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Abstract

A paradox is a statement or phenomenon which leads to contradictory and unintuitive
conclusions. Simpson’s paradox is one of the known paradoxes which occurs in statistics
and data science and manifests itself as an effect of the reversal of the associations between
variables during aggregating and disaggregating data. The Simpson’s Paradox can be
harmful when making decisions on top of the data that exhibits it; therefore, it is essential
to address the paradox, especially in automatic data mining, machine learning, and data
science. There are multiple solutions to detect and resolve the Simpson’s Paradox; however,
there is no unified platform for exploring the datasets with regard to the paradox. This
thesis describes the algorithms for detecting the Simpson’s Paradox using correlation com-
parisons, the solution of the Simpson’s Paradox using the probability-based adjustments,
and the Web-based Platform, which incorporates the aforementioned algorithms and graph-
ical representations of data under the convenient user interface. All the algorithms and
methods presented in the thesis are tested on the set of infamous datasets which are studied
for the matter of the existence of the Simpson’s Paradox and the results are described in
detail.

The thesis is written in the English language and contains 51 pages of text, 7 chapters, 21
figures, 22 tables.
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Annotatsioon

Paradoks on väide või nähtus, mis viib vastuoluliste ja ebaintuitiivsete järeldusteni. Simp-
soni paradoks on näide paradoksist, mis esineb statistikas ja andmeteaduses ning avaldub
muutujate vaheliste seoste ümberpööramise tagajärjena kui andmeid koondatakse ja ja-
gatakse. Simpsoni paradoksi olemasolu avaldatavates andmetes võib viia kahjulike otsuste
tegemiseni, mistõttu on oluline osata seda käsitleda, eriti automaatse andmekaevandamise,
masinõppe ja andmete puhul teadus. Simpsoni paradoksi tuvastamiseks ja lahendamiseks
on palju võimalusi, kuid paradoksi osas puudub ühtne platvorm andmekogumite uurimiseks.
Selles lõputöös kirjeldatakse Simpsoni paradoksi tuvastamise algoritme korrelatsioonivõrd-
luste abil, Simpsoni paradoksi lahendust tõenäosuspõhiste kohanduste abil ja veebipõhist
platvormi, mis sisaldab ülalnimetatud algoritme ja andmete graafilisi esitusi läbi mugava ka-
sutajaliidese. Kõiki lõputöös esitatud meetodeid testitakse üldtuntud andmekogumite peal,
kus uuritakse Simpsoni paradoksi esinemist ja mille tulemusi kirjeldatakse üksikasjalikult.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 51 leheküljel, 7 peatükki, 21
joonist, ning 22 tabelit.
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List of abbreviations and terms

SP Simpson’s Paradox
IPW Inverse Propensity Weighting
CRF Case Fatality Rate
CSV comma-separated values
API Application Programming Interface
URL uniform resource locator
json JavaScript Object Notation
CLI Command Line Interface

6



Table of Contents

List of Figures 9

List of Tables 10

1 Introduction 11
1.1 Research Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Development Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Related Work 14
2.1 Simpson’s Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Detection of Simpson’s Paradox . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Solution of Simpson’s Paradox . . . . . . . . . . . . . . . . . . . . . . . 16

3 Detection of Simpson’s Paradox and Identification of the confounding variable 18
3.1 Relative Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Experiments for Relative Rates . . . . . . . . . . . . . . . . . . . 20
3.2 Linear Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Experiments for Linear Trends . . . . . . . . . . . . . . . . . . . 25

4 Resolving the Simpson’s Paradox 29
4.1 Inverse Probability Weighting . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Web Platform 37
5.1 Brief Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.2 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Software Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Time Evaluations 46

7 Conclusion 47

Bibliography 48

7



Appendices 51

Appendix 1 - Something 51

8



List of Figures

1 Overview of Development . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Case fatality rates (CFRs) by age group [2] . . . . . . . . . . . . . . . . . 15
3 Causal graph with a confounding effect . . . . . . . . . . . . . . . . . . . 17

4 Scatter plot with regression lines for Iris dataset . . . . . . . . . . . . . . 26
5 Scatter plot with regression lines for Penguin dataset . . . . . . . . . . . 28

6 Causal graph with the confounding effect . . . . . . . . . . . . . . . . . 29
7 Causal graph without the confounding effect . . . . . . . . . . . . . . . . 30
8 Causal graph with indirect effect of X on Y . . . . . . . . . . . . . . . . . 30
9 Example of unbalanced subgroups . . . . . . . . . . . . . . . . . . . . . 31
10 Data Distribution in subgroups of ’major’ . . . . . . . . . . . . . . . . . 33
11 Data Distribution in subgroups of ’stone size’ . . . . . . . . . . . . . . . 35
12 Data Distribution in subgroups of ’Age Cohort’ . . . . . . . . . . . . . . 36

13 Index Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
14 Index Page with selected values for Linear Trends form . . . . . . . . . . 38
15 Example output for Linear Trends form . . . . . . . . . . . . . . . . . . 39
16 Index Page with selected values for Relative Rates form . . . . . . . . . . 39
17 First part of example output for Relative Rates form . . . . . . . . . . . . 40
18 Second part of example output for Relative Rates form . . . . . . . . . . 40
19 Third part of example output for Relative Rates form . . . . . . . . . . . 41
20 Architecture of the Web Platform . . . . . . . . . . . . . . . . . . . . . . 42
21 Software development plan . . . . . . . . . . . . . . . . . . . . . . . . . 45

9



List of Tables

1 Example table before preprocessing . . . . . . . . . . . . . . . . . . . . 19
2 Example table after preprocessing . . . . . . . . . . . . . . . . . . . . . 19
3 Correlation coefficient between Gender and Admission . . . . . . . . . . 21
4 Correlation coefficients between Gender and Admission for each subgroup

of Major . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5 Correlation coefficient between treatment and success . . . . . . . . . . . 22
6 Correlation coefficient between treatment and success for each subgroup . 22
7 Correlation coefficient between Ethnicity and Expenditures . . . . . . . . 23
8 Correlation coefficient between Ethnicity and Expenditures for each subgroup 23
9 Correlation coefficient between sepal length and sepal width . . . . . . . 26
10 Correlation coefficient between sepal length and sepal width for each

subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
11 Correlation coefficient between culmen length and culmen depth . . . . . 27
12 Correlation coefficient between culmen length and culmen depth for each

subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

13 Aggregated data with standard formula for Gender and Admission . . . . 33
14 Disaggregated data conditioned by Major . . . . . . . . . . . . . . . . . 34
15 Aggregated data with adjustment formula for Gender and Admission . . . 34
16 Aggregated data with standard formula for Treatment and Success . . . . 35
17 Disaggregated data conditioned by Stone Size . . . . . . . . . . . . . . . 35
18 Aggregated data with adjustment formula for Treatment and Success . . . 35
19 Aggregated data with standard formula for Ethnicity and Expenditures . . 36
20 Disaggregated data conditioned by Age Cohort . . . . . . . . . . . . . . 36
21 Aggregated data with adjustment formula for Ethnicity and Expenditures . 36

22 Time evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

10



1. Introduction

The amount of data generated worldwide is increasing exponentially, and it is harnessed
and analyzed automatically by the various artificial intelligence approaches, machine
learning algorithms, and manual analysis. But sometimes, data can mislead, and this can
have adverse consequences. The existence of bias in data can cause incorrect or unintuitive
conclusions during data analysis, and some of these cases can be described as statistical
paradoxes.

In this thesis, the author concentrates on the specific case of statistical paradox called
Simpson’s paradox for artificial intelligence-based applications. The Simpson’s paradox is
a well-studied phenomenon that was first described by Edward H. Simpson in his paper [1].
Statistical paradoxes can occur in a wide variety of data but require more awareness,
particularly in data analysis and artificial intelligence-based applications. For instance,
one of the latest occurrences of the Simpson’s Paradox has caused a lot of confusion in
COVID-19 Case Fatality Rate [2] in China and Italy. This shows how important it is to
address the paradoxes in data.

The main objective of my work was to build a web-based platform to automatically detect
the existence of Simpson’s paradox in the machine learning datasets and resolve the
paradox by displaying the adjusted aggregated form of data for unbiased statistical analysis.
There have been numerous papers published on the detection of the Simpson’s Paradox in
recent years [3, 4] via different ways and for different types of data [5]; however, there
is no state of the art web-based platform available to check the impact of the Simpson’s
paradox and adjust the aggregated form of data for unbiased statistical analysis.

In the first part of the thesis, we propose a method to detect the Simpson’s paradox
and identify the confounding variable by using the preprocessing techniques and Pearson
correlation Index to find the association reversal instances in data. This method is applicable
to all forms of Simpson’s paradox and covers a wide range of data types. In the second
part, we develop an algorithm to solve the paradox existing in the form of relative rates[4]
by aggregating the data using the probability-based adjustments, namely the Inverse
Propensity Weighting method.
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The final part consists of the overview of a web-based platform that incorporates the
proposed algorithms in one service and provides a visual interface for the users to test
or explore their datasets with regard to Simpson’s paradox. In each part of the process,
experiments are conducted on the set of infamous datasets which have been previously
studied for the existence of the Simpson’s paradox. For this purpose, we use the Kidney
Stone dataset, Berkeley University admission dataset, California DDs Expenditures dataset,
Iris Flower dataset, and Penguin dataset.

1.1 Research Goal

1. Developing algorithms for detecting Simpson’s paradox and identifying the confounding
variables in diverse machine learning datasets (Categorical, Continuous, etc.).

2. Developing an algorithm to resolve the impact of Simpson’s paradox.

3. Developing a web-based platform to test and explore machine learning datasets for the
existence of the Simpson’s paradox.

1.2 Research Questions

1. How to detect the existence of the Simpson’s paradox and identify the confounding
variables in various machine learning datasets?

2. How to develop an algorithm to resolve the impact of Simpson’s paradox on different
types of training datasets?

3. How to develop a web-based platform to identify the existence of Simpson’s Paradox?

1.3 Development Steps

■ Step 1: Developing and improving a method for SP detection
■ Step 2: Developing and improving a method for SP solution
■ Step 3: Developing, coding and testing an algorithm for SP detection
■ Step 4: Developing, coding and testing an algorithm for SP solution
■ Step 5: Building a Web Platform with user interface on top of the developed

algorithms
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Figure 1. Overview of Development

1.4 Organization of the Thesis

■ Related Work 2: First part of this chapter contains an overview of the Simpson’s
Paradox along with a brief history of the phenomenon. The second part describes
the work related to the detection of SP. The third part describes the work related to
the solution of SP.

■ Detection of Simpson’s Paradox and Identification of confounding variable 3:
This chapter demonstrates the algorithm for the identification of the confounding
variable and the detection of SP. Next, it gives the results of applying this algorithm
to the datasets which contain SP instances.

■ Resolving the Simpson’s Paradox 4: In this chapter, the algorithm for the adjust-
ment of the data aggregation is given along with the overview of IPW, which is used
in the algorithm. Next, the results of applying this algorithm to the datasets used in
the previous section are demonstrated.

■ Web-based Platform 5: This chapter describes how the developed algorithms
are used in the backend service, contains an explanation of how to use the Web
Platform, architecture, choice of technologies, and the description of the Software
Development process.

■ Time Evaluations 6: Table with the time evaluations of the developed algorithms
applied to the datasets is given in this chapter.

■ Conclusion 7: In this chapter, the general overview of the thesis is given along with
the discussion of the completeness and limitations of the work done.
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2. Related Work

2.1 Simpson’s Paradox

Simpson’s paradox also known as a reversal paradox is a phenomenon in statistics and data
science, where the association between a pair of variables reverses when conditioning by
another variable. For aggregated data, the relationship between variable X and Y has one
sign, and when disaggregating data into the subpopulations of variable Z the relationship
has the opposite sign. Simpson’s Paradox is frequently encountered in medical and social
sciences. This effect can lead to incorrect or biased conclusions when analyzing the data,
therefore it is instrumental to be able to address it. The paradox is getting resolved as we
take a closer look at the confounding effect of Z during the statistical analysis or modelling.

Edward Simpson first described the Simpson’s paradox in 1951, he reported that the
association disappears when disaggregating or aggregating data [1] however the association
reversal effect was first noted in Cohen and Nagel’s work [6]. In Lindley and Novick’s
article [7] the Simpson’s paradox was explored deeper and important conclusions were
made on the decision-making process when encountering the paradox. They demonstrated
that we should base our decisions either on the aggregated data or disaggregated data based
on the additional information extracted from the context. Today the casualty allows us to
take a more detailed look at the Simpson’s paradox and we can determine which form of
data is applicable to which situation.

Simpson’s paradox can appear everywhere, but it requires more attention when it causes
confusion in the minds of people and hinders the decision-making process. There has
been a huge list of the Simpson’s paradox cases in the history of statistical analysis. In
this thesis, the author is going to explore some of them in the experiment sections of the
paper. A lot of interesting paradox discoveries happened in recent years, for instance,
the paper [8] illustrates the paradox occurrence in Quantum Harmonic Oscillator and the
Nonlinear Schrodinger Equation. They further speculate on the likelihood of the Simpson’s
paradox appearing in Quantum Mechanics.

Another popular instance of the Simpson’s paradox is studied in [2]. Over the course
of recent years, the world has been fighting the deadly pandemic which originates from
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the SARS-CoV-2 virus and causes acute respiratory conditions [9]. One of the most
important indicators of the pandemic is the CRF or case fatality rate which is the ratio
of the fatal cases to the confirmed cases of Covid-19. If we consult the data on CRFs
reported by Chinese and Italian institutions in the early stages of the pandemic, we observe
the instance of the Simpson’s paradox. As given in Fig. 2, the case fatality rate for the
entire population is higher in Italy however when we take a look at each of the age groups
separately the case fatality rate happens to be higher in China in all of the cases. How
can this phenomenon be explained? The most important fact is that CRFs indicate the
conditional probabilities of the Covid-19 fatality for the given age group and country
therefore the information on the distribution of the cases in each age group remains hidden
from us in this context. The distribution of Covid-19 cases over the age groups is vastly
different in Italy and China. The Italian population is older than the Chinese population
and the majority of Covid-19 cases in Italy were reported for individuals aged 60 and over.
Combining this information with the fact that age is positively correlated with the mortality
rate for respiratory infections such as Covid-19 explains this unintuitive pattern in data.

Figure 2. Case fatality rates (CFRs) by age group [2]

2.2 Detection of Simpson’s Paradox

Before being able to examine or tackle the Simpson’s Paradox we have to detect it first
unless it is encountered accidentally. In [10] which is one of the earliest papers on the
detection of the Simpson’s paradox, the author developed the fundamental algorithm where
the attributes are traversed and the dataset is partitioned for each of the attributes, and the
paradoxes conditions are checked using the probabilities. This is a very intuitive algorithm

15



however it contains some limitations and rules enforced on the dataset, attribute form, and
composition. In one of the recent papers [3], authors uncover the instances of Simpson’s
paradox by finding the pairs (dependent variable X and confounding variable Y) which
satisfy the rules of the paradox. Linear models are fitted for aggregated and disaggregated
data and the reversals are examined with respect to the slope of the linear models. There are
also several packages and tools for the detection of the Simpson’s paradox. For instance,
an R package [11] where the users can pass the independent, dependent variables and
the potential confounder to check for the paradox. It works only for continuous data
and checks only for one confounder. Another example is Automatic Simpson’s Paradox
Detector [12] which uses the Regression models and works for a wide range of dataset
and attribute types as it contains the preprocessing steps which bring the data to the form
applicable for the algorithm.

In paper [13], decision trees are used for the detection of the Simpson’s paradox and
identification of the confounding variables. Classification and regression trees are used to
predict the value of the target variable given the set of input variables. Trees are built by
partitioning the dataset into the subsets in a recursive manner, and the partitioning is based
on the set of rules that maximize the homogeneity of the subsets. In the method described
in this paper, the authors use conditional inference trees [14] where the partitioning is
based on the correlation values. The main objective is the structure of the tree and the
order of the splits(partitioning), not the prediction of the records. Given the dataset, cause
variable X, target variable Y and the set of all potential confounders Z’, tree is fitted with
the target Y and the predictors comprising X and Z’. In the case of Y being categorical, the
classification tree is fitted, in the case of Y being numerical the regression tree is fitted. The
presence of X and Z’ variables in the splitting sequence, as well as the splitting sequence
itself, determines the potential confounders and their confounding behaviour. Trees that
exhibit the structure where the first split is done on Z(single confounder) and the next
split on X indicate the association between X and Y, confounded by Z and this is the only
scenario that might correspond to the instance of the Simpson’s paradox, to the instance of
the partial paradox (association reversal for some of the subgroups), or even the absence of
the paradox where the effect for the subgroups differs only in magnitude.

2.3 Solution of Simpson’s Paradox

Any form of bias and paradox in data should be mitigated to avoid issues when working
with data or analyzing it [15]. The contradictory impact of the Simpson’s Paradox happens
because of the unintuitive relationship among the variables and it disappears when the
specific questions are asked, and data are represented in a way that allows us to see the
effect of the confounding variable. In most cases, the paradox gets resolved when we
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understand why the paradoxical effect happens and find the right way to represent data to
make the decision-making process unbiased during the data analysis. For that, we have to
perform the analysis of the causal graphical models of the system [16]. One of the major
pieces of work in a graphical representation of systems is presented in [17] If we consider
the relative rates form of the paradox and build the causal model of the system, we can see
the full causal explanation of why the paradox occurs.

Figure 3. Causal graph with a confounding effect

As we can see from Fig. 3, the confounding variable Z affects both X and Y which
corresponds to the case where the occurrence of the Simpson’s paradox is possible when
we study the effect of X on Y. But how do we avoid the paradox? Is it even possible
to avoid the paradox? Yes, we can if we know all the variables that affect the outcome
variable [18]. One way to avoid the paradox is to gather the data in a randomized trial
manner to make sure that there is an equal distribution of data instances for each subgroup
of the confounding variable. But unfortunately, it is not always possible to conduct a
randomized trial taking into account all possible scenarios of the statistical bias. It is still
possible to eliminate the effect of Simpson’s paradox. Judea Pearl’s do-calculus solves this
problem, and it consists of a set of rules which measures the causal effect among variables
and brings a casual system to the probabilistic calculations [19, 20, 16]. Similarly, there
are many different methods to adjust for confounding [21]. We will focus on the Inverse
Propensity Weighting method in the further sections of the paper.

17



3. Detection of Simpson’s Paradox and Identifi-
cation of the confounding variable

Simpson’s paradox primarily exists in two forms: linear trends and relative rates [4].
Relative rates form of the paradox occurs when variable X is categorical and when we
examine the causal effect of 2 categories of X on variable Y the associations reverse during
aggregation or disaggregation of data. Linear Trends form of the paradox occur when both
X and Y variables are numerical(continuous) and the linear trend between these variables
reverses during aggregation or disaggregation of data. The author explored both of the
forms separately as the preprocessing method differs for these forms. The author uses the
Pearson correlation index to find out the relationships between variables and identify the
confounding variable further on.

Given the input variables x and y, the Pearson correlation index allows us to measure the
strength of the linear association between these variables. The output value lies between
-1 and 1, values less than 0 imply a negative association with -1 indicating exact negative
association, values greater than 0 imply a positive association with 1 indicating the exact
positive association and 0 implies no correlation.

r =

∑
(x−mx)(y −my)√∑

(x−mx)2
∑

(y −my)2

where x and y are input vectors, mx and my are means of the variables respectively. The
intuition behind this approach is that if the association reversal happens for certain variables
we will be able to get the same reversal effect in the correlation indexes of the variables.
The most important indicator is the sign of the correlation coefficient, the magnitude is not
important for the identification of the confounder however it might be instrumental in the
further explanatory analysis of the paradox effect.
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3.1 Relative Rates

Inputs to the algorithm: X - categorical variable by which we condition, x1 - first category
of variable X, x2 - second category of variable X, Y - continuous or categorical variable
(with 2 categories) which is aggregated. Outputs: Z - confounding variable, p - proportion
of the subgroups of Z which exhibit reversal of association between X and Y.

The first primary step of the algorithm is to convert the values of the categorical input
variables to binary values. The first category of the variable will be substituted with 0 and
the second category will be substituted with 1. This preprocessing technique will allow
us to apply the Pearson correlation index function and identify the relationship between
categorical variables or between categorical and numerical (continuous) variables. All the
substitutions are saved in order to be able to return the original values in data tables.

Gender Result

male success

female success

male failure

Table 1. Example table before pre-
processing

Gender Result

0 1

1 1

0 0

Table 2. Example table after prepro-
cessing

The next part of the algorithm is to calculate the correlation index between X and Y

variables with the values of the corresponding columns in the dataset. This way we obtain
the information on the sign of the relationship between these variables. Further, we traverse
the list of remaining categorical variables, calculate the Pearson index conditioning on
each subgroup(category), count the proportion of subgroups where the correlation index
reversed relative to the index in aggregated data, and store the value key pairs in an array.
We can further get the array element where the value (proportion) is the highest. A value
greater than 0 implies the existence of Simpson’s paradox and the maximal value of 1
implies a full reversal effect. Therefore the fact of Simpson’s paradox occurrence can be
decided based on the results of Algorithm 1.
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Algorithm 1 Identification of the confounding variable for relative rates form of the
Simpson’s paradox
Input: dataset D, variable x, variable y
Output: a pair consisting of confounding variable and proportion of reversed association

signs
d[x] = Preprocess(d[x]) // conversion of categorical column to binary
d[y] = Preprocess(d[y]) // conversion of categorical column to binary in case it’s categor-
ical
aggreg_index = Pearson(d[x] , d[y]) // calculate corr. index between columns

indexes = [] // initialize index array to store key value pairs where the key is column and
value is the number of reversed subgroups
cols = columns(D) // initialize array of all columns of D
foreach column ∈ cols do

if Column Is Not Categorical(column) then
Continue

end
else

subgroups = Categories(column) // get the categories of a column

coefficients = [] // initialize empty array to store the correlation indexes foreach
subgroup ∈ subgroups do

disaggreg_index = Pearson( D[x]: where D[column] = subgroup, D[y]: where
D[column] = subgroup) calculate corr. index between columns for current
subgroup

Add index of disaggregated to correlation indexes array
end

end
reversed_subgroups = proportionReversedSubgroups(aggreg_index, coefficients ) //
calculate proportion of the correlation indexes reversed with respect to the correlation
index for the aggregated data

Add {column, reversed_subgroups} values into indexes
end
Store the max values of indexes pairs into result
Return result

3.1.1 Experiments for Relative Rates

The experiments are performed on the set of infamous datasets where the existence of
Simpson’s paradox has been studied before. For relative rates, The author of this thesis
uses the Kidney stone dataset, Berkeley university admissions dataset, and California DDS
dataset. As an initial step, all the datasets are run through the preprocessing functions which
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convert the categorical input variables to binary. For each dataset, the author demonstrates
the tables with Pearson correlation index between X and Y for the whole data and for each
subgroup and explains how the algorithm operates on these tables.

Berkeley university admissions dataset

This is a very popular dataset that contains the results of admission for males and females
in different majors. The rate of admission for females is less than for males when data
is aggregated, however, when we consider each major separately, female admission rates
exceed the rates for males in most of the subgroups. The version of the dataset which is
used contains 12764 records with attributes: ’Gender’, ’Major’, ’Admission’. ‘Gender’
attribute is set as X variable and ‘Admission’ attribute as Y variable.

Variable X Variable Y Correlation

Gender Admission 0.0933

Table 3. Correlation coefficient between Gender and Admission

Table 3 demonstrates the Pearson correlation index returned by the algorithm between
‘Gender’ and ‘Admission’ variables. Where ‘Gender’ contains values 0 and 1 (M and F
respectively) and ‘Admission’ contains values 0 and 1 (Accepted and Rejected respectively).
The correlation between these variables is 0.0933 which is an indication of a positive
association.

Major Variable X Variable Y Correlation

A Gender Admission -0.0630

B Gender Admission -0.0208

C Gender Admission 0.0303

D Gender Admission -0.0193

E Gender Admission 0.0414

F Gender Admission -0.0288

Other Gender Admission 0.0309

Table 4. Correlation coefficients between Gender and Admission for each subgroup of
Major

The algorithm traverses the list of all the potential confounders which is just one in this
case. It identifies ‘Major’ as a confounder and the percentage of the subgroups with
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association reversal is 57.14%. As we can see from Table 4, correlation index between
the ‘Gender’ and ‘Admission’ variable is negative for all the subgroups except for ’C’, ’E’,
and ’Other’ subgroups. The results correspond to the prior case studies of the sex bias in
Berkeley University admissions [22].

Kidney Stone dataset

The Kidney Stone dataset is also the dataset where the existence of the Simpson’s paradox
has been studied. It represents data for the kidney stone cases and the results of the
treatments along with the severity of the illness (size of the stone). The success rate for
treatment B happens to be higher than for treatment A in the whole population however
when we consider each stone size separately for each sub-population success rate for
treatment A is greater than for treatment B. Apparently ‘stone_size’ is the confounding
variable and the algorithm should identify it as a confounder along with the proportion of
the reversed subgroups which is 100%. This dataset contains 700 data rows with columns
‘treatment’, ‘success’, and ‘stone_size’. X is set as ‘treatment’ and Y as ‘success’.

Variable X Variable Y Correlation

treatment success -0.0574

Table 5. Correlation coefficient between treatment and success

Table 5 demonstrates the Pearson correlation index returned by the algorithm between
‘treatment’ and ‘success’ variables. Where ‘treatment’ contains values 0 and 1 (A and B
respectively) and ‘success’ contains values 0 and 1.

stone_size Variable X Variable Y Correlation

small treatment success 0.0400

large treatment success 0.0857

Table 6. Correlation coefficient between treatment and success for each subgroup

The algorithm traverses the list of all the potential confounders which is just one in this
case. It identifies ‘stone_size’ as a confounder and the proportion of the subgroups with
association reversal is 100%. As we can see from Table 6 correlation index between
treatment and success is positive for both small and large stone sizes whereas it is negative
for the whole population. The results correspond to the prior case studies on the treatment
bias in Kidney Stone [23].
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California DDS dataset

The California DDS dataset contains data regarding the allocation of financial resources
from the Department of Developmental Services to the individuals in need in California
for 2014. After analyzing the data retrieved from the governmental sources the lawsuit was
filed against the California DDS claiming that the White Non-Hispanic population was
allocated more resources than the Hispanic population (some citation). However, when we
disaggregate by the age cohort we encounter a different situation. This is the exemplary
case of the Simpson’s paradox which demonstrates how frequent and vital it can be. The
dataset is individual-oriented and contains 1000 data rows with the columns: ‘Id’, ‘Age
Cohort’, ‘Age’, ‘Gender’, ‘Expenditures’, and ‘Ethnicity’. We set X as ‘Ethnicity’ and Y

as ‘Expenditures’. Additionally as X variable contains more than 2 categories we set x1 as
‘White not Hispanic’ and x2 as ‘Hispanic’.

Variable X Variable Y Correlation

Ethnicity Expenditures -0.3481

Table 7. Correlation coefficient between Ethnicity and Expenditures

Table 7 demonstrates the Pearson correlation index returned by the algorithm between
‘Ethnicity’ and ‘Expenditures’ variables. Where ‘treatment’ contains values 0 and 1 (A
and B respectively) and ‘success’ contains values 0 and 1.

Age Cohort Variable X Variable Y Correlation

0 to 5 Ethnicity Expenditures 0.0207

6 to 12 Ethnicity Expenditures 0.1473

13 to 17 Ethnicity Expenditures 0.0252

18 to 21 Ethnicity Expenditures -0.0290

22 to 50 Ethnicity Expenditures 0.0514

51+ Ethnicity Expenditures 0.1876

Table 8. Correlation coefficient between Ethnicity and Expenditures for each subgroup

The algorithm traverses the list of all the potential confounders: ‘Age Cohort’ and ‘Gender’.
It identifies ‘Age Cohort’ as a confounding variable and the proportion of the subgroups
with association reversal is 83%. As we can see from Table 8 correlation index between
’Ethnicity’ and ’Expenditures’ variables is positive for 5 out of 6 age cohorts and negative
only for 18 − 21 age cohorts whereas it is negative for the whole population. This is
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a strong reversal effect and it proves the existence of the Simpson’s paradox with the
confounding variable ‘Age Cohort’ [24].

3.2 Linear Trends

Inputs to the algorithm: X - numerical(continuous) variable, Y - numerical(continuous)
variable. Outputs: Z - confounding variable, p - proportion of the subgroups of Z which
exhibit reversal of association between X and Y.

The algorithm for the detection of Simpson’s Paradox in linear trends does not require
a preprocessing step. All the steps are identical to the process described above. The
first part of the algorithm is to calculate the correlation index between X and Y variables
with the values of the corresponding columns in the dataset. This way we obtain the
information on the sign of the association between these variables. Further, we traverse
the list of remaining categorical variables, calculate the Pearson index conditioning on
each subgroup(category), count the proportion of subgroups where the correlation index
reversed relative to the index in aggregated data, and store the value key pairs in an array.
We can further get the array element where the value (proportion) is the highest. A value
greater than 0 implies the existence of Simpson’s paradox and the maximal value of 1
implies a full reversal effect. Therefore the fact of Simpson’s paradox occurrence can be
decided based on the results of Algorithm 2.
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Algorithm 2 Identification of the confounding variable for linear trends form of the
Simpson’s paradox
Input: dataset D, variable x, variable y
Output: a pair consisting of confounding variable and proportion of reversed association

signs
aggreg_index = Pearson(d[x] , d[y]) // calculate corr. index between columns
indexes = [] // initialize index array to store key value pairs where the key is column and
value is the number of reversed subgroups
cols = columns(D) // initialize array of all columns of D
foreach column ∈ cols do

if Column Is Not Categorical(column) then
Continue

end
else

subgroups = Categories(column) // get the categories of a column

coefficients = [] // initialize empty array to store the correlation indexes foreach
subgroup ∈ subgroups do

disaggreg_index = Pearson( D[x]: where D[column] = subgroup, D[y]: where
D[column] = subgroup) calculate corr. index between columns for current
subgroup

Add index of disaggregated to correlation indexes array
end

end
reversed_subgroups = proportionReversedSubgroups(aggreg_index, coefficients ) //
calculate proportion of the correlation indexes reversed with respect to the correlation
index for the aggregated data

Add {column, reversed_subgroups} values into indexes
end
Store the max values of indexes pairs into result
Return result

3.2.1 Experiments for Linear Trends

The experiments are done on the list of datasets that showcase bias in the form of the Simp-
son’s paradox and where the corresponding X and Y variables are numerical (continuous).
For this section Penguin dataset and Iris flower datasets are used. As in relative rates for
each dataset, The author demonstrates the tables with Pearson correlation index between X

and Y for the whole data and for each subgroup and explains how the algorithm operates
on these tables.
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Iris dataset

This is an extremely popular dataset that contains 150 instances of data for the iris flowers
[25]. There are 5 attributes: sepal length, sepal width, petal length, petal width, and class.
Simpson’s paradox is manifested in multiple combinations of variables in this dataset, with
the ‘class’ attribute being the confounder in all of the cases. For the sake of simplicity in
the experiment, we will consider the ‘sepal length’ attribute as X variable and ‘sepal width’
as Y variable. When we take a look at Table 9 and Table 10 we see why the algorithm
identified ‘class’ as a confounding variable. The correlation index sign reversed for all
subgroups when conditioning by the ‘class’ variable. In Fig. 4 we can observe the visual
representation of the reversal effect. Regression lines for subgroups have a positive slope,
whereas the trend is negative for the whole data.

Figure 4. Scatter plot with regression lines for Iris dataset

Variable X Variable Y Correlation

sepal length sepal width -0.1093

Table 9. Correlation coefficient between sepal length and sepal width

Table 9 demonstrates the Pearson correlation index returned by the algorithm between
‘sepal length’ and ‘sepal width’ variables. Where both of the variables are continuous.
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class Variable X Variable Y Correlation

Iris-setosa sepal length sepal width 0.7467

Iris-versicolor sepal length sepal width 0.5259

Iris-virginica sepal length sepal width 0.4572

Table 10. Correlation coefficient between sepal length and sepal width for each subgroup

The algorithm traverses the list of all the potential confounders which is just one in this case.
It identifies ‘class’ as a confounder and the proportion of the subgroups with association
reversal is 100%. From Table 10 we can see that the correlation index between sepal
length and sepal width is positive for all the classes whereas it is negative for the whole
population [26].

Penguin dataset

Palmer Archipelago (Antarctica) penguin dataset is also a well-known dataset that was
labelled as a replacement for the Iris dataset [27]. It is used for data exploration and
visualization for beginners in the data field. The dataset contains the descriptions of
3 species of penguins. There is an instance of the Simpson’s paradox in data as the
association between the culmen length of the penguin and culmen depth reverses when
data is disaggregated by the species. The dataset contains 344 data rows with columns:
‘species’, ‘island’ , ‘culmen_length_mm’, ‘culmen_depth_mm’, ‘flipper_length_mm’ ,
‘body_mass_g’ and ‘sex’. We set X as ‘culmen_length_mm’ and Y as ‘culmen_depth_mm’.
Similarly, here we can see the Simpson’s paradox visually in Fig. 5. Regression line slopes
are positive for each class and negative for the whole data.

Variable X Variable Y Correlation

culmen length culmen depth -0.1093

Table 11. Correlation coefficient between culmen length and culmen depth

Table 11 demonstrates the Pearson correlation index returned by the algorithm between
“culmen_length_mm’ and ‘culmen_depth_mm’ variables. Where both of the variables are
continuous.
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Figure 5. Scatter plot with regression lines for Penguin dataset

class Variable X Variable Y Correlation

Torgersen culmen length culmen depth 0.3858

Biscoe culmen length culmen depth 0.6535

Dream culmen length culmen depth 0.6440

Table 12. Correlation coefficient between culmen length and culmen depth for each
subgroup

The algorithm traverses the list of all the potential confounders: ‘species’, ‘island’, and
‘sex’. It identifies ‘species’ as a confounder and the proportion of the subgroups with
association reversal is 100%. From Table 12 we can see the correlation index between
culmen length and culmen depth is positive for all the species whereas it is negative for the
whole population [28].
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4. Resolving the Simpson’s Paradox

The existence of the Simpson’s paradox can cause erroneous conclusions during the
statistical(data) analysis, therefore it is important to be able to solve it. Solving the paradox
can mean different things. In this thesis, we consider the explanation of the paradox and
the adjustment of the data for the correct decision-making as a solution. In this section,
we concentrate on the Simpson’s paradox cases which exist in the relative rates form.
The main cause of the paradox is the effect of the confounding variable on both X and
Y. The main intuition is that if we eliminate the effect of the confounding variable on X

the confusing manifestation of the paradox observed while aggregating the data can be
avoided. As we can see from Fig. 6 the paradox occurs because the confounding variable
Z has a causal relationship both with X and Y.

Figure 6. Causal graph with the confounding effect

This confounding effect translates to the uneven distribution of the data instances. So in
order to be able to solve the paradox we need to fix the distributions. To make an analogy,
as with the Berkeley university admission rates example where ‘gender’ is X variable,
‘admitted’ variable and ‘major’ is the confounding (Z) variable, the distribution of males
and females in the subgroups of the ‘major’ is uneven and is caused by the preferences of
the particular gender to apply to the certain majors based on the certain features such as the
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competitiveness of the major. So the key to the paradox resolution is an adjustment of the
distributions to get rid of the confounding effect and achieve the causal inference system
as illustrated in Fig. 7. However, this method does not apply to certain cases of Simpson’s
paradox. Situations where confounding variables are affected by the X variable and affect
Y itself as shown in Fig. 8 require a different approach. Elimination of the confounding
effect would also partially eliminate the indirect effect of X on Y. This is impractical as we
are interested in a full effect.

Figure 7. Causal graph without the confounding effect

Figure 8. Causal graph with indirect effect of X on Y
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4.1 Inverse Probability Weighting

Inverse probability (propensity) weighting is the method to balance the distribution of
the data instances in the subgroups [29]. IPW is used in the datasets with the lack of
randomness in the observations or with the lack of information caused by some bias. In
the case of observations collected for the datasets being performed in a non-randomized
manner, the distributions in the subgroups of certain variables will be unbalanced. In most
cases this happens due to the confounding effect which can be explained by human factors
in the process.

Figure 9. Example of unbalanced subgroups

Fig. 9 is an example case of an unbalanced distribution of data instances in the subgroups.
So in order to study the causal effect of the type of sport played on some other variable,
we should first fix the distributions with respect to the graduation status, as the graduation
status might as well have an effect on that variable. This scenario is illustrated in Fig. 7
and implies the potential existence of Simpson’s paradox.

IPW is used to correct the observations during the data analysis. The main intuition behind
IPW is that information on probabilities in subpopulations is sufficient to make inferences
for the whole population. It works by assigning the inverse propensity as a weight in the
aggregation formula. If we denote x as subgroup of X variable and Za as all potential
confounding variables then the propensity score is P(x | Za) and the weight is
1/P(x | Za). In the case of Za being high dimensional, we have to apply logistic regression
or other appropriate machine learning methods to reduce the dimensionality to the level
of the probability scalar. As we particularly want to target the individual confounding
variable identified in the previous steps of the process we can simplify the propensity score
calculation by just considering one confounder. Propensity score in this case will be
P(x | Z) and the weight 1/ P(x | Z) where Z is a single confounding variable.
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P (Y |X = x) =

∑
(P (Y,X=x,Z=z)

P (X=x|Z)
)∑

( 1
P (X=x|Z)

)

The standard formula will be substituted with the formula illustrated above. It will be
used in the aggregation step and will be calculated for each value of variable X. As we
are working with the datasets, the probabilities will be expressed as a fraction of the
counts. As we are dealing with a single confounding variable, the propensity scores can be
calculated and assigned for each subgroup of that variable as opposed to doing it for each
data instance. The detailed steps are described in Algorithm 3. The result of the algorithm
is an aggregated data table showing the average rate/amount of Y for each category of X.

Algorithm 3 Resolving the Simpson’s paradox by aggregating the data with the adjustment
formula
Input: dataset: D, variable: x, variable: y , confounding variable: conf
Output: table
Set disaggreg_data with a mean value y of dataset D grouping by {x, conf}
Set count_aggreg with number of values of dataset D grouping by {x}
Set count_disaggreg with number of values of dataset D grouping by {x, conf}

foreach (i, row) ∈ disaggreg_data do
adj = ( count_aggreg[y]: where count_aggreg[x]=row[x]) / count_disaggreg[i][y]

val = row[y] / count_disaggreg[i][y] * ( count_aggreg[y]: where
count_aggreg[x]=row[x])

disaggreg_data[i][y] = val

disaggreg_data[i][’adj’] = adj
end
Set adjusted_aggreg with a sum of y values of dataframe disaggreg_data grouping by {x}
Set denominator with a sum of ’adj’ column values of dataframe disaggreg_data grouping
by {x}
foreach (i, row) ∈ adjusted_aggreg do

val = adjusted_aggreg[i][y] / denominator[i][’adj’]

adjusted_aggreg[i][y] = val
end
Return adjusted_aggreg

4.2 Experiments

We use the same dataset we used in the Simpson’s paradox detection and confounder
identification section for the relative rates form namely: Kidney stone dataset, Berkeley
university admissions dataset, and California DDS dataset. Confounding variables had
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been identified for each dataset in the previous part of the process. Aggregated form,
a disaggregated form of data, and a form aggregated using the adjustment formula are
provided for each dataset. Adjusted tables that are considered a resolution to the paradox
are based on the pseudo-population generated from the original population by fixing the
distributions.

Berkeley University Admissions Dataset

In the previous sections, the algorithm identified the ‘major’ variable as a confounding
variable. As described above, the confounding effect is caused by the non-randomness
with respect to the different genders applying to different majors. In Fig. 10 we can see that
distributions are uneven in the subgroups of ’major’ If we eliminate the effect of ‘major’
on the ‘gender’ variable we can solve the Simpson’s paradox. The average admission rate
for each gender calculated in a standard way is illustrated in Table 13, while the same
data conditioned by ’major’ is illustrated in Table 14. The average admission rate for each
gender calculated with the probabilistically adjusted formula is illustrated in Table 15.

Figure 10. Data Distribution in subgroups of ’major’

Gender Admission

F 0.3458

M 0.4428

Table 13. Aggregated data with standard formula for Gender and Admission
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Gender Major Admission

F
A 0.8241
B 0.6800
C 0.3390
D 0.3493
E 0.2392
F 0.0733

Other 0.3769

M
A 0.7250
B 0.6304
C 0.3692
D 0.3309
E 0.2775
F 0.0590

Other 0.4095

Table 14. Disaggregated data conditioned by Major

Gender Admission

F 0.6271

M 0.3312

Table 15. Aggregated data with adjustment formula for Gender and Admission

Kidney Stone Dataset

In the previous sections, the algorithm identified the ‘stone_size’ variable as a confounding
variable. This implies an imbalance of distributions(Fig. 11) with respect to certain
subgroups of ‘stone_size’ being associated with certain ‘treatment’ subgroups which are
caused by human factors in the process. Indeed doctors tended to allocate patients with
large stone sizes to treatment A due to the doctor’s understanding that treatment A performs
better for large stones and treatment B performs better for small stones. So we aim to
eradicate that effect in order to be able to observe the trend for the aggregated data based
only on treatment effectiveness. The average success rate for each treatment calculated in
a standard way is illustrated in Table 16, while the same data conditioned by ’stone size’
is illustrated in Table 17. The average success rate for each treatment calculated with the
probabilistically adjusted formula is illustrated in Table 18.
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Figure 11. Data Distribution in subgroups of ’stone size’

Treatment Success

B 0.8257

A 0.78

Table 16. Aggregated data with standard formula for Treatment and Success

Treatment stone size Success

B
large 0.6875
small 0.8666

A
large 0.7300
small 0.9310

Table 17. Disaggregated data conditioned by Stone Size

Treatment Success

B 0.7284

A 0.8810

Table 18. Aggregated data with adjustment formula for Treatment and Success

California DDS Dataset

In the previous sections, the algorithm identified the ‘age_cohort’ variable as a confounding
variable. Even though association reversal was not for all the subgroups of ‘age_cohort’ the
proportion of reversed associations was the maximal among the set of variables. The main
reason for the paradox is the uneven distribution of individuals with different ethnicities
in different age cohorts (Fig. 12). Indeed people of Hispanic ethnicity tend to have a
higher density of young population and a lower density of old population. The average
expenditures amount for each ethnicity calculated in a standard way is illustrated in
Table 19, while the same data conditioned by ’Age Cohort’ is illustrated in Table 20.
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The average expenditures amount for each ethnicity calculated with the probabilistically
adjusted formula is illustrated in Table 21.

Figure 12. Data Distribution in subgroups of ’Age Cohort’

Ethnicity Expenditures

White not Hispanic 24697.5486

Hispanic 11065.5691

Table 19. Aggregated data with standard formula for Ethnicity and Expenditures

Ethnicity Age Cohort Expenditures

White not
Hispanic

0 to 5 1366.9
6 to 12 2052.2608

13 to 17 3904.3582
18 to 21 10133.0579
22 to 50 40187.6240

51+ 52670.4242

Hispanic
0 to 5 1393.2045

6 to 12 2312.1868
13 to 17 3955.2815
18 to 21 9959.8461
22 to 50 40924.1162

51+ 55585

Table 20. Disaggregated data conditioned by Age Cohort

Ethnicity Expenditures

White not Hispanic 11453.7385

Hispanic 32131.5521

Table 21. Aggregated data with adjustment formula for Ethnicity and Expenditures
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5. Web Platform

The author of this thesis built the website which allows users to explore the Simpson’s
paradox on their datasets [30] [31]. It combines both detection and solution parts into
a single unit aiming to simplify the process of data exploration with the objective of
tackling the Simpson’s Paradox. Service is written on top of the algorithms described in
Part 3 and Part 4 (Algorithms 1, 2, 3) of the thesis. The visual interface requires users
to import the dataset on where they intend to perform analysis on. As soon as the file
is imported users get the possibility to select the x and y variables from the dropdown
list which contains all attributes contained in the dataset file.They can further select x1

and x2 variable values from the dropdown list, in case x is categorical and the number of
unique values of x is greater than 2. After all the input parameters are ready, users can
press the ‘Show’ button. First, the dataset is preprocessed and passed to the function which
detects the presence of Simpson’s paradox and identifies the confounding variable. In the
next step, the confounding variable along with the preprocessed dataset is passed to the
function which builds the analysis tables for the data. The main part of the results is the
statement that indicates whether the Simpson’s paradox has been detected, the confounding
variable identified by the backend functions, and the list of categories of the confounding
variable which exhibit association reversals, which is outputted both for linear trends and
relative rates form. In the case of the Simpson’s paradox existing in the relative rates
form, analysis tables as described in the previous section consisting of the data aggregated
with the standard formula, disaggregated data conditioned by the confounding variable,
data aggregated with the adjusted formula, and the distribution plot are displayed in the
interface. In the case of the Simpson’s paradox existing in the form of linear trends, the
scatter plot which usually explains the reversal effect is displayed in the interface.

5.1 Brief Manual

■ Step 1: "Upload the CSV file and wait until the input fields are activated (Fig. 13)."

■ Step 2: "Select the input values for x and y in the dropdown list of the input fields

(Fig. 14, 16)"

■ Step 3: "In case x is categorical variables with more than 2 categories, select x1

and x2 from the dropdown list of values of x (Fig. 16)"

■ Step 4: "Press "Show" button and wait until the results are outputted (Fig. 15
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, 17, 18, 19). Error notification is displayed in case of failure."

Figure 13. Index Page

Figure 14. Index Page with selected values for Linear Trends form
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Figure 15. Example output for Linear Trends form

Figure 16. Index Page with selected values for Relative Rates form
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Figure 17. First part of example output for Relative Rates form

Figure 18. Second part of example output for Relative Rates form
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Figure 19. Third part of example output for Relative Rates form
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5.2 Architecture

Figure 20. Architecture of the Web Platform

When a user uploads a dataset file to the respective input field in the interface request to
/dropdown is made with the uploaded file and the list of attributes and values is returned as a
response. The response consists of all attributes which are used as drop-down options in the
input fields for x and y, and a list of values for each categorical attribute that is used as drop-
down options for x1 and x2 in case attribute selected as x has more than 2 values(categories).
When all the values are selected and the "Show" button is pressed, another request is made
to /confounder endpoint. At this step, the inputs are fed to Algorithm 1 which takes care of
the identification of the confounding variable and detection of SP. Output results are saved
in memory and passed to the subsequent functions. In the case of the paradox existing
in a relative rates form all the parameters including the confounding variable identified
in the previous step are passed to Algorithm 3 which takes care of the building the data
table with probabilistic adjustments and the output is once again saved in memory, In
parallel, the same parameters are fed to the function which builds the plot demonstrating
the distributions of data instances in the subgroups of the confounding variable and the
image is uploaded to the AWS S3 bucket through the API Gateway provided by AWS
with URL of the image being saved in memory. All the collected output is returned to
the front-end side to be parsed. In the case of the paradox existing in the form of a linear
trend, only a scatter plot is generated and uploaded to the AWS S3 bucket, in the same way,
described previously and all the output is returned to the front-end side.
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5.2.1 Backend

The code is written in Python 3.8 programming language. The framework used for
the development is FastApi. The main advantage of FastApi is as its name says fast
development and high performance. Another upside of this framework is that it is possible
to quickly build small APIs and it requires less memory space which can be problematic in
the deployment process Application contains 2 endpoints “confounder/” and “dropdown/”
where the post requests with the corresponding parameters are made. Parameters are taken
from the form submitted by the user in the web interface and posted as a request to the
endpoint. The response of the request is the JSON with the required information used in
the frontend. Backend service is deployed on the Deta platform. This is a very convenient
platform for the deployment of microservices which eliminates the necessity for server
configuration and permission management. Deta CLI is used for the deployment and
management of API. Downsides are the limitations on the size of an app for the free tier
and the possibility to deploy only FastApi and Nodejs apps.

5.2.2 Frontend

Frontend service takes care of the communication with the backend API service and renders
the components in the web interface using the data response from the POST request to
the "/confounder" and "/dropdown" endpoints. It is written in React Js which enables
more functionality in web development than just Javascript and makes the coding easier.
Another major advantage of React is the possibility to use a wide range of libraries such as
Material-UI which was used in the development of the user interface for this application.
This framework provides a huge set of crisp designs to build a visually appealing interface
by using just a few lines of code. For the communication with the backend server, we used
the Axios library which allows us to conveniently fetch data from external sources. This
can be achieved with fetch and AJAX methods but Axios provides more functionality and
a level of security. The service was deployed in Github Pages which is free, easy to set
up, and allows collaboration with Git and Github. Additionally, it provides a possibility
for live updating with Github Workflow which is ideal for continuous development and
continuous integration.

5.3 Software Development

For the development of this project, the author used the Agile project management method-
ology. As the author was working alone, standard Scrum was not applicable so Scrum for
One was used. The work was split into 3 sprints and each sprint lasted for about 1-2 weeks
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on average. At the beginning of each sprint, The author made the planning and updated the
project backlog. Additionally, daily reviews reflecting on work done and the way forward
were conducted. 3 user stories were used as the core requirements and each sprint covered
all the user stories to some extent to maintain the incremental development process. In
Sprint 1 the first version of the application with minimal functionality was developed. In
the second sprint, all the parts were extended and enhanced and the functions responsible
for the scatter plot generation were written and integration with AWS S3 was made. In the
final sprint, everything was revised and improved once again. Distribution plot generation
functions were developed and the functionality for drop-down options in the interface was
added. Fig. 21 represents the software development plan which was made in the beginning
of the process and updated further on.

■ User Story 1: "As a user, I want to be able to upload my CSV file and select the

corresponding attributes with the drop-down options, so that I submit my inputs

conveniently."

■ User Story 2: "As a user, I want to be able to see the structured results for the

detection of the Simpson’s paradox, so that I can see whether Simpson’s Paradox is

detected in the uploaded dataset and if detected what is the confounding variable."

■ User Story 3: "As a user, I want to be able to see the structured results for the

resolution and explanation of the paradox, so that I can understand why it happens

and use the adjusted data for the decision-making."
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Figure 21. Software development plan
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6. Time Evaluations

Time evaluations are performed for each of the algorithms with the same parameters as
described in the corresponding Experiments sections. The code is developed in Python
3.8.10 and runs on HP EliteBook 840 G6 with a 1.6GHz Intel Core i5 CPU and 16
GB 1800MHz RAM. All the algorithms replicate the same process described in the
experiments sections of the thesis. Algorithms 1 and 2 are for the identification of the
confounding variables and Algorithm 3 is for the resolution of the Simpson’s Paradox
with the probabilistic adjustments. From Table 22 we can see that time strongly correlates
with the size of the table. Algorithm 2 is the fastest and Algorithm 3 is the slowest when
comparing the time efficiency.

Algorithm Name Size Time

Algorithm 1
Berkeley University Admission 268 kb 0.037 s

Kidney Stone 7 kb 0.011 s
California DDS 41 kb 0.018 s

Algorithm 2
Iris 4.5 kb 0.007 s

Penguin 13 kb 0.02 s

Algorithm 3
Berkeley University Admission 268 kb 0.129 s

Kidney Stone 7 kb 0.089 s
California DDS 41 kb 0.109 s

Table 22. Time evaluations
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7. Conclusion

The confusion caused by the Simpson’s Paradox can turn out to be detrimental in certain
cases. The author of this thesis described some historical examples where the understanding
of the paradox and its resolution were instrumental. Additionally, the author talked about
the methods and tools developed previously that serve the purpose of helping understand
or tackle Simpson’s paradox. The author found the necessity to improve certain methods
and develop a platform that unifies most of the aspects related to the Simpson’s Paradox.

In this thesis, the author showed how the Web application for Simpson’s paradox explo-
ration in the datasets was built and demonstrated the methods behind the service. First, the
author demonstrated the method to identify the confounding variables in the dataset and
decide the existence of the Simpson’s paradox based on that. This method incorporates
preprocessing techniques that allow flexibility in terms of data type variety for datasets,
and comparisons of correlation coefficients which uncover the instances of association
reversals. It is a very compact algorithm and is applicable to all forms of the Simpson’s
Paradox. Next, the author explored the algorithm which aggregates the data for X and Y

variables using the probabilistic adjustments, which eliminates the confounding effect,
therefore solving the paradox. In the final part, the overview and architecture of the
developed Web Platform were presented.

All the methods were tested using well-known datasets that exhibit the Simpson’s paradox,
and the results obtained from the experiments correspond to prior knowledge. Additionally,
the processing time of the algorithms was measured for each dataset in correspondence
with the conducted experiments and it showed that all the algorithms are relatively efficient.
All the experiments and tests conducted for the algorithms were conducted for the whole
Web Service as well and the results matched. Service proves to be functional and effective
in terms of data exploration, with a focus on the Simpson’s paradox, however, there are
certain limitations that open a way for further development and research. One potential
improvement is that continuous variables can be converted to categorical by dividing the
set of values into bins. This would allow us to uncover instances of SP which otherwise
wouldn’t be possible. Another direction is to alter the SP detection algorithm to omit X

variable in the input and search for the pairs (X,Z) instead of just Z. Additionally, the web
service components and architecture can be optimized for better performance and speed.
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