

Kütuste väävlisisalduse vähendamise kineetiline uuring ja parameetrite optimeerimine metallorgaaniliste struktuuri (MOF) abil

Kinetic Study and Parameter Optimization of Fuel Desulfurization using metal-organic frameworks (MOF-s)

KEEMIATEHNOLOOGIA ÕPPEKAVA LÕPUTÖÖ

Üliõpilane: Deniss Panov Üliõpilaskood: 183418EDKR Juhendaja: A. Niidu, PhD, professor Kaasjuhendaja: B. Barghi, doktorant

Kohtla-Järve, 2022

AUTORIDEKLARATSIOON

Olen koostanud lõputöö iseseisvalt.

Lõputöö alusel ei ole varem kutse- või teaduskraadi või inseneridiplomit taotletud. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad, kirjandusallikatest ja mujalt pärinevad andmed on viidatud.

"…." …… 2022.

Autor: Deniss Panov. / allkiri /

Juhendaja: Allan Niidu / allkiri /

Kaasjuhendaja: Bijan Barghi / allkiri /

Kaitsmisele lubatud 09.06.2022

Kaitsmiskomisjoni esimees Antonina Zguro / nimi ja allkiri /

LIHTLITSENTS LÕPUTÖÖ ÜLDSUSELE KÄTTESAADAVAKS TEGEMISEKS JA REPRODUTSEERIMISEKS

Mina Deniss Panov (sünnikuupäev: 01.04.1999)

1. Annan Tallinna Tehnikaülikoolile tasuta loa (lihtlitsentsi) enda loodud teose "Kütuste väävlisisalduse vähendamise kineetiline uuring ja parameetrite optimeerimine metallorgaaniliste struktuuri (MOF) abil", mille juhendaja on Allan Niidu,

1.1. reprodutseerimiseks säilitamise ja elektroonilise avaldamise eesmärgil, sealhulgas Tallinna Tehnikaülikooli raamatukogu digikogusse lisamise eesmärgil kuni autoriõiguse kehtivuse tähtaja lõppemiseni;

1.2. üldsusele kättesaadavaks tegemiseks Tallinna Tehnikaülikooli veebikeskkonna kaudu, sealhulgas Tallinna Tehnikaülikooli raamatukogu digikogu kaudu kuni autoriõiguse kehtivuse tähtaja lõppemiseni.

- 2. Olen teadlik, et punktis 1 nimetatud õigused jäävad alles ka autorile.
- 3. Kinnitan, et lihtlitsentsi andmisega ei rikuta kolmandate isikute intellektuaalomandi ega isikuandmete kaitse seadusest ja teistest õigusaktidest tulenevaid õigusi.

TalTech Inseneriteaduskond Virumaa kolledž LÕPUTÖÖ ÜLESANNE

Üliõpilane: Deniss Panov, 183418EDKR

Õppekava: EDKR16/17, keemiatehnoloogia

Juhendaja(d): Allan Niidu, professor

Kaasjuhendaja: Bijan Barghi, doktorant-nooremteadur

Lõputöö teema:

(eesti keeles) Kütuste väävlisisalduse vähendamise kineetiline uuring ja parameetrite optimeerimine metallorgaaniliste struktuuri (MOF) abil

(inglise keeles) Kinetic Study and Parameter Optimization of Fuel Desulfurization using metal-organic frameworks (MOF-s)

Lõputöö põhieesmärgid:

- 1. Sünteesida UiO-materjalid
- 2. Uurida kütuste väävlisisalduse vähendamist MOF-ide abil

3. Luua väävli oksüdatsiooni ja adsorptiooni kineetiline mudel ning uurida parameetrite optimeerimist

Lõputöö etapid ja ajakava:

Nr	Ülesande kirjeldus	Tähtaeg
1.	Sünteesi/Modelleerimise meetodi valimine	02.2022
2.	Eksperimentaalne osa, kütuste väävlisisalduse vähendamine metallorgaaniliste struktuuri abil	03.2022
3.	Mudeli koostamine ja optimeerimine	04.2022
5.	Lõputöö esitamine	05.2022

Töökeel: eesti 15.05.2022.a
Üliõpilane: Deniss Panov2022.a
/allkiri/
Juhendaja: Allan Niidu2022.a
/allkiri/
Kaasjuhendaja: Bijan Barghi2022.a
/allkiri/
Programmijuht: Antonina Zguro
/allkiri/

SISUKORD

EESSÕNA	7
SISSEJUHATUS	8
1. KÜTUSE DESULFUREERIMINE	10
2. LINEAARSE MUDELI DISAIN, ADSORPTSIOONI ISOTERMID	14
2.1. Lineaarne kuju: I tüüpi pseudo teist järku vorm	15
2.2. Lineaarne kuju: II tüüpi pseudo teist järku vorm	18
2.3. Lineaarne kuju: III tüüpi pseudo teist järku vorm	21
2.4. Lineaarne kuju: IV tüüpi pseudo teist järku vorm	24
2.5. Lineaarne kuju: V tüüpi pseudo teist järku vorm	27
2.6. Lineaarne kuju: VI tüüpi pseudo teist järku vorm	30
2.7. Lineaarne kuju: Osakeste sisene diffusioon	33
2.8. Lineaarne kuju: Nulljärku vorm	36
2.9. Lineaarne kuju: Esimest järku vorm	39
3. PARAMEETRITE UURIMINE JA OPTIMEERIMINE MARKOVI AHELA MONTE CARLO MEETODI ABIL	43
3.1. Parameetrite uuring: I tüüpi pseudo teist järku vorm	44
3.2. Parameetrite uuring: II tüüpi pseudo teist järku vorm	46
3.3. Parameetrite uuring: III tüüpi pseudo teist järku vorm	47
3.4. Parameetrite uuring: IV tüüpi pseudo teist järku vorm	49
3.5. Parameetrite uuring: V tüüpi pseudo teist järku vorm	51
3.6. Parameetrite uuring: VI tüüpi pseudo teist järku vorm	53
3.7. Parameetrite uuring: Osakeste sisene diffusioon	55
3.8. Parameetrite uuring: Nulljärku vorm	56
3.9. Parameetrite uuring: Esimest järku vorm	58
KOKKUVÕTE	61
SUMMARY	62
KASUTATUD KIRJANDUS	64

EESSÕNA

Käesolev lõputöö viidi läbi ja oli tehtud TalTech Virumaa Kolledži teadus- ja arenduskeskuses Põlevkivi Kompetentsikeskus. Lõputöö teema on tihedalt seotud metallorgaaniliste struktuuride uurimisega, mis kujutab endast professor Allan Niidu rakenduskeemia uurimisrühma olulist huvi. Lõputöö teema pakkus välja doktorant ja uurimisrühma liige Bijan Barghi, kes sõnastas ka uuringu peamised eesmärgid ja meetodid. Uuringuks vajalikud materjalid ja seadmed olid olemas samas laboratooriumis, kus viidi läbi uuringu praktiline eksperimentaalne osa. Suur tänu kõigile projekti liikmetele, kes tegid uuringu võimalikuks.

Võtmesõnad: metallorgaanilised struktuurid, desulfureerimine, kineetiline uuring, kineetiline modelleerimine, Markovi ahela Monte Carlo, diplomitöö.

SISSEJUHATUS

Kui märkimisväärne osa teadusmaailmast uurib võimalusi taastuvate energiaallikate rakendamiseks tööstusprotsessides ja meie igapäevaeluses, siis teine osa teaduslikest jõupingutustest keskendub võimaluste uurimisele, kuidas muuta praegu olemasolevad energiaallikad keskkonna ja tarbijate jaoks ohutuks. Kütused kujutavad endast probleemi, kuna vedelkütused sisaldavad mitmesuguseid ühendeid, mis süttimisel eraldavad atmosfääri keskkonda saastavaid kemikaale, eriti väävlit sisaldavaid ühendeid [1]. Uuritakse võimalust vähendada väävlisisaldust kütustes, kasutades selleks metallorgaanilisi struktuure (metal organic frameworks, MOF), ning uuritakse väävliärastusreaktsioonide kineetikat.

Metallorgaanilised struktuurid (MOF) on mitmekülgse struktuuriga ühendid, millel on mitmesuguseid praktilisi rakendusvõimalusi erinevates protsessides. Käesolevas uuringus keskendume MOFide poorse struktuuri tõttu nende adsorptiivsetele omadustele ja arvutatavusele oksüdatiivse desulfureerimisprotsessiga. On teada, et neid ühendeid kasutatakse adsorbentidena paljude erinevate komponentide jaoks, mis hõlmavad süsinikdioksiidi (CO2), lämmastikku (N2), väävlit (S) jne [2, 3]. Antud omadustega kasutatakse erinevaid MOF-e adsorptiivseteks lahutamisteks ja nende tõhusus sõltub võrestruktuurist [4].

Eksperimentaalse osa jaoks tuleks väävlit sisaldavad ühendid proovikütustest eemaldada MOF-katalüsaatorite abil. Selleks tuleks valida sobivad menetlused, uurimismeetodid ja katalüsaatorid.

Teine oluline praktiline ülesanne, mis uuringu jaoks püstitati, oli kineetiliste mudelite kavandamine ja loomine, väävlitustamise protsessi simuleerimine ja kirjeldamine. Keemiatehnoloogias kasutatakse kineetilisi mudeleid reaktsioonide kirjeldamiseks, mis võimaldavad eksperimentaalsetest andmetest saadud kineetiliste kiiruse avaldiste abil protsesse matemaatiliselt simuleerida. Kineetilised mudelid annavad olulist teavet kineetiliste mehhanismide kohta, et kirjeldada reaktsiooniprotsesse, mida omakorda saab kasutada reaktsioonide kavandamiseks, hindamiseks ja optimeerimiseks.

Antud töös rakendatakse kineetiliste mudelite analüüsi erimeetodit, nimelt Markovi ahela Monte Carlo (Markov Chain Monte Carlo, MCMC) analüüsi, mille abil on võimalik kindlaks teha simuleeritud kineetiliste mudelite täpsus. MCMC-analüüsi kood oli autori poolt kirjutatud programmiga MATLAB.

8

Lõputöö koosneb kolmest peamisest osast. Esimeses osas keskendutakse desulfureerimise protsessi teooriale ja eksperimentaalsele osale, kus viiakse kirjeldatud meetodite abil läbi desulfureerimise protsess ise. Teises osas uuritakse kineetiliste mudelite kavandamiseks vajalikke adsorptiivseid isotermineid. Kolmandas osas viiakse läbi adsorptiivsete isotermide parameetrite täpsusanalüüs.

1. KÜTUSE DESULFUREERIMINE

Märkimisväärset tähelepanu on pööratud praegu kättesaadavate kütuste kasutamise optimeerimisele, et vähendada tekkiva saaste hulka ja suurendada mootori tõhusust. Üks tavalistes põletuskütustes sageli esinev komponent on väävel. Just selle keemilise elemendi puhul on oht, et kütuse põletamise tulemusena tekib SOx-gaas. Selleks, et vähendada väävli hulka põlevates kütustes, on uuritud ja kaalutud kütusetöötlusmeetodeid, et analüüsida, kuidas need meetodid mõjutavad kütuste kvaliteeti [4].

Paljud uuringud olid pühendatud väävli eemaldamise võimalike meetodite uurimisele, mis on suunatud väävlit sisaldavatele ühenditele, nagu tiofeen, dibensotiofeen, 4,6dimetüüldibenotiofeen, benso[b]tiofeen ja 2-metüülbensotiasool. Samuti on oluline, et lisandid ei oleks edukalt suunatud mitte ainult märkimisväärsele hulgale väävlit sisaldavatele ühenditele, vaid ka oluline leida lisandid, mis toimiksid tõhusalt mitmesugustes tingimustes, näiteks alkoholipõhiste kütuselisandite olemasolu, mis on mõeldud kütuse jõudluse suurendamiseks [5].

Hüdrodesulfureerimine (HDS) on praegu kõige enam kasutatav meetod väävliühendite eemaldamiseks kütustest tööstuses [6], kuid seda ei peeta nii tõhusaks planaarsete väävlit sisaldavate ühendite, näiteks bensotiofeeni ja dibensotiofeeni puhul, samuti nõuab protsess suuri reaktoreid ja kõrge temperatuuri ja vesinikurõhu suhtes väga vastupidavaid katalüsaatoreid [7]. Uuritud alternatiivsete võimaluste hulgas on kaalutud oksüdatiivset desulfureerimist (ODS), kuna seda protsessi saab läbi viia katalüsaatorile suhteliselt vähem rasketes tingimustes, välditakse vesiniku kasutamist, mistõttu on protsess keskkonnale ohutum. ODS-reaktsioonis, kui väävlit sisaldavaid ühendeid oksüdeeritakse, paraneb katalüsaatorite võime eemaldada väävlit, kuna väävliühendid muudetakse kõrge polaarsusega sulfoksiidideks ja sulfoonideks, mida saab seejärel polaarse lahustiga eemaldada [7].

Metallorgaanilised struktuure (MOF) on pakutud lahendusena osoonikihti kahjutustamise probleemidele. Tänu suurele poorsusele ja potentsiaalsele kasutamisele adsorbentidena vedelas faasis on MOF-e peetud suuresti potentsiaalseteks adsorbentideks spetsiaalselt oksüdatiivsete desulfureerimisprotsesside jaoks.

Nagu eelnevalt märgitud, kujutavad metallorgaanilised võred endast võimalikku lahendust oksüdatiivse desulfureerimise tehnoloogiate arendamiseks, kuna nad näitavad arvestatavaid väävli eemaldamise tulemusi reaktoritingimustes. Siiski ei saa kõik MOFid

10

toimida katalüsaatorina oksüdeerija aktiveerimisel, kuna erinevatel MOFidel on erinevad struktuursed omadused, mis tekitab erinevusi termilise ja keemilise stabiilsuse osas. Käesoleva uuringu jaoks valiti UiO-66, UiO-66-NH₂ ja UiO-66-OH, kuna laboris on olemas vahendid ja materjalid kõigi kolme katalüsaatori sünteesiks, samuti on need näidanud struktuurilist stabiilsust oksüdatiivse desulfureerimise tingimustes ja on teadaolevalt andnud häid tulemusi väävli redutseerimisel [8].

UiO-66 (C₄₈H₂₈O₃₂Zr₆) on prototüüpiline tsirkoonium-metallorgaaniline võrestruktuur, mille peamine omadus on erakordne stabiilsus, mida tavaliselt ei leidu tavalistes poorsetes MOFides. Ühendatud raamistik on moodustatud 12 orgaanilise linkeri abil iga Zr-metalli keskuse ümber [9].

Nii UiO-66-OH kui ka UiO-66-NH₂ on UiO-66-ga sarnased tsirkooniumipõhised metallorgaanilised raamiühendid.

1.1. UiO-66, UiO-66-NH₂ ja UiO-66-OH katalüsaatorite sünteesiprotseduur

UiO-tüüpi metallorgaanilised võred sünteesiti laboratoorselt, kasutades järgmist üldist protseduuri [10]. Kõiki materjale kasutati nii, nagu need saadi, kasutatud reaktiivid ja kogused on loetletud alljärgnevas tabelis.

Sünteesiks vajalikud katsematerjalid [7]: Tsirkoonium(IV)kloriid (ZrCl4, 98%, Acros), 2aminotereftaalhape (99%, Acros), tereftaalhape (99%, Acros), 2-hüdroksütereftaalhape (98%, Acros), soolhape (HCl, 36%, Honeywell), N,N-dimetüülformamiid (DMF, 99,5%, Fisher), etanool (C₂H₅OH, 99. 9%, Honeywell), atsetonitriil (99. 9%, Honeywell), ndodekaan (99%, Alfa Aesar), vesinikperoksiid (H₂O₂, 30%, Alfa Aesar), n-dodekaan (99%, Alfa Aesar), tiofen (99%, Acros), dibensotiofen (98%, Acros), 2-metüülbensotiasool (99%, Acros), 4,6-dimetüüldibensotiofen (97%, Alfa Aesar).

UiO-materjalide proovid sünteesiti laboratooriumis vastavalt allpool kirjeldatud üldisele meetodile, kasutades tabelis 1.1 loetletud reaktiive ja koguseid.

	Ligandi mass (mg)	ZrCl4-i mass (mg)	HCI-i maht (ml)	DMF-i maht (ml)	Viaalide suurus (dram)	Aktiveerimise temperatuur (°C)
UiO-66	124	127,5	1	15	8	150
UiO-66-NH ₂	134	127,5	1	15	8	150
UiO-66-OH	135	127,5	1	15	8	150

Tabel 1.1 UiO-66, UiO-66-NH₂ ja UiO-66-OH sünteesi üldmenetlus.

Iga katalüsaatori valmistamiseks kasutatud ligandid:

- UiO-66-i jaoks: tereftaalhapet (99%)
- UiO-66-NH₂-i jaoks: 2-aminotereftaalhapet (99%)
- UiO-66-OH-i jaoks: 2-hüdroksütereftaalhapet (98%)

Vastavad ligandid segati 127,5 mg ZrCl4 (98%), millele lisati 1 ml kontsentreeritud HCl ja 15 ml N,N-dimetüülformadiidi (DMF) segu. Järgnes 30-minutiline sonikatsioon.

Pärast sonikatsiooni kuumutati kõiki proove üleöö 80°C -temperatuuril juures (BPDC ei olnud nendes tingimustes täielikult lahustuv). Saadud tahke aine filtreeriti seejärel üle peene friti ja pesti esmalt N,N-dimetüülformadiidiga (2x 30 ml) ja seejärel EtOH-ga (3x 30 ml). Proovi filtreeriti mitu tundi, et eemaldada kogu järelejäänud lahusti. Proovid aktiveeriti, kuumutades neid esmalt vaakumis 90°C-ni, kuni saavutati rõhk 100 mtorr.

1.2. Oksüdatiivne desulfureerimise protsess

Katalüütilise oksüdatiivse väävlitustamise jaoks kasutati klaasist 6-drammist partiireaktorit. Partiireaktor oli varustatud termomeetri, magnetilise segisti ja temperatuurikontrolliga õlivanniga. Polaarse faasi jaoks lisati reaktorisse 6 ml atsetonitriili, kütusefaasi (MFM) jaoks lisati reaktorisse 6 ml n-dodekaani lahust 1000 ppm dibensotiofeeniga. Temperatuuriks määrati 70°C, lisati teatav kogus vesinikperoksiidi atmosfäärirõhul. Seguri kiiruse väärtuseks määrati 600rpm, et suurendada kiirust ja massiülekande tõhusust, mis omakorda aitab kaasa väävlitustamisprotsessile. Katse käigus keskendusime kolme reaktsiooni määrava teguri uurimisele: reaktsioonitemperatuur, oksüdeerija massi suhe väävli üldkogusesse proovides ja see, kui palju MOF-i reaktsioonis kasutati. Reaktsiooni jälgiti 300 minutit, kusjuures temperatuur püsis selle aja jooksul 70°C juures. Tabelis 1.2 on esitatud kütuse valimi valikud antud ajaperioodidel.

Katalüsaatori nimi	Temperatuur (℃)	Aeg (min)
UIO66	70	20
UIO66-NH ₂	70	20
UIO66-OH	70	20
UIO66	70	40
UIO66-NH ₂	70	40
UIO66-OH	70	40
UIO66	70	60

Tabel 1.2 Proovivalimiste graafik.

Katalüsaatori nimi	Temperatuur (℃)	Aeg (min)
UIO66-NH ₂	70	60
UIO66-OH	70	60
UIO66	70	90
UIO66-NH ₂	70	90
UIO66-OH	70	90
UIO66	70	120
UIO66-NH ₂	70	120
UIO66-OH	70	120
UIO66	70	150
UIO66-NH ₂	70	150
UIO66-OH	70	150
UIO66	70	300
UIO66-NH ₂	70	300
UIO66-OH	70	300

Pärast katseosa lõpetamist säilitati kütuseproovid teatud aja jooksul, et proovide sisu saaks analüüsida gaasikromatograafi massispektromeetriga Shimadzu QP2010 plus, et uurida dibensotiofeeni muundumist eri ajavahemikel, kusjuures dibensotiofeen on uuringu sihtkomponent, kui viidatakse väävli reduktsiooni tõhususele. Tabelis 1.3 on toodud DBT konversioon erinevate katalüsaatorite korral.

Tabel 1.3	Dibensotiofeeni	konversiooni.
-----------	-----------------	---------------

t (min)	UiO-66 katalüsaatoriga (%)	UiO-66-NH ₂ katalüsaatoriga (%)	UiO-66-OH katalüsaatoriga (%)
0	0	0	0
20	32	28	32
40	54	51	50
60	70	72	65
90	80	77	80
120	90	85	93
150	91	87	94
300	91	87	94

Konversioonimäärad näitavad, et desulfureerimine viidi edukalt läbi ja kütuseproovidest eemaldati eri aegade jooksul eri kogused dibensotiofeeni. Väävli eemaldamine näitab UiOtüüpi katalüsaatorite tõhusust orgaaniliste väävlit sisaldavate ühendite suhtes.

2. LINEAARSE MUDELI DISAIN, ADSORPTSIOONI ISOTERMID

Väävlit sisaldavate ühendite eemaldamist aktiveeritud metallorgaaniliste raamistike kasutamisel kirjeldatakse adsorptsioonireaktsiooniga, mistõttu on kineetilise mudeli loomiseks vaja adsorptsiooni isotermi.

Reaktsiooni kineetika uurimiseks rakendati teatavaid uurimismeetodeid, kasutades Exceli arvutusi ja MATLABi modelleerimist. Et leida kineetilisi mudeleid, mis kirjeldavad kõige täpsemalt väävli oksüdatiivset adsorptsiooni, kaaluti ja uuriti mitmeid võimalikke mudeleid. Iga mudel esitati lineaarsel kujul.

Oksüdatiivse desulfureerimise kõige paremini sobiva mudeli leidmiseks kasutati mitmeid teise astme kineetilisi mudeleid ja teisi kineetilisi mudeleid, et uurida parameetreid ja võrrelda mudelite mitut näidet omavahel. Peamiseks valiti järgmised lineaarsed vormid [11, 12, 13]:

1. I tüüpi pseudo teist järku vorm

$$\frac{\mathrm{t}}{\mathrm{q}_{\mathrm{t}}} = \frac{1}{\mathrm{k}_2 \mathrm{q}_e^2} + \frac{\mathrm{t}}{\mathrm{q}_{\mathrm{e}}}$$

2. II tüüpi pseudo teist järku vorm

$$\frac{1}{q_t} = (\frac{1}{k_2 {q_e}^2})\frac{1}{t} + \frac{1}{q_e}$$

3. III tüüpi pseudo teist järku vorm

$$q_t = q_e - \frac{1}{k_2 q_e} \frac{q_t}{t}$$

$$\frac{q_t}{t} = k_2 q_e^2 - k_2 q_e q_t$$

5. V tüüpi pseudo teist järku vorm

$$\frac{1}{\mathrm{t}} = \frac{\mathrm{k}_2 q_e^2}{\mathrm{q}_{\mathrm{t}}} + \frac{\mathrm{k} \mathrm{q}_2^2}{\mathrm{q}_{\mathrm{e}}}$$

6. VI tüüpi pseudo teist järku vorm

$$\frac{-1}{q_e} = k_2 t + (\frac{-1}{q_t})$$
,

kus q_t on adsorbendile adsorbeerunud adsorbaat ajahetkelt (mg/g), q_e on tasakaaluline adsorptsioonivõim (mg/g), ja k_2 on pseudo teist järku kiiruskonstant, t on reaktsiooniaeg.

Pseudo teist järjestuse mudelid on koostatud eeldusel, et lahustunud aine adsorptsioonikiirus sõltub proportsionaalselt adsorbendis leiduvate vabade adsorptsioonkohtade arvust ja reaktsioonikiirus korreleerub pinnal oleva lahustunud aine kogusega [11]. Tasakaalu adsorptsioonikonstandi ja adsorbeerunud adsorbandi vahe on reaktsiooni liikumapanev jõud ja see on proportsionaalne aktiivtsentrite arvuga.

7. Osakestesisene difusioon

$$q_t = k_{ip} * t^{0.5} + C_i$$
,

kus C_i on adsorbaadi algkontsentratsioon, k_{ip} on osakestesisene kiiruskonstant.

Osakestesisene difusioonimudel on mudel, mida kasutatakse adsorptsiooniprotsessi käigus toimuvate etappide kirjeldamiseks [12], mistõttu on see käesoleva uuringu puhul kohaldatav.

8. Nulljärku vorm

$$q_{t} = k_{0}t + q_{o},$$

kus k_0 on nullkordse kiiruse konstant.

Nullkorra vormimudeleid kasutatakse kõige sagedamini lineaarsete graafikute loomiseks, et näidata adsorptsiooni sõltuvust aja kestusest [13].

9. Esimest järku vorm

$$\log q_{\rm t} = \log q_{\rm o} + \frac{\mathrm{k_1}}{2.303} t \; , \qquad$$

kus k_1 on esimese korra kiiruskonstant.

Adsorptsioonikiiruse kirjeldamiseks kasutatakse esimese järjekorra mudelit, mis põhineb absorptsioonivõimsusel.

Kasutades sisseehitatud Exceli lahendaja funktsiooni, saab lineaarse mudeli võrrandeid lahendada muutujate väärtuste määramiseks ja lineaarse sobivuse mudeli joonistamiseks. Üldine lineaarne mudel oleks esitatud järgmise esimese astme võrrandiga:

$$y = ax + b$$

kus argumendi väärtusi esindavad iga mudeli vastavad väärtused.

Lineaarse sobivuse mudel luuakse jääkide ruutsumma minimeerimise teel; jäägid ise arvutatakse sõltumatult, lahutades arvutatud Y andmed (kasutades eksperimentaalsetest andmetest ja hinnangulistest konstanditest saadud X) eksperimentaalsetest Y andmetest (saadud pärast eemaldamise tõhususe arvutamist). Mida väiksem on erinevus eksperimentaalsete ja tegelike Y-andmete vahel, seda täpsem on lineaarne mudel.

2.1. Lineaarne kuju: I tüüpi pseudo teist järku vorm

I tüübi pseudo teist järku vorm järgib võrrandit:

$$\frac{\mathrm{t}}{\mathrm{q}_{\mathrm{t}}} = \frac{1}{\mathrm{k}_2 \mathrm{q}_e^2} + \frac{\mathrm{t}}{\mathrm{q}_{\mathrm{e}}}$$

Isotermide arvutused (Tabel 2.1) ja lineaarne mudel (Joonis 2.1) oksüdatiivse desulfureerimise jaoks UiO-66 katalüsaatoriga:

Х	Y	Y arvutatud	Jääk	Jääk ²	Jääkide
					summa
20	0.6250	0.4922	0.1327	0.0176	
40	0.7407	0.6854	0.0553	0.0030	
60	0.8571	0.8785	-0.0214	0.0004	
90	1.1250	1.1682	-0.0432	0.0018	
120	1.3333	1.4579	-0.1246	0.0155	
150	1.6483	1.7476	-0.0993	0.0098	
300	3.2967	3.1961	0.1005	0.0101	0.0585

Tabel 2.1 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66 metall-orgaanilist struktuuri

Joonis 2.1 UiO-66 katalüsaatorit kasutava adsorptiivse desulfureerimise lineaarne kuju.

UiO-66 arvutatud konstandid:

 $q_e = 103.554$

 $k_2 = 0.000312$

Isotermide arvutused (Tabel 2.2) ja lineaarne mudel (Joonis 2.2) oksüdatiivse desulfureerimise jaoks UiO-66-NH₂ katalüsaatoriga:

X			Jääk	Jääk ²	Jääkide
					summa
20	0.7142	0.5217	0.1925	0.0370	
40	0.7843	0.7227	0.0615	0.0037	
60	0.8333	0.9237	-0.0904	0.0081	
90	1.1688	1.2253	-0.0564	0.0031	
120	1.4117	1.5268	-0.1151	0.0132	
150	1.7241	1.8284	-0.1042	0.0108	
300	3.4482	3.3361	0.1121	0.0125	0.0889

Tabel 2.2 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66-NH₂ metall-orgaanilist struktuuri

UiO-66-NH₂ arvutatud konstandid:

 $q_e = 99.488$

 $k_2 = 0.000315$

Isotermide arvutused (Tabel 2.3) ja lineaarne mudel (Joonis 2.3) oksüdatiivse desulfureerimise jaoks UiO-66-OH katalüsaatoriga:

Tabel 2.3 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66-OH metall-orgaanilist struktuuri

X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide
					summa
20	0.6250	0.5323	0.0926	0.0085	
40	0.8000	0.7134	0.0856	0.0073	
60	0.9230	0.8963	0.0267	0.0007	
90	1.1250	1.1693	-0.0443	0.0019	
120	1.2903	1.4423	-0.1520	0.0231	

X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide summa
150	1.5957	1.7153	-0.1196	0.0143	
300	3.1914	3.0804	0.1110	0.0123	0.0683

Joonis 2.3 UiO-66-OH katalüsaatorit kasutava adsorptiivse desulfureerimise lineaarne kuju.

UiO-66-OH arvutatud konstandid:

 $q_e = 109.883$

 $k_2 = 0.000236$

Kõikide kolme mudeli jaoks edukalt loodud joonte kuju, kasutades vastavaid andmeid. Kolme vastava mudeli jääkide summad näitavad, et loodud mudel on piisavalt täpne esitatud katseandmete suhtes, nii et võib eeldada, et kiiruskonstandid ja tasakaaluadsorptsioonivõimsuse väärtused on vastavate mudelite jaoks täpselt määratud.

2.2. Lineaarne kuju: II tüüpi pseudo teist järku vorm

II tüübi pseudo teist järku vorm järgib võrrandit:

$$\frac{1}{q_t} = (\frac{1}{k_2 q_e^2})\frac{1}{t} + \frac{1}{q_e}$$

Isotermide arvutused (Tabel 2.4) ja lineaarne mudel (Joonis 2.4) oksüdatiivse desulfureerimise jaoks UiO-66 katalüsaatoriga:

x	Y	Y arvutatud	Jääk	Jääk ²	Jääkide summa
0.05	0.0312	0.0156	0.0155	0.0002	
0.025	0.0185	0.0156	0.002	0.0000	
0.016667	0.0142	0.0156	-0.001	0.0000	
0.011111	0.0125	0.0156	-0.003	0.0000	
0.008333	0.0111	0.0156	-0.004	0.0000	
0.006667	0.0109	0.0156	-0.004	0.0000	
0.003333	0.0109	0.0156	-0.004	0.0000	0.0003

Tabel 2.4 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66 metall-orgaanilist struktuuri

UiO-66 arvutatud konstandid:

 $q_e = 63.843$

 $k_2 = 1.2E+07$

Isotermide arvutused (Tabel 2.5) ja lineaarne mudel (Joonis 2.5) oksüdatiivse desulfureerimise jaoks UiO-66-NH₂ katalüsaatoriga:

Tabel 2.5 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66-NH₂ metall-orgaanilist struktuuri

X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide	
					summa	
0.05	0.0357	0.0167	0.0155	0.0003		
0.025	0.0196	0.0167	0.0028	0.0000		
0.016667	0.0138	0.0167	-0.001	0.0000		
0.011111	0.0129	0.0167	-0.003	0.0000		
0.008333	0.0117	0.0167	-0.004	0.0000		

X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide summa
0.006667	0.0114	0.0167	-0.004	0.0000	
0.003333	0.0114	0.0167	-0.004	0.0000	0.0004

Joonis 2.5 UiO-66-NH₂ katalüsaatorit kasutava adsorptiivse desulfureerimise lineaarne kuju.

UiO-66-NH₂ arvutatud konstandid:

 $q_e = 59.85401$

 $k_2 = 30416761$

Isotermide arvutused (Tabel 2.6) ja lineaarne mudel (Joonis 2.6) oksüdatiivse desulfureerimise jaoks UiO-66-OH katalüsaatoriga:

x	Y	Y arvutatud	Jääk	Jääk²	Jääkide summa
0.05	0.0312	0.0158	0.0153	0.0002	
0.025	0.0200	0.0158	0.0041	0.0000	
0.016667	0.0153	0.0158	-0.0009	0.0000	
0.011111	0.0125	0.0158	-0.0033	0.0000	
0.008333	0.0107	0.0158	-0.0051	0.0000	
0.006667	0.0106	0.0158	-0.0052	0.0000	
0.003333	0.0106	0.0158	-0.0052	0.0000	0.0003

Tabel 2.6 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66-OH metall-orgaanilist struktuuri

Joonis 2.6 UiO-66-OH katalüsaatorit kasutava adsorptiivse desulfureerimise lineaarne kuju.

UiO-66-OH arvutatud konstandid:

 $q_e = 62.9701$

k₂ = 8811793

Visuaalselt ei vasta joone sobitamine eksperimentaalsetele andmetele kõigil kolmel juhul, ka modelleerimise käigus saadud kineetilised parameetrid tunduvad ebatõenäolised. Kavandatud mudel ei tööta valitud uurimismeetodiga.

2.3. Lineaarne kuju: III tüüpi pseudo teist järku vorm

III tüübi pseudo teist järku vorm järgib võrrandit:

$$q_t = q_e - \frac{1}{k_2 q_e} \frac{q_t}{t}$$

Isotermide arvutused (Tabel 2.7) ja lineaarne mudel (Joonis 2.7) oksüdatiivse desulfureerimise jaoks UiO-66 katalüsaatoriga:

Tabel 2.7 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66 metall-orgaanilist struktuuri

X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide	
					summa	
1.6000	32	42.2817	-10.2817	105.7133		
1.3500	54	53.9714	0.0285	0.0008		
1.1667	70	62.5439	7.4560	55.5923		
0.8888	80	75.5326	4.4673	19.9575		
0.7500	90	82.0269	7.9730	63.5698]	

X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide summa
0.6066	91	88.7290	2.2709	5.1571	
0.3033	91	102.9127	-11.9127	125.053	391.9024

Joonis 2.7 UiO-66 katalüsaatorit kasutava adsorptiivse desulfureerimise lineaarne kuju.

UiO-66 arvutatud konstandid:

 $q_e = 117.0963$

 $k_2 = 0.000183$

Isotermide arvutused (Tabel 2.8) ja lineaarne mudel (Joonis 2.8) oksüdatiivse desulfureerimise jaoks UiO-66-NH₂ katalüsaatoriga:

X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide
					summa
1.4000	28	42.2817	-10.2817	332.2497	
1.2750	51	53.9714	0.0285	1.1631	
1.2000	72	62.5439	7.4560	269.3216	
0.8555	77	75.5326	4.4673	27.9719	
0.7083	85	82.0269	7.9730	40.9334	
0.5800	87	88.7290	2.2709	5.7174	
0.2900	87	102.9127	-11.9127	125.053	802.4103

Tabel 2.8 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO- $66-NH_2$ metall-orgaanilist struktuuri

UiO-66-NH₂ arvutatud konstandid:

 $q_e = 111.7565$

 $k_2 = 0.000191$

Isotermide arvutused (Tabel 2.9) ja lineaarne mudel (Joonis 2.9) oksüdatiivse desulfureerimise jaoks UiO-66-OH katalüsaatoriga:

x	Y	Y arvutatud	Jääk	Jääk ²	Jääkide
1.6000	32	36.0880	-4.0880	16.7124	Summa
1.2500	50	55.2576	-5.2576	27.6425	
1.0833	65	64.3859	0.6140	0.3770	
0.8888	80	75.0357	4.9642	24.6441	
0.7750	93	81.2734	11.7265	137.5128	
0.6266	94	89.3976	4.6023	21.1816	
0.3133	94	106.5589	-12.5589	157.7271	385.7977

Tabel 2.9 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66-OH metall-orgaanilist struktuuri

UiO-66-OH arvutatud konstandid:

 $q_e = 123.7202$

 $k_2 = 0.000148$

Kolme uuritud proovi jaoks loodi joone sobitusmudelid, mis vastavad küll enamasti katseandmete punktidele, kuid jääkide summa väärtus on üsna kõrge, eriti UiO-67 katalüsaatoriga proovi puhul. UiO-67 mudelil on ka üsna suur punktide hajuvus, mis muudab mudeli mittesoovitavaks kineetiliseks uuringuks. Kuna lineaarsed mudelid on võrreldes teiste mudelitega vähem täpsed, võib eeldada, et ka modelleerimise käigus saadud kineetilised konstandid on vähem täpsed.

2.4. Lineaarne kuju: IV tüüpi pseudo teist järku vorm

IV tüübi pseudo teist järku vorm järgib võrrandit:

$$\frac{q_t}{t} = k_2 q_e^2 - k_2 q_e q_t$$

Isotermide arvutused (Tabel 2.10) ja lineaarne mudel (Joonis 2.10) oksüdatiivse

desulfureerimise jaoks UiO-66 katalüsaatoriga:

Tabel 2.10 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66 metall-orgaanilist struktuuri

X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide summa
32	1.6000	1.7078	-0.1078	0.0116	
54	1.3500	1.2981	0.0518	0.0026	
70	1.1166	1.0001	0.1665	0.0277	
80	0.8888	0.8138	0.0750	0.0056	
90	0.7500	0.6276	0.1224	0.0014	
91	0.6066	0.6089	-0.0023	0.0000	
91	0.3033	0.6089	-0.3056	0.0934	0.1561

UiO-66 arvutatud konstandid:

 $q_e = 123.6952$

 $k_2 = 0.000151$

Isotermide arvutused (Tabel 2.11) ja lineaarne mudel (Joonis 2.11) oksüdatiivse desulfureerimise jaoks UiO-66-NH₂ katalüsaatoriga:

Tabel 2.11 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66-NH₂ metall-orgaanilist struktuuri

X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide
					summa
28	1.4000	0	1.4000	1.9600	
51	1.2750	0	1.2750	1.6256	
72	1.2000	0	1.2000	1.4400	
77	0.8555	0	0.8555	0.7319	
85	0.7083	0	0.7083	0.5017	
87	0.5800	0	0.5800	0.3364	
87	0.2900	0	0.2900	0.0841	6.6793

Joonis 2.11 UiO-66-NH₂ katalüsaatorit kasutava adsorptiivse desulfureerimise lineaarne kuju.

UiO-66-NH₂ arvutatud konstandid:

 $q_e = 18.01883$

 $k_2 = 0$

Isotermide arvutused (Tabel 2.12) ja lineaarne mudel (Joonis 2.12) oksüdatiivse desulfureerimise jaoks UiO-66-OH katalüsaatoriga:

X Y Yarvut	tatud Jääk	Jääk ² Jä	iäkide					
UiO-66-OH metall-orgaanilist struktuuri								
Tabel 2.12 Lineaarse mudeli isotermi pa	arameetrid adsorptiivse	desulfureerimise jaol	kasutades					

X	Υ	Y arvutatud	Jääk	Jääk ²	Jääkide
					summa
32	1.6000	1.1848	-0.1078	0.1723	
50	1.2500	1.0874	0.0518	0.0264	
65	1.0833	1.0062	0.1665	0.0059	
80	0.8888	0.9251	0.0750	0.0013	
93	0.7750	0.8547	0.1224	0.0063	
94	0.6266	0.8493	-0.0023	0.0495	
94	0.3133	0.8493	-0.3056	0.2873	0.5493

Joonis 2.12 UiO-66-OH katalüsaatorit kasutava adsorptiivse desulfureerimise lineaarne kuju.

UiO-66-OH arvutatud konstandid:

 $q_e = 250.9763$

 $k_2 = 2.16E-05$

Lineaarse mudeli kohandamine õnnestus kõigi kolme proovi puhul, jääkväärtused on kõigi kolme mudeli puhul madalad ja lineaarne kohandamine näib enamjaolt täpselt kattuvat katseandmetega. Saadud kineetilisi konstante võib kasutada võrdlusena tänu kineetilise mudeli heale täpsusele.

2.5. Lineaarne kuju: V tüüpi pseudo teist järku vorm

V tüübi pseudo teist järku vorm järgib võrrandit:

$$\frac{1}{\mathrm{t}} = \frac{\mathrm{k}_2 q_e^2}{\mathrm{q}_{\mathrm{t}}} + \frac{\mathrm{k} \mathrm{q}_2^2}{\mathrm{q}_{\mathrm{e}}}$$

Isotermide arvutused (Tabel 2.13) ja lineaarne mudel (Joonis 2.13) oksüdatiivse desulfureerimise jaoks UiO-66 katalüsaatoriga:

Tabel 2.13 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66 metall-orgaanilist struktuuri

X	Ŷ	Y arvutatud	Jääk	Jääk ²	Jääkide summa
0.0315	0.0500	0.0395	0.0104	0.0001	
0.0185	0.0250	0.0235	0.0014	0.0000	
0.0142	0.0166	0.0182	-0.0015	0.0000	

X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide
					summa
0.0125	0.0111	0.0159	-0.0048	0.0000	
0.0111	0.0083	0.0142	-0.0059	0.0000	
0.0109	0.0066	0.0140	-0.0074	0.0000	
0.0109	0.0033	0.0140	-0.0107	0.0001	0.0003

UiO-66 arvutatud konstandid:

$q_e = 4789.25$

 $k_2 = 5.6E-08$

Isotermide arvutused (Tabel 2.14) ja lineaarne mudel (Joonis 2.14) oksüdatiivse desulfureerimise jaoks UiO-66-NH₂ katalüsaatoriga:

Tabel 2.14	Lineaarse	mudeli	isotermi	parameetrid	adsorptiivse	desulfureerimise	jaoks,	kasutades
UIO-66-NH;	2 metall-org	gaanilist	: struktuu	ri				

X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide
					summa
0.0357	0.0500	0.0167	0.0332	0.0011	
0.0196	0.0250	0.0164	0.0085	0.0000	
0.0138	0.0166	0.0163	0.0002	0.0000	
0.0129	0.0111	0.0163	-0.0052	0.0000	
0.0117	0.0083	0.0163	-0.0080	0.0000	
0.0114	0.0066	0.0163	-0.0096	0.0000	
0.0114	0.0033	0.0163	-0.0130	0.0001	0.0015

UiO-66-NH₂ arvutatud konstandid:

 $q_e = 1$

 $k_2 = 0.01616$

Isotermide arvutused (Tabel 2.15) ja lineaarne mudel (Joonis 2.15) oksüdatiivse desulfureerimise jaoks UiO-66-OH katalüsaatoriga:

Tabel 2.15 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66-OH metall-orgaanilist struktuuri

X Y		Y arvutatud	Jääk	Jääk ²	Jääkide						
					summa						
0.0357	0.5	0.0383	0.0116	0.0001							
0.0196	0.025	0.0250	0.0000	0.0000							
0.0138	0.01667	0.0196	-0.0030	0.0000							
0.0129	0.01111	0.0162	-0.0051	0.0000							
0.0117	0.00833	0.0142	-0.0059	0.0000							
0.0114	0.00667	0.0140	-0.0074	0.0000							
0.0114	0.00333	0.0140	-0.010	0.0001	0.0003						

Joonis 2.15 UiO-66-OH katalüsaatorit kasutava adsorptiivse desulfureerimise lineaarne kuju.

UiO-66-OH arvutatud konstandid:

 $q_e = 737.078$

 $k_2 = 2.2E-06$

Lineaarne mudel ei vasta esitatud eksperimentaalsetele andmetele (välja arvatud viimane mudel) ja kõigi kolme mudeli puhul saadud kineetilised väärtused ei ole uuringus rakendatavad.

2.6. Lineaarne kuju: VI tüüpi pseudo teist järku vorm

VI tüübi pseudo teist järku vorm järgib võrrandit:

$$\frac{-1}{q_e} = k_2 t + (\frac{-1}{q_t})$$

Isotermide arvutused (Tabel 2.16) ja lineaarne mudel (Joonis 2.16) oksüdatiivse desulfureerimise jaoks UiO-66 katalüsaatoriga:

Tabel 2.16 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66 metall-orgaanilist struktuuri

X Y		Y arvutatud	Jääk	Jääk ²	Jääkide
					summa
20	-0.0312	-0.0200	-0.0111	0.0001	
40	-0.0185	-0.0191	0.0005	0.0000	
60	-0.0142	-0.0181	0.0038	0.0000	

X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide
					summa
90	-0.0125	-0.0167	-0.0041	0.0000	
120	-0.0111	-0.0152	-0.0041	0.0000	
150	-0.0114	-0.0138	-0.0028	0.0000	
300	-0.0114	-0.0065	-0.0044	0.0000	0.0002

UiO-66 arvutatud konstandid:

 $q_e = 47.52528$

 $k_2 = 4.83E-05$

Isotermide arvutused (Tabel 2.17) ja lineaarne mudel (Joonis 2.17) oksüdatiivse desulfureerimise jaoks UiO-66-NH₂ katalüsaatoriga:

							-		
UiO-6	56-NH2	<u>metall-org</u>	gaanilist	struktuu	ri				
Tabel	2.17	Lineaarse	mudeli	isotermi	parameetrid	adsorptiivse	desulfureerimise	jaoks,	kasutades

X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide
					summa
20	-0.0357	-0.0217	-0.0139	0.0001	
40	-0.0196	-0.0206	0.0010	0.0000	
60	-0.0138	-0.0195	0.0056	0.0000	
90	-0.0129	-0.0178	0.0048	0.0000	
120	-0.0117	-0.0162	0.0044	0.0000	
150	-0.0114	-0.0145	0.0030	0.0000	
300	-0.0114	-0.0063	-0.0051	0.0000	0.0003

UiO-66-NH₂ arvutatud konstandid:

 $q_e = 43.81441$

 $k_2 = 5.49E-05$

Isotermide arvutused (Tabel 2.18) ja lineaarne mudel (Joonis 2.18) oksüdatiivse desulfureerimise jaoks UiO-66-OH katalüsaatoriga:

Tabel 2.18 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66-OH metall-orgaanilist struktuuri

X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide
					summa
20	-0.0312	-0.0207	-0.0105	0.0001	
40	-0.0200	-0.0196	-0.0003	0.0000	
60	-0.0153	-0.0186	0.0032	0.0000	
90	-0.0125	-0.0170	0.0048	0.0000	
120	-0.0107	-0.0154	0.0044	0.0000	
150	-0.0106	-0.0138	0.0030	0.0000	
300	-0.0106	-0.0059	-0.0047	0.0000	0.0001

Joonis 2.18 UiO-66-OH katalüsaatorit kasutava adsorptiivse desulfureerimise lineaarne kuju.

UiO-66-OH arvutatud konstandid:

 $q_e = 45.94046$

 $k_2 = 5.28E-05$

Kõik kolm mudelit näitavad madalaid jääkväärtusi, kuid loodud mudelid ei vasta tõenäoliselt eksperimentaalsetele andmetele, kuna need näivad olevat logaritmilise kõveraga.

2.7. Lineaarne kuju: Osakeste sisene diffusioon

Osakeste sisene diffusioon mudel järgib võrrandit:

$$q_t = k_{ip} * t^{0.5} + C_i$$

Isotermide arvutused (Tabel 2.19) ja lineaarne mudel (Joonis 2.19) oksüdatiivse desulfureerimise jaoks UiO-66 katalüsaatoriga:

Tabel 2	2.19	Lineaarse	mudeli	isotermi	parameetrid	adsorptiivse	desulfureerimise	jaoks,	kasutades
UiO-66	meta	all-orgaani	list stru	ktuuri					

	J				
X Y		Y arvutatud	Jääk	Jääk ²	Jääkide
					summa
4.4721	32	48.7007	-16.7007	278.9145	
6.3245	54	57.0109	-3.0109	9.0656	
7.7459	70	63.3875	6.6124	43.7244	
9.4868	80	71.1973	8.8027	77.4875	
10.9544	90	77.7812	12.2187	149.2986	
12.2474	91	83.5817	7.4182	55.0301	
17.3205	91	106.3402	-15.3404	235.3204	848.8413

UiO-66 arvutatud konstandid:

 $C_i = 28.63817$

 $k_{ip} = 4.486126$

Isotermide arvutused (Tabel 2.20) ja lineaarne mudel (Joonis 2.20) oksüdatiivse desulfureerimise jaoks UiO-66-NH₂ katalüsaatoriga:

X	Y	Y arvutatud	Jääk	Jääk Jääk ²	
					summa
4.472136	28	46.544	-18.5440	343.8799	
6.324555	51	54.5606	-3.5606	12.6781	
7.745967	72	60.7120	11.2879	127.4184	
9.486833	77	68.2459	8.7541	76.6342	
10.95445	85	74.5972	10.4027	108.2172	
12.24745	87	80.1929	6.8070	46.3365	
17.32051	87	102.1474	-15.1474	229.4430	944.6075

Tabel 2.20 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66-NH₂ metall-orgaanilist struktuuri

UiO-66-NH₂ arvutatud konstandid:

 $C_i = 27.19012$

 $k_{ip} = 4.327659$

Isotermide arvutused (Tabel 2.21) ja lineaarne mudel (Joonis 2.21) oksüdatiivse desulfureerimise jaoks UiO-66-OH katalüsaatoriga:

Tabel 2.21 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66-OH metall-orgaanilist struktuuri

X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide
					summa
4.472136	32	45.8833	-13.8833	192.7469	
6.324555	50	55.1743	-5.1743	26.7741	
7.745967	65	62.3036	-2.6963	7.2703	
9.486833	80	71.0351	8.9648	80.3680	
10.95445	83	78.3962	14.6038	213.2710	
12.24745	94	84.8813	6.8070	83.1490	
17.32051	94	110.3260	-15.1474	266.5369	870.1164

Joonis 2.21 UiO-66-OH katalüsaatorit kasutava adsorptiivse desulfureerimise lineaarne kuju.

UiO-66-OH arvutatud konstandid:

C_i = 23.45277

 $k_{ip} = 5.015626$

Kolme proovilehe jaoks on loodud lineaarse sobivuse mudelid, jääkväärtused tunduvad olevat suured, mis näitab mudeli ebatäpsust selle võrrandi puhul. Saadud kineetilised väärtused näivad ka üldiselt sobimatud.

2.8. Lineaarne kuju: Nulljärku vorm

Nulljärku vorm järgib võrrandit:

$$q_{t} = k_{0}t + q_{o}$$

Isotermide arvutused (Tabel 2.22) ja lineaarne mudel (Joonis 2.22) oksüdatiivse desulfureerimise jaoks UiO-66 katalüsaatoriga:

Tabel 2.22 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66 metall-orgaanilist struktuuri

X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide
					summa
20	32	56.6577	-24.6578	608.0062	
40	54	60.1388	-6.1388	37.6859	
60	70	63.6199	6.3800	40.7044	
90	80	68.8416	11.1583	124.5087	
120	90	74.0633	15.9366	253.9780	
150	91	79.2849	11.7150	137.2419	

X	Y	Y arvutatud	Jääk	Jääk²	Jääkide
					summa
300	91	105.3933	-14.3933	207.1662	1409.2910

Joonis 2.22 UiO-66 katalüsaatorit kasutava adsorptiivse desulfureerimise lineaarne kuju.

UiO-66 arvutatud konstandid:

 $q_0 = 53.1766$

 $k_0 = 0.1740$

Isotermide arvutused (Tabel 2.23) ja lineaarne mudel (Joonis 2.23) oksüdatiivse desulfureerimise jaoks UiO-66-NH₂ katalüsaatoriga:

x	Y	Y arvutatud	Jääk	Jääk ²	Jääkide summa
20	28	54.3560	-26.3560	694.6394	
40	51	57.6843	-6.6843	44.6809	
60	72	61.0127	10.9872	120.7196	
90	77	66.0053	10.9946	120.8832	
120	85	70.9978	14.0021	196.0598	
150	87	75.9904	11.0095	121.2108	
300	87	100.9532	-13.9532	194.6918	1492.8860

Tabel 2.23 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66-NH₂ metall-orgaanilist struktuuri

Joonis 2.23 UiO-66-NH₂ katalüsaatorit kasutava adsorptiivse desulfureerimise lineaarne kuju.

UiO-66-NH₂ arvutatud konstandid:

 $q_0 = 51.02764$

 $k_0 = 0.16641$

Isotermide arvutused (Tabel 2.24) ja lineaarne mudel (Joonis 2.24) oksüdatiivse desulfureerimise jaoks UiO-66-OH katalüsaatoriga:

Х	Y	Y Yarvutatud Jääk Jääk ²		Jääkide	
					summa
20	32	54.5289	-22.5290	507.5554	
40	50	58.4757	-8.4757	71.8387	
60	65	62.4225	2.5774	6.6432	
90	80	68.3427	11.6572	135.8920	
120	93	74.2629	18.7371	351.0789	
150	94	80.1830	13.8169	190.9074	
300	94	109.7839	-15.7839	249.1328	1513.0480

Tabel 2.24 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66-OH metall-orgaanilist struktuuri

Joonis 2.24 UiO-66-OH katalüsaatorit kasutava adsorptiivse desulfureerimise lineaarne kuju.

UiO-66-OH arvutatud konstandid:

 $q_0 = 50.5822$

 $k_0 = 0.197339$

Loodud on kolm lineaarset mudelit, jääkväärtused tunduvad kõrged, mis viitab mudeli ebatäpsusele.

2.9. Lineaarne kuju: Esimest järku vorm

Esimese järku vorm järgib võrrandit:

$$\log q_{\rm t} = \log q_{\rm o} + \frac{\rm k_1}{2.303}t$$

Isotermide arvutused (Tabel 2.25) ja lineaarne mudel (Joonis 2.25) oksüdatiivse desulfureerimise jaoks UiO-66 katalüsaatoriga:

Tabel 2.25 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66 metall-orgaanilist struktuuri

		_			
X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide
					summa
20	1.5051	1.7266	-0.2215	0.0490	
40	1.7323	1.7507	-0.0183	0.0003	
60	1.8450	1.7748	0.0702	0.0049	
90	1.9030	1.8110	0.0920	0.0084	

X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide
					summa
120	1.9542	1.8471	0.1070	0.0114	
150	1.9590	1.8833	0.0756	0.0057	
300	1.9590	2.0643	-0.1051	0.0110	0.0910

UiO-66 arvutatud konstandid:

 $q_0 = 50.4154$

 $k_1 = 0.002776$

Isotermide arvutused (Tabel 2.26) ja lineaarne mudel (Joonis 2.26) oksüdatiivse desulfureerimise jaoks UiO-66-NH $_2$ katalüsaatoriga:

Tabel 2.26 Lineaarse	mudeli iso	otermi para	ameetrid a	adsorptiivse	desulfureerimise	jaoks,	kasutades
UiO-66-NH ₂ metall-org	gaanilist sti	ruktuuri					

X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide
					summa
20	1.4471	1.7014	-0.2542	0.0646	
40	1.7075	1.7263	-0.01876	0.0003	
60	1.8573	1.7512	0.1060	0.0112	
90	1.8864	1.7886	0.0978	0.0095	
120	1.9294	1.8259	0.1034	0.0107	
150	1.9395	1.8633	0.0761	0.0058	
300	1.9395	2.0501	-0.1106	0.0122	0.1145

Joonis 2.26 UiO-66-NH₂ katalüsaatorit kasutava adsorptiivse desulfureerimise lineaarne kuju.

UiO-66-NH₂ arvutatud konstandid:

 $q_0 = 47.4803$

 $k_1 = 0.002868$

Isotermide arvutused (Tabel 2.27) ja lineaarne mudel (Joonis 2.27) oksüdatiivse desulfureerimise jaoks UiO-66-OH katalüsaatoriga:

X	Y	Y arvutatud	Jääk	Jääk ²	Jääkide
					summa
20	1.5051	1.7108	-0.2056	0.0422	
40	1.6989	1.7376	-0.0386	0.0014	
60	1.8129	1.7645	0.0484	0.0023	
90	1.9030	1.8047	0.0983	0.0096	
120	1.9684	1.8450	0.1234	0.0152	
150	1.9731	1.8853	0.0877	0.0077	
300	1.9731	2.0866	-0.1135	0.0128	0.0916

Tabel 2.27 Lineaarse mudeli isotermi parameetrid adsorptiivse desulfureerimise jaoks, kasutades UiO-66-OH metall-orgaanilist struktuuri

Joonis 2.27 UiO-66-OH katalüsaatorit kasutava adsorptiivse desulfureerimise lineaarne kuju.

UiO-66-OH arvutatud konstandid:

 $q_0 = 48.30206$

 $k_1 = 0.003092$

Loodud on kolm mudelit; jääkide väärtused on madalad ja line fit mudel vastab enamasti eksperimentaalsetele väärtustele.

3. PARAMEETRITE UURIMINE JA OPTIMEERIMINE MARKOVI AHELA MONTE CARLO MEETODI ABIL

Pärast mudelite joonele sobitamise ja mudelite andmete uurimise Excelis rakendati MATLABi kineetilisi uurimismeetodeid, et uurida kineetilisi parameetreid ja mudeleid. Kasutades autori koostatud MATLAB-koodi, mis on spetsiaalselt loodud eksperimentaalsete andmete uurimiseks 9 erineva kineetilise võrrandi abil, saadi kiiruskonstandid ja tasakaaluadsorptsioonivõimsused, samuti viidi läbi Markovi ahelaga Monte Carlo analüüs iga andmemärgi kohta.

Markov ahela Monte Carlo (Markov Chain Monte Carlo, MCMC) on Bayesi statistikal põhinev meetod, mille abil saab parameetrite usaldusväärsust hinnata valimipõhise lähenemise abil. Kasutades parameetrite hinnangulist vahemikku, saab määrata võimalike lahenduste Keemiatehnikas kasutatakse MCMC-analüüsi meetodit kineetiliste jaotuse [14]. parameetrite usaldusväärsuse uurimiseks sellistes protsessides nagu desulfureerimine, hüdrokrakkimine [15], süntees [16], esterdamine [17], katalüütilised reaktsioonid [18] jne. Hinnanguliste parameetrite rakendamine kineetilisele mudelile annab usaldusväärse tootevaliku. Kasutades pistevoolu kirjeldust ja olemasolevaid katseandmeid, saab luua kineetilise mudeli ja määrata selle parameetrite vahemiku, minimeerides katseandmete ja prognoositud tootesaagise väärtuste vahelist viga. Kineetilise mudeli loomiseks ja kineetiliste konstantide saamiseks kasutati standardset optimeerimismenetlust. MCMCanalüüsi abil loodi parameetrite jälgede graafikud ja kahemõõtmelised posterioorsed jaotused. Jäljeplaatide abil saame luua ahelalahendusi, mis näitavad seeriakorrelatsiooni [19]. Parameetrite hinnangulised tõenäosusvahemikud saab integreerida kineetilisse mudelisse, et määrata mudeli prognooside usalduspiirkond.

Käesoleva uuringu analüüsimeetodiks valiti Markovi ahelaga Monte Carlo meetod, kuna see võimaldab kogu parameetrite hindamist ja visualiseerimist. MCMC analüüsimeetodit kasutades on võimalik saada simulatsiooniprotsessi käigus hinnatud parameetrite 95% usaldusvahemik ja jaotada need visuaalselt organiseeritult. Selle tuvastamine, millised mudelid näitavad täpseid tulemusi ja millised on ebatäpsete graafikute ja parameetrite arvutustega, on lihtsam visuaalse viite abil, mida saab luua MCMC parameetrite jaotuste abil.

Uuritud isotermide puhul otsiti madalaid parameetrite vahemikke, eriti kineetilisi parameetreid k ja q, ning samuti viiteid täpsetele hinnangutele tihedalt jaotunud parameetrite kaudu kahemõõtmelises posterioorse jaotuse graafikus (kolmas aken). Jälje

43

graafikud (teine aken) näitavad, kuidas simulatsioon uurib proovi; kui graafikul on palju piike, siis on proov hästi simuleeritud ja analüüsis võetakse arvesse ja arvutatakse palju erinevaid parameetreid.

3.1. Parameetrite uuring: I tüüpi pseudo teist järku vorm

UiO-66 katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.1):

Joonis 3.1 UiO-66 adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

$$\begin{split} f(x) &= 1/(k_2*q_e^2) + x*1/q_e \\ \text{Koefitsiendid (95\% usalduspiiridega):} \\ k_2 &= 0.0003117 \ (0.00000688, 0.0005547) \\ q_e &= 103.6 \ (90.69, 116.4) \end{split}$$

UiO-66-NH₂ katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.2):

Joonis 3.2 UiO-66-NH $_2$ adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = 1/(k_2*q_e^2) + x*1/q_e$ Koefitsiendid (95% usalduspiiridega): $k_2 = 0.000315 (0.00003026, 0.0005998)$ $q_e = 99.49 (84.84, 114.1)$

UiO-66-OH katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.3):

Joonis 3.3 UiO-66-OH adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = 1/(k_2*q_e^2) + x*1/q_e$

Koefitsiendid (95% usalduspiiridega):

 $k_2 = 0.0002364 \ (0.00005449, 0.0004183)$

 $q_e = 109.9 (94.22, 125.5)$

UiO-66-NH2- ja UiO-66-OH-katalüsaatoritega proovide MCMC-analüüsi graafikud näitavad k-koefitsiendi kõrget seerianalüüsi korrelatsiooni, mis näitab proovi aeglast uurimist. Peale selle näitavad kõik 3 posterioorse jaotuse graafikut kõrget korrelatsiooni huvipakkuvas piirkonnas, kus asuvad arvutatud k ja q0 parameetrid ja 95% usalduspiirid on täpselt arvutatud.

3.2. Parameetrite uuring: II tüüpi pseudo teist järku vorm

UiO-66 katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.4):

Joonis 3.4 UiO-66 adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = 1/(k_2*q_e^2)*1/x + 1/q_e$

Koefitsiendid (95% usalduspiiridega):

- $k_2 = 2.163e+04 (-1.713e+08, 1.713e+08)$
- $q_e = 63.85 (11.97, 115.7)$

UiO-66-NH₂ katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.5):

Joonis 3.5 UiO-66-NH₂ adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

$$f(x) = 1/(k^*q_e^2) * 1/x + 1/q_e$$

Koefitsiendid (95% usalduspiiridega):

$$q_e = 59.88 (5.192, 114.6)$$

UiO-66-OH katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.6):

Joonis 3.6 UiO-66-OH adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

$$\begin{split} f(x) &= 1/(k_2 * q_e^2) * 1/x + 1/q_e \\ \text{Koefitsiendid (95% usalduspiiridega):} \\ k_2 &= 1.716e+04 \ (-1.078e+08, 1.078e+08) \\ q_e &= 62.98 \ (11.09, 114.9) \end{split}$$

Arvutatud väärtused on hajutatud üle kogu posterioorse jaotuse graafiku pinna kõigis kolmes MCMC-käigus, mis näitab, et algoritm uurib valimisruumi, võttes arvesse paljusid erinevaid muutujaid. See tähendab, et algoritm ei leia mudeli jaoks optimaalseid lahendusi, kuna ta kaalub mudeli kohandamiseks palju erinevaid väärtusi, mis takistab parameetrite hindamise täpsust.

3.3. Parameetrite uuring: III tüüpi pseudo teist järku vorm

UiO-66 katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.7):

Joonis 3.7 UiO-66 adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = q_e - 1/(k_2 * q_e) * x$

Koefitsiendid (95% usalduspiiridega):

 $k_2 = 0.0001826 (0.00007025, 0.000295)$

 $q_e = 117.1 (95.59, 138.6)$

UiO-66-NH₂ katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.8):

Joonis 3.8 UiO-66-NH₂ adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = q_e - 1/(k_2 * q_e) * x$

Koefitsiendid (95% usalduspiiridega):

 $k_2 = 0.0001912 (0.000006178, 0.0003762)$

 $q_e = 111.8$ (79.85, 143.7)

UiO-66-OH katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.9):

Joonis 3.9 UiO-66-OH adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = q_e - 1/(k_2*q_e) * x$ Koefitsiendid (95% usalduspiiridega): $k_2 = 0.0001476$ (0.00006392, 0.0002312) $q_e = 123.7$ (101.6, 145.8)

Prooviruumi on uuritud kõigis kolmes mudelis, UiO-66 ja UiO-66-NH2 graafikud näitavad eristatavaid parameetrite kogumikke, samas kui UiO-66-OH näitab k parameetrite arvutuste laia valikut, samas kui q0 parameetrite klastrit on diagrammil halvasti esindatud; arvutatud lahendus - 123,7 95% usalduspiiridega vahemikus 101,6 kuni 145,8, k parameeter näitab selle ala väheseid kaalutlusi. See tähendaks, et UiO-66-OH mudel on suure tõenäosusega ebatäpne.

3.4. Parameetrite uuring: IV tüüpi pseudo teist järku vorm

UiO-66 katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.10):

Joonis 3.10 UiO-66 adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = k_2 * q_e^2 - k_2 * q_e * x$

Koefitsiendid (95% usalduspiiridega):

 $k_2 = 0.0001506 (0.00005572, 0.0002454)$

 $q_e = 123.7 (99.26, 148.1)$

UiO-66-NH₂ katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.11):

Joonis 3.11 UiO-66-NH₂ adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = k_2 * q_e^2 - k_2 * q_e * x$

Koefitsiendid (95% usalduspiiridega):

 $k_2 = 0.0001226 (-0.000002534, 0.0002478)$

 $q_e = 127.3 (84.52, 170.1)$

UiO-66-OH katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.12):

Joonis 3.12 UiO-66-OH adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = k_2 * q_e^2 - k * q_e * x$

```
Koefitsiendid (95% usalduspiiridega):
```

```
k_2 = 0.0001256 (0.000053, 0.0001981)
q_e = 129.9 (105.3, 154.4)
```

Kõigi kolme MCMC-käigu puhul uuriti valimisruumi suurel määral, andes võimalike parameetrite ilusat statistilist jaotust.

3.5. Parameetrite uuring: V tüüpi pseudo teist järku vorm

UiO-66 katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.13):

Joonis 3.13 UiO-66 adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = (k_2 * q_e^2) * x + (a * q_e^2)/q_e$

Koefitsiendid (95% usalduspiiridega):

 $k_2 = 0.03997 (-13.67, 13.75)$

 $q_e = 0.4297 (-146, 146.8)$

UiO-66-NH₂ katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.14):

Joonis 3.14 UiO-66-NH $_2$ adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = (k_2*b^2)*x+(a*q_e^2)/q_e$ Koefitsiendid (95% usalduspiiridega): $k_2 = 0.1423 (-142.8, 143.1)$ $q_e = 0.1211 (-121.3, 121.6)$

UiO-66-OH katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.15):

Joonis 3.15 UiO-66-OH adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = (k_2*q_e^2)*x + (a*q_e^2)/q0$

Koefitsiendid (95% usalduspiiridega):

 $k_2 = 0.1324 (-143.7, 143.9)$

 $q_e = 0.1304 \ (-141.2, \ 141.4)$

Jälje graafiku analüüs näitab kõikuvat seeriakorrelatsiooni, mis viitab aeglasele prooviruumi uurimisele. Lineaarne graafik ei näita mingit korrelatsiooni antud katseandmetega kõigil kolmel prooviuuringu juhul, mis muudab mudeli ebatäpseks.

3.6. Parameetrite uuring: VI tüüpi pseudo teist järku vorm

UiO-66 katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.16):

Joonis 3.16 UiO-66 adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = k_2 * x + (-1/q_e)$

Koefitsiendid (95% usalduspiiridega):

 $k_2 = 4.826e-05 (-0.00002232, 0.0001188)$ $q_e = 47.52 (24.93, 70.12)$

UiO-66-NH₂ katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.17):

Joonis 3.17 UiO-66-NH₂ adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = k_2*x+(-1/q_e)$ Koefitsiendid (95% usalduspiiridega): $k_2 = 5.489e-05 (-0.00003226, 0.000142)$ $q_e = 43.81 (20.11, 67.52)$

UiO-66-OH katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.18):

Joonis 3.18 UiO-66-OH adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = k_2 * x + (-1/q_e)$

Koefitsiendid (95% usalduspiiridega):

 $k_2 = 5.28297e-05 [0,30000] N(5.28297e-05,Inf)$

$$q_e = 45.9403 [0,30000] N(45.9403,Inf)$$

Jälgimisskeemid näitavad head hindamisprotsessi, kuna arvesse võeti paljusid parameetreid. Probleem mudeliga ilmneb pärast parameetrite vahemike ja parameetrite jaotuste uurimist 2D posterioorsete graafikute puhul. Parameetrid näivad olevat hajutatud vähem ilmsete huvipakkuvate piirkondadega, mis tähendab, et algoritm uurib märkimisväärset hulka võimalusi, mis tõenäoliselt sobivad mudelile halvasti.

3.7. Parameetrite uuring: Osakeste sisene diffusioon

UiO-66 katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.19):

Joonis 3.19 UiO-66 adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = k_{ip} * x + C_i$

Koefitsiendid (95% usalduspiiridega):

 $k_{ip} = 4.486 (1.273, 7.699)$

 $C_i = 28.64 (-5.279, 62.56)$

UiO-66-NH₂ katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.20):

Joonis 3.20 UiO-66-NH $_2$ adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = k^* x + C_i$

Koefitsiendid (95% usalduspiiridega):

$$k_{ip} =$$
 4.328 (0.9382, 7.717)
 $C_i =$ 27.19 (-8.589, 62.97)

UiO-66-OH katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.21):

Joonis 3.21 UiO-66-OH adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

$$\begin{split} f(x) &= k^* x + C_i \\ \text{Koefitsiendid (95\% usalduspiiridega):} \\ k_{ip} &= 5.016 \ (1.763, 8.269) \\ C_i &= 23.45 \ (-10.89, 57.79) \end{split}$$

Jälgimisskeemid näitavad, et iga prooviruumi on läbivalt uuritud, andes laias valikus võimalikke parameetreid. Arvestades uuritavate kineetiliste parameetrite olemust, on 95% usalduspiiride vahemik äärmiselt suur (1,763 kuni 8,269 k puhul ja -10,89 kuni 57,79 q0 puhul), mis näitab, et mudel on suures osas ebatäpne.

3.8. Parameetrite uuring: Nulljärku vorm

UiO-66 katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.22):

Joonis 3.22 UiO-66 adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = k_0^* x + q_0$ Koefitsiendid (95% usalduspiiridega): $k_0 = 0.1741 (-0.0122, 0.3603)$ $q_0 = 53.18 (26.78, 79.57)$

UiO-66-NH₂ katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.23):

Joonis 3.23 UiO-66-NH₂ adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = k_0 * x + q_0$

Koefitsiendid (95% usalduspiiridega):

 $k_0 = 0.1664 (-0.02529, 0.3581)$

 $q_0 = 51.03 (23.86, 78.2)$

UiO-66-OH katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.24):

Joonis 3.24 UiO-66-OH adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades Üldine mudel:

 $f(x) = k_0 * x + q_0$

Koefitsiendid (95% usalduspiiridega):

 $k_0 = 0.1973 (0.004345, 0.3903)$

 $q_0 = 50.58 (23.23, 77.93)$

Joonised näitavad, et parameetrite vahemikud on hästi uuritud, 2D järeljaotus näitab üsna ebaühtlast ja hajutatud parameetrite jaotust kogu joonisruumis, mis viitab valitud mudeli üsna märkimisväärsele ebatäpsusele.

3.9. Parameetrite uuring: Esimest järku vorm

UiO-66 katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.25):

Joonis 3.25 UiO-66 adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = \log(q_0) + (k_1/2.303)^*x$ Koefitsiendid (95% usalduspiiridega): $k_1 = 0.006391 (-0.001548, 0.01433)$ $q_0 = 50.42 (25.79, 75.05)$

UiO-66-NH₂ katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.26):

Joonis 3.26 UiO-66-NH₂ adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = \log(q_0) + (k_1/2.303) x$

Koefitsiendid (95% usalduspiiridega):

 $k_1 = 0.006604 \ (-0.002302, \, 0.01551)$

 $q_0 = 47.48 (21.46, 73.5)$

UiO-66-OH katalüsaatori kasutamisel toimuva desulfureerumise MCMC-parameetrite analüüs (Joonis 3.27):

Joonis 3.27 UiO-66-OH adsorptiivse desulfureerimise kineetiline modelleerimine ja parameetrite usaldusväärsuse hindamise analüüs Markovi ahela Monte Carlo meetodit kasutades

Üldine mudel:

 $f(x) = \log(q_0) + (k_1 / 2.303) * x$ Koefitsiendid (95% usalduspiiridega): $k_1 = 0.007119 (-0.000846, 0.01508)$ $q_0 = 48.3 (24.63, 71.98)$

Uuriti kõiki kolme valimi kohta; täheldati minimaalset seerianägemist. Järeljaotus näitab laia parameetriliste võimaluste vahemikku, ilma selgepiirilise huvipakkuvusega piirkonnata. See tähendaks, et paljud parameetrid vahemikus võiksid olla mudeli kineetilised konstandid, mis annab laia võimaluste vahemiku, mis ei ole mudeli jaoks hea.

KOKKUVÕTE

Uuringu käigus sünteesiti edukalt UiO-tüüpi katalüsaatorid (nimelt UiO-66, UiO-66-NH₂ ja UiO-66-OH), mille eesmärk oli kütuseproovide oksüdatiivne desulfureerimine. Väävli redutseerimise mõju uurimiseks kasutati sihtkomponendina dibensotiofeeni. Desulfureerimisprotsessi tulemusena saadi dibensotiofeeni muundamismäärad, mis hiljem allutati kineetilisele uuringule.

Konversioonikiirusi sisaldavate andmete kogumit kasutati mitmete kineetiliste mudelite loomiseks, mis põhinesid erinevatel adsorptsiooni isotermidel, kokku üheksa mudelit. Iga mudelit kasutati asjakohaste kineetiliste parameetrite kogumi saamiseks. Pärast kineetiliste mudelite loomist analüüsiti kineetiliste mudelite täpsust, kasutades Markovi ahelaga Monte Carlo meetodit, mis lõi parameetrilise jaotuse proovivõtumeetodiga. Saadud MCMC-analüüsi tulemuste abil hinnati iga mudelit ja määrati kindlaks kõige sobivamad kineetilised mudelid ning uuriti saadud kineetiliste parameetrite usaldusväärsust.

Pärast MCMC-analüüsi läbiviimist jõuti järeldusele, et I, II ja IV tüüpi pseudo teist järku mudelid on kõigi analüüsitud mudelite seas kõige täpsemad kineetilised mudelid tänu täpsemale parameetrite hindamisele ja jaotusele. Nende kolme mudeli hulgast näitab IV tüüpi pseudo teist järku mudel parimaid tulemusi ja seda peetakse kõige täpsemaks mudeliks teiste, spetsiaalselt selle uuringu jaoks loodud mudelite hulgas. Kolme kõige edukamat mudelit võib kasutada edasiste reaktsioonide kavandamisel ja kineetilistes uuringutes.

Isikliku hinnangu kohaselt on uuringu eesmärgid täidetud ja saavutatud, sest MOFide abil toimuva oksüdatiivse desulfureerimise mõju on näidatud, samuti on loodud kineetilised mudelid, mis kirjeldavad protsesse üksikasjalikus visuaalses vormis.

SUMMARY

With a significant portion of the scientific world studying and exploring possibilities of implementing renewable sources of energy into industrial processes and our day-to-day lives, the other part of scientific efforts are concentrated on studying possibilities of making currently available sources of energy safe for the environment and for the consumers. Fuels pose one of these problems, as liquid fuels contain a variety of compounds that upon ignition release environment polluting chemicals into the atmosphere, sulfur-containing compounds specifically [1]. A possibility of reducing sulfur contents in fuels by utilizing metal-organic frameworks (MOF) is explored as well as study of kinetics of desulfurization reactions is conducted.

Metal-organic frameworks (MOF) are versatile in structure compounds that have a wide variety of potential practical applications in various processes. In this study, due to the porous structure of MOFs, we are focusing on their adsorptive properties and computability with oxidative desulfurization process. The compounds are known to be utilized as adsorbents for a wide array of compounds, which includes carbon dioxide (CO₂), nitrogen (N₂), sulfur (S) and etc [2, 3]. With given properties, various MOFs are used for different adsorptive separations and their effectiveness depends on the framework's structure [4].

The goal of the experimental part is to target sulfur-containing compounds for removal in liquid fuels, utilizing MOF catalysts. The task includes appropriate choice of catalysts and study methods.

Another major practical task posed for the study, was designing and creating kinetic models, simulating and describing the process of desulfurization. In chemical engineering, kinetic models are used to describe reactions using kinetic rate expressions obtained from experiments, which allows for simulation of the experimental data. Kinetic models provide essential information on kinetic mechanisms to describe reaction processes, which in turn can be used for reaction design, evaluation and improvement.

A particular method of kinetic model analysis shall be implemented, namely Markov Chain Monte Carlo analysis, using which it is possible to determine accuracy of simulated kinetic models.

As the result of the study, UiO-type catalysts were successfully synthesized with a goal of performing oxidative desulfurization of fuel samples. Dibenzothiophene was used as a target component for studying effects of sulfur reduction. As the result of desulfurization

process, dibenzothiophene conversion rates were obtained, which were later subjected to kinetic study.

Set of data containing conversion rates was used to create multiple kinetic models based on various adsorption isotherms, nine models in total. Each model was utilized in order to obtain a set of relevant kinetic parameters. After creating the kinetic models, the precision of kinetic models was analyzed utilizing Markov Chain Monte Carlo method, which created parametric distribution with a sampling approach. With MCMC analysis results obtained, each model was evaluated and the most fitting kinetic models were determined and reliability of obtained kinetic parameters was studied.

After running MCMC analysis it was concluded, that type I, II and IV pseudo-second form models have the most accurate kinetic models among all analyzed models due to more precise parameter estimation and distribution. Among the three, type IV pseudo-second form shows the best results and is deemed to be the most accurate model among others that were created specifically for this study. The three most successful models can be used for further reaction design and kinetic studies.

According to personal evaluation, the goals of the study have been met and achieved, as the effects of the oxidative desulfurization utilizing MOFs have been showcased, as well as kinetic models describing the processes in detailed visual format have been created.

KASUTATUD KIRJANDUS

- H. Rang, J. Kann, Vahur Oja. Advances in desulfurization research of liquid fuel. [Online] (17.05.2022) https://www.researchgate.net/publication/255613863_Advances_in_desulfurizatio n_research_of_liquid_fuel
- Xiong-Fei Zhang, Zhongguo Wang, Yi Feng, Yuxia Zhong, Jiaqiang Liao, Yaquan Wang, Jianfeng Yao. Adsorptive desulfurization from the model fuels by functionalized UiO-66(Zr). [Online] (17.05.2022) https://www.sciencedirect.com/science/article/abs/pii/S0016236118312341
- Leiduan Hao, Matthew J Hurlock, Guodong Ding, Qiang Zhang. Metal-Organic Frameworks Towards Desulfurization of Fuels. [Online] (17.05.2022) https://pubmed.ncbi.nlm.nih.gov/31993845/
- Lijun Zhu, Xueying Jia, He Bian, Tia Huo, Zunbin Duan, Yuzhi Xiang, Daohong Xia. Structure and adsorptive desulfurization performance of composite materials MOF-5@AC. [Online] (17.05.2022) https://www.researchgate.net/publication/322680809_Structure_and_adsorptive_ desulfurization_performance_of_composite_materials_MOF-5AC
- Hua Zhao, Gary A. Baker. Oxidative Desulfurization of Fuels Using Ionic Liquids: A Review. [Online] (17.05.2022) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8075298/
- Nazmul Abedin Khan, Ji Woong Yoon, Jong-San Chang, Sung Hwa Jhung. Enhanced adsorptive desulfurization with flexible metal-organic frameworks in the presence of diethyl ether and water. [Online] (16.05.2022) https://pubs.rsc.org/en/content/articlelanding/2016/cc/c6cc03976f#cit12
- Barghi Barghi, Jürisoo Martin, Volokhova Maria, Seinberg Liis, Reile Indrek, Mikli Valdek, & Niidu Allan. Process Optimization for Catalytic Oxidation of Dibenzothiophene over UiO-66-NH2 by Using a Response Surface Methodology. ACS Omega 2022, 7, 19, 16288–16297. [Online] (23.05.2022) https://pubs.acs.org/doi/10.1021/acsomega.1c05965
- Allan Niidu. Phenols to pores to adsorption. A potential route towards new methods for extracting value from shale oil side stream. [Online] (16.05.2022) https://doi.org/10.3176/oil.2019.2S.04
- 9. Hui Wu, Yong Shen Chua, Vaiva Krungleviciute, Madhusudan Tyagi, Ping Chen, Taner Yildrim, Wei Zhou. Unusual and highly tunable missing-linker defects in

zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. [*Online*] (16.05.2022)

https://pubmed.ncbi.nlm.nih.gov/23808838

- Michael J. Katz, Zachary J. Brown, Yamil J. Colon, Paul W. Siu, Karl A. Scheidt, Randall Q. Snurr, Joseph T. Hupp, Omar K. Farha. A facile synthesis of UiO-66, UiO-67 and their derivatives. [*Online*] (01.06.2022) https://pubs.rsc.org/en/content/articlelanding/2013/cc/c3cc46105j
- George William Kaijumba, Serkan Emik, Atakan Öngen, H. Kurtulus Özcan, Serdar Aydin. Modelling of Adsorption Kinetic Processes – Error, Theory and Application. [Online] (16.05.2022)

https://www.intechopen.com/chapters/63161

- 12. Markandeya, S.P. Shukla, G.C. Kisku. Linear and Non-Linear Kinetic Modeling for Adsorption of Disperse Dye in Batch Process. [Online] (16.05.2022) https://scialert.net/fulltext/?doi=rjet.2015.320.331
- 13. Nelson R. Villarante, Angelo Patrick R. Bautista, Derick Eri P. Sumalapao. Batch Adsorption Study and Kinetic Profile of Cr(Vi) using Lumbang (Aleurites Moluccana)-Derived Activated Carbon-Chitosan Composite Crosslinked With Epichlorohydrin. [Online] (16.05.2022) www.orientjchem.org/vol33no3/batch-adsorption-study-and-kinetic-profile-of-crviusing-lumbang-aleurites-moluccana-derived-activated-carbon-chitosan-compositecrosslinked-with-epichlorohydrin/
- 14. Taboga, Marco (2021). "Markov Chain Monte Carlo (MCMC) diagnostics", Lectures on probability theory and mathematical statistics. Kindle Direct Publishing.
 [Online] (16.05.2022)

https://www.statlect.com/fundamentals-of-statistics/Markov-Chain-Monte-Carlodiagnostics

- 15. S. Sina Hosseini Boosari, Neda Makouei, Philip Stewart. Application of Bayesian Approach in the Parameter Estimation of Continuous Lumping Kinetic Model of Hydrocracking Process. [Online] (17.05.2022) https://www.scirp.org/journal/paperinformation.aspx?paperid=76221
- 16. Serap Sahin, Johan Wärna, Päivi Mäki-Arvela, Tapio Salmi, Dmitry Yu Murzin. Kinetic modeling of lipase-mediated one-pot chemo-bio cascade synthesis of R-1phenyl ethyl acetate starting from acetophenone. [Online] (17.05.2022) https://research.abo.fi/en/publications/kinetic-modeling-of-lipase-mediated-onepot-chemo-bio-cascade-syn

- 17. Kari Vahteristo, Sylvie Maury, Arto Laari, Antti Solonen, Heikki Haario, Salme Koskimies. Kinetics of Neopentyl Glycol Esterification with Different Carboxylic Acids. [Online] (17.05.2022) https://pubs.acs.org/doi/abs/10.1021/ie801920m
- Dmitry Yu. Murzin, Johan Wärna, Heikki Haario, Tapio Salmi. Parameter estimation in kinetic models of complex heterogeneous catalytic reactions using Bayesian statistics. [Online] (17.05.2022) https://d-nb.info/1233585509/34
- 19. Will Koehrsen. Markov Chain Monte Carlo in Python. [*Online*] (17.05.2022) https://towardsdatascience.com/markov-chain-monte-carlo-in-python-44f7e609be98