEye mentioned that starting from Windows 8.1,

Microsoft introduced memory compression to its operating systems, which turned into a

limitation for memory forensics tools. They demonstrated in [58] that Rekall and

volatility were not able to read compressed memory pages, which makes the memory

analysis incomplete. It is not clear if FireEye update might help our research or not, as

Rekall profiles seem to be old profiles, for this reason, we decided to test the FireEye

updates. We did our tests using two versions of Rekall. The first tested Rekall version

was Release 1.7.2 RC1 (released on December 2017) using the Windows installer

46

available on GitHub. We also installed FireEye GitHub version [59] on Kali Linux release

2020.1 virtual machines. Following the installation instructions indicated on [59] [54] to

install Rekall on Kali Linux produced errors and Rekall did not function till we

downgraded pyaff4 to version 0.26.post6 and future to version 0.16.0 as per [60]. The

tests done on both tested versions shows that Rekall produce errors even when processing

a memory image of Windows 10 version 1809, for this reason, we decided to exclude

Rekall from the next sections, and document our tests results in Appendix 3.

2.5.7 Bulk_extractor

Bulk_extractor is a “high-performance carving and feature extraction tool that uses bulk

data analysis to allow the triage and rapid exploitation of digital media”[61].

Bulk_extractor is a free tool available on GitHub [62], the tool scan the entire content of

the analyzed file to extract different types of artifacts that are categorized per type, which

might help investigators in quick triage. Bulk_extractor program can extract different

types of evidence, including email addresses, URL, AES keys, SQLite databases,

telephone numbers, search terms. The tool has a CLI interface and a GUI interface named

Bulk Extractor Viewer. A report could be generated using the GUI interface and contains

different types of information. Figure 18 shows the applied configuration that was used

during the tests.

Figure 18. Bulk Extractor Viewer options.

Bulk_extractor was not included in our primary test plan, and we decided to include it

after reading [63], while we did not have enough time to deeply analyze the tool outputs

using the test cases. Our tests were done on Bulk_extractor version 1.6.0-dev.

47

2.5.8 Passware Kit Forensic

Passware Kit Forensic is a commercial GUI software that describes itself as a solution

that reports all password-protected items on a computer and decrypts them. Passware list

under the “Live memory analysis” section on their official page, that they “Analyze live

memory images, hibernation files and extracts encryption keys for FileVault2, TrueCrypt,

VeraCrypt, BitLocker, logins for Windows & Mac accounts from memory images and

hibernation files” [64]. While it is not mentioned in Passware documentations which

Windows versions are currently supporting hibernation file analysis. Passware is

installed on Windows systems only. We downloaded the free demo version 2020.1.3, 64-

bit Release 20200226.1351 from Passware official website. The demo version allows

each type of attack to work for up to 1 minute, and it is showing the first 3 characters of

the recovered password [65].

We knew by Passware, by searching online for tools that claim to process the hibernation

file. As we found a topic under the name of “How to extract Windows login passwords

from hibernation file or memory image instantly” on Passware official website [66].While

this topic seems to be outdated1. Another topic with the title “How to extract website

passwords from hibernation file or memory image” [67] for the same author, was also

found on Passware support page. This second topic did not mention the supported

Windows version for such a feature and claimed that the “Passware Kit recovers

passwords for Facebook, Gmail, and other websites by analyzing a memory image or a

system hibernation file” [67]. 2

The help page of version 2020.1.3, in “Live Memory Analysis” section, mentions that

Passware can extract the following types of passwords from memory images or a

hibernation files: Passwords for Windows and Mac users; Passwords for websites;

Authentication data for Apple iCloud and OneDrive; Master passwords for 1Password

1 the topic has many pictures that are not shown anymore, while the same topic has two archives since 2017.

Archives could be found at https://web.archive.org/web/2017*/https://support.passware.com/hc/en-

us/articles/221742428-How-to-extract-Windows-login-passwords-from-hibernation-file-or-memory-

image-instantly

2 The instructions included in [67] requires selecting the option “Analyze Memory and Decrypt Hard

Disk”, while this option is not available anymore in the current software version. On the other hand, the

print-screens included in the topic seems to be relevant to Passware latest versions.

https://web.archive.org/web/2017*/https:/support.passware.com/hc/en-us/articles/221742428-How-to-extract-Windows-login-passwords-from-hibernation-file-or-memory-image-instantly
https://web.archive.org/web/2017*/https:/support.passware.com/hc/en-us/articles/221742428-How-to-extract-Windows-login-passwords-from-hibernation-file-or-memory-image-instantly
https://web.archive.org/web/2017*/https:/support.passware.com/hc/en-us/articles/221742428-How-to-extract-Windows-login-passwords-from-hibernation-file-or-memory-image-instantly

48

manager and encryption keys for BitLocker, TrueCrypt, PGP, FileVault2, and other FDE.

From Passware start page, when clicking on the memory analysis option, user can add a

file, the tool display by default raw image files with the extensions (.DD, .IMG, and

.BIN), while it gives the option to add any file extension.

Figure 19. Passware Memory Analysis options.

Figure 19 shows the chosen options that were used during our tests. The Chosen options

where: Windows User (Recover passwords for Windows users from a memory image),

and Websites (Extract passwords for Facebook and other websites from a memory

image). We added the option OneDrive (Acquire data from Windows OneDrive) for a

single hibernation file extracted from Windows 10 version 1903, to test such

functionality. The tool supports adding additional dictionaries using the Dictionary

Manager option, while this option was not tested as it is out of the thesis scope.

2.5.9 Belkasoft Evidence center

Belkasoft Evidence Center [68] is a commercial forensics solution that helps investigators

to acquire and analyze digital evidence. BEC is a GUI software that can directly analyze

hibernation files. Analysis of “pagefile.sys” and live RAM dumps of devices running

Windows, Linux, and Android, are also supported by the BEC. A trial request for BEC

software was submitted from Belkasoft website. Our tests were done on the Belkasoft

Evidence Center 9.9 Build 4662 x64. The trial version has full functionality of artifacts

recovery and extraction, while a created report contains 50% of randomly chosen

artifacts. The trial version does not support decryption functionality, and photo forgery

detection, it does not also support other functionalities that will not impact our tests [69].

49

 Once we open the tool, we can see the currently installed plugins. From plugins names,

it is shown that the Evidence Center can detect encryption, analyze E-mails, browser

information, documents, video, instant messenger, registry and it has many other

capabilities as shown in Figure 20.

A hibernation file could be analyzed by BEC using the “RAM image” option, as per

Figure 21. The tool supports the analysis of pagefile.sys, and there is a possibility to add

more than one data sources to the same case. BEC does not require a selection of

Windows version profiles.

Figure 21. Belkasoft Evidence Center - loading a Hibernation file.

Once the file is selected, BEC opens a menu include the list of supported artifacts options.

User can choose the target artifacts type, that BEC should search for in the hibernation

file, as shown in Figure 22.

Figure 20. Belkasoft Evidence Center - list of installed plugins.

50

Figure 22. BEC - artifacts search options.

2.5.10 BlackLight

BlackLight is commercial software that supports the analysis of modern hibernation files

since version 2016 R3 [11]. We requested a trial of BlackLight software from its official

website [70]. The test results included in this thesis were done on BlackLight trial version

2019 R3. The trial version includes full processing functionality with limitations on data

exporting and reporting. Our first tests were done without installing any add-on for the

software, then we installed the offline maps, operating system hash sets, and memory

symbols installers as per BlackLight release 2019 R3 notes [71], to confirm maximum

usage of all the software features.

Figure 23. BlackLight - list of supported Windows 10 versions.

Figure 23 shows that the program detects the hibernation file as a memory image, while

it requires identification of the Windows version, the latest supported Windows 10

version is 1809. BlackLight provides a list of choices for data processing, as shown in

Figure 24. During the tests, we chose the comprehensive analysis mode, while enabling

all its available options, to extract the maximum amount of data that BlackLight could

extract from a hibernation file.

51

2.5.11 Magnet Axiom

Magnet Forensics introduces Magnet Axiom as a complete digital investigation platform

that can acquire evidence from different types of sources, recover and extract most

evidence from each source of data, then analyze the artifacts and generate reports [72].

They also mention that the software can generate automatic insights using some features

like Timeline, Connections, and Magnet.AI, which are a great support in investigations.

Magnet Axiom is a GUI commercial software that has full integration of Volatility, such

integration allows the use of different Volatility plugins through a GUI interface, instead

of the Volatility command line. The software installs two programs, Magnet “Process”

for case creation, and Magnet “Examine” where user can see case analysis details and

recovered evidence.

We found the information about Magnet Axiom capability to analysis hibernation files in

Windows Forensics Cookbook [73]. While we were not sure if the tool can analysis

modern hibernation files or not, especially that such information was not found in Magnet

Forensics official website or Magnet axiom user guide [74]. The user guide includes

information about examples of supported memory dumps format like “.raw” and “.bin”

files formats, and how to use Volatility integration feature to find the profile of memory

dump, but no information about hibernation files analysis. When creating a new case, and

choosing evidence source as memory, the hiberfil.sys is not shown in the supported

Figure 24. BlackLight - default processing options (a) versus chosen options (b).

(a) (b)

52

images types, while we can still show all file types and choose a hibernation file. Figure

25 shows the list of supported memory images extensions.

It was surprising to find that Magnet Axiom can analyze Windows 10 hibernation files in

its original format, despite the mentioned indicators that show that the program does not

support this functionality. As automatic lookup of memory profile is powered by

Volatility, such a feature would not function when we analyze a hibernation file, the user

must identify the image profile (Windows version) in such a case. The latest supported

Windows 10 memory dump profile for x64 machines is version is Win10x64_18362

(version 1903), same as Volatility.

As shown is Figure 26, Magnet Axiom provides many options in processing details.

Options include but not limited to: adding keywords and regular expression to search,

enable chat, video, and pictures categorization based on selected category (example of

available categories for pictures: Child abuse, Documents (card/ID), Drones, Drugs,

Weapons). It also includes a list of computer artifacts that users might choose to search

for in the analyzed file, and this includes Volatility plugins under the memory artifacts.

Once we choose the options and start the evidence analysis, Magnet Axiom “Examine”

would open automatically in a new window to show analysis progress.

Figure 26. Magnet Axiom Process - Creating new case options.

Figure 25. Magnet Axiom - supported memory images extensions.

53

We requested the software trial using Magnet Forensics website. Our tests were done on

trial version 3.11.0.19007, which is a full version valid for 30 days.

2.5.12 Hive Recon

Hive Recon is another commercial Arsenal Recon software [75] that can extract registry-

related data from a hibernation file. Hive Recon extracts registry hives from the Windows

hibernation file by processing both “hiberfil.sys” and Hibernation Recon output

“ActiveMemory.bin” or crash dump, user can add “pagefile.sys” to the input files, as

shown in Figure 27. We processed our tests with Hive Recon 1.0.0.58. Arsenal Recon

trial license does not have any restrictions on programs functionality. The program output

includes data related to volatile registry hives. Hive Recon was not included in the thesis

main plan and was the last tool to be added to the testing tools. Therefore, the results

would not include much details about the software, due to time limitations.

Figure 27. Hive Recon 1.0.0.58 GUI.

Arsenal Recon has two other commercial software that can extract information related to

Windows registry, which are Registry Recon and HBin Recon. We had the chance to test

these two tools using the same Arsenal Recon trial license, as we were trying to

differentiate between these two tools functionality and Hive Recon. We found that

Registry Recon is totally out of the scope of our research, as it targets extracting registry

information from disk images and volume. While understanding the difference between

HBin and Hive Recon was challenging. Hive Recon target is extracting registry hives

from a hibernation file or a crash dump and the tool can handle the special nature of

volatile memory. On the other hand, HBin Recon can handle a decompressed hibernation

file to extract “hbin” hives. Digital forensics practitioners can use Hive Recon and HBin

54

Recon to extract the maximum number of artifacts related to registry entries from a

hibernation file1. We decided to include Hive Recon only to our tests, as this program

was designed to deals with a hibernation file in the first place. More details about HBin

and Hive Recon and their functionalities could be found at [76] and [77].

 At the end of this introduction to the tools that will be used in our study, it is important

to highlight that the initial plan of this thesis included benchmarking the different analysis

tools. Due to the wide scope of the thesis, besides time and technical limitations, we

decided to update the plan, and just concentrate on what types of artifacts could be

extracted by each tool. As we already made some studies related to features comparison

of some commercial tools, like the minimum system requirements – Appendix 4 and the

supported types of artifacts – Appendix 5. We decided to add these details to the

appendices, as this information might be useful for some readers.

1 Arsenal Recon President was very supportive to explain for us in detail the difference between these two

tools.

55

3 Research Methods

A controlled experiment method was used to perform the hibernation file analysis based

on three variables: Windows version, hibernation file type, and power State, and two

types of analysis as described in Figure 28. The files were analyzed using two types of

analysis: Manual analysis and analysis with tools.

Figure 28. Components of the controlled experiment.

3.1 Variables

The content of the hibernation file and the file structure depends mainly on the three

factors identified in this section.

3.1.1 Windows Version

The hibernation file structure and the names of its fields depend on the used Windows

version, as described in section 2.3.5. As at the time of this research, Microsoft has

released nine versions of Windows 10 [8]. For each of these versions there exist different

editions, each edition contains various features depending on the required usage for the

operating system. For example, the BitLocker Drive Encryption feature is available on

the Pro and Enterprise editions of Windows 10, but not available on the Home edition

[78]. Windows 10 has special releases for embedded OS, under the name of Windows 10

IoT, and this operating system has its editions [79]. Windows 10 IoT is out of the scope

56

of our research. Paper [11] studied two versions of Windows 10 (v1511 and v1607)1. As

per Table 9, Windows 10 versions earlier than v1809 are currently not supported by

Microsoft, as they are end of service. The scope of this research is the Home edition of

Windows 10 x64 versions 1809, 1903, 1909, which are the latest released windows

versions.

Table 7. Windows 10 versions [8], [80].

Windows 10

version history
Date of availability

OS

Build

End of service for

Home, Pro, Pro

Education, and Pro

for Workstations

editions

End of service for

Enterprise and

Education editions

1909 November 12, 2019 18363 May 11, 2021 May 10, 2022

1903 May 21, 2019 18362 December 8, 2020 December 8, 2020

1809 November 13, 2018 17763 May 12, 2020 May 11, 2021

1803 April 30, 2018 17134 November 12, 2019 November 10, 2020

1709 October 17, 2017 16299 April 9, 2019 April 14, 2020

1703 April 5, 2017 15063 October 9, 2018 October 8, 2019

1607 August 2, 2016 14393 April 10, 2018 April 9, 2019

1511 November 10, 2015 10586 October 10, 2017 October 10, 2017

1507 July 29, 2015 10240 May 9, 2017 May 9, 2017

The selected three versions were installed on three different formatted partitions on the

test laptop hard drive. Appendix 6 provides specifications of hardware and OS used in

this research. As the version variable aims to compare the structure used by the latest

Windows versions, to the structure described in section 2.3.5.2. We decided to install

Windows 10 v1607 on a virtual machine, to document the modifications that occurred on

Windows hibernation file structure since the last version studied in [11].

1 During the research we might refer to a special Windows 10 version by vXXXX. Example, Windows 10

version 1809 would be also written as v1809.

57

3.1.2 Hibernation file type

This study tested the two hibernation file types previously described in section 2.3.3. A

Full hibernation file is created by the system when these three sleep options are enabled:

hibernation, hybrid sleep, and fast startup. On the other hand, a reduced hibernation file

is created by the system when the fast startup power state is the only enabled sleep option.

We noticed that Microsoft added the title “Fast startup (reduced hibernation file)” in [15]

to describe the fast startup power state. For this reason, at some point of this research, we

called any hibernation file extracted from the fast startup state as a reduced hibernation

file. While during the hibernation file analysis phase, we noticed that the size of a

hibernation file with “HIBR” signature was always the same, regardless of the configured

hibernation type or power state. For this reason, we decided to use the expression “fast

startup hibernation file”, when talking about a hibernation file extracted from a fast

startup power state. Details would be discussed in section 4.4.

3.1.3 System power state

When talking about the system power state variable, we mean that the hibernation file

was extracted at this power state. Our test cases covered hibernation files extracted from

three different system states:

▪ Working power State (S0): A working system might be waking from states the

(S1-S5) as explained in section 2.2. We used FTK imager, launched with the “run

as administrator” option, to extract hibernation files from the S0 power state. In

this research, we used the expression extract “online” to refer to hibernation files

extracted from a working system.

▪ Hibernation power state (S4): The use of a hibernation file is connected to three

power states: Hibernate, fast startup and hybrid sleep. Our tests included

hibernating the system following a hibernation request or a fast startup request.

The hybrid sleep power state is out of the scope of this research. Collecting the

hibernation file in the S4 state could be done using different ways. During this

research, we extracted the hibernation files by rebooting the test laptop from an

external HD, after modifying the boot order using the BIOS setup utility. We used

FTK imager installed on the external HD to extract hibernation files. In this

58

research, we used the expression extract “offline” to refer to hibernation files

extracted from a non-working state (S1-S5).

▪ Soft Off power state (S5): we tested different power states configurations to

understand the cases in which a system enters the shutdown state (S5). File at the

S5 state was collected offline.

3.2 Analysis Types

The collected hibernation files were analyzed using two types of analysis as described in

this section.

3.2.1 Manual analysis

When talking about a Manually analysis of the hibernation file, we mean that the analysis

does not depend on the tools’ capabilities. The function of tools in the manual analysis is

displaying the file content. The analysis results depend on the researcher knowledge and

observations. The manual analysis was challenging and might be done in an independent

study as it is time-consuming. The manual analysis is fundamental to understand the

hibernation file characteristics. Using manual analysis, we explored the content of

hibernation file pages and documented our findings in Chapter 4. The manual analysis

was done on seven stages.

Stage 1: We started our analysis by the file header. As discussed in section 2.3.5, the first

page of the hibernation file is defined by “PO_MEMORY_IMAGE” structure. Using

WinDbg outputs, we documented the definition of the header structure. This analysis

would be discussed in section 4.2.1. The results of this analysis include a datagram of the

hibernation file header. This Stage should provide an answer to the first research question

(section 1.1)

Stage 2: We then proceeded to document the content of the second page of the hibernation

file, which could also be named as the processor context. This page is defined by the

structure “_KPROCESSOR_STATE”. Using WinDbg outputs, we documented the

definition of the processor context page. This part of the manual analysis would be

discussed in section 4.2.2. The results of this analysis include a datagram of the processor

context. This Stage should provide an answer to the first research question (section 1.1)

59

Stage 3: It was not possible to extract the pages structures using WinDbg starting from

the third page of the hibernation file, as they are not defined publicly. This phase required

the generation of hibernation files to analyze the file content using FTK imager. The aim

of this stage was identifying any undocumented structures/pages when comparing the

analyzed files to the file layout defined by [11] and explained in section 2.3.5.2. This

analysis would be discussed in section 4.3.1. The results of this analysis include

observations related to undocumented structures.

Stage 4: The aim of this stage was understanding how the physical memory pages are

stored in a hibernation file. We applied the restoration set concepts described in section

2.3.5.2, on test hibernation files. All data related to a restoration set could be extracted

manually from the hibernation file header, as the header is not compressed. We used the

header datagram created at Stage 1 to extract the information required for manually

analyze the content of a restoration set using FTK imager. This analysis would be

discussed in section 4.3.2. The results of this analysis would clarify if the hibernation file

still uses the same restoration sets characteristics that were defined by [11].

Stage 5-a: This stage aimed to study how restoration set is decompressed and investigate

its content. For this reason, we decided to take advantage of Hibr2Bin open-source code.

We would explain how this analysis was done in section 4.3.3. This analysis helped to

confirm our understanding of the hibernation file structure and clarified some of the

unknown structures found in stage 3.

Stage 5-b: Comparing the decompressed files using Hibr2Bin and Hibernation Recon.

This Stage should provide an answer to the research question number 4 (section 1.1)

Stage 6: Starting from stage 6 we aimed to understand the impact of various windows

configurations on the hibernation file content. The analysis would be discussed in section

4.4. This Stage should provide an answer to the research question number 5 (section 1.1)

Stage 7: The last stage of the manual analysis was exploring the characteristics of

hibernation files with “HORM” signatures. This signature was out of the scope of [11],

and we wanted to clarify the impact of enabling the HORM feature on the hibernation

file. This analysis did not include extracting hibernation files offline due to technical

limitations. The analysis results would be discussed in section 4.5. This Stage should

provide an answer to the research question number 6 (section 1.1)

60

3.2.2 Analysis of hibernation file using tools

The aim of performing a hibernation file analysis using tools was extracting artifacts from

the hibernation file. This part is a simulation for what a forensics practitioner does in real

life. The type of analysis depends on the capability of each tool to analyze the hibernation

file and the features of the tool. By analyzing hibernation files using different tools, we

wanted to demonstrate that the hibernation file contains considerable types of artifacts.

The number of extracted artifacts from a hibernation file does not depend only on the file

content, while the used tool to extract the artifacts is a crucial factor in the results.

We first created artifacts and footprints on the test laptop based on a predefined scenario,

and then we hibernated the test laptop. By this way, we were able to search for the

predefined list of evidence in the outputs of the tested tools. We analyzed the extracted

files using two types of tools:

Free Tools: A free tool does not mean that the tool is open source. A tool like Hibernation

Recon, for example, could run in free mode while the source code is not published. All

the tested free tools were not designed to analyze a modern hibernation file. To overcome

such problem, we added a decompression stage for the hibernation file. The

decompression of a hibernation file could be done using Hibr2Bin and Hibernation

Recon as discussed, respectively, in sections 2.5.3 and 2.5.4. By decompressing the

hibernation file, we have a higher possibility to find free tools that could extract data from

the file. We tested the analysis of a decompressed file using Volatility and Rekall are

examples of widely used memory forensics tools. We added Bulk_extractor to the test

plan after reading [63], as clarified earlier.

Commercial Tools: Initially, four commercial tools were chosen for testing. We chose

tools claiming extracting data from Windows 10 hibernation files, while the test also

included tools chosen based on online topics or books recommendations. A limited testing

period was guaranteed by each vendor. We expanded the list of tested commercial tool,

by adding Hive Recon, after receiving a testing license for all Arsenal Recon products.

We could categorize the tested commercial tools into two categories. A category of tools

with a wide scope that can extract various types of artifacts. BlackLight, Belkasoft

Evidence center, and Magnet Axiom are typical examples. Each of the three tools covers

a wide number of artifacts types. In this research, we would name this category of tools

as Category A. The other category of tools has limited scope and can extract some specific

61

types of artifacts that might not be covered by Category A tools. Hive Recon and

Passware are typical examples. Hive Recon extract data related to registry entries, and

Passware can find passwords and different encryption keys. We named this category of

tools as Category B. some of Category A tools might integrate with tools from Category

B in their features to support more artifacts. For example, the integration of Magnet

Axiom with Passware through Passware plugin available in Magnet Axiom Process.

The analysis of the output of Hibr2Bin and Hibernation Recon would be discussed in

chapter 4. The decompression tools do not extract any artifacts from the hibernation file.

They are used in the file analysis done using tools as a workaround for tools that doesn’t

support the direct analysis of hibernation file.

Chapter 5 would discuss the findings of the analysis of the hibernation file using tools.

Rekall results were omitted from Chapter 5 results, as explained in section 2.5.6.

3.3 Test Cases

We created four test case to respond with the analysis requirements states in section 3.2.

Each test case helped us to answer to one or more of the research questions. We created

relevant users activities for each test case, to be tracked during the analysis.

3.3.1 Test Case A

The test case A helped to answer the research questions : “1. Is the Modern hibernation

file layout [11] still applicable for the latest versions of Windows 10 hibernation file?”

and “2. Do the free tools decompressing Windows 10 hibernation file have the same

output file when processing the same input hibernation file?”

This test case was applied on Windows 10 versions v1809, v1903 and v1909. For each

of the three Windows versions, we extracted four hibernation files:

▪ File_1: We collected the hiberfil.sys file from the working system state.

▪ File_2: We collected the hiberfil.sys file from hibernate system state. The system

entered the hibernate state in response to a hibernation request. In other words, we

hibernated the system using the hibernate power option in Windows start menu.

62

▪ File_3: We collected the hiberfil.sys file from the system after waking from

hibernation. This file is collected online.

▪ File_4: We collected the hiberfil.sys file offline after system shutdown using the

shutdown option in Windows start menu. This file is a fast startup hibernation file.

As for user activities, during the working state, we created a draft notepad file. The file

contained some keywords that we might use in the search.

3.3.2 Test case B

The test case B helped to answer the research question: “5. What are the impacts of the

modifications of power configurations, as well as power states on a hibernation file

content?”(section 1.1)

The test plan included many steps and thirteen hibernation files extraction. Due to the test

length, we decided to perform the test on Windows 10 v1903 only. This version is very

similar to the latest Windows version. In plus, we have noticed from the primary

investigations that a hibernation file extracted from the working state contains more pages

than the other two versions, in case of windows v1903. Test case results would be

discussed in section 3.3.2.

As for user activities, there were no specific user activities requirement in that test case.

We opened some URLs on the working system and documented our activities before the

system state transition.

3.3.3 Test case C

Hibernate Once Resume Many (HORM) feature could be found on Windows 10

Education and Enterprise editions starting from v1709. This feature was only available

on IoT Windows by the time of writing [11], which made it out of the scope of the paper.

We were not able to test such functionality on our test laptop as the tests were done on

Windows Home edition. As we believe that studying the characteristics of a hibernation

file with “HORM” signature is beneficial, as it would give information about this file

structure and how the feature works. We upgraded our analysis laptop to Windows 10

v1909 Build 18363.720. Using the HORM feature, Windows could resume many times

using the same hibernation file. Enabling this feature requires Configuring the Windows

system using the instructions indicated in [33]. Due to technical problems, we were not

63

able to extract an offline version of the file, so our analysis was limited to the online

collected hibernation files. Test case C answers the research question: What is the effect

of enabling the “HORM” feature on the hibernation file characteristics? This Stage should

provide an answer to the research question number 6 (section 1.1)

3.3.4 Test case D

Test case D have the same plan of test case A, described in section 3.3.1, except for what

concerns the activities. Four hibernation files are the output of test case D (D_File1,

D_File2, D_File3 and D_File4), and the three Windows 10 versions are included in the

test.

Test case D answers the below research questions: “7. Could we extract artifacts from

Windows 10 hibernation files using free tools?”, “8. Are there any differences found

between commercial tools outputs?”, “9. What kind of artifacts could be collected from a

Windows 10 hibernation file?”, “10. In which Windows 10 power state, a hibernation file

would contain the maximum number of artifacts?”

It was required to generate different types of artifacts on the system in the working state,

to answer the research questions. Before creating what we named “the user activities

scenario”. We first created a list of artifacts types and identified the list of applications

that we target by this test case. Then we created a user activities scenario based on the

predefined list of artifacts. The user activities scenario was applied to the three Windows

versions. While due to technical issues, we repeated the tests on Windows v1903 more

than four times. We took advantage of this matter, to create an extended user activities

scenario for v1903. Subsequently, we created the list of evidence shown in Tables 10 and

11. We marked an evidence number (Ex) for each action of the evidence list, to help in

tracking the evidence on each of the tested tools. The output hibernation files were then

processed by each of the tools mentioned in section 3.2. finally, we analyzed the outputs

of the tool. Results of the analysis are discussed in chapter 5.

A hibernation file contains system footprints and files, besides the user activities. A

hibernation file extracted from the hibernate power state would always contain data

related to the system, such as system files and system footprint, while it might not contain

user activities. The fast startup hibernation file is a case in point. Having a list of evidence

64

helped us to differentiate between a fast startup hibernation file (File_4) and a hibernation

file that contains user activities (File_2).

Table 8. List of evidence of test case D.

Application /

Evidence

number

User activities scenario Target artifact

type

Firefox

E1 Google search for “coronavirus report” URL

E2 Open URL:

https://www.who.int/emergencies/diseases/novel-

coronavirus-2019/situation-reports

URL

E3 Open online PDF URL, PDF

Chrome

incognito

E4 Google search for “Memory forensics hack” URL, Google

search

E5 Open URL: https://www.hackingarticles.in/memory-

forensics-investigation-using-volatility-part-1/

URL

E6 Open Google book online. URL, picture

E7 Open Google maps:

https://www.Google.com/maps/@59.3945433,24.6454586,

13z

URL, Location,

picture of the

map

Chrome

E8 Stream video:

https://www.youtube.com/watch?v=9lwYrfE6FA0

URL, Parts of

video, Social

media site

E9 Google search for flowers. URL, flowers

pictures

E10 Open a flower picture and download it. URL, download

activity

E11 Enter the webmail password and do not save it in the

browser. URL: https://outlook.live.com/mail/0/inbox

URL, account

name, password

E12 create a draft email in webmail. Message body includes

keywords: “test”, “draft”.

Draft email

content

Skype / E13 Send chat messages using a private message Chat content

Libre Office /

E14

Create a draft text file to include keywords: “test”,

“hibernation file”, Windows version, date, and time. The

file will not be saved.

Draft document

content

Windows

drives / E15

Unlock at least 2 Windows encrypted drives with BitLocker BitLocker ID,

password

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.hackingarticles.in/memory-forensics-investigation-using-volatility-part-1/
https://www.hackingarticles.in/memory-forensics-investigation-using-volatility-part-1/
https://www.google.com/maps/@59.3945433,24.6454586,13z
https://www.google.com/maps/@59.3945433,24.6454586,13z
https://www.youtube.com/watch?v=9lwYrfE6FA0
https://outlook.live.com/mail/0/inbox

65

Table 9. List of evidence created only on v1903.

Application /

Evidence

number

User activities scenario Target artifact

type

Chrome / E16
Access Gmail

https://mail.Google.com/mail/u/0/#inbo?compose=new

and created a draft email.

URL, username,

password, draft

email

Chrome / E17 Do Hangout chat. Chat

Edge/ E18 Access URL: https://www.msn.com/en-gb/news/coronavirus/recovered-coronavirus-

patients-test-positive-again-in-blow-to-immunity-hopes/ar-

BB12rSb0?ocid=spartandhp

URL

Edge - InPrivate

/ E19

Search for “secret” using bing.com. URL, Bing search

Outlook / E20 Create a draft email using outlook. Draft email

Notepad / E21 Create a draft text file. Draft text content

Windows Cmd /

E22

Using cmd.exe, run the commands: “ipconfig /all” and

“netstat -a”

Cmd session

BitTorrent / E23 Use BitTorrent to download a file.We hibernated the

system during the file download.

URL, remote

connection IP

https://mail.google.com/mail/u/0/#inbox?compose=new
https://www.msn.com/en-gb/news/coronavirus/recovered-coronavirus-patients-test-positive-again-in-blow-to-immunity-hopes/ar-BB12rSb0?ocid=spartandhp
https://www.msn.com/en-gb/news/coronavirus/recovered-coronavirus-patients-test-positive-again-in-blow-to-immunity-hopes/ar-BB12rSb0?ocid=spartandhp
https://www.msn.com/en-gb/news/coronavirus/recovered-coronavirus-patients-test-positive-again-in-blow-to-immunity-hopes/ar-BB12rSb0?ocid=spartandhp

66

4 Manual analysis of Windows 10 hibernation file

In this section, we would perform a manual analysis of Windows 10 hibernation file, to

study the file layout. By the end of this section, we should have a clear understanding of

the Windows 10 hibernation file layout and structure definitions.

4.1 Default Windows 10 settings

This section aims to understand the default Windows 10 power configurations. By the

end of this section, we should answer the question: “Is a hibernation file created by default

by Windows 10?”

As discussed earlier, the hibernation file is a protected operating system file. The file is

hidden by default, to view it, we must modify the folder options1. Once the protected files

are visible, we found that for all the tested Windows versions, the files hiberfil.sys,

pagefile.sys, swapfile.sys are available by default. The hibernation file size in the working

power state is equal to 1.52 GB. Taking into consideration that the “installed physical

memory (RAM)” for the test laptop is 4 GB, and the “total physical memory” is 3.82 GB,

we found that the hibernation file size equals 40% of the total physical memory size.

The default available sleep states were checked using the command prompt. For all tested

Windows versions, four sleep states available by default: Standby (S3), Hibernate,

Hybrid Sleep, and Fast Startup, as shown in Figure 29.

1 https://kb.blackbaud.com/articles/Article/41890

Figure 29. The Default available sleep states in a Windows 10 v1903.

https://kb.blackbaud.com/articles/Article/41890

67

Newly installed Windows 10 Home edition has a hibernation registry enabled by default,

this was checked using the registry editor. This registry entry could be found in the path

Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power.

For Windows 10 version 1809, the registry named “HibernateEnabled” is enabled by

default, as shown in Figure 30. Disabling the hibernation option using the command

“powercfg -h off” using command prompt (run the Cmd as administrator) [5], the

“HibernateEnabled” registry value turns to zero and the available sleep states would be

just Standby (S3).

For Windows 10 Home edition versions 1903 and 1909, it was found that a registry named

is "HibernateEnabledDefault” is enabled by default. Another Registry named

“HibernateEnabled” appears after disabling the hibernation option using the command

“powercfg -h off “. Figure 30 shows the default power registry entries for Windows 10

v1909, versus the entries list after disabling the hibernation. When the hibernation option

is enabled again using the command prompt, the “HibernateEnabled” registry value turns

to 1.

Figure 30. Default Windows power registries(a), disabled the hibernation option(b).

The command shutdown -h hibernate the system, using the default system configuration.

While the “Hibernate” option is not shown by default in the power options of the

Windows start menu. Showing the hibernation option is a feature related to the power

options setting in the control panel, while it does not mean that the hibernation is disabled

on the system. Figure 31 shows that the fast startup, sleep and lock are the available

default options in the power options of the Windows start menu.

This section concludes that the hibernation file is created by default by the Windows 10

versions 1809, 1903, 1909.

(a) (b)

68

Figure 31. Default Shut-down setting for Windows 10 x64.

4.2 Definitions of the known structures

In this section, we would document the known file structures content. This includes the

first two pages of the hibernation files, as we already know their structure names and we

can search for its content using WinDbg. By the end of this section, we should answer the

question: “Could we document the known hibernation file structures in a clear

mapping/datagram?”

4.2.1 File header

As discussed in section 2.3.5, the first page of the modern Windows hibernation file is

composed of the “PO_MEMORY_IMAGE” structure. We used WinDbg to extract the

header structure for the Windows versions question of this research. The command “dt

PO_MEMORY_IMAGE” could be used to show the content of the header without

recursion, as shown in Figure 32. The figure shows a length for some fields, while some

fields “PerfInfo”, has a length defined by a structure (actually, a sub-structure)

“_PO_HIBER_PERF”. In that case, it is required to add a recursion1 option to the “dt”

[81] command to extract all the fields names of the header.

1 The “-b” option could be added to the commend to display the content of any sub-structures. Using the

option “-r[depth]” is another way to show the fields of a structure, in plus of sub-structures. The“-r” option

requires a depth level from 1 to 9, as the “-r” would “Recursively dumps the subtype fields. If depth is

given, this recursion will stop after depth levels” [81]. We recommend using that the “-r” option, as it shows

slightly more options (in case the a field name is repeated more than time).

69

Figure 32. Windows 10 v1903 x64 - “PO_MEMORY_IMAGE” structure definition.

The output of command “dt -r9 PO_Memory_image” using WinDbg is shown in Figure

33. Windows debug shows the sub-structure offsets referring to the first offset of the sub-

structure. While the offset from the beginning of the file or to the beginning of the main

structure “PO_MEMORY_IMAGE”, which is offset 0x088, is not shown in the output.

Figure 33. Win10 version 1903 x64 - “PO_MEMORY_IMAGE” with recursion.

70

 To avoid confusion, we created a datagram (Table 10), where we illustrated the full

content of “PO_MEMORY_IMAGE” and included the content of the sub-structure

“_PO_HIBER_PREF” while referring the offsets to the beginning of hibernation file.

We also extracted the full content of the header structure for Windows 10 versions 1809,

1903 and 1909 (documented in Appendix 7). After extracting the content of the header,

we noticed that the header structure is the same for Windows 10 version 1903 and 1909.

The WinDbg is showing the same Windows built for both Windows version

(18362.1.amd64fre.19h1_release.190318-1202), which is related to version 1903 build,

in spite the fact that the debug for Windows 10 version 1909 was done on build

18363.628.

As explained in section 3.1.1, we used a virtual machine with Windows 10 v1607, to

extract the header structure of the last version analyzed in paper [11]. We created a table

to compare the structure of version 1607 to the three versions in the scope of our research.

A table comparing the header's entries of Windows versions 1607, 1809, 1903, and 1909

could be found in Appendix 8.

From the analysis of Appendix 8, we found that some of the names of the fields are the

same across different Windows versions, while their location varies from a version to

another. In such a case, we mentioned the relevant offset for the required variable in the

Windows version column. For example, “FirmwareRuntimeInformationPages” could be

found at offset 0x280 for Windows 10 versions 1809,1903, 1909, while it is found at

offset 0x270 for Windows version 1607. We also noticed that “FirstBootRestorePage”,

“FirstKernelRestorePage”, “NumPagesForLoader” and “_PO_HIBER_PERF” structure

are located at the same offsets for the four tested versions. We believe that this last

information is important, as we understand from section 2.3.5.2 that these fields are key

points in finding the file’s restoration sets. In case one of these last fields modifies its

location, it might not be feasible for some tools to decompress the file content.

We documented the structure of the hibernation file in the below header. The only

difference found between versions 1903,1909 and version 1809 is that the field

“HvPageTableRoot” starting at offset 0x368 replaced “HvCr3” that was available in

version 1809. We referred to the content of the “_PO_HIBER_PREF” structure as

“PrefInfo.xxx”.

71

Table 10. Hibernation file header datagram for Win10 v1903 and 1909 x64.

 00 01 02 03 04 05 06 07 08 09 A B C D E F

0x000 Signature ImageType CheckSum LengthSelf

0x010 PageSelf PageSize

0x020 SystemTime InterruptTime

0x030 FeatureFlags

H
ib

er

F
la

g
s

sp
ar

e

sp
ar

e

sp
ar

e

NoHiberPtes

0x040 HiberVa NoFreePages FreeMapCheck

0x050 WakeCheck NumPagesForLoader

0x060 FirstSecureRestorePage FirstBootRestorePage

0x070 FirstKernelRestorePage FirstChecksumRestorePage

0x080 NoChecksumEntries PerfInfo.HiberIoTicks

0x090 PerfInfo.HiberIoCpuTicks PerfInfo.HiberInitTicks

0x0A0 PerfInfo.HiberHiberFileTicks PerfInfo.HiberCompressTicks

0x0B0 PerfInfo.HiberSharedBufferTicks PerfInfo.HiberChecksumTicks

0x0C0 PerfInfo.HiberChecksumIoTicks PerfInfo.TotalHibernateTime

0x0D0 PerfInfo.HibernateCompleteTimestamp PerfInfo.

POSTTime

PerfInfo.

ResumeBootMgrTime

0x0E0 PerfInfo.

BootmgrUserInputTime

 PerfInfo.ResumeAppTicks

0x0F0 PerfInfo.ResumeAppStartTimestamp PerfInfo.ResumeLibraryInitTicks

0x100 PerfInfo.ResumeInitTicks PerfInfo.ResumeRestoreImageStartTimestamp

0x110 PerfInfo.ResumeHiberFileTicks PerfInfo.ResumeIoTicks

0x120 PerfInfo.ResumeDecompressTicks PerfInfo.ResumeAllocateTicks

0x130 PerfInfo.ResumeUserInOutTicks PerfInfo.ResumeMapTicks

0x140 PerfInfo.ResumeUnmapTicks PerfInfo.ResumeChecksumTicks

0x150 PerfInfo.ResumeChecksumIoTicks PerfInfo.ResumeKernelSwitchTimestamp

0x160 PerfInfo.CyclesPerMs PerfInfo.WriteLogDataTimestamp

0x170 PerfInfo.KernelReturnFromHandler PerfInfo.TimeStampCounterAtSwitchTime

0x180 PerfInfo.HalTscOffset PerfInfo.HvlTscOffset

0x190 PerfInfo.SleeperThreadEnd PerfInfo.PostCmosUpdateTimestamp

0x1A0 PerfInfo.

KernelReturnSystemPowerStateTimestamp

PerfInfo.IoBoundedness

0x1B0 PerfInfo.KernelDecompressTicks PerfInfo.KernelIoTicks

0x1C0 PerfInfo.KernelCopyTicks PerfInfo.ReadCheckCount

0x1D0 PerfInfo.KernelInitTicks PerfInfo.KernelResumeHiberFileTicks

0x1E0 PerfInfo.KernelIoCpuTicks PerfInfo.KernelSharedBufferTicks

0x1F0 PerfInfo.KernelAnimationTicks PerfInfo.KernelChecksumTicks

0x200 PerfInfo.KernelChecksumIoTicks PerfInfo.AnimationStart

0x210 PerfInfo.AnimationStop PerfInfo.DeviceResumeTime

0x220 PerfInfo.SecurePagesProcessed PerfInfo.BootPagesProcessed

0x230 PerfInfo.KernelPagesProcessed PerfInfo.BootBytesWritten

0x240 PerfInfo.KernelBytesWritten PerfInfo.BootPagesWritten

0x250 PerfInfo.KernelPagesWritten PerfInfo.BytesWritten

0x260 PerfInfo.PagesWritten PerfInfo.FileRuns PerfInfo.

NoMultiStageResumeReason

PerfInfo.

MaxHuffRatio

0x270 PerfInfo.AdjustedTotalResumeTime PerfInfo.ResumeCompleteTimestamp

0x280 FirmwareRuntimeInformat

ionPages

 FirmwareRuntimeInformation

0x290 SpareUlong NoBootLoaderLogPages BootLoaderLogPages

0x2A0 BootLoaderLogPages BootLoaderLogPages

0x2B0 BootLoaderLogPages BootLoaderLogPages

0x2C0 BootLoaderLogPages BootLoaderLogPages

0x2D0 BootLoaderLogPages BootLoaderLogPages

0x2E0 BootLoaderLogPages BootLoaderLogPages

0x2F0 BootLoaderLogPages BootLoaderLogPages

0x300 BootLoaderLogPages BootLoaderLogPages

0x310 BootLoaderLogPages BootLoaderLogPages

0x320 BootLoaderLogPages BootLoaderLogPages

0x330 BootLoaderLogPages BootLoaderLogPages

0x340 BootLoaderLogPages BootLoaderLogPages

0x350 BootLoaderLogPages NotUsed ResumeContextCheck

0x360 ResumeContextPages

H
ib

er
b
o

o
t

S
ec

u
re

L
a

u
n
ch

ed

S
ec

u
re

B
o

o
t

 HvPageTableRoot

0x370 HvEntryPoint HvReservedTransitionAddress

0x380 HvReservedTransitionAddressSize BootFlags

0x390 RestoreProcessorStateRoutine HighestPhysicalPage

72

 00 01 02 03 04 05 06 07 08 09 A B C D E F

0x3A0 BitlockerKeyPfns BitlockerKeyPfns

0x3B0 BitlockerKeyPfns BitlockerKeyPfns

0x3C0 HardwareSignature SMBiosTablePhysicalAddress

0x3D0 SMBiosTableLength

S
M

B
io

sM

aj
o

rV
er

si
o

n

S
M

B
io

sM
i

n
o

rV
er

si
o
n

H
ib

er
R

es
u

m
eX

h
ci

H
a

n
d
o

ff
S

k
ip

In

it
ia

li
ze

U

S
B

C
o

re

V
al

id
U

S
B

C
o

re
Id

U
S

B
C

o
re

I

d

S
k

ip
M

em
o

ry
M

ap
V

al
i

d
at

io
n

From this section, We conclude that decompressing the memory pages would not be

impacted by the minor variations in the header content between different versions of

hibernation files. The locations of fields used to restore the memory pages

(“FirstBootRestorePage”, “FirstKernelRestorePage”, “NumPagesForLoader” and the

structure “_PO_HIBER_PERF”) were not modified since v1607.

4.2.2 Processor context

As per [11], the header’s structure is followed by the “_KPROCESSOR_STATE”

structure, which we could find at the offset 0x1000. The “_KPROCESSOR_STATE”

structure is composed of two sub-structures: “_KSPECIAL_REGISTERS” and

“_CONTEXT”, as shown in Figure 34.

Figure 34. “_KPROCESSOR_STATE” structure - Win10 v1903 x64.

The “_CONTEXT” structure starts at offset +0x0e0 from the beginning

“_KPROCESSOR_STATE” structure for Windows version 1607 while for the latest

Windows versions it starts at offset +0x0f0 from the beginning of

“_KPROCESSOR_STATE” structure. Detailed output of the

“_KPROCESSOR_STATE” members could be found in Appendix 8. Comparing the

fields and offsets of “_KPROCESSOR_STATE” across the different versions could be

found in Appendix 9. we found that the “_KPROCESSOR_STATE” fields names and

offsets are the same for the three latest Windows versions and that the only difference

between them and version 1607, is the two fields “MsrFsBase” and “SpecialPadding0”

added to the new versions at the end of “_KSPECIAL_REGISTERS” structure.

Table 11 illustrates a part of the content of the “_KPROCESSOR_STATE” structure. The

mentioned offset is considered from the beginning of the hibernation file.

73

Table 11. Part of “_KPROCESSOR_STATE” datagram v1809, 1903, 1909 x64.

 00 01 02 03 04 05 06 07 08 09 A B C D E F

0x1000 SpecialRegisters.Cr0 SpecialRegisters.Cr1

0x1010 SpecialRegisters.Cr3 SpecialRegisters.Cr4

0x1020 SpecialRegisters.KernelDr0 SpecialRegisters.KernelDr1

0x1030 SpecialRegisters.KernelDr2 SpecialRegisters.KernelDr3

0x1040 SpecialRegisters.KernelDr6 SpecialRegisters.KernelDr7

0x1050 SpecialRe

gisters.Gdt

r.Pad

SpecialRe

gisters.Gdt

r.Pad

SpecialRegist

ers.Gdtr.Pad

SpecialRegis

ters.Gdtr.Lim

it

SpecialRegisters.Gdtr.Base

0x1060 SpecialRe

gisters.Idtr

.Pad

SpecialRe

gisters.Idtr

.Pad

SpecialRegist

ers.Idtr.Pad

SpecialRegis

ters.Idtr.Limi

t

SpecialRegisters.Idtr.Base

0x1070 SpecialRe

gisters.Tr

SpecialRe

gisters.Ldt

r

SpecialRegisters.

MxCsr

SpecialRegisters.DebugControl

0x1080 SpecialRegisters.LastBranchToRip SpecialRegisters.LastBranchFromRip

0x1090 SpecialRegisters.LastExceptionToRip SpecialRegisters.LastExceptionFromRip

0x10a0 SpecialRegisters.Cr8 SpecialRegisters.MsrGsBase

0x10b0 SpecialRegisters.MsrGsSwap SpecialRegisters.MsrStar

0x10c0 SpecialRegisters.MsrLStar SpecialRegisters.MsrCStar

0x10d0 SpecialRegisters.MsrSyscallMask SpecialRegisters.Xcr0

0x10e0 SpecialRegisters.MsrFsBase SpecialRegisters.SpecialPadding0

0x10f0 ContextFrame.P1Home ContextFrame.P2Home

0x1100 ContextFrame.P3Home ContextFrame.P4Home

0x1110 ContextFrame.P5Home ContextFrame.P6Home

0x1120 ContextFrame.

ContextFlags

ContextFrame.MxCsr ContextFrame

.SegCs

ContextFram

e.SegDs

ContextFram

e.SegEs

ContextFra

me.SegFs

0x1130 ContextFr

ame.SegG

s

ContextFr

ame.SegSs

ContextFrame.

EFlags

ContextFrame.Dr0

0x1140 ContextFrame.Dr1 ContextFrame.Dr2

0x1150 ContextFrame.Dr3 ContextFrame.Dr6

0x1160 ContextFrame.Dr7 ContextFrame.Rax

0x1170 ContextFrame.Rcx ContextFrame.Rdx

0x1180 ContextFrame.Rbx ContextFrame.Rsp

0x1190 ContextFrame.Rbp ContextFrame.Rsi

0x11a0 ContextFrame.Rdi ContextFrame.R8

0x11b0 ContextFrame.R9 ContextFrame.R10

0x11c0 ContextFrame.R11 ContextFrame.R12

0x11d0 ContextFrame.R13 ContextFrame.R14

0x11e0 ContextFrame.R15 ContextFrame.Rip

From this section, we conclude that the second hibernation file page content was not

modified through the latest versions of Windows 10 (v1809, v1903 and v1909). Minor

differences were found between the three versions and version 1607. As per we are not

sure if any of the decompression tools or the analysis tools extract data from this page,

we could not asses the risk of the minor found variance.

4.3 Test case A analysis

By the end of this section, we would answer the research questions mentioned in section

3.3.1.

74

4.3.1 Undocumented structures

The structure of the first two pages of the hibernation file was extracted using WinDbg

as documented in the previous section. Starting from the third-page file (offset 0x2000),

we do not have a known Windows structure name to search for in WinDbg.

During the analysis of test case A file, we found that following the

“_KPROCESSOR_STATE” page, there exist some pages including data, that was not

documented in [11], we are not sure what type of data is stored in these pages. Figure 35

shows the first undocumented structure.

Figure 35. Part of the third page of the hibernation file, extracted from v1903 x64.

We also found that there exist some data that ends at the page precedes

FirstBootRestorePage page. For example, in case the FirstBootRestorePage offset is

0x19000, the first page of this undocumented structure would start at the fourth page

(offset 0x3000) and ends at page starting at offset 0x18000. Figure 36 shows the second

undocumented structure.

Figure 36. Second undocumented structure, extracted from Win10 v1903 x64.

Beginning of the First Restoration set

75

These two undocumented structures are very similar to the pages starting at the same

offset (0x2000) in the hibernation file extracted from Windows 7 service pack 1

hibernation file1. The second undocumented structure (starting from offset 0x3000)

seems to be the same pages described as “FreeMap Pages” [27] in Suiche description for

legacy hibernation file. “FreeMap Pages” we described in Suiche documentations as

“ULONG array which looks to be a table of free memory pages” [27]. In [28], Kleissner

mentioned that the third page (offset 0x2000) content as “The free/reserved memory map

starts. It is used to initialize and reload spaces in memory”. These short sentences are the

only available details about these legacy hibernation file pages. The papers did not

provide more any screenshots or more details, to confirm that they are talking about the

two undocumented structures that we found in Windows 10 hibernation file. We believe

that the descriptions of the free memory pages, match the second undocumented structure

(starting from the fourth page in Windows 7 SP1 and Windows 10 hibernation files).

4.3.2 Restoration Sets

Referenced to [11], we could extract details about the first restoration set using

the hibernation file header. For all the analyzed hibernation files with variable Windows

10 versions and states, we found that the FirstBootRestorePage was always the first used

restoration set, as the “FirstSecureRestorePage” value was zero for all the files. Enabling

the “Secure Boot” [82] BIOS option did not enable the “FirstSecureRestorePage”.

Furthermore, due to the Windows 10 Home edition limitations, we were not able to test

the Secure Kernel Mode(SKM) configuration to confirm if this would enable the third

restoration set or not.

This section aims to check if the same restoration set structure is still applicable

to our target Windows versions and confirm our understanding of the restoration set

structures. In the following steps, we used the File_2 previously described in section 3.3.1

of Windows version1903 as an example, to demonstrate in detail the restoration set

structure, described earlier in the File Structure section, same steps were applied on other

Windows versions. Figure 37 shows the header of the used test hibernation file.

1 this file we previously used to explain section 2.3.5.1. and was not added to the method section and it

was not planned to use it. No other actions required the use of this file, except that step.

76

Figure 37. Hibernation file header of a Windows 10 version 1903 x64.

This file contains only two restoration sets. The “FirstBootRestorePage” value is stored

in little-endian (value is 0x19). We can calculate the offset of the first restoration set as

0x19 * 0x1000 = 0x19000, where 0x1000 is the page size, which is equivalent to 4096

bytes (“PageSize” entry of the header, is 8 bytes starting from offset 0x18). The total

number of pages in this restoration set are stored in the fields “NumPagesForLoader” (8

bytes length, starting from offset 0x058) and “prefinfo.BootPagesProcessed” (8 bytes

length, starting from offset 0x228), as shown in figure 40, which equal to 0x4F7F (20351

pages). The first compression set starts at the beginning of the first restoration set (offset

0x19000 in our case), with the details shown in Figure 38.

Figure 38. Fields total number of pages in each restoration set.

Figure 39.The first page of the first Restoration set.

PerfInfo.BootPagesProcessed PerfInfo.KernelPagesProcessed

77

The First “compression_set_header” value is 0x12C704 (binary value is 0 0 00 0000

0001 0010 1100 0111 0000 0100), where the data fields are shown in Table 12.

Table 12. Test hibernation file - first compression_set_header analysis.

Value HuffmanCompressed Unknown SizeOfCompressionData NumberOfDescs

Hex 0 0 00 0000 0001 0010 1100 0111 0000 0100

Integer 4807 4

We have four “page descriptors” following the “compression_set_header” (each

descriptor is 8 bytes as this system is x64). A compressed data size 4807 bytes

(SizeOfCompressionData) follow the last page descriptor.

From Table 13, we can see that the first compression set contains 16 pages, which is the

maximum number of pages in each set; each page is 4KB of uncompressed data.

Table 13. The number of pages in each page descriptor contiguous set.

 The binary value

of the page

descriptor

Physical page

address of the first

* PageNumpage (

0x1000)

Number of

contiguous pages in

the set

+ 1) NumPages(

First-page descriptor 010110011110

0000

0x59e000 1

Second-page

descriptor

11000100101

0000

0x625000 1

Third-page descriptor 011001000001

0000

0x641000 1

Fourth-page

descriptor

011001000011

1100

0x643000 13

Total number of pages

in the compression set

 16

These pages are compressed into 4807 bytes. The compression method used in that

compression set is the Plain LZ277 Xpress algorithm (as the HuffmanCompressed flag is

set to zero).

78

Taking an offset from the beginning of the compressed data (offset 0x19024) with the

length of 4807 bytes would lead us to the second compression set header.

Second compression set header is shown in Figure 32, and it has the same structure

previously described.

Figure 40. Second compression set header of Windows 10 version 1903 x64.

The second restoration set starting at the offset 0x1C49000 (FirstKernelRestorePage *

0x1000) from the beginning of the hibernation file, and it contains

PerfInfo.KernelPagesProcessed pages, which value is 673033 pages (0x0A4509) in our

case. The second restoration set has the same structure as the first restoration set.

4.3.3 Understanding the file structure with the support of Hibr2Bin

We took the chance of availability of Hibr2Bin source code and tried to understand the

code, and mapping the definitions naming used in the code to the description provided in

[11]. We used Visual Studio to debug the code and added many “wprintf” commands to

print the output of some variable to confirm that we understand the structure of the file

correctly and check if Hibr2Bin is using the same structure proposed by [11] in modern

hibernation file analysis, or it is using its methodology instead.

We found that hiber2bin is basing its analysis for modern hibernation file on

uncompressing two restoration sets. The code searches for the first restoration set by

searching for a pattern of zeros using the function GetInitialOffset(). This function does

not use the content of FirstBootRestorePage offset to restore the first restoration set.

Instead, it searches for 32 bytes of zeroes starting from the 6th memory page (offset

0x5000) from the beginning of modern hibernation file. This methodology seems to be

functioning correctly, as our manual analysis for many hibernation files, shows that the

FirstBootRestorePage address was always coming after the 6th memory page and there

exist several “lines” of zero bytes proceeding the first restoration set. Hibr2Bin restores

79

the second restoration set using the function GetFirstKernelRestorePage(), which is based

on the FirstKernelRestorePage entry in the file header. With this configuration, we

wonder if, in case of activation of the third restoration set in a hibernation file, Hibr2Bin

would be able to convert this restoration set or not.

As explained earlier, each restoration set contains one or more compression sets. To

confirm our understanding of the code, we used the same hibernation file used in the

manual analysis section. We used the same test file used in section 4.3.2, we processed

the same file with the modified build version of Hibr2Bin, as our modifications provide

more details about the functioning of the tool. We confirmed that the hash of the

decompressed file is the same through the modified and unmodified version of Hibr2Bin,

to confirm that we didn’t modify any functional code by mistake. As we found that

Hibr2Bin code treats all Windows 10 versions the same way, it was not required to repeat

the same test on each Windows version, especially that the target of this test is confirming

our understanding of the code functioning. Our test file contains more than 42 000

compression sets, and We found that the Hibr2Bin results match our manual result for the

first ten compression sets of each restoration set. This result confirms our understanding

of these structures and also confirms that the same restoration sets structures are still used

in the latest versions of the hibernation file. We found that the structure

“_compression_set_header” is named as “_PO_MEMORY_RANGE_TABLE64_NT62”

in Hibr2bin code. This structure is composed of the three variables documented in [11],

with different naming conventions, so “NumberOfDescs” is named as “RangeCount” in

Suiche’s code, “SizeOfCompressedData” is named as “CompressedSize” and

“HuffmanCompressed” variable is “CompressMethod”. The structure size match for both

[11] and Hibr2Bin code, while there is a size mismatch for the Compression method

variable, as it was mentioned as one byte proceeded by an unknown byte in [11], while

Hibr2Bin code defines it as two bytes with four values. Hiber2Bin define the values of

compression methods as “XpressFast = 0, XpressMax = 1, XpressHuffFast = 2 and

XpressHuffMax = 3”. These values might be confusing, as Microsoft has defined only

three variants for the Xpress compression [83], that are: Plain LZ77 (the fastest variant),

LZ77+Huffman, and LZNT1.

 We also noticed that the structure “_page_descriptor” is named as

“_PO_MEMORY_RANGE64_NT62” in Hibr2Bin code, it contains two variables:

PageCount (named as “NumPages” in [11]) and StartPage (named as “PageNum”). while

80

there exists a size mismatch for the “StartPage” between Hiber2Bin code and the

definition mentioned in [11]. The value of “StartPage” is defined as 28 bits in Hibr2Bin

code instead of 60 bits, this size matches a 32-bit system, not a 64-bit system. While this

might be a typo error and will not affect the conversion of the file unless the hibernation

file is larger than 1 TB.

4.3.3.1 Comparing Conversion tools

As a part of test case A, we proceeded with the decompression of the extracted hibernation

files using both Hibr2Bin and Hibernation Recon to spot if there are any differences

between the output of these two tools.

For our knowledge at this stage, there is no current free tool having the capability to

analyze the hibernation file in its original layout. The difference between the outputs of

both conversion tools might be related to malfunctioning in one or both tools. If any

differences spotted between the output files, this might impact the results of the analysis

using free tools like volatility, as in such case, we would expect different outputs between

the decompressed files of the two tools. While if both tools have the same output

decompressed binary file, this would at least confirm that both tools have the same

definition of the modern hibernation file structure.

Comparing the MD5 and SHA256 hash values of output files of both tools reveal that the

two files contents are not the same. Moreover, when doing a manual comparison between

the content of both files using HxD, we can find that there are too many differences

between the content of both output files. To find the reason for such differences, we used

the same v1903 file used in section 4.3.2 (File_2). We compared the two decompressed

versions of File_2 using HxD. We tracked the compression set data using the logs of the

modified version of Hibr2bin. Before starting our tests, we first confirmed that the output

decompressed file using Hibr2Bin modified version has the same Hash values as the

output file of Hibr2bin version downloaded from Comae site, and this point was

confirmed.

Using HxD comparison, the first difference found between the decompressed output files

of Hibr2Bin and Hibernation recon was found at offset 0xF800000. All pages content

before v1903 were identical. Figure 41 shows a comparison between the two output files.

81

Figure 41. Output files of Hibernation Recon (a) and Hibr2Bin (b).

We searched for the page starting at offset 0xF800000 in the compression set logs printed

by the modified Hibr2Bin code, to find out what might be different in that compression

set. It was found that these data are related to the compression set starting at offset

0x2087923 from File_2 hibernation file. We performed a quick manual analysis of the

compression set header as shown in Figure 42.

Figure 42. Compression set entries extracted from hiberfil.sys.

We found that the reason for the value mismatch of decompressed pages by both

programs might be caused by the compression method flag length definition. When

referring this value to our reference paper [11], the compression flag is only a single bit,

and in this case, it is set to “1”, which indicates that the data is compressed by

LZ77+Huffman XPRESS algorithm variant as per [11]. While Hibr2Bin code considers

two bytes for the same flag, so as per their code definition this set is compressed by what

they named in the code as “XpressHuffFast”. When checking Hibr2Bin code, and

compare it to the official documentation of XPRESS algorithm [83], we understand that

the Plain LZ77 variant is decompressed by the function

(a) (b)

82

“CompressedMemoryBlock::Xpress_Decompress”, while we are not sure how the code

decompresses the LZ77+Huffman variant, as we cannot find the same decompressor code

mentioned by Microsoft [83] in Hibr2Bin code.

We created a modified version of each decompressed file and zeroed the full content of

compression sets that we manually analyzed to eliminate it from the HxD comparison.

We compared the decompressed data of 20 compression sets having a

HuffmanCompressed flag set to one, which is related to data compression type

LZ77+Huffman as per our reference page [11] and the unknown byte is either “0” or “1”

(this would match compression definitions “XpressHuffFast” and “XpressHuffMax” in

Hibr2Bin code). We found a data mismatch between decompressed binary files by

Hibernation Recon and Hibr2Bin for all the chosen compression sets. The interesting was

that the first mismatch found in the files was related to the first compression set with the

HuffmanCompressed flag set to 1.

 We compared 20 other compression sets data with HuffmanCompressed flag 0, which is

related to data compressed with Plain LZ77 variant as per our reference paper [11], and

the unknown byte is either “0” or “1” (this would match the compression definitions

XpressFast and XpressMax in Hibr2Bin code). All the chosen sets were identically

decompressed by both programs, while the compression types found in the logs of

decompressed hibernation files using Hibr2bin were only related to what they name

“XpressFast” compression type. No compression using “XpressMax” was found in any

of the analyzed files using this compiled version of Hibr2Bin.

We proceeded with similar quick tests for other File_4 extracted from the other Windows

versions, and the results of our tests were always the same. The decompression of Plain

LZ77 is identical for both decompressed files, while LZ77+Huffman decompressed sets

data mismatch. The Plain LZ77 compression was the most used compression variant in

the files we tested. When calculating the ratio of usage of HuffmanCompressed, we found

in our Windows version 1903 test file the ratio was 57% for Plain LZ77 and 43% for the

LZ77+Huffman variant, but these numbers vary from a file to another (in other files the

ration of usage of Plain LZ77 was 66%).

When looking in details into the content of decompressed mismatch data, we were able

to read information from the Hibernation Recon output file for some decompressed pages

83

that had HuffmanCompressed flag enabled. Figure 43 is an example of a decompressed

page that initially had HuffmanCompressed flag enabled and the value of “unknown”

byte is “1”.

Figure 43. Decompressed data using Hibr2Bin (a), Hibernation Recon (b).

As a quick test, we analyzed both decompressed files using Volatility. We found that The

results are not the same for many commands output. For example, the output of the

Volatility command “dlllist” shows missing and corrupted information in the output file

of Hibr2Bin as shown in Figure 44.

Figure 44. The output file of Hibernation Recon (a), output file of Hibr2Bin (b)

Another note about the differences found between output files of both tools, we noticed

that the file length does not match. Comparing the length of both files to the hibernation

file header’s entries, we see that Hibernation Recon output file length depends on the

value of offset 0x398 (“HighestPhysicalPage”) multiplied by 0x1000 (length of a single

page). For example, the last page file of the hibernation file, where

“HighestPhysicalPage” is shown in Figure 45, starts at 0x11E5FF000, and the files end

at offset 0x11E5FFFFF. We expended this check to many decompressed files and

included files extracted from test case B, and C as well, to check a considerable number

of the files. We found that the physical address of the last page of the decompressed File_4

(a) (b)

(a) (b)

84

using Hibr2Bin was not consistent for 15 verified decompressed files, as the page offset

varies from file to another.

Figure 45. Content of "HighestPhysicalPage" extracted from a test hibernation file.

Interestingly, this analysis helped us to understand the second undocumented structure

mentioned in sections 4.3.1. The structure starting at the 4th page (offset 0x3000) is related

to free physical memory pages. We verified this by analyzing the content of test case A,

File_4 extracted from v1903. We took the first ten pages addresses (value of the content

of 4 bytes multiplied by page size, which is 0x1000). We then checked the contents of

these memory pages in the decompressed files using Hibr2Bin and Hibernation recon.

We found that the pages with the listed addresses in that second undocumented structure

are free. Figure 46 shows that page with physical address 0x119405000 is followed by

page starting at offset 0x119407000, by checking the relevant decompressed hibernation

files we found that the content of memory page starting at offset 0x119406000 contains

data. The same procedures were applied on files from other versions, and our

understanding seems to be valid.

Figure 46. Second undocumented structure contains free memory pages addresses.

This free memory pages structure is repeated many times in the decompressed files, so

the list of free pages available in the original hibernation file starting from offset 0x3000

is not the full list of free memory pages, it contains just a part of it.

We also shared our notes about the differences found in our user experience between

Hibr2Bin and Hibernation Recon. We noticed the Hibernation Recon provide more

details and options than Hibr2Bin and wanted to share such details as it might be useful

when deciding to use which tool in real life. Details could be found in Appendix 11.

85

4.4 Test case B analysis

This test case aims to track the characteristics of the hibernation file in different power

states and clarifies the changes that might occur to file, based on the modification in

power settings. To do such analysis, we collected more than 13 different hibernation files

from Windows 10 v1903. The coming paragraphs would clarify the test scenarios and the

impact of configuration modification and power state change on the hibernation file

content. At each step, we have performed some user activities using Google chrome and

libre office to track it in the extracted hibernation file. This test case should answer to the

questions mentioned in section 3.3.2.

B_File_1: We collected the hibernation file from a working machine, regardless of the

last status before resuming Windows, it was expected that this file would be similar to the

B_File_3 and B_File_5. The file size extracted from this step is 1.52 GB (40% of the

RAM size). This file header has a signature “WAKE”, the first five pages of the file

contain data. The content of the file is zeroed starting from offset 0x5000. This file does

not contain any data in the restoration sets offsets, which makes the file forensics value

almost useless.

B_File_2: To collect this, we first hibernated the system using the hibernation option

available in the GUI Windows start menu. It is to be noticed that this GUI option is not

enabled by default and that we enabled it once the Windows system was installed. The

file collected at this stage was collected offline, using an external bootable hard disk. This

file size is 3.82 GB (same size as the total physical memory of the laptop), the file has a

signature “HIBR”. This file has full content of a hibernation file, it has the same structure

discussed in the results of test case A. Quick analysis of the content of this file using tools

shows that we could extract data related to user activities from this file.

B_File_3: This file was collected from the system once it resumed from hibernation.

When comparing B_File_2 to this file, we found that the only modification on the first

page of B_File_3 is a signature “WAKE” instead of the “HIBR” signature used in

B_File_2. The content of the file starting from offset 0x1000 to offset 0x4FFF is the same

as B_File_2. Starting from offset 0x5000 the content of the file is zeroed, and the file

structure is the same as B_File_1. This file does not contain any data in the restoration

sets offsets, which makes the file forensics value almost useless.

86

B_File_4: We kept the same applications that were running once the laptop was resumed

from the hibernation state. Then we shutdown the laptop using the GUI option available

in the Windows start menu. B_File_4 was collected offline, and the file structure was

found the same as B_File_2. To understand what might be the difference between

B_File_2 and B_File_4, we processed both files using Magnet Axiom, while this was not

a part of the test plan. We found 1234 artifacts were extracted from the file, and this

number is less than the number of artifacts extracted by the same program from B_File_2

(3081 artifact). We found some user activities in B_File_4, and it was interesting to find

a URL that was visited using Chrome Incognito in B_File_2 and B_File_4, while it was

expected to find it only in B_File_2, as B_File_4 should not include any user activities

as per Microsoft [15]. This test indicates that the hibernation file collected after a GUI

shutdown should be considered in the investigation, although B_File_4 does not contain

the maximum number of artifacts, it might contain some of the user activities. We tried

to find any characteristics of the file that could differentiate it from B_File_2 without

analysis. The only observation is related to the decompressed file size using Hibernation

Recon. The size of the decompressed files B_File_2 and B_File_2 was 4.47 GB. On the

other hand, the size on disk of decompressed file B_File_2 size was 3.73 GB and

B_File_4 it was 3.42 GB. This observation marks a slight size difference between the two

decompressed files, while we cannot generalize this observation.

File_5: This file was collected after starting the system; it was collected online. The file

content is zeroed starting from offset 0x5000, and it has the same file characteristics of

B_File_1 and B_File_3. From this test result, we can conclude that a file with a “WAKE”

signature has the same characteristics regardless it resuming from a fast startup or full

hibernation power state.

File_6: To collect this file, we first used the command “shutdown /s /hybrid”. The used

command is a shutdown command with fast startup option. Windows showed a “sign out”

alarm message before shutting down the laptop. B_File_6 was extracted offline. When

analyzing the file using Magnet Axiom and Volatility, we did not find any process related

to user activity, as Chrome.exe process, for example, while we found some traces about

some of the visited URLs.

B_File_6-B: This file was collected online from the system after resuming it from

B_File_6 collection step. B_File_6-B has a “WAKE” signature. We would compare the

87

content of B_File_6-B to the content of B_File_7 as we expect that it would be the same

content.

B_File_7: To collect B_File_7, we first used the command “shutdown /s”. The

hibernation file was collected offline, and FTK imager showed that it has a “WAKE”

signature. B_File_7 has the same hash value as B_File_6-B. This proves that a real

shutdown power state does not create a hibernation file, while the shutdown using the

GUI option or adding “/hybrid” to the CLI command, would turn the machine into the

Fast Startup state, not a shutdown. These tests proved those same file behaviors discussed

in [11] are still applicable for the latest Windows versions.

B_File_8: Before collecting this hibernation file, we disabled fast startup while keeping

the hibernation option from “Control Panel\Hardware and Sound\Power Options\System

Settings” -> Define power buttons and turn on password protection. Modifying this option

would also turn the value of the registry key

“Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session

Manager\Power\HiberbootEnabled” from one to zero. We shutdown the laptop using the

GUI option, and then the file was collected offline. The collected file has the signature

“WAKE”, and it has the same hash value of B_File_7, this means that this option

enables/disable the fast startup capability of Windows 10 OS.

B_File_9: Before collecting this hibernation file, we re-enabled fast startup, and disabled

hibernation options from “Control Panel\Hardware and Sound\Power Options\System

Settings” -> Define power buttons and turn on password protection. This configuration is

the default Windows configuration. By this action, the hibernation option would not be

available in the start menu. We ran the command “shutdown /h” then extracted the

hibernation file offline. The B_File_9 size is 3.82 GB. When processing the file using

Magnet Axiom, we found information related to the user activities that were performed

on the laptop before hibernation.

B_File_10: We disabled the hibernation power configuration using the command

“powercfg.exe /hibernate off” [5], the hibernation file was not deleted once the command

was performed, while the only available sleep mode is shown when running the command

“powercfg /a” was Standy (S3). The options “Hibernate”, “Turn on fast start-up”

disappeared from “Control Panel\Hardware and Sound\Power Options\System Settings-

88

> Define power buttons and turn on password protection”. The registry key

“Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\

HibernateEnabled” turned to zero. We checked the hibernation file offline, after

performing a GUI shutdown, to find that the hibernation file was deleted. We resumed

the system and re-enabled hibernation; the hibernation file was re-created automatically,

and the re-created file has the same content as the “WAKE” file that was available before

disabling hibernation.

B_File_11: All the previous steps did not generate any “reduced” hibernation file type,

disabling hibernation using the CLI would also disable the fast start-up capability. To

create a “reduced” file type we used the command “powercfg /h /type reduced” [15]. Once

we ran the command the hibernation file size turned to 20% of the RAM size. We then

hibernated the laptop and copied the hibernation file offline. The offline hibernation file

size was not impacted by the new configuration and was found as 3.82 GB. The

B_File_11 structure is the exact structure of a full hibernation file structure. When

analyzing the file using Volatility and Magnet Axiom, we found information related to

session 0 (Kernel session), we also found interesting information as Google map URL

that contains coordinates.

B_File_12: After resuming Windows after the hibernation done in the last step. We found

that the behavior of the reduced “WAKE” hibernation file is the same as described earlier,

while its size is 20% of RAM size instead of 40% in the previous cases.

We re-imaged Windows 10 v1903 partition during these tests, the new image of Windows

keeps more pages in the “WAKE” hibernation files, while it always stops few pages

before the first restoration set data. As an example, in all the files extracted in that section,

the first restoration set could be found at offset 0x19000, we found some “WAKE” files

that contain data up to offset 0xefff, while none of these “WAKE” files contains

restoration sets data.

4.5 Test case C analysis

We enabled HORM using the instructions [33], which requires disable the fast startup.

Then we opened few tabs in chrome and created a draft “.txt” document in notepad. The

system was then hibernated using the command “shutdown /h”. When we resumed the

89

system from the hibernation state, we found that the hibernation file signature was

“HORM”. A “HORM” hibernation file has the same size as the available physical

memory, and the file has the same structure as a hibernation file with the “HIBR”

signature. When shutdown the laptop, it resumes using the content of the “HORM”

hibernation file, and the file hash value is kept the same. The file is overwritten only when

a new hibernation occurs. This indicates that all user activities during a session could not

be tracked by the hibernation file in case the “HORM” feature is enabled unless the user

requests a new hibernation the machine. Enabling this feature is similar to taking a

snapshot from a machine then resume the machine every time using the same snapshot.

The hibernation file in wake state contains user and kernel session. When we analyze a

file with the signature “HORM”, it extracts many types of data, similar to a hibernation

file extracted from hibernate state. The collected artifacts are misleading, as they are

relevant to the state at which the machine was hibernated.

4.6 Results of the manual analysis

We would discuss in this section the results of the manual tests. The first research question

was answered in section 4.1. The hibernation file is created by default by the Windows

10 versions 1809, 1903, 1909.

In section 4.2, we provided an answer to the second research question. Datagrams were

created for the first two pages of the file.

In section 4.3, the test case A was used to find out if any undocumented file structures

were found manually in the hibernation file, and also to confirm that the same restoration

sets layouts defined by [11] as still used for the latest versions of Windows 10. We

concluded that some hibernation file structures were not documented in the file layout

discussed in [11]. The undocumented structures seem to include two structures. We

understand that the undocumented pages and the minor changes in fields names and

locations do not impact the conversion of the file, at least to Hibr2Bin while we are not

sure how the other tools (Hibernation Recon, Group A tools and Hive Recon) proceed

Windows 10 hibernation file. We also concluded that the same restoration set structure is

still used to compress hibernation files. In section 4.3.3, using the open-source code of

Hibr2Bin, we found a difference in the number of compression methods used in the file.

While paper [11] mentioned two compression methods used in modern hibernation files,

90

Hibr2Bin source code defined four different compressions types while its definition was

not clear enough for us to understand them. As far as we are not building a decompression

code, which is out of the scope of this research, we would not be able to confirm that

point using the manual analysis.

As a conclusion of the result of test case A, we could say that the file layout of the modern

hibernation file defined in the reference paper [11] is still valid for the latest Windows 10

versions. Some minor changes happened in the known structures, fields names and

locations. This answer to the research question three. Section 4.3.3.1 answers research

question four, as the decompression tools outputs are different. Reasons seem to be related

to Hibr2Bin decompression code.

We can summarize the main results of test case B, discussed in section 4.4, in three main

points, as an answer to research question five.

Test case B shows that a hibernation file with the “WAKE” signature keeps the content

of a various number of pages not only on the first page, as mentioned in [11]. The only

modifications that happen to the kept pages are replacing the “HIBR” signature with the

“WAKE” signature. The file content is zeroed starting from one of the “free memory

pages” as we named previously. A “WAKE” hibernation file does not contain any

restoration set data, and when analyzing it using tools, it would not produce any output.

This file is almost useless.

Test case B also shows that a file extracted offline with the “HIBR” signature has the

same file structure regardless this file is related to a Hibernation power state or Fast start-

up power state. We could differentiate between the two files by analysis, as a file extracted

from a hibernation power state would contain user-related activities and processes, while

the fast start-up hibernation file would contain information related to the kernel session.

Finally, Test case B demonstrated that the size of the hibernation file with the “HIBR”

signature is equal to the size of installed physical memory (RAM), regardless of the

configured type of hibernation file. The only difference in storage size between full and

reduced hibernation files is the size of the “WAKE” hibernation file.

The results of test case D shows that by enabling the “HORM” feature, hibernating the

system would create a new hibernation file with “HORM” signature. As the hibernation

91

file is preserved with each shutdown, it is not possible to track any sessions activities,

unless a new hibernation occurs. This test case answer to research question six.

92

5 Analysis of Windows 10 hibernation file using tools

We understood the hibernation file structure and characteristics using the Manual

analysis. The aim of this chapter is demonstrating the forensics value of the file. This

section shares the analysis and results of test case D. All the files tested on each of the

mentioned tools are the files discussed in section 3.3.4. The files contain the same list of

evidence discussed in section 3.3.4.

5.1 Tools findings and insights

In this section, we would document our notes about each tool and its findings when

analyzing the files of test case D. By the end of this section we should have an answer to

the research question seven, and some insights about research question eight and nine.

Please note that in this section when we mention, for example, the file D_File_2, we mean

at least three files in real life (files extracted from v 1809, v1903, v1909). For some

versions like v1903, we repeated test case D more than six times and each time some

hibernation files where extracted and analyzed. This justifies why we mentioned that the

single filename is analyzed at least three times.

The reader might notice that we provide more details about the features of the tools in

sections 5.1.4, 5.1.5 and 5.1.6. These sections are related to the Group A test tool. We

tried to share our experience with the reader, as we hope that this thesis gives a clear

picture of each tool features, which might help the user in choosing a suitable tool for his

requirement.

5.1.1 Volatility

Volatility does not support the analysis of modern hibernation files in its original format.

It is still possible to analyze a hibernation file after decompressing it using Hibr2Bin or

Hibernation Recon tools. Volatility is a CLI software that can extract different data from

a memory image. As clarified in section 4.3.31, we analysed decompressed files using

Hibr2Bin and Hibernation Recon using volatility, as the files extracted from the tools are

not identical. We ran selected commands on both files and compared the output data. The

tests showed differences in some commands outputs between the output of Hibr2Bin and

Hibernation Recon. The results of the analysis done using Volatility for the outputs of

93

both decompression tools results were in favor of Hibernation Recon. We excluded

Hibr2Bin from the test plan, and we decided to continue the tests on Volatility using the

decompressed file of Hibernation Recon. Figure 48 is an example of the output difference

between Hibr2Bin and Hibernation Recon, showing a missing data in the output of

netscan plugin, when analyzing test case D_File_2 extracted from Windows v1809.

Volatility has a considerable list of plugins [39]. We tested most of the plugins, except

mac and Linux specific plugins. Details about each Volatility command functionality

could be found at [84]. Volatility can identify the windows profile of a decompressed

hibernation file. The commands “imageinfo” and “kdbgscan” proposed matching

memory images profiles for Windows 10 v1809 and v1903. Windows 10 V1909 is not

currently supported by Volatility 2.6.1, “imageinfo” and “kdbgscan” commands

suggested the profile Win10x64_18362 for v1909, which is Windows 10 v1903 profile.

We clarified in section 5.3.1 that WindDbg also detects v1909 as v1903, which justify

why many tools can successfully analyze the hibernation file of Windows 10 v1909 using

the v1903 profile.

Figure 47. Volatility – Comparing the output of the netscan plugin.

Hibr2Bin (a) and Hibernation Recon (b)

Volatility can extract a list of processes using different plugins as “pslist”, “psscan”,

“psxview” and “pstree”. It could also extract details about loaded “DLL” files using the

command “dlllist”, and the command “dlldump” could extract DLL files successfully

from a decompressed hibernation file. It is also possible to display the processes

environment variables using “envars” plugin. The plugin “verinfo” can extract version

information from processes and DLLs of a decompressed hibernation file. We have to

(a) (b)

94

mention that when comparing the list of running processes on the live system before

hibernation, to the list of extracted processes by Volatility, it was not found to be the

same. Some services might be running on the computer before hibernation but do not

show in the processes analysis. For example, when analyzing the decompressed version

of the file D_File2 extracted from v1903 we did not found any traces related to chrome

processes or libre office while both processes were running before hibernation and where

resumed once the system was resumed from hibernation.

Memory related information could be extracted from a decompressed hibernation file.

The plugin “memmap”, for example, shows the physical and virtual address of memory

pages. It is also possible to extract information related to Virtual Address Descriptors

(VAD) [85] from a decompressed hibernation file using the commands “vaddump”,

“vadinfo”, “vadtree” and “vadwalk”.

We were also able to extract data related to Kernel Memory and Objects using the plugins

“modules” that list the kernel drivers loaded on the system. Plugins like “modscan”,

“moddump”, “thrdscan” were helpful to extract data related to modules and threads.

The decompressed hibernation file contains details related to network connection that

could be extracted using “netscan” command. This command shows a part of the

connections that were open on the laptop before hibernation, while it did not show any

details related to IP addresses, which is expected behavior, as explained in section 2.3.4.

Volatility could not extract any information related to registry entries from a

decompressed hibernation file. Plugins like “hivescan”, “hivelist”, “lsadump” and

“userassist” do not provide an output.

Appendix 12 shows the list of plugins that were successfully able to extract data from the

decompressed hibernation file extracted from Windows 10 v 1809, 1903, 1909.

5.1.2 Bulk_extractor

Bulk_extractor could extract data from a decompressed hibernation file. When processing

Hibernation Recon output files using Bulk_extractor, the tool extracted a list of URLs

that includes case D Evidence URLs. Bulk_extractor outputs include some information

that was not found using any of the commercial tools. For example, A destination email

address written in a draft message was extracted using Bulk_extractor, while none of the

95

commercial tools detected that email address. Also, Bulk_extractor extracts different

network connections in a file named “packet.pcap”, this file contains the correct IP

address that was used by the laptop before hibernation. We noticed that the mentioned

MAC address in that “.pcap” file was not correct, while the correct one was found in

“ether.txt” file. This IP information containing source and destination addresses and port

numbers was not extracted by any of the commercial tools. Bulk_extractor extracts AES

keys, and this information was also extracted by BlackLight as they use a bulk extraction

tool in the background to extract it. The program also craved many SQLite databases.

We noticed that Bulk_extractor could also analyse a hibernation file in its original form,

and it was able to extract valid data from it. However, Bulk_extractor analysis is more

efficient when extracting data from a decompressed hibernation file. Figure 48, compare

the content of url_searches file extracted from the analysis of a decompressed file to the

output of a direct analysis of the hibernation file. The program was able to extract only

part of a single search word “flow” (section 3.3.4, Table 8, E9). On the other hand, the

decompressed file extracted a list of 58 search results, that contains relevant information

to activities we did on the machine. It was surprising that Bulk_extractor was able to track

all our browser activities, while some commercial tools were not.

Figure 48. Bulk_extractor - url_searches - Hibernation Recon (a) , hiberfil.sys (b)

Unfortunately, due to time limitations sharing the results of the findings of free tools

would stop at this point. We have a considerable amount of data and notes related to that

topic that we hope published in the future. By this point, we got the answer to research

question seven mentioned in section 1.1. Using free tools, we were able to extract

different types of artifacts from a decompressed hibernation file.

(a) (b)

96

5.1.3 Passware Kit Forensic

More than 25 files were analyzed using Passware. We analyzed different hibernation files

extracted from test case D, as well as the decompressed versions of these hibernation files.

Passware was not able to detect any passwords when processing the hiberfil.sys directly

for all tested Windows 10 versions. Our results are based on the analysis of the

decompressed files. The target of this test is confirming that it is possible to extract

usernames and passwords from a hibernation file. Due to the demo version limitations,

some passwords might not be extracted by this test, as the software would try each type

of attack with limited functionality [65].

We analyzed decompressed hibernation files generated from hibernating and fast startup

power states (D_File_2 and D_File_4). For all the three tested Windows versions and the

tested power states, the “Windows user” memory analysis option was not able to extract

any data. Passware was able to extract the first three letters of our target login named and

password used account to access outlook webmail and Skype (account

hibertest@outlook.com) using the “websites” option from the file D_File_2 only (Fast

startup hibernation file did not contain that information). The software also detected other

passwords, in both, hibernate and fast startup power states hibernation files. The extra

passwords shown in the Passware findings seems to be false-positive, as we are not using

any of the mentioned accounts or passwords. Passware was also able to extract OneDrive

token using OneDrive memory analysis option from data extracted from D_File_2, while

OneDrive data was not found in fast startup hibernation files (D_File_4) .

Figure 49. Example of OneDrive Token recovered by Passware.

We also tested the disk decryption feature, to recover the BitLocker encryption key of a

data drive with a password that starts with “123*****”. Passware quick guide [86] only

mailto:hibertest@outlook.com

97

provide instructions about decrypting Veracrypt container. We found a topic on Passware

website with the title “How to decrypt BitLocker using Passware Kit” [87], while it does

not provide clear instructions for the required task. The software required to provide an

Encrypted BitLocker volume image file for such action, however we received error

message “Disk contains no partitions” when uploading disk images extracted using FTK

imager (we tested “.E01” and DD disk image with “.001” file extension as described in

[88] and both were not accepted by the program). Finally, we were able to test that feature

after creating a virtual hard drive using WinImage [89], as per unofficial instructions

found on YouTube [90]. The software was not able to extract the drive password using

the “.vhd” file plus hiberfil.sys extracted from the hibernation state (we tested the

compressed and decompressed files with no success). To confirm the normal behavior,

we analyzed the “.vhd” disk image with a memory image (“.mem” extension), and

Passware was able to recover the first three letters of the decryption key. Table 15

summarize the results of Passware findings.

Table 14. Data extracted from hibernation files using Passware.

Hibernation file

signature

Windows power

state

Data extracted from decompressed hibernation files Bitlocker

Encryption

Keys

Windows

user

websites OneDrive

HIBR

Hibernated

Not found hibertest@outlook.com

and other false positive

accounts

Extracted

OneDrive

token

Not found

HIBR Fast

startup

Not found False-positive accounts Not found Not found

Passware can generate an HTML report with the results, and it also shows logs about

types of attacks used on the file, which could be saved to a text file.

5.1.4 Belkasoft Evidence Centre

The analysis of 15 hibernation files extracted from different Windows 10 versions and

states using Belkasoft Evidence Center were promising. We found that the tool can extract

artifacts from a hibernation file up to Windows 10 version 1909, without decompression

phase before analysis. Figure 50 shows an example of data extracted from v1909.

mailto:hibertest@outlook.com

98

The tool can extract different types of low handing fruits artifacts as shown in Figure 48,

low-level analysis is also supported by BEC, as the software has built-in Hex viewer,

SQLite viewer, Registry viewer, and Pslist viewer. BEC has the capability of carve data

files, and the user can add a file signature manually for carving files a particular type of

file.

Figure 50. BEC - example of data extracted from Windows 10 v1909.

During the analysis of test case D, carved “.db” files were found under “other files”

category. The content of the database could be opened using the SQLite viewer, which is

an advantageous option that helps to reduce investigation time.

When explorer BEC findings, we noticed that some false positives in the extracted

evidence type. For example, our test laptop does not have Opera or TOR browser

installed, while it was always reported in the results. Another example, for all the analyzed

files, we did not found any entry for Firefox browser, while the browser is installed and

was tested in our test case scenario.

The tool was not able to extract process list from different states of hibernation files of

the three Windows versions. The file system tab was always empty, even after enabling

the BelkaCarving option for all analyzed files, despite the fact that this feature is

supported in RAM dump[69]. On the other hand, we analyzed a random sample of other

types of files extracted from our test Windows versions, to understand the tool behavior

toward other types of files. The sample included decompressed hibernation files extracted

using Hir2bin and Hibernation Recon, page files, memory dump files with “.mem”

extension and disk images with “.vhd” extension, we noticed that BEC extract process

99

list from decompressed hibernation files for Windows 10 v1809(example shown in figure

49), while the analysis of decompressed hibernation files of Windows 10 v1903 and 1909

result contains data similar to the output of the analysis of hiberfil.sys (figure 51) and

does not include any information about process list.

Figure 51. BEC - output of a Windows 10 v1809 decompressed hibernation file.

BEC has a list of predefined searches, that is used to automatically extract data related to

phone numbers, Email address, IP address, and Payment cards, Postal codes, Search

engine results and Windows full path. It also provides the possibility to configure

customized searches. The Search engine results option was beneficial in our

investigations. While other search options, like phone numbers and other kinds of

numbers, seems to contain a high amount of false positive.

Figure 52. BEC - Example of false positives extracted by search results.

100

BEC has various reporting options. The user can extract a report using a right-click on

selected data or using the Edit option in the toolbar. The report could be exported to

different extensions.

5.1.5 BlackLight

From the three tested Windows 10 versions, BlackLight support only version 1809. While

this eliminates a good part of the analyzed files, testing BlackLight software was

challenging due to the hardware limitations of the analysis laptop.

BlackLight is the only tested software that was able to extract processes list and other

information related to processes, when processing the hibernation file in its original

format. We consider that the “memory” tab included in the “System” label is the most

powerful memory analysis feature of BlackLight. These kinds of information are

significant, as it could provide solid visibility about the activities that were performed on

the computer before hibernation. The Processes tab, showed in Figure 52, could be listed

in hierarchical or plain view. When selecting any process, BlackLight provides visibility

about the processes list, start and end time, Path, and process ID as well as the parent

process ID.

Figure 53. BlackLight - List of extracted processes from v1809 hiberfil.sys.

 The Libraries tab provides information related to used .dll files like process ID, name,

library name, and creation date. The Sockets tab show network connection, the tab has

data about process ID, name, creation date, and connection port, used protocol (TCP /

UDP, and IPv4 /IPv6), as well as the state of each socket, these details similar to the

details shown using the command “netstat”. There are also Drivers tab include used

101

system drivers and their paths. This information is also available when analyzing fast

startup hibernation files (D_File_4).

We noticed that some tabs are not showing any details. For example, the Communication,

Media, Locations, Internet, and productivity tabs were not showing details.

Carved files could be checked using the browser tab, while we could not export any of

the craved files due to demo version limitations. We could preview the content of some

files. It was also possible to check the strings available in the files, in case the content

could not preview due to demo version limitations. The carved files types are Archive

files (ex of extensions: .ZIP, .CAB, .TAR), Audio files (ex: .MIDI, .AMR), Documents

files (ex: .APP, .EXE, .HTML, .SAM, .PST, .LNK, .SQLITE, .XML), File System files

(MFT entries and NTFS _INDEX), Operating system files (.PF), Pictures and Videos.

The test files analysis results included a large list of carved files that would be available

for exporting in BlackLight full version. For example, when searching manually in the

“.JPG” files for “flowers” pictures, we found a large number of flower pictures, either the

full picture content as shown in the below figure or partial content, as shown in Figure

54.

Figure 54. Example of carved files using BlackLight

Demo license limitations also prevented any visibility on the total number of artifacts

extracted by BlackLight, as we cannot test any feature related to reporting, it also prevents

preview some of the carved files, and show a notification about demo limitations instead.

102

BlackLight also has a predefined list of content search (bulk extractions), to perform a

search in memory artifacts, user can check the defined criteria for each search type, and

the tool also shows some statistics about each search hit count, and give the possibility to

apply filters for the search results. Internet searches is an example of an available

predefined search. This search results included many search keywords that we have used

in test case D. The search also included a predefined search of URLs, email domains,

phone and cards numbers, AES keys and other types of search. These different types of

search helped0 us to the evidence list of test case D. The search features available in

BlackLight were advantageous.

5.1.6 Magnet Axiom

Magnet Axiom Trial has no limitations on the tool usage, so we were able to test the full

functionality of the software. Magnet Axiom “Examine” displays the analysis progress

and results. The Dashboard page includes an overview of the total extracted number of

artifacts with statistics about each category, as per Figure 55. The Dashboard also includes

Magnet.AI statistics about categorization results for chats and pictures and other options.

Compare to BEC (Dashboard), and BlackLight (Case info and Details tabs), we believe

that the Magnet Axiom dashboard is very informative and gives the user many required

links to quickly access the details about case information and processing logs, as well as

results statistics and categorization.

Figure 55. Magnet Axiom Dashboard.

Magnet Axiom also provides a timeline explorer with many options, while BEC also

provides the same option, Magnet Axiom timeline explorer give the user more powers.

As shown in Figure 56, the user can view a graph for activities during a specific period.

103

User can zoom in the graph to get a more specific period. The user could also mark some

activities with different colors and tags, and the program gives the possibility to filter the

data using many criteria and categories, the timeline explorer also provides many details

about user activities, with information about the data source and recovery method.

Figure 56. Magnet Axiom - Timeline explorer.

Like other tools, the software has its categorization for the extracted artifacts. As Magnet

Axiom was the only commercial tool that was able to extract Windows event logs from

the hibernation file, the tool was able to extract unique details that we did not find in other

commercial tools findings. For example, device names and users account. The program

also has some interesting features like different types of views, including a histogram

view that can create a histogram for all the extracted artifacts types and numbers. The

World map view is another type of available views. This view option might be similar to

the location tab available in BlackLight. However, when checking the map search in

BlackLight, the location tab was showing “Selected Item Does not contain Location

Information”. On the other hand, Magnet Axiom was able to extract Google map queries

as well as other data extracted from the web related details, then map the information as

shown in Figure 57.

Figure 57. Magnet Axiom - World map view.

104

When processing a hibernation file with Magnet Axiom, the results do not include a

“Memory” related artifact, like process lists and libraries. To overcome this limitation,

we tested the processing of a decompressed hibernation file using Hibernation Recon, and

the findings where promising. The result of decompressed file analysis includes results

related to artifacts categories described earlier. In plus, a new category named “Memory”

was added to the results and include the findings of Volatility plugins, As show in figure

58.

Figure 58. Magnet Axiom – Decompressed hiberfil.sys extracted from v1809.

As clarified earlier, the user must choose the image profile to proceed with hiberfil.sys

analysis, the latest supported Windows 10 x64 image profile is Win10x64_18362

(v1903). We were able to extract artifacts from window 10 v1909 using the

Win10x64_18362 profile.

The trial version of Magnet Axiom includes full reporting features. The reporting of

Magnet Axiom has more options than BEC reporting. For example, the report could

include a link for file contents. On the contrary to other commercial tools, after the

expiration of the trial version, Magnet Axiom was still accessible for checking our

previous test results, which helped us in the investigations.

5.1.7 Hive Recon

Due to time limitations, we were not able to analysis of outputs of Hive Recon data, and

compare the findings or the tools to the full registry configuration. Hive Recon is able to

extract Volatile hives as well as what they named stable hives. The analysis of the findings

105

of this tool requires a good knowledge of registry entries. The program extracts each file

name with two extensions “.CSV” and “hive”.

5.2 Comparing Group A tools

From section 5.1, we understood that each tool detects various types of artifacts. It is very

complicated to map the finding between the different tools, due to the significant

difference in scope and features. For this reason, we clarified in section 3.2.2 that the

Group A tools results would be analyzed in more details, using comparative tables.

Creating comparative tables was challenging, due limitations related to fields names and

characteristics of each tool, that varies from a tool to another. We also faced other

limitations related to the trial version features. For example, BlackLight limit all data

related to reporting and data extraction, so it was challenging to have visibility on the

total number of extracted Evidence and exact numbers of each category). We would

present the results of the analysis of different hibernation file extracted using test case D

in different tables.

5.2.1 Total number of artifacts

Table 16 reports the total numbers of evidence extracted by each tool. These numbers are

a brute number that does not depends on the percentage of false positives and the

efficiency of the findings, as each tool has its field naming and layout. The table could be

categorized as the Quantitative result of the total number of artifacts extracted from test

case D hibernation files.

Table 15. Group A - Quantitative results of test case D.

Version_Filename* Total number of Evidence

BEC BlackLight Magnet Axiom

1809_D_File_2 7067 ** 7493

1809_D_File_4 274 ** 1666

1903_D_File_2 3633 Version not supported 6350

1903_D_File_4 208 Version not supported 1150

1909_D_File_2 5509 Version not supported 6423

1909_D_File_4 92 Version not supported 899

*Details were provided in section 3.3. **Reporting is limited in the BlackLight demo version.

106

Table 15, proves that the hibernation file extracted from the Windows 10 machine in the

hibernation state contains more artifacts than the files extracted from a fast startup. This

answers question 10.

5.2.2 Search for the Evidence list

Tables 16 and 17 are a sample of Qualitative test results that should assess the quality of

the extracted artifcats. The target evidence list in this table was described in section 3.3.4.

Tables 16 and 17 demonstrate that each tool can extract different types of artifacts. Search

for the list of evidence defined in section 3.3.4, using each tool, produced different results

for the same processed file. These tables demonstrated that the list of supported artifacts

types showed in Appendix 5, does not guarantee that the tool supports extracting the

artifacts from a hibernation file. We conclude from these tables that there exist too many

enhancements that could be done on the analysis tools. Also, we conclude to not take the

output of any tools for granted. Always double-check. These two tabes answered to

research question eight.

Table 16. A list of evidence that was only created on v1903.

Evidence Application Evidence BEC Magnet Axiom

V1903 V1903

E16 Chrome Gmail URL √ √

Draft email X X

E17 Chrome Hangout Chat X X

E18 Edge URL √ √

E19 Edge - InPrivate Bing Search X √

E20 Outlook Draft email X X

E21 Notepad Draft text file X X

E22 cmd Commands X X

E23 BitTorrent Remote connection IP X X

107

Table 17. Search for test case D evidence list.

Evidence

number

Application Artifact type BEC Black-

Light

Magnet Axiom

V
1

8
0

9

V
1

9
0

3

V
1

9
0

9

V1809

V
1

8
0

9

V
1

9
0

3

V
1

9
0

9

E1 Firefox Google search X X X √ √ √ √

E2 Firefox URL X X X √ √ √ √

E3 Firefox URL X X √ √ √ √ √

PDF X X X X X X X

E4 chrome incognito Google search X X √ √ √ √ √

E5 chrome incognito URL √ X √ √ √ √ √

E6 chrome incognito URL √ X √ √ √ √ √

picture X X X √* √ * √ * X

E7 chrome incognito Google maps URL √ X √ √ √ √ √

Map image √* √* √* X √* √* √*

location X X X X √ √ √

E8 chrome video URL √ √ √ √ √ √ √

Parts of the video X X X ** X X X

E9 chrome Google search √ √ √ √ √ √

Flowers pictures √ X X √ √ X √

E10 chrome Download photo

URL

√ √ √ √ √ √ √

picture X X X √* √* X X

E11 chrome Webmail URL √ √ √ √ √ √ √

username √ √ √ √ √ √ √

E12 chrome Draft email X X X √*** X X X

E13 Skype Skype

messages

X X X X X X X

E14 Libre Office Draft text file X X X X X X X

E15 BitLocker Encryption keys X X X X X X X

* Partial parts of the pictures were found.

** Many video types extracted, while it is difficult to search for the parts of the targeted video due to demo

limitations.

*** the content was extracted using a search in the carved documents and was found in an SQL database

content as well as “.EFX” files.

5.2.3 Extracted artifacts types

Table 18 depends on our personal notes and findings of each tool behavior. For example,

BlackLight is the only tool that was able to extract process list and MFT entries. Magnet

Axiom is the only tool that was able to extract Windows event logs and data related to

108

accounts and device names. BEC is the only tool that does not require any Windows

profile selection before processing with hibernation file analysis.

Table 18. Group A - findings and features when processing hiberfil.sys.

BEC[69],[68] BlackLight Magnet Axiom

V
1

8
0

9

V
1

9
0

3

V
1

9
0

9

V
1

8
0

9

V
1

9
0

3

V
1

9
0

9

V
1

8
0

9

V
1

9
0

3

V
1

9
0

9

Detect hibernation file

image profile

√ √ √ X X X X ** X X

supported Windows

version in hibernation file

analysis*

√ √ √ √ X X √ √ X***

Process list
X X X √ Versions not

supported

X X X

Socket connections
X X X √ X X X

Windows event logs
X X X X √ √ √

Identifiers related to

devices and accounts

X X X X √ √ √

Extract Prefetch files
X √ √

Extract LNK files
√ √ √

Extract MFT entries and

NTFS _INDEX

X √ X

Predefined search
√ √ √

Mapping data on the

world map

X X √

Identify the used Browser
√ X X

Visited paths using

Windows file explorer

√ X √

* The latest supported version mentioned was found by testing as such information is not mentioned in

the software guide, except for Magnet Axiom.

** This feature is only supported for memory images, while Hibernation file analysis requires manual

identification of image profile.

109

*** The version is not officially supported while when processing using Windows 10 v1903 profile, we

can extract data from the hibernation file.

Table 18 does not include all the types of data extracted by each tool. The table could

provide a primary answer to research question nine (mentioned in section 1.1), as it shows

different types of artifacts that could be extracted by each of the three commercial tools.

Actually question nine is a summary of Chapter 5 and not limited to table 18. More details

about types of artifacts to extract from a hibernation file could be found in section 6.4.

5.3 Summary of analysis using tool and results

Test case D demonstrated that there exist many free and commercial tools extract data

from a hibernation file. Free tools and some of the commercial tool do not support the

direct of a hibernation file. As a workaround, the user can decompress the file using a

decompression tool. Many commercial tools can analyse a hibernation file in its original

form. Each of the tested tools has its characteristics. The expected extracted artifacts list

differ from a tool to another.

Chapter 5 answered to four research questions. Questions seven was answered in sections

5.1.1 and 5.1.2. Question eight was answered in section 5.2.2. Answer to question 9 was

done in section 5.2.3, and the answer to question 10 found at section 5.2.1

110

6 Discussion

In this section, we would discuss the findings of the thesis research and summarize the

results.

6.1 Manual analysis results

The results of the manual analysis show that the hibernation file layout described [11] is

still applicable for the latest versions of Windows 10 hibernation files. Using manual

analysis, we documented the known file structures content for our target Windows 10

versions, and we created a full datagram for the first page of the hibernation file. Such

detailed documentation is not currently available in any of the hibernation file

documentations that we have read.

During the analysis of test case A, we found undocumented pages in the file layout, and

we were able to identify the usage of a part of these undocumented pages, which are used

to store the addresses of free memory pages. While these undocumented pages do not

seem to impact the hibernation file decompression and analysis, we believe that it should

be mentioned in the hibernation file layout, so we created an updated layout for the

hibernation file.

Our research confirmed that in order to conserve the modern hibernation file content,

forensics practitioners should extract the hibernation file offline, as once the system is

resumed, the file loses its value. Results of test case B show that contradictory to what

was mentioned in [11], some Windows versions might include more than hibernation file

header in the “WAKE” file. On the other hand, we found that regardless of the amount of

data available in a resumed file, the file content would not contain any memory pages

content. Such information confirms [11] a conclusion about collecting a hibernation file

from a running machine and justifies the exclusion of a “WAKE” hibernation file from

forensics investigations. Test case B results also showed that although a fast startup

hibernation file does not include the user’s session, there is a probability to find some

traces related to user activities in that hibernation file. During test case B, we created a

Reduced hibernation file type and tracked its characteristics as this is not currently

documented. We found that the only difference between a “Reduced” hibernation file and

“Full” hibernation file is the size of the resumed hibernation file (file with “WAKE”

111

signature). Regardless the type of hibernation file, a hibernated file size would equal to

the size of available system memory (RAM).

Test case C target was tracking the characteristics of a hibernation file when the “HORM”

feature is enabled on the system. This case was out of the research scope of [11]. The test

case results show that a “HORM” hibernation file content would remain the same even

when the machine is resumed. Despite the technical limitations that we faced in the Test

case C scenario, the preservation of the hibernation file hash value after each shutdown

shows that “HORM” features would not conserve any of the user activities or machine

states modifications in “HORM” hibernation file unless a new hibernation occurs.

6.2 Tools analysis results

The results of test case D using tools analysis confirmed that modern hibernation files

could still be considered as a valuable source of data. Using different tools, we showed

variable types of data that could be extracted from a hibernation file, and these data

include unique artifacts that could be only extracted using memory forensics techniques.

Running processes list and connections, volatile registry keys, as well as private browsing

(chrome incognito, as an example) artifacts that are not saved in the browsing history, are

examples of artifacts available in the hibernation file. The results of test case D include a

comparison of the brute number of artifacts extracted by BEC and Magnet Axiom. During

test case D, we searched for a predefined list of evidence that was created on each

Windows version, and we tracked on different commercial tools then made a comparison

between what different types of artifacts that BEC, BlackLight, and Magnet Axiom

software were able to extract. For our knowledge, we are the first to do such a study on

hibernation file content.

6.3 Hibernation file layout

We updated the hibernation file layout proposed in [11] based on our research results.

The updated file layout contains the “Unknown structure” page and the “free map pages”

that we detected during the analysis of test case A.

112

Figure 59. Updated Windows 10 hibernation file layout.

6.4 Example of evidence types available in hibernation file

The tests performed during that research show that it is possible to extract many types of

data from a hibernation file. We created a list of examples of evidence types available in

113

a hibernation file, based on the results of our tests. We proposed tools to extract each type

of artifacts, based on our experience with the tools.

The recommended ways to extract each type of artifacts does not mean that this is the

only way to extract that artifact. For example, we excluded Hibr2Bin from our

recommendations, as our tests show that Hibernation Recon was more accurate in

hibernation file decompression. Some types of data might be extracted by commercial

tools and processed transparently by the tool. Magnet Axiom, for example, does not show

SQLite databases type in the output section, while from the user guide we understand that

they do extract this type of database and process it, then include data extracted from

SQLite databases in the results. For this reason, we excluded such types of artifacts to

avoid confusion. Also, there might be a workaround to extract some data types that are

not mentioned in the below table. For example, Bulk_extractor can extract JPEG Exif

headers. Such information helps carve images, while we did not test this method, so it

was not added to our recommendations. Most of the tools can extract credit card numbers

and telephone numbers, which was not included in our tests’ scenarios, so such

information was also excluded from recommendations, as it was not tested.

Our tests show that some data is available in the hibernation file but was not detected by

any of the tested tools. We found the content of chats messages and draft documents using

a HxD and FTK tools search in the decompressed hibernation file, while they were not

automatically detected by any tool. Such a result makes a strings extraction of the

decompressed hibernation file content, a valid proposal for investigations. Strings could

be extracted using too many ways and tools, including Bulk_extractor. This result also

highlights a potential requirement of tools capabilities improvement when processing a

hibernation file.

114

Table 19. Example of artifacts types and proposed tools to extract it.

Artifact type Tools recommendation based on the results of our tests

Commercial tools Free tools

Web access usernames +

passwords
• Hibernation Recon +

Passware Kit Forensics

OneDrive token • Hibernation Recon +

Passware Kit Forensics

Browser activities • BEC

• Magnet Axiom

• BlackLight

• Hibernation Recon +

Bulk_extractor

Processes, modules, and

DLLs related information
• BlackLight

• Hibernation Recon +

Magnet Axiom

• Hibernation Recon +

Volatility

Opened connections

including source and

destination IP

 • Hibernation Recon +

Bulk_extractor (packets.pcap)

Users Identifier • Magnet Axiom • Hibernation Recon +

Volatility

Devices Identifier • Magnet Axiom

Event logs • Magnet Axiom

Pictures • BEC

• Magnet Axiom

• BlackLight

Videos • Magnet Axiom, BlackLight

LNK files • BEC

• Magnet Axiom

• BlackLight

Prefetch files • Magnet Axiom

• BlackLight

NTFS _INDEX • BlackLight

• Hibernation Recon

(Professional)

Registry Hives • Arsenal Hive Recon

Visited paths using Windows

file explorer
• BEC

• Magnet Axiom

Draft email content • BlackLight (craved

Document: SQLITE and

EFX)

• Hibernation Recon + search

using HxD

115

6.5 Hibernation file life cycle in digital forensics

Based on the research results, we could summarize the lifecycle of a hibernation file in

digital forensics by 4 phases. This lifecycle does not include a “HORM” enabled feature’s

hibernation file.

Figure 60. Hibernation file life cycle.

The first phase is the creation of a new signature of the hibernation file, and modification

of the file content, which is triggered by a power state transition. The transition from a

hibernation file with the “HIBR” signature to “WAKE” signature does not happen

directly, and there is a transition signature “RSTR” that appears during the system restart,

while this signature was out of the scope of this research.

We considered the extraction phase of the hibernation file as the second phase of its life

cycle; at this phase, the file could be extracted online (from a working machine) or offline

(from a machine in hibernation state). Due to files permission, extracting the hibernation

file might require special consideration, like using FTK imager to extract the file.

Phase 3 and 4 might be performed by the same tool, which makes phase three transparent

for the end-user in some cases. As the content of the hibernation file is compressed, a

decompression phase is required before performing the analysis of the file content. The

1- Create

•Create a Hibernation file with "HIBR" signature requires power state transition from S0 (working) to S4
(Hibernate, Fast Startup, or Hybrid Sleep)

•Create a Hibernation file with "WAKE" signature requires power state transition from S4 (Hibernate, Fast
Startup, or Hybrid Sleep) to S0 (Working)

2- Extract

•Extract a hibernation file with "HIBR"signature, should be done offline to conserve the file data

•Extract a hibernation file with "WAKE" signature doesn't have a considerable forensics value.

3-Decompress

•Hibernation file with "HIBR" signature could be decompressed using Hibr2Bin or Hibernation Recon tools

•Hibernation file with "WAKE" signature doesn't contain compressed data

4- Analyse

• Decompressed Hibernation file could be analysed using variable tools to extract valuable artifacts.

• Analyse a Hibernation file with WAKE signature using any automated tool would not give any information.

116

decompressed version of the file would then be processed by the tools to extract variable

types of artifacts depending on each tool's capabilities.

6.6 Research Questions Results

In this section, we would discuss the research questions results and recap each question's

answers based on the research findings.

The first research question was “Is hibernation file created by default by Windows 10?”

This question was answered in section 4.1. The hibernation file is created by default in

Windows 10 latest versions, as fast startup power option is the default shutdown response

to a GUI shut down. Fast startup hibernation file contains only the kernel session data,

which contains many types of artifacts that might help in case investigation. The GUI

hibernation option is not enabled by default, however, hibernating a Windows 10 could

be done using CLI commands, without modifying any of Windows 10 default options.

We created datagrams for the structures that could be defined using WinDbg in section

4.2, and this answers the questions “Could we document the known hibernation file

structures in a clear mapping/datagram?”

The answer to the question “Is the Modern hibernation file layout [11] still applicable for

the latest versions of Windows 10 hibernation file?” is yes, and was provided in sections

4.2., and 4.3. We proved that the Modern hibernation file layout is still applicable for the

latest versions of Windows 10 hibernation file, while we spotted two undocumented

structures that should not impact the decompression of the hibernation file.

The answer for the question “Do the free tools decompressing Windows 10 hibernation

file have the same output file when processing the same input hibernation file? ” is no,

the conversion tools are not extracting the same output decompressed file. Manual

analysis for decompressed shows that Hibr2Bin was not able to decompress some

compressions types that are used in hiberfil.sys. Details were discussed in section 4.3.3.

The answer to the question “What are the impacts of the modifications of power

configurations, as well as power states on a hibernation file content?” was provided in

details in section 4.4 and summarized in section 4.6. The file size and content varies

depending on the system power state and the power configuration.

117

Answer to “What is the effect of enabling the “HORM” feature on the hibernation file

characteristics?” provided in 4.5 and summarized in 4.6. By enabling the “HORM”

feature, and hibernating the Windows. The machine would resume using the same

hibernation file after each shutdown. No user activities are track un such a situation.

The hibernation file is compressed, so forensics examiners cannot search for keywords or

file signatures unless the file is decompressed using a decompression tool. However, the

file header contains some details about the file like date and time of hibernation, memory

page size. We found that despite the lack of direct analysis feature for modern hibernation

files using well-known memory forensics tools like Rekall and Volatility, an applicable

workaround could be used. Decompressing the files using Hibr2Bin or Hibernation

Recon, then analyze the raw output binary file, is a logical solution. Volatility treats a

decompressed hibernation file as a memory image and would be able to extract the image

profile. Bulk_extractor can extract different types of artifacts from a decompressed

hibernation file. By this, we answer the question “Could we extract artifacts from

Windows 10 hibernation files using free tools??” More details were provided in section

5.1.1 and 5.1.2.

The answer to the question “Are there any differences found between commercial tools

outputs?” was discussed in details in section 5.1.3, 5.1.4, 5.1.5, 5.1.6, 5.1.6, 5.1.7 and

5.2.2.1. there are differences between the list of artifacts types that each tool could extract,

for example, the tested BlackLight version was the only commercial tool that could

extract data related to processes from an analyzed hibernation file in its original form.

Modern hibernation files include various types of artifacts. Considering the nature of the

volatile memory, hibernation file cannot always guarantee the presence of all kinds of

artifacts, as some of the data might be offloaded to the page files or it might be destroyed.

For this reason, we recommend using the hibernation file as a part of the source evidence

list. Analyzing the hibernation file with the support of the page file would provide more

visibility about the computer state before hibernation or shut down. Hibernation file can

provide data related to running process lists, used libraries, open Sockets, search queries,

and browser activities including private browsing sessions like sessions opened using

Chrome Incognito and Firefox private Windows and its related media (audio, video, and

pictures). The file also includes web passwords that were not saved in the browser, draft

documents, as well as cloud services information like OneDrive tokens. Encryption keys

118

and a list of AES keys were also extracted during our tests. The tests were not able to

extract BitLocker encryption keys while this might be related to Passware demo version

limitations. Extracted Hibernation files included other types of artifacts that could be

found in a disk image like MFT entries, NTFS _Index entries, Windows event logs, LNK

files, documents, web browsers activities, accessed Windows paths, and SQLite

databases. This answers the questions “What kind of artifacts could be collected from a

Windows 10 hibernation file?” More details in sections 5.2.3 and 6.4.

The last question was “In which Windows 10 power state, a hibernation file would contain

the maximum number of artifacts?” Results of test case D showed that the hibernation

file extracted from a hibernated computer contains the maximum number of artifacts that

could be extracted using a hibernation file - Section 5.2.1.

6.7 Strengths of the study

The number of studies related to the modern hibernation file are minimal; for our

knowledge, there exists a single study in that field at the time of writing this thesis. The

thesis continues the work done in [11] and proved that the same file structure proposed in

that paper is still valid for the latest versions of hibernation files. Full documentation of

the first two pages of the hibernation file was provided in this thesis for the first time. We

created a datagram of the full content of the hibernation file header and clarified

differences between the two conversion tools used to decompress the hibernation file. For

our knowledge, this paper is the first paper to compare the performance of commercial

tools in the analysis of the hibernation file. We clarified by example that different types

of artifacts could be extracted from a hibernation file. This research includes many details

and information about Windows 10 hibernation file that we were not able to find it at the

beginning of the research. The research covered many topics related to the hibernation

file, which could give the reader a clear vision about the file value in digital forensics

investigations. By the time of writing this research, we have not seen any other research

giving such a variety of information about the Windows 10 hibernation file.

6.8 Weaknesses and limitations of the study

This study was done with limited resources, the number of samples taken, and the fact

that the study is based on demo and trial versions of many programs should be considered

119

as limitations. The findings of this study highlight the value of the hibernation file, while

not all the findings could be taken as a rule due to a limited number of samples.

We extracted more than 100 different hibernation files during our study, with almost 2

TB of data. Such a large amount of data, with broad scope and limited time of software

trials, resulted in a limited amount of information in each subject. Some of our tests were

not included in the research due to time and thesis length limitations, so we decided to

include results that were mainly tested more than one time. Our target was to give a big

picture of the characteristics and usage of the hibernation file, while future studies could

adapt many points of improvement to our research.

Doing our tests on a Windows 10 Home edition is another limitation of that study, as we

were not able to test many features like enabling the TPM, and secure kernel-mode that

were primarily included in our test plan. Enabling the HORM feature on our analysis

laptop was also limited, as we were not able to extract a hibernation file during the

hibernation or shutdown state, due to technical limitations related to our hardware.

Hardware limitations also blocked the usage of Windows Kernel Debug. We were only

able to test local kernel debug mode, as other debug modes were not supported by the

used laptops. Thus, we lost the possibility to track the hibernation file during the resuming

process and see more details about hibernation files with “RSTR” signatures.

Hardware limitations also caused many errors and delays of hibernation files analysis

using some of the commercial tools. Although the hardware of the laptop used for analysis

meets the minimum requirement of all the tested software, the laptop faced a degraded

performance as it was processing many simultaneous tasks at the same time. This resulted

in a loss of time and efforts that have impacted taking notes about all the artifacts that we

already analyzed using the commercial tool before they lockdown. For example, some

trial versions did not allow us to create reports or export data, to overcome this, we were

taking print-screens for each activity done in the tool, while we were not able to take

print-screens for every output of the tool. After the trial versions expired, we were in need

to go through the data itself, not the print screens, to check for some details. As this was

not possible anymore, we emitted some information that was already tested and even

documented at some stage of the thesis, just because we currently do not have print

screens to confirm some details about results.

120

6.9 Future Work

There is a clear research gap in the studies related to the hibernation file. This study

spotted the value of the file and guided to understand the file structure described by [11].

We hope that our contribution helps software developers to implement a Volatility plugin

or any other free tools that could directly analyze the hibernation file. Further research is

required to test generating the third restoration set relate to FirstSecureRestorePage

header entry, as per [11], this restoration set might be related to Secure Kernel Mode

(SKM).

More researches might be done to document current compression types used in modern

hibernation files with the guide of Windows Xpress algorithm documentation [32].

Studies could also be extended to include a comparison between the type of data that

could be found when combining the analysis of hibernation file and page files compared

to the data found in the disk image and data found using a memory capture. We already

did primary tests related to point, while further research might be useful to document the

differences between data types extracted from variable media types and clarify the unique

keys findings of each of them. The impact of Encryption tools like BitLocker, VeraCrypt

on the hibernation file, seems to the interesting research area. We did some quick

investigations related to that topic that was not included in that research, as we found that

it requires in-depth analysis and some test scenarios. It would help fellow researchers

interested in the encryption topic to check a quick investigation related to BitLocker

encryption that was released by Arsenal Recon by the end of April 2020 [91].

Studying other operating systems hibernation files, like macOS and Linux, and check the

availability of such features in IoT systems might be another interesting area of research.

121

7 Conclusion

During this research, we extracted more than 100 hibernation files. Files were extracted

from different Windows 10 versions, with variable Windows configurations and power

states, to analyze the impact of these modifications on the hibernation files. Four test

cases were created during the research. Three of the test cases helped to analyze the file

manually. The results of test case A documented the missing structure in the current

known Windows 10 hibernation file layout. Test case B documented the impact of power

state modification on the content of the hibernation file. Test case C documented the

impact of enabling the HORM feature on the hibernation file content. On the other hand,

tools analysis was used on the hibernation files of test case D, we created a predefined

list of activities for this test case, and we applied the same scenario on the three Windows

10 version in the scope of our research. Each hibernation file of test case D was analyzed

using different commercial and free tools; some of the files were analyzed more than one

time on the same tool using variable configuration. We documented the findings of test

case D, highlighted the differences between the different analysis tools, and gave

recommendations that might help digital forensics practitioners.

The amount of processed data during that research was a real challenge, as well as

documentation contradictions, misleading information, and technical resources

limitations. Our study highlighted many of these documentation contradictions and

insights. The study should help readers to understand Windows 10 hibernation file

structure and set his expectations toward different tools behavior during hibernation file

analysis.

We recommend forensic examiners to extract the hibernation file offline, in case no

memory image was taken for the evidence device. The fast startup feature is enabled by

default in the Windows 10, which generates a limited content version of the hibernation

file with each GUI shutdown. Fast startup hibernation file does not contain the user

session, while many types of data related to Kernel sessions are still available in a fast

startup hibernation file.

We hope that this research helps forensic examiners to give more care to the hibernation

file and understand to required precautions to be taken, to get the most out of a Windows

10 hibernation file.

122

References

[1] M. Pollitt, “A history of digital forensics,” IFIP Adv. Inf. Commun. Technol., vol.

337 AICT, pp. 3–15, 2010.

[2] “Power management/Suspend and hibernate - ArchWiki.” [Online]. Available:

https://wiki.archlinux.org/index.php/Power_management/Suspend_and_hibernate

. [Accessed: 23-Jan-2020].

[3] “Use the Energy Saver settings on your Mac - Apple Support.” [Online].

Available: https://support.apple.com/en-us/HT202824. [Accessed: 23-Jan-2020].

[4] U. EFI Forum, “Advanced Configuration and Power Interface (ACPI)

Specification, Version 6.2,” 2017.

[5] “How to disable and re-enable hibernation on a computer that is running

Windows.” [Online]. Available: https://support.microsoft.com/en-

us/help/920730/how-to-disable-and-re-enable-hibernation-on-a-computer-that-is-

running. [Accessed: 13-Jan-2020].

[6] “Desktop Operating System Market Share Worldwide, last visit 8 | StatCounter

Global Stats.” [Online]. Available: https://gs.statcounter.com/os-market-

share/desktop/worldwide, last visit 8/12/2019. [Accessed: 13-Jan-2020].

[7] “Desktop Windows Version Market Share Worldwide, last visit 8 | StatCounter

Global Stats.” [Online]. Available: https://gs.statcounter.com/os-version-market-

share/windows/desktop/worldwide, last visit 8/12/2019. [Accessed: 13-Jan-

2020].

[8] “Windows lifecycle fact sheet - Windows Help.” [Online]. Available:

https://support.microsoft.com/en-us/help/13853/windows-lifecycle-fact-sheet.

[Accessed: 13-Jan-2020].

[9] “Magnet IEF - Artifact-First Investigations | Magnet Forensics.” [Online].

123

Available: https://www.magnetforensics.com/products/magnet-ief/. [Accessed:

13-Jan-2020].

[10] A. L. Ayers, “Windows Hibernation and Memory Forensics,” no. April, 2015.

[11] J. T. Sylve, V. Marziale, and G. G. Richard, “Modern windows hibernation file

analysis,” Digit. Investig., vol. 20, pp. 16–22, 2017.

[12] M. Suiche, “Windows Hibernation File for Fun ‘N’ Profit,” in Black Hat, 2008.

[13] A. Case and G. G. Richard, “Memory forensics : The path forward,” Digit.

Investig., vol. 20, pp. 23–33, 2017.

[14] “UEFI FAQs | Unified Extensible Firmware Interface Forum.” [Online].

Available: https://uefi.org/faq. [Accessed: 13-Jan-2020].

[15] “System Power States - Win32 apps | Microsoft Docs.” [Online]. Available:

https://docs.microsoft.com/en-us/windows/win32/power/system-power-states.

[Accessed: 10-Jan-2020].

[16] P. Yosifovich, A. Ionescu, and D. A. Solomon, Windows Internals, Part 1:

System architecture, processes, threads, memory management, and more.

Pearson Education.

[17] N. A. Hassan, Digital forensics basics : a practical guide using windows OS. .

[18] “Introduction to the page file - Windows Client Management | Microsoft Docs.”

[Online]. Available: https://docs.microsoft.com/en-us/windows/client-

management/introduction-page-file. [Accessed: 02-Feb-2020].

[19] “How to Make Windows Clear Your Page File at Shutdown (and When You

Should).” [Online]. Available: https://www.howtogeek.com/282049/how-to-

make-windows-clear-your-page-file-at-shutdown-and-when-you-should/.

[Accessed: 12-Mar-2020].

[20] “Windows 8 / Windows Server 2012: The New Swap File | Ask the Performance

Team Blog.” [Online]. Available:

https://web.archive.org/web/20190228152513/https://blogs.technet.microsoft.co

124

m/askperf/2012/10/28/windows-8-windows-server-2012-the-new-swap-file/.

[Accessed: 02-Feb-2020].

[21] D. R. Tobergte and S. Curtis, The Art of Memory Forensics, vol. 53, no. 9. 2013.

[22] “Chapter 4. Maintain Windows - Exam Ref MD-100: Windows 10, First

Edition.” [Online]. Available: https://learning.oreilly.com/library/view/exam-ref-

md-100/9780135560624/ch04.xhtml. [Accessed: 30-Jan-2020].

[23] “Reducing the Disk Footprint for Windows 7 Hibernation.” [Online]. Available:

http://download.microsoft.com/download/7/E/7/7E7662CF-CBEA-470B-A97E-

CE7CE0D98DC2/HiberFootprint.docx. [Accessed: 13-Jan-2020].

[24] “Wayback Machine.” [Online]. Available:

https://web.archive.org/web/20091024155939/http://www.msuiche.net/pres/PacS

ec07-slides-0.4.pdf. [Accessed: 15-Jan-2020].

[25] “Windows Hibernation File for Fun and Profit - Video.” [Online]. Available:

https://media.blackhat.com/bh-usa-08/video/bh-us-08-Suiche/black-hat-usa-08-

suiche-windowshibernation-hires.m4v. [Accessed: 14-Jan-2020].

[26] “(No Title).” [Online]. Available: https://www.blackhat.com/presentations/bh-

usa-08/Suiche/BH_US_08_Suiche_Windows_hibernation.pdf. [Accessed: 28-

Jan-2020].

[27] M. Suiche, “Sandman Project,” pp. 1–11, 2008.

[28] P. Kleissner, “Hibernation File Format,” 2009.

[29] “Windows 10 SDK - Windows app development.” [Online]. Available:

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk.

[Accessed: 05-Feb-2020].

[30] “Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A:

System Programming Guide, Part 1,” 2016.

[31] “Vergilius Project | _PO_MEMORY_RANGE_ARRAY.” [Online]. Available:

https://www.vergiliusproject.com/kernels/x64/Windows Vista %7C

125

2008/SP1/_PO_MEMORY_RANGE_ARRAY. [Accessed: 16-Jan-2020].

[32] “[MS-XCA]: Xpress Compression Algorithm | Microsoft Docs.” [Online].

Available: https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-

xca/a8b7cb0a-92a6-4187-a23b-5e14273b96f8. [Accessed: 04-Feb-2020].

[33] “Hibernate Once/Resume Many (HORM) | Microsoft Docs.” [Online]. Available:

https://docs.microsoft.com/en-us/windows-

hardware/customize/enterprise/hibernate-once-resume-many-horm-. [Accessed:

04-Feb-2020].

[34] “The Chilling Reality of Cold Boot Attacks - F-Secure Blog.” [Online].

Available: https://blog.f-secure.com/cold-boot-attacks/. [Accessed: 23-Jan-2020].

[35] P. Kleissner, “Stoned bootkit,” Black Hat USA, pp. 5–7, 2009.

[36] P. Kleissner, “Hibernation File Attack – Reino de España,” 2010.

[37] “(1278) DeepSec 2009: Stoned déjà vu - again - YouTube.” [Online]. Available:

https://www.youtube.com/watch?v=R7F8xKGGHI4. [Accessed: 27-Jan-2020].

[38] A. Singh and P. Sharma, “Role of Hibernation File in Memory Forensics of

windows 10,” vol. 7, no. 12, pp. 42–47, 2016.

[39] “GitHub - volatilityfoundation/volatility: An advanced memory forensics

framework.” [Online]. Available:

https://github.com/volatilityfoundation/volatility. [Accessed: 19-Jan-2020].

[40] “Setting Up Local Kernel Debugging of a Single Computer Manually - Windows

drivers | Microsoft Docs.” [Online]. Available: https://docs.microsoft.com/en-

us/windows-hardware/drivers/debugger/setting-up-local-kernel-debugging-of-a-

single-computer-manually. [Accessed: 04-Feb-2020].

[41] “Setting Up Local Kernel Debugging of a Single Computer Manually - Windows

drivers | Microsoft Docs.” [Online]. Available: https://docs.microsoft.com/en-

us/windows-hardware/drivers/debugger/setting-up-local-kernel-debugging-of-a-

single-computer-manually. [Accessed: 14-Jan-2020].

126

[42] “FTK® Imager | AccessData.” [Online]. Available:

https://accessdata.com/products-services/forensic-toolkit-ftk/ftkimager.

[Accessed: 27-Mar-2020].

[43] N. Ruff and M. Suiche, “Enter SandMan,” Pasec, pp. 1–22, 2007.

[44] “GitHub - comaeio/Hibr2Bin: Comae Hibernation File Decompressor.” [Online].

Available: https://github.com/comaeio/Hibr2Bin. [Accessed: 13-Jan-2020].

[45] “Your favorite Memory Toolkit is back… FOR FREE! - Comae Technologies.”

[Online]. Available: https://blog.comae.io/your-favorite-memory-toolkit-is-back-

f97072d33d5c. [Accessed: 20-Mar-2020].

[46] “Comae - The Future Of Cybersecurity - Comae - The Future Of Cybersecurity.”

[Online]. Available: https://www.comae.com/. [Accessed: 20-Mar-2020].

[47] “Memory compression and forensics – My DFIR Blog.” [Online]. Available:

https://dfir.ru/2018/09/08/memory-compression-and-forensics/. [Accessed: 19-

May-2020].

[48] “FAQ | Arsenal Recon.” [Online]. Available:

https://arsenalrecon.com/faq/#HibernationFAQ. [Accessed: 10-Mar-2020].

[49] “Shutdown: Clear virtual memory pagefile | Windows security encyclopedia.”

[Online]. Available: https://www.windows-

security.org/16b1e5b3f0ad7ef90556eb81fca92575/shutdown-clear-virtual-

memory-pagefile. [Accessed: 12-Mar-2020].

[50] “About | volatilityfoundation.” [Online]. Available:

https://www.volatilityfoundation.org/about. [Accessed: 17-Jan-2020].

[51] “The Volatility Foundation - Open Source Memory Forensics.” [Online].

Available: https://www.volatilityfoundation.org/. [Accessed: 18-Jan-2020].

[52] “Git on Windows - Getting Started — Codebase.” [Online]. Available:

https://support.codebasehq.com/articles/getting-started/git-on-windows.

[Accessed: 19-Jan-2020].

127

[53] “Volatility Labs: Announcing the Volatility 3 Public Beta!” [Online]. Available:

https://volatility-labs.blogspot.com/2019/10/announcing-volatility-3-public-

beta.html. [Accessed: 19-Jan-2020].

[54] “GitHub - google/rekall: Rekall Memory Forensic Framework.” [Online].

Available: https://github.com/google/rekall. [Accessed: 12-Mar-2020].

[55] “Rekall Forensics.” [Online]. Available: http://www.rekall-forensic.com/.

[Accessed: 18-Jan-2020].

[56] “Plugin Reference — Rekall Forensics 1.7.2 documentation.” [Online].

Available: https://rekall.readthedocs.io/en/latest/plugins.html#windows.

[Accessed: 24-Mar-2020].

[57] “Development - Rekall Forensics.” [Online]. Available: http://www.rekall-

forensic.com/documentation-1/rekall-documentation/development. [Accessed:

24-Mar-2020].

[58] “Finding Evil in Windows 10 Compressed Memory, Part One: Volatility and

Rekall Tools | FireEye Inc.” [Online]. Available:

https://www.fireeye.com/blog/threat-research/2019/07/finding-evil-in-windows-

ten-compressed-memory-part-one.html. [Accessed: 24-Mar-2020].

[59] “GitHub - fireeye/win10_rekall: Rekall Memory Forensic Framework.” [Online].

Available: https://github.com/fireeye/win10_rekall. [Accessed: 24-Mar-2020].

[60] “error when run rekall · Issue #519 · google/rekall · GitHub.” [Online].

Available: https://github.com/google/rekall/issues/519. [Accessed: 24-Mar-

2020].

[61] S. L. Garfinkel, “Digital media triage with bulk data analysis and

bulk_extractor,” Comput. Secur., vol. 32, pp. 56–72, 2013.

[62] “simsong/bulk_extractor: This is the development tree. For downloads please

see:” [Online]. Available: https://github.com/simsong/bulk_extractor. [Accessed:

12-May-2020].

[63] “Decompressing and Extracting Artifacts from Windows 8/Server 2012+

128

Hibernation Files | Ponder The Bits.” [Online]. Available:

https://ponderthebits.com/2017/07/decompressing-and-extracting-artifacts-from-

windows-8-server-2012-hibernation-files/. [Accessed: 13-May-2020].

[64] “Passware Kit Forensic - complete electronic evidence discovery.” [Online].

Available: https://www.passware.com/kit-forensic/. [Accessed: 10-Apr-2020].

[65] “What are the limitations for the demo version? Why did it fail to recover my

password? – Passware.” [Online]. Available: https://support.passware.com/hc/en-

us/articles/221742828-What-are-the-limitations-for-the-demo-version-Why-did-

it-fail-to-recover-my-password-. [Accessed: 20-Apr-2020].

[66] “How to extract Windows login passwords from hibernation file or memory

image instantly – Passware.” [Online]. Available:

https://support.passware.com/hc/en-us/articles/221742428-How-to-extract-

Windows-login-passwords-from-hibernation-file-or-memory-image-instantly.

[Accessed: 28-Mar-2020].

[67] “How to extract website passwords from hibernation file or memory image –

Passware.” [Online]. Available: https://support.passware.com/hc/en-

us/articles/221742408-How-to-extract-website-passwords-from-hibernation-file-

or-memory-image. [Accessed: 28-Mar-2020].

[68] “Belkasoft Evidence Center 2020.” [Online]. Available: https://belkasoft.com/ec.

[Accessed: 18-Jan-2020].

[69] “Belkasoft Evidence Center User Reference.”

[70] “BlackLight® | BlackBag.” [Online]. Available:

https://www.blackbagtech.com/products/blacklight/. [Accessed: 18-Jan-2020].

[71] “(No Title).” [Online]. Available: https://www.blackbagtech.com/software-

downloads/releaseNotes/bl2019r3.pdf. [Accessed: 17-Apr-2020].

[72] “Magnet AXIOM - Digital Investigation Platform | Magnet Forensics.” [Online].

Available: https://www.magnetforensics.com/products/magnet-axiom/.

[Accessed: 18-Jan-2020].

129

[73] “How it works... - Windows Forensics Cookbook.” [Online]. Available:

https://learning.oreilly.com/library/view/windows-forensics-

cookbook/9781784390495/15db22ce-119f-4fa7-b49e-7e9281aeb9aa.xhtml.

[Accessed: 18-Apr-2020].

[74] “Product Documentation.” [Online]. Available:

https://support.magnetforensics.com/s/product-documentation?prod=axiom.

[Accessed: 18-Apr-2020].

[75] “Products | Arsenal Recon.” [Online]. Available:

https://arsenalrecon.com/products/. [Accessed: 18-Jan-2020].

[76] “HiveRecon and HbinRecon Launched | Arsenal Recon.” [Online]. Available:

https://arsenalrecon.com/2018/08/insights-post-hiverecon-and-hbinrecon-

launched/. [Accessed: 19-May-2020].

[77] “New Versions of HiveRecon and HbinRecon Launched | Arsenal Recon.”

[Online]. Available: https://arsenalrecon.com/2018/10/new-versions-of-

hiverecon-and-hbinrecon-launched/. [Accessed: 19-May-2020].

[78] “How to Check Windows 10 Computer System Specs & Requirements -

Microsoft.” [Online]. Available: https://www.microsoft.com/en-

us/windows/windows-10-specifications. [Accessed: 04-Feb-2020].

[79] “Overview of Windows 10 IoT - Windows IoT | Microsoft Docs.” [Online].

Available: https://docs.microsoft.com/en-us/windows/iot-core/windows-iot.

[Accessed: 04-Feb-2020].

[80] “Windows 10 - release information - Windows Release Information | Microsoft

Docs.” [Online]. Available: https://docs.microsoft.com/en-us/windows/release-

information/. [Accessed: 18-Jan-2020].

[81] “dt (Display Type) - Windows drivers | Microsoft Docs.” [Online]. Available:

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/dt--

display-type-. [Accessed: 04-Mar-2020].

[82] “Secure boot | Microsoft Docs.” [Online]. Available:

130

https://docs.microsoft.com/en-us/windows-hardware/design/device-

experiences/oem-secure-boot. [Accessed: 06-Apr-2020].

[83] I. Property et al., “Xpress Compression Algorithm,” pp. 1–29, 2018.

[84] “Command Reference · volatilityfoundation/volatility Wiki.” [Online].

Available: https://github.com/volatilityfoundation/volatility/wiki/Command-

Reference. [Accessed: 11-May-2020].

[85] B. Dolan-gavitt and B. Dolan-gavitt, “The VAD Tree : A Process-Eye View of

Physical Memory By The VAD tree : A process-eye view of physical memory

5,” 2007.

[86] “Passware Kit Forensic 2018 v1 Quick Start Guide Passware Kit Forensic 2018

Quick Start Guide.”

[87] “How to decrypt BitLocker using Passware Kit – Passware.” [Online]. Available:

https://support.passware.com/hc/en-us/articles/360024316834-How-to-decrypt-

BitLocker-using-Passware-Kit. [Accessed: 19-Apr-2020].

[88] “How to decrypt Full Disk Encryption – Passware.” [Online]. Available:

https://support.passware.com/hc/en-us/articles/115002145727-How-to-decrypt-

Full-Disk-Encryption. [Accessed: 20-Apr-2020].

[89] “Download WinImage.” [Online]. Available:

http://www.winimage.com/htm/download.htm. [Accessed: 20-Apr-2020].

[90] “(2) Bitlocker Brute Force Cracking (without Dump or Hibernate File) -

YouTube.” [Online]. Available:

https://www.youtube.com/watch?v=zvaJxnvbGic. [Accessed: 20-Apr-2020].

[91] “The Interesting Case of Windows Hibernation and BitLocker | Arsenal Recon.”

[Online]. Available: https://arsenalrecon.com/2020/04/the-interesting-case-of-

windows-hibernation-and-bitlocker/. [Accessed: 14-May-2020].

[92] “(No Title).” [Online]. Available: https://docs.oracle.com/cd/E19253-01/817-

6223/chp-typeopexpr-2/index.html. [Accessed: 20-Jan-2020].

131

[93] “Releases · google/rekall · GitHub.” [Online]. Available:

https://github.com/google/rekall/releases. [Accessed: 12-Mar-2020].

[94] “error received with a memory dump for win 10 v1809 · Issue #1 ·

fireeye/win10_rekall.” [Online]. Available:

https://github.com/fireeye/win10_rekall/issues/1. [Accessed: 25-Mar-2020].

[95] “Recommended hardware.” [Online]. Available: https://belkasoft.com/hardware.

[Accessed: 13-Apr-2020].

[96] I. BlackBag Technologies, “BlackLight User Guide Version 2019 R3,” 2019.

[97] “A COMPLETE DIGITAL INVESTIGATION PLATFORM, WITH THE

PROCESSING POWER OF IEF.”

132

Appendix 1 – Partial manual analysis for a Windows 7 SP1

hibernation file

The Appendix 1 demonstrates a part of the manual analysis performed on Windows 7

SP1 x64. This demonstration might help the reader to understand the described structures

and definitions in section 2.3.5.1. For our analysis, we assumed that in the case of x64

system, the “uintptr_t” length is 8 bytes as the description of “uintptr_t” is “Unsigned

integer of size equal to a pointer” [92].

Figure 61 shows that the first table page address is calculated using the content of the

“FirstTablePage” field. The field is available at offset (0x60) from the beginning of the

hibernation file, as per the definition of “PO_MEMORY_IMAGE” for Windows 7 SP1

x64 (Figure 6). For this test hibernation file, the “FisrtTablePage” value is 0x6, and we

multiplied this value by 0x1000 (the PageSize) to find that the location of the first “table

page” is offset 0x6000.

Figure 61. “FirstTablePage” entry - Windows 7 SP1 x64 hibernation file.

Figure 62 shows the content of the “table page” header - structure

“_PO_MEMORY_RANGE_ARRAY”. The “NextTable” value indicates that the next

“table page” could be found at offset 0x010A000.

Figure 62. Windows 7 SP1 x64 - “_PO_MEMORY_RANGE_ARRAY” .

133

Appendix 2 – List of output files of Hibernation Recon

Table 24 is a comparison between the list of output files of Hibernation Recon.

Table 20. List of output filenames of Hibernation Recon as described in [48].

Output file Description Professional

Mode

Free

Mode

ActiveMemory.bin Active memory decompressed &

reconstructed.

✓ ✓

DecompressedSlackModern.bin All levels of slack (Modern

format) decompressed & placed

in one output file

✓ N/A

DecompressedSlackLevels/

DecompressedSlackLevelXXX

Modern.bin

Slack (Modern format)

decompressed & placed in

multiple output files by slack

level

✓ N/A

RawSlackModern.bin Raw slack (Modern format) from

all slack levels placed in one

output file

✓ N/A

RawSlackChunks/RawSlackChu

nk_(Decimal

Offset)_(Hex_Offset).bin

Raw slack placed in multiple

output files by chunk

✓ ✓

NonZeroAfterValidSlack.bin Non-zero data after all valid

levels of slack

✓ N/A

AllSlack.bin All levels of slack (Modern &

Legacy formats) decompressed,

raw and non-zero in one output

file

✓ N/A

Indx_I30_Entries.csv Indexed folder content (a/k/a

$I30 data) from active and slack

space of NTFS INDX records

✓ N/A

Indx_ObjIdO_Entries.csv Indexes of linked files (a/k/a $O

data) from active and slack space

of NTFS INDX records

✓ N/A

HibRec.log Hibernation Recon log file ✓ ✓

134

Appendix 3 – Results of Rekall tests

Tests done using Rekall were not successful for new Windows versions, to clarify the

normal tool behavior, we first tested the tool with a Windows 7 hibernation file, and then

we tested it with modern versions. Table 25 shows the result of tests done using Windows

executable version 1.7.2.rc1 (Hurricane Ridge) downloaded from GitHub [93].

Table 21. Rekall - Tests results.

Windows

version

Tested Files types Analysis

status

Comment / Error message

Win 7 “hiberfil.sys” – Original

hibernated file

NOK RuntimeError: Unable to find a valid

profile for this image.

Win 7 “.bin” files extracted using

Hibr2Bin and using Hibernation

Recon

OK NT Build

7601.win7sp1_rtm.101119-1850

Win 10

v1809 and

Win 10

v1903

“hiberfil.sys”, “.bin” file

converted by Hibr2Bin, “.bin”

file converted by Hibernation

Recon, “.mem” memory dump

file captured using FTK imager

NOK RuntimeError: Unable to find a valid

profile for this image.

We also tested the FireEye updates applied to Rekall, and the results were unsuccessful

as shown in Table 26 (latest supported version by FireEye updates) [59]. A support case

was open for FireEye on GitHub.

Table 22. Rekall - Tests results of FireEye plugins

Windows version File type Analysis

status

Comment / Error message

Win 7 and Win 10

(v1809 and

v1903)

“hiberfil.sys” – Original

hibernated file

NOK RuntimeError: Unable to find a valid

profile for this image.

Win 7 “.bin” files extracted

using Hibr2Bin and using

Hibernation Recon

OK NT Build

7601.win7sp1_rtm.101119-1850

Win 10 v1809 and

v1903

- “.bin” file converted

by Hibr2Bin

- “.bin” file converted

by Hibernation Recon

- “. mem” memory

dump file captured using

FTK imager

NOK Part of the error received:

 File "/root/win10_rekall/rekall-

core/rekall/plugins/Windows/win10_me

mcompression.py", line 314, in __init__

super().__init__(**kwargs)

TypeError: super() takes at least 1

argument (0 given)

Full error could be found on GitHub

[94], as we opened an issue with

FireEye.

135

Appendix 4 – Minimum system requirement

Running memory image analysis might be high resources consuming. It is essential to

check each tool’s system requirement, as such criteria might cause system crashes and

unexpected behaviors related to limitations of hardware resources. Our test laptop meets

the minimum requirement of BlackLight software, while we faced repeated program

crash and degradation of performance as the laptop was running other software at the

same time. Table 7 provide the minimum system requirements for some of the used

commercial tools.

Table 23. Minimum system requirements of some of the used commercial tools.

Required Passware
1
 BEC*

(Recommended)

BlackLight Magnet Axiom

Operating

System

Windows • Windows Vista

• Windows

Server

2003/2008/2012

• Windows

7/8.x/10 (64-bit

only)

• Minimum

Windows XP

• Recommended

• Windows 7

• Windows

10

• Windows 10 or

newer

• Windows

Server 2016 or

newer

• Windows 10,

Windows 8.1,

Windows 8,

or Windows 7

(64-bit only)

Linux Not Supported Not Supported Not Supported Not Supported

macOS Not Supported Not Supported macOS Sierra

(10.12.6)

Not Supported

Processor 1 GHz processor

(2.4 GHz

recommended)

4-core i7

processor with

hyperthreading

2.7 GHz Intel

Core i7 (Optimum

Requirement: 3.1

GHz 6-Core Intel

Xeon E5 or better)

4 logical cores

(Recommended

8-16 logical

cores)

RAM 512 MB of RAM

(1 GB

recommended)

16 Gb of RAM

(per each

instance of the

product)

16 GB DDR3

(Optimum

Requirement: 32

GB DDR3 or

higher)

8 GB RAM

(recommended

32 GB RAM)

Free hard

disk

space

 150 MB (more if

you use custom

dictionaries)

SSD drive as a

system disk and

big magnetic

drive for case

data (1Tb or

larger).

5GB of Disk

Space

(installation only)

and 25 GB (Temp

Space)

Enough space

for storing

images and

cases

* There is no minimum hardware requirements for installing BEC[95], the mentioned information is for

recommended hardware.

1 https://www.passware.com/kit-forensic/buynow/

https://www.passware.com/kit-forensic/buynow/

136

Appendix 5 – Supported types of artifacts

Each of the commercial tools has a list of supported types of extracted artifacts. We have

chosen the below list to include the types of data targeted by our test case D. We excluded

Passware from this comparison, as the software scope is extracting different types of data

(passwords and encryption key). A tool might support a special type of data; while it is

not able to extract that type of artifacts from hibernation files. Table 8 includes a list of

artifacts types that each tool could extract, while this table does not mean that the tool can

extract these artifacts from a hibernation file. We would explore what kind of artifacts

were extracted from hibernation files in the results of test case D.

Table 24. Features comparison between some of the commercial tools.

Extracted artifacts BEC[69],[68] BlackLight[96] Magnet

Axiom[97]

Web-related artifacts ✓ ✓ ✓

Search Queries ✓ ✓ ✓

Device information* ✓ ✓ ✓

Windows event logs ✓ ✓ ✓

LNK files ✓ ✓ ✓

Process list ✓ ✓ ✓ **

Timeline ✓ ✓ ✓

SQLite databases ✓ ✓ ✓

Users accounts ✓ ✓ ✓

Chats ✓ ✓ ✓

Detect encrypted files and volumes ✓ ✓ ✓

documents ✓ ✓ ✓

Pictures and videos ✓ ✓ ✓

Data Carving ✓ ✓ ✓

 * Information like computer name, Mac address, Volume name.

**supported by Volatility Framework.

137

Appendix 6 – Hardware and OS Build specifications

Table 12 provides the list of hardware used during the research.

Table 25. List of hardware used during the research.

Item Specifications

Test laptop LENOVO ThinkPad T430

Processor: Intel Core i5-3320M (2.60GHz)

Installed Physical Memory: 4.00 GB

BIOS Mode: UEFI

Function: The laptop used to generate the tests hibernation files

Test laptop

Hard Drive

Model KINGSTON SA400S37120G

Disk Size 111,79 GB

Function: Three Windows 10 Home edition versions were installed on

different partitions of the hard drive, as below.

▪ Microsoft Windows 10 Home, version 1809 (OS Build 17763.107)

▪ Microsoft Windows 10 Home, version 1903 (OS Build 18362.30)

▪ Microsoft Windows 10 Home, version 1909 (OS Build 18363.628)

External

Bootable

Hard Drive

Model: WD My Passport 25E1 USB Device

Size: 1.82 TB

OS: Microsoft Windows 10 Pro, version 1809 (OS Build 17763.253)

Functions: The HD used for storage of the tests hibernation files, and as

external bootable HD.

Analysis

laptop

LENOVO ThinkPad E570

Processor: Intel(R) Core (TM) i7-7500U CPU @ 2.70GHz, 2901 MHz, 2

Core(s), 4 Logical Processor(s)

Installed Physical Memory (RAM): 16.0 GB

BIOS Mode: UEFI

OS:

▪ Microsoft Windows 10 Education, version 1803 (OS Build

17134.1365)

▪ Upgraded to Windows 10 version 1909 (OS Build 18363.720) For

testing the “HORM” feature, then downgraded back after the tests.

Functions: The laptop used for analyzing the tests hibernation files. All

the tools mentioned in section 2.6 were installed on the analysis laptop.

Virtual

machine

OS: Windows version 1607 (OS Build 14393)

138

Appendix 7 – Hibernation file header

This Appendix is a documentation of the header content of Windows 10, using Windows

Debugger Version 10.0.18362.1

Windows 10 version 1809

lkd> dt -r9 po_memory_image

nt!PO_MEMORY_IMAGE

 +0x000 Signature : Uint4B

 +0x004 ImageType : Uint4B

 +0x008 CheckSum : Uint4B

 +0x00c LengthSelf : Uint4B

 +0x010 PageSelf : Uint8B

 +0x018 PageSize : Uint4B

 +0x020 SystemTime : _LARGE_INTEGER

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 u : <unnamed-tag>

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 QuadPart : Int8B

 +0x028 InterruptTime : Uint8B

 +0x030 FeatureFlags : Uint8B

 +0x038 HiberFlags : UChar

 +0x039 spare : [3] UChar

 +0x03c NoHiberPtes : Uint4B

 +0x040 HiberVa : Uint8B

 +0x048 NoFreePages : Uint4B

 +0x04c FreeMapCheck : Uint4B

 +0x050 WakeCheck : Uint4B

 +0x058 NumPagesForLoader : Uint8B

 +0x060 FirstSecureRestorePage : Uint8B

 +0x068 FirstBootRestorePage : Uint8B

 +0x070 FirstKernelRestorePage : Uint8B

 +0x078 FirstChecksumRestorePage : Uint8B

 +0x080 NoChecksumEntries : Uint8B

 +0x088 PerfInfo : _PO_HIBER_PERF

 +0x000 HiberIoTicks : Uint8B

 +0x008 HiberIoCpuTicks : Uint8B

 +0x010 HiberInitTicks : Uint8B

 +0x018 HiberHiberFileTicks : Uint8B

 +0x020 HiberCompressTicks : Uint8B

 +0x028 HiberSharedBufferTicks : Uint8B

 +0x030 HiberChecksumTicks : Uint8B

 +0x038 HiberChecksumIoTicks : Uint8B

 +0x040 TotalHibernateTime : _LARGE_INTEGER

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 u : <unnamed-tag>

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 QuadPart : Int8B

 +0x048 HibernateCompleteTimestamp : _LARGE_INTEGER

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 u : <unnamed-tag>

139

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 QuadPart : Int8B

 +0x050 POSTTime : Uint4B

 +0x054 ResumeBootMgrTime : Uint4B

 +0x058 BootmgrUserInputTime : Uint4B

 +0x060 ResumeAppTicks : Uint8B

 +0x068 ResumeAppStartTimestamp : Uint8B

 +0x070 ResumeLibraryInitTicks : Uint8B

 +0x078 ResumeInitTicks : Uint8B

 +0x080 ResumeRestoreImageStartTimestamp : Uint8B

 +0x088 ResumeHiberFileTicks : Uint8B

 +0x090 ResumeIoTicks : Uint8B

 +0x098 ResumeDecompressTicks : Uint8B

 +0x0a0 ResumeAllocateTicks : Uint8B

 +0x0a8 ResumeUserInOutTicks : Uint8B

 +0x0b0 ResumeMapTicks : Uint8B

 +0x0b8 ResumeUnmapTicks : Uint8B

 +0x0c0 ResumeChecksumTicks : Uint8B

 +0x0c8 ResumeChecksumIoTicks : Uint8B

 +0x0d0 ResumeKernelSwitchTimestamp : Uint8B

 +0x0d8 CyclesPerMs : Uint8B

 +0x0e0 WriteLogDataTimestamp : Uint8B

 +0x0e8 KernelReturnFromHandler : Uint8B

 +0x0f0 TimeStampCounterAtSwitchTime : Uint8B

 +0x0f8 HalTscOffset : Uint8B

 +0x100 HvlTscOffset : Uint8B

 +0x108 SleeperThreadEnd : Uint8B

 +0x110 PostCmosUpdateTimestamp : Uint8B

 +0x118 KernelReturnSystemPowerStateTimestamp : Uint8B

 +0x120 IoBoundedness : Uint8B

 +0x128 KernelDecompressTicks : Uint8B

 +0x130 KernelIoTicks : Uint8B

 +0x138 KernelCopyTicks : Uint8B

 +0x140 ReadCheckCount : Uint8B

 +0x148 KernelInitTicks : Uint8B

 +0x150 KernelResumeHiberFileTicks : Uint8B

 +0x158 KernelIoCpuTicks : Uint8B

 +0x160 KernelSharedBufferTicks : Uint8B

 +0x168 KernelAnimationTicks : Uint8B

 +0x170 KernelChecksumTicks : Uint8B

 +0x178 KernelChecksumIoTicks : Uint8B

 +0x180 AnimationStart : _LARGE_INTEGER

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 u : <unnamed-tag>

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 QuadPart : Int8B

 +0x188 AnimationStop : _LARGE_INTEGER

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 u : <unnamed-tag>

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 QuadPart : Int8B

 +0x190 DeviceResumeTime : Uint4B

 +0x198 SecurePagesProcessed : Uint8B

 +0x1a0 BootPagesProcessed : Uint8B

 +0x1a8 KernelPagesProcessed : Uint8B

140

 +0x1b0 BootBytesWritten : Uint8B

 +0x1b8 KernelBytesWritten : Uint8B

 +0x1c0 BootPagesWritten : Uint8B

 +0x1c8 KernelPagesWritten : Uint8B

 +0x1d0 BytesWritten : Uint8B

 +0x1d8 PagesWritten : Uint4B

 +0x1dc FileRuns : Uint4B

 +0x1e0 NoMultiStageResumeReason : Uint4B

 +0x1e4 MaxHuffRatio : Uint4B

 +0x1e8 AdjustedTotalResumeTime : Uint8B

 +0x1f0 ResumeCompleteTimestamp : Uint8B

 +0x280 FirmwareRuntimeInformationPages : Uint4B

 +0x288 FirmwareRuntimeInformation : [1] Uint8B

 +0x290 SpareUlong : Uint4B

 +0x294 NoBootLoaderLogPages : Uint4B

 +0x298 BootLoaderLogPages : [24] Uint8B

 +0x358 NotUsed : Uint4B

 +0x35c ResumeContextCheck : Uint4B

 +0x360 ResumeContextPages : Uint4B

 +0x364 Hiberboot : UChar

 +0x365 SecureLaunched : UChar

 +0x366 SecureBoot : UChar

 +0x368 HvCr3 : Uint8B

 +0x370 HvEntryPoint : Uint8B

 +0x378 HvReservedTransitionAddress : Uint8B

 +0x380 HvReservedTransitionAddressSize : Uint8B

 +0x388 BootFlags : Uint8B

 +0x390 RestoreProcessorStateRoutine : Uint8B

 +0x398 HighestPhysicalPage : Uint8B

 +0x3a0 BitlockerKeyPfns : [4] Uint8B

 +0x3c0 HardwareSignature : Uint4B

 +0x3c8 SMBiosTablePhysicalAddress : _LARGE_INTEGER

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 u : <unnamed-tag>

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 QuadPart : Int8B

 +0x3d0 SMBiosTableLength : Uint4B

 +0x3d4 SMBiosMajorVersion : UChar

 +0x3d5 SMBiosMinorVersion : UChar

 +0x3d6 HiberResumeXhciHandoffSkip : UChar

 +0x3d7 InitializeUSBCore : UChar

 +0x3d8 ValidUSBCoreId : UChar

 +0x3d9 USBCoreId : UChar

 +0x3da SkipMemoryMapValidation : UChar

Windows 10 versions 1903 and 1909

This output was extracted from a Windows 10 version 1903. We eliminated the output of

Windows 10 version 1909 as both windows version provides the same output.

Microsoft (R) Windows Debugger Version 10.0.18362.1 AMD64

Copyright (c) Microsoft Corporation. All rights reserved.

Connected to Windows 10 18362 x64 target at (Sun Feb 16 01:13:43.373 2020 (UTC + 2:00)), ptr64

TRUE

Symbol search path is: srv*

Executable search path is:

141

Windows 10 Kernel Version 18362 MP (4 procs) Free x64

Product: WinNt, suite: TerminalServer SingleUserTS Personal

Built by: 18362.1.amd64fre.19h1_release.190318-1202

Machine Name:

Kernel base = 0xfffff806`68400000 PsLoadedModuleList = 0xfffff806`68843290

Debug session time: Sun Feb 16 01:13:44.514 2020 (UTC + 2:00)

System Uptime: 5 days 11:12:12.527

lkd> dt -r9 PO_Memory_image

nt!PO_MEMORY_IMAGE

 +0x000 Signature : Uint4B

 +0x004 ImageType : Uint4B

 +0x008 CheckSum : Uint4B

 +0x00c LengthSelf : Uint4B

 +0x010 PageSelf : Uint8B

 +0x018 PageSize : Uint4B

 +0x020 SystemTime : _LARGE_INTEGER

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 u : <anonymous-tag>

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 QuadPart : Int8B

 +0x028 InterruptTime : Uint8B

 +0x030 FeatureFlags : Uint8B

 +0x038 HiberFlags : UChar

 +0x039 spare : [3] UChar

 +0x03c NoHiberPtes : Uint4B

 +0x040 HiberVa : Uint8B

 +0x048 NoFreePages : Uint4B

 +0x04c FreeMapCheck : Uint4B

 +0x050 WakeCheck : Uint4B

 +0x058 NumPagesForLoader : Uint8B

 +0x060 FirstSecureRestorePage : Uint8B

 +0x068 FirstBootRestorePage : Uint8B

 +0x070 FirstKernelRestorePage : Uint8B

 +0x078 FirstChecksumRestorePage : Uint8B

 +0x080 NoChecksumEntries : Uint8B

 +0x088 PerfInfo : _PO_HIBER_PERF

 +0x000 HiberIoTicks : Uint8B

 +0x008 HiberIoCpuTicks : Uint8B

 +0x010 HiberInitTicks : Uint8B

 +0x018 HiberHiberFileTicks : Uint8B

 +0x020 HiberCompressTicks : Uint8B

 +0x028 HiberSharedBufferTicks : Uint8B

 +0x030 HiberChecksumTicks : Uint8B

 +0x038 HiberChecksumIoTicks : Uint8B

 +0x040 TotalHibernateTime : _LARGE_INTEGER

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 u : <anonymous-tag>

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 QuadPart : Int8B

 +0x048 HibernateCompleteTimestamp : _LARGE_INTEGER

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 u : <anonymous-tag>

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 QuadPart : Int8B

142

 +0x050 POSTTime : Uint4B

 +0x054 ResumeBootMgrTime : Uint4B

 +0x058 BootmgrUserInputTime : Uint4B

 +0x060 ResumeAppTicks : Uint8B

 +0x068 ResumeAppStartTimestamp : Uint8B

 +0x070 ResumeLibraryInitTicks : Uint8B

 +0x078 ResumeInitTicks : Uint8B

 +0x080 ResumeRestoreImageStartTimestamp : Uint8B

 +0x088 ResumeHiberFileTicks : Uint8B

 +0x090 ResumeIoTicks : Uint8B

 +0x098 ResumeDecompressTicks : Uint8B

 +0x0a0 ResumeAllocateTicks : Uint8B

 +0x0a8 ResumeUserInOutTicks : Uint8B

 +0x0b0 ResumeMapTicks : Uint8B

 +0x0b8 ResumeUnmapTicks : Uint8B

 +0x0c0 ResumeChecksumTicks : Uint8B

 +0x0c8 ResumeChecksumIoTicks : Uint8B

 +0x0d0 ResumeKernelSwitchTimestamp : Uint8B

 +0x0d8 CyclesPerMs : Uint8B

 +0x0e0 WriteLogDataTimestamp : Uint8B

 +0x0e8 KernelReturnFromHandler : Uint8B

 +0x0f0 TimeStampCounterAtSwitchTime : Uint8B

 +0x0f8 HalTscOffset : Uint8B

 +0x100 HvlTscOffset : Uint8B

 +0x108 SleeperThreadEnd : Uint8B

 +0x110 PostCmosUpdateTimestamp : Uint8B

 +0x118 KernelReturnSystemPowerStateTimestamp : Uint8B

 +0x120 IoBoundedness : Uint8B

 +0x128 KernelDecompressTicks : Uint8B

 +0x130 KernelIoTicks : Uint8B

 +0x138 KernelCopyTicks : Uint8B

 +0x140 ReadCheckCount : Uint8B

 +0x148 KernelInitTicks : Uint8B

 +0x150 KernelResumeHiberFileTicks : Uint8B

 +0x158 KernelIoCpuTicks : Uint8B

 +0x160 KernelSharedBufferTicks : Uint8B

 +0x168 KernelAnimationTicks : Uint8B

 +0x170 KernelChecksumTicks : Uint8B

 +0x178 KernelChecksumIoTicks : Uint8B

 +0x180 AnimationStart : _LARGE_INTEGER

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 u : <anonymous-tag>

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 QuadPart : Int8B

 +0x188 AnimationStop : _LARGE_INTEGER

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 u : <anonymous-tag>

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 QuadPart : Int8B

 +0x190 DeviceResumeTime : Uint4B

 +0x198 SecurePagesProcessed : Uint8B

 +0x1a0 BootPagesProcessed : Uint8B

 +0x1a8 KernelPagesProcessed : Uint8B

 +0x1b0 BootBytesWritten : Uint8B

 +0x1b8 KernelBytesWritten : Uint8B

 +0x1c0 BootPagesWritten : Uint8B

143

 +0x1c8 KernelPagesWritten : Uint8B

 +0x1d0 BytesWritten : Uint8B

 +0x1d8 PagesWritten : Uint4B

 +0x1dc FileRuns : Uint4B

 +0x1e0 NoMultiStageResumeReason : Uint4B

 +0x1e4 MaxHuffRatio : Uint4B

 +0x1e8 AdjustedTotalResumeTime : Uint8B

 +0x1f0 ResumeCompleteTimestamp : Uint8B

 +0x280 FirmwareRuntimeInformationPages : Uint4B

 +0x288 FirmwareRuntimeInformation : [1] Uint8B

 +0x290 SpareUlong : Uint4B

 +0x294 NoBootLoaderLogPages : Uint4B

 +0x298 BootLoaderLogPages : [24] Uint8B

 +0x358 NotUsed : Uint4B

 +0x35c ResumeContextCheck : Uint4B

 +0x360 ResumeContextPages : Uint4B

 +0x364 Hiberboot : UChar

 +0x365 SecureLaunched : UChar

 +0x366 SecureBoot : UChar

 +0x368 HvPageTableRoot : Uint8B

 +0x370 HvEntryPoint : Uint8B

 +0x378 HvReservedTransitionAddress : Uint8B

 +0x380 HvReservedTransitionAddressSize : Uint8B

 +0x388 BootFlags : Uint8B

 +0x390 RestoreProcessorStateRoutine : Uint8B

 +0x398 HighestPhysicalPage : Uint8B

 +0x3a0 BitlockerKeyPfns : [4] Uint8B

 +0x3c0 HardwareSignature : Uint4B

 +0x3c8 SMBiosTablePhysicalAddress : _LARGE_INTEGER

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 u : <anonymous-tag>

 +0x000 LowPart : Uint4B

 +0x004 HighPart : Int4B

 +0x000 QuadPart : Int8B

 +0x3d0 SMBiosTableLength : Uint4B

 +0x3d4 SMBiosMajorVersion : UChar

 +0x3d5 SMBiosMinorVersion : UChar

 +0x3d6 HiberResumeXhciHandoffSkip : UChar

 +0x3d7 InitializeUSBCore : UChar

 +0x3d8 ValidUSBCoreId : UChar

 +0x3d9 USBCoreId : UChar

 +0x3da SkipMemoryMapValidation : UChar

144

Appendix 8 – Comparing the header’s fields across the

versions

Table 27 compare the content of the PO_MEMORY_IMAGE structure for Windows 10 versions

1607,1809,1903,1909. When Mentioning “O:0xxxx” for version 1607, this means that the variable

existed in that versions at this offset.

Table 26. Comparing the content of PO_MEMORY_IMAGE structure.

Offset Offset

from start

of the file

Length Offset content V1607 V1809 V1903 V1909

0x000 0x000 Uint4B Signature ✓ ✓ ✓ ✓

0x004 0x004 Uint4B ImageType ✓ ✓ ✓ ✓

0x008 0x008 Uint4B CheckSum ✓ ✓ ✓ ✓

0x00c 0x00c Uint4B LengthSelf ✓ ✓ ✓ ✓

0x010 0x010 Uint8B PageSelf ✓ ✓ ✓ ✓

0x018 0x018 Uint4B PageSize ✓ ✓ ✓ ✓

0x020 0x020 _LARGE_INTEGER SystemTime ✓ ✓ ✓ ✓

0x028 0x028 Uint8B InterruptTime ✓ ✓ ✓ ✓

0x030 0x030 Uint8B FeatureFlags ✓ ✓ ✓ ✓

0x038 0x038 UChar HiberFlags ✓ ✓ ✓ ✓

0x039 0x039 [3] UChar spare ✓ ✓ ✓ ✓

0x03c 0x03c Uint4B NoHiberPtes ✓ ✓ ✓ ✓

0x040 0x040 Uint8B HiberVa ✓ ✓ ✓ ✓

0x048 0x048 Uint4B NoFreePages ✓ ✓ ✓ ✓

0x04c 0x04c Uint4B FreeMapCheck ✓ ✓ ✓ ✓

0x050 0x050 Uint4B WakeCheck ✓ ✓ ✓ ✓

0x058 0x058 Uint8B NumPagesForLoader ✓ ✓ ✓ ✓

0x060 0x060 Uint8B FirstSecureRestorePage ✓ ✓ ✓ ✓

0x068 0x068 Uint8B FirstBootRestorePage ✓ ✓ ✓ ✓

0x070 0x070 Uint8B FirstKernelRestorePage ✓ ✓ ✓ ✓

0x078 0x078 Uint8B FirstChecksumRestorePage ✓ ✓ ✓ ✓

0x080 0x080 Uint8B NoChecksumEntries ✓ ✓ ✓ ✓

0x088 0x088 _PO_HIBER_PERF PerfInfo ✓ ✓ ✓ ✓

0x280 0x280 Uint4B FirmwareRuntimeInformationPages O: 0x270 ✓ ✓ ✓

0x288 0x288 [1] Uint8B FirmwareRuntimeInformation O: 0x278 ✓ ✓ ✓

0x290 0x290 Uint4B SpareUlong N/A ✓ ✓ ✓

 Uint4B SiLogOffset O: 0x280 N/A N/A N/A

0x294 0x294 Uint4B NoBootLoaderLogPages O: 0x284 ✓ ✓ ✓

0x298 0x298 [24] Uint8B BootLoaderLogPages O: 0x288 ✓ ✓ ✓

0x358 0x358 Uint4B NotUsed O: 0x348 ✓ ✓ ✓

0x35c 0x35c Uint4B ResumeContextCheck O: 0x34c ✓ ✓ ✓

0x360 0x360 Uint4B ResumeContextPages O: 0x350 ✓ ✓ ✓

0x364 0x364 UChar Hiberboot O: 0x354 ✓ ✓ ✓

0x365 0x365 UChar SecureLaunched N/A ✓ ✓ ✓

0x366 0x366 UChar SecureBoot N/A ✓ ✓ ✓

0x368 0x368 Uint8B HvPageTableRoot N/A ✓ N/A N/A

0x368 0x368 Uint8B HvCr3 O: 0x358 N/A ✓ ✓

0x370 0x370 Uint8B HvEntryPoint O: 0x360 ✓ ✓ ✓

0x378 0x378 Uint8B HvReservedTransitionAddress O: 0x368 ✓ ✓ ✓

0x380 0x380 Uint8B HvReservedTransitionAddressSize O: 0x370 ✓ ✓ ✓

0x388 0x388 Uint8B BootFlags O: 0x378 ✓ ✓ ✓

 Uint8B HalEntryPointPhysical O 0x380 N/A N/A N/A

0x390 0x390 Uint8B RestoreProcessorStateRoutine N/A ✓ ✓ ✓

0x398 0x398 Uint8B HighestPhysicalPage O: 0x388 ✓ ✓ ✓

0x3a0 0x3a0 [4] Uint8B BitlockerKeyPfns O: 0x390 ✓ ✓ ✓

0x3c0 0x3c0 Uint4B HardwareSignature O: 0x3b0 ✓ ✓ ✓

0x3c8 0x3c8 _LARGE_INTEGER SMBiosTablePhysicalAddress O: 0x3b8 ✓ ✓ ✓

0x3d0 0x3d0 Uint4B SMBiosTableLength O: 0x3c0 ✓ ✓ ✓

0x3d4 0x3d4 UChar SMBiosMajorVersion O: 0x3c4 ✓ ✓ ✓

0x3d5 0x3d5 UChar SMBiosMinorVersion O: 0x3c5 ✓ ✓ ✓

0x3d6 0x3d6 UChar HiberResumeXhciHandoffSkip N/A ✓ ✓ ✓

0x3d7 0x3d7 UChar InitializeUSBCore N/A ✓ ✓ ✓

0x3d8 0x3d8 UChar ValidUSBCoreId N/A ✓ ✓ ✓

0x3d9 0x3d9 UChar USBCoreId N/A ✓ ✓ ✓

0x3da 0x3da UChar SkipMemoryMapValidation N/A ✓ ✓ ✓

145

Appendix 9 – “ _ KPROCESSOR_STATE” structure

This output was extracted from Windows 10 version 1809. We eliminated the results of

Windows 10 versions 1903 and 1909 as they are the same as the below results.

lkd> dt _Kprocessor_state

nt!_KPROCESSOR_STATE

 +0x000 SpecialRegisters : _KSPECIAL_REGISTERS

 +0x0f0 ContextFrame : _CONTEXT

lkd> dt -b _Kprocessor_state

nt!_KPROCESSOR_STATE

 +0x000 SpecialRegisters : _KSPECIAL_REGISTERS

 +0x000 Cr0 : Uint8B

 +0x008 Cr2 : Uint8B

 +0x010 Cr3 : Uint8B

 +0x018 Cr4 : Uint8B

 +0x020 KernelDr0 : Uint8B

 +0x028 KernelDr1 : Uint8B

 +0x030 KernelDr2 : Uint8B

 +0x038 KernelDr3 : Uint8B

 +0x040 KernelDr6 : Uint8B

 +0x048 KernelDr7 : Uint8B

 +0x050 Gdtr : _KDESCRIPTOR

 +0x000 Pad : Uint2B

 +0x006 Limit : Uint2B

 +0x008 Base : Ptr64

 +0x060 Idtr : _KDESCRIPTOR

 +0x000 Pad : Uint2B

 +0x006 Limit : Uint2B

 +0x008 Base : Ptr64

 +0x070 Tr : Uint2B

 +0x072 Ldtr : Uint2B

 +0x074 MxCsr : Uint4B

 +0x078 DebugControl : Uint8B

 +0x080 LastBranchToRip : Uint8B

 +0x088 LastBranchFromRip : Uint8B

 +0x090 LastExceptionToRip : Uint8B

 +0x098 LastExceptionFromRip : Uint8B

 +0x0a0 Cr8 : Uint8B

 +0x0a8 MsrGsBase : Uint8B

 +0x0b0 MsrGsSwap : Uint8B

 +0x0b8 MsrStar : Uint8B

 +0x0c0 MsrLStar : Uint8B

 +0x0c8 MsrCStar : Uint8B

 +0x0d0 MsrSyscallMask : Uint8B

 +0x0d8 Xcr0 : Uint8B

 +0x0e0 MsrFsBase : Uint8B

 +0x0e8 SpecialPadding0 : Uint8B

 +0x0f0 ContextFrame : _CONTEXT

 +0x000 P1Home : Uint8B

 +0x008 P2Home : Uint8B

 +0x010 P3Home : Uint8B

 +0x018 P4Home : Uint8B

 +0x020 P5Home : Uint8B

 +0x028 P6Home : Uint8B

 +0x030 ContextFlags : Uint4B

146

 +0x034 MxCsr : Uint4B

 +0x038 SegCs : Uint2B

 +0x03a SegDs : Uint2B

 +0x03c SegEs : Uint2B

 +0x03e SegFs : Uint2B

 +0x040 SegGs : Uint2B

 +0x042 SegSs : Uint2B

 +0x044 EFlags : Uint4B

 +0x048 Dr0 : Uint8B

 +0x050 Dr1 : Uint8B

 +0x058 Dr2 : Uint8B

 +0x060 Dr3 : Uint8B

 +0x068 Dr6 : Uint8B

 +0x070 Dr7 : Uint8B

 +0x078 Rax : Uint8B

 +0x080 Rcx : Uint8B

 +0x088 Rdx : Uint8B

 +0x090 Rbx : Uint8B

 +0x098 Rsp : Uint8B

 +0x0a0 Rbp : Uint8B

 +0x0a8 Rsi : Uint8B

 +0x0b0 Rdi : Uint8B

 +0x0b8 R8 : Uint8B

 +0x0c0 R9 : Uint8B

 +0x0c8 R10 : Uint8B

 +0x0d0 R11 : Uint8B

 +0x0d8 R12 : Uint8B

 +0x0e0 R13 : Uint8B

 +0x0e8 R14 : Uint8B

 +0x0f0 R15 : Uint8B

 +0x0f8 Rip : Uint8B

 +0x100 FltSave : _XSAVE_FORMAT

 +0x000 ControlWord : Uint2B

 +0x002 StatusWord : Uint2B

 +0x004 TagWord : UChar

 +0x005 Reserved1 : UChar

 +0x006 ErrorOpcode : Uint2B

 +0x008 ErrorOffset : Uint4B

 +0x00c ErrorSelector : Uint2B

 +0x00e Reserved2 : Uint2B

 +0x010 DataOffset : Uint4B

 +0x014 DataSelector : Uint2B

 +0x016 Reserved3 : Uint2B

 +0x018 MxCsr : Uint4B

 +0x01c MxCsr_Mask : Uint4B

 +0x020 FloatRegisters : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x0a0 XmmRegisters : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x1a0 Reserved4 : UChar

 +0x100 Header : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x120 Legacy : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x1a0 Xmm0 : _M128A

 +0x000 Low : Uint8B

147

 +0x008 High : Int8B

 +0x1b0 Xmm1 : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x1c0 Xmm2 : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x1d0 Xmm3 : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x1e0 Xmm4 : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x1f0 Xmm5 : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x200 Xmm6 : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x210 Xmm7 : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x220 Xmm8 : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x230 Xmm9 : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x240 Xmm10 : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x250 Xmm11 : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x260 Xmm12 : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x270 Xmm13 : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x280 Xmm14 : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x290 Xmm15 : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x300 VectorRegister : _M128A

 +0x000 Low : Uint8B

 +0x008 High : Int8B

 +0x4a0 VectorControl : Uint8B

 +0x4a8 DebugControl : Uint8B

 +0x4b0 LastBranchToRip : Uint8B

 +0x4b8 LastBranchFromRip : Uint8B

 +0x4c0 LastExceptionToRip : Uint8B

 +0x4c8 LastExceptionFromRip : Uint8B

148

Appendix 10 – Comparing the processor context field’s names

Tables 28 and 29 compare the content of the process context page across Windows 10

versions 1607, 1809, 1903, 1909.

Table 27. Content of the _KSPECIAL_REGISTERS structure (without recursion).

Offset Offset from

beginning of

the file

Length Offset content Version

1607

Version

1809

Version

1903

Version

1909

+0x000 +0x1000 Uint8B Cr0 ✓ ✓ ✓ ✓

+0x008 +0x1008 Uint8B Cr2 ✓ ✓ ✓ ✓

+0x010 +0x1010 Uint8B Cr3 ✓ ✓ ✓ ✓

+0x018 +0x1018 Uint8B Cr4 ✓ ✓ ✓ ✓

+0x020 +0x1020 Uint8B KernelDr0 ✓ ✓ ✓ ✓

+0x028 +0x1028 Uint8B KernelDr1 ✓ ✓ ✓ ✓

+0x030 +0x1030 Uint8B KernelDr2 ✓ ✓ ✓ ✓

+0x038 +0x1038 Uint8B KernelDr3 ✓ ✓ ✓ ✓

+0x040 +0x1040 Uint8B KernelDr6 ✓ ✓ ✓ ✓

+0x048 +0x1048 Uint8B KernelDr7 ✓ ✓ ✓ ✓

+0x050 +0x1050 _KDESCRIPTOR Gdtr ✓ ✓ ✓ ✓

+0x060 +0x1060 _KDESCRIPTOR Idtr ✓ ✓ ✓ ✓

+0x070 +0x1070 Uint2B Tr ✓ ✓ ✓ ✓

+0x072 +0x1072 Uint2B Ldtr ✓ ✓ ✓ ✓

+0x074 +0x1074 Uint4B MxCsr ✓ ✓ ✓ ✓

+0x078 +0x1078 Uint8B DebugControl ✓ ✓ ✓ ✓

+0x080 +0x1080 Uint8B LastBranchToRip ✓ ✓ ✓ ✓

+0x088 +0x1088 Uint8B LastBranchFromRip ✓ ✓ ✓ ✓

+0x090 +0x1090 Uint8B LastExceptionToRip ✓ ✓ ✓ ✓

+0x098 +0x1098 Uint8B LastExceptionFromRip ✓ ✓ ✓ ✓

+0x0a0 +0x10a0 Uint8B Cr8 ✓ ✓ ✓ ✓

+0x0a8 +0x10a8 Uint8B MsrGsBase ✓ ✓ ✓ ✓

+0x0b0 +0x10b0 Uint8B MsrGsSwap ✓ ✓ ✓ ✓

+0x0b8 +0x10b8 Uint8B MsrStar ✓ ✓ ✓ ✓

+0x0c0 +0x10c0 Uint8B MsrLStar ✓ ✓ ✓ ✓

+0x0c8 +0x10c8 Uint8B MsrCStar ✓ ✓ ✓ ✓

+0x0d0 +0x10d0 Uint8B MsrSyscallMask ✓ ✓ ✓ ✓

+0x0d8 +0x10d8 Uint8B Xcr0 ✓ ✓ ✓ ✓

+0x0e0 +0x10e0 Uint8B MsrFsBase N/A ✓ ✓ ✓

+0x0e8 +0x10e8 Uint8B SpecialPadding0 N/A ✓ ✓ ✓

149

Table 28. “ _CONTEXT” structure (without recursion).

Offset Length Offset content V1607 V1809 V1903 V1909

+0x000 Uint8B P1Home ✓ ✓ ✓ ✓

+0x008 Uint8B P2Home ✓ ✓ ✓ ✓

+0x010 Uint8B P3Home ✓ ✓ ✓ ✓

+0x018 Uint8B P4Home ✓ ✓ ✓ ✓

+0x020 Uint8B P5Home ✓ ✓ ✓ ✓

+0x028 Uint8B P6Home ✓ ✓ ✓ ✓

+0x030 Uint4B ContextFlags ✓ ✓ ✓ ✓

+0x034 Uint4B MxCsr ✓ ✓ ✓ ✓

+0x038 Uint2B SegCs ✓ ✓ ✓ ✓

+0x03a Uint2B SegDs ✓ ✓ ✓ ✓

+0x03c Uint2B SegEs ✓ ✓ ✓ ✓

+0x03e Uint2B SegFs ✓ ✓ ✓ ✓

+0x040 Uint2B SegGs ✓ ✓ ✓ ✓

+0x042 Uint2B SegSs ✓ ✓ ✓ ✓

+0x044 Uint4B EFlags ✓ ✓ ✓ ✓

+0x048 Uint8B Dr0 ✓ ✓ ✓ ✓

+0x050 Uint8B Dr1 ✓ ✓ ✓ ✓

+0x058 Uint8B Dr2 ✓ ✓ ✓ ✓

+0x060 Uint8B Dr3 ✓ ✓ ✓ ✓

+0x068 Uint8B Dr6 ✓ ✓ ✓ ✓

+0x070 Uint8B Dr7 ✓ ✓ ✓ ✓

+0x078 Uint8B Rax ✓ ✓ ✓ ✓

+0x080 Uint8B Rcx ✓ ✓ ✓ ✓

+0x088 Uint8B Rdx ✓ ✓ ✓ ✓

+0x090 Uint8B Rbx ✓ ✓ ✓ ✓

+0x098 Uint8B Rsp ✓ ✓ ✓ ✓

+0x0a0 Uint8B Rbp ✓ ✓ ✓ ✓

+0x0a8 Uint8B Rsi ✓ ✓ ✓ ✓

+0x0b0 Uint8B Rdi ✓ ✓ ✓ ✓

+0x0b8 Uint8B R8 ✓ ✓ ✓ ✓

+0x0c0 Uint8B R9 ✓ ✓ ✓ ✓

+0x0c8 Uint8B R10 ✓ ✓ ✓ ✓

+0x0d0 Uint8B R11 ✓ ✓ ✓ ✓

+0x0d8 Uint8B R12 ✓ ✓ ✓ ✓

+0x0e0 Uint8B R13 ✓ ✓ ✓ ✓

+0x0e8 Uint8B R14 ✓ ✓ ✓ ✓

+0x0f0 Uint8B R15 ✓ ✓ ✓ ✓

+0x0f8 Uint8B Rip ✓ ✓ ✓ ✓

+0x100 _XSAVE_FORMAT FltSave ✓ ✓ ✓ ✓

+0x100 [2] _M128A Header ✓ ✓ ✓ ✓

+0x120 [8] _M128A Legacy ✓ ✓ ✓ ✓

+0x1a0 _M128A Xmm0 ✓ ✓ ✓ ✓

+0x1b0 _M128A Xmm1 ✓ ✓ ✓ ✓

+0x1c0 _M128A Xmm2 ✓ ✓ ✓ ✓

+0x1d0 _M128A Xmm3 ✓ ✓ ✓ ✓

+0x1e0 _M128A Xmm4 ✓ ✓ ✓ ✓

+0x1f0 _M128A Xmm5 ✓ ✓ ✓ ✓

+0x200 _M128A Xmm6 ✓ ✓ ✓ ✓

+0x210 _M128A Xmm7 ✓ ✓ ✓ ✓

+0x220 _M128A Xmm8 ✓ ✓ ✓ ✓

 +0x230 _M128A Xmm9 ✓ ✓ ✓ ✓

+0x240 _M128A Xmm10 ✓ ✓ ✓ ✓

+0x250 _M128A Xmm11 ✓ ✓ ✓ ✓

+0x260 _M128A Xmm12 ✓ ✓ ✓ ✓

+0x270 _M128A Xmm13 ✓ ✓ ✓ ✓

+0x280 _M128A Xmm14 ✓ ✓ ✓ ✓

+0x290 _M128A Xmm15 ✓ ✓ ✓ ✓

+0x300 [26] _M128A VectorRegister ✓ ✓ ✓ ✓

+0x4a0 Uint8B VectorControl ✓ ✓ ✓ ✓

+0x4a8 Uint8B DebugControl ✓ ✓ ✓ ✓

+0x4b0 Uint8B LastBranchToRip ✓ ✓ ✓ ✓

+0x4b8 Uint8B LastBranchFromRip ✓ ✓ ✓ ✓

+0x4c0 Uint8B LastExceptionToRip ✓ ✓ ✓ ✓

+0x4c8 Uint8B LastExceptionFromRip ✓ ✓ ✓ ✓

150

Appendix 11 – Comparison between Hibr2Bin and the free

mode of Hibernation Recon

Table 29. Comparison between Hibr2Bin and the free mode of Hibernation Recon.

 Hibr2Bin Hibernation Recon (Free

mode)

Tool Layout CLI GUI, and CLI

Automatic detection of

Windows version profile

N/a Available

CLI Trace options No specific options Trace options in CLI: no

messages, errors, warnings,

informational and verbose

Output file • Single binary file for the

decompressed hibernation

file

• Binary file for decompressed

Active memory

• One or more binary files for

Slack data

Showing the time taken for

file conversion

N/A Available in GUI and CLI

We also noticed a minor difference in conversion time between both tools, to the favor of

Hibernation Recon. Hibernation Recon provides some statistics about the content of the

file, even when using free mode.

Figure 63. Example of statistics shown by the free mode of Hibernation Recon CLI.

It is to be mentioned that both tools do not proceed with hibernation files with “WAKE”

signatures, as such files do not contain memory pages. Both tools provide a notification

that the file has a “WAKE” signature.

151

Appendix 12 – List of successfully tested Volatility plugins

The plugins mentioned in tables 30, were successfully tested on decompressed hibernation files

of Windows 10 version 1809 , 1903. For v1909, it was successfully tested using Volatility profile

for Win10x64_18362.

 Table 30. List of Volatility plugins successfully tested on Test case D files.

Plugin category [84] Plugin name Description[39]

Image Identification imageinfo Identify information for the image

kdbgscan Search for and dump potential KDBG values

Processes and DLLs pslist Print all running processes by following the EPROCESS lists

psscan Pool scanner for process objects

pstree Print process list as a tree

psxview Find hidden processes with various process listings

dlllist Print list of loaded DLLs for each process

dlldump Dump DLLs from a process address space

envars Display process environment variables

verinfo Prints out the version information from PE images

ldrmodules Detect unlinked DLLs

apihooks Detect API hooks in process and kernel memory

Process Memory memmap Print the memory map

memdump Dump the addressable memory for a process

procdump Dump a process to an executable file sample

vadinfo Dump the VAD info

vadtree Walk the VAD tree and display in tree format

vadwalk Walk the VAD tree

vaddump Dumps out the vad sections to a file

Kernel Memory and

Objects

moddump Dump a kernel driver to an executable file sample

modscan Pool scanner for kernel modules

modules Print list of loaded modules

ssdt Display SSDT entries

threads Investigate _ETHREAD and _KTHREADs

thrdscan Pool scanner for thread objects

driverscan Pool scanner for driver objects

filescan Pool scanner for file objects

mutantscan Pool scanner for mutex objects

dumpfiles Extract memory mapped and cached files

Registry getservicesids Get the names of services in the Registry and return Calculated SID

Networking netscan Scan a Vista (or later) image for connections and sockets

File System mftparser Scans for and parses potential MFT entries

Miscellaneous timeliner Creates a timeline from various artifacts in memory

bigpools Dump the big page pools using BigPagePoolScanner

callbacks Print system-wide notification routines

cmdline Display process command-line arguments

devicetree Show device tree

drivermodule Associate driver objects to kernel modules

driverscan Pool scanner for driver objects

joblinks Print process job link information

objtypescan Scan for Windows object type objects

pooltracker Show a summary of pool tag usage

filescan Pool scanner for file objects

timeliner Creates a timeline from various artifacts in memory

timers Print kernel timers and associated module DPCs modules

devicetree Show device tree

hivescan Pool scanner for registry hives

hivelist Print list of registry hives.

