
TALLINN UNIVERSITY OF TECHNOLOGYDOCTORAL THESIS17/2020

Operational Semantics of Weak
Sequential Composition

HENDRIK MAARAND

TALLINN UNIVERSITY OF TECHNOLOGYSchool of Information TechnologiesDepartment of Software Science
The dissertation was accepted for the defence of the degree of Doctor of Philosophy
(Informatics) on 29 March 2020

Supervisor: Prof. Tarmo Uustalu
Tallinn University of Technology / Reykjavik University

Opponents: Dr. Brijesh Dongol
University of Surrey
Prof. Peter Thiemann
Albert-Ludwigs-Universität Freiburg

Defence of the thesis: 26 June 2020, Tallinn

Declaration:Hereby I declare that this doctoral thesis, my original investigation and achievement, submitted for the doctoral degree at Tallinn University of Technology, has not been submitted for any academic degree elsewhere.

Hendrik Maarand signature

Copyright: Hendrik Maarand, 2020ISSN 2585-6898 (publication)ISBN 978-9949-83-560-7 (publication)ISSN 2585-6901 (PDF)ISBN 978-9949-83-561-4 (PDF)Printed by Auratrükk

TALLINNA TEHNIKAÜLIKOOLDOKTORITÖÖ17/2020

Nõrga jadakompositsiooni
operatsioonsemantika

HENDRIK MAARAND

Contents
List of Publications . 7
Author’s Contributions to the Publications . 8
1 Introduction . 9
2 Preliminaries. 152.1 Word Languages. 152.2 Regular Languages . 152.3 Mazurkiewicz Traces . 162.3.1 Normal Forms . 182.4 Properties of Trace Closures of Regular Languages . 192.5 Rational and Recognisable Languages of Monoids . 192.6 Star-Connected Expressions . 202.7 Derivatives of a Language. 212.7.1 Brzozowski Derivative . 222.7.2 Antimirov Derivative . 232.8 Small-Step Operational Semantics . 262.9 Axiomatic Models . 27
3 Reordering Derivatives . 293.1 Prefixes and Suffixes of Representatives of Traces. 293.2 Trace-Closing Semantics of Regular Expressions . 333.3 Reordering Derivatives . 363.3.1 Reordering Derivative of a Language . 363.3.2 Brzozowski Reordering Derivative . 383.3.3 Antimirov Reordering Derivative . 413.3.4 Automaton Finiteness for Star-Connected Expressions 433.4 Uniform Scattering Rank of a Language . 453.4.1 Scattering Rank vs. Uniform Scattering Rank. 453.4.2 Star-Connected Languages Have Uniform Rank. 483.5 Antimirov Reordering Derivative and Uniform Rank . 513.5.1 Refined Antimirov Reordering Derivative . 523.5.2 Automaton Finiteness for Regular Expressions with Uniform Rank. . 593.6 Related Work . 593.7 Conclusion and Future Work . 60
4 Normal Forms of Generalised Traces . 634.1 Motivation . 634.2 Generalised Mazurkiewicz Traces . 644.3 Generalised Foata Normalisation. 664.3.1 Normal Forms . 664.3.2 Normalisation . 674.3.3 Correctness . 684.4 Generalised Lexicographic Normalisation. 714.4.1 Normal Forms . 714.4.2 Normalisation . 724.4.3 Correctness . 734.5 Example: TSO-like Independence Alphabet . 744.6 Related Work . 764.7 Conclusion and Future Work . 77

5

5 Operational Semantics with Semicommutations . 795.1 Motivation . 795.2 Preliminaries . 805.2.1 Semicommutations . 805.2.2 Programs . 805.3 Reordering Semantics . 815.3.1 Word Language Interpretation of Programs . 815.3.2 Reorderability. 835.3.3 Operational Semantics . 855.3.4 Parallel-Independent Programs . 895.4 Example: While Language . 905.5 Partial-Order Reduction. 925.5.1 Representative Executions . 935.5.2 Normal Forms . 945.6 Extending the Framework . 945.6.1 Operational Semantics in Context . 955.6.2 Context-Dependent Semicommutation Relation . 975.6.3 Reordering Actions . 985.6.4 Non-Atomic Instructions . 995.6.5 Extensions and Partial-Order Reduction . 995.6.6 Context-Dependence of θ and Actions . 1005.7 Example: TSO-like Memory Model . 1015.8 Related Work . 1045.9 Conclusion and Future Work . 105
6 Example: Multicopy-Atomic ARMv8. 1076.1 Abstract Machine . 1076.2 From Axiomatic to Operational . 1086.3 Prototype . 1126.4 Related Work . 1136.5 Conclusion and Future Work . 113
7 Conclusions and Future Work . 1157.1 Conclusions . 1157.2 Future Work . 115
References . 117
A Certified Normalisation of Generalised Traces . 125
Acknowledgements . 139
Abstract . 140
Kokkuvõte . 142
Curriculum Vitae . 144
Elulookirjeldus . 146

6

List of Publications
I H. Maarand and T. Uustalu. Reordering derivatives of trace closures of regular lan-guages. In W. J. Fokkink and R. van Glabbeek, editors, 30th International Conferenceon Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Nether-lands, volume 140 of LIPIcs, pages 40:1–40:16. Schloss Dagstuhl - Leibniz-Zentrum fürInformatik, 2019II H. Maarand and T. Uustalu. Certified Foata normalization for generalized traces. InA. Dutle, C. A.Muñoz, and A. Narkawicz, editors,NASA FormalMethods - 10th Interna-tional Symposium, NFM 2018, Newport News, VA, USA, April 17-19, 2018, Proceedings,volume 10811 of Lecture Notes in Computer Science, pages 299–314. Springer, 2018III H. Maarand and T. Uustalu. Certified normalization of generalized traces. Innovationsin Systems and Software Engineering, 15(3-4):253–265, 2019(This is the journal version of Publication II.)IV H.Maarand and T.Uustalu. Generating representative executions [extended abstract].In V. T. Vasconcelos and P. Haller, editors, Proceedings of the Tenth Workshop on Pro-gramming Language Approaches to Concurrency- and Communication-cEntric Soft-ware, PLACES@ETAPS 2017, Uppsala, Sweden, 29th April 2017, volume 246 of EPTCS,pages 39–48. Open Publishing Association, 2017V H.Maarand and T. Uustalu. Operational semantics with semicommutations. Acceptedfor publication in J. Log. Algebr. Methods Program.(This is the journal version of Publication IV and the material has been significantlyelaborated here.)

7

Author’s Contributions to the Publications
In Publication I, I proposed the idea of developing reordering derivatives with the goal ofdeveloping an operational semantics for relaxed memory out of it. Many of the resultswere obtained together with my supervisor. I wrote the first draft of the manuscript andalso presented the results at the conference.
In Publications (II–III), I proposed the idea of using normal forms of generalised traces toallow a more precise description of some relaxed memory models which in turn led tothis work. I carried out the formalisation and wrote the first drafts of the manuscripts. Ipresented the results of Publication II at the conference.
In Publications (IV–V), I proposed the idea of using the same independence relation bothfor generating the program executions and also for discarding those executions that arenot in normal form. I implemented the prototypes and wrote the first drafts of the manu-scripts. I presented the results of Publication IV at the workshop.

8

1 Introduction
This dissertation considers the execution of concurrent programs in a manner that is notsequentially consistent. Intuitively, this means that we consider program executions thatare not justifiable by simply interleaving the program-order instruction sequences of theindividual threads. The sequentially consistent model is intuitive, but real world CPUs andcompilers do not adhere to it as it forbids many common optimisations. Instead we haveconsistency models that are weaker than sequential consistency in the sense that theyallow more program executions. These weaker models, however, are less intuitive thansequential consistency and may lead to unexpected results at runtime.

A mechanism that is commonly used in programming languages to introduce order-ing constraints between instructions is sequential composition. If we take p and q tobe programs, then their sequential composition p;q expresses that the program q is tobe executed after the program p has been executed. In this dissertation we develop anoperational semantics that allows to weaken (or relax) some of the ordering constraintsintroduced by sequential composition.
Context
A memory consistency model (or, more generally, a memory model) describes the mean-ing ofmemory operations such as reads andwrites in a sharedmemory system. For exam-ple, it should specify the set of values that a processor is allowed to read when executingan instruction that reads the content of memory location x. Intuitively, this set of valuesshould be determined based on all the write instructions to memory location x that haveoccurred so far.

It is very intuitive to consider the shared memory to be a mapping from locations tovalues that is updated accordingly whenever a write to a location x occurs. As an examplewe now consider something different. We say that the processors agree on variable xif the last value written to x has also been at some point written to location x by all ofthe processors and no other values have been written to location x in between thesewrites. We say that the current value of location x is the last value that the processorsagreed upon (andwe assume that the processors agree on the initial values of thememorylocations). For example, if during the execution of a program the processors never agreeon any location, then every memory location still holds the initial value also in the finalstate. If we are not aware of the fact that the sharedmemory of somemachine behaves asdescribed above, then wemight be very surprised whenwe begin to execute programs onthatmachine. We can see that, with this unconventionalmemory behaviour, wemay haveto write our programs differently andwe alsomust reason about the programs differently.In other words, we have to take the behaviour of thememory system into account in bothof these tasks.
Perhaps the simplest memory model is Sequential Consistency (SC) which was definedby Lamport [44] for a system consisting of processors and memory modules where theprocessors communicate with each other only by sending fetch and store requests to thememorymodules. He defined a system to be sequentially consistent if the following holds:the result of any execution is the same as if the operations of all the processors were ex-ecuted in some sequential order, and the operations of each individual processor appearin this sequence in the order specified by its program. In the same paper Lamport alsonotes that the requirements for sequential consistency rule out some techniques thatcan be used to speed up individual processors and thus, for some applications, achievingsequential consistency might not be worth the price of slowing down the processors.

9

Modern CPUs and compilers indeed include optimisations that make them weakerthan sequential consistency. It is common, however, for weaker consistency models tostill satisfy the requirement that each processor (or thread) is individually sequentiallyconsistent by which we mean that a single processor executing in isolation is sequentiallyconsistent. It is also a very reasonable requirement for compiler optimisations that, forsingle-threaded programs, the optimisations do not introduce any new behaviours (inwhich case we also say that the optimisation is individually sequentially consistent). AsLamport notes in [44], the fact that each processor is individually sequentially consistentis not sufficient for the whole system to be sequentially consistent. In other words, theeffects of optimisations that are individually sequentially consistent might become visiblein a concurrent setting.We now continue with a small example to explain how optimisations can violate se-quential consistency. The following concurrent program represents themessage-passingpattern.
x := 41;y := 1 ‖ r1 := y;r2 := x

Here the first thread stores to x the result of some computation (which happens to be 41)and then sets y to 1. The intendedmeaning of the second instruction is that the variable yhaving value 1 indicates that the first thread has finished its computation (and the resultis now available in variable x). The second thread first reads the variable y and then thevariable x. If we follow the requirements of sequential consistency, then no execution ofthis program, starting from an initial state where everything is set to 0, can result in afinal state where r1 = 1 and r2 = 0. In other words, when the variable y holds the value 1(indicating that the first thread has finished), then the variable x must hold the value 41.We can observe, however, that in both threads reordering the two instructions is in-dividually sequentially consistent, i.e., when executing a thread in isolation, we cannotdistinguish (based on the final state) whether we executed the instructions in the givenorder or in the reverse order. This is so because the instructions in a single thread usedifferent variables. After an optimisation like this we could end up with the followingprogram where the instructions in the second thread have been reordered.
x := 41;y := 1 ‖ r2 := x;r1 := y

This optimised program has the interleaving
r2 := x;x := 41;y := 1;r1 := y

which results in a final state where r1 = 1 and r2 = 0. Thus we can see that applying anoptimisation that is individually sequentially consistent to a concurrent program (eitherin advance or at runtime) might introduce behaviour that is not possible under sequentialconsistency. In other words, this optimisation is not valid under sequential consistency.Systems with a memory consistency model that allows more behaviours than sequen-tial consistency are often said to have a weak or relaxed memory model. The aboveexample demonstrates that under a relaxed memory model a program can have addi-tional final states compared to those that it has under sequential consistency. As a con-sequence, when reasoning about programs we have to be precise about the particularmemory model as the same program might satisfy certain properties on some memorymodels but not on others.
Problem Statement
In the example above we interpreted the message passing program in two different ways.First, assuming sequential consistency, we argued that the program does not allow a cer-

10

tain undesirable final state. Then we argued that, if we would first apply a seeminglyharmless optimisation to the program, then the final state in question is allowed. In otherwords, the optimised program can reach the undesirable final state. The optimisationnecessary for this just reorders a single pair of instructions. This raises the question: howto describe or specify such relaxed memory models?A successful approach to describing memory models has been the use of axiomaticmodels or axiomatic style descriptions. An example of this is the generic framework forweak memory models developed by Alglave in her PhD thesis [6]. A characteristic featureof the axiomatic approach is the predicate on (complete) candidate executions which de-fines those (candidate) executions that are allowed by thememorymodel. In otherwords,thememorymodel definition itself does not specify how to construct an execution, it onlyspecifies when an execution is allowed by the memory model.Our goal in this dissertation is somewhat opposite: we pursue a framework for definingrelaxedmemorymodels via small-step operational semantics. Thus our goal is to describehow to execute a program in a relaxed manner. In other words, given a configuration con-sisting of a program and a machine state, the framework should specify what are thepossible next steps in the execution that are allowed by the memory model. The exe-cutions allowed by the memory model are then precisely those executions that can beconstructed in such a step-by-step manner and which take us from the initial state to afinal state.
Contributions
We develop an operational semantics that has reordering capabilities (such as those nec-essary for the example optimisation above) built in. This means that to obtain the unde-sirable final state for the example program we do not have to consider a set of optimisedversions of the given program as we did above. Instead, we can set up our operationalsemantics so that it can produce an execution that goes from the initial state to this un-desirable final state. Altogether, we make the following contributions.

1. Reordering derivatives: We use regular expressions over an alphabet of instruc-tions as the syntax with which we describe programs. For regular expressions, theidea corresponding to operational semantics is the notion of (syntactic) derivatives.By this we mean that derivatives describe how to construct (in a letter-by-lettermanner) a word in the language of a regular expression.
Thus as a first step towards our goalwe investigate derivatives of regular expressionsin the presence of an independence relation on the alphabet. The independencerelation (as in Mazurkiewicz traces [52]) specifies the pairs of letters that commuteand we use this as the mechanism to describe the optimisations that we include inthe semantics.
As a specification of what the (syntactic) reordering derivatives should compute,we develop a non-standard interpretation of regular expressions as trace-closedlanguages. Thismeans that if a word belongs to the interpretation, then so does anyword that is equivalent to it (according to the equivalence relation induced by theindependence relation). We then generalise the Brzozowski [20] and Antimirov [10](syntactic) derivative operations to match this non-standard interpretation.
Wealso investigate questions regarding the finiteness of the set syntactic reorderingderivatives. This part is not directly related to relaxed memory models.
Our generalisations of Brzozowski and Antimirov derivative operations can also be

11

used for constructing an automaton from a regular expression. In general, theseautomata cannot be finite for the simple reason that, in general, they must acceptnon-regular languages. We show that, for a class of regular expressions called star-connected expressions, the set of Antimirov reordering derivatives is finite modulocertain equations.
We also develop a refinement of the Antimirov reordering derivative operation thatallows us tomore precisely keep track of how an expression is derived along aword.With this refinement in mind, we define a stronger version of (scattering) rank [32]which we call uniform (scattering) rank and show that languages defined by star-connected expressions have finite uniform scattering rank. We then show that, ifthe language of an expression has finite uniform scattering rank, then the refinedAntimirov reordering derivative operation can be used to construct a finite automa-ton from the expression. This construction does not require any quotienting, in-stead it relies on truncation to make the state set finite.

2. Normalisation of generalised traces: In the previous item we mentioned that thenon-standard interpretation of regular expressions produces trace-closed languages.In other words, the non-standard interpretation wrt. independence relation I pro-duces a language that can be partitioned into equivalence classes (traces) accordingto the equivalence relation induced by I. In some applications it might be desirableto work with concrete words representing these equivalence classes. For Mazur-kiewicz traces there are two well-known normal forms that can be used to specify acanonical representative of a trace (equivalence class): the Foata normal form andthe lexicographic normal form.
Our development here is motivated by the fact that, in some cases, an indepen-dence relation (as in Mazurkiewicz traces) might not be expressive enough. Moreprecisely, in Mazurkiewicz traces, the independence relation is a binary relation onthe alphabet and thus it is static. By this we mean that we cannot have a pair ofletters independent in some configuration of the system, but not in others.
We develop Foata and lexicographic normal forms and corresponding normalisa-tion algorithms for a generalisation of Mazurkiewicz traces introduced by Sassone,Winskel and Nielsen [74]. We also formalise this development in the dependentlytyped programming language Agda.
In this generalisation the independence relation is replaced by a family of indepen-dence relations, i.e., for any word uwe have an independence relation Iu associatedwith u. In this setting, a Iu b (only) means that a and b are independent in the con-text u (the prefix of the letters a and b). In other words, if aIu b, then uabv and ubavare considered equivalent, but it is not necessarily the case that the same holds for
u′abv and u′bav. This word parameter u can be seen as the current configurationof a system and thus allows us to say that a pair of letters are independent in someconfiguration but not in others.
We are interested in generalised traces since, in some relaxed memory models, itmay be that two instructions commute in somemachine state but not in others. Thiscould be because one of the instructions accesses a shared resource only undercertain conditions. For example, a processor executing a read instruction mightaccess the shared memory to determine the result of the read, but also it mightnot, when the result is determined based on locally available information.

12

3. Operational semantics with semicommutations: We further extend the Antimirovreordering derivatives to obtain an operational semantics that, according to a givenindependence relation, produces all possible executions that are justified by thereorderings described by the independence relation.
The basic changes needed to go from Antimirov reordering derivatives to opera-tional semantics are the following. First, we interpret the alphabet as the set ofpossible instructions. By this we mean that we can interpret the letters of the al-phabet as (partial) state transformers. A program then is just a regular expressionover this alphabet. Intuitively, the Antimirov reordering derivatives of a program telluswhat the instructions are thatwe are allowed to execute next andwhat the corre-sponding residual programs are that still need to be executed afterwards. Here wealso let go of the requirement that an independence relation must be symmetric.Thus we are working with a generalisation of Mazurkiewicz traces called semicom-mutations that was introduced by Clerbout and Latteux [24]. To describe parallelprograms we also add parallel composition to the syntax.
Note that, if we take the set of machine states to be a singleton set and we inter-pret the letters as the identity state transformer, then we essentially get back toAntimirov reordering derivatives.
To allowmore intricate relaxed behaviourwe also describe a couple of extensions ofthis framework. For example, we allow a semicommutation relation to be context-dependent so that we are justified to reorder a pair of instructions in some state butnot in others. We also allow for the possibility that reordering a pair of instructionscan modify them. This is described using reordering actions, i.e., we have left andright actions of the alphabet (acting) on itself. We also allow for instructions to beexecuted in multiple steps.
Relaxed memory models are often specified in the axiomatic style. To test the ca-pabilities of the operational framework described above, we take the axiomaticallyspecified multicopy-atomic ARMv8 [67] memory model and translate a fragmentof it into our operational framework. The main contribution here is an example ofhow the extensions mentioned in the previous paragraph can be used to give anoperational translation of an axiomatic model.

Outline
In Chapter 2 we go over some background material relevant to this work.In Chapter 3 we describe the non-standard interpretation of regular expressions astrace-closed languages, the I-reordering language derivatives and the corresponding gen-eralisations of the Brzozowski and Antimirov derivative operations. We then investigatethe question of finiteness of the set of these syntactic derivatives. We also develop arefinement of the Antimirov reordering derivative. This is based on Publication I.In Chapter 4 we cover the Foata and lexicographic normal forms for generalised tracestogether with the corresponding normalisation algorithms and correctness proofs. This isbased on Publications (II–III).In Chapter 5 we further generalise the Antimirov reordering derivative operation todevelop an operational semantics for relaxed memory where the semantics is parame-terised by an independence relation that controls the relaxedness of the semantics. Thisis based on Publication V. (The early ideas for this work are from Publication IV, but theywere developed significantly further in Publication V.)

13

In Chapter 6 we give an example of how the framework from Chapter 5 could be usedto describe a memory model. More precisely, we take the multicopy-atomic ARMv8 [67]memory model, which is axiomatically specified, and translate a fragment of it into theoperational framework from Chapter 5. This is based on Publication V.

14

2 Preliminaries
In this chapter we briefly go over some background material that is necessary for or rele-vant to our later developments.
2.1 Word Languages
An alphabet is a finite non-empty set of letters (also called symbols). A word (or string)over an alphabet Σ is a finite sequence of letters from Σ. The empty word (the sequenceconsisting of zero letters) is denoted by ε . The concatenation of words u and v (denotedby u · v but · may be omitted and then we just write uv) is the sequence that consists ofthe letters of the sequence u followed by the letters of the sequence v.The set Σ∗ of all words over Σ is the free monoid on Σ with the empty word ε as theunit and concatenation of words as the multiplication. Thus we have that εu = u = uεand s(tu) = (st)u for any s, t,u ∈ Σ∗.We write |u| for the length of the word u (i.e., the length of the sequence u). We have
|ε| = 0 (i.e., the length of the empty sequence is 0) and |uv| = |u|+ |v|. For a set X , wewrite |X | for the cardinality of the setX . By πX (u)wemean the projection of a word u to asubalphabetX ⊆ Σ. Thus πX (u) is a subword (or subsequence) of u obtained by discardingfrom u all letters that are not in X . By Σ(u)⊆ Σ we denote the set of letters that occur in
u. As a shorthand we write |u|X for |πX (u)| which is the number of occurrences of lettersfrom X in u.For two words u,v∈ Σ∗, we say that u is a prefix of v when there exists t ∈ Σ∗ such that
ut = v. Similarly, v is a suffix of u when there exists t such that tv = u.A (word) language over Σ is a set of words over Σ. The empty language is the emptyset /0 and the language consisting of all possible words over Σ, the universal language, is
Σ∗. Thus a (word) language is a subset of Σ∗. The empty word and the concatenation ofwords lift to word languages via 1 =df {ε} and L ·L′ =df {uv | u ∈ L∧ v ∈ L′}.The shuffle (product) of u,v ∈ Σ∗, denoted by u� v, is the set of all valid interleavingsof u and v.

ε� v =df {v}
u� ε =df {u}

au�bv =df {a} · (u�bv)∪{b} · (au� v)

This lifts to word languages via L�L′ =df {u� v | u ∈ L∧ v ∈ L′}.
2.2 Regular Languages
The set RE of regular expressions over an alphabet Σ is given by the grammar

E ::= a | 0 | E +E | 1 | EE | E∗

where a ranges over Σ. We write RE(Σ) when we need to explicitly specify the alphabet.The word-language semantics of regular expressions is given by the function J_K :
RE→P(Σ∗) defined recursively by

JaK =df {a}
J0K =df /0

JE +FK =df JEK∪ JFK
J1K =df 1

JEFK =df JEK · JFK
JE∗K =df µX .1∪ JEK ·X =

⋃
n∈N

JEKn

15

Aword language L is said to be regular (or rational) if L = JEK for some regular expres-sion E ∈ RE. We also say that J_K is the standard interpretation of regular expressions as(regular) word languages.A deterministic finite automaton (DFA) is a quintuple (Q,Σ,δ ,q0,F)where Q is a finiteset (of states), Σ is the (input) alphabet, δ : Q×Σ→ Q is the transition function, q0 ∈ Qis the initial state and F ⊆ Q is the set of final states. We write (q)a for δ (q,a) and ex-tend it to words as (q)ε =df q and (q)au =df ((q)a)u. A deterministic automaton is saidto accept a word u when (q0)u ∈ F , i.e., when the automaton transitions according to δfrom the initial state q0 as prescribed by the word u to a state that is final (or accepting).The language {u ∈ Σ∗ | (q0)u ∈ F} of all words accepted by the automaton is the lan-guage recognised by the automaton. The transitions of the automaton can also be givenrelationally in terms of δ as {(q,a,(q)a) | q ∈ Q∧a ∈ Σ}.A nondeterministic finite automaton (NFA) is otherwise just like a deterministic finiteautomaton, except that the transition function becomes δ : Q×Σ→P(Q), i.e., in state
q ∈ Q with input letter a ∈ Σ we may have zero or more states we can transition to.We write (q)a for the set δ (q,a) and extend it to words as (q)ε =df {q} and (q)au =df⋃
{(q′)u | q′ ∈ (q)a}. A nondeterministic automaton is said to accept a word u when ucan take the automaton from the initial state q0 to some accepting state q ∈ F . In otherwords, u is accepted when (q0)u∩F 6= /0. The transitions of the automaton can also begiven relationally in terms of δ as {(q,a,q′) | q ∈ Q∧a ∈ Σ∧q′ ∈ (q)a}.Kleene’s theorem [40] says that a word language is rational iff it is recognisable, i.e.,accepted by a deterministic finite automaton (acceptance by a nondeterministic finiteautomaton is an equivalent condition because of determinisability [69]).A Kleene algebra is an idempotent semiring with an additional operation (_)∗ (theKleene star) together with some additional axioms governing this operation. It was shownby Kozen [42] that the set {JEK | E ∈ RE} of all regular languages together with the lan-guage operations /0,∪, 1, ·, (_)∗ is the free Kleene algebra onΣ. An important consequenceof this is that the equational theory of Kleene algebra is sound and complete for J_K. Inother words, we have that E .

= F iff JEK = JFK where .
= refers to valid equations in theKleene algebra theory.

2.3 Mazurkiewicz Traces
An independence relation on an alphabet Σ is an irreflexive and symmetric binary relation
I ⊆ Σ×Σ. Its complementD= Σ×Σ\ I, which is reflexive and symmetric, is called the de-pendence relation. An independence (or concurrency) alphabet (Σ, I) is just an alphabet
Σ together with an independence relation I on it. We extend the independence relationto words by saying that two words u and v are independent, denoted by uI v, if aI b for all
a,b ∈ Σ such that a ∈ Σ(u) and b ∈ Σ(v). Two words u and v are dependent, denoted by
uDv, when they are not independent, i.e., there exist a,b∈ Σ such that a∈ Σ(u), b∈ Σ(v)and a D b.Intuitively, the independence relation reflects the meaning we have attached to thesymbols in the alphabet Σ. If a I b, then we say that the letters a and b are independentand by this we mean that the ordering of the letters a and b in a word does not matter,i.e., the words uabv and ubav represent the same thing (we consider them equivalent).We define ∼I ⊆ Σ∗×Σ∗ to be the least relation such that a I b implies uabv∼I ubav,i.e., it relates words that differ only by the ordering of a pair of adjacent independentletters. We define (Mazurkiewicz) equivalence∼I∗ to be its reflexive-transitive closure. A(Mazurkiewicz) trace is an equivalence class of words wrt. ∼I∗. The equivalence class ofa word w is denoted by [w]I . Equivalently, we could define ∼I∗ as the least congruence

16

(wrt. ·) such that aI b implies ab∼I∗ba. A consequence of the definition of the equivalencerelation is that the ordering of dependent letters is fixed in an equivalence class, i.e., if
a D b and u∼I∗ v, then π{a,b}(u) = π{a,b}(v).The set Σ∗/∼I∗ of all traces is the free partially commutative monoid on (Σ, I). If I = /0,then Σ∗/∼I∗ ∼= Σ∗, the set of words, i.e., we recover the free monoid. On the other hand,if I = {(a,b) | a 6= b}, then Σ∗/∼I∗ ∼= Mf(Σ), the set of finite multisets over Σ, i.e., thefree commutative monoid.A trace language is a subset of Σ∗/∼I∗. Trace languages are in bijection with wordlanguages L that are (trace) closed in the sense that, if z ∈ L and z∼I∗w, then also w ∈ L.If T is a trace language, then its flattening L =df

⋃
T = {u ∈ Σ∗ | [u]I ∈ T} is a closedword language. On the other hand, the trace language corresponding to a closed wordlanguage L is T =df {t ∈ Σ∗/∼I∗ | ∃z ∈ t.z ∈ L}= {t ∈ Σ∗/∼I∗ | ∀z ∈ t.z ∈ L}.Given a general (not necessarily closed) word language L, we define its (trace) closure

[L]I as the least closedword language containingL. Clearly [L]I = {w∈Σ∗ | ∃z∈ L.w∼I∗ z}and also [L]I =
⋃
{t ∈ Σ∗/∼I∗ | ∃z ∈ t.z ∈ L}. The trace closure operator [_]I is indeed aclosure operator as, for any L, we have L⊆ [L]I and [[L]I]I = [L]I . Furthermore, we have

[/0]I = /0 and, for any L and L′, [L∪L′]I = [L]I ∪ [L′]I . We also have that [1]I = 1 and, forany a ∈ Σ, [{a}]I = {a}. A language L is closed iff [L]I = L.A word w = a1 . . .an where ai ∈ Σ yields a directed node-labelled acyclic graph as fol-lows. We take the vertex set to beV =df {1, . . . ,n} and we label vertex i with ai. We takethe edge set to beE =df {(i, j) | i< j∧ai Da j}. This graph (V,E) for a wordw is called thedependence graph of w and is denoted by 〈w〉D. If w∼I∗ z, then the dependence graphsof w and z are isomorphic, i.e., traces can be identified with dependence graphs up toisomorphism. If w∼I∗ z, then w is a linearisation of 〈z〉D.We say that a letter a is minimal in the word z when there exist v′ and v′′ such that
z= v′av′′ and v′ I a. An equivalent condition is that a is the first letter of an equivalentword,i.e., there exists v such that z∼I∗ av. In the dependence graph of z the node correspondingto this a has no incoming edges. If I = /0, then the word av has exactly one minimal letterand this is the letter a.As an example independence alphabet we take Σ =df {a,b,c,d} and I to be the leastsymmetric relation satisfying a I b, a I d, b I d, c I d. Then the words abcd and bdac areequivalent, since abcd∼I bacd∼I badc∼I bdac, but acbd is not equivalent to them. Thewords abcd, abdc, adbc, bacd, badc, bdac, dabc, dbac formone equivalence class of wordsor a trace. Another is {acbd, acdb, adcb, dacb}. Altogether, there are four traces contain-ing each letter from Σ exactly once.Continuing with the above example, we have seen that the words abcd and acbd arenot equivalent and thus should have distinct dependence graphs. Indeed, we can drawthe dependence graphs of the words abcd and acbd as follows (we have drawn rectanglesto separate the two dependence graphs).

cb

a

d

ca b

d

The concatenation of two dependence graphs is obtained by adding the necessary edgesbetween dependent vertices of the two graphs. The concatenation of the two depen-
17

dence graphs above (〈abcd〉D and 〈acbd〉D) can be drawn as follows.

cb

a

d

a c b

d

Just to emphasise, we draw the transitive reduct of the dependence graph, i.e., we haveomitted transitive edges like the one between the two a’s. We can check that this is indeedthe dependence graph of abcdacbd.
2.3.1 Normal Forms
Traces are equivalence classes of words. We have seen that a trace can be identified withits dependence graph (up to isomorphism) and thus a dependence graph can be used torepresent a trace. Here we describe two well-known normal forms that specify a wordrepresenting a trace as a canonical representative of that trace. For this we require astrict total order (i.e., a transitive and asymmetric relation) ≺ on the alphabet. We takethe strict total order on the example alphabet Σ to be a≺ b≺ c≺ d.The Foata normal form [21] is a well-formed sequence of well-formed steps. A well-formed step is a≺-sorted word where all the letters are pairwise independent. We thinkof a step as a set of independent letters, but add the requirement of≺-sortedness to picka representative word for that step. A sequence of steps is well-formed when every letterin a step has a dependent letter in the previous step (the first step is excepted). This leadsto the maximally parallel representation of the trace, with every letter occurrence in theearliest possible step.The Foata normal form of abcd in our example is (abd)(c). Here abd is the first stepand c is the second step of the normal form. It is a normal form since the letters arepairwise independent in both of the steps and c has a dependent letter in the previousstep. It is the normal form of abcd since, if we turn the normal form (abd)(c) into a wordby flattening the steps, we get abdc, which is equivalent to abcd. Similarly, the normalform of acbd is (ad)(c)(b).The Foata normal form of a trace can be read off of its dependence graph. The first stepof the normal form is the set of minimal letters (vertices with no incoming edges) in itsdependence graph. The rest of the normal form is obtained recursively from the residualdependence graph, i.e., the dependence graph with its minimal letters removed. Fromthe dependence graph of abcd above we can see that the first step in the normal form of
abcd is indeed (abd). Similarly, the first step in the normal form of acbd is (ad). From thedependence graph of abcdacbd we can see that the first step in the normal form is (abd).A word is said to be in lexicographic normal form if it is the least element in its equiv-alence class according to the lexicographic ordering induced by≺. An equivalent charac-terisation in terms of a forbidden pattern was given by Anisimov and Knuth [9]: a word
s is in lexicographic normal form if and only if, for every factorisation tbuav of s where
b I a and a≺ b, there is a letter d in u such that d D a (in other words, we are not able tocommute a to the left past b).The word abcd is the lexicographic normal form in its equivalence class. Similarly, theword acbd is the lexicographic normal form in its equivalence class. The only potentiallyforbidden pattern in this word could be formed by c and b as they occur in the wrongorder, but the two letters are dependent and hence there are no forbidden patterns. The

18

equivalent word acdb has a forbidden pattern: the letters d and b are in the wrong order,independent, and the subword between them (the empty word) does not contain a de-pendent letter. We denote the set of lexicographic normal forms for the independencealphabet (Σ, I) by Lex(Σ, I).Similarly to the Foata normal form, the lexicographic normal form of a trace can alsobe read off of its dependence graph. The first letter in the normal form is the least letteraccording to≺ among the minimal letters in the dependence graph of the trace. The restof the normal form is obtained recursively from the residual dependence graph, i.e., thedependence graph with the first letter removed.
2.4 Properties of Trace Closures of Regular Languages
Trace closures of regular languages are theoretically interesting due to their intricate prop-erties and have therefore been studied in a number of works, e.g., [13, 59, 3, 71, 32, 41].For a thorough survey, see Ochmański’s handbook chapter [60].An important property for us is that the trace closure of a regular language is not nec-essarily regular.
Proposition 2.1. There exists a regular language L such that [L]I is not regular.
Proof. Take Σ =df {a,b}, aI b and let the regular language be L =df J(ab)∗K. The language
[L]I = {u ∈ Σ∗ | |u|a = |u|b} is not regular.

The class of trace closures of regular languages behaves quite differently from the classof regular languages. Here are some results demonstrating this.
Theorem 2.2 (Bertoni et al. [14], Aalbersberg and Welzl [3], Sakarovitch [71]). (cf. [60,Thm. 6.2.5]) The class of trace closures (wrt. I) of regular languages (over Σ) is closedunder complement iff I is quasi-transitive (i.e., its reflexive closure is transitive).
Theorem 2.3 (Bertoni et al. [13], Aalbersberg and Welzl [3] (“if” part); Aalbersberg andHoogeboom [1]). (cf. [60, Thm. 6.2.5]) The problem of whether the trace closures (wrt. I)of two regular languages (over Σ) are equal is decidable iff I is quasi-transitive.
Theorem 2.4 (Sakarovitch [72]). (cf. [60, Thm. 6.2.7]) The problem of whether the traceclosure (wrt. I) of the language of an expression over Σ is regular is decidable iff I is quasi-transitive.

A closed language is regular iff the corresponding trace language is accepted by a fi-nite asynchronous (a.k.a. Zielonka) automaton [80, 81]. In Section 2.6 we will see furthercharacterisations of regular closed languages based on star-connected expressions.
2.5 Rational and Recognisable Languages of Monoids
Trace languages are a special case of languages of monoids. A subset T of a monoid M iscalled an M-language. An M-language T is called rational if T = JEKM for some regularexpressionE overM. Here J_KM : RE(M)→P(M) interprets any elementm ofM as {m},the 0,+ constructors of regular expressions by /0 and ∪, the 1, · constructors as mandatedby the monoid structure, and (_)∗ as the appropriate least fixpoint.An M-language T is recognised by an action δ : Q×M→ Q if there exist q0 ∈ Q and
F ⊆ Q such that T = {m ∈ M | (q0)m ∈ F} where we write (q)m for δ (q,m). In otherwords, T is the set of elements of M that take q0 to F . An M-language T is recognisableif it is recognised by an action of M on a finite set. If an M-language T is recognised by an

19

action δ : Q×M→ Q, then δ can be seen as an automaton by taking Q to be the stateset, q0 to be the initial state, F to be the final states and the set of transitions is givenby {(q,m,(q)m) | q ∈ Q∧m ∈ M}. If M is finitely generated with G as the generators,then we can obtain an equivalent automaton by restricting the set of transitions to be
{(q,m,(q)m) | q ∈ Q∧m ∈ G}. If Q is finite, then the resulting automaton is also finite.Kleene’s celebrated theorem says that, for languages of free monoids on finite sets(i.e., word languages over finite alphabets), rationality and recognisability are equivalentconditions (and we can thus just speak about regularity). For a general monoid, however,the two notions are different.
Theorem 2.5 (Kleene [40]). Let M be the free monoid Σ∗ on a finite set Σ. An M-language
T is rational iff T is recognisable.
Theorem 2.6 (McKnight [53]). Let M be finitely generated. If an M-language T is recog-nisable, then T is rational.

Given a monoid M and a congruence≡ on M, the set M/≡ is a monoid too. We view
M/≡-languages as sets of equivalence classes wrt.≡.
Proposition 2.7. Given a monoid M and a congruence≡ on it.

1. Given a regular expression E, its M/≡-language JEKM/≡ is expressible via its M-language JEKM by JEKM/≡ = {t ∈M/≡ | ∃u ∈ t.u ∈ JEKM}.
2. AM/≡-languageT is recognisable iff its flattening⋃T into anM-language is recog-nisable.
In the free partially commutative monoid the classes of rational and recognisable lan-guages are different: the class of recognisable languages is a proper subclass of that ofrational languages. In view of Proposition 2.7, a trace language T is rational if and only if

T = {t ∈ Σ∗/∼I∗ | ∃u ∈ t.u ∈ L} or, equivalently, ⋃T = [L]I for some regular word lan-guage L (in the terminology of Aalbersberg andWelzl [3], such a trace language T is calledexistentially regular), and recognisable iff⋃
T = L for some regular word language L (sucha trace language is called consistently regular).The question of when a rational trace language is recognisable is nontrivial. We havejust seen that, reformulated in terms of word languages, it becomes: given a regular lan-guage L, when is its trace closure [L]I regular?

2.6 Star-Connected Expressions
Star-connected expressions are important as they characterise regular closed languages.A corollary of that is a further characterisation of such languages in terms of a “concur-rent” semantics of regular expressions that interprets the Kleene star non-standardly as“concurrent star”.
Definition 2.8. A word w ∈ Σ∗ is connected if its dependence graph 〈w〉D is connected. Alanguage L⊆ Σ∗ is connected if every word w ∈ L is connected.
Definition 2.9.

1. Star-connected expressions are a subset of the set of all regular expressions definedinductively by: 0, 1 and a ∈ Σ are star-connected. If E and F are star-connected,then so are E +F and EF . If E is star-connected and JEK is a connected language,then E∗ is star-connected.
20

2. A language L is said to be star-connected if L = JEK for some star-connected ex-pression E.
Ochmański [59] proved that a closed language is regular iff it is the closure of a star-connected language. This means that, for any expression E, the language [JEK]I is regulariff there exists a star-connected expression E ′ such that [JEK]I = [JE ′K]I . It is important torealise that generallyE 6=E ′ and also JEK 6= JE ′K. Ochmański’s proof was as follows (recallthatwewriteLex(Σ, I) for the set of all lexicographic normal forms over the independencealphabet (Σ, I)).

Lemma 2.10. (cf. [60, Props. 6.3.4, 6.3.10])
1. Lex(Σ, I) is regular.
2. For any regular language L, if L⊆ Lex(Σ, I), then L is star-connected.

Theorem 2.11 (Ochmański [59]). (cf. [60, Thm. 6.3.13]) For any closed language L (i.e.,
L = [L]I), the following are equivalent:

1. L is regular;
2. L∩Lex(Σ, I) is regular;
3. there exists a star-connected L′ such that L = [L′]I .

Proof. (1) =⇒ (2) is a consequence of Lemma 2.10(1) as the intersection of regular lan-guages is regular. (2) =⇒ (3) follows from Lemma 2.10(2) as L = [L∩ Lex(Σ, I)]I . Forthe step (3) =⇒ (1), Ochmański employed Hachiguchi’s notion of rank of a language andHachiguchi’s lemma, which we will study in Definition 3.43 and Proposition 3.44 below,and proved that, if L is closed and connected, then L∗ has rank.
The non-standard concurrent-star trace-language semantics of regular expressions,denoted by J_Kcon : RE(Σ)→P(Σ∗), is like J_K except that the Kleene star is interpretednon-standardly as the concurrent star operation. Informally, the concurrent star of a lan-guage iterates not the given language but the language of connected components of itswords.The concurrent star of a connected language coincides with its Kleene star. The idea ofthis non-standard semantics is to make non-star-connected regular expressions harmless,so as to obtain the following replacement for Kleene’s theorem.

Theorem 2.12 (Ochmański [59]). (cf. [60, Thm. 6.3.16]) A closed language L is regular iff
L = [JEKcon]I for some regular expression E.
2.7 Derivatives of a Language
Aword language L is said to be nullable (or that it has the empty word property), denotedby L , if ε ∈ L. The derivative (or left quotient)1 of L along a word u is defined by

DuL =df {v ∈ Σ
∗ | uv ∈ L}.

For any L, we have Dε L = L as well as DuvL = Dv(DuL) for any u,v ∈ Σ∗. Thus the oper-ation D : P(Σ∗)×Σ∗→P(Σ∗) is a right action of Σ∗ on P(Σ∗). We have
L = {ε | L }∪

⋃
{{a} ·DaL | a ∈ Σ}

1We use the word ‘derivative’ both for languages and expressions, reserving the word ‘quotient’for quotients of sets by equivalence relations.
21

and, for any u ∈ Σ∗, we have
u ∈ L ⇐⇒ (DuL) .

Example 2.13. Let Σ =df {a,b}, E =df 1+a(1+b(1+a))+b(1+a(1+b)) and L =df JEK.We have
L = {ε,a,ab,aba,b,ba,bab}

and thus
DaL = {ε,b,ba}.

Since ε ∈ DaL, we have (DaL) and thus we know it must be that a ∈ L.Similarly, we have DbL = {ε,a,ab}, DabL = {ε,a} and DabaL = {ε}. On the otherhand, DaaL = /0 and thus we know that aa 6∈ L.
Derivatives of regular languages are regular. A remarkable fact is that they can becomputed syntactically, on the level of regular expressions. There are two constructionsfor this, due to Brzozowski [20] and Antimirov [10]. We now continuewith a brief overviewof these two constructions.

2.7.1 Brzozowski DerivativeNullability and derivative are semantic notions, defined on languages. However, Brzo-zowski [20] noticed that for regular languages, one can compute nullability and the deriva-tives syntactically, on the level of regular expressions.
Definition 2.14. The syntactic nullability (or empty word property) and the Brzozowskiderivative of a regular expression are given by functions (_) : RE→ B, D : RE×Σ→ REand D : RE×Σ∗→ RE defined recursively by

b =df ff Dab =df if a = b then 1 else 0
0 =df ff Da0 =df 0

(E +F) =df E ∨F Da(E +F) =df DaE +DaF
1 =df tt Da1 =df 0

(EF) =df E ∧F Da(EF) =df if E then (DaE)F +DaF else (DaE)F
(E∗) =df tt Da(E∗) =df (DaE)E∗

Dε E =df E
DuaE =df Da(DuE)

The important property is that the syntactic nullability and derivative agree with theirsemantic counterparts as shown by the following proposition.
Proposition 2.15. For any E,

1. JEK = E ;
2. for any a ∈ Σ, DaJEK= JDaEK;
3. for any u ∈ Σ∗, DuJEK= JDuEK.

Corollary 2.16. For any E,
1. JEK= {ε | E }∪ ⋃

{{a} · JDaEK | a ∈ Σ};
2. for any a ∈ Σ and v ∈ Σ∗, av ∈ JEK iff v ∈ JDaEK;
3. for any u,v ∈ Σ∗, uv ∈ JEK iff v ∈ JDuEK;

22

4. for any u ∈ Σ∗, u ∈ JEK iff (DuE) .
The Brzozowski derivative operation gives a method for turning a regular expressioninto a deterministic automaton. Given an expression E, the set of states is QE = {DuE |

u∈ Σ∗}, the initial state is qE
0 = E, the final states are FE = {E ′ ∈QE | E ′ } and the tran-sition function δ E is defined by D restricted to QE . This automaton is generally not finite,but becomes finite when quotiented by associativity, commutativity and idempotence of

+. Identified up to the Kleene algebra theory, the states of the Brzozowski automatoncorrespond to the derivatives of the language JEK. Note that regular languages can becharacterised as languages with finitely many derivatives.
Example 2.17. Let Σ =df {a,b}, E =df 1+a(1+b(1+a))+b(1+a(1+b)) and L =df JEKas in Example 2.13. Before (in 2.13) we calculated that DaL = {ε,b,ba}. Syntactically wehave the following.

DaE = Da1+Da(a(1+b(1+a)))+Da(b(1+a(1+b)))
= 0+(Daa)(1+b(1+a))+(Dab)(1+a(1+b))
= 0+1(1+b(1+a))+0(1+a(1+b))
.
= 1+b+ba

We can see that DaL = JDaEK. Before we had DabL = {ε,a}. Thus we should be able toshow that DabE .
= 1+a.

DabE = Db(DaE)
.
= Db(1+b+ba)
= Db1+Dbb+Db(ba)
= 0+1+(Dbb)a
= 0+1+1a
.
= 1+a

Before we had that DaaL = /0. Thus we should be able to show that DaaE .
= 0.

DaaE = Da(DaE)
.
= Da(1+b+ba)
= Da1+Dab+Da(ba)
= 0+0+(Dab)a
= 0+0+0a
.
= 0

2.7.2 Antimirov Derivative
Antimirov [10] optimised Brzozowski’s construction essentially constructing a nondeter-ministic finite automaton instead of a deterministic one, with a smaller number of statesand, crucially, without having to identify states up to equations.

Antimirov’s syntactic derivative operation is a multivalued function, in other words,a relation. Antimirov spoke of “partial derivatives”, we prefer to use the term “parts-of-derivative”. The relational definition below corresponds to the equational characterisa-tion given in [10].
Definition 2.18. The Antimirov parts-of-derivative of a regular expression along a letterand a word are given by the relations→⊆ RE×Σ×RE and→∗ ⊆ RE×Σ∗×RE defined

23

inductively by
a→ (a,1)

E→ (a,E ′)
E +F → (a,E ′)

F → (a,F ′)
E +F → (a,F ′)

E→ (a,E ′)
EF → (a,E ′F)

E F → (a,F ′)
EF → (a,F ′)

E→ (a,E ′)
E∗→ (a,E ′E∗)

E→∗ (ε,E)
E→∗ (u,E ′) E ′→ (a,E ′′)

E→∗ (ua,E ′′)

The following proposition tells us that the Antimirov parts-of-derivative indeed com-pute parts of the semantic derivative (though the parts are not necessarily disjoint). Putanother way, the Antimirov parts-of-derivative collectively compute the semantic deriva-tive.
Proposition 2.19. For any E,

1. for any a ∈ Σ, DaJEK=
⋃
{JE ′K | E→ (a,E ′)};

2. for any u ∈ Σ∗, DuJEK=
⋃
{JE ′K | E→∗ (u,E ′)}.

Corollary 2.20. For any E,
1. for any a ∈ Σ and v ∈ Σ∗, av ∈ JEK ⇐⇒ ∃E ′.E→ (a,E ′)∧ v ∈ JE ′K;
2. for any u,v ∈ Σ∗, uv ∈ JEK ⇐⇒ ∃E ′.E→∗ (u,E ′)∧ v ∈ JE ′K;
3. for any u ∈ Σ∗, u ∈ JEK ⇐⇒ ∃E ′.E→∗ (u,E ′)∧E ′ .
The last item tells us that aword u belongs to the language JEK if and only if there existsa derivation for E→∗ (u,E ′) such that E ′ . Thus each such derivation gives us a justifica-tion why the word u belongs to JEK. Importantly, there can be many such derivations fora given u.If we took languages to bemultisets of words (i.e., introduced the notion of a word oc-curring in a language some number of times) and adopted the obviousmultisets-of-wordssemantics of regular expressions, then the Antimirov parts-of-derivative would also com-pute the semantic derivative, but in a partitioningmanner. In the sets-of-words semantics,however, overlaps are possible, so we do not get a partition.The parts-of-derivative of an expression E induce a nondeterministic automaton. Thestate set is QE =df {E ′ | ∃u ∈ Σ∗.E →∗ (u,E ′)}. The initial state is qE

0 =df E. The setof final states is FE =df {E ′ ∈ QE | E ′ }. Finally, the transition relation is defined by
E ′→E (a,E ′′) =df E ′→ (a,E ′′) for E ′,E ′′ ∈ QE .The state set QE is shown finite by proving it to be a subset of another set that isstraightforwardly seen to be finite.
Definition 2.21. For any E, the set E→

∗ of regular expressions is defined recursively by
E→

∗
=df {E}∪E→

+

a→
+

=df {1}
0→

+
=df /0

(E +F)→
+

=df E→
+ ∪F→

+

1→
+

=df /0
(EF)→

+
=df E→

+ · {F}∪F→
+

(E∗)→
+

=df E→
+ · {E∗}

24

Proposition 2.22. For any E,
1. E→

∗ is finite, in fact, of cardinality linear in the size of E;
2. QE ⊆ E→

∗ .
Corollary 2.23. For any E, the Antimirov automaton is finite.

We note that the Antimirov automaton, constructed as above, while canonical, is gen-erally not trim: every state is reachable, but not every state is generally coreachable (i.e.,not every state needs to have a path to some final state). A state E ′ is not coreachable ifand only if JE ′K= /0. This is the case precisely when E ′ equals 0 in the theory of idempo-tence of+ and the left and right zero laws of 0wrt. ·. The Antimirov automaton is trimmedby removing the states that are not coreachable.Now we can also show that a suitable sound quotient of the Brzozowski automaton isfinite. (We consider a quotient to be sound if the resulting automaton is equivalent to theoriginal automaton.) For this we prove a syntactic version of Proposition 2.19 relating theBrzozowski derivative and the Antimirov parts-of-derivative.
Proposition 2.24. For any E,

1. for any a ∈ Σ, DaE .
= ∑{E ′ | E→ (a,E ′)};

2. for any u ∈ Σ∗, DuE .
= ∑{E ′ | E→∗ (u,E ′)}.

(using the semilattice equations for 0 and +, the left zero law, and distributivity of · over
+ from the right).
Corollary 2.25. For any E, the Brzozowski automaton, suitably quotiented, is finite.
Proof. Just notice that the powerset of a finite set is finite too.

This quotient does not give the minimal deterministic automaton (given by semanticderivatives of JEK). Theminimal deterministic automaton is obtained from the Brzozowskiautomaton by quotienting it by the full Kleene algebra theory.
Example 2.26. Let Σ =df {a,b}, E =df 1+a(1+b(1+a))+b(1+a(1+b)) and L =df JEKas in Examples 2.13 and 2.17. For the Brzozowski derivative we had that DaE .

= 1+b+ba.With Antimirov parts-of-derivative we have the following.
a→ (a,1)

a(1+b(1+a))→ (a,1(1+b(1+a))
1+a(1+b(1+a))+b(1+a(1+b))→ (a,1(1+b(1+a)))

Of course 1(1+ b(1+ a)) .
= 1+ b+ ba. Note that a(1+ b(1+ a)) is the part of E thatwe can derive along a with Antimirov parts-of-derivative, i.e., there is no derivation for

1→ (a,E ′) nor b(1+a(1+b))→ (a,E ′′) for any E ′ and E ′′.Beforewehad thatDabE .
= 1+a and similarlywe consider here deriving the expression

1+ b+ ba along b. The difference is that here we now have a choice, i.e., we have twoways to derive it along b.

b→ (b,1)
b+ba→ (b,1)

1+b+ba→ (b,1)

b→ (b,1)
ba→ (b,1a)

b+ba→ (b,1a)
1+b+ba→ (b,1a)

We can see that in this case the Antimirov parts-of-derivative collectively deliver the Br-zozowski derivative: 1+1a .
= 1+a.

25

2.8 Small-Step Operational Semantics
The characteristic feature of small-step operational semantics is that the focus is on de-scribing the individual small steps that are taken during an execution. These small stepsrepresent the execution of instructions (like assignments) but also the evaluation of con-ditionals. An introduction to the subject can be found in [56].The meaning of a statement S in state σ is described in terms of a transition systemwith configurations either of the form 〈σ ,S〉 (the statement S is to be executed from state
σ) orσ (a terminal configuration). The transitions are given by a relation 〈σ ,S〉⇒ γ where
γ is either of the form 〈σ ′,S′〉 or σ ′. The transition 〈σ ,S〉 ⇒ γ describes the first step ofthe execution of S from σ . If γ = 〈σ ′,S′〉, then the execution of S from the state σ has notyet completed and the residual computation is represented by the configuration 〈σ ′,S′〉.If γ = σ ′, then the execution of S from σ has terminated with σ ′ as the final state.The definition of⇒ for a simple While language is given by the following rules. Wehave arithmetic expressions (ranged over by a), Boolean expressions (ranged over by b)and variables (ranged over by x). A state σ is just a mapping of variables to values.

〈σ ,x := a〉 ⇒ σ [x 7→A JaKσ]

〈σ ,skip〉 ⇒ σ

〈σ ,S1〉 ⇒ 〈σ ′,S′1〉
〈σ ,S1;S2〉 ⇒ 〈σ ′,S′1;S2〉

〈σ ,S1〉 ⇒ σ ′

〈σ ,S1;S2〉 ⇒ 〈σ ′,S2〉

〈σ ,if b then S1 else S2〉 ⇒ 〈σ ,S1〉
BJbKσ = tt

〈σ ,if b then S1 else S2〉 ⇒ 〈σ ,S2〉
BJbKσ = ff

〈σ ,while b do S〉 ⇒ 〈σ ,if b then (S;while b do S) else skip〉

For example, the rule for assignment says that executing x := a in state σ terminatesin a state which is otherwise like σ except the value of variable x has been updated to be
A JaKσ (which is the value of the arithmetic expression a in the state σ).The interesting part for us are the two rules for sequential composition S1;S2. Thesesay that to execute S1;S2 from state σ , we first must execute a step of S1 from state σ .This has two possible outcomes: either 〈σ ,S1〉⇒ 〈σ ′,S′1〉 or 〈σ ,S1〉⇒ σ ′. In the first casewe still have the residual program S′1 to execute, but in the second case the execution of
S1 terminated in state σ ′. Since these are the only rules for S1;S2, we cannot executeanything from S2 until the execution of S1 has terminated. What we will develop later isprecisely about relaxing this restriction, i.e., we will allow (under certain conditions) toexecute something from S2 even when the execution of S1 has not yet terminated.A derivation sequence of statement S from state σ is either a finite sequence γ0, . . . ,γkor an infinite sequence γ0,γ1, . . . such that γ0 = 〈σ ,S〉, γk is a terminal configuration, and
γi⇒ γi+1. Thus a derivation sequence either describes a path in the transition system fromconfiguration 〈σ ,S〉 to a terminal configuration γk or it describes an infinite path from theconfiguration 〈σ ,S〉.We will represent programs in the style of Kleene algebra with tests (KAT) [43], i.e.,with regular expressions over some alphabet of instructions. A Kleene algebra with testsis a Kleene algebra where the tests b (a subset of the carrier of the Kleene algebra) form aBoolean algebra with b̄ as the complement. Thus for us an assignment x := a will just be

26

a letter of the alphabet. The statement skip will be the expression 1. Sequential compo-sition S1;S2 will be multiplication E1E2 where Ei is the expression representing Si. Condi-tionals are represented as a determinised choice. In other words, if b then S1 else S2is represented by bE1 + b̄E2. (Note that the expression E1 + E2 is a nondeterministicchoice between E1 and E2; we take our alphabet to also include tests b together withtheir complements.) While loops while b do S are represented as (bE)∗b̄ where E is theexpression representing S. The expression 0 will represent the program that is stuck oraborted: something that does not lead to a terminal configuration.Although we said that we will represent programs in the style of Kleene algebra withtests, our intention is not to include upfront all axioms of KAT into our operational seman-tics (that we will develop in Chapter 5). For any test b, bb .
= b holds in KAT as conjunctionis idempotent in Boolean algebra. Similarly, for any tests b and c, bc .

= cb holds in KAT.In terms of operational semantics, we view these as potential optimisations that can beapplied to programs. Furthermore, the effects of such optimisations may become visiblein a concurrent context. For describing relaxed memory models we leave these open aswe may want to allow only some of these for a particular memory model.
2.9 Axiomatic Models
The axiomatic style of describing memory models specifies when a given (complete) ex-ecution is allowed by the memory model. Basically, the memory model is a predicateon candidate executions which defines those that are allowed (or valid) on that model.Typically this predicate is given in terms of certain relations on memory accesses that oc-curred during the candidate execution. We now give a brief introduction to this approach.A more thorough introduction can be found in [8].The instructions that are executed during the execution of a program are representedas abstract events. For example, a write instruction like x := 1 could be represented by theeventW (x,1) saying that this is a write instruction (W) that writes the value 1 to variable
x. A read instruction like r1 := y would be represented (if y happens to hold the value
2) by the event R(y,2) saying that this event represents a read instruction (R) that readsthe value 2 from variable y. These events may also hold some extra information like aprocessor or event identifiers.The relations that are defined on these events basically describe two things: controlflow and data flow.The relations for the control flow relate these events to the program thatwe are consid-ering. For example, there is a relation named programorder (denoted by po) which relatespairs of events that are from the same thread and it records the order in which the corre-sponding instructions occur in the program. Thus (a,b) ∈ po when the instruction repre-sented by a occurs before the instruction represented by b in the program text. Anothersuch would be the control dependency relation (denoted by ctrl) for which (a,b) ∈ ctrlwhen b corresponds to an instruction in a conditional branch where the condition de-pends on the outcome of the instruction a.The data flow relations are used to describe how memory events are related in termsof the values that they read andwrite. For example, in a concurrent programwemay havetwo threads that both write to variable x. The coherence order relation (denoted by co)relates write events to the same variable, i.e., (a,b) ∈ co says that a and b are both writeinstructions to the same variable and a reaches the memory first. The coherence orderrelation can be partitioned into coi and coe for internal (events from same thread) andexternal (events from different threads) coherence order.Since there may be several write events to a variable, we also need to specify for a

27

read event where the value (that it reads) came from. The read-from relation (denotedby rf) relates a write event and a read event (to the same variable) when the read eventreads the value that was written by the write event, i.e., (a,b)∈ rf when a is a write eventto variable x, b is a read event from variable x and b reads the value that was written by
a (meaning that there was no other write to x in between). The rf relation can also bepartitioned into rfi and rfe.A candidate execution is a set of events together with program order, dependency,read-from and coherence relations. Whether this execution is allowed on a particularmemory model is determined by the constraints that the memory model requires froma valid execution. A typical example how this is achieved is by constructing from the ba-sic relations described above a relation called happens-before which represents certaininvariants of the memory model. A candidate execution is allowed when this happens-before relation does not introduce a cycle on the set of memory events, i.e., the transitiveclosure of the happens-before relation is irreflexive. Intuitively, a cycle would basically saythat some memory event has to happen before itself for this execution to be valid on thismemory model.To determinewhether a candidate execution is a valid execution, we just need to checkwhether the predicate holds on it. If we want to find all possible valid executions of aprogramon amemorymodel, thenwe first have to construct a set of candidate executionsthat is complete (i.e., contains at least all valid executions) and then filter by the predicatethat the memory model requires. A candidate execution is often visualised as a graphwhere memory events are the vertices and a relation is given by the edges with a certainlabel. It is then possible to visually check whether the candidate execution is valid bychecking whether the happens-before relation forms a cycle.For the example program we considered in the introduction,

x := 41;y := 1 ‖ r1 := y;r2 := x

one possible candidate execution (as a graph) is the following.
W (x,41)

W (y,1)

R(y,1)

R(x,0)

po po

rffr

rf

Here we have also used the relation fr. This is derived from rf and co as follows: (a,b)∈ frif there exists a c such that (c,a)∈ rf and (c,b)∈ co. Hence (a,b)∈ fr says that a is a readevent and it reads its value from a write event that is before b in the coherence order. Thedangling rf edge to R(x,0) just says that it reads its value from the initial state. Since theinitial state can be seen as aW (x,0) event that is beforeW (x,41), we then get the fr edge.Is this candidate execution allowed? If we take the happens-before relation to be po∪
rf ∪ fr∪ co and we require it to be acyclic, then it is not a valid execution since there is acycle. If we take the happens-before relation to be rf ∪ fr∪ co (i.e., how the two threadscommunicate), then there is no cycle and the execution is valid. Excluding program orderfrom the happens-before relation corresponds to allowing the reordering of instructionswe considered before and we can see that this is the execution where r1 = 1 and r2 = 0.

28

3 Reordering Derivatives
In this chapter we introduce reordering derivatives. If we consider our overall goal of op-erational semantics, then the Antimirov reordering derivatives that we define here canbe seen as a very limited form of operational semantics. The main limitation or differ-ence compared to usual operational semantics is that here we do not include machinestates. Therefore, considering regular expressions to be programs over an alphabet of in-structions and the Antimirov reordering derivatives to be operational semantics, in thischapter we do not knowwhat a given program computes. Instead, we know how the pro-gram computes. By this we mean that the Antimirov reordering derivatives give us thepossible ways (sequences of instructions; words) how the program may execute. But thisprecisely tells us how instructions may be reordered during execution, and, as we saw inChapter 1, such reordering of instructions can be responsible for the relaxed behaviour insome memory models.

Intuitively, the notion of language derivatives that we covered in Section 2.7 is about(strict) prefixes and suffixes of words in a language. What we do here is just change thenotion of prefix and suffix—we are interested in prefixes and suffixes of words when con-sidered as representatives of traces.
We define a non-standard interpretation of regular expressions as trace-closed lan-guages. Thenwedefine the reordering languagederivatives and generalise theBrzozowskiand Antimirov (syntactic) derivative operations to match the non-standard interpretationof regular expressions. As was the case before, these generalisations of Brzozowski andAntimirov derivatives can also be used for constructing an automaton from a regular ex-pression. It is not the case, in general, that the resulting automaton is finite as it mustaccept a non-regular language in general. We show that, for a class of regular expres-sions, called star-connected expressions, the set of Antimirov reordering derivatives isfinite modulo certain equations. This also tells us, as expected, that the non-standardinterpretation of star-connected expressions is a regular language.
We also develop a refinement of the Antimirov reordering derivative operation to al-lows us to more precisely keep track of how an expression is derived along a word. Withthis refinement in mind, we define a stronger version of (scattering) rank [32] which wecall uniform (scattering) rank and show that languages defined by star-connected expres-sions have finite uniform scattering rank. Finally, we show that, if an expression defines alanguagewith finite uniform scattering rank, then the refinedAntimirov reordering deriva-tive operation can be used to construct a finite automaton from the expression. This con-struction does not require any quotienting, instead it relies on truncation to make thestate set finite.

3.1 Prefixes and Suffixes of Representatives of Traces
As mentioned in our introduction to Mazurkiewicz traces in Section 2.3, when I = /0, thenthe free partially commutative monoid Σ∗/∼I∗ is isomorphic to the free monoid Σ∗. Thusthe language derivatives described in Section 2.7 are (implicitly) for the case where I = /0.The derivative of a language L along a word u is the set of words v such that uv ∈ L, i.e.,
u is a prefix and v is a suffix of a word in L (or, some word in L can be factored as uv).Here we are interested in what the (word) prefixes and suffixes of a trace, represented asa word, should be.

We start with a small example. Let Σ =df {a,b,c} and I =df /0. We will now look at theword abc, the trace [abc]I and the corresponding dependence graph 〈abc〉D. Since theindependence relation is empty, the equivalence class of abc is the singleton set {abc}.
29

Equivalently, the dependence graph 〈abc〉D of the trace [abc]I is a linear order with abcas its sole linearisation. Omitting the transitive edge from a to c, we can draw the graphas follows.
a b c

Theword abc can be factored as abc= uvwhere u= a and v= bc. Hencewe have [abc]I =
[a]I • [bc]I where • denotes multiplication in Σ∗/∼I∗. Now, the dependence graphs of uand v can be drawn as follows (where we have drawn boxes around both dependencegraph to separate them).

a b c

By adding themissing edges from 〈a〉D to 〈bc〉D between the dependent letters, we indeedget back 〈abc〉D. The fact that abc can be factored as uv tells us that Da{abc} = {bc}.Since equivalence classes are singletons here, we can identify [abc]I with {abc} and [bc]Iwith {bc}. Thus we could also say that Da[abc]I = [bc]I .Similarly, the word abc can be factored as abc = uv where u = ab and v = c. Hence wehave [abc]I = [ab]I • [c]I and the dependence graphs of 〈ab〉D and 〈c〉D can be drawn asfollows.
ba c

Again, we also have that [abc]I = [ab]I • [c]I . Since the word abc can be factored as uv, wehave that Dab{abc}= {c}. We could also say that Dab[abc]I = [c]I .Note that, if u = b, then there is no word v such that uv = abc, i.e., b is not a prefix of
abc. Thus Db{abc}= /0. The same applies for u = c.We now take I to be the least independence relation such that a I c and b I c. Thedependence graph 〈abc〉D according to the new independence relation is the following.

a b

c

With the new independence relation we also have that [abc]I = [a]I • [bc]I , but now theequivalence class corresponding to [bc]I is {bc,cb}. We also have [abc]I = [c]I • [ab]I =
[ab]I • [c]I where [ab]I = {ab}. Yet another factorisation is [abc]I = [ac]I • [b]I where
[ac]I = {ac,ca}. The last factorisation can be drawn as dependence graphs in the fol-lowing way.

a

c

b

We can see that in all of the above factorisations of [abc]I as [u]I • [v]I the prefix [u]I cor-responds to a downwards-closed subgraph of 〈abc〉D, i.e., if a letter a is in the prefix, thenso is any D-predecessor of it. This is true in general—a prefix of a trace is a down-set.Here are some examples of prefixes (shown by the thick line) corresponding to the abovefactorisations.
30

a b

c

a b

c

a b

c

a b

c

Corresponding to these pictures, we would like to say, for example, that Da[abc]I =
[bc]I and Dc[abc]I = [ab]I . In this chapter, we develop the machinery to do so, operatingwith words and word languages (representing traces) instead of working with traces orequivalence classes directly. For this reason, we consider the idea of prefixes (and suf-fixes) up to reordering. In other words, we consider u to be a reordering prefix of z when
[u]I • [v]I = [z]I for some (reordering suffix) v. We now develop notation to describe suchprefixes on words rather than traces.For aword vav′ such that vI a, we know that a is aminimal letter of vav′ andwe consider
a to be a reordering prefix of vav′ with vv′ as the corresponding suffix since vav′∼I∗ avv′with a as a (strict) prefix and vv′ as the suffix. For the same reason we consider u to be areordering prefix of vuv′ when v I u. If u′∼I∗ u and v I u, then vuv′∼I∗ uvv′∼I∗ u′vv′. Thuswe also consider u′ to be a reordering prefix of vuv′. Note that, if a is a reordering prefixof z, then, by irreflexivity of I, this a is the first a of z. We can also scale this idea furtherto the case vuv′u′v′′ where v I u and vv′ I u′. We then have vuv′u′v′′∼I∗ uu′vv′v′′.We now make precise the idea described in the previous paragraph. We call this I-scattering. This is just a way to describe a selection of letter occurrences of u in z subjectto certain constraints.
Definition 3.1. For all n ∈ N,u1, . . . ,un ∈ Σ+,v0 ∈ Σ∗,v1, . . . ,vn−1 ∈ Σ+,vn ∈ Σ∗,z ∈ Σ∗,

u1, . . . ,unC zB v0, . . . ,vn =df z = v0u1v1 . . .unvn∧∀i.∀ j < i.v j I ui.

We also say that the word u1 . . .un can be (strictly) scattered in z (according to I andwith degree n) as z = v0u1v1 . . .unvn. Note that only v0 and vn are allowed to be the emptyword. An important consequence of the above definition, reflecting its prefix-suffix as-pect, is the following lemma.
Lemma 3.2. For all n ∈ N,u1, . . . ,un ∈ Σ+,v0 ∈ Σ∗,v1, . . . ,vn−1 ∈ Σ+,vn ∈ Σ∗,z ∈ Σ∗,if u1, . . . ,unC zB v0, . . . ,vn, then z∼I∗ u1 . . .unv0 . . .vn.

Thus, if we have u1, . . . ,unC zB v0, . . . ,vn, then we know that the word u1 . . .un is aprefix of z when considered as traces.We often use underlined letters as the notation to visualise the scattering of u in z.More precisely, we underline the factors ui in z. Continuing with the independence alpha-bet from abovewhereΣ=df {a,b,c} and aI c, bI c, we have that cacbc is a valid scattering(with u1 = a, u2 = b and v0 = v1 = v2 = c) since c I a and cc I b. The scattering cacbc is notvalid since here v0 = c and u1 = acb, but c D c. Similarly, the scattering cacbc is not validbecause here v0 = cac and u1 = b, but a D b.
31

Definition 3.3. For all u,v,z ∈ Σ∗,
1. uC zB v =df ∃n ∈ N,u1, . . . ,un,v0, . . . ,vn.u = u1 . . .un∧ v = v0 . . .vn ∧

u1, . . . ,unC zB v0, . . . ,vn;

2. u∼C zB v =df ∃u′.u∼I∗ u′∧u′C zB v;

3. u∼C zB∼ v =df ∃u′,v′.u∼I∗ u′∧u′C zB v′∧ v′∼I∗ v.

In all three cases, we talk about u being a prefix and v being a suffix of z, up to re-ordering. We also say that u is scattered in z with the residual (unselected letters) v. Thedifference of the three lies in the reordering of the letters of u and v. In the first case, theletters of u (resp. v) must appear in the same order in z as they do in u (resp. v). In thesecond case, we allow for the letters of u to be scattered (or to occur) in z according toan equivalent word u′, i.e., the letters of u can be scattered in a reordered fashion. In thethird case, we also allow to reorder v.Continuingwith the same independence alphabet fromabove, take z=df ccabac. Thenwe have caC zB cbac since c,aC zB ε,c,bac, i.e., z = εccabac. We also have ac∼C zB
cbac, justified by the same scattering, since ac∼I∗ ca. (We do not have acC zB cbac aswe have to preserve the ordering of letters in the prefix part in this case and thus theonly candidates are ccabac and ccabaac, but neither of those is a valid scattering and thesuffix is not cbac.) By reordering the letters of the suffix, we also have ac∼C zB∼bacc,witnessed by the same scattering, since cbac∼I∗ bacc.A useful property of scatterings is that (a prefix) u and (a suffix) v can be scattered in zin at most one way. In other words, if uC zB v, then the number n and the words ui and
v j are uniquely determined. Furthermore, equivalent words result in the same scattering.
Lemma 3.4. For any u,v,z ∈ Σ∗,

1. uC zB v ⇐⇒ ∃!n ∈ N,u1, . . . ,un,v0, . . . ,vn.u = u1 . . .un ∧
v = v0 . . .vn∧u1, . . . ,unC zB v0, . . . ,vn;

2. u∼C zB v ⇐⇒ ∃!u′.u∼I∗ u′∧u′C zB v;

3. u∼C zB∼ v ⇐⇒ ∃!u′,v′.u∼I∗ u′∧u′C zB v′∧ v′∼I∗ v.

Wealsomention that, if u is a reordering prefix of z, i.e., u∼CzBv for some v, then thecorresponding scattering is obtained by underlining (one by one) theminimal occurrencesof the letters of u in z.Later, we will be interested in the degree n of scattering (the number of ui blocks in
z). Thus we also define degree-bounded versions of scattering, i.e., we allow at most Nunderlined subwords in z. These become relevant in Section 3.4.
Definition 3.5. For all u,v,z ∈ Σ∗ and N ∈ N,

1. uCN zB v =df ∃n≤ N,u1, . . . ,un,v0, . . . ,vn.u1, . . . ,unC zB v0, . . . ,vn;

2. u∼CN zB v =df ∃u′.u∼I∗ u′∧u′CN zB v;

3. u∼CN zB∼ v =df ∃u′,v′.u∼I∗ u′∧u′CN zB v′∧ v′∼I∗ v.

Finally, we have that scattering (as described above) together with reordering both inthe prefix and suffix corresponds to trace-prefix and trace-suffix.
32

Proposition 3.6. For all u,v,z ∈ Σ∗,uv∼I∗ z ⇐⇒ u∼C zB∼ v.
Proof.

• ⇐=: Since u∼CzB∼v, there exist u′ and v′ such that u∼I∗u′, v′∼I∗ v and u′CzBv′.By Lemma 3.2, we have u′v′∼I∗ z and thus uv∼I∗ z.
• =⇒: By induction on z.

– Case z = ε : It must be that both u = ε and v = ε . We have ε∼C εB∼ ε .
– Case z = az′: We have uv∼I∗ az′. The first (occurrence of) a in uv is either in uor in v.
If a ∈ u, then exist ul , ur such that u = ulaur and ul I a. Thus (ulur)v∼I∗ z′ andby i.h. we have ulur∼C z′B∼v. Thus a(ulur)∼Caz′B∼v is a valid scatteringand we get u∼C zB∼ v.
If a ∈ v, then exist vl , vr such that v = vlavr and uvl I a. Thus u(vlvr)∼I∗ z′ andby i.h. we have u∼C z′B∼ vlvr. Since u I a, we have that u∼Caz′B∼a(vlvr)is a valid scattering and thus u∼C zB∼ v.

To emphasise, the⇐= direction also holds when we consider reordering only in theprefix (u∼C zB v) or no reordering at all (uC zB v).
3.2 Trace-Closing Semantics of Regular Expressions
We now define a non-standard word-language semantics of regular expressions that di-rectly interprets an expression E as the trace closure [JEK]I of its standard word-languageinterpretation JEK.We have already noted that [{a}]I = {a}, [/0]I = /0, [L∪L′]I = [L]I ∪ [L′]I and [1]I = 1.Crucially, for general I, we do not have [L · L′]I = [L]I · [L′]I . For example, with Σ =df
{a,b} and a I b, we thus have [{a}]I = {a}, [{b}]I = {b} whereas [{ab}]I = {ab,ba} 6=
{ab}= [{a}]I · [{b}]I . Hencewe need a different concatenation operation, one thatwouldconcatenate {a} and {b} as {ab,ba} when a I b.
Definition 3.7.

1. The I-reordering concatenation of words ·I : Σ∗×Σ∗→P(Σ∗) is defined by
ε ·I v =df {v}
u ·I ε =df {u}

au ·I bv =df {a} · (u ·I bv)∪{b | au I b} · (au ·I v)

2. The lifting of I-reordering concatenation to languages is defined by
L ·I L′ =df

⋃
{u ·I v | u ∈ L∧ v ∈ L′}

Note that {b | au I b} acts as a test: it is either /0 or {b}. (We can also consider {a} ·
(u ·I bv) to include a trivial test, i.e., {a | tt} · (u ·I bv).) This makes the definition of au ·I bvbiased towards its left argument: a can always occur as the first letter of a word in au ·I bv,but for b we require that au I b.
Example 3.8. Let Σ =df {a,b} and a I b. Then a ·I b = {ab,ba}, aa ·I b = {aab,aba,baa},
a ·I bb = {abb,bab,bba} and ab ·I ba = {abba}. The last example shows that although
I-reordering concatenation is defined quite similarly to the shuffle product of words, it isdifferent. For example, we have baba ∈ ab�ba.

33

An important property of the I-reordering concatenation u ·I v, as demonstrated by thefollowing proposition, is that the reordering occurs at the “boundary” between u and vbut not within the words u and v, i.e., the ordering of letters (letter occurrences) in u and
v is preserved.
Proposition 3.9. For any u,v,z ∈ Σ∗, z ∈ u ·I v ⇐⇒ uC zB v.
Proof.

• =⇒: By induction on z.
– Case z = ε : Then it must be that u = ε and v = ε . We have εC εB ε .
– Case z = az′: If u = au′, then z′ ∈ u′ ·I v, and, by i.h. we have u′C z′B v. Thus

au′Caz′B v is a valid scattering.
Otherwise, it must be that v = av′ and u I a. We have z′ ∈ u ·I v′, and, by i.h.we have uC z′B v′. Since u I a, we have that uCaz′Bav′ is a valid scattering.

• ⇐=: By induction on z.
– Case z = ε : Then it must be that u = ε and v = ε . We have ε ∈ ε ·I ε .
– Case z = az′: If u = au′, then u′C z′B v, and, by i.h. we have z′ ∈ u′ ·I v. Thusalso az′ ∈ au′ ·I v.
Otherwise, it must be that v = av′ and u I a. We have uC z′B v′, and, by i.h.we have z′ ∈ u ·I v′. Since u I a, we also have az′ ∈ u ·I av′.

The I-reordering concatenation of closures of languages computes the closure of theordinary concatenation of the languages. In comparison to the previous proposition, herewe first reorder “inside” u and v and then do the reordering concatenation.
Proposition 3.10. For any languages L and L′, [L ·L′]I = [L]I ·I [L′]I .
Proof. For any w ∈ Σ∗,

w ∈ [L ·L′]I ⇐⇒∃u ∈ L,v ∈ L′.w∼I∗ uv

⇐⇒∃u ∈ L,v ∈ L′.u∼CwB∼ v

⇐⇒∃u ∈ L,v ∈ L′,u′,v′ ∈ Σ
∗.u∼I∗ u′∧ v∼I∗ v′∧u′CwB v′

⇐⇒∃u ∈ L,v ∈ L′,u′,v′ ∈ Σ
∗.u∼I∗ u′∧ v∼I∗ v′∧w ∈ u′ ·I v′

⇐⇒∃u′ ∈ [L]I ,v′ ∈ [L′]I .w ∈ u′ ·I v′

⇐⇒ w ∈ [L]I ·I [L′]I .

The above proposition also tells us that the closure [_]I is a monoid morphism from
(P(Σ∗), ·,1) to ({L⊆ Σ∗ | L = [L]I}, ·I ,1), i.e., fromword languages to trace-closed wordlanguages.

Evidently, if I = /0, then the reordering concatenation coincides with the ordinary con-catenation: u · /0 v = {uv} and L · /0 L′ = L ·L′. For I = Σ×Σ, which is forbidden in indepen-dence alphabets, as I is required to be irreflexive, it is shuffle: u ·Σ×Σ v = u�v. For general
34

I, it has properties similar to concatenation. In particular, we have the following.
(L ·I L′) ·I L′′ = L ·I (L′ ·I L′′)

1 ·I L = L
L ·I 1 = L
/0 ·I L = /0
L ·I /0 = /0

L ·I (L′∪L′′) = L ·I L′∪L ·I L′′

(L′∪L′′) ·I L = L′ ·I L∪L′′ ·I L

We also have the following weak interchange law familiar from the concurrent Kleenealgebra theory introduced in [33].
(L1�L2) ·I (L′1�L′2) ⊆ (L1 ·I L′1)� (L2 ·I L′2)

We now have the necessary ingredients to introduce the non-standard semantics ofregular expressions.
Definition 3.11. The trace-closing semantics J_KI : RE→P(Σ∗) of regular expressions isdefined recursively by

JaKI =df {a}
J0KI =df /0

JE +FKI =df JEKI ∪ JFKI

J1KI =df 1
JEFKI =df JEKI ·I JFKI

JE∗KI =df µX .1∪ JEKI ·I X

Compared to the standard semantics of regular expressions, the difference is in thehandling of theEF case (and consequently also theE∗ case) due to the cross-commutationthat happens in concatenation of traces and must be accounted for by ·I .With I = /0, we fall back to the standard interpretation of regular expressions: JEK /0 =
JEK. For I a general independence relation, we obtain the desired property that the se-mantics delivers the trace closure of the language of the expression.
Proposition 3.12. For any E, JEKI = [JEK]I .
Proof. By induction on E.

• Case a: JaKI = {a}= [{a}]I = [JaK]I .
• Case 0: J0KI = /0 = [/0]I = [J0K]I .
• Case E +F : By i.h. we have JEKI = [JEK]I and JFKI = [JFK]I . Thus,

JE +FKI = JEKI ∪ JFKI = [JEK]I ∪ [JFK]I = [JEK∪ JFK]I = [JE +FK]I .

• Case 1: J1KI = 1 = [1]I = [J1K]I .
• CaseEF : By i.h. we have JEKI = [JEK]I and JFKI = [JFK]I . Thus, by Proposition 3.10,we have

JEFKI = JEKI ·I JFKI = [JEK]I ·I [JFK]I = [JEK · JFK]I = [JEFK]I .

• Case E∗: By i.h. we have JEKI = [JEK]I .
35

– JE∗KI ⊆ [JE∗K]I : Let w ∈ JE∗KI . By definition of JE∗KI , there exists n ∈N suchthat w is a word of the n-th ·I power of JEKI , i.e., w ∈ JEKI ·I . . . ·I JEKI . By i.h.we have w ∈ [JEK]I ·I . . . ·I [JEK]I . By repeated application of Proposition 3.10we get w ∈ [JEK · . . . · JEK]I ⊆ [JE∗K]I .
– [JE∗K]I ⊆ JE∗KI : Let w ∈ [JE∗K]I . By definition of JE∗K, there exists n ∈N suchthat w is in the closure of the n-th power of JEK, i.e., w ∈ [JEK · . . . · JEK]I . Byrepeated application of Proposition 3.10 we have w ∈ [JEK]I ·I . . . ·I [JEK]I . Byi.h. we get w ∈ JEKI ·I . . . ·I JEKI ⊆ JE∗KI .

3.3 Reordering Derivatives
We are now ready to generalise the Brzozowski and Antimirov constructions to trace clo-sures of regular languages. To this end, we switch to what we call reordering derivatives.
3.3.1 Reordering Derivative of a Language
Let (Σ, I) be a fixed independence alphabet. We generalise the concepts of (semantic)nullability and derivative of a language to reorderable part and reordering derivative of alanguage.
Definition 3.13. The I-reorderable part of a language L wrt. a word u is defined as

RI
uL =df {v ∈ L | v I u}

and the I-reordering derivative along u is defined as
DI

uL =df {v ∈ Σ
∗ | ∃z ∈ L.u∼C zB v}.

By Proposition 3.9, we can equivalently say that DI
uL = {v | ∃z ∈ L.z ∈ [u]I ·I v}. For asingle-letter word a, we get DI

aL = {vlvr | vlavr ∈ L∧vl I a}= {v | ∃z ∈ L.z ∈ a ·I v}. Thatis, we require some reordering of u (resp. a) to be a prefix, up to reordering, of someword
z in L with v as the corresponding suffix. (In other words, we allow reordering of letterswithin u and across u and v, but not within v.)
Example 3.14. Let Σ =df {a,b,c} and a I b.Since ε I b and a I b, but ab D b, we have RI

b{ε,a,ab}= {ε,a}. Another observation isthat RI
b and RI

bb give the same result, i.e., RI
bb{ε,a,ab}= {ε,a}.For the derivative we consider the language L =df {abacab}. What is DI

bL? By defini-tion, it is the set of words v such that b∼C abacabB v, i.e., for each such v there mustexist a u such that b∼I∗ u and uCabacabBv. In this case u = b and b can be scattered in
abacab as abacab. Since scatterings are unique, this is the only valid scattering and thus
DI

bL = {aacab} (while DbL = /0). We can see that DI
cL = /0 since there is no valid scatter-ing of c in abacab (since both a D c and b D c). We do have DI

aabcL = {ab} witnessed bythe scattering abacab.
In the special case I = /0, we have R /0

ε L = L, R /0
uL = {ε | L } for any u 6= ε , and D /0

uL =
DuL. In the general case, the reorderable part and reordering derivative enjoy the follow-ing properties.
Lemma 3.15. For any languages L, L′ and for any u ∈ Σ∗, if L ⊆ L′, then RI

uL ⊆ RI
uL′ and

DI
uL⊆ DI

uL′.

36

Lemma 3.16. For every L,
1. RI

ε L = L; for every u,v ∈ Σ∗, RI
v(R

I
uL) = RI

uvL;
2. for every u,u′ ∈ Σ∗, if Σ(u) = Σ(u′), then RI

uL = RI
u′L.

Thus, reorderable part is a (right) monoid action and, furthermore, the reorderablepart RI
uL is determined by Σ(u), the set of letters that occur in u. We will later also needto extend RI to subsets of Σ: by RI

X L, we mean RI
uL where u is any enumeration of X .

Lemma 3.17. For every L,
1. DI

ε L = L; for any u,v ∈ Σ∗, DI
v(D

I
uL) = DI

uvL;
2. for any u,u′ ∈ Σ∗ such that u∼I∗ u′, we have DI

uL = DI
u′L.

Thus, reordering derivative is also a (right) monoid action. Moreover, it is a tracemonoid action.
Proposition 3.18. For every L,

1. for any u ∈ Σ∗, Du([L]I) = [DI
uL]I ;if L is closed (i.e., [L]I = L), then, for any u ∈ Σ∗, DI

uL is closed and DuL = DI
uL;

2. for any u,v ∈ Σ∗, uv ∈ [L]I iff v ∈ [DI
uL]I ;

3. for any u ∈ Σ∗, u ∈ [L]I iff (DI
uL) ;

4. [L]I = {ε | L }∪
⋃

a∈Σ{a} · [DI
aL]I .

Proof. We show (1).
Du[L]I = {v ∈ Σ∗ | ∃z ∈ L.uv∼I∗ z}

= {v ∈ Σ∗ | ∃z ∈ L.u∼C zB∼ v}
= [{v ∈ Σ∗ | ∃z ∈ L.u∼C zB v}]I
= [DI

uL]I

Example 3.19. Let Σ =df {a,b} and a I b. Take L to be the regular language J(ab)∗K. Wealready noted (in Proposition 2.1) that the language
[L]I = {u ∈ Σ

∗ | |u|a = |u|b}

is not regular. For any n ∈ N,
DI

bnL = {an} ·L = Jan(ab)∗K

whereas
Dbn([L]I) = {an} ·I [L]I = {u ∈ Σ

∗ | |u|a = |u|b +n}.
We can see that [L]I has infinitely many derivatives, none of which are regular, and L hasinfinitely many reordering derivatives, all regular.
Example 3.20. In Example 2.13 we saw that for Σ =df {a,b},

E =df 1+a(1+b(1+a))+b(1+a(1+b))

and L =df JEKwe have DaL = {ε,b,ba} and DbL = {ε,a,ab}. We now take a I b and thisresults in DI
aL = {ε,b,ba,bb} and DI

bL = {ε,a,ab,aa}.We can see that L = {ε,a,ab,aba,b,ba,bab}. Now, b ∈ DI
aL is witnessed by both

ab ∈ L and ba ∈ L; bb ∈DI
aL is witnessed only by bab ∈ L. Similarly, a ∈DI

bL is witnessedby both ab ∈ L and ba ∈ L; aa ∈ DI
b is witnessed by aba ∈ L.

37

3.3.2 Brzozowski Reordering Derivative
The reorderable parts and reordering derivatives of regular languages turn out to be reg-ular. We now show that they can be computed syntactically, generalising the classicalsyntactic nullability and Brzozowski derivative operations [20].
Definition 3.21. The I-reorderable part and the Brzozowski I-reordering derivative of anexpression are given by functionsRI ,DI : RE×Σ→RE andRI ,DI : RE×Σ∗→RE definedrecursively by

RI
ab =df if a I b then b else 0 DI

ab =df if a = b then 1 else 0
RI

a0 =df 0 DI
a0 =df 0

RI
a(E +F) =df RI

aE +RI
aF DI

a(E +F) =df DI
aE +DI

aF
RI

a1 =df 1 DI
a1 =df 0

RI
a(EF) =df (RI

aE)(RI
aF) DI

a(EF) =df (DI
aE)F +(RI

aE)(DI
aF)

RI
a(E

∗) =df (RI
aE)∗ DI

a(E
∗) =df (RI

aE)∗(DI
aE)E∗

RI
ε E =df E DI

ε E =df E
RI

uaE =df RI
a(R

I
uE) DI

uaE =df DI
a(D

I
uE)

The expression RI
uE is just E with all occurrences of letters dependent with u replacedwith 0. The definition of DI is more interesting. Compared to the classical Brzozowskiderivative, the nullability condition E in the EF case has been replaced with multiplica-tion with the reorderable part RI

aE, and the E∗ case has also been adjusted accordingly.
Example 3.22. Let Σ =df {a,b,c}, aI c, bI c and E =df a+ba+ca. We have the following.

RI
aE = RI

aa+RI
a(ba)+RI

a(ca)
= 0+(RI

ab)(RI
aa)+(RI

ac)(RI
aa)

= 0+00+ c0
.
= 0

RI
cE = RI

ca+RI
c(ba)+RI

c(ca)
= a+(RI

cb)(RI
ca)+(RI

cc)(RI
ca)

= a+ba+0a
.
= a+ba

DI
aE = DI

aa+DI
a(ba)+DI

a(ca)
= 1+((DI

ab)a+(RI
ab)(DI

aa))+((DI
ac)a+(RI

ac)(DI
aa))

= 1+(0a+01)+(0a+ c1)
.
= 1+ c

Note that without reordering (equivalent to taking I = /0) we have DaE .
= 1.

The functions RI and DI on expressions compute their semantic counterparts on thecorresponding regular languages.
Proposition 3.23. For any E,

1. for any a ∈ Σ, RI
aJEK= JRI

aEK and DI
aJEK= JDI

aEK;
2. for any u ∈ Σ∗, RI

uJEK= JRI
uEK and DI

uJEK= JDI
uEK.

38

Proof.
1. Both claims by induction on E. We only show a few selected cases. First, we con-sider RI

aJEK= JRI
aEK.

• Case b: If a I b, then we have
RI

aJbK= {z ∈ {b} | z I a}= {b}= JbK= JRI
abK.

If a D b, then we have
RI

aJbK= {z ∈ {b} | z I a}= /0 = J0K= JRI
abK.

• Case EF : By i.h. we have RI
aJEK= JRI

aEK and RI
aJFK= JRI

aFK. We have
RI

aJEFK = {z ∈ Σ∗ | z ∈ JEFK∧ z I a}
= {zez f | ze ∈ JEK∧ z f ∈ JFK∧ ze I a∧ z f I a}
= {zez f | ze ∈ RI

aJEK∧ z f ∈ RI
aJFK}

= (RI
aJEK) · (RI

aJFK)
= JRI

aEK · JRI
aFK

= JRI
a(EF)K.

Next, we consider DI
aJEK= JDI

aEK.
• Case b: If a = b, then we have

DI
aJbK= DI

aJaK= {v ∈ Σ
∗ | a∼CaB v}= 1 = J1K= JDI

aaK= JDI
abK.

If a 6= b, then we have
DI

aJbK= {v ∈ Σ
∗ | a∼CbB v}= /0 = J0K= JDI

abK.

• Case EF : By i.h. we have DI
aJEK= JDI

aEK and DI
aJFK= JDI

aFK. We have
DI

aJEFK = {vlvr | vlavr ∈ JEFK∧ vl I a}
= {elerz f | elaer ∈ JEK∧ el I a∧ z f ∈ JFK} ∪
{ze fl fr | ze ∈ JEK∧ ze fl I a∧ fla fr ∈ JFK}

= {vez f | ve ∈ DI
aJEK∧ z f ∈ JFK} ∪

{zev f | ze ∈ RI
aJEK∧ v f ∈ DI

aJFK}
= (DI

aJEK) · JFK∪ (RI
aJEK) · (DI

aJFK)
= JDI

aEK · JFK∪ JRI
aEK · JDI

aFK
= JDI

a(EF)K.

2. Both claims by induction on u. The corresponding statement from (1) is used in thestep case.
The trace-closing interpretation of expressions corresponds to the Brzozowski reorder-ing derivative DI in the following sense. More precisely, it corresponds to the automatoninduced by the Brzozowski reordering derivative that we describe next.

Proposition 3.24. For any E,
1. for any a ∈ Σ, v ∈ Σ∗, av ∈ JEKI ⇐⇒ v ∈ JDI

aEKI ;
39

2. for any u,v ∈ Σ∗, uv ∈ JEKI ⇐⇒ v ∈ JDI
uEKI ;

3. for any u ∈ Σ∗, u ∈ JEKI ⇐⇒ (DI
uE) .

Proof.
1. By propositions 3.12, 3.18.(1) and 3.23.(1), we have the following equivalences:

av ∈ JEKI ⇐⇒ av ∈ [JEK]I
⇐⇒ v ∈ Da[JEK]I
⇐⇒ v ∈ [DI

aJEK]I
⇐⇒ v ∈ [JDI

aEK]I
⇐⇒ v ∈ JDI

aEKI .

2. By induction on u (and utilising (1) in the step case).
3. Follows from (2) for u and ε .
Aswith the classical Brzozowski derivative, we canuse the reordering Brzozowski deriva-tive operation to construct deterministic automata. For an expression E, take QE =df

{DI
uE | u ∈ Σ∗}, qE

0 =df E, FE =df {E ′ ∈ QE | E ′ }, δ E
a E ′ =df DI

aE ′ for E ′ ∈ QE . ByProposition 3.24, this automaton accepts the closure JEKI . But even quotiented by thefull Kleene algebra theory, the quotient of QE is not necessarily finite, i.e., we may beable to construct infinitely many different languages by taking reordering derivatives.For the expression fromExample 3.19, wehaveDI
bn((ab)∗) .

= an(ab)∗, so it has infinitelymany Brzozowski reordering derivatives even up to the Kleene algebra theory. This is onlyto be expected, as the closure J(ab)∗KI is not regular and cannot possibly have an accept-ing finite automaton.
Example 3.25. In Example 2.17 we saw that for Σ =df {a,b} and

E =df 1+a(1+b(1+a))+b(1+a(1+b))

we have DaE .
= 1+b+ba. We now take a I b and this results in the following.

DI
aE = DI

a1+DI
a(a(1+b(1+a)))+DI

a(b(1+a(1+b)))
= 0+((DI

aa)(1+b(1+a))+(RI
aa)(DI

a(a+b(1+a))))
+((DI

ab)(1+a(1+b))+(RI
ab)(DI

a(a+a(1+b))))
= 0+(1(1+b(1+a))+0(DI

a(a+b(1+a))))
+(0(1+a(1+b))+b(DI

a(a+a(1+b))))
.
= 1+b(1+a)+b(DI

a(a+a(1+b)))
= 1+b(1+a)+b(DI

aa+((DI
aa)(1+b)+(RI

aa)(DI
a(1+b))))

= 1+b(1+a)+b(1+(1(1+b)+0(DI
a(1+b))))

.
= 1+b(1+a)+b(1+b)
.
= 1+b+ba+b+bb

This reflects what we saw in Example 3.20 where DI
aJEK = {ε,b,ba,bb}. There we ob-served that b ∈ DI

aJEK was witnessed by both ab and ba. Here we can see that b indeedoccurs twice in the result.It can be shown thatDI
abE .

= 1+a+b. Note that in Example 2.17 we hadDabE .
= 1+a.Similarly, it can be shown that DI

aaE .
= b, but in Example 2.17 we had DaaE .

= 0.
40

3.3.3 Antimirov Reordering DerivativeLike the classical Brzozowski derivative that was optimised by Antimirov [10], the Brzo-zowski reordering derivative construction can be optimised by switching from functionson expressions to multivalued functions or relations.
Definition 3.26. The Antimirov I-reordering parts-of-derivative of an expression along aletter and a word are given by relations →I ⊆ RE× Σ×RE and →I∗ ⊆ RE× Σ∗×REdefined inductively by

a→I (a,1)

E→I (a,E ′)

E +F →I (a,E ′)

F →I (a,F ′)

E +F →I (a,F ′)

E→I (a,E ′)

EF →I (a,E ′F)

F →I (a,F ′)

EF →I (a,(RI
aE)F ′)

E→I (a,E ′)

E∗→I (a,(RI
aE)∗E ′E∗)

E→I∗ (ε,E)

E→I∗ (u,E ′) E ′→I (a,E ′′)

E→I∗ (ua,E ′′)

Here RI is defined as before. Similarly to the Brzozowski reordering derivative fromthe previous subsection, the condition E in the second EF rule has has been replacedby multiplication with RI
aE, and the E∗ rule has also been adjusted accordingly.

Example 3.27. In Example 3.22 we saw that for Σ =df {a,b,c}, a I c, b I c and E =df a+
ba+ ca we have DI

aE .
= 1+ c. Again, with the Antimirov derivatives we have a choice.

a→I (a,1)

a+ba+ ca→I (a,1)

a→I (a,1)

ca→I (a,(RI
ac)1

ba+ ca→I (a,(RI
ac)1)

a+ba+ ca→I (a,(RI
ac)1)

Since RI
ac = c we have a+ba+ ca→I (a,c1). Note that we also have a derivation whichfollows the summand ba, namely, we can derive a+ba+ ca→I (a,01).

The following proposition shows that the Antimirov reordering parts-of-derivative ofan expression E collectively compute the semantic reordering derivative of the language
JEK. In other words, each E ′ such that E→I (a,E ′) gives a part of the (semantic) reorder-ing derivative of JEK.
Proposition 3.28. For any E,

1. for any a ∈ Σ, DI
aJEK=

⋃
{JE ′K | E→I (a,E ′)};

2. for any u ∈ Σ∗, DI
uJEK=

⋃
{JE ′K | E→I∗ (u,E ′)}.

We also have that the trace-closing interpretation of expressions corresponds to theAntimirov reordering parts-of-derivative in the following sense. More precisely, it corre-sponds to the automaton induced by the Antimirov reordering parts-of-derivative that wedescribe next.
Proposition 3.29. For any E,

1. for any a ∈ Σ, v ∈ Σ∗, av ∈ JEKI ⇐⇒ ∃E ′.E→I (a,E ′)∧ v ∈ JE ′KI ;
41

2. for any u,v ∈ Σ∗, uv ∈ JEKI ⇐⇒ ∃E ′.E→I∗ (u,E ′)∧ v ∈ JE ′KI ;
3. for any u ∈ Σ∗, u ∈ JEKI ⇐⇒ ∃E ′.E→I∗ (u,E ′)∧E ′ .

Proof.
1. By Propositions 3.12, 3.18.(1) and 3.28.(1), we have the following equivalences:

av ∈ JEKI ⇐⇒ av ∈ [JEK]I
⇐⇒ v ∈ Da[JEK]I
⇐⇒ v ∈ [DI

aJEK]I
⇐⇒ v ∈ [

⋃
{JE ′K | E→I (a,E ′)}]I

⇐⇒ v ∈
⋃
{[JE ′K]I | E→I (a,E ′)}

⇐⇒ v ∈
⋃
{JE ′KI | E→I (a,E ′)}

⇐⇒ ∃E ′.E→I (a,E ′)∧ v ∈ JE ′KI .

2. By induction on u (and utilising (1) in the step case).
3. Follows from (2) for u and ε .
Like the classical Antimirov construction, the reordering parts-of-derivative of an ex-pression E give a nondeterministic automaton by QE =df {E ′ | ∃u ∈ Σ∗.E →I∗ (u,E ′)},

qE
0 =df E, FE =df {E ′ ∈QE | E ′ }, E ′→E (a,E ′′) =df E ′→I (a,E ′′) for E ′,E ′′ ∈QE . Thisautomaton accepts JEKI by Proposition 3.29, but is generally infinite, even when quo-tiented by the full Kleene algebra theory.Revisiting Example 3.19 again, (ab)∗ must have infinitely many Antimirov reorderingparts-of-derivatives modulo the Kleene algebra theory since J(ab)∗KI is not regular andcannot have a finite accepting nondeterministic automaton. More specifically, the ex-pression (a0)∗((a1) . . .((a0)∗((a1)(ab)∗)) . . .) .

= an(ab)∗ is its single reordering part-of-derivative along bn.However, if quotienting the Antimirov automaton for E by some sound theory (a the-ory weaker than the Kleene algebra theory) makes it finite, then the Brzozowski automa-ton can also be quotiented to become finite.
Proposition 3.30. For any E,

1. for any a ∈ Σ, DI
aE .

= ∑{E ′ | E→I (a,E ′)};
2. for any u ∈ Σ∗, DI

uE .
= ∑{E ′ | E→I∗ (u,E ′)}

(using the semilattice equations for 0,+, that 0 is zero for ·, and distributivity of · over+).
Proof.

1. By induction on E. We only show a few cases.
• Case b with a = b: There is exactly one E ′ such that b →I (a,E ′), namely

E ′ = 1. Thus we have:
DI

ab = DI
aa = 1 = ∑{1}= ∑{E ′ | b→I (a,E ′)}.

• Case b with a 6= b: There is no E ′ such that b→I (a,E ′). Thus we have:
DI

ab = 0 = ∑ /0 = ∑{E ′ | b→I (a,E ′)}.

42

• Case EF : By i.h. for E and for F we have DI
aE .

= ∑{E ′ | E →I (a,E ′)} and
DI

aF .
= ∑{F ′ | F →I (a,F ′)}. Thus we have:

DI
a(EF) = (DI

aE)F +(RI
aE)(DI

aF)
.
= (∑{E ′ | E→I (a,E ′)})F +(RI

aE)(∑{F ′ | F →I (a,F ′)})
.
= ∑{E ′F | E→I (a,E ′)}+∑{(RI

aE)F ′ | F →I (a,F ′)}
.
= ∑{E ′ | EF →I (a,E ′)}.

2. By induction on u (utilising (1) in the step case).
Corollary 3.31. If some sound quotient of the Antimirov automaton for E (accepting JEKI)is finite, then also some sound quotient of the Brzozowski automaton is finite.
Example 3.32. In Example 3.20, we saw that for Σ =df {a,b}, a I b and

E =df 1+a(1+b(1+a))+b(1+a(1+b))

we have b∈DI
aJEKwitnessed both by ab∈ JEK and ba∈ JEK. We now show that we havetwo derivations for E→I (a,E ′) such that b ∈ JE ′K.

a→I (a,1)

a(1+b(1+a))→I (a,1(1+b(1+a)))

a(1+b(1+a))+b(1+a(1+b))→I (a,1(1+b(1+a)))

1+a(1+b(1+a))+b(1+a(1+b))→I (a,1(1+b(1+a)))

a→I (a,1)

a(1+b)→I (a,1(1+b))

1+a(1+b)→I (a,1(1+b))

b(1+a(1+b))→I (a,(RI
ab)(1(1+b)))

a(1+b(1+a))+b(1+a(1+b))→I (a,(RI
ab)(1(1+b)))

1+a(1+b(1+a))+b(1+a(1+b))→I (a,(RI
ab)(1(1+b)))

As RI
ab = b, we have 1(1+b(1+a)) .

= 1+b+ba and (RI
ab)(1(1+b)) = b+bb.

3.3.4 Automaton Finiteness for Star-Connected Expressions
Looking at the rules in Definition 3.26, it is clear that to have E →I (a,E ′) the letter amust occur in the expression E. Furthermore, if this occurrence of a is not under a star,then that particular occurrence is replaced with 1 in E ′ and the resulting expression E ′is smaller than E. Thus, if E does not contain a star, then we can apply the rules only acertain number of times, after which there are no more letters left in the result and noneof the rules apply. This means that the set of Antimirov reordering parts-of-derivative ofsuch E is finite. The rule for E∗, however, allows the resulting expression E ′ to be largerthan E∗ and thus E∗ is problematic for obtaining finiteness.We now show that for star-connected expressions (Definition 2.9; these are expres-sionswhere the language of the expression under a star is connected)we obtain finitenessof the set of Antimirov reordering parts-of-derivative (modulo suitable equations). We dothis by first showing that the parts-of-derivative of E∗ are of a certain form (modulo someequations). We then show that for a star-connected expression we can bound the size of

43

this form. Finally, we show that all constituents of this form come from a finite set deter-mined by the original expressionE. Thus the set of parts-of-derivative of a star-connectedexpression (modulo certain equations) is finite.
Lemma 3.33. If a language L is connected, then for any u ∈ Σ+, RI

u(D
I
uL)⊆ 1.

Proof. Let v ∈ RI
u(D

I
uL). By definition of RI

u, we have v I u. Since L is connected and
v ∈DI

uL, if v 6= ε , then a Db for some a ∈ u and b ∈ v. But then it is not the case that v I u.Thus it must be that v = ε .
Lemma 3.34. For any E, if JEK ⊆ 1, then either E .

= 0 or E .
= 1 (using the equationsinvolving 0 and 1 only (e.g., 0+1 .

= 1 and 0∗ .
= 1 etc.) and that 0 is zero).

Lemma 3.35. For any E, E ′ and u ∈ Σ+, if JEK is connected and E →I∗ (u,E ′), then
RI

uE ′ .= 0 or RI
uE ′ .= 1 (using the equations involving 0 and 1 only and that 0 is zero).

Proof. From E→I∗ (u,E ′) by Proposition 3.28, JE ′K⊆DI
uJEK. Hence by Lemma 3.33, weget JRI

uE ′K= RI
uJE ′K⊆ RI

u(D
I
uJEK)⊆ 1. By Lemma 3.34, RI

uE ′ .= 0 or RI
uE ′ .= 1.

Next is an observation about the interaction of reorderable part RI and the Antimirovderivative: if we can obtain an expression by deriving a reorderable part of E, then wecan obtain the same expression by first deriving E and then taking the reorderable partof the result.
Lemma 3.36. For any E, E ′, u and a, if RI

uE →I (a,E ′), then there exists E ′′ such that
E→I (a,E ′′) and RI

uE ′′ = E ′.
Proof. By induction on the derivation RI

uE→I (a,E ′).
This enables us to have the following development for E ′ when E∗→I∗ (u,E ′).

Lemma 3.37. For anyE, E ′ and u∈ Σ∗, ifE∗→I∗ (u,E ′), then there exist n∈N, E1, . . . ,En,
/0⊂ X0, . . . ,Xn ⊆ Σ and u1, . . . ,un ∈ Σ+ such that u∼I∗ u1 . . .un and

E ′ .= (RI
X0

E)∗(RI
X1

E1)(R
I
X1

E)∗ . . .(RI
XnEn)(R

I
XnE)∗

where .
= uses only associativity of · and, furthermore, we have: Xi−1 = Xi∪Σ(ui), Xn = /0and E→I∗ (ui,Ei) for all i.

Lemma 3.38. For any E, E ′ and u ∈ Σ∗, if JEK is connected, E∗ →I∗ (u,E ′) and, for thedevelopment ofE ′ from the previous lemma, we haveXi−1 = Xi for some i, thenRI
Xi

Ei
.
= 0

or RI
Xi

Ei
.
= 1 (using the equations involving 0 and 1 only, and that 0 is zero).

Proof. We have Σ(ui)⊆ Xi−1 = Xi. From E →I∗ (ui,Ei), by Lemma 3.35 either RI
ui

Ei
.
= 0

or RI
ui

Ei
.
= 1. Therefore also RI

Xi
Ei

.
= 0 or RI

Xi
Ei

.
= 1.

Lemma 3.39. For any E, E ′ and u ∈ Σ∗, if JEK is connected and E∗→I∗ (u,E ′), then thereexist n≤ |Σ|, E1, . . . ,En and /0⊂ X0, . . . ,Xn ⊆ Σ such that
E ′ .= (RI

X0
E)∗(RI

X1
E1)(R

I
X1

E)∗ . . .(RI
XnEn)(R

I
XnE)∗

andXi−1⊃Xi for all i (using, in addition to the equationsmentioned in the lemmata above,unitality of 1 and the equation F∗ ·F∗ .
= F∗).

Proof. From Lemmata 3.37, 3.38 noting that at most |Σ| of the inclusions Xi−1 ⊇ Xi canbe proper.
44

Definition 3.40. The functions (_)→+,(_)→∗ : RE→P(RE) are defined by
a→+ =df {1}
0→+ =df /0

(E +F)→+ =df E→+∪F→+

1→+ =df /0
(EF)→+ =df E→+ · {F}∪

⋃
{RI

X (E
→∗) ·F→+ | /0⊂ X ⊆ Σ}

(E∗)→+ =df {(RI
X0

E)∗(RI
X1

E1)(R
I
X1

E)∗ . . .(RI
Xn

En)(R
I
Xn

E)∗ |
n > 0, /0⊂ Xi ⊆ Σ,Xi−1 ⊇ Xi,Xn = /0,Ei ∈ E→+}

E→∗ =df {E}∪E→+

Proposition 3.41. For any E, E ′ and u∈ Σ∗, if E→I∗ (u,E ′), then there exists E ′′ such that
E ′ .= E ′′ and E ′′ ∈ E→∗ (using only the equations mentioned in the above lemmata).
Proposition 3.42. If E is star-connected, then a suitable sound quotient of the state set
{E ′ | ∃u ∈ Σ∗. E→I∗ (u,E ′)} of the Antimirov automaton for E (accepting JEKI) is finite.
Proof. By Lemma 3.39, for a star-connected expression E, we only need to consider
n ≤ |Σ| in the definition of (E∗)→+ for Proposition 3.41 to hold. This restriction makesthe set E→∗ finite.
3.4 Uniform Scattering Rank of a Language
We proceed to defining the notion of uniform scattering rank of a language and show thatstar-connected expressions define languages with uniform scattering rank.
3.4.1 Scattering Rank vs. Uniform Scattering Rank
The notion of scattering rank of a language (a.k.a. distribution rank, k-block testability)was introduced by Hashiguchi [32].
Definition 3.43. A language L has (I-scattering) rank at most N if

∀u,v.uv ∈ [L]I =⇒∃z ∈ L.u∼CN zB∼ v.

We say that L has rank if it has rank at most N for some N ∈N. If it does, then, for theleast such N, we say that L has rank N. The only languages with rank 0 are /0 and 1. If anontrivial language L is closed, it has rank 1: for any uv ∈ [L]I , we also have uv ∈ L and
uCuvB ε,v. Still, having rank 1 does not imply that the language is closed: if a I b, then
L =df {ab} has rank 1 but its closure is [L]I = {ab,ba}.Having rank is a sufficient condition for regularity of the trace closure of a regular lan-guage. But it is not a necessary condition.
Proposition 3.44 (Hashiguchi [32]). (cf. [60, Prop. 6.3.2]) If a regular language L has rank,then [L]I is regular.
Proposition 3.45. There exist regular languages L such that [L]I is regular but L is withouta rank.
Proof. Consider Σ =df {a,b}, aI b. The regular language L =df J(ab)∗(a∗+b∗)K is withouta rank, since, for any n, we have (ab)n ∈ L and anbn ∈ [L]I while the smallest N such that
an∼CN (ab)nB∼bn is n. Nonetheless, [L]I = Σ∗ = J(a+b)∗K is regular.

45

We wanted to show that a truncation of the refined Antimirov automaton (which wedefine in Section 3.5) is finite for expressions whose language has rank. But it turns out,as we shall see, that rank does not quite work for this. For this reason, we introduce astronger notion that we call uniform scattering rank.
Definition 3.46. A language L has uniform (I-scattering) rank at most N if

∀w ∈ [L]I . ∃z ∈ L. ∀u,v.w = uv =⇒ u∼CN zB∼ v.

The difference between the two definitions is that, in the uniform case, the choice of
z depends only on w whereas, in the non-uniform case, it depends on the particular splitof w as w = uv, i.e., for every such split of w we may choose a different z.
Lemma 3.47. If L has uniform rank at most N, then L has rank at most N.

The converse of the above lemma does not hold—there are languages with uniformrank greater than rank. Furthermore, there are languages that have rank but no uniformrank.
Proposition 3.48. Let Σ =df {a,b,c}, a I b and

E =df a∗b∗c(ab)∗(a∗+b∗)+(ab)∗(a∗+b∗)ca∗b∗.

1. The language JEK has rank 2.
2. The language JEK has no uniform rank.

Proof. Note that c behaves like a separator in this independence alphabet—although aand b are independent, neither a nor b commutes with c. Thus the a’s and b’s before(after) a c in a word must stay before (after) that c in any equivalent word.It can be seen that words in JEKI are of the form wlcwr where wl and wr consist ofsome number of a’s and b’s, i.e., JEKI = J(a+b)∗c(a+b)∗K.
1. Let uv ∈ JEKI . We have to find u1,u2 and v0,v1,v2 so that u1u2∼I∗ u, v0v1v2∼I∗ v,

v0 I u1, v0v1 I u2 and v0u1v1u2v2 ∈ JEK. There are two cases to consider: either c isin the suffix v or it is in the prefix u.
• Case c ∈ v: Let x,y ∈ Σ∗ be such that v = xcy. Take u1 =df πa(u), u2 =df πb(u),

v0 =df ε and v1 =df πa(x). Let k =df |y|a, l =df |y|b andm =df min(k, l) and take
v2 =df πb(x)c(ab)mak−mbl−m. Since u consists of only a’s and b’s and a I b, wehave

u1u2 = πa(u)πb(u)∼I∗ u.

Since x and y consist only of a’s and b’s, we have πa(x)πb(x)∼I∗ x and similarly
(ab)mak−mbl−m∼I∗ y. Thus, we also have

v0v1v2 = επa(x)πb(x)c(ab)mak−mbl−m∼I∗ xcy = v.

Altogether, we have
v0u1v1u2v2 = επa(u)πa(x)πb(u)πb(x)c(ab)mak−mbl−m

and thus
v0u1v1u2v2 ∈ Ja∗b∗c(ab)∗(a∗+b∗)K.

46

Since ε I πa(u) and επa(x) I πb(u), we have that v0 I u1 and v0v1 I u2. Hence
uv∼I∗ u1u2v0v1v2∼I∗ v0u1v1u2v2.

We note that v0u1v1u2v2 is a scattering when u1 6= ε , u2 6= ε and v1 6= ε . If thisis not the case, then we can construct a scattering with degree 1.
• Case c ∈ u: Similar to the previous case. Let x and y be such that u = xcy. Let

k =df |x|a, l =df |x|b and m =df min(k, l). Take u1 =df (ab)mak−mbl−mcπa(y),
u2 =df πb(y), v0 =df ε , v1 =df πa(v) and v2 =df πb(v). In this case we have

v0u1v1u2v2 = ε(ab)mak−mbl−mcπa(y)πa(v)πb(y)πb(v)

and also
uv∼I∗ u1u2v0v1v2∼I∗ v0u1v1u2v2

but we consider the other part of the expression E:
v0u1v1u2v2 ∈ J(ab)∗(a∗+b∗)ca∗b∗K.

2. Assume JEK has uniform rank at most N. Take
w =df aN+1bN+1caN+1bN+1 ∈ JEKI .

By assumption, there exists z ∈ JEK such that,
∀u,v.w = uv =⇒ u∼CN zB∼ v.

Take u =df aN+1 and v =df bN+1caN+1bN+1. Thus, it must be that for some n ≤ N,
z = v0u1v1 . . .unvn and u = aN+1∼I∗ u1 . . .un. Since we haveN+1 letters a to divideinto n≤ N words, at least one ui must consist of more than one a and thus z mustcontain two consecutive a’s that are before c.
Take u′ =df aN+1bN+1caN+1 and v′ =df bN+1. Again, it must be that for some n≤N,
z = v′0u′1v′1 . . .u

′
nv′n and v′ = bN+1∼I∗ v′0 . . .v

′
n. Note that c must be in one of the u′i’sand thus for all j < i it must be that v′j = ε . Hence v′0 = ε and we have N+1 letters

b to divide into n ≤ N words and thus at least one v′i consists of more than one b.Thus z must contain two consecutive b’s that are after c.
We can observe that the only words in JEK equivalent to w are aN+1bN+1c(ab)N+1

and (ab)N+1caN+1bN+1. Neither of these has both two consecutive a’s before c aswell as two consecutive b’s after c, so neither qualifies as z. Thus there is no z∈ JEKsuch that u∼CN zB∼ v and u′∼CN zB∼ v′.
In the following example we try to give a more visual explanation of the above propo-sition.

Example 3.49. Just as in Proposition 3.48, we take Σ =df {a,b,c}, a I b and
E =df a∗b∗c(ab)∗(a∗+b∗)+(ab)∗(a∗+b∗)ca∗b∗.

Observe that a3b3ca3b3 ∈ JEKI , witnessed by a3b3c(ab)3 ∈ JEK and (ab)3ca3b3 ∈ JEK.We first consider a3b3c(ab)3 ∈ JEK. The word u =df aaa is scattered in a3b3c(ab)3 asfollows.
aaabbbcababab

47

We can see that we need only one underlined block (a word ui in the scattering). In fact,for any prefix of a word in the equivalence class of a3b3ca3b3 which does not include c weneed at most two underlined blocks for the scattering. For example, aab is scattered in
a3b3c(ab)3 as follows.

aaabbbcababab

Things change when we consider prefixes that also include the letter c. For example, theword u′ =df aaabbbcaaa is scattered in a3b3c(ab)3 as follows.
aaabbbcababab

In this case we need three underlined blocks. Similarly, we can see that scattering theword anbncan in anbnc(ab)n requires n underlined blocks.We can also consider the witness (ab)3ca3b3 ∈ JEK. This time we require three under-lined blocks to scatter the word u.
abababcaaabbb

Similarly, we can see that scattering the word an in (ab)ncanbn requires n underlinedblocks. On the other hand, we only require one underlined block for the scattering of
u′.

abababcaaabbb

In fact, for any prefix of a word in the equivalence class of a3b3ca3b3 which does include
c, we need at most two underlined blocks for the scattering. For example, a3b3cabb isscattered in (ab)3ca3b3 as follows.

abababcaaabbb

For a language L to have rank at most N, the definition requires that, for any word
uv∈ [L]I , there exists z∈ L such that the scattering of u in z requires at mostN underlinedblocks. For the example above, we choose the witness z based on whether the prefix ucontains the letter c or not.For a language L to have uniform rank at most N, the definition requires that, for anyword w ∈ [L]I , there exists a z ∈ L such that, for any u, v, if uv = w, then the scattering of
u in z requires at most N underlined blocks. For the example above, we see that, roughlyspeaking, one witness is good for those u that include c and the other is good for thosethat do not, but neither of them is good for both.
3.4.2 Star-Connected Languages Have Uniform RankStar-connected expressions were described in Section 2.6. Informally, an expression issaid to be star-connected (wrt. D) if star is only used over connected languages. Thus wecan see that the expression

E =df a∗b∗c(ab)∗(a∗+b∗)+(ab)∗(a∗+b∗)ca∗b∗

from Example 3.49 is not star-connected as it contains (ab)∗ with a I b. However, theexpression
E ′ =df (a+b)∗c(a+b)∗

is star-connected and, furthermore, JEKI = JE ′KI .Klunder et al. [41] established that star-connectedness is a sufficient condition for aregular language to have rank, although not a necessary one.
48

Proposition 3.50 (Klunder et al. [41]). Any star-connected language has rank.
Proof (sketch). The language {a} has rank 1. The languages /0 and 1 have rank 0. Iftwo languages L1 and L2 have ranks at most N1 resp. N2, then L1 ∪L2 has rank at most
max(N1,N2) and L1 · L2 has rank at most N1 +N2. If a general language L has rank atmost N, then L∗ need not have rank. For example, for Σ =df {a,b}, a I b, the language
{ab} has rank 1, but {ab}∗ is without rank. But if L is also connected, then L∗ turns out tohave rank at most |Σ|(N +1). The claim follows by induction on the given star-connectedexpression.
Proposition 3.51 (Klunder et al. [41]). There exist regular languages with rank (and alsowith uniform rank) that are not star-connected.
Proof. Consider Σ =df {a,b}, a I b. The language L =df J(aa+ab+ba+bb)∗K has rank 1,in fact even uniform rank 1, because it is closed. We can see that the regular expression
(aa+ab+ba+bb)∗ is not star-connected, since the language Jaa+ab+ba+bbK containsdisconnected words ab and ba. But a more involved pumping argument also shows that Lis not star-connected, i.e., there is no star-connected expression E such that L = JEK.

We will now show that star-connected languages also have uniform rank, by refiningKlunder et al.’s proof of Proposition 3.50, especially the case of the Kleene star.Let us analyse the caseL∗whereL is a connected language. Whenw∈ [L∗]I , then thereexists z ∈ L∗ such that w∼I∗ z. This further means that there exist n ∈N and z1, . . . ,zn ∈ Lsuch that z = z1 . . .zn where we can require that all zi are nonempty. Since L is connected,each zi is also connected. If w = uv, then there exist u1, . . . ,un and v1, . . . ,vn such that
u∼I∗ u1 . . .un, v∼I∗ v1 . . .vn and, for every i, zi∼I∗ uivi and, for every j < i, v j I ui. In otherwords, ui is the part of zi that belongs to u and vi is the part that belongs to v. In particular,if ui = ε (or zi∼I∗ vi), then all letters of zi belong to the suffix v, and similarly if vi = ε (or
zi∼I∗ ui), then all letters of zi belong to the prefix u. We say that a zi is:

• unmarked (by u) when ui = ε ;
• partially marked (by u) when ui 6= ε and vi 6= ε ;
• completely marked (by u) when vi = ε .

We say that a zi is at least partially marked when it is partially or completely marked. Animportant property for us is that, if we iterate a closed language L, then any prefix u of aword w ∈ [L∗]I can partially mark at most |Σ| of the zi ∈ L in z1 . . .zn ∈ L∗.
Lemma 3.52. For any u,v ∈ Σ∗, z1, . . . ,zn ∈ Σ+ and u1, . . . ,un,v1, . . . ,vn ∈ Σ∗ such that
uv∼I∗ z1 . . .zn, u∼I∗ u1 . . .un, v∼I∗ v1 . . .vn, for all i, zi is connected and zi∼I∗ uivi, and, forall j < i, v j I ui, then at most |Σ| of the words zi can be partially marked (by u);
Proof. If, for some i, we have that zi is partially marked (ui 6= ε and vi 6= ε), then, since
zi∼I∗ uivi is connected, there must exist letters a and b such that a ∈ ui, b ∈ vi and a D b.Since vi I ui+1 . . .un, we have a 6∈ ui+1 . . .un. Thismeans that, if there are k partiallymarked
zi, then these zi together must contain at least k distinct letters.

Should it happen for some i that zi and zi+1 are both completely marked (vi = vi+1 = ε ,i.e., zi ∼I∗ ui and zi+1 ∼I∗ ui+1), then zi and zi+1 belong to the same block of u in thescattering u∼C zB∼ v. This can potentially help keeping the uniform rank of L∗ low aswe need less blocks. The same holds for zi and zi+1 that are unmarked: they belong tothe same block of v. Having words zi that are completely marked interspersed with other
49

types of words zi (for example, having all odd-numbered zi completely marked and alleven-numbered unmarked), in contrast, is not helpful. It could thus be useful to be ableto choose z, n and z1, . . . ,zn in such a way that as many as possible of the zi that arecompletely marked are adjacent in z for all splits of w as w = uv.For example, take Σ =df {a,b}, a I b and L =df Σ = Ja+ bK. We now consider twowitnesses for w =df ambm ∈ [L∗]I . As the first witness we take z =df w = ambm ∈ L∗ andas the second witness we take z =df (ab)m ∈ L∗. Since the words in L are of length one,then so must be our zi. Furthermore, we have 1 ≤ i ≤ 2m. For the first witness we have
zi =df a for 1 ≤ i ≤ m and zi =df b for m+ 1 ≤ i ≤ 2m. For the second witness we have
z2i−1 =df a and z2i =df b for 1 ≤ i ≤ m. In the first case, the letters from u are adjacentin z for all prefixes u of w (as w = z). In the second case, they can be interleaved with theletters from v (in the most extreme case u =df am and v =df bm, the words u and v getscattered into m resp. m+1 blocks in z).
Definition 3.53. For any u ∈ Σ∗ and z1, . . . ,zn ∈ Σ+, we say that u is left-scattered in
z1, . . . ,zn if there exist u1, . . . ,un,v1, . . . ,vn ∈ Σ∗ such that u∼I∗ u1 . . .un, zi ∼I∗ uivi, forall j < i, v j I ui, and, for every completely marked zi (i.e., vi = ε), either i = 1 or zi−1 is atleast partially marked (i.e., ui−1 6= ε).

Thus, if u is left-scattered in z1, . . . ,zn, then the completely marked zi cannot be in-terspersed with unmarked zi: the completely marked zi must occur as contiguous blocks
zk, . . . ,zl in z1, . . . ,zn such that k = 1 or zk−1 is partially marked. The next lemma ensuresthat, ifw∈ [L∗]I , then there exists a witness z1 . . .zn ∈ L∗ (with zi ∈ L) such that every pre-fix u of w is left-scattered in z1, . . . ,zn. This property is used in the following propositionto give a bound on the uniform rank in the case of E∗.
Lemma 3.54. Let u,v ∈ Σ∗, z1, . . . ,zn ∈ Σ+ be such that uv∼I∗ z1 . . .zn. There exists apermutation σ ′ = z′1, . . . ,z

′
n of σ =df z1, . . . ,zn such that:

1. z1 . . .zn∼I∗ z′1 . . .z
′
n;

2. for any ū, v̄ ∈ Σ∗ such that ūv̄ = u, the word ū is left-scattered in z′1, . . . ,z
′
n.

Proof. By induction on u.
• Case ε : The identical permutation σ ′ =df σ has property 1 trivially. It also enjoysproperty 2 since ε = ūv̄ implies ū = v̄ = ε and a suitable left-scattering of ū in

z1, . . . ,zn is formed by taking ui = ε and vi = zi. As all ui are empty, there are nocompletely marked zi and thus it is a left-scattering.
• Case ua: We have to construct a permutation which satisfies property 1 and alsoproperty 2 (for any prefix of ua). By i.h. for u and av, we have a permutation σ ′ =

z′1, . . . ,z
′
n of σ satisfying properties 1 and 2 (for any prefix of u). From property 2 for

ū =df u and v̄ =df ε , we have that u is left-scattered in z′1, . . . ,z
′
n. Thus we have that

u∼I∗ u′1 . . .u
′
n, z′i∼I∗ u′iv

′
i, av∼I∗ v′1 . . .v

′
n and ∀ j < i, v′j I u′i. This a is the leftmost athat has not been marked by u in z′1 . . .z
′
n. In particular, it is in one of the v′i, say v′m.Since av∼I∗ v′1 . . .v

′
n, there exists v′′m such that v′m∼I∗ av′′m and also ∀ j < m, v′j I a.

Next, we consider what happens when we mark this a in z′m. For this we take
u′′m =df u′ma. We have z′m∼I∗ u′′mv′′m. To emphasise, we only changed the marking ofthe word z′m, everything else is the same. We now check whether the permutation
σ ′ also satisfies property 2 with u′′m and v′′m, i.e., for ū =df ua and v̄ =df ε .
If v′′m 6= ε , then z′m is not completely marked by the prefix ua. Hence σ ′ has property2 also for the prefix ua.

50

If v′′m = ε , but m = 1 or um−1 6= ε , then σ ′ has property 2 also for the prefix ua.
In the critical case v′′m = ε , m 6= 1 and u′m−1 = ε , we construct a new permutation
σ ′′ =df z′′1 , . . . ,z

′′
n from σ ′ by moving the block of words z′m, . . . ,z

′
l (where we pick

l the largest such that v′m+1 . . .v
′
l = ε) in front of z′k, . . . ,z

′
m−1 (where we pick k thesmallest such that u′k . . .u

′
m−1 = ε). Moving this block of words rather than just z′malone ensures that the new permutation σ ′′ has property 2 also for all prefixes ūof u and not just only for the prefix ū =df ua. The new permutation σ ′′ also hasproperty 1. Indeed, σ ′ satisfies z1 . . .zn∼I∗ z′1 . . .z

′
n. Since z′k . . .z

′
m−1∼I∗ v′k . . .v

′
m−1,

v′k . . .v
′
m−1 I u′′mu′m+1 . . .u

′
l and u′′mu′m+1 . . .u

′
l∼I∗ z′m . . .z′l , we have z′k . . .z

′
m−1 I z′m . . .z′l .Hence z′1 . . .z

′
n∼I∗ z′′1 . . .z

′′
n .

Proposition 3.55. If E is star-connected, then the language JEK has uniform rank.
Proof. By induction on E. We only look at the case E∗.

• Case E∗: By assumption, E is star-connected and JEK is connected. By i.h. JEK hasuniform rank at most N for some N ∈ N. We show that JE∗K has uniform rank atmost (|Σ|+1)N.
Let w ∈ JE∗KI . Then exist n and w1, . . . ,wn such that w ∈ w1 ·I . . . ·I wn, wi ∈ JEKI ,and we can also require that wi 6= ε . Since JEK has uniform rank at most N, then,for every i, there exists a nonempty word zi ∈ JEK such that, for any split of wias uivi, we have ui∼CN ziB∼ vi. We can see that w∼I∗ w1 . . .wn∼I∗ z1 . . .zn. Byconnectedness of JEK, all zi are connected.
Take z◦ =df z◦1 . . .z

◦
n where σ◦ =df z◦1, . . . ,z

◦
n is the permutation of σ = z1, . . . ,znobtained by Lemma 3.54 for u =df w and v =df ε . By Lemma 3.54(1), we have

w∼I∗ z1 . . .zn∼I∗ z◦1 . . .z
◦
n = z◦. Thus z◦ ∈ JE∗K is a witness for w ∈ JE∗KI .

Next, we show that, for any split of w as w = uv, we have u∼C(|Σ|+1)N z◦B∼ v.
Let w = uv be any split of w. By Lemma 3.54(2), u is left-scattered in z◦1, . . . ,z

◦
n.Thus there exist u◦1, . . . ,u

◦
n,v
◦
1, . . . ,v

◦
n such that u∼I∗ u◦1 . . .u

◦
n, v∼I∗ v◦1 . . .v

◦
n, for all i,

z◦i ∼I∗ u◦i v◦i , and, for all j < i, v◦j I u◦i . Since uv = w∼I∗ z◦, we have u∼C z◦B∼ v.
As z◦i are nonempty and connected, by Lemma 3.52, at most |Σ| of the z◦i can bepartially marked (by u). Each of the partially marked z◦i contributes at most N to thedegree of u∼C z◦B∼ v, so altogether they contribute at most |Σ|N.
Since u is left-scattered in z◦1, . . . ,z

◦
n, between any partially marked z◦i and also be-fore the first and after the last one of them, there are some z◦i that are completelymarked followed by some z◦i that are unmarked. Each such sequence contributesat most 1 to the degree of u∼C z◦B∼ v. If there are less than |Σ| partially marked

z◦i , then these sequences thus contribute altogether at most |Σ| to the degree. Ifthere are exactly |Σ| partially marked z◦i , then the z◦i after the last of them are allunmarked, so their sequence belongs to the last v-block generated by the last par-tially marked z◦i and thus contributes 0. Again, these sequences contribute at most
|Σ| to the degree.
Altogether, the degree of u∼C z◦B∼ v is at most (|Σ|+1)N.

3.5 Antimirov Reordering Derivative and Uniform Rank
We have seen that the reordering language derivative DI

uL allows u to be scattered in aword z ∈ L as u1, . . . ,unC zB v0, . . . ,vn where u∼I∗ u1 . . .un. We now consider a versionof the Antimirov reordering derivative operation that delivers lists of expressions for thepossible v0, . . . ,vn rather than just single expressions for their concatenations v0 . . .vn.
51

3.5.1 Refined Antimirov Reordering Derivative
The refined reordering parts-of-derivative of an expression E along a letter a are pairsof expressions El ,Er. For any word w = av ∈ JEKI , there must be an equivalent word
z = vlavr ∈ JEK. Instead of describing the words vlvr obtainable by removing a minimaloccurrence of a in a word z ∈ JEK, the refined parts-of-derivative describe the subwords
vl ,vr that were to the left and right of this a in z: it must be the case that vl ∈ JElK and
vr ∈ JErK for one of the pairs El ,Er. For a longer word u, the refined reordering derivativeoperation gives lists of expressions E0, . . . ,En fixing what the lists of subwords v0, . . . ,vncan be in words z = v0u1v1 . . .unvn ∈ JEK equivalent to a given word w = uv ∈ JEKI .
Definition 3.56. The (unbounded and bounded) refined Antimirov I-reordering parts-of-derivative of an expression along a letter and aword are given by relations→I ⊆RE×Σ×
RE×RE,⇒I ⊆RE+×Σ×RE+,→I∗ ⊆RE×Σ∗×RE+,⇒I

N ⊆RE+≤N+1×Σ×RE+≤N+1,and→I∗
N ⊆ RE×Σ∗×RE+≤N+1 defined inductively by

a→I (a;1,1)

E→I (a;El ,Er)

E +F →I (a;El ,Er)

F →I (a;Fl ,Fr)

E +F →I (a;Fl ,Fr)

E→I (a;El ,Er)

EF →I (a;El ,ErF)

F →I (a;Fl ,Fr)

EF →I (a;(RI
aE)Fl ,Fr)

E→I (a;El ,Er)

E∗→I (a;(RI
aE)∗El ,ErE∗)

E→I (a;El ,Er) |Γ,∆|< N

Γ,E,∆⇒I
N (a;RI

aΓ,El ,Er,∆)

E→I (a;El ,Er) El |Γ|> 0

Γ,E,∆⇒I
N (a;RI

aΓ,Er,∆)

E→I (a;El ,Er) Er |∆|> 0

Γ,E,∆⇒I
N (a;RI

aΓ,El ,∆)

E→I (a;El ,Er) El Er |Γ|> 0 |∆|> 0

Γ,E,∆⇒I
N (a;RI

aΓ,∆)

E→I∗
N (ε;E)

E→I∗
N (u;Γ) Γ⇒I

N (a;Γ′)

E→I∗
N (ua;Γ′)

ByRE+≤N+1 wemean nonempty lists of expressions of length atmostN+1. The relations
⇒I and→I∗ are defined exactly as⇒I

N and→I∗
N but with the condition |Γ,∆|< N of thefirst rule of⇒I

N dropped. The operation RI
a is extended to lists of expressions by applying

RI
a to every expression in the list.
We have several rules for deriving a list of expressions along a. This is so that wecan truncate the list precisely—only lists of length at most N + 1 can be derived (in thebounded case).If E is split into El ,Er (by→I) and neither of them is nullable, then, in the N-boundedcase, we require that the given list (Γ,E,∆) is shorter than N + 1 since the new list (thisis RI
aΓ,El ,Er,∆ when deriving along a) will be longer by one. If one of El ,Er is nullable,not the first resp. last in the list, and we choose to drop it, then the new list will be of thesame length. If both are nullable, not the first resp. last, and we opt to drop both, thenthe new list will be shorter by one. They must be droppable under these conditions tohandle the situation when a word z has been split as v0u1v1 . . .ukvkuk+1 . . .unvn and vk isfurther being split as vlavr while vl or vr is empty. If k 6= 0 and vl is empty, we must join ukand a into uka. If k 6= n and vr is empty, we must join a and uk+1 into auk+1. If k is neither

0 nor n and both vl and vr are empty, wemust join all three of uk, a and uk+1 into ukauk+1.The length of the new list of expressions is always at least 2.
52

Proposition 3.57. For any E,
1. for any a ∈ Σ,vl ,vr ∈ Σ∗,

vl I a∧ vlavr ∈ JEK ⇐⇒ ∃El ,Er.E→I (a;El ,Er)∧ vl ∈ JElK∧ vr ∈ JErK;

2. for any u ∈ Σ∗,n ∈ N,v0 ∈ Σ∗,v1, . . . ,vn−1 ∈ Σ+,vn ∈ Σ∗,
∃z ∈ JEK,u1, . . . ,un ∈ Σ+.u∼I∗ u1 . . .un∧u1, . . . ,unC zB v0, . . . ,vn

⇐⇒
∃E0, . . . ,En.E→I∗ (u;E0, . . . ,En)∧∀ j. v j ∈ JE jK.

Proof.
1. =⇒: By induction on E.

• Case a′ where a′ 6= a: vlavr ∈ Ja′K= {a′} is impossible.
• Case a: Suppose vlavr ∈ JaK= {a}. Then vl = vr = ε . We have a→I (a;1,1)and ε ∈ J1K as required.
• Case 0: vlavr ∈ J0K= /0 is impossible.
• Case E1 +E2: Suppose vlavr ∈ JE1 +E2K = JE1K∪ JE2K and vl I a. It must bethat vlavr ∈ JEiK for one of two possible i. By i.h. for Ei,a,vl ,vr, there are El ,

Er such that Ei→I (a;El ,Er), vl ∈ JElK, vr ∈ JErK and from which we obtain
E1 +E2→I (a;El ,Er).

• Case 1: vlavr ∈ J1K= 1 is impossible.
• Case EF : Suppose vlavr ∈ JEFK = JEK · JFK and vl I a. Then vlavr = xy forsome x ∈ JEK and y ∈ JFK. Either (i) there exists v′ such that x = vlav′ and

vr = v′y or (ii) there exists v′ such that y = v′avr and vl = xv′.
If (i), then, by i.h. for E,a,vl ,v′, there are El ,Er such that E→I (a;El ,Er) and
vl ∈ JElK, v′ ∈ JErK. Thus we have EF →I (a;El ,ErF) and vr = v′y ∈ JErFK.If (ii), then x I a and v′ I a, so x ∈ JRI

aEK and, by i.h. for F,a,v′,vr, there are
Fl ,Fr such that F→I (a;Fl ,Fr), and v′ ∈ JFlK, vr ∈ JFrK. From these we obtain
EF →I (a;(RI

aE)Fl ,Fr) and vl = xv′ ∈ J(RI
aE)FlK.

• Case E∗: Suppose vlavr ∈ JE∗K and vl I a. Then vl = xv′l and vr = v′ry for some
x,y ∈ JE∗K and v′l ,v

′
r such that v′lav′r ∈ JEK. As x I a and v′l I a we have that

x ∈ JRI
aE∗K and, by i.h. for E,a,v′l ,v

′
r, we get that there are El , Er such that

E→I (a;El ,Er) and v′l ∈ JElK, v′r ∈ JErK. We also obtain vl = xv′l ∈ J(RI
aE∗)ElKand vr = v′ry ∈ JErE∗K.

⇐=: By induction on the derivation of E→I (a;El ,Er).
• Case a→I (a;1,1) as an axiom: Suppose vl ,vr ∈ J1K= 1. Then vl = vr = ε andwe have εaε = a ∈ JaK and ε I a as required.
• Case E1 +E2 →I (a;El ,Er) inferred from Ei →I (a;El ,Er) where i is 1 or 2:Suppose vl ∈ JElK, vr ∈ JErK. We apply i.h. to the subderivation, vl ,vr andobtain vl I a and vlavr ∈ JEiK. Thus vlavr ∈ JE1K∪ JE2K= JE1 +E2K.
• Case EF →I (a;El ,ErF) inferred from E →I (a;El ,Er): Suppose vl ∈ JElK,

vr ∈ JErFK = JErK · JFK. Then vr = xy for some x ∈ JErK and y ∈ JFK. Weapply i.h. to the subderivation, vl ,x and obtain that vl I a and vlax ∈ JEK. As
vr = xy, we have vlavr = (vlax)y ∈ JEK · JFK= JEFK.

53

• Case EF →I (a,(RI
aE)Fl ,Fr) inferred from F →I (a;Fl ,Fr): Suppose that

vl ∈ J(RI
aE)FlK = RI

aJEK · JFlK, vr ∈ JFrK. Then vl = xy for some x ∈ RI
aJEKand y ∈ JFlK, which means x I a and x ∈ JEK. We apply i.h. to the subderiva-tion, y,vr and obtain that y I a and yavr ∈ JFK. As vl = xy, we have vl I a andthus vlavr = x(yavr) ∈ JEK · JFK= JEFK.

• Case E∗→I (a;(RI
aE∗)El ,ErE∗) inferred from E→I (a;El ,Er): Suppose that

vl ∈ J(RI
aE∗)ElK = RI

aJE∗K · JElK, vr ∈ JErE∗K = JErK · JE∗K. Then vl = xy forsome x ∈ RI
aJE∗K and y ∈ JElK, which means x I a and x ∈ JE∗K. Also, vr = zwfor some z ∈ JErK and w ∈ JE∗K. We apply i.h. to the subderivation, y,z andobtain that y I a and yaz ∈ JEK. As vl = xy and vr = zw, we get that vl I a and

vlavr = x(yaz)w ∈ JE∗K · JEK · JE∗K⊆ JE∗K.
2. =⇒: By induction on u.

• Case ε : Suppose ε ∼I∗ u1 . . .un and z = v0u1v1 . . .unvn ∈ JEK. As the ui arenonempty, then necessarily n = 0, which means we have v0 ∈ JEK. Also, wehave E→I∗ (ε;E) as required.
• Case ua: Suppose ua∼I∗u1 . . .un, ∀i.∀ j < i.v j I ui and z= v0u1v1 . . .unvn ∈ JEK.Itmust be that n> 0 and theremust exist k and ul ,ur ∈Σ∗ such that uk = ulaur,

v j I a for all j < k, a I ur, a I ui for all i > k and u∼I∗ u1 . . .uk−1uluruk+1 . . .un.
– If ul = ur = ε , then, as vk−1avk I ui for all i> k, we can apply i.h. to u, n−1,

v0,v1, . . . ,vk−2,vk−1avk,vk+1, . . . ,vn, z, u1, . . . ,uk−1,uk+1, . . . ,un. We get
E0, . . . ,Ek−2, E ′, Ek+1, . . . , En such that

E→I∗ (u;E0, . . . ,Ek−2,E ′,Ek+1, . . . ,En)

and v j ∈ JE jK for all j < k− 1, vk−1avk ∈ JE ′K, v j ∈ JE jK for all j > k.As vk−1 I a, we can apply 1. to E ′, a, vk−1, vk and get Ek−1,Ek such that
E ′→I (a;Ek−1,Ek), vk−1 ∈ JEk−1K and vk ∈ JEkK. This allows us to infer

E→I∗ (ua;RI
aE0, . . . ,R

I
aEk−2,Ek−1,Ek,Ek+1, . . . ,En).

As v j I a for all j < k−1, we also have v j ∈ JRI
aE jK for all j < k−1.

– If ul 6= ε , ur = ε , we note that avk I ui for all i > k and apply i.h. to u,
n, v0, v1, . . . ,vk−1, avk,vk+1, . . . ,vn, z, u1, . . . ,uk−1,ul ,uk+1, . . . ,un. We get
E0, . . . ,Ek−1, E ′, Ek+1, . . . ,En such that

E→I∗ (u;E0, . . . ,Ek−1,E ′,Ek+1, . . . ,En)

and v j ∈ JE jK for all j < k, avk ∈ JE ′K, v j ∈ JE jK for all j > k. As ε I a,we can apply 1. to E ′, a, ε , vk and get E ′′,Ek such that E ′→I (a;E ′′,Ek),
ε ∈ JE ′′K, vk ∈ JEkK. As ε ∈ JE ′′K tells us that E ′′ , we can infer

E→I∗ (ua;RI
aE0, . . . ,R

I
aEk−1,Ek,Ek+1, . . . ,En).

As v j I a also for all j < k, we in fact also have v j ∈ JRI
aE jK for all j < k.

– The cases ul = ε , ur 6= ε and ul 6= ε , ur 6= ε are handled similarly to theprevious case.

54

⇐=: By induction on the derivation of E→I∗ (u;E0, . . . ,En).
• Case E→I∗ (ε;E) as an axiom:
Here n = 0 and E0 = E. Suppose that v0 ∈ JEK. We have ε ∼I∗ ε as well as
z = v0 ∈ JEK directly.

• Case E →I∗ (ua;RI
aE0, . . . ,R

I
aEk−1,El ,Er,Ek+1, . . . ,En) inferred from deriva-tions E→I∗ (u;E0, . . . ,En) and Ek→I (a;El ,Er):Suppose that v0 ∈ JRI

aE0K, . . . ,vk−1 ∈ JRI
aEk−1K, vl ∈ JElK, vr ∈ JErK, and that

vk+1 ∈ JEk+1K, . . . ,vn ∈ JEnK. From this we also have v0 I a, . . . ,vk−1 I a and
v0 ∈ JE0K, . . . ,vk−1 ∈ JEk−1K.By applying (1.⇐=) to Ek, a, vl , vr, we learn that vl I a and vlavr ∈ JEkK.By applying i.h. to u, n, v0, . . . ,vk−1, vlavr, vk+1, . . . ,vn and the subderivation,weobtain thewords z,u1, . . . ,un ∈Σ+ such that u∼I∗u1 . . .un, ∀i.∀ j < i.v j I ui,
∀i > k.vlavr I ui and z = v0u1v1 . . .vk−1uk(vlavr)uk+1vk+1 . . .unvn ∈ JEK.Now clearly ua∼I∗ u1 . . .ukauk+1 . . .un and

z = v0u1v1 . . .vk−1ukvlavruk+1vk+1 . . .unvn ∈ JEK.

• Case E→I∗ (ua;RI
aE0, . . . ,R

I
aEk−1,Er,Ek+1, . . . ,En) inferred from derivations

E→I∗ (u;E0, . . . ,En) and Ek→I (a;El ,Er) with El whereby k 6= 0:
Let us now suppose now that v0 ∈ JRI

aE0K, . . . ,vk−1 ∈ JRI
aEk−1K, vr ∈ JErK and

vk+1 ∈ JEk+1K, . . . ,vn ∈ JEnK. From this we also have v0 I a, . . . ,vk−1 I a and
v0 ∈ JE0K, . . . ,vk−1 ∈ JEk−1K.Applying (1.⇐=) to Ek, a, ε , vr, we learn that avr ∈ JEkK.Applying i.h. to u, n, v0, . . . ,vk−1,avr,vk+1, . . . ,vn and the subderivation, weobtain z,u1, . . . ,un ∈Σ+ such that u∼I∗u1 . . .un,∀i.∀ j < i.v j I ui,∀i> k.avr I uiand z = v0u1v1 . . .vk−1uk(avr)uk+1vk+1 . . .unvn ∈ JEK.Now clearly ua∼I∗ u1 . . .(uka)uk+1 . . .un and

z = v0u1v1 . . .vk−1(uka)vruk+1vk+1 . . .unvn ∈ JEK.

• The two remaining cases are treated similarly to the previous case.
Proposition 3.58. For any E,

1. for any a ∈ Σ,v ∈ Σ∗, the following are equivalent:
(a) av ∈ JEKI ;
(b) ∃vl ,vr ∈ Σ∗.v∼I∗ vlvr ∧ vl I a∧ vlavr ∈ JEK;
(c) ∃vl ,vr ∈ Σ∗.

v∼I∗ vlvr ∧∃El ,Er.E→I (a;El ,Er)∧ vl ∈ JElK∧ vr ∈ JErK;
(d) ∃vl ,vr ∈ Σ∗.

v ∈ vl ·I vr ∧∃El ,Er.E→I (a;El ,Er)∧ vl ∈ JElKI ∧ vr ∈ JErKI .
2. for any u,v ∈ Σ∗, the following are equivalent:

(a) uv ∈ JEKI ;
(b) ∃z ∈ JEK. u∼C zB∼ v;

55

(c) ∃n ∈ N,v0 ∈ Σ∗,v1, . . . ,vn−1 ∈ Σ+,vn ∈ Σ∗.v∼I∗ v0v1 . . .vn∧
∃E0, . . . ,En.E→I∗ (u;E0, . . . ,En)∧∀ j.v j ∈ JE jK;

(d) ∃n ∈ N,v0 ∈ Σ∗,v1, . . . ,vn−1 ∈ Σ+,vn ∈ Σ∗.v ∈ v0 ·I v1 ·I . . . ·I vn∧
∃E0, . . . ,En.E→I∗ (u;E0, . . . ,En)∧∀ j.v j ∈ JE jKI .

3. for any u ∈ Σ∗,
u ∈ JEKI ⇐⇒ (u = ε ∧E)∨ (u 6= ε ∧∃E0,E1.E→I∗ (u;E0,E1)∧E0 ∧E1).

Proof.
1. (a) ⇐⇒ (b) follows from Proposition 3.6.

(b) ⇐⇒ (c) follows from Proposition 3.57(1).
(c) ⇐⇒ (d) follows from Proposition 3.10.

2. (a) ⇐⇒ (b) follows from Proposition 3.6.
(b) ⇐⇒ (c) follows from Proposition 3.57(2).
(c) ⇐⇒ (d) follows from Proposition 3.10.

3. From (2) for E,u,ε .
We have thus established a correspondence between the trace-closing interpretationof regular expressions and refined Antimirov reordering derivative. We continue towardsa similar property for expressions defining languages with uniform rank.

Proposition 3.59. For any E, N ∈ N, u ∈ Σ∗, z ∈ JEK,if
∀u′,u′′.u = u′u′′ =⇒∃v.u′∼CN zB v

then
∃E0, . . . ,En.E→I∗

N (u;E0, . . . ,En)∧∀ j. v j ∈ JE jK

for the unique n, u1, . . . , un, v0, . . . , vn such that u∼I∗u1 . . .un and u1, . . . ,unCzBv0, . . . ,vn.
Proof. This is basically a replay of the proof of Proposition 3.57(2.=⇒) with the extra as-sumption about uniform rank up to u. The proof is by induction on u.

• Case ε : Since u = ε , it must be that n = 0 in u1, . . . ,unC zBv0, . . . ,vn. Hence v0 = z.We take E0 = E and thus have E→I∗
N (ε;E) and v0 ∈ JEK.

• Case ua: By assumption (for u′ = ua, u′′ = ε), we have v such that ua∼CN zB v.Thus we have n, u1, . . . ,un,v0, . . . ,vn such that n ≤ N, ua∼I∗ u1 . . .un, v0 . . .vn = vand ua is scattered in z as follows.
u1, . . . ,unC zB v0, . . . ,vn

Since ua∼I∗ u1 . . .un, the letter a must be in one of the ui, i.e., there exist k, ul and
ur such that uk = ulaur, ∀i < k.vi I a, a I ur and ∀i > k.a I ui.
Next, we construct from the above scattering of ua in z a scattering of u in z bysplitting uk into ul , a, ur and considering a to be a v-letter. To construct a validscattering, we have four cases to consider: ul = ε and ur = ε ; ul = ε and ur 6= ε ;
ul 6= ε and ur = ε ; ul 6= ε and ur 6= ε . We only consider the last case here.

56

Since ul 6= ε and ur 6= ε , we have that the following is a valid scattering of u in z as
a I ur and ∀i > k.a I ui.

u1, . . . ,uk−1,ul ,ur,uk+1, . . . ,unC zB v0, . . . ,vk−1,a,vk, . . . ,vn

This scattering, however, has degree n+1. By Lemma 3.4, we know that scatteringsare unique, i.e., if aword u is scattered in aword z, then this is the onlyway to scatter
u in z. This implies, by the assumption of uniform rank (for u′ = u and u′′ = a), that
n+1≤ N.
Since the assumption of uniform rank also holds for all prefixes of u, we can applyi.h. to E, N, u, z. Since the above scattering is the unique scattering of u in z, weobtain E0, . . . ,Ek−1,E ′,Ek, . . . ,En such that

E→I∗
N (u;E0, . . . ,Ek−1,E ′,Ek, . . . ,En)

and v0 ∈ JE0K, . . . ,vk−1 ∈ JEk−1K,a ∈ JE ′K,vk ∈ JEkK, . . . ,vn ∈ JEnK.
As ε I a and a∈ JE ′K, we can apply Proposition 3.57(1.=⇒) to E ′, a, ε , ε to obtain E ′l ,
E ′r such that E ′→I (a;E ′l ,E

′
r), ε ∈ JE ′lK and ε ∈ JE ′rK. Thus E ′l and E ′r . As ul 6= εand ur 6= ε imply |E0, . . . ,Ek−1|> 0 and |Ek, . . . ,En|> 0, we can use the fourth ruleof⇒I

N to drop the nullable expressions E ′l and E ′r when deriving along a.
E0, . . . ,Ek−1,E ′,Ek, . . . ,En⇒I

N (a;RI
aE0, . . . ,R

I
aEk−1,Ek, . . . ,En)

This allows us to conclude the following.
E→I∗

N (ua;RI
aE0, . . . ,R

I
aEk−1,Ek, . . . ,En)

As we have v j ∈ JE jK and also v j I a for all j < k, we thus have v j ∈ JRI
aE jK.

Corollary 3.60. For any E such that JEK has uniform rank at most N,
1. for any u,v ∈ Σ∗, the following are equivalent:

(a) uv ∈ JEKI ;
(b) ∃z ∈ JEK. ∀u′,u′′.u = u′u′′ =⇒ u′∼CN zB∼u′′v;
(c) ∃n≤ N,v0 ∈ Σ∗,v1, . . . ,vn−1 ∈ Σ+,vn ∈ Σ∗.v∼I∗ v0v1 . . .vn∧

∃E0, . . . ,En.E→I∗
N (u;E0, . . . ,En)∧∀ j.v j ∈ JE jK;

(d) ∃n≤ N,v0 ∈ Σ∗,v1, . . . ,vn−1 ∈ Σ+,vn ∈ Σ∗.v ∈ v0 ·I v1 ·I . . . ·I vn∧
∃E0, . . . ,En.E→I∗

N (u;E0, . . . ,En)∧∀ j.v j ∈ JE jKI .
2. for any u ∈ Σ∗,

u ∈ JEKI ⇐⇒ (u = ε ∧E)∨ (u 6= ε ∧∃E0,E1.E→I∗
N (u;E0,E1)∧E0 ∧E1).

Proof of 1.(a)=⇒ (b) is from E having uniform rank at most N.(b)=⇒ (c) follows from Proposition 3.59.(c)=⇒ (d) and (d)=⇒ (a) are those from Proposition 3.58(2).
57

Example 3.61. LetΣ= {a,b}, aI b,E =df aa+ab+b andEb =df RI
bE = aa+a0+0. Thereare two possibilities to derive the expression E along b: either from the summand ab orfrom the summand b. Here are the two derivations.

b→I (b;1,1)

ab→I (b;a1,1)

ab+b→I (b;a1,1)

aa+ab+b→I (b;a1,1)

E∗→I (b;E∗b (a1),1E∗)

b→I (b;1,1)

ab+b→I (b;1,1)

aa+ab+b→I (b;1,1)

E∗→I (b;E∗b 1,1E∗)

By denoting the left derivation by Dab and the right one by Db, we can write one of therefined reordering parts-of-derivative of E∗ along bb as follows.
E∗→I∗

2 (ε;E∗)

Dab 0 < 2

E∗⇒I
2 (b;E∗b (a1),1E∗)

E∗→I∗
2 (b;E∗b (a1),1E∗)

Dab

1E∗→I (b;1(E∗b (a1)),1E∗) 1 < 2

E∗b (a1),1E∗⇒I
2 (b;E∗b (a1),1(E∗b (a1)),1E∗)

E∗→I∗
2 (bb;E∗b (a1),1(E∗b (a1)),1E∗)

In this example we chose N =df 2 and we chose the ab summand both times. Theexpression 1(E∗b (a1)) .
= (aa)∗a is not nullable, so we could not have dropped it in the⇒I

2rule. From here, we cannot continue by deriving along a third b by again taking it from thesummand ab of E in 1E∗, as this would produce another nondroppable 1(E∗b (a1)) andmake the list too long (longer than 3).If we would choose, for example, the summand b for the second step, then we couldarrive at a list of length one less.
E∗→I∗

2 (ε;E∗)

Dab 0 < 2

E∗⇒I
2 (b;E∗b (a1),1E∗)

E∗→I∗
2 (b;E∗b (a1),1E∗)

Db

1E∗→I (b;1(E∗b 1),1E∗) 1(E∗b 1) 1 > 0

E∗b (a1),1E∗⇒I
2 (b;E∗b (a1),1E∗)

E∗→I∗
2 (bb;E∗b (a1),1E∗)

For example, we are not allowed to establish (for N = 2) that w =df bbbaaa ∈ JE∗KI byderiving E∗ along w and checking that we can arrive at E0,E1 with both E0,E1 nullable asmandated by z=df ababab∈ JE∗K. We are allowed to do so because z′=df bbabaa∈ JE∗K.The word z is not useful since, among the splits of w as w = uv, there is u =df bbb,
v =df aaa, in which u scatters into z in three blocks as z = ababab (we underline the lettersfrom u). The full sequence of scatterings corresponding to every split of w is: ababab,
ababab, ababab, ababab, ababab, ababab, ababab.The word z′, on the contrary, is fine because, for every split of w as w = uv, the word
u scatters into z using at most two blocks. The full sequence is: bbabaa, bbabaa, bbabaa,
bbabaa, bbabaa, bbabaa, bbabaa.The choiceN = 2 suffices for accepting all of JE∗KI , since JE∗K happens to have uniformrank 2.

Just as in the non-refined case, the refined Antimirov reordering parts-of-derivative ofan expression E give a nondeterministic automaton by taking the state set to be QE =df
{Γ | ∃u ∈ Σ∗.E →I∗ (u;Γ)}, the initial state to be qE

0 =df E, the final states to be FE =df
{E | E }∪{E0,E1 ∈QE | E0 ∧E1 }, and the transitions to be given by Γ→E (a;Γ′) =df
Γ⇒I (a;Γ′) for Γ,Γ′ ∈QE . By Proposition 3.58, this automaton accepts JEKI . It is gener-ally not finite as QE can contain states Γ of any length.

58

Given N ∈N, another automaton is obtained by restricting QE , FE and→E to QE
N =df

{Γ | ∃u∈Σ∗.E→I∗
N (u;Γ)},FE

N =df {E |E }∪{E0,E1 ∈QE
N |E0 ∧E1 },Γ→E

N (a;Γ′)=df
Γ⇒I

N (a;Γ′) for Γ,Γ′ ∈ QE
N . By Corollary 3.60, if JEK has uniform rank at most N, thenthis smaller automaton accepts JEKI despite the truncation. If JEK does not have uniformrank or we choose N smaller than the uniform rank, then the N-truncated automatonrecognises a proper subset of JEKI . In other words, by increasing N we get a better (regu-lar) approximation of JEKI , but if JEK does not have uniform rank, then we will not reach

JEKI . Proposition 3.48 gives an example of this: however we choose N, the N-truncatedautomaton fails to accept the word anbncanbn for n > N. This happens because JEK doesnot have uniform rank (and that it has rank 2 does not help).
3.5.2 Automaton Finiteness for Regular Expressions with Uniform Rank
Is theN-truncated Antimirov automaton finite? The statesΓ ofQE

N are all of length atmost
N +1, so there is hope. The automaton will be finite if we can find a finite set containingall the individual expressions E ′ appearing in the states Γ. We now define such a set E→∗.
Definition 3.62. We define functions (_) +,R,(_)→+,(_)→∗ : RE→P(RE) by

a + =df {1}
0 + =df /0

(E +F) + =df E +∪F +

1 + =df /0
(EF) + =df E +∪F +∪E + · {F}∪{E} ·F +∪E + ·F +

(E∗) + =df E +∪{E∗} ·E +∪E + · {E∗} ∪
E + · ({E∗} ·E +)∪ (E + · {E∗}) ·E +

RE =df {RI
X E | X ⊆ Σ}

E→+ =df R(E +)
E→∗ =df {E}∪E→+

Proposition 3.63.

1. For any E, the set E→∗ is finite.
2. For any E and X , we have (RI

X E)→∗ ⊆ RI
X (E

→∗).
3. For any E, a and El ,Er, if E→I (a;El ,Er), then El ∈ RI

a(E
 +) and Er ∈ E +.

4. For any E,E ′,X ,a,E ′l ,E
′
r, if E ′ ∈ RI

X (E
 +) and E ′→I (a;E ′l ,E

′
r),then E ′l ∈ RI

Xa(E
 +) and E ′r ∈ RI

X (E
 +).

5. For any E, u and E0, . . . ,En, if E→I∗ (u;E0, . . . ,En), then ∀ j.E j ∈ E→∗.
Proposition 3.64. For every E and N, the state set {Γ | ∃u ∈ Σ∗.E →I∗

N (u;Γ)} of the N-truncated refined Antimirov automaton for E is finite. If JEK has uniform rank at most N,then the N-truncated automaton accepts JEKI .
3.6 Related Work
Syntactic derivative constructions for regular expressions extended with constructors for(versions of) the shuffle operation have been considered, for example, by Sulzmann andThiemann [76] for the Brzozowski derivative and by Broda et al. [19] for the Antimirov

59

derivative. This is relevant to our derivatives since L ·I L′ is by definition a language be-tween L ·L′ and L�L′. Thus our Brzozowski and Antimirov reordering derivatives of EFmust be between the classical Brzozowski and Antimirov derivatives of EF and E�F .Finite asynchronous automata were introduced by Zielonka [80] as a way to charac-terise recognisable trace languages. It is a theorem that a trace language T is recognisableif andonly if there is a finite asynchronous automaton such thatT is the language acceptedby that automaton. Since all recognisable trace languages have a star-connected expres-sion defining them, we can also construct a finite automaton for every recognisable tracelanguage given its star-connected expression. Asynchronous automata allow concurrentexecution of independent actions but our construction yields a traditional automaton.With the reordering derivatives we can construct a (possibly infinite) automaton fora regular expression E that accepts the closure JEKI . We accomplish this by essentiallyhaving more states and transitions in the automaton when compared to the automatonobtained by the usual derivative construction. Another possible approach is to change theway the automaton processes the input word. For example, Nagy and Otto [55] describeautomata with translucent letters. The basic idea is that with each state q is associated aset of letters τ(q)⊆ Σ that are considered translucent in q. Translucent letters are invisibleto the machine. Thus in state q we can take a transition labelled a to q′ when the currentinput word is waw′ with Σ(w) ⊆ τ(q) and a 6∈ τ(q), i.e., a is the first letter that is nottranslucent. In our terminology we could say that a is theminimal letter ofwaw′ in state q.It would bemore natural for us to associate translucent letters with the alphabet (labels ofthe transitions) so that we can directly encode the independence I as translucent letters.Then the automaton can take a transition labelled a when a is a minimal letter of theinput word according to I. Thus we can take an automaton for JEK and by modifyingonly the transitions to include translucent letters we would get an automaton for JEKI .As the translucent letters allow us to consider different factorisations of the input word,we can see the above construction as producing a Σ∗/∼I∗-automaton with the additionalrestriction that the transitions are labelled only by the generators of the monoid.A somewhat similar notion is that of jumping finite automata [54] where the machinecan jump to an arbitrary position in the input word. The languages accepted by suchautomata are necessarily closed under permutation.
3.7 Conclusion and Future Work
We have shown that the Brzozowski and Antimirov derivative operations generalise totrace closures of regular languages in the form of reordering derivative operations. Thesets of Brzozowski resp. Antimirov reordering (parts-of-)derivatives of an expression aregenerally infinite, so the deterministic and nondeterministic automata that they give, ac-cepting the trace closure, are generally infinite. Still, if the expression is star-connected,then their appropriate quotients are finite. Also, the set of N-bounded refined Antimirovreordering parts-of-derivative is finitewithout quotienting, andwe showed that, if the lan-guage of the expression has uniform rank at most N, the N-truncated refined Antimirovautomaton accepts the trace closure. We also proved that star-connected expressionsdefine languages with finite uniform rank.In summary, with this work we have established the picture shown in Figure 1.Our motivation for developing these reordering derivatives is to use the Antimirov re-ordering derivative as a guiding idea for describing operational semantics of relaxedmem-ory models. Usually, when we consider sequential composition EF of programs E and F ,then, to start executing the program F , we must have already successfully executed theprogram E. In the jargon of derivatives, this is to say that for an action from F to become

60

executable, what is left of E has to have become nullable (i.e., one can consider the ex-ecution of E completed). With reordering derivatives, we can execute an action from Fsuccessfully even when what is left of E is not yet nullable. It suffices that some sequenceof actions to complete the residual of E is reorderable with the selected action of F . Thisis precisely the topic of exploration in Chapter 5.In the definitions of the derivative operations, we only use I in one direction, i.e., we donot make use of its symmetry. It would be interesting to see which of the results from thischapter can be generalised to the setting of semicommutations [24]. In fact, in Chapter 5where we develop an operational semantics based on the Antimirov reordering deriva-tives, we deliberately exclude the requirement that the independence relation must besymmetric. We do not, however, investigate the same questions as we did in this chapterfor the symmetric case.
E star-connected

Prop. 3.42

ww

Prop. 3.55

�� Klunder et al. [41]

��

Quot of Antim for JEKI finite

Kleene

��

JEK has uniform rank

Prop. 3.64

ww

triv.

$$
Refined Antim for JEKI finite

Kleene

''

JEK has rank

Hashiguchi [32]

zz
JEKI regularOO

Ochmański [59]

��
JEKI = JE ′KI for some star-conn E ′

Figure 1 – Reordering derivatives in relation to earlier results

61

62

4 Normal Forms of Generalised Traces
In this chapter, we consider normal forms for a generalisation of traces where the com-mutability of a pair of adjacent letters in a word may depend on their left context (this isthe prefix of the pair in theword). We develop both Foata and lexicographic normalisationfor this generalisation. As an example application of this work, we describe an indepen-dence alphabet for a very simple TSO-like system where the context-dependence of theindependence relation is used to express whether a particular read instruction reads itsvalue from the shared memory or from the local write buffer.
4.1 Motivation
We have already introduced Mazurkiewicz traces and also the Foata and lexicographicnormal forms in Section 2.3. Before continuing with the generalisation of traces in thischapter, we briefly motivate this development by describing our use of normal forms andalso why this kind of generalisation of traces might be useful for us.

In formal languages, the alphabet Σ is usually treated simply as a collection of symbols.In applications, on the other hand, the letters of the alphabet typically have some mean-ing attached to them. In the example in Section 4.5 and in Chapter 5, we will take thealphabet Σ to be the set of instructions or actions that a machine can execute. Dependingon the particular set of instructions, there may be pairs of instructions a and b that areindependent, i.e., we do not see a semantic difference between executing a first and then
b or the other way around. Words over this alphabet are then seen as program executionsand the independence relation induces an equivalence relation on executions. Some pro-grams may have several equivalent executions and a Mazurkiewicz trace corresponds toan equivalence class of executions according to this equivalence relation.

To check that the set of executions of a program satisfy someproperty, we canof coursecheck each execution separately. Whenwe know that this particular property is stable un-der an equivalence relation, then it is sufficient to check a single representative of eachequivalence class. We are interested in the result of an execution and thus prefer equiv-alence relations where equivalent executions lead to the same result. If the equivalencerelation induced by an independence relation is such, then we can use normal forms asthe representative executions.
A useful property that normal forms may have and that the normal forms we considerdo have is prefix-closedness, i.e., if uv is a normal form, then so is u. Contrapositively, thissays that if u is not a normal form, then there is no v such that uv is a normal form. Wewilluse this property to cut off search for a representative execution as soon as we discoverthat our current execution so far (the prefix) is not in normal form (this can also be seen inDefinition 5.42 where it is only possible to construct executions that are in normal form).
Our development in this chapter is motivated by the fact that, in some cases, an in-dependence relation might not be expressive enough. More precisely, in Mazurkiewicztraces, the independence relation is a binary relation on the alphabet and thus it is static.By this we mean that we cannot have a pair of letters that are independent at some in-stant, but not in general. The generalisation of traces introduced by Sassone et al. [74]that we consider in this chapter makes the independence relation depend on a word pa-rameter representing the context in which the independence of the letters is considered.This context can be seen as a form of state. This allows us to say that a pair of letters(or instructions) commute in some context (machine state) but not in others. In the ex-ample in this chapter we use this feature to construct an independence alphabet wherethemeaning (commutability) of a read instruction depends on whether there is a pending

63

write instruction currently in the write buffer.We develop generalisations of Foata and lexicographic normal forms for these gener-alised traces and also the corresponding normalisation algorithms and correctness proofs.A more detailed description of this development which documents the correspondingAgda [58] formalisation is in Appendix A. The Agda formalisation itself is available here:
http://cs.ioc.ee/~hendrik/code/phd/isse.zip

4.2 Generalised Mazurkiewicz Traces
There are several generalisations of trace theory. We are considering the generalisationgiven by Sassone et al. [74]. In this setting, the essential difference is that independence isno longer a binary relation but instead it is an assignment of an irreflexive and symmetric(independence) relation to every word u. More precisely, we assume that we have analphabetΣ and a context-dependent independence relation I : Σ∗→P(Σ×Σ). Thewordparameter to I is the context.In this chapter, we seek to follow the following lexical convention where reasonable:

• a, b, c and d are letters (elements of Σ);
• s, t, u and v are words (elements of Σ∗);
• x, y and z are lists of words (elements of Σ∗∗).
The smallest difference between two equivalent words is that they differ by the order-ing of a pair of adjacent independent letters.

Definition 4.1. For any u ∈ Σ∗, the words s,s′ ∈ Σ∗ are one-step Mazurkiewicz equivalentin context u, denoted by s∼I
u s′, when there exist a,b ∈ Σ and t, t ′ ∈ Σ∗ such that a Ius b,

s = tabt ′ and s′ = tbat ′.
Thus the words tabt ′ and tbat ′ are equivalent in the context u when the letters a and

b are independent in the context us ∈ Σ∗. Mazurkiewicz equivalence is the reflexive-transitive closure of the above relation.
Definition 4.2. For any u∈Σ∗, twowords s,s′ ∈Σ∗ areMazurkiewicz equivalent in context
u, denoted by s∼I∗

u s′, when s = s′ or there exists s′′ ∈ Σ∗ such that s∼I
u s′′ and s′′∼I∗

u s′.
A witness of s∼I∗

u s′ can be thought of as a sequence of instructions for transforming sinto s′ by swapping pairs of adjacent independent letters. No letters from u can be involvedin these swaps.The original motivation for context-dependent independence relation in [74] was tomake the independence relation more expressive or finer. However, without any restric-tions, the context-dependent independence relation could become too fine. Consider analphabet with a Iε b, c Iab d and c Dba d. Although we say that a and b are independent inthe empty context, we could argue that they are not. If c and d are independent in thecontext ab, but dependent in the context ba, then we can see a difference between aband ba and thus the ordering of a and b (in the empty context) matters.
Definition 4.3. A context-dependent independence relation I : Σ∗→P(Σ×Σ) is said tobe consistent when it is stable under equivalence, i.e., for any u,v ∈ Σ∗ and a,b ∈ Σ, if
a Iu b and u∼I∗

ε v, then a Iv b.
Definition 4.4. A context-dependent independence relation I : Σ∗→P(Σ×Σ) is said tobe coherent when, for any u ∈ Σ∗ and a,b,c ∈ Σ, it satisfies the following conditions:

64

http://cs.ioc.ee/~hendrik/code/phd/isse.zip

1. if a Iu b, b Iua c and a Iub c, then a Iu c;
2. if a Iu b, b Iu c and a Iu c, then a Iub c;
3. if a Iu b, b Iu c and a Iub c, then a Iu c.
In generalised traces, the context-dependent independence relation is required to beboth consistent and coherent. The consistency and coherence conditions ensure that acontext-dependent independence relation is sufficiently coarse. This turns out to be nec-essary for our generalisations of the Foata and lexicographic normal forms and the corre-sponding normalisation algorithms.Consistency is a very basic hygiene condition. It just states that equivalent words mustgive the same independence relation. This rules out the undesirable behaviour describedabove. The coherence conditions are more interesting since they involve different con-texts. Looking at their shape, we could say that the essence of the coherence conditionsis that, if we have a letter b so that both a and b as well as b and c are independent (insome context), then b is “independent enough” (wrt. a and c), so that the independenceor dependence of a and c is not affected by adding b to or removing it from the end of thecontext. The important details in the rules are the contexts. Note that there is no needfor a version of the first coherence condition for extending the context as that is derivablefrom the second and third condition.Oneway to see the coherence conditions is to say that they are the smallest set of con-ditions guaranteeing that any choice of three conditions, one from each of the followingthree pairs, implies the other three: (a Iu b, a Iuc b), (b Iu c, b Iua c), (a Iu c, a Iub c). This iswith the exception of the choice of the second condition from each pair; from these threeconditions one cannot conclude anything. For example, a Iu b, b Iua c and a Iub c imply notonly aIu c and bIu c (both by the first condition), but also aIuc b (follows from those by thesecond condition).We illustrate generalised traces with a modification of the example independence al-phabet we considered in Section 2.3. We now take I to be the least consistent and coher-ent family of symmetric relations such that a Iε b, a Iε d, b Ia d, b Iac d and c Iab d. Explicitly,this means that we also have bIε d (by third coherence condition), aId b, aIb d (by secondcoherence condition) and c Iba d (by consistency). Now abcd has the same equivalenceclass as before, but acbd is only equivalent to acdb, leaving adcb and dacb in a differentequivalence class.Wenowgive someexplanationwhy requiring the coherence conditions ofDefinition 4.4is desirable. Our argument is that without coherence we can have conflicting definitionsof minimal (and maximal) letters in a word. We consider a to be minimal in xay when

xay∼I∗
ε av for some v. Before, we also said that a letter a is minimal in a word when itis possible to commute it past its prefix (x in this case) to the beginning of the word. Wedescribe normal forms as predicates on words and thus we would like to decide whethera word is a normal form by just considering this word and not by first having to enumerateits entire equivalence class.We can violate condition (1) by taking a Iε b, a Dc b, b Dε c, b Ia c, a Dε c and a Ib c.(Note that condition (1) would require both b Iε c and a Iε c. Conditions (2) and (3) aresatisfied.) We have acb∼I

ε abc∼I
ε bac∼I

ε bca. We can see that a is a maximal letter as theequivalence class contains bca. By considering the equivalent word acb, we do not seethis as a Dε c and thus a cannot be commuted past its suffix to the end of the word.We can violate condition (2) by taking a Iε b, a Ic b, b Iε c, b Ia c, a Iε c and a Db c. (Notethat condition (2) would require aIb c. Conditions (1) and (3) are satisfied.) This means wehave bac∼I
ε abc∼I

ε acb∼I
ε cab∼I

ε cba∼I
ε bca. We consider c to be minimal because of
65

the word cab, but we cannot see this from the word bac itself as aDb c. Another anomalyhere is that although a Db c, we still have bac∼I∗
ε bca.We can violate condition (3) by taking aIε b, aDc b, bIε c, bDa c, aDε c and aIb c. (Notethat condition (3) would require aIε c. Conditions (1) and (2) are satisfied.) This means wehave abc∼I

ε bac∼I
ε bca∼I

ε cba. We consider a to be minimal because of the word abc,but we cannot see this from the word cba itself as a Dc b.
4.3 Generalised Foata Normalisation
In this section, we describe Foata normal forms for generalised traces and the correspond-ing normalisation algorithm. We conclude with the correctness proof of the algorithm.
4.3.1 Normal FormsThe Foata normal form of a generalised trace is still a well-formed sequence of well-formed steps as in the standard case (Section 2.3.1), but we change the well-formednesscondition of steps and sequences to take into account the context-dependence of the in-dependence relation.First, we extend the independence relation to words (considered as steps) and lettersby ε �Iu a =df tt and sb�Iu a =df s�Iu a∧b Iu a. Thus s�Iu a just says that all letters in s areindependent of a in the context u. Note that the context u stays fixed in the definition,i.e., the letters in s have to be independent of a in the same context u. We also use s�Du aas the negation of this to say that there exists a letter in s such that s Du a. The relation≺is the strict total order on the alphabet. The function b_c : Σ∗∗→ Σ∗ flattens the given listof words by concatenation.
Definition 4.5. For any u ∈ Σ∗, the set Step(Σ, I,u) ⊆ Σ∗ of well-formed steps in context
u is given by:

1. for any a ∈ Σ, a ∈ Step(Σ, I,u);
2. for any s ∈ Σ∗ and a,b ∈ Σ,if sa ∈ Step(Σ, I,u), a≺ b and sa�Iu b, then sab ∈ Step(Σ, I,u).
Thus a well-formed step (in context u) is either a singleton letter or it consists of a well-formed step to which a new letter is added on the right, which has to be greater than theprevious rightmost letter. The added letter and the stepmust be independent. Thismeansthat if we have sas′bs′′ ∈ Step(Σ, I,u), then it must be that aIu b and a≺ b. We require theletters of a step to be independent in the fixed context since we think of a step as a set ofindependent letters and thus should be allowed to move the letters freely within a step.We require the letters to be ordered to have a concrete representation (an enumeration)of this set as a word.We now define when a sequence of steps support a letter. Intuitively, if a sequenceof steps x ∈ Σ∗∗ supports the letter a, then either the last step in x contains a dependentletter or x is empty.

Definition 4.6. For any a∈ Σ, the set Sup(Σ, I,a)⊆ Σ∗∗ of sequences of steps that supportthe letter a is given by:
1. ε ∈ Sup(Σ, I,a);
2. for any x ∈ Σ∗∗ and s ∈ Σ∗, if s�Dbxc a, then xs ∈ Sup(Σ, I,a).
We now define normal forms as sequences of steps where every letter in a step issupported by the preceding steps.

66

Definition 4.7. The set Foata(Σ, I)⊆ Σ∗∗ of Foata normal forms is given by:
1. ε ∈ Foata(Σ, I);
2. for any x ∈ Foata(Σ, I) and s ∈ Step(Σ, I,bxc),if, for every a ∈ s, we have x ∈ Sup(Σ, I,a), then xs ∈ Foata(Σ, I).
Thus a Foata normal form is a sequence of steps where every step is well-formed inthe context of its prefix and every letter in a step has a dependent letter in the previousstep (unless it is the first step). When a letter in a step has a dependent letter in theprevious step, then the letter does not “fit” into the previous step and thus it is at itsearliest possible position.The function emb that embeds a normal form (an element ofFoata(Σ, I)) back towordsis defined as emb x = bxc, i.e., it just concatenates the steps of the normal form.Continuingwith the example independence alphabet from the last subsection, wehavethat (abd)(c) is a Foata normal form since we have a Iε b, a Iε d and b Iε d making (abd) avalid step and aDε c ensuring that the sole letter in the step (c) is supported. We also havethat (a)(c)(bd) is a normal form since bIac d ensures that the step (bd) is well-formed and

a Dε c, c Da b and c Da d provide the requisite support for the letters in (c) and (bd).
4.3.2 NormalisationThe main ingredient in the normalisation algorithm is a function that takes a normal formand a letter and inserts the letter into its right place in the normal form. Intuitively, thecorrect step for this letter is the leftmost step in the normal form that can be reachedwith this letter, starting from the rightmost step. This is because our normalisation algo-rithm traverses the given input word (from left to right) and inserts each letter into anaccumulating normal form starting from the empty normal form.We use Agda-like notation for describing the algorithms. Words are represented ascons- or snoc-lists (List or List>) over an alphabet Σ. We use <: and <+ for the consoperation and concatenation of cons-lists (the corresponding snoc-list operations are :>and +>). A more thorough description of the Agda formalisation is in Appendix A.First, we define a function find> parameterised by a decider P? of a predicate P on acontext (a snoc-list) and an element. It splits a given snoc-list xs into two parts, ls and
rs, so that all of the elements in rs satisfy the predicate and the rightmost element in lsviolates the predicate.
find> : (∀ xs x → Dec (P xs x)) → List> X → List> X × List> X

find> P? [] = [] , []

find> P? (xs :> x) with P? xs x

find> P? (xs :> x) | yes _ =

let ls , rs = find> P? xs in ls , rs :> x

find> P? (xs :> x) | no _ = xs :> x , []

Given a step and a letter, we can use find> to find the right position of the letter inthe step.
insertStep : Step → Σ → Step

insertStep s a =

let ls , rs = find> (\ _ b → a ≺? b) s in

ls :> a +> rs

Here we use find> with a predicate that ignores the context. The step s is split into lsand rs so that everything in rs is greater than a and the rightmost letter in ls is not. We
67

assume that the ordering relation ≺ is decidable, with ≺? as the decider. Hence a ≺? bis either yes (together with a proof of a≺ b) or no (together with a proof of ¬(a≺ b)).Given a normal form and a letter, we use find> to find the correct step for the letter.
insert : Foata → Σ → Foata

insert x a with find> (\ y s → �I? y s a) x

insert x a | ls , [] = ls :> ([] :> a)

insert x a | ls , rs :> r =

let s , rs' = first rs r in

ls :> insertStep s a +> rs'

Here find> splits the normal form into two parts, ls and rs, so that all the steps in rsare independent of a (note the context used) and the rightmost step in ls is dependent(or ls is empty). If rs is empty, then we add a new step to the normal form as ls supportsthe new letter. Otherwise, we insert a into the leftmost step in rs (the function first ex-tracts the leftmost element in a non-empty snoc-list). We assume that the independencerelation I is decidable. Here �I? y s a decides whether it is the case that s �Ibyc a, i.e.,whether the letters in s are independent of a in the context byc.The normalisation function just traverses the input word from the left to the right andinserts each letter into the correct position in the accumulated normal form.
norm' : Foata → List Σ → Foata

norm' x [] = x

norm' x (a <: t) = norm' (insert x a) t

norm : List Σ → Foata

norm t = norm' [] t

We continue with our example and look at the evolution of the accumulator as theword bacd is normalised. First, the letter b is inserted into the empty normal form, re-sulting in the normal form (b). Next, the letter a is inserted into this normal form, whichresults in (ab)because of aIε b. Next, the letter c is inserted into the result. Wehave aDε c,which means that a new step must be added and the result is (ab)(c). We now need toinsert d into the normal form. We have cIab d and in addition we also have aIε d and bIε d.This makes the first step the earliest possible step for d and the result is (abd)(c).
4.3.3 Correctness
We have defined the Foata normalisation function, but we have no assurance yet thatit produces well-formed Foata normal forms (i.e., elements of Foata(Σ, I)). We will nowproceed to show that the function norm constructs a well-formed normal form from theinput word.We start by showing that inserting a letter (provided that it is independent of the step)into a well-formed step produces a well-formed step.
Lemma 4.8. For any u,s ∈ Σ∗ and a ∈ Σ,if s ∈ Step(Σ, I,u) and s�Iu a, then insertStep s a ∈ Step(Σ, I,u).

To outline what we need to do next, let us look at a small example. Suppose we havea normal form stuv consisting of steps s, t, u, and v, and we wish to insert the letter ainto this normal form. It so happens that a will go into the step t. This means that, in-stead of the old context st, the letters in u must now be independent in the new con-text s(insertStep t a). Likewise, the letters in v must now be independent in the context
68

s(insertStep t a)u. Furthermore, every letter in v must now be supported by a letter in uin the context s(insertStep t a).To show that the independence of letters in a step is preserved during an insert thatinserts a letter into the context, we have the following lemma.
Lemma 4.9. For any u,s ∈ Σ∗ and a ∈ Σ,if s ∈ Step(Σ, I,u) and s�Iu a, then s ∈ Step(Σ, I,ua).

Next, we are considering the situation where we are inserting the letter a into thenormal form xst and we have determined that a must go into some step in x. We wish toshow that the letters in t are still supported (by something in s) after the insert. We use
PW(Iu,s) to express that the predicate Iu holds between any pair of letters in s, i.e., theletters in s are pairwise independent in the context u. The normal form x is considered inthe lemma as the context u and b is a letter from the step t that requires the support.
Lemma 4.10. For any u,s ∈ Σ∗ and a,b,∈ Σ,if b Ius a, PW(Iu,s), s�Iu a and s�Du b, then s�Dua b.

This shows that, under suitable conditions, we can add a letter (in this case a) to theend of the context and still have a dependent letter in the previous step (for step s andletter b in this case). By consistency of I, we know that this support is then preservedfor any equivalent context. This allows us to show that the function insert preserves theequivalence class in the following sense.
Lemma 4.11. For any x ∈ Σ∗∗ and a ∈ Σ,if x ∈ Foata(Σ, I), then emb (insert x a)∼I∗

ε (emb x)a.
The next lemma is similar to Lemma 4.10 which said that we can add a letter to thecontext and preserve the dependent pairs of letters between steps. This says a similarthing for insert.

Lemma 4.12. For any x ∈ Σ∗∗, s ∈ Σ∗ and a,b ∈ Σ,if xs ∈ Foata(Σ, I), a Ibxsc b, xs 6∈ Sup(Σ, I,b), x 6∈ Sup(Σ, I,b) and xs ∈ Sup(Σ, I,a), then
insert xs b ∈ Sup(Σ, I,a).

This allows us to show that inserting a letter into a normal form again produces a nor-mal form.
Lemma 4.13. For any x ∈ Σ∗∗ and a ∈ Σ, if x ∈ Foata(Σ, I), then insert x a ∈ Foata(Σ, I).

Since the normalisation function just traverses the input word and inserts each let-ter to the accumulating normal form, we have that the normalisation function produceselements of Foata(Σ, I).
Proposition 4.14. For any s ∈ Σ∗, norm s ∈ Foata(Σ, I).

By nowwe have shown that norm s produces an element ofFoata(Σ, I). Next, we showthat these indeed are the normal forms. In other words, there is exactly one normal formfor an equivalence class.The correctness proof of the normalisation algorithm consists of the proofs of thesoundness and completeness properties. By soundness we mean that equivalent wordsmust get assigned the same normal form. By completeness we mean that any two wordsthat get assigned the same normal form must be equivalent. With these properties wehave a bijection between the set of equivalence classes and the image of the normalisa-tion function norm. We will also show that norm is surjective.The key lemma for completeness is that the result of normalising a word (and thenembedding it) is equivalent to that word, i.e., for every word there exists a normal form.
69

Proposition 4.15. For any s ∈ Σ∗, emb (norm s)∼I∗
ε s.

This leads to completeness as norm s = norm s′ of course implies that the embeddingsof the normal forms are equivalent, i.e., emb (norm s)∼I∗
ε emb (norm s′).

Corollary 4.16. For any s,s′ ∈ Σ∗, if norm s = norm s′, then s∼I∗
ε s′.

To prove soundness of the normalisation algorithm, we first show the commutativity ofthe normalisation algorithm for independent letters. We start by showing that the orderin which we insert two independent letters into the same step does not matter.
Lemma 4.17. For any u,s ∈ Σ∗ and a,b ∈ Σ, if s ∈ Step(Σ, I,u), a Ius b, s �Iu a and s �Iu b,then insertStep (insertStep s a) b = insertStep (insertStep s b) a.

Next, we show that the order in which we insert two independent letters to a normalform also does not matter.
Lemma 4.18. For any x ∈ Σ∗∗ and a,b ∈ Σ,if x ∈ Foata(Σ, I) and a Ibxc b, then insert (insert x a) b = insert (insert x b) a.

This implies that it does not matter whether we normalise the word ab or ba when theletters are independent.
Lemma 4.19. For any x ∈ Σ∗∗ and a,b ∈ Σ,if x ∈ Foata(Σ, I) and a Ibxc b, then norm′ x ab = norm′ x ba.

Now we can show that normalising two words that differ only by the ordering of asingle pair of adjacent letters gives the same result.
Lemma 4.20. For any x ∈ Σ∗∗ and s,s′ ∈ Σ∗,if x ∈ Foata(Σ, I) and s∼I

bxc s′, then norm′ x s = norm′ x s′.
This can then be extended to equivalent words.

Lemma 4.21. For any x ∈ Σ∗∗ and s,s′ ∈ Σ∗,if x ∈ Foata(Σ, I) and s∼I∗
bxc s′, then norm′ x s = norm′ x s′.

This finally implies the desired soundness property.
Proposition 4.22. For any s,s′ ∈ Σ∗, if s∼I∗

ε s′, then norm s = norm s′.
The soundness and completeness proofs give us a certified decision procedure forcheckingwhether twowords are equivalent: first normalise the twowords and then checkwhether the normal forms are the same.

equivalent? : (s s' : List Σ) → Dec (s ∼I∗
[]

s')

equivalent? s s' with foata-eq? (norm s) (norm s')

equivalent? s s' | yes feq = yes (completeness feq)

equivalent? s s' | no ¬feq = no (\ eqv → ¬feq (soundness eqv))

This procedure will either return yes, together with instructions how to turn s into s'(which letters need to be exchanged), or no, together with a proof that it is not possibleto turn s into s'. Here foata-eq? uses the decidable equality on the alphabet to decidewhether the two normal forms are the same.Finally, we have that the normalisation function is stable in the sense that normalis-ing a normal form produces the same normal form. Hence the normalisation function issurjective, i.e., every normal form is the normal form of something.
70

Proposition 4.23. For any x ∈ Σ∗∗, if x ∈ Foata(Σ, I), then norm (emb x) = x.
Soundness says that words in an equivalence class get assigned the same normal form.With the above proposition, we also have that there is at most one normal form for anequivalence class (wrt. to emb), i.e., normal forms are unique.

Corollary 4.24. For any x,y ∈ Σ∗∗, if x,y ∈ Foata(Σ, I) and emb x∼I∗
ε emb y, then x = y.

4.4 Generalised Lexicographic Normalisation
In this section, we describe the lexicographic normal form for generalised traces and thecorresponding normalisation algorithm. We conclude with the correctness proof of thenormalisation algorithm.
4.4.1 Normal FormsIn contrast to Foata normal forms that were sequences of steps, lexicographic normalforms are just certain elements of Σ∗. Hence the embedding function emb turning normalforms to words is here the identity function and we omit it.We consider a list of letters to be a well-formed lexicographic normal form when eachletter in it is in a correct position. Whether a letter is in a correct position is determinedby its prefix, i.e., in a word uav the prefix u determines whether it is correct to follow itwith an a. If it is, then we say that the word u supports a. A word is in normal form if everyletter in it is supported.
Definition 4.25. For any a ∈ Σ, the set Sup(Σ, I,a)⊆ Σ∗ of words that support the letter
a is given by:

1. ε ∈ Sup(Σ, I,a);
2. for any u ∈ Σ∗ and b ∈ Σ, if b Du a, then ub ∈ Sup(Σ, I,a);
3. for any u ∈ Σ∗ and b ∈ Σ, if u ∈ Sup(Σ, I,a), b Iu a and b≺ a, then ub ∈ Sup(Σ, I,a).
Hence a letter is supported by a word if either it is the empty word ε or the word endswith a dependent letter or the word ends with an independent letter that is before it inthe ordering and the prefix supports the letter. A sequence of letters is a lexicographicnormal form when every letter in the sequence is supported by its prefix.

Definition 4.26. The set Lex(Σ, I)⊆ Σ∗ of lexicographic normal forms is given by
1. ε ∈ Lex(Σ, I);
2. for any u ∈ Σ∗ and a ∈ Σ, if u ∈ Lex(Σ, I) and u ∈ Sup(Σ, I,a), then ua ∈ Lex(Σ, I).
We continue with our example independence alphabet and show that abcd is a lex-icographic normal form. Since ε ∈ Lex(Σ, I) and ε ∈ Sup(Σ, I,a), we get a ∈ Lex(Σ, I).Next, we have a ∈ Sup(Σ, I,b) since ε ∈ Sup(Σ, I,b), a Iε b and a ≺ b. Thus we also have

ab ∈ Lex(Σ, I). We have ab ∈ Sup(Σ, I,c) since b Da c resulting in abc ∈ Lex(Σ, I). Finally,we get abc ∈ Sup(Σ, I,d) from ε ∈ Sup(Σ, I,d) by applying condition 4.25.(3) three times.Thus we have abcd ∈ Lex(Σ, I).Before we wrote s �Iu a to say that every letter in the word s (that represents a step)is independent of a in the context u. Here, we will need a variation where, for a letter bin s, we also consider its prefix in s as part of the context. We extend the independencerelation towords and letters by ε Iu a=df tt and sbIu a=df sIu a∧bIus a. Note themodified
71

context in bIus a. When s Iu a, then we say that s is a “chain” of independent letters wrt. a.In this case we can “slide” the letter a through s without changing the equivalence class,i.e., sa∼I∗
u as.Anisimov and Knuth’s characterisation of lexicographic normal forms forbids the “bua”pattern. Our definition forbids this pattern for the generalised case that we consider here.

Proposition 4.27. For any t,u,v ∈ Σ∗ and a,b ∈ Σ,if tbuav ∈ Lex(Σ, I), a It b and a≺ b, then u Dtb a.
The strict total order ≺ on Σ induces the lexicographic order relation �Lex on Σ∗. Bydefinition, the lexicographic normal form is the least element in its equivalence class wrt.the lexicographic order�Lex . The normal forms we have defined for the generalised caseare also least elements in their equivalence classes.

Proposition 4.28. For any s, t ∈ Σ∗, if s ∈ Lex(Σ, I) and s∼I∗
ε t, then s�Lex t.

4.4.2 Normalisation
The main ingredient in the normalisation algorithm is a function that inserts a letter intoits correct position in a list (which is assumed to be a well-formed normal form). Given aword s and a letter a, the idea is to split s into three parts: sD, s≺, and sI so that sD endswith a letter dependent on a (or it is empty), all letters in s≺ are independent of and lessthan a, and letters in sI are independent of a and the first letter of sI is greater than a (or itis empty). The idea is that the word sDs≺ is the longest prefix of s that supports the letter
a.
findPos : List> Σ → Σ → List> Σ × List> Σ × List> Σ

findPos [] a = [] , [] , []

findPos (s :> b) a with I? s b a

findPos (s :> b) a | no _ = s :> b , [] , []

findPos (s :> b) a | yes _ with findPos s a

findPos (s :> b) a | yes _ | sd , sp , si :> i =

sd , sp , si :> i :> b

findPos (s :> b) a | yes _ | sd , sp , [] with b ≺? a

findPos (s :> b) a | yes _ | sd , sp , [] | no _ =

sd , sp , [] :> b

findPos (s :> b) a | yes _ | sd , sp , [] | yes _ =

sd , sp :> b , []

The function findPos implements the described functionality. Like before, we assume thatthe independence relation I and the order relation≺ are decidable, with deciders I? and
≺?. The insert function now just plugs the letter between s≺ and sI in the result of findPos.
insert : List> Σ → Σ → List> Σ

insert s a =

let sd , sp , si = findPos s a in

sd +> sp :> a +> si

The normalisation algorithm just traverses the input word letter by letter and inserts theletters into the accumulating normal form, just as in Foata normalisation.
norm' : List> Σ → List Σ → List> Σ

norm' s [] = s

norm' s (a <: t) = norm' (insert s a) t

72

norm : String → List> Σ

norm t = norm' [] t

We continue with our example and look at what are the intermediate steps when normal-ising bacd. First, when inserting b into the empty normal form, insert splits it into ε,ε,εand the result is b. Next, when inserting a, the normal form b is split into ε,ε,b since a≺ band b Iε a. The result is ab. When inserting c into ab, the split is ab,ε,ε and the result is
abc. Finally, when inserting d into abc, the split is ε,abc,ε and the result is abcd.
4.4.3 CorrectnessWe have now defined the lexicographic normalisation algorithm. This produces “raw”normal forms, i.e., just words. Wewill now show that thesewords arewell-formed normalforms. Webeginwith a couple of lemmas exhibiting that findPosbehaves as expected. Thefirst lemma says that findPos just splits the input word.
Lemma 4.29. For any s ∈ Σ∗ and a ∈ Σ, if findPos s a = sD,s≺,sI , then sDs≺sI = s.

The next lemma ensures that the sI component in the result of findPos consists of a“chain” of independent letters wrt. a.
Lemma 4.30. For any s ∈ Σ∗ and a ∈ Σ, if findPos s a = sD,s≺,sI , then sI IsDs≺ a.

The next lemma ensures that the leftmost letter of sI in the result of findPos is greaterthan the letter a. The proposition a≺first sI holds when a is less than the first letter of sI .
Lemma 4.31. For any s ∈ Σ∗, a ∈ Σ, if findPos s a = _,_,sI , then a≺first sI .

The next property is that insert preserves the equivalence class.
Lemma 4.32. For any s ∈ Σ∗ and a ∈ Σ, insert s a∼I∗

ε sa.
The next lemma ensures that, under certain conditions, the support of a letter is pre-served when another letter is inserted into the supporting word.

Lemma 4.33. For any s, t ∈ Σ∗ and a,b,c ∈ Σ, if stc ∈ Sup(Σ, I,a), tc Is b, b Istc a, b≺first tc,then sbtc ∈ Sup(Σ, I,a).
This allows us to say that inserting a letter into a normal form results in a normal form.

Lemma 4.34. For any s ∈ Σ∗ and a ∈ Σ, if s ∈ Lex(Σ, I), then insert s a ∈ Lex(Σ, I).
Thus we get that the normalisation function produces elements of Lex(Σ, I).

Proposition 4.35. For any t ∈ Σ∗, norm t ∈ Lex(Σ, I).
By now, we have shown that norm produces an element of Lex(Σ, I). Next, we showthat these indeed are the normal forms. In other words, there is exactly one normal formfor an equivalence class.As was the case for Foata normalisation, the correctness proof of the normalisation al-gorithm consists of the proofs of the soundness and completeness properties. By sound-ness we mean that equivalent words must get assigned the same normal form. By com-pleteness we mean that any two words that get assigned the same normal form must beequivalent. We do things in a slightly different order than what we did for Foata normalforms: we show soundness as a corollary of uniqueness of normal forms.The key property for the completeness proof is that the result of normalising a word isequivalent to that word, i.e., every word has a normal form.

73

Proposition 4.36. For any t ∈ Σ∗, norm t∼I∗
ε t.

This leads to completeness as norm t = norm t ′ of course implies norm t∼I∗
ε norm t ′.

Corollary 4.37. For any t, t ′ ∈ Σ∗, if norm t = norm t ′, then t∼I∗
ε t ′.

Continuing towards soundness, we first prove the uniqueness of normal forms, i.e., iftwo normal forms are equivalent, then they must be the same.
Proposition 4.38. For any s,s′ ∈ Σ∗, if s,s′ ∈ Lex(Σ, I) and s∼I∗

ε s′, then s = s′.
Proof. From the assumptions, by Proposition 4.28, we have both s �Lex s′ and s′ �Lex s,from which, by antisymmetry of�Lex, we get s = s′.

Then we have soundness as a corollary.
Corollary 4.39. For any t, t ′ ∈ Σ∗, if t∼I∗

ε t ′, then norm t = norm t ′.
Proof. Applying Proposition 4.36 to both t and t ′, we get norm t∼I∗

ε norm t ′. The resultfollows from this by Proposition 4.35 and Proposition 4.38.
As normalising a word produces a normal form that is equivalent to the original, thenby uniqueness of normal forms we also get the stability of the normalisation algorithm.

Corollary 4.40. For any s ∈ Σ∗, if s ∈ Lex(Σ, I), then norm s = s.
An alternative approach to soundness would have been to prove the following lemma.

Lemma 4.41. For any s ∈ Σ∗ and a,b ∈ Σ,if s ∈ Lex(Σ, I) and a Is b, then insert (insert s a) b = insert (insert s b) a.
This leads to soundness, stability and uniqueness as in the previous section. Finally,we can now prove the converses of Proposition 4.27 and Proposition 4.28 showing that aword with no forbidden patterns is a lexicographic normal form and that the least wordin an equivalence class is the lexicographic normal form.

Proposition 4.42. For any s ∈ Σ∗, if, for every decomposition of s as s = tbuav we have
¬(a It b) or ¬(a≺ b) or ¬(u Itb a), then s ∈ Lex(Σ, I).
Proposition 4.43. For any s ∈ Σ∗, if, for any t ∈ Σ∗, we have s∼I∗

ε t implies s �Lex t, then
s ∈ Lex(Σ, I).
4.5 Example: TSO-like Independence Alphabet
Herewewill give a small examplewhere generalised traces are needed to describe the be-haviour of a concurrent system reasonably precisely. The example is from shared-memoryconcurrencywithwrite buffers. It ismeant to resemble the Total StoreOrder (TSO) relaxedmemory model of the SPARC family [75].The machine that we are going to model consists of processors and shared memorywhere eachprocessor has a singlewrite buffer. A programconsists of lists of read andwriteinstructions (each list representing a single processor). The execution of awrite instructionproceeds in two stages: the write is first enqueued in the processor’s write buffer andsome time later it is dequeued and written (committed) to memory. The execution of aread instruction reads the memory “through” the local write buffer: if there is a pendingwrite to the location of the read, then the read operation reads its result from the latestpending write to that location, otherwise it reads the value from memory.

74

We think of programexecutions on thismachine aswords over an alphabetΣ of events.The letters in this alphabet are tuples Proc× Id×Action where Proc (the processor iden-tifier) and Id (the event identifier) are both natural numbers and Action is a pair Op×Locwhere Op is either R (read), W (write) or C (commit) and Loc is the memory location,which is also represented as a natural number. In this simple example, we ignore the val-ues read and written by the events because the independence relation we define doesnot consider them.Two events fromdifferent processors are dependentwhen they access the samemem-ory location and at least one of them is a write. We do not consider a W event to accessthe memory as it only affects the local write buffer. Similarly, an R event only accesses thememory when it reads its value frommemory (and not from the write buffer). Two eventsfrom the sameprocessor are dependent if they areW orR events (we respect the programorder) or both areC events (the buffer is first-in-first-out) or they are a corresponding pairof aW andC event (thisC is the commit of thisW event).We have defined this context-dependent independence relation also in our formali-sation and shown that it satisfies the consistency (Definition 4.3) and coherence (Defini-tion 4.4) conditions. This allows us to use the normalisation algorithms we have devel-oped for deciding whether two executions (words over the alphabet) on this machine areequivalent.Let us consider the following program where two processors write to variable x andone of them also reads from x.
P1 P2

(a,a') [x] := 1 (c,c') [x] := 2

(b) r1 := [x]

We can represent the instructions as events in the following way. As mentioned before,the execution of write instructions proceeds in two stages. Thus, the events representing
[x] := 1 are a = 1,1,W,1 and a′ = 1,1,C,1; they share the event identifier as theycorrespond to the write and commit stages of the same instruction. The event for theread r1 := [x] is b = 1,2,R,1. The events representing [x] := 2 are c = 2,1,W,1 and
c′ = 2,1,C,1.We consider the possible executions of the first processor to be aa′b and aba′. This isa consequence of the independence relation: after performing a, the event a′ is pending;since a′ and b are independent, the processor has a choicewhich one to performnext. Thesecond processor can only execute as cc′. The possible executions of the whole programare all the possible interleavings of an execution from the first processorwith an executionfrom the second processor. This program has 20 possible executions in total and these arepartitioned into three equivalence classes. This is summarised in the following table.A consequence of this independence relation is that the executions acc′ba′ and acbc′a′are equivalent. Interestingly, the two executions only differ by the ordering of b and c′.The equivalence of the two, justified by b and c′ being independent in a context containing
a but not a′, may seem counterintuitive as b is supposed to read x and c′ is supposed towrite to x. It may look as if the value read by b could be affected by c′. But this is not so.The two executions are semantically equivalent because b appears before a′ (i.e., in thepresence of a pending write to x) and thus b reads the value of x from the write buffer andnot from memory.The effect described in the previous paragraph is also visible from the Foata normalforms in the table. The second one, (ac)(a′)(c′)(b), implies that c′ and b are dependentin the context aca′. The third one, (ac)(bc′)(a′), implies that b and c′ are independent inthe context ac.

75

Execution Foata Lexicographic
aa′bcc′

(ac)(a′b)(c′) aa′bcc′

aba′cc′

aa′cbc′

abca′c′

aca′bc′

acba′c′

caa′bc′

caba′c′

aa′cc′b
(ac)(a′)(c′)(b) aa′cc′baca′c′b

caa′c′b
abcc′a′

(ac)(bc′)(a′) abcc′a′

acbc′a′

cabc′a′

acc′a′b
acc′ba′

cac′a′b
cac′ba′

cc′aa′b
cc′aba′

If we were to model this using ordinary traces (without context-dependence), thenwe would have to choose whether to set b and c′ to be dependent or independent. Theonly reasonable choice is to let them be dependent as the equivalence relation inducedby this is a safe approximation of the one above: equivalent executions according to thenew relation are equivalent according to the previous relation. The downside of this isthat there will be more equivalence classes. If we would set b and c′ to be independent,then we would have that aca′c′b and aca′bc′ are equivalent. This does not agree withthe equivalence relation defined above, but more importantly, it does not make sensesemantically as b reads the value of x from memory (instead of the write buffer) and isthus affected by c′.
4.6 Related Work
Traces were introduced into concurrency theory by Mazurkiewicz [52], but they originatefrom the enumerative combinatorics work by Cartier and Foata [21]. In particular, Foatanormalization is from that work. The lexicographic normalization was first investigatedby Anisimov and Knuth [9]. These two normal forms and normalization algorithms aredescribed in many of the standard expositions of trace theory, e.g., [2, 26].

Generalising traces for context-dependent independence has been considered by sev-eral authors, but with different well-behavedness conditions on independence. Sassoneet al. [74] introduced context-dependent independence as we have considered it. Katzand Peled [38] introduced conditional independence, considering a coherence conditionthat in our setting would amount to a Iu b and b Iua c implying (a Iu c iff a Iub c). This condi-tion is equivalent to the conjunction of conditions (1) and (2) of Definition 4.4. Droste [28],in a work on concurrent automata, again with state-dependent independence, requiredwhat would in this setting amount to a Iu b, b Iu c, a Iub c implying a Iuc b, b Iua c, a Iu c, i.e.,
76

condition (3) of Definition 4.4 and a little more.Hoogers et al. [34] developed local traces where independence relates lists of stepsto steps. This is a different setup where coherence conditions like those of Sassone et al.do not arise, because one only works with contexts of steps, not contexts of individualletters.Partial-order reduction (POR) and use of representatives in model-checking, originallyproposed by Godefroid [31] and Peled [64], are in wide use. We mention that dynamicPOR for stateless model-checking of relaxed memory concurrent programs in particularhas been considered by Abdulla et al. [4] and Zhang et al. [79]. In our own previous work[47], we used Foata normal forms of generalised traces as the representative executionswhen we considered memory models of the SPARC hierarchy.Chou and Peled [23] have formalised standard Mazurkiewicz traces in the context offormally verifying a partial-order reduction technique in HOL. Yang et al. [78], Aspinalland Sevčik [11] and Owens et al. [61] pioneered the formalisation of semantics of relaxedmemory models with proof assistants, using HOL, Isabelle/HOL, HOL4.There are some parallels of Lipton’s theory of reduction (movers) [45] to trace the-ory, or more precisely, semicommutations [24], where independence is non-symmetric.Movers have been used in reasoning about relaxed memory concurrency by Bouajjani etal. [15].
4.7 Conclusion and Future Work
We believe it to be important to exercise care when choosing the semantic domain forbehaviours for a class of concurrent systems. Descriptions of behaviours in terms of an ap-parentlymore involved abstraction can sometimes bemore precise, yet still as analysable.In this chapter, we certified two normalisation algorithms for generalised Mazurkiewicztraces. The example from Section 4.5 demonstrates that standard Mazurkiewicz tracesare not flexible enough in some circumstances and generalised traces can lead to fewerequivalence classes. This is good in any situation where one needs to exhaustively checkan equivalence-invariant property on all equivalence classes. In Section 5.7 we will seehow (an extension of) the independence alphabet from Section 4.5 can be used to give aTSO-like semantics to a simple programming language.

77

78

5 Operational Semantics with Semicommutations
In this chapter, we describe an operational semantics that allows to execute the instruc-tions of a program in an order that is different from the order given by the program, i.e.,an instruction might be executed before its preceding instructions have been executed.The idea is that such an operational semantics can capture some optimisations that acompiler or a runtime environment might apply to the program. To accomplish this, wefurther generalise the Antimirov reordering derivatives from Chapter 3. First, we includeparallel composition in the syntax. Second, we let go of the requirement that an indepen-dence relation has to be symmetric. Third, we interpret letters of the alphabet as statetransformers and we also include machine states in the rules. Altogether, this enables usto describe the semantics of a simple While-like language that allows some reordering ofinstructions. We then describe how representative executions can be used to alleviate thecombinatorial explosion when computing the set of final states of litmus-tests. Finally, weconsider a few extensions to the operational semantics that can account for more fine-grained reordering relations. With these extensions we give an operational semantics fora TSO-like system where a read instruction can read its value from a write instruction ear-lier in the program that has not yet been executed.
5.1 Motivation
In this chapter, we come back to the example we showed in the Introduction where welooked at the following program representing the message-passing pattern.

x := 41;y := 1 ‖ r1 := y;r2 := x

To recollect, here the first thread stores to variable x the result of some computation(which just happens to be 41) and then sets the variable y to 1 to indicate that it hasfinished this computation and the result is now stored in x. The question that interestsus is if it is possible that some other thread at some point sees the new value of y butthe old value of x. In the usual interleaving semantics, which is sequentially consistent,this is not possible. If, for example, we consider the instructions r1 := y and r2 := x to beindependent enough so that some optimisation could reorder them, then we could endup with the following program
x := 41;y := 1 ‖ r2 := x;r1 := y

which under the interleaving semantics can lead to a final state where r1 = 1 and r2 = 0.
The motivation for this work is that concurrent programs typically are not executed inthe intuitive interleaving fashion. The reason is that both the compilation process and thehardware itself (during the execution) may change the program slightly so as to make theprogram execution more efficient. A reasonable requirement is that these optimisationsare invisible for a single-threaded program. But as we saw in the example above, theeffects of such optimisations may become visible in a concurrent setting.
Our goal in this chapter is to describe the execution of programs in a manner that isweaker than sequential consistency. In other words, we consider execution of programsunder someweakmemorymodel. In the following, we describe an operational semanticswhich is able to capture some optimisations like the one above where two instructionswere reordered. The main idea is that, given a program p;q, we allow, under certainconditions, to execute an instruction from q even when p is not yet fully executed.

79

5.2 Preliminaries

Before wemove on to operational semantics, we briefly describe the differences betweensemitraces (that we use here) and Mazurkiewicz traces. We also describe how we repre-sent programs in this framework.
5.2.1 Semicommutations

Semicommutations [24] are a generalisation of Mazurkiewicz traces where the indepen-dence relation is not necessarily symmetric. A semicommutation alphabet (Σ,θ) is a pairconsisting of an alphabet Σ and an irreflexive relation θ ⊆ Σ×Σ, called the semicommu-tation relation.
We extend the semicommutation θ to a relation on words and letters by θ(ε,a) =df ttand θ(ub,a) =df θ(u,a)∧θ(b,a).
Wewrite⇒θ⊆Σ∗×Σ∗ for the least relation such that θ(a,b) implies uabv⇒θ ubav forall u,v ∈ Σ∗ (this corresponds to uabv∼I ubav in Mazurkiewicz traces). Similarly, we write

⇒θ∗ for the reflexive-transitive closure of⇒θ (this corresponds to ∼I∗ in Mazurkiewicztraces). The relation⇒θ∗ is the rewriting relation induced by θ .
When θ(u,a), then ua can be rewritten to au, i.e., ua⇒θ∗ au and later we will alsosay that in this case a can be reordered before u. This (multi-step) rewriting relation ismonotone in θ in the sense that, if θ ⊆ θ ′, then u⇒θ∗ u′ implies u⇒θ ′∗ u′. The closureof a word u under θ , denoted by θ(u), is the set of words it can be rewritten to, i.e.,

θ(u) =df {v ∈ Σ∗ | u⇒θ∗ v}. Thus we have that θ ⊆ θ ′ implies θ(u)⊆ θ ′(u). The closureof a language is defined as θ(L) =df
⋃
{θ(u) | u ∈ L} and, for any L, it satisfies L⊆ θ(L)and θ(θ(L))⊆ θ(L).

In the case where θ is also symmetric, we obtain the usual Mazurkiewicz traces. Then,for a word u, the closure θ(u) is the equivalence class of u (the trace [u]θ).
5.2.2 Programs

We use regular expressions over some alphabet of instructions as the abstract syntaxwith which we describe programs. More precisely, here we use regular expressions REextended with the shuffle operation. The set RES of regular expressions with shuffle isgiven by the grammar:
E ::= a | 0 | E +E | 1 | EE | E∗ | E ‖ E

where a ranges overΣ. We consider expressionsE ∈RES to be programs over an alphabet
Σ of instructions. Multiplication EF stands for sequential composition, addition E +F isnondeterministic choice, Kleene star E∗ is iteration and E ‖ F is parallel composition. Weconsider 0 to represent failure and 1 to be the no-op program representing successfultermination. In this chapter, we write E .

= F to mean that E and F are equal moduloassociativity of multiplication.
The set of machine states is denoted by S. Each instruction a ∈ Σ is interpreted as a(partial) state transformer: JaK : S⇀ S. We write JaKσ↓ to say that JaKσ is defined. Weoften use the following postfix notation for the state transformers: (σ)a =df JaKσ . Thisextends to words as: (σ)ε =df σ and (σ)au =df ((σ)a)u if (σ)a↓ and ⊥ otherwise. Forinstructions a and b, if θ(a,b), then we allow to execute b before a in their sequentialcomposition ab.

80

5.3 Reordering Semantics
We consider an execution of a program (from some initial state) to be a sequence of in-structions that in a sense is allowed by the program. The result of this execution is thestate obtained by applying this sequence of instructions to the initial state. The oper-ational semantics should specify, given a program and a machine state, what are the al-lowed executions. This is accomplished by specifying the set of instructions (or instructionoccurrences) in the program from which we are allowed to choose the next instruction toexecute and, for each such instruction, also the program that we are left with after exe-cuting the instruction. This in turn describes how to construct an (allowed) execution (asequence of instructions) of a program. Our goal is to define the rules of the semantics sothat we can also include certain reorderings in the semantics. The general idea is that weallow reorderings by making more instructions of the program available for execution.
5.3.1 Word Language Interpretation of ProgramsBefore we turn to operational semantics, we describe a word language interpretation ofprograms that is closed under the rewriting relation⇒θ∗ (this interpretation correspondsto J_KI which is closed under ∼I∗). This can be seen as an overapproximation of the al-lowed executions: here we consider all executions that a program might generate andignore the question whether these executions are well-defined, i.e., if an execution ap-plied to the initial state is defined at all. First, we define the “loosened concatenation” oftwo words.
Definition 5.1. The θ -reordering concatenation of words ·θ : Σ∗×Σ∗→P(Σ∗) is definedby

ε ·θ v =df {v}
u ·θ ε =df {u}

au ·θ bv =df {a} · (u ·θ bv)∪{b | θ(au,b)} · (au ·θ v)

and the lifting of θ -reordering concatenation to languages is defined by
L ·θ L′ =df

⋃
{u ·θ v | u ∈ L∧ v ∈ L′}.

We can see that u ·θ v is sublanguage of u� v. Similarly to ·I , this concatenation op-eration is also biased towards the left argument: θ(au,b) is a test for whether to includethe language {b} · (au ·θ v) in the result.The θ -reordering concatenation satisfies the following two useful properties. First, itis monotone in θ .
Lemma 5.2. For any θ , θ ′ and L,L′ ⊆ Σ∗, if θ ⊆ θ ′, then L ·θ L′ ⊆ L ·θ ′ L′.

Second, the closure operation distributes over concatenation in the following way. (Orwe can say that θ is a monoid morphism from languages to θ -closed languages.)
Lemma 5.3. For any θ and L,L′ ⊆ Σ∗, we have θ(L ·L′) = θ(L) ·θ θ(L′).

The shuffle operation satisfies a weaker property.
Lemma 5.4. For any θ and L,L′ ⊆ Σ∗, we have θ(L�L′)⊆ θ(L)�θ(L′).

Next, we define theword language semantics of programs. We see this as a descriptionof all the possible ways a program could execute—the words in this interpretation of aprogram are those sequences of instructions that could possibly occur as executions ofthe program.
81

Definition 5.5. Theword language semantics J_Kθ : RES→P(Σ∗) of programs is definedrecursively by
JaKθ =df {a}
J0Kθ =df /0

JE +FKθ =df JEKθ ∪ JFKθ

J1Kθ =df 1
JEFKθ =df JEKθ ·θ JFKθ

JE∗Kθ =df µX .1∪ JEKθ ·θ X
JE ‖ FKθ =df JEKθ

� JFKθ

The interpretation JEKθ is monotone in the semicommutation θ and it is closed underthe rewriting relation⇒θ∗.
Proposition 5.6. For any θ , θ ′, and E ∈ RES, if θ ⊆ θ ′, then JEKθ ⊆ JEKθ ′ .
Proof. By induction on E. We only show two cases here.

• Case EF : By i.h. we have JEKθ ⊆ JEKθ ′ and JFKθ ⊆ JFKθ ′ . Thus, by Lemma 5.2 we
have: JEFKθ = JEKθ ·θ JFKθ ⊆ JEKθ ·θ ′ JFKθ ⊆ JEKθ ′ ·θ ′ JFKθ ′ = JEFKθ ′ .

• Case E ‖ F : By i.h. we have JEKθ ⊆ JEKθ ′ and JFKθ ⊆ JFKθ ′ . Thus we have the
following: JE ‖ FKθ = JEKθ

� JFKθ ⊆ JEKθ ′
� JFKθ ′ = JE ‖ FKθ ′ .

Proposition 5.7. For any θ and E ∈ RES, we have θ(JEKθ) = JEKθ .
Proof. By induction on E. We only show two cases here.

• Case EF : By i.h. and Lemma 5.3 we have the following equations.
θ(JEFKθ) = θ(JEKθ ·θ JFKθ)

= θ(θ(JEKθ) ·θ θ(JFKθ))
= θ(θ(JEKθ · JFKθ))
= θ(JEKθ · JFKθ)
= θ(JEKθ) ·θ θ(JFKθ)
= JEKθ ·θ JFKθ

= JEFKθ

• Case E ‖ F : By i.h. JEKθ and JFKθ are closed and thus by Lemma 5.4 we have that
θ(JE ‖ FKθ) = θ(JEKθ

� JFKθ)⊆ θ(JEKθ)�θ(JFKθ) = JEKθ
� JFKθ = JE ‖ FKθ

and by the closure property of θ we have that θ(JE ‖ FKθ)⊇ JE ‖ FKθ .
Note that although the interpretation JEKθ is closed, unlike what we had in Chapter 3,it is not the case, in general, that it is the closure θ(JEK). (Here we write JEK for JEK /0.) Ingeneral, we only have θ(JEK)⊆ JEKθ .

Proposition 5.8. For any semicommutations θ and θ ′, and E ∈ RES, if θ ⊆ θ ′, then
θ ′(JEKθ)⊆ JEKθ ′ .
Proof. Let u′ ∈ θ ′(JEKθ). Then there must exist u ∈ JEKθ such that u⇒θ ′∗ u′. By Propo-
sition 5.6 we have that u ∈ JEKθ ′ and by Proposition 5.7 we thus have u′ ∈ JEKθ ′ .

The following example demonstrates that we do not have θ ′(JEKθ)⊇ JEKθ ′ in general.
82

Example 5.9. Let Σ =df {a,b,c}, θ = /0 and θ ′(a,b). Then we have the following.
θ ′(Jab ‖ cK) = θ ′(JabK� JcK)

= θ ′({ab}�{c})
= θ ′({abc,acb,cab})
= {abc,bac,acb,cab,cba}
6⊇ {abc,acb,cab,bac,bca,cba}
= {ab,ba}�{c}
= JabKθ ′

� JcKθ ′

= Jab ‖ cKθ ′

This mismatch is due to parallel composition. Intuitively, inE ‖ F there are no orderingconstraints between the instructions in E and instructions in F , but with JEK� JFK wepick an ordering for the pairs of instructions that do not commute. If we only considerregular expressions E ∈ RE, then we indeed have θ(JEK) = JEKθ .
Proposition 5.10. For any θ and θ ′, and E ∈ RE, if θ ⊆ θ ′, then θ ′(JEKθ) = JEKθ ′ .
Proof. By induction on E. We only show the case for multiplication.

• Case EF : By Proposition 5.7, Lemma 5.3, the assumption that θ ⊆ θ ′, and, by i.h.,we have the following equations.
θ ′(JEFKθ) = θ ′(JEKθ ·θ JFKθ)

= θ ′(θ(JEKθ) ·θ θ(JFKθ))
= θ ′(θ(JEKθ · JFKθ))
= θ ′(JEKθ · JFKθ)

= θ ′(JEKθ) ·θ ′ θ ′(JFKθ)

= JEKθ ′ ·θ ′ JFKθ ′

= JEFKθ ′

The above proposition highlights why it might be interesting to use this approach forthe (relaxed) semantics of programs. We think of E ∈ RE as a single-threaded programand we interpret θ(JEK) = JEKθ as saying that the “optimisations” described by θ arevalid (in a sequential context) in the sense that no new behaviour is introduced—for everyexecution u′ in JEKθ there exists u in JEK such that u⇒θ∗ u′, i.e., u and u′ are “equiva-lent”. At the same time, optimisations valid in a sequential context might not be valid in aconcurrent context in the sense that applying such optimisations to individual threads ofa concurrent program might introduce new behaviours as shown in Example 5.9.
5.3.2 ReorderabilityThe key idea in the closing interpretation is the use of the θ -reordering concatenation.The important part of the reordering concatenation was the use of θ(au,b) as a test forwhether to include {b} · (au ·θ v) in the concatenation au ·θ bv. Our goal now is to definethe analogue of θ(au,b) for programs. This notion of reorderability is the essential differ-ence compared to ordinary operational semantics. Intuitively, we would like to say thatexecuting an instruction a before executing the preceding sequence of instructions u isvalid when we know that both ua and au would lead to the same state.
Definition 5.11. A semicommutation θ is conservative when, for every a,b ∈ Σ,

θ(a,b) =⇒∀σ .(σ)ab = (σ)ba.

83

The equality in the above definition is the Kleene equality: if either side is defined,then so is the other and they are equal. The motivation for the conservativity conditionon the semicommutation relation is apparent in the following lemma.
Lemma 5.12. For any conservative θ and u,u′ ∈ Σ∗, if u⇒θ∗ u′, then (σ)u = (σ)u′.

Of course, as a special case of the above lemma, if θ(u,a), then ua⇒θ∗ au and thuswehave (σ)ua = (σ)au. In the context of operational semantics, we consider conservativesemicommutation relations and thus we take θ(u,a) to be the justification which allowsus to reorder a before u in the sequence of instructions ua.Intuitively, given a program Ea, we would like to find a program E ′ such that, for everyexecution u of E ′, u is also an execution of E and a can be reordered before u. Put anotherway, when we reorder a in front of E in the program Ea, we would like to restrict E tothe subprogram E ′ and the result of the reordering is aE ′. This program E ′ correspondsto the I-reorderable part.
Definition 5.13. The θ -reorderable part of a program is given by the function Rθ :
RES×Σ→ RES defined recursively by

Rθ
a b =df if θ(b,a) then b else 0

Rθ
a 0 =df 0

Rθ
a (E +F) =df Rθ

a E +Rθ
a F

Rθ
a 1 =df 1

Rθ
a (EF) =df (Rθ

a E)(Rθ
a F)

Rθ
a (E

∗) =df (Rθ
a E)∗

Rθ
a (E ‖ F) =df Rθ

a E ‖ Rθ
a F

Similarly to RI
aE, we have that Rθ

a E just replaces those instructions b in E with 0 forwhich θ(b,a) does not hold.
Example 5.14. Let Σ =df {a,b,c} and θ(a,b) and θ(c,a). Then

• Rθ
a ((a ‖ 1)a(a+b+ c)aa∗) = (0 ‖ 1)0(0+0+ c)00∗;

• Rθ
b ((a ‖ 1)a(a+b+ c)aa∗) = (a ‖ 1)a(a+0+0)aa∗;

• Rθ
c ((a ‖ 1)a(a+b+ c)aa∗) = (0 ‖ 1)0(0+0+0)00∗.

Lemma 5.15. For any semicommutation θ , a,b ∈ Σ and E ∈ RES, the θ -reorderable part
Rθ enjoys the following properties:

• Rθ
b (R

θ
a E) = Rθ

a (R
θ
b E);

• Rθ
a (R

θ
a E) = Rθ

a E.
If we were to extend θ -reorderable part to words, i.e., by having Rθ

ε E =df E and
Rθ

auE =df Rθ
u (R

θ
a E), then, by the previous lemma, it would be the case thatRθ

u E =Rθ

Σ(u)E.
Definition 5.16. The relation�⊆ RES×RES is the precongruence on RES generated by
0� a where a ∈ Σ.

Thus E � F holds when E is otherwise exactly the same as F except that some of theinstructions in it may have been replaced with 0. We have a+ 0 � a+ b, but note that
a 6� a+ b. If E � F , then JEKθ ⊆ JFKθ but the converse does not hold. We have thefollowing properties for the reorderable part.

84

Lemma 5.17. For any semicommutations θ and θ ′, E,E ′ ∈ RES and a ∈ Σ,
1. Rθ

a E � E;
2. if θ ⊆ θ ′, then Rθ

a E � Rθ ′
a E;

3. if E � E ′, then Rθ
a E � Rθ

a E ′.
Importantly, the reorderable part of a program corresponds to the reorderable wordsin the word language semantics.

Proposition 5.18. For any semicommutation θ , a ∈ Σ, u ∈ Σ∗ and E ∈ RES, we have that
u ∈ JRθ

a EKθ ⇐⇒ u ∈ JEKθ ∧θ(u,a).

5.3.3 Operational Semantics
With the θ -reorderable part defined we can now define the θ -reordering operational se-mantics. This is essentially the Antimirov reordering derivative we defined in Section 3.3.3with some modifications.
Definition 5.19. The θ -reordering single-step reduction of a program is given by the rela-tion→θ ⊆ S×RES×Σ×S×RES:

(σ)a↓
〈σ ,a〉 →θ (a,〈(σ)a,1〉)

〈σ ,E〉 →θ (a,〈σ ′,E ′〉)
〈σ ,E +F〉 →θ (a,〈σ ′,E ′〉)

〈σ ,F〉 →θ (a,〈σ ′,F ′〉)
〈σ ,E +F〉 →θ (a,〈σ ′,F ′〉)

〈σ ,E〉 →θ (a,〈σ ′,E ′〉)
〈σ ,EF〉 →θ (a,〈σ ′,E ′F〉)

〈σ ,F〉 →θ (a,〈σ ′,F ′〉)
〈σ ,EF〉 →θ (a,〈σ ′,(Rθ

a E)F ′〉)

〈σ ,E〉 →θ (a,〈σ ′,E ′〉)
〈σ ,E∗〉 →θ (a,〈σ ′,(Rθ

a E)∗E ′E∗〉)

〈σ ,E〉 →θ (a,〈σ ′,E ′〉)
〈σ ,E ‖ F〉 →θ (a,〈σ ′,E ′ ‖ F〉)

〈σ ,F〉 →θ (a,〈σ ′,F ′〉)
〈σ ,E ‖ F〉 →θ (a,〈σ ′,E ‖ F ′〉)

The key difference with ordinary operational semantics is in the second rule of multi-plication and the rule for Kleene star. These are the only places where Rθ is used sincethese are the only rules where we consider the instruction we are executing (reordering)to cross a sequential composition (the “boundary” between two sequentially composedprograms). Another way to say this is that we apply Rθ
a (in the original program E) tothe left context of the instruction a that we are executing. By left context of an instruc-tion a in program E we mean the part of the program E that is before a wrt. sequentialcomposition.

Example 5.20. Consider the program ab ‖ (c+d)e f +g. If, for example, we have θ(c,e),
¬θ(d,e) and (σ)e↓, then we have the following derivation for executing e as the next

85

instruction. The left context of e in this example is c+d.
(σ)e↓

〈σ ,e〉 →θ (e,〈(σ)e,1〉)
〈σ ,e f 〉 →θ (e,〈(σ)e,1 f 〉)

〈σ ,(c+d)e f 〉 →θ (e,〈(σ)e,(c+0)1 f 〉)
〈σ ,(c+d)e f +g〉 →θ (e,〈(σ)e,(c+0)1 f 〉)

〈σ ,ab ‖ (c+d)e f +g〉 →θ (e,〈(σ)e,ab ‖ (c+0)1 f 〉)

The instruction g disappeared from the program since the rules for+ resolve the nonde-terminism. The instruction d became 0 since it was before e and reordering e with d wasnot justified. More precisely, we have Rθ
e (c+d) = c+0 since θ(c,e) and ¬θ(d,e).

The single-step reduction rules respect� and .
=.

Lemma 5.21. For any semicommutations θ and θ ′, σ ,σ ′ ∈ S, E,E ′,F ∈ RES and a ∈ Σ,
1. if 〈σ ,E〉 →θ (a,〈σ ′,E ′〉), θ ⊆ θ ′ and E � F , then exists F ′ ∈ RES such that
〈σ ,F〉 →θ ′ (a,〈σ ′,F ′〉) and E ′ � F ′;

2. if 〈σ ,E〉 →θ (a,〈σ ′,E ′〉) and E .
= F , then exists F ′ ∈ RES such that

〈σ ,E〉 →θ (a,〈σ ′,E ′〉) and E ′ .= F ′.
We also have that the single-step reduction rules commute when the labels commute.To show this we need a couple of properties. First, the label of the rule is the instructionthat is applied (successfully) to the state.

Lemma 5.22. For any semicommutation θ , a ∈ Σ, σ ,σ ′ ∈ S and E,E ′ ∈ RES,if 〈σ ,E〉 →θ (a,〈σ ′,E ′〉), then (σ)a↓ and (σ)a = σ ′.
The same derivation can bemade from any state where the instruction can be success-fully applied to the state.

Lemma 5.23. For any semicommutation θ , a ∈ Σ, σ ,σ ′ ∈ S and E,E ′ ∈ RES,if 〈σ ,E〉 →θ (a,〈(σ)a,E ′〉) and (σ ′)a↓, then 〈σ ′,E〉 →θ (a,〈(σ ′)a,E ′〉).
If we can make a step from a reorderable part of a program, then we can also makethe same step from the original program.

Lemma 5.24. For any semicommutation θ , a,b ∈ Σ, σ ∈ S and E,E ′ ∈ RES,if 〈σ ,Rθ
b E〉 →θ (a,〈(σ)a,E ′〉), then there exists E ′′ ∈ RES such that Rθ

b E ′′ = E ′ and
〈σ ,E〉 →θ (a,〈(σ)a,E ′′〉).

If we canmake a stepwith an instruction a andwe have θ(a,b), thenwe can alsomakethis step from the θ -reorderable part (wrt. b) of the program.
Lemma 5.25. For any semicommutation θ , a,b ∈ Σ, σ ∈ S and E,E ′ ∈ RES,if 〈σ ,E〉 →θ (a,〈(σ)a,E ′〉) and θ(a,b), then also 〈σ ,Rθ

b E〉 →θ (a,〈(σ)a,Rθ
b E ′〉).

If θ(a,b), then we can commute the steps labelled by a and b in the following sense.
Lemma 5.26. For any semicommutation θ , a,b ∈ Σ, σ ∈ S and E,E ′,E ′′, if θ(a,b),

〈σ ,E〉 →θ (a,〈(σ)a,E ′〉) and 〈(σ)a,E ′〉 →θ (b,〈(σ)ab,E ′′〉),

then exist F ′,F ′′ ∈ RES such that E ′′ .= F ′′,
〈σ ,E〉 →θ (b,〈(σ)b,F ′〉) and 〈(σ)b,F ′〉 →θ (a,〈(σ)ba,F ′′〉).

86

The rules we defined above describe how to perform individual steps. We now con-tinue with executions, i.e., sequences of steps.
Definition 5.27. The θ -reordering multiple-step reduction is given by the relation→θ∗ ⊆
S×RES×Σ∗×S×RES:

〈σ ,E〉 →θ∗ (ε,〈σ ,E〉)
〈σ ,E〉 →θ (a,〈σ ′′,E ′′〉) 〈σ ′′,E ′′〉 →θ∗ (u,〈σ ′,E ′〉)

〈σ ,E〉 →θ∗ (au,〈σ ′,E ′〉)

We say that a word u is an execution of program E from initial state σ if there is aderivation for 〈σ ,E〉 →θ∗ (u,〈σ ′,E ′〉). The multiple-step reduction relation is monotonein the following sense.
Proposition 5.28. For any semicommutation θ ,θ ′, u ∈ Σ∗, σ ∈ S and E,E ′,F ,if θ ⊆ θ ′, E � F and 〈σ ,E〉 →θ∗ (u,〈(σ)u,E ′〉, then exists F ′ ∈ RES such that E ′ � F ′

and 〈σ ,F〉 →θ ′∗ (u,〈(σ)u,F ′〉.
Themultiple-step reduction is closed under the rewriting relation (where .

= refers onlyto associativity of multiplication).
Proposition 5.29. For any semicommutation θ , u,u′ ∈ Σ∗, σ ∈ S and E,E ′,if u⇒θ∗ u′ and 〈σ ,E〉 →θ∗ (u,〈(σ)u,E ′〉, then exists E ′′ ∈ RES such that E ′ .= E ′′ and
〈σ ,E〉 →θ∗ (u′,〈(σ)u′,E ′′〉.

Terminal configurations are those configurations 〈σ ,E〉 where the execution of theprogram is allowed to terminate with σ as the final state.
Definition 5.30. The nullability (or empty word property) of a program is given by thefunction _ : RES→ B defined recursively by

b =df ff
0 =df ff

(E +F) =df E ∨F
1 =df tt

(EF) =df E ∧F
(E∗) =df tt

(E ‖ F) =df E ∧F

Nullability is essentially a special case of θ -reorderability where we require θ(b,a)for every a ∈ Σ. This means that all letters in the expression would be replaced with 0.Nullability is stable under� and .
=.

Lemma 5.31. For any E,F ∈ RES, if E , then E � F implies F , F � E implies F and
E .
= F implies F .
As a remark, if we would drop the Rθ

a E terms in the rules in Definition 5.19 and add E as a side condition to the second rule of multiplication, then we would obtain the usualinterleaving semantics which does not allow any reorderings. This is essentially the sameas taking θ = /0.
Definition 5.32. A configuration 〈σ ,E〉 is terminal when E .

We say that an execution u of program E from initial state σ is terminal when there isa derivation along u that ends with a terminal configuration. From Propositions 5.28, 5.29by Lemma 5.31, we have as corollaries that terminal executions are also monotone in θand closed under rewriting. Terminal executions of a program correspond to the wordlanguage interpretation of the program in the following sense.
87

Proposition 5.33. For any semicommutation θ , E ∈ RES and σ ∈ S,
1. for any a ∈ Σ, v ∈ Σ∗,

av ∈ JEKθ ∧ (σ)a↓ ⇐⇒ ∃E ′.〈σ ,E〉 →θ (a,〈(σ)a,E ′〉)∧ v ∈ JE ′Kθ ;

2. for any u,v ∈ Σ∗,
uv ∈ JEKθ ∧ (σ)u↓ ⇐⇒ ∃E ′.〈σ ,E〉 →θ∗ (u,〈(σ)u,E ′〉)∧ v ∈ JE ′Kθ ;

3. for any u ∈ Σ∗,
u ∈ JEKθ ∧ (σ)u↓ ⇐⇒ ∃E ′.〈σ ,E〉 →θ∗ (u,〈(σ)u,E ′〉)∧E ′ .

Proof.
1. =⇒: By induction on E. We show two cases.

• Case EF : Here av ∈ JEKθ ·θ JFKθ . Hence there exist x ∈ JEKθ and y ∈ JFKθ

such that av ∈ x ·θ y.
If x = ax′, then by i.h. we have 〈σ ,E〉 →θ (a,〈(σ)a,E ′〉) and x′ ∈ JE ′Kθ . Thus
〈σ ,EF〉→θ (a,〈(σ)a,E ′F〉), and, since v∈ x′ ·θ y, wehave v∈ JE ′Kθ ·θ JFKθ =
JE ′FKθ .
Otherwise y = ay′ and θ(x,a). By i.h. we have 〈σ ,F〉 →θ (a,〈(σ)a,F ′〉) and
y′ ∈ JF ′Kθ . Thus 〈σ ,EF〉 →θ (a,〈(σ)a,(Rθ

a E)F ′〉). We have v ∈ x ·θ y′. Since
x ∈ JEKθ and θ(x,a), we also have x ∈ JRθ

a EKθ . Thus v ∈ JRθ
a EKθ ·θ JF ′Kθ =

J(Rθ
a E)F ′Kθ .

• Case E ‖ F : Here av ∈ JEKθ
� JFKθ . Hence there exist x ∈ JEKθ and y ∈ JFKθ

such that av ∈ x� y.
If x = ax′, then by i.h. we have 〈σ ,E〉 →θ (a,〈(σ)a,E ′〉) and x′ ∈ JE ′Kθ . Thus
〈σ ,E ‖ F〉 →θ (a,〈(σ)a,E ′ ‖ F〉). As v ∈ x′� y, we have v ∈ JE ′Kθ

� JFKθ =
JE ′ ‖ FKθ .
The other case is symmetric.

1. ⇐=: By induction on the derivation 〈σ ,E〉→θ (a,〈(σ)a,E ′〉). We show two cases.
• Case 〈σ ,EF〉→θ (a,〈(σ)a,(Rθ

a E)F ′〉 inferred from 〈σ ,F〉→θ (a,〈(σ)a,F ′〉:We have v ∈ J(Rθ
a E)F ′Kθ and thus there exist x ∈ JRθ

a EKθ and y ∈ JF ′Kθ suchthat v ∈ x ·θ y. By i.h. we have ay ∈ JFKθ and (σ)a↓. Since x ∈ JRθ
a EKθ , wehave that θ(x,a). Thus av∈ x ·θ ay⊆ JRθ

a EKθ ·θ JFKθ ⊆ JEKθ ·θ JFKθ = JEFKθ .
• Case 〈σ ,E ‖ F〉→θ (a,〈(σ)a,E ′ ‖ F〉 inferred from 〈σ ,E〉→θ (a,〈(σ)a,E ′〉:We have v ∈ JE ′ ‖ FKθ and thus there exist x ∈ JE ′Kθ and y ∈ JFKθ such that

v ∈ x� y. By i.h. we have ax ∈ JEKθ and (σ)a↓. Thus we have av ∈ ax� y ⊆
JEKθ

� JFKθ = JE ‖ FKθ .
2. By induction on u (utilising (1) in the step case).
3. Follows from (2) for u and ε .
Finally, we define the semantic function which, given a program and an initial state,gives all final states for this program reachable from the given initial state. These are thefinal states of all terminal executions.

88

Definition 5.34. The semantic function Sθ J_K : RES→ S→P(S) is given by
Sθ JEKσ =df {σ ′ | 〈σ ,E〉 →θ∗ (u,〈σ ′,E ′〉)∧E ′ }.

The semantic function is also monotone in the semicommutation relation. In the spe-cial case where we exclude parallel composition we get a stronger result.
Proposition 5.35. For any semicommutations θ , θ ′ and σ ∈ S, if θ ⊆ θ ′, then we have:

1. for any E ∈ RES, Sθ JEKσ ⊆Sθ ′JEKσ ;
2. for any E ∈ RE, if θ ′ is conservative, then Sθ JEKσ = Sθ ′JEKσ .

Proof.
1. Follows from Proposition 5.28 and Lemma 5.31.
2. We show the inclusionSθ JEKσ ⊇Sθ ′JEKσ . By Proposition 5.33.(3) we know that,

for each σ ′ ∈Sθ ′JEKσ , its corresponding execution u′ is in JEKθ ′ and σ ′ = (σ)u′↓.
By Proposition 5.10 we have θ ′(JEKθ) = JEKθ ′ . Thus exists u ∈ JEKθ such that
u⇒θ ′∗ u′. Since θ ′ is conservative, (σ)u = (σ)u′ = σ ′ and thus (σ)u↓. By Proposi-tion 5.33.(3) there exists E ′′ such that 〈σ ,E〉 →θ∗ (u,〈(σ)u,E ′′〉) with E ′′ . Hence
σ ′ = (σ)u ∈Sθ JEKσ .

In our interpretationθ represents a strongermemorymodel andθ ′ represents aweakermemory model. The first item in the above proposition tells us that all final states that wecan observe on the strongermodel we can also observe on theweakermodel. The seconditem tells us that if the weaker model is conservative, then the stronger and the weakermodel are indistinguishable for sequential programs. This is similar to saying that theweaker model is individually sequentially consistent.
5.3.4 Parallel-Independent Programs
In Proposition 5.35 we saw that for regular expressions (without shuffle) the semanticfunction is the same forθ and θ ′when θ ⊆ θ ′ and θ ′ is conservative. In otherwords, whenwe exclude parallel composition, then all executions obtainedwith a weaker semicommu-tation relation are explainable as executions obtained with a stronger semicommutationrelation. Importantly, this property does not hold when we include parallel composition.We now illustrate this by considering a special case of parallel programs for which thisproperty does hold.Intuitively, two instructions a and b (or instruction instances) are parallel in a programwhen they come from the different threads of some parallel composition E ‖ F . For thisdiscussion, we assume that there is some mechanism which, for a given expression E,describes the parallel pairs of instructions. For example, this could be a (symmetric) re-lation on the alphabet which contains all instruction pairs which occur in parallel in thisexpression E.We say here that two instructions a and b are independent when they commute inboth directions, i.e., both θ(a,b) and θ(b,a) hold. We say that a program E is parallel-independent for θ when the parallel pairs of instructions in E are independent. The wordlanguage interpretation of parallel-independent programs satisfies the following property.
Lemma5.36. For any semicommutationθ andE,F ∈RES, ifE ‖F is parallel-independent,then JEKθ

� JFKθ = JEKθ ·θ JFKθ .
89

This then guarantees that Proposition 5.10 holds for any expression that is parallel-independent.
Proposition 5.37. For any semicommutations θ and θ ′, and E ∈ RES, if θ ⊆ θ ′ and E isparallel-independent for θ ′, then θ ′(JEKθ) = JEKθ ′ .

This in turn guarantees that Proposition 5.35 holds for any expression that is parallel-independent. In other words, we have the following proposition.
Proposition 5.38. For any semicommutations θ and θ ′, σ ∈ S and E ∈ RES, if θ ⊆ θ ′, θ ′is conservative and E is parallel-independent for θ ′, then Sθ JEKσ = Sθ ′JEKσ .

This can be interpreted as saying that, for a parallel-independent program, the execu-tions of the weaker memory model are explainable as executions of the stronger model.On the other hand, parallel-independent programsmight not be very interesting in thesense that the parallel threads in such a programdo not communicate in ameaningful waywith each other. If they would, then this should mean that some parallel instructions arenot independent (for a conservative θ).Evenwhen a programE is not parallel-independent for θ , we can consider a slight vari-ation that is. First, we assume we can label the instructions in E in such manner that weobtain a program E‖ such that the parallel instructions relation for E‖ is irreflexive. Thenwe construct from θ a semicommutation relation θ ‖ such that E‖ is parallel-independentfor θ ‖.
Definition 5.39. The parallel extension of θ , denoted by θ ‖, is defined as

θ
‖(a,b) =df

{
tt if a and b are parallel,
θ(a,b) otherwise.

Setting parallel instructions to be independent makes θ ‖ more permissive than θ and,in general, θ ‖ is not conservative evenwhen θ is. As an alternative to labelling the instruc-tions inE to obtainE‖, we could also consider including a similar labellingmechanism intothe rules of the semantics.
5.4 Example: While Language
Wenow take a closer look at the example from the Introduction. We do so by instantiatingthe framework we have defined by describing an alphabet of instructions and a semicom-mutation θ so that we arrive at an operational semantics for a While-like language whichalso allows the final state in question.We assume to have variables Var (ranged over by x), states S= Var→ Z (ranged overby σ), arithmetic expressions AExp (ranged over by a) and Boolean expressions BExp(ranged over by b). For arithmetic and Boolean expressions we also assume the corre-sponding evaluation functions J_KAExp : AExp→ S→ Z and J_KBExp : BExp→ S→ B. By
σ [x 7→ v] we mean the state σ with the value of variable x updated to v. We also assumea function vars which computes the set of variables that occur in an expression.The instructions we consider are assignments, assertions and fences. (Fences are in-structions meant to forbid the reordering of certain pairs of instructions where one of theinstructions is before the fence and the other is after the fence in the program.)

Instr ::= x := a | b? | fence

90

The semantics of instructions is given by the function J_K : Instr→ S⇀ S.
Jx := aK σ = σ [x 7→ JaKAExp σ]

Jb?K σ =

{
σ if JbKBExp σ

⊥ otherwise
JfenceK σ = σ

The semicommutation relation θ is defined as follows.
θ(x := a,x′ := a′) = {x}∩ ({x′}∪ vars(a′)) = /0 ∧

{x′}∩ ({x}∪ vars(a)) = /0
θ(x := a,b?) = {x}∩ vars(b) = /0

θ(_,_) = ff

Hence two assignments can be reordered if they satisfy the concurrent-read-exclusive-write property (neither of the instructions writes to a variable that is read or written bythe other instruction). This condition is symmetric. A test can be reordered before anassignment when the assignment does not write to a variable that is read by the test. Thiscase is not symmetric: an assignment can never be reordered before a test. All other pairsof instructions cannot be reordered. This means that nothing can be reordered with thefence operation and that two tests cannot be reordered either.With the alphabet of instructions and semicommutation just defined and the opera-tional rules defined before, we can consider again the example from the Introduction. (Inthe example, we write ; for ·, skip for 1 and fail for 0.)
x := 41;y := 1 ‖ r1 := y;r2 := x

The question in the introduction was: is it possible for this program, starting from theinitial state σ where each variable is initialised to 0, to end in a state where r1 = 1 and
r2 = 0 (assuming that all of the variables are distinct)?We first observe that both θ(x := 41,y := 1) and θ(r1 := y,r2 := x) hold. Either ofthese is sufficient for allowing the final state in question. The derivation for the case util-ising θ(r1 := y,r2 := x) is the following (we have omitted the labels here).

〈σ , x := 41;y := 1 ‖ r1 := y;r2 := x〉 →θ

〈σ [r2 7→ 0], x := 41;y := 1 ‖ r1 := y;skip〉 →θ

〈σ [r2 7→ 0][x 7→ 41], skip;y := 1 ‖ r1 := y;skip〉 →θ

〈σ [r2 7→ 0][x 7→ 41][y 7→ 1], skip;skip ‖ r1 := y;skip〉 →θ

〈σ [r2 7→ 0][x 7→ 41][y 7→ 1][r1 7→ 1], skip;skip ‖ skip;skip〉

In the first step of the derivation we make use of the fact that θ(r1 := y,r2 := x) andthus have Rθ
r2:=x(r1 := y) = r1 := y. The rest of the derivation did not use any (non-trivial)reorderings. Since the program skip;skip ‖ skip;skip is nullable, we have reached aterminal configuration.The same program with two fences inserted does not allow the final state in question.If we would try the same derivation as before with the fenced program, we would get thefollowing derivation. Note that we have ¬θ(r1 := y,fence) and ¬θ(fence,r2 := x).
〈σ , x := 41;fence;y := 1 ‖ r1 := y;fence;r2 := x〉 →θ

〈σ [r2 7→ 0], x := 41;fence;y := 1 ‖ r1 := y;fail;skip〉

91

The fence instruction in the second thread became fail since the reordering is not al-lowed, i.e., Rθ
r2:=x(fence) = fail. The resulting configuration does not lead to a termi-nal configuration. Similarly, if we would try to execute the fence instruction early, thenwe would have the following derivation.
〈σ , x := 41;fence;y := 1 ‖ r1 := y;fence;r2 := x〉 →θ

〈σ , x := 41;fence;y := 1 ‖ fail;skip;r2 := x〉

SinceRθ
fence(r1 := y)= fail, executing the fence early leads again to a configuration fromwhich no terminal configuration is reachable.We would get a similar result if we would take the original program (without fences)and take θ to be the empty set. This means that we are essentially considering the usualinterleaving semantics.

〈σ , x := 41;y := 1 ‖ r1 := y;r2 := x〉 → /0

〈σ [r2 7→ 0], x := 41;y := 1 ‖ fail;skip〉

Since no reorderings are allowed in this example, the instruction r1 := y became fail, i.e.,
R /0

r2:=x(r1 := y) = fail and, again, the resulting configuration does not lead to a terminalconfiguration.For a slightly different example, we briefly take a look at a program that also includesa test. This demonstrates that, although an assignment can never be reordered beforea test, it is possible that an assignment can (eventually) be reordered with a precedingassignment even when there is a test between them. The program is
r1 := x;y := r1 ‖ r2 := y;(x = 0)?;x := 41

and the question is whether the final state where r2 = 41 is reachable from the initialstate where every variable is initialised to zero. For this to be the case, it must be that theinstruction r2 := y reads the value that iswritten (to a different variable) by the assignment
x := 41 that appears later in the program. A suitable derivation is the following.
〈σ , r1 := x;y := r1 ‖ r2 := y;(x = 0)?;x := 41〉 →θ

〈σ , r1 := x;y := r1 ‖ r2 := y;skip;x := 41〉 →θ

〈σ [x 7→ 41], r1 := x;y := r1 ‖ r2 := y;skip;skip〉 →θ

〈σ [x 7→ 41][r1 7→ 41], skip;y := r1 ‖ r2 := y;skip;skip〉 →θ

〈σ [x 7→ 41][r1 7→ 41][y 7→ 41], skip;skip ‖ r2 := y;skip;skip〉 →θ

〈σ [x 7→ 41][r1 7→ 41][y 7→ 41][r2 7→ 41], skip;skip ‖ skip;skip;skip〉

If, for example, we would replace the test (x = 0)? in the second thread with (r2 = 0)?then the final state would not be valid as it is not allowed to reorder (r2 = 0)? before
r2 := y.
5.5 Partial-Order Reduction
In the Introduction, we were interested in finding out whether a certain final state is al-lowed for a given program. The question basically is: how to compute the semantic func-tion Sθ JEKσ for given θ , E and σ? We follow a very simple idea: we just enumerate allpossible derivations according to the semantics and collect the final states that we find.The problem is that, even for very small programs, we can get a very large number ofunique terminal executions. In this section, we describe a method to slightly alleviate thisproblem by considering only representative executions when we are calculating the set offinal states.

92

The operational semantics (implicitly) defines a labelled transition system (lts) wherethe states are configurations 〈σ ,E〉 and the transitions (togetherwith the labels) are givenby the relation→θ . When we calculate the possible final states for a given program E andinitial state σ , then we essentially just explore the lts from the configuration 〈σ ,E〉 andcollect all the states σ ′ from all the terminal configurations 〈σ ′,E ′〉 that we reach.It may very well be that in the lts we have paths u and u′ from the initial configura-tion 〈σ ,E〉 such that u and u′ are “equivalent” in the sense that u⇒θ∗ u′. Thus we have
〈σ ,E〉→θ∗ (u,〈(σ)u,E ′〉) and 〈σ ,E〉→θ∗ (u′,〈(σ)u′,E ′′〉) for some E ′ and E ′′. What wedescribe next allows us to say that under certain conditions it is not necessary to furtherexplore both of the configurations 〈(σ)u,E ′〉 and 〈(σ)u′,E ′′〉.
5.5.1 Representative ExecutionsBy Proposition 5.29 we know that the set of executions of a program is closed under therewriting relation⇒θ∗. In otherwords, if wehave a derivation for 〈σ ,E〉→θ∗ (u,〈σ ′,E ′〉),
θ is conservative and u⇒θ∗ u′, then we also have 〈σ ,E〉 →θ∗ (u′,〈σ ′,E ′′〉) for some E ′′such that E ′ .= E ′′. Hence we have two different executions u and u′ that take us to con-figurations with the same state component σ ′ and almost the same program component(.= refers only to associativity of multiplication). As a corollary of Lemma 5.21.(2) we havethat any possible execution of E ′ is also an execution of E ′′. Thus any final state reachedfrom 〈σ ′,E ′〉 can also be reached from 〈σ ′,E ′′〉.In the case where we have explored the lts from 〈σ ,E〉 along the path (execution) u,we have the following question: is there another path u′ such that u⇒θ∗ u′ thus possiblymaking further exploration of 〈σ ′,E ′〉 redundant? To resolve this problem we use thenotion of representative executions. The idea is that we will explore a path as long as it isrepresentative, i.e., as soon as we discover that it is not a representative anymore, thenfurther exploration is redundant.
Definition 5.40. The set of representatives (wrt. to semicommutation θ) is given by apredicate Nθ : Σ∗→ B which is required to satisfy the following properties:

1. Nθ (uv) =⇒ Nθ (u);
2. ¬Nθ (u) =⇒∃u′.u⇒θ∗ u′∧Nθ (u′).
Thus we require that the set of representatives is prefix-closed, i.e., an executionwhichis not a representative cannot be extended to a representative one. We also require thatan execution that is not a representative can always be rewritten to a representative one,i.e., there exists an “equivalent” execution that is a representative. Thus we have thefollowing proposition.

Proposition 5.41. For any semicommutation θ , representativesNθ ,E,E ′ ∈RES,σ ,σ ′ ∈ Sand u ∈ Σ∗, if θ is conservative, ¬Nθ (u) and 〈σ ,E〉→θ∗ (u,〈σ ′,E ′〉), then exist u′ and E ′′such that u⇒θ∗ u′, Nθ (u′), 〈σ ,E〉 →θ∗ (u′,〈σ ′,E ′′〉) and E ′ .= E ′′.
As a consequence, if we have an execution u leading to a state σ ′, then there is alsoa representative execution u′ that leads to the same state. This means that, when weare exploring the lts (for a conservative θ) by walking down its tree unwinding and wediscover that our current prefix is no longer representative, thenwedonot have to explorethe subtree ahead: all final states σ ′′ that we would reach are also reachable by furtherexploring u′.In fact, we can straightforwardly include such a mechanism into the operational se-mantics by redefining the multiple-step reduction relation →θ∗ with an additional sidecondition in the step case.

93

Definition 5.42. The θ -reordering Nθ -representative multiple-step reduction is given bythe relation→θ∗
N ⊆ S×RES×Σ∗×S×RES:

〈σ ,E〉 →θ∗
N (ε,〈σ ,E〉)

〈σ ,E〉 →θ∗
N (u,〈σ ′′,E ′′〉) 〈σ ′′,E ′′〉 →θ (a,〈σ ′,E ′〉) Nθ (ua)

〈σ ,E〉 →θ∗
N (ua,〈σ ′,E ′〉)

If we denote the semantic function defined in terms of the Nθ -representative reduc-tion as SN,θ JEKσ , then we have the following property.
Proposition 5.43. For any conservative θ , E ∈ RES and σ ∈ S, Sθ JEKσ = SN,θ JEKσ .
5.5.2 Normal Forms
We now describe a possible way to implement the predicate Nθ . The theory of Maz-urkiewicz traces is a special case of semicommutations and semitraces that we are con-sidering here. We will use normal forms known from Mazurkiewicz traces to provide animplementation of Nθ . Two normal forms common in Mazurkiewicz traces are the lexico-graphic normal form [9] and the Foata normal form [21].The difference between semicommutations and Mazurkiewicz traces is precisely thefact that the independence relation in Mazurkiewicz traces is required to be symmetric.Although we do not require θ to be symmetric, we can consider the relation θ s which isthe (largest) symmetric subrelation of θ . The relation θ s is an independence relation andthus induces a (Mazurkiewicz trace) equivalence relation on executions. If θ is conserva-tive, then so is θ s.The normal forms essentially describe which execution of an equivalence class to pickas a (unique) representative. Hence we take Nθ (u) to mean that the execution u is thenormal form in its equivalence class according to the equivalence relation induced by θ s.Both the lexicographic and the Foata normal form are prefix-closed. Since θ s is symmetric,every execution in an equivalence class can be rewritten by⇒θ s∗ to every other executionin the equivalence class and thus also to the (unique) representative. By monotonicity ofthe rewriting relation, the same rewriting can be done also with⇒θ∗. Hence the require-ments for representatives are satisfied by both Foata and lexicographic normal forms.By considering the symmetric subrelation θ s we are of course discarding some infor-mation about pairs of instructions that commute (in one direction). Thus it might be de-sirable to consider some other implementation ofNθ that can take advantage of this extrainformation and could possibly lead to better reduction.
5.6 Extending the Framework
The framework we have defined so far allows us to describe only those reorderings whichare in a sense static, i.e., the reorderings are described by a binary relation on the alphabetof instructions and that is it. We now look at a couple of extensions of the framework toconsider more fine-grained reorderings.The first extension we consider accounts for the possibility that a pair of instructionscommute in some machine states but not necessarily in all of them. An example of thisare memory reads and writes whose addresses are not statically determined. If we take
[r1] := 1 to denote a write to a memory location whose address is stored in register (localvariable) r1, then [r1] := 1 and [r2] := 2 could be considered independent in states where
r1 and r2 contain different addresses.

94

Another extension is for the possibility that reordering two instructions has an effecton those instructions. Intuitively, in the program y := 2;x := y we should not reorder theinstructions y := 2 and x := y as the second instruction reads the variable that is writtento by the first instruction and this is a form of data-dependency. In a sequential settingit is valid to say that the programs y := 2;x := y and x := 2;y := 2 give the same result.What we will say is that when we reorder x := y before y := 2, then the instruction y := 2acts on the instruction x := y (from the left) so that it becomes x := 2 and thus the resultof the reordering is x := 2;y := 2. The (right) action of x := y on y := 2 is trivial here.This kind of reordering allows two threads to have different views of the memory asa read instruction can read its value from its left context and not from memory. Further-more, this allows us to forbid “longer” chains of reordering. For example, we can have
θ(a,c), θ(b,c) and ¬θ(a,bc) where bc is the result of b acting on c (from the left). Thuswe cannot reorder c before ab in the sequence abc although θ(a,c) and θ(b,c).We also allow to execute instructions in multiple steps. This is described by assigningto each instruction a a residual program (a continuation) κ(a). The idea is that, when weexecute a, we replace it in the program with κ(a). In other words, after executing a westill have to execute κ(a).
5.6.1 Operational Semantics in Context
Before we continue with a more precise treatment of the extensions described above, wefirst change our setup a bit to allow the extensions mentioned above.First, here we consider a subset ofRESwhere parallel composition appears only at thetop-level. In other words, we consider expressions

RE‖ ::= E | RE‖ ‖ RE‖

where E ranges over RE.Second, we consider the interpretation of instructions to be JaK : S→ S, i.e., the statetransformers are not partial anymore. Wedo introduce an additional predicateσ ↓a to saythat applying the state transformer JaK to σ is allowed. We use this predicate to encodethat some instructions actually are partial, i.e., we are not allowed to execute them insome states. This enables us, for example, to define a test to always denote the identitystate transformer while considering it allowed only in those states where the conditionholds. We extend this to words by σ ↓ ε =df tt and σ ↓au =df σ ↓a∧ (σ)a↓u.Before we used the θ -reorderable part of a program to restrict the left context of theinstruction that we were executing. The idea was that all executions of the restrictedleft context should allow the reordering needed to execute this instruction early. The θ -reorderable part essentially discards all executions of the left context that would not allowthe reordering. In this section, we take this even further and consider every executionof the left context separately. This way we can describe more precisely the reorderingsthat we allow as the left context is a single execution and not a program (which wouldcorrespond to a set of executions).To pick an execution of E ∈ RE (considered as a left context), we just pick a word efrom the word language interpretation of E. In the rules we now have to keep track ofthe current context. This is essentially an execution that takes us to the position in theoriginal program where the subprogram we are currently considering is located.Where we before (in Definition 5.19) had Rθ
a E in the rules for sequential compositionand Kleene star, we now pick an execution e of E and extend the context with e for theinductive step.

95

Definition 5.44. The θ -reordering single-step reduction of sequential programs is givenby the relation θ ⊆ S×Σ∗×RE×Σ×S×Σ∗×RE:
θ(t,a) σ ↓a

〈σ , t,a〉 θ (a,〈(σ)a, t,1〉)

〈σ , t,E〉 θ (a,〈σ ′, t ′,E ′〉)
〈σ , t,E +F〉 θ (a,〈σ ′, t ′,E ′〉)

〈σ , t,F〉 θ (a,〈σ ′, t ′,F ′〉)
〈σ , t,E +F〉 θ (a,〈σ ′, t ′,F ′〉)

〈σ , t,E〉 θ (a,〈σ ′, t ′,E ′〉)
〈σ , t,EF〉 θ (a,〈σ ′, t ′,E ′F〉)

e ∈ JEK 〈σ , te,F〉 θ (a,〈σ ′, t ′,F ′〉)
〈σ , t,EF〉 θ (a,〈σ ′, t ′,F ′〉)

e ∈ JE∗K 〈σ , te,E〉 θ (a,〈σ ′, t ′,E ′〉)
〈σ , t,E∗〉 θ (a,〈σ ′, t ′,E ′E∗〉)

With 〈σ ,ε,E〉 θ (a,〈σ ′, t ′,E ′〉) we have that t ′ is an execution of the left context of
a in the program E. Furthermore, E ′ is the right context of a.As another remark, here we can see the reason why we have restricted ourselves toprograms as elements of RE‖. In a sense, we would like to keep all reordering of instruc-tions to occur in the base case. In the second rule of multiplication, we pick an execution
e∈ JEK and this e could later be executed also in a reordered fashion. If E would contain aparallel composition, then we could miss some possible reorderings because, as we haveseen in Example 5.9, there is a difference between first shuffling and then reordering andthe other way around.
Definition 5.45. The θ -reordering single-step reduction of parallel programs is given bythe relation θ ⊆ S×RE‖×Σ×S×RE‖:

〈σ ,ε,E〉 θ (a,〈σ ′, t ′,E ′〉)
〈σ ,E〉 θ (a,〈σ ′, t ′E ′〉)

〈σ ,E〉 θ (a,〈σ ′,E ′〉)
〈σ ,E ‖ F〉 θ (a,〈σ ′,E ′ ‖ F〉)

〈σ ,F〉 θ (a,〈σ ′,F ′〉)
〈σ ,E ‖ F〉 θ (a,〈σ ′,E ‖ F ′)〉)

The rules for θ together allow us to delay the reorderability check until we reachthe base case (a single instruction) as opposed to the rules in Definition 5.19, where thiswas treated “on the fly” with Rθ
a E in the rules for sequential composition and the Kleenestar. Here in the base case we have already determined both the instruction a we wish toexecute next and the particular execution t leading to it (its left context). The extensionsthat we consider next just modify what happens in the base case.Note that the base case only requires σ ↓ a and nothing is said about σ ↓ ta, i.e., weonly care about whether we are allowed to execute the instruction a and whether it canbe reordered with its left context t. The justification for this is that, although we mighthave ¬(σ ↓ t), executing t could be allowed in some future state σ ′ (for example, wheninstructions executed by other threads have changed the state so that t becomes allowed).

Definition 5.46. The θ -reorderingmultiple-step reduction of parallel programs is given bythe relation θ∗ ⊆ S×RE‖×Σ∗×S×RE‖:

〈σ ,E〉 θ∗ (ε,〈σ ,E〉)
〈σ ,E〉 θ (a,〈σ ′′,E ′′〉) 〈σ ′′,E ′′〉 θ∗ (u,〈σ ′,E ′〉)

〈σ ,E〉 θ∗ (au,〈σ ′,E ′〉)

96

It can be shown that there is a correspondence between the old and the new seman-tics. When we continue with the extensions, then this will not be the case in general.
Proposition 5.47. The semantics given in Definition 5.27 agrees with the semantics givenin Definition 5.46 in the sense that for every semicommutation θ and σ ,σ ′ ∈ S, E ∈ RE‖and u ∈ Σ∗,

∃E ′.〈σ ,E〉 →θ∗ (u,〈σ ′,E ′〉)∧E ′ ⇐⇒ ∃E ′′.〈σ ,E〉 θ∗ (u,〈σ ′,E ′′〉)∧E ′′ .

5.6.2 Context-Dependent Semicommutation Relation
With this extension we do not consider the semicommutation relation to be a static rela-tion anymore. For each state σ , there may now be a separate semicommutation relation.
Definition 5.48. A context-dependent semicommutation θ is a family of irreflexive rela-tions, i.e., a mapping S→P(Σ×Σ).

With this modification we also need to modify the conservativity condition to matchthe context-dependent semicommutation.
Definition 5.49. A context-dependent semicommutation relation θ is conservativewhen,for every σ ∈ S and a,b ∈ Σ, we have

θσ (a,b) =⇒ (σ ↓ab ⇐⇒ σ ↓ba)∧ (σ)ab = (σ)ba.

We extend the context-dependent semicommutation on letters to words and letters.
Definition 5.50. A context-dependent semicommutation relation θ : S→P(Σ×Σ) isextended to θ : S→P(Σ∗×Σ) in the following way.

θσ (ε,a) =df tt
θσ (tb,a) =df θσ (t,a)∧θ(σ)t(b,a)

Note the use of context (σ)t in the case for θσ (tb,a). Since state transformers aretotal, (σ)t is defined and we can check reorderability in the context (σ)t, even if ¬(σ ↓ t).For example, we might want to consider executing instructions early from either branchof a conditional b; p+ b̄;q although exactly one of those is the correct branch in any state
σ , i.e., either σ ↓ b or σ ↓ b̄. Until we commit to either b or b̄, we wish to keep bothpossibilities.Similarly to what we had before, we take θσ (t,a) to be the justification for reordering
a before an execution t (its left context).
Lemma 5.51. For any conservative context-dependent θ , σ ∈ S, t ∈ Σ∗ and a∈ Σ, we have

θσ (t,a) =⇒ (σ ↓ ta ⇐⇒ σ ↓at)∧ (σ)ta = (σ)at.

To extend the semantics with a context-dependent θ , wemodify the rule for the singleinstruction (the base case) of Definition 5.44 to be the following.
θσ (t,a) σ ↓a

〈σ , t,a〉 →θ (a,〈(σ)a, t,1〉)

The only modification here is that the reorderability check becomes context-dependent.
97

5.6.3 Reordering ActionsWe now add the possibility that reordering two instructions might modify them. We for-mulate this as instructions acting on instructions, i.e., by reordering the instructions a and
b (in the program ab) the instruction b acts on a from the right and the instruction a actson b from the left. We include the possibility that these actions might also be context-dependent.
Definition 5.52. The left action of letter a on letter b in state σ is given by a

σ

↘b and the
right action of letter b on letter a in state σ is given by a

σ

↙b.
Since two letters now act on each other when reordered, we also refine the conserva-tivity condition on θ .

Definition 5.53. A context-dependent semicommutation θ is conservative when, for ev-ery σ ∈ S and a,b ∈ Σ, we have
θσ (a,b) =⇒ (σ ↓ab ⇐⇒ σ ↓b′a′)∧ (σ)ab = (σ)b′a′

where a′ = a
σ

↙b and b′ = a
σ

↘b.
We extend the left action to an action of a word on a letter. Similarly, we also extendthe right action to an action of a letter on a word.

Definition 5.54. The left action↘ : Σ×S×Σ→ Σ is extended to↘ : Σ∗×S×Σ→ Σ andthe right action↙ : Σ×S×Σ→ Σ is extended to↙ : Σ∗×S×Σ→ Σ∗ in the followingway.
ε

σ

↘a =df a

tb
σ

↘a =df t
σ

↘ (b
(σ)t
↘ a)

ε
σ

↙a =df ε

tb
σ

↙a =df (t
σ

↙ (b
(σ)t
↘ a))(b

(σ)t
↙ a)

Ignoring the presence of state-dependence, what we have is a pair of mutual actionsbetween the freemonoidsΣ∗ andΣ∗. Such pairs ofmutual actions between two (generallydifferent) monoids are considered in algebra in the context of Zappa-Szép products ofmonoids and groups [18].We also have to consider the reordering actions when we look at the reorderability ofan execution and a letter. (We define the general casewhere θ is also context-dependent.)
Definition 5.55. A context-dependent semicommutation relation θ : S→P(Σ× Σ) isextended to θ : S→P(Σ∗×Σ) in the following way.

θσ (ε,a) =df tt

θσ (tb,a) =df θσ (t,b
(σ)t
↘ a)∧θ(σ)t(b,a)

Importantly, if we can reorder a before t with the context-dependent and conservative
θ and the reordering actions, then the reordering is justified.
Lemma 5.56. For any conservative θ , σ ∈ S, t ∈ Σ∗ and a ∈ Σ, we have

θσ (t,a) =⇒ (σ ↓ ta ⇐⇒ σ ↓a′t ′)∧ (σ)ta = (σ)a′t ′

where t ′ = t
σ

↙a and a′ = t
σ

↘a.
98

To extend the semantics with reordering actions we modify the rule for the single in-struction (the base case) of Definition 5.44 to be
θσ (t,a) σ ↓a′

〈σ , t,a〉 →θ (a′,〈(σ)a′, t ′,1〉)

where a′ = t
σ

↘a and t ′ = t
σ

↙a.
5.6.4 Non-Atomic Instructions
Finally, we consider the possibility that some instructions might not be atomic. For ex-ample, writing an 8-byte value to memory might be implemented as two 4-byte writes.Another possibility is that the execution of an instruction proceeds in multiple steps. Forexample, if the instruction is x := y+z, then in the first step wemight determine the valueof the expression y+ z, say v, and in the second step we write the value v to variable x inmemory.The mechanism we use to model this multiple-step execution is to have a function
κ : Σ×S→REwhich, given a stateσ and an instruction a, determines the “continuation”of executing the first step of a in state σ , i.e., an expression which represents the part ofthe instruction that we have not yet executed.Take the example x := y+ z from above. We could set things up so that executing
x := y+ z has no effect on the state, but we define its continuation to be the instruction
x := v where v is the value of y+ z in the state σ . Executing x := v would then update thestate accordingly.We extend the semantics with “continuations” (and context-dependent θ and reorder-ing actions) by modifying the rule for the single instruction of Definition 5.44 to be

θσ (t,a) σ ↓a′

〈σ , t,a〉 →θ (a′,〈(σ)a′, t ′,κ(a′,σ)〉)

where a′ = t
σ

↘ a and t ′ = t
σ

↙ a. Essentially we just plug the “continuation” of an in-struction into the program where the instruction used to be. Before we implicitly used aconstant function for κ that is always 1.
5.6.5 Extensions and Partial-Order Reduction
In Section 5.5, we described a form of partial-order reduction so that computing the set offinal states Sθ JEKσ can be less expensive. The situation is more complicated when θ isa context-dependent semicommutation relation and we also have to account for the left-and right-actions and the continuation function κ .We just mention that we could take a similar approach as we took in Section 5.5. First,we would need to modify the definition of the rewriting relation⇒θ∗ to account for thecontext-dependence of θ , the reordering actions↘ and↙, and the continuation function
κ . This way we would relate executions u and u′ in state σ , denoted by u⇒θ∗

σ u′, if u canbe rewritten to u′ in state σ according to the context-dependent θ , reordering actions
↘ and↙, and the continuation function κ . We could then give the axioms for the setof representatives similarly to what we did in Definition 5.40. Namely, we would requirethat the set of representatives in state σ is prefix-closed (corresponding to 5.40.1) and anyexecution u that is not a representative can be rewritten (in state σ) to a representative
u′ (corresponding to 5.40.2), i.e., u⇒θ∗

σ u′. If the conservativity conditions are satisfied,then u and u′ lead to the same final state.
99

5.6.6 Context-Dependence of θ and Actions
It might be that the context-dependent θ and the reordering actions fit together wellenough so that we do not need tomodify the state (fromσ to (σ)t) whenwe are checking
θσ (tb,a) to determine reorderability of b and a. For this we require three properties.
Definition 5.57. A context-dependent semicommutation θ and the reordering actions↘and↙ are stable when for any σ , t, a, b:

1. θσ (t,b
(σ)t
↘ a) =⇒ θσ (b,a) = θ(σ)t(b,a);

2. θσ (t,b
(σ)t
↘ a)∨θσ (t,b

σ

↘a) =⇒ b
σ

↘a = b
(σ)t
↘ a;

3. θσ (t,b
(σ)t
↘ a) =⇒ b

σ

↙a = b
(σ)t
↙ a.

What this essentially requires is that, in the sequence tba, if after reordering a before
b, the result can be reordered before t, then t does not change the part of the state σwhich determines the commutativity of a and b and how they act on each other.We now define a different way to extend a context-dependent semicommutation towords and letters. The difference is that we do not change the context σ to (σ)t in thestep case.
Definition 5.58. We extend a context-dependent semicommutation θ to words and let-ters in the following way.

θ̂σ (ε,a) =df tt

θ̂σ (tb,a) =df θ̂σ (t,b
σ

↘a)∧θσ (b,a)

We also define a different way to extend the reordering actions to words and letters.Again, the difference is that we do not change the context.
Definition 5.59. We extend the left and right actions to words and letters in the followingway.

ε
σ

y a =df a

tb σ

y a =df t σ

y (b
σ

↘a)

ε
σ

x a =df ε

tb σ

x a =df (t σ

x (b
σ

↘a))(b
σ

↙a)

Next we show that these definitions are suitable for justification of reorderings when
θ and the reordering actions are stable and θ is conservative.
Lemma5.60. For any semicommutationθ and left action↘, if conditions 5.57.1 and 5.57.2are satisfied, then, for any σ ∈ S, t ∈ Σ∗ and a ∈ Σ, we have that θσ (t,a) implies θ̂σ (t,a).
Lemma 5.61. For any semicommutation θ and left action↘, if conditions 5.57.1 and 5.57.2are satisfied, then, for any σ ∈ S, t ∈ Σ∗ and a ∈ Σ, we have that θ̂σ (t,a) implies θσ (t,a).
Lemma5.62. For any semicommutationθ and left action↘, if condition 5.57.2 is satisfied,
then, for any σ ∈ S, t ∈ Σ∗ and a ∈ Σ, we have θσ (t,a) implies t

σ

↘a = t σ

y a.
100

Lemma 5.63. For any semicommutation θ and actions ↘ and ↙, if conditions 5.57.2and 5.57.3 are satisfied, then, for any σ ∈ S, t ∈ Σ∗ and a ∈ Σ, we have θσ (t,a) implies
t

σ

↙a = t σ

x a.
Proposition 5.64. For any semicommutation θ and actions↘ and↙, if conditions 5.57.1,5.57.2 and 5.57.3 are satisfied and θ is conservative, then, for any σ ∈ S, t ∈ Σ∗ and a ∈ Σ,we have θ̂σ (t,a) implies (σ)ta = (σ)(t σ

y a)(t σ

x a).
We have seen that, if the semicommutation and the reordering actions satisfy the sta-bility conditions, then θσ (t,a) and θ̂σ (t,a) are equivalent. Furthermore, we have a con-servativity result for the reordering actions that do not modify the context. This ensuresthat, when we are checking reorderability, we can keep the state σ fixed.

5.7 Example: TSO-like Memory Model
Wenowexpandon the context-dependent independence relation described in Section 4.5by giving an operational semantics for a TSO-like machine in the sense that we modelwrite buffers in the system. The machine consists of shared memory and a fixed numberof processors, each with its own local memory. As in Section 5.4, we have variables Var(ranged over by x; shared memory), arithmetic expressions AExp (ranged over by a, onlymentioning the local memory of a processor) and Boolean expressions BExp (ranged overby b, only mentioning the local memory of a processor). The local memory of a processoris represented as registers Reg (ranged over by r).

In this example, we do not consider the state set S to be a mapping from variablesto values. Instead we take the set of machine states S to be Σ∗, i.e., we consider theexecution itself as the state. Thus we also define the functions mval : Var→ S→ Z and
rval : Proc→ Reg→ S→ Z to view the current state. We assume to have evaluationfunctions J_KAExp : AExp→ Proc→ S→ Z and J_KBExp : BExp→ Proc→ S→ B that aredefined in terms of these view functions.

The alphabet consists of reads, writes, tests and fences. We also encode processoridentifiers and program order into the alphabet. More precisely, we take Σ =df Proc×
N×Σ′ where in Σ′ we have:

• R(r,x,v): a read instruction which reads the value v from variable x and stores theresult in local register r. Before execution, the value v is undefined and in programtext we just write r := [x].
• W (x,a): a write initiate (buffer enqueue) operation which represents a write of thevalue of expression a to variable x. In program text, we write [x] := a.
• C(x,v): a write commit (buffer dequeue) operation which writes the value v to vari-able x. In program text, we write x 7→ v.
• T (b): a test of Boolean expression b. In program text, we write b?.
• F : a fence instruction. In program text, we write fence.
We take the ordering relation ≺ on the alphabet Σ to be the lexicographic order on Σgiven by≺Proc,≺N and≺Σ′ where R≺Σ′ W ≺Σ′ C ≺Σ′ T ≺Σ′ F .

101

Next, we define the view functions on σ ∈ S = Σ∗. The function mval : Var→ S→ Zspecifies the current values in shared memory.
mval(x,ε) =df 0

mval(x,σ · (p, i,C(x′,v′))) =df

{
v′ if x = x′

mval(x,σ) otherwise
mval(x,σ ·α) =df mval(x,σ)

The function rval specifies the current values in the registers of a processor.
rval(p,r,ε) =df 0

rval(p,r,σ · (p′, i′,R(r′,x′,v′))) =df

{
v′ if p = p′∧ r = r′

rval(p,r,σ) otherwise
rval(p,r,σ ·α) =df rval(p,r,σ)

We say that a processor p has a pending write to variable xwhen the last write instructionto x isW (x,a) and notC(x,v).
pending(p,x,ε) =df ff
pending(p,x,σ · (p′, i′,W (x′,a′))) =df (p = p′∧ x = x′)∨pending(p,x,σ)
pending(p,x,σ · (p′, i′,C(x′,v′))) =df (p 6= p′∨ x 6= x′)∧pending(p,x,σ)
pending(p,x,σ ·α) =df pending(p,x,σ)

We now continue with the context-dependent independence relation, reordering ac-tions and the continuation function necessary for the operational semantics. We startwith the continuation function.
κ((p, i,W (x,a)), σ) =df (p, i,C(x,JaKAExp p σ))
κ(α, σ) =df 1

Thus we can see that, when executing an instruction [x] := a, we plug in its place in theprogram the corresponding commit instruction x 7→ v. Note that C receives the sameprogram order identifier as W . We also assume that initially a program does not containany commit instructions.The reordering actions are used only on instructions from the same processor. The↙action is identity in this example. We define the reordering action↘ as follows.
C(x,v)

σ

↘ R(r′,x′,⊥) =df

{
R(r′,x′,v) if x = x′

R(r′,x′,⊥) otherwise

α
σ

↘ β =df β

This just says that, if the value of the read instruction is not yet determined, then its valuecan be determined from its left context (when there is a suitableC in the context). Next,we define a semicommutation relation θ on Σ′.
θ(C(x,v), R(r′,x′,v′)) =df tt
θ(C(x,v), W (x′,a′)) =df tt
θ(T (b), R(r′,x′,v′)) =df r′ 6∈ regs(b)
θ(α, β) =df ff

The interpretation of instructions as state transformers basically just extends the state
σ with the new instruction. For read instructions, we may still need to determine the

102

value that is read.
J(p, i,R(r,x,⊥)Kσ =df σ · (p, i,R(r,x,mval(x,σ)))

JαKσ =df σ ·α

Tests are the only state transformers that are partial, i.e., we are always allowed to executean instruction that is not a test.
σ ↓ (p, i,T (b)) =df JbKBExp p σ

σ ↓α =df tt

With the ingredients defined above, we can now construct executions using the rulesin Definition 5.46 together with the extensions.Following the definitions given in Section 4.5, we can also give a context-dependentindependence relation I onΣ that can be used for partial-order reduction. The subrelation
Is is for instructions from the same processor. To emphasise, this is not the symmetricsubrelation θ s that we described earlier. Here we construct a symmetric relation by usingthe program order identifiers to keep track of in which way did we check reorderability.

(p, i,α) Is (p′, i′,α ′) =df p = p′∧ (i≺N i′∧θ(α,α ′)∨ i′ ≺N i∧θ(α ′,α))

Note that this implies that instructions from the same processor with the same programorder identifier are dependent. This can only be the case for corresponding pairs of WandC. The subrelation Id is for instructions from different processors.
(p, i,C(x,v)) Id

σ (p′, i′,C(x′,v′)) =df p 6= p′∧ x 6= x′

(p, i,C(x,v)) Id
σ (p′, i′,R(r′,x′,v′)) =df p 6= p′∧ (x = x′ =⇒ pending(p′,x′,σ))

(p, i,R(r,x,v)) Id
σ (p′, i′,C(x′,v′)) =df p 6= p′∧ (x = x′ =⇒ pending(p,x,σ))

(p, i,α) Id
σ (p′, i′,α ′) =df p 6= p′

We see that a read and a commit instruction by different processors to the same variableare independent when the read instruction gets its value from the pending write (i.e.,from its left context). Finally, we take the context-dependent independence relation on Σto be the following.
α Iσ β =df α Is

β ∨α Id
σ β

As an example, we look at a program similar to what we saw in Section 4.5.
[x] := 1;r1 := [x] ‖ [x] := 2

Here the first thread first writes to location x and then reads from location x. The secondthread just writes to location x. Before, in Section 4.5, we essentially argued that theexecutions (here we omit the program order identifier and write the processor identifieras an index)
W1(x,1) ·W2(x,2) ·C2(x,2) ·R1(r1,x,1) ·C1(x,1)

and
W1(x,1) ·W2(x,2) ·R1(r1,x,1) ·C2(x,2) ·C1(x,1)

are equivalent according to the equivalence relation induced by the context-dependent I.Indeed, the instructionsC2(x,2) and R1(r1,x,1) are independent in the contextW1(x,1) ·
W2(x,2) since, although they are to the same location, the processor executing the readinstruction also has a pending write to the same location. We can also check that thesecond execution is in Foata normal form as

(W1(x,1) ·W2(x,2)) (R1(r1,x,1) ·C2(x,2)) (C1(x,1)).

103

The first execution is obtained as follows (where we write ’. . . ’ for the state in theprevious configuration).
〈ε, [x] := 1;r1 := [x] ‖ [x] := 2〉 →I

〈. . . ·W1(x,1), x 7→ 1;r1 := [x] ‖ [x] := 2〉 →I

〈. . . ·W2(x,2), x 7→ 1;r1 := [x] ‖ x 7→ 2〉 →I

〈. . . ·C2(x,2), x 7→ 1;r1 := [x] ‖ skip〉 →I

〈. . . ·R1(r1,x,1), x 7→ 1;skip ‖ skip〉 →I

〈. . . ·C1(x,1), skip;skip ‖ skip〉

Note that the value read by r1 := [x] was determined to be 1 during reordering as
mval(x,W1(x,1) ·W2(x,2) ·C2(x,2)) = 2.

Finally, we show that this setup allows the relaxed behaviour in the store bufferingexample, i.e., that in the program
[x] := 1;r1 := [y] ‖ [y] := 1;r2 := [x]

it is possible to reach a final state where r1 = 0 and r2 = 0. One possible derivation is thefollowing (where we write ’. . . ’ for the state in the previous step).
〈ε, [x] := 1;r1 := [y] ‖ [y] := 1;r2 := [x]〉 →I

〈. . . ·W1(x,1), x 7→ 1;r1 := [y] ‖ [y] := 1;r2 := [x]〉 →I

〈. . . ·R1(r1,y,0), x 7→ 1;skip ‖ [y] := 1;r2 := [x]〉 →I

〈. . . ·W2(y,1), x 7→ 1;skip ‖ y 7→ 1;r2 := [x]〉 →I

〈. . . ·C2(y,1), x 7→ 1;skip ‖ skip;r2 := [x]〉 →I

〈. . . ·R2(r2,x,0), x 7→ 1;skip ‖ skip;skip〉 →I

〈. . . ·C1(x,1), skip;skip ‖ skip;skip〉

The only non-trivial reordering we used was in the second step when we were executing
r1 := [y] with x 7→ 1 as the left context. From the definition of Is we know that theseinstructions commute and, since the read is from a different location (y), the reorderingaction is trivial.
5.8 Related Work
In this chapter, we have described a small-step operational semantics to execute programsin a relaxed manner, i.e., to allow more behaviours than sequential consistency [44]. Wechose a presentation of syntax more in the style of Kleene algebra with tests [43]. This isjust to focus on the part that is central to this chapter (the reordering of instructions) andto abstract from the surface constructions of a concrete programming language. Roughlyspeaking, the operational semantics is then given by the Antimirov derivatives [10] of aregular expression. More precisely, here we build on the Antimirov reordering deriva-tives we developed in Chapter 3 where we extended the Antimirov derivatives to includethe reordering of letters. Here we also included machine states in the rules. Hence therules define transitions from configurations to configurations similarly to how structuraloperational semantics was defined by Plotkin [66].The use of an independence relation and reordering derivatives relates this work toMazurkiewicz traces [52] and trace languages (or in this case to semitraces [24]). A fur-ther generalisation of this would be to consider pomset-languages [30]. The notion ofweak sequential composition (that is induced by an independence relation as we have

104

considered here) has also been investigated by Rensink andWehrheim [70] in the contextof process algebra.The intended application of this work is to provide a framework for describing relaxedmemory models in an operational manner. There are many earlier works that take anoperational approach to relaxed memory. For example, the description of x86 was given(also) operationally by Owens et al. [61] and established that x86 follows the Total StoreOrder (TSO) memory model by SPARC [75]. An operational description of TSO was givenby Jagadeesan et al. [35]. An operational approach to relaxed memory models as a min-imalistic core calculus was given by Boudol and Petri [16]. Operational models have alsobeen developed for POWER [73] and ARM [67].Many of the operational descriptions mentioned above make use of (write) buffers.A simple buffer is just a first-in-first-out queue to delay the execution of some of the in-structions, e.g., write instructions must pass through the buffer while other instructionsdo not. More generally, a buffer can be seen as a “reordering box” [62] and in this caseall instructions are enqueued in the buffer and the order in which enqueued operationscan be dequeued basically defines the memory model. Our approach does not explicitlyuse buffers since the left context of an instruction is essentially its buffer (these are the in-structions that the given instruction will be reordered before). While the work by Boudolet al. [17] also includes a buffer (a temporary store), it is similar to ours in that they alsohave a commutability predicate (which corresponds to θ(u,a) in our setting) to describethe allowed reorderings in the buffer. In this respect, our approach is evenmore similar tothe operational semantics by Colvin and Smith [25] where they consider reordering andforwarding of instructions in the semantics.
5.9 Conclusion and Future Work
We have described an operational semantics that is parameterised by the set of instruc-tions (the alphabet Σ) and the allowed reorderings of pairs of instructions (the semicom-mutation θ). We have shown that the set of executions is closed under the rewritingrelation induced by θ , i.e., if u is an execution of a program and θ allows to rewrite u to u′,then u′ is also an execution of this program. Furthermore, if θ happens to be conservative,then the executions u and u′ lead to the same final state. We make use of this fact whenwe are calculating the set of final states for a given program as it is sufficient to consideronly those executions that are representative. (This can be used for any property of execu-tions that is stable under the rewriting relation induced by θ .) We then considered someextensions to this framework that would allow to describe more fine-grained reorderings.The central idea for this was to consider the left context of an instruction not as a programbut as an execution as this allows to reason more precisely about which reorderings areallowed.An obvious question for future work is: what are the memory models that can be pre-cisely described in this framework? And what exactly are the details? For example, how is
θ defined for a particular memory model? It is likely that some memory models requireextensions ormodifications in addition to those that we already considered in Section 5.6.For example, we might want to include some form of collapsing of conditionals in oursemantics to account for the fact that the conditional in the program

r := x;if r = 1 then y := 1 else y := 1

might be optimised away so that the program becomes
r := x;y := 1.

105

Onepossible solution for thismight be to also consider “parallel” execution of conditionalsin addition to what we have considered so far. By this we mean adding a rule that wouldlook something like this:
〈σ , p〉 →θ (a,〈(σ)a, p′〉) 〈σ ,q〉 →θ (a,〈(σ)a,q′〉) θ ′(b,a)

〈σ ,if b then p else q〉 →θ (a,〈(σ)a,if b then p′ else q′〉)

where θ ′ is meant to be weaker than θ but should still forbid reorderings that changethe branch determined by b. With such a rule we can execute early those instructionsthat are available for execution in both branches without determining the branch that istaken eventually. To bemore closer to optimising away the conditional we can also includevariations of the above rule where, for example, if p′ and q′ are nullable, then the residualprogram is 1. We can also include a similar treatment of conditionals in the definition ofthe reorderable part: to reorder a before if b then p else q along both branches werequire that a can be reordered with both p and q (according to θ) and with b (accordingto θ ′). Note that with this approach we would not have to require the left context toalways be a single execution as we did in Definition 5.44.

106

6 Example: Multicopy-Atomic ARMv8
In this chapter, webriefly describe an experimentwhereweput the framework fromChap-ter 5 to the test by instantiating it to a fragment of the multicopy-atomic ARMv8 memorymodel [67]. Hence, our goal is to define an alphabet Σ of instructions, a semicommuta-tion relation θ , the reordering actions and the “continuation” function for instructionsso that (for a large number of sample programs) the executions generated are preciselythose allowed by the memory model. It is not our goal here to propose an operationalspecification for the ARMv8 memory model. Instead, our focus is on describing how theframework from the previous chapter can be used for describing memory models andfinding out if it is flexible enough.

We take the axiomatic model of ARMv8 (given in [67]) as our reference point and de-scribe what we should say in the operational framework to match the axiomatic descrip-tion. Ideally, there should be a proof that our translation of this axiomatic model preciselymatches it. We do not provide such a proof here nor do we claim that this translation isin any way optimal. We do, however, validate our operational description against theaxiomatic model as simulated by the herd tool [8]. For this purpose, we implement aprototype of our framework and compare its results with the results of herd on a largenumber of litmus-tests.
6.1 Abstract Machine
The machine model we consider consists of shared memory (a mapping from addressesto values) together with a fixed number of processors. We also instrument each memorylocation with a counter to keep track of how many writes to that memory location haveoccurred. This information is useful, for example, when determining whether two readinstructions read the value written by the same write instruction. Each processor also hasits own local memory (a mapping from registers to values). This altogether is the state set
S in our semantics, i.e., σ ∈ S just gives the current shared memory state and the localmemory of each processor. We consider the local memory of a processor to be invisibleto other processors, i.e., processors can only communicate via shared memory.

Multicopy-atomicity requires that, if the effect of an instruction executed by some pro-cessor becomes visible to some other processor, then it is visible to all processors. Ourabstract machinemodel seems well-suited for this: if the effect of an instruction becomesvisible to another processor, then the effect must have modified the shared memory andis thus visible to all processors.
The set of instructions that we consider includes MOV, EOR, AND, ADD, LDR, LDAR, STR,

STLR, DMB.{LD,ST,SY}, and ISB. We also include instructions like CBNZ and CMP, butwe represent them using a generic instruction TEST b which is just a test of the Booleancondition b.
More concretely, the alphabet consists of instructions augmented with some addi-tional information. For example, an LDR instruction consists of the target register (wherethe result of the load will be stored locally) and an address register (which holds themem-ory address fromwhich to load the value). Similarly to the example in Section 5.7, we alsoinclude a field that, if set, contains the result of the load. The idea is that this fieldmight beset during the reordering phase, i.e., when this LDR is reorderedwith its left context. Afterreordering, if this field is set, then this LDR does not read the shared memory—the resultis already determined (for example, by reading a write early) and the value of this field iswritten to the target register. Whether this field is set might also affect the commutabilityrelation.

107

Another addition is that we allow an instruction to keep track of the address or dataregisters of the instructions that it has already been reordered with. For example, we willsee later that whether we can reorder an STR instruction with an earlier instruction de-pends on the address registers of the instructions that thisSTRhas already been reorderedwith.We also encounter situations where we may have several possible justifications forreordering two instructions. An example of this is described in the (addr | data); rfirule that we will see later. We solve this by (speculatively) considering all possibilities andthen later discarding those that turn out to be unjustified. For this reason, we considerthe reordering actions in this section to be nondeterministic and thus describe them by arelation. For example, we can have a,b↘↙ b′,a′meaning that reordering a and b resultsin b′ and a′. Furthermore, we may have several such pairs b′,a′ for a,b. In this example,we use the trivial “continuation” function κ that is always 1.In the previous paragraph, we said thatwemay reorder two instructionswithout know-ingwhether this reordering is justified. To later checkwhether the reorderingwas justifiedwe allow to add constraints to instructions during reordering. We set up the σ ↓ a rela-tion so that executing an instruction in a state where its constraints are not satisfied is notallowed.The programs we consider here are just parallel compositions of a fixed number of se-quential threads, i.e., parallel composition only appears at the top-level of the expression.This matches the flat layout of the abstract machine.
6.2 From Axiomatic to Operational
We gave a brief introduction to axiomatic models in Section 2.9. The key ingredient ofaxiomatic models is the predicate which determines whether a candidate execution is al-lowed on the memory model. Importantly, this predicate is used on complete executions.An operational model, on the other hand, should say how to construct an execution, i.e.,how a program can be executed on the memory model. The goal of the translation de-scribed here is to have an operational description that, for a given program, generates aset of executions that collectively produce precisely the set of final states that is allowedby the axiomatic model.Another difference is that in the axiomatic model we can define arbitrary relations onthe events, including events from different processors, and then define the allowed exe-cutions in terms of these relations, i.e., we have a global view of the execution. What wetry to do with the operational model is much more local: we define the memory model interms of the allowed reorderings. More precisely, we define when it is allowed to reorderan instruction with its left context (thus only referring to instructions from the same pro-cessor and possibly also to the current state) and what effect this has on the instructionand the context.We already hinted at the motivation for left and right actions when we described thealphabet above: the actions allow us to keep track of the reorderings that have happenedto an instruction. As a result, we can describe how reordering two instructions canmodifytheir meaning and also their commutability with other instructions.When we write θσ (a,b), then we are considering the case where a is before b in pro-gram order and we wish to reorder b before a. When we omit the σ then we mean that
θσ (a,b) holds for every σ .Recall that the axiomatic model is given in terms of relations on events representinginstructions. In the cat language of herd, if A and B are relations, then their union isdenoted by A | B, intersection by A & B, relational composition by A; B and transitive

108

closure byA+. The notation[W]denotes identity relations on certain kinds of events (writeevents in this case). Hence, the relation addr; po; [W] relates events a and c if there isan event b such that a and b are in the address dependency relation (addr), b and c arein the program order relation (po), and c is a write instruction (W).We now look at the relations used in the axiomatic model and describe briefly howwe would translate these into the operational model. First, we look at the dependency-ordered-before relation (denoted by dob) which is the union of the following relations.Informally, we interpret these relations as rules saying that it is not allowed to executethe instruction b when its left context u is of the form u′au′′ and the instructions a and
b are in the relation. We describe how to construct the semicommutation θ and thereordering actions by saying, for each of the following relations, what we require fromthe semicommutation θ and reordering actions to capture the relation in the operationalmodel.

• addr: This is a subrelation of po. Let a and b be instructions so that a writes to aregister that is used by b to determine the memory address it operates on. This isreferred to as address dependency and we require ¬θ(a,b).
• data: This is a subrelation of po. Let a and b be instructions so that a writes to aregister that is used by b to determine the value it writes to local or sharedmemory.This is referred to as data dependency and we require ¬θ(a,b).
• ctrl; [W]: The relation ctrl is a subrelation of po. Let a, b and c be instructionsso that a writes to a register that is used by a test b and c is a write. We require
¬θ(a,b) and ¬θ(b,c) thus constructing a chain of dependencies from a to c.
Alternatively, we could instead require that the left action of the test b on c anno-tates c with the registers used in the Boolean condition of the test. We then wouldalso require that, if a write instruction (c) is annotated with a register r, then it can-not be reordered with an instruction that writes to r.
(In the axiomatic model two events a′ and b′ are in the ctrl relation when a′ is aread event and b′ is an event in a conditional branch whose condition depends onthe result of a′.)

• ctrl; [ISB]; po; [R]: Let a, b, c and d be instructions so that a writes to aregister used by a test b, c is an ISB instruction and d is a read (that is after c inprogram order). We require ¬θ(a,b), ¬θ(b,c) and ¬θ(c,d).
• addr; po; [ISB]; po; [R]: Let a, b, c and d be instructions so that there isaddress dependency from a to b, c is an ISB and d is a read. As in the previouscase, we require ¬θ(c,d).
In addition, we require that the left action of b on c annotates c with the registersused to compute b’s memory address. We then require that an ISB instruction (c)that has been annotated with a register r cannot be reordered with an instructionthat writes to r. Since a and b are in the address dependency relation, a must writeto r and thus we have ¬θ(a,bc) where bc is c after reordering with b (i.e., c withthe annotations from b).

• addr; po; [W]: Let a, b and c be instructions so that a and b are in the addressdependency relation, b and c are in the program order relation and c is a write.Similarly to the previous case we require that the left action of b on c annotates cwith the registers used to compute b’s memory address. We then also require that
109

a write instruction that has been annotated with a register r cannot be reorderedwith an instruction that writes to r. Thus in this case we have ¬θ(a,bc).
• ctrl; coi: Let a, b, c and d be instructions so that a writes to a register usedby a test b and both c and d are write instructions to the same address. By the
ctrl; [W] rule we already have ¬θ(a,b) and ¬θ(b,c). We also require ¬θσ (c,d)when in state σ the (write) instructions c and d are to the same address, i.e., thevalues of their address registers are the same.
Note that for d to be reorderable with its left context, the addr rule requires theaddress register of d to be stable, i.e., nothing in the left context of d can write toits address register. Similarly, the addr; po; [W] rule (for d) requires that nothingin the left context of c and d can write to the address register of c.

• data; coi: Let a, b and c be instructions so that there is data dependency from ato b and both b and c are write instructions to the same memory address. By the
data rule we have ¬θ(a,b). Just as in the previous case, we also require ¬θσ (b,c)when in state σ the (write) instructions b and c are to the same address.

• (addr | data); rfi: Let a, b and c be instructions so that there is address ordata dependency from a to b, b is a write (with address register addr(b) and dataregister data(b)) and c is a read (with address register addr(c)). There is an rfiedge from b to c when the registers addr(b) and addr(c) hold the same value whenthe corresponding instructions are executed and c reads the value written by b.
We allow such b and c to be reordered in the operational model. The subtlety isthat we consider two different justifications for this reordering.
The first justification is that, in the end, there will not be an rfi edge, i.e., addr(b)and addr(c) will hold different values. In this case we require that the right actionof c on b adds a constraint to b that, when executed, the address register addr(b)must hold a value not equal to the current value of addr(c).
The other justification is that there will be an rfi edge. In this case we requirethat the right action of c on b adds a constraint to b that, when executed, the ad-dress register addr(b) must hold the current value of addr(c). Furthermore, theleft action of b on c sets the read value of c to be the current value of data(b) andit also must annotate c with its address and data registers. We then require that bccannot be reordered with an instruction that writes to the registers it is annotatedwith. Thus we have ¬θσ (a,bc). Since the read value of bc is now determined (by
data(b)), the instruction does not access the memory at all.
The two different justifications are possible precisely because we take the reorder-ing actions to be given by a relation (a multivalued function).

We now consider the barrier-ordered-before relation (denoted by bob) which is theunion of the following relations.
• po; [dmb.full]; po: Let a and cbe anymemory instructions (like reads orwrites)and let b be a DMB.SY. We require both ¬θ(a,b) and ¬θ(b,c).
Alternatively, we could also require that the left action of b on c annotates c withthe information that it has been reordered with a DMB.SY. Then we would requirethat such bc cannot be reordered with a.

110

• [L]; po; [A]: Let a and b be instructions so that a is a release write and b is anacquire read. We require ¬θ(a,b).
• [R]; po; [dmb.ld]; po: Let a, b and c be instructions so that a is a read, b is a
DMB.LD, and c is any memory instruction. We require ¬θ(a,b) and ¬θ(b,c).

• [A]; po: Let a and b be instructions so that a is an acquire read and b is any mem-ory instruction. We require ¬θ(a,b).
• [W]; po; [dmb.st]; po; [W]: Let a, b and c be instructions so that a and c arewrite instructions and b is a DMB.ST. We require ¬θ(a,b) and ¬θ(b,c).
• po; [L]: Let a and b be instructions so that a is any memory instruction and b is arelease write. We require ¬θ(a,b).
• po; [L]; coi: Let a, b and c be instructions so that a is any memory instruction,

b is a release write, and c is a write to the same address. By the previous rule wehave ¬θ(a,b). By the addr; po; [W] rule we know that to execute c early, theaddress register of b must be stable. We require that in a state σ where b and cwrite to the same memory address (addr(b) and addr(c) hold the same value) wehave ¬θσ (b,c).
We have informally described what the context-dependent θ and the reordering ac-tions should be to represent the dependency-ordered-before and barrier-ordered-beforerelations from the axiomatic model. We have currently excluded read-modify-write in-structions from consideration and thus ignore the atomic-ordered-before relation (de-noted by aob). The observed-by relation (denoted by obs) is defined in the axiomaticmodel as rfe | fre | coe and thus it is the union of the read-from, from-read and co-herence relations between different processors. We will not translate these as we onlyconsider reordering of instructions and this only happens on an individual processor, notbetween processors.The ordered-before relationob is defined as(obs | dob | aob | bob)+ and it is re-quired to be irreflexive. Our operational semantics constructs executions in a step-by-stepmanner, adding a new letter to a previously constructed execution. Since we forbid re-ordering of instructions that would have dob or bob edges between them, our executionsshould be such that dob and bob edges only go from an earlier instruction in the executionto a later one. The rfe, fre and coe relations represent communication between differ-ent processors and, on our abstract machine, this happens only through shared memory.This means that these edges should also only go from an earlier instruction in the execu-tion to a later one. Thus we should not be able to construct an execution with a reflexive

ob relation (i.e., one with a cycle along the relations dob, bob, rfe, fre and coe).Thememorymodel also requires the relation po-loc | fr | co | rf to be acyclic,i.e., its transitive closure to be irreflexive. The relation po-loc represents program orderper location and it relates events that are in program order and to the same memorylocation. We interpret the acyclicity condition as saying that we can reorder instructionsto the same location as long as this reordering is not visible in terms of the co, rf and frrelations. Let a and b be instructions in the po-loc relation (to memory location x) andsay we reorder a and b (execute b early). What we wish to do next is rule out executionswhich would result in the instruction a (which is earlier in the program order) accessingthe memory location x when it holds a later value than what it held when b (which is laterin the program order) accessed it.
111

The only memory operations we consider are reads and writes. If we allowed to re-order write-write pairs to the same location, then we would violate the above conditionand thus we forbid it. We also do not allow to reorder read-write pairs to the same loca-tion. We do allow to reorder write-read pairs to the same location (this was one case inthe rule (addr | data); rfi). However, this reordering (the reordering action) deter-mines the value of the read: although the instructions are reordered, the read instructionreads its value from the write instruction and thus does not access the memory. This pre-serves program order per location. We also allow to reorder read-read pairs to the samelocation. To preserve the desired property we must ensure that the two read instructionsread values that are in agreement with their program order. In other words, we wish toforbid executions where a write to that memory location occurs between the reorderedreads.Let a and b be instructions so that both a and b are read instructions with addr(a) and
addr(b) as their address registers. Similarly to the (addr | data); rfi rule we havetwo justifications for reordering a and b.The first case is that the two instructions end up accessing differentmemory addresses.For this casewe require the right action of b on a to add a constraint to a saying that, whenexecuted, the value of addr(a) is different from the current value of addr(b).The other case is that the two instructions endup accessing the samememory location.We require that the right action of bon a adds a constraint to a saying that, when executed,the value of addr(a) is the same as the current value of addr(b). Furthermore, we add aconstraint to a that it must read its value from the same write as b did. (We accomplishthis by checking that no writes have occurred to this location in between. This is why weinstrumented memory locations with write counters.)
6.3 Prototype
We have implemented the part of the ARM memory model described above as a proto-type inHaskell (available here: http://cs.ioc.ee/~hendrik/code/phd/prototype.
zip).The prototype contains implementations of the following functions where Arm is thealphabet (instructions annotated with some additional information) and State is thema-chine state.
theta :: State → Arm → Arm → Bool

act :: State → Arm → Arm → [(Arm, Arm)]

sem :: Arm → State → State

allow :: State → Arm → Bool

Thus theta is a context-dependent binary relation on the alphabet, act is the relationalcontext-dependent reordering action (given as a multivalued function), sem is the inter-pretation of letters as (total) state transformers and allow is the relation which describeswhen an instruction is allowed to execute in a state.This prototype allows us to take a litmus-test (a small concurrent program in pseudo-assembly), convert it to an element of RES, and, following the operational rules, collectall final states by enumerating all possible ways to execute this particular litmus-test froma given initial state. This allows us to compare the results (the set of final states obtained)to what is obtained by the memory model simulation tool herd (which is based on theaxiomatic model) on the same litmus-test. We have also implemented the pruning mech-anism described in Section 5.5 in the prototype. Also, the semicommutation relation andthe reordering actions we have defined for ARM satisfy the conditions given in Defini-
112

http://cs.ioc.ee/~hendrik/code/phd/prototype.zip
http://cs.ioc.ee/~hendrik/code/phd/prototype.zip

tion 5.57. So far we have compared our prototype with herd on more than 8000 litmus-tests. The two tools agree on all of these litmus-tests.
6.4 Related Work
A significant part of the research on relaxed memory has been about hardware memorymodels. The description of x86 was given both operationally and axiomatically by Owenset al. [61] and they also showed that it follows the Total Store Order (TSO) memory modelby SPARC [75]. A denotational (and operational) description of TSO together with a fullabstraction result was given by Jagadeesan et al. [35]. A denotational semantics for TSObased on partially-ordered multisets (pomsets) was given by Kavanagh and Brookes [39].Park and Dill defined an executable specification of RelaxedMemory Order (RMO) [62] bySPARC. Both axiomatic and operational models have also been considered for POWER [73]and ARM [67]. An extensive description of a (generic) axiomatic framework and severalinstantiations to differentmemorymodels was given by Alglave et al. [8]. Relaxedmemoryhas also seen much interest in the context of model checking [7, 4, 5].

In addition to hardware memory models, the memory models of (concurrent) pro-gramming languages have also received attention. Ideally, a language specification shouldbe precise enough to determine which optimisations are allowed. This in turn determineshow relaxed this particular language is. Perhaps the most prominent of this line of work isformally describing the C/C++ memory model. The goal is to define a memory model thatis sufficiently relaxed so that it allows common compiler optimisations but still excludesthe unreasonable ones. The C/C++ memory model is given in the axiomatic style. Opera-tional descriptions of (fragments of) the C/C++ memory model have been considered, forexample, by Nienhuis et al. [57] and Doherty et al. [27]. These operational models stayvery close to the axiomatic specification in the sense that they incrementally construct avalid axiomatic execution.
A problematic aspect of the C/C++ memory model is that it allows certain undesirable“out-of-thin-air” executions. The complexity of this issue is witnessed by the fact that,as it was observed by Batty et al. [12], the “out-of-thin-air” problem cannot be solvedin a simple “per-candidate-execution” way. As the axiomatic models are “per-candidate-execution”, this has led to the consideration of other methods in addition to axiomaticmodels.
An operational approach to the “out-of-thin-air” problem is the promising semanticsby Kang et al. [37] which has also been adapted for ARM [68]. The operational frameworkwe defined in Chapter 5 allows to execute an instruction early. The promising semanticsallows a thread to promise to do something in the future while allowing other threads tosee the effects of this in advance. Various forms of event structures [77] have also beenconsidered for the “out-of-thin-air” problem [65, 22, 36, 63].
A slightly different concurrency model is considered by Fava et al. [29] who describean operational semantics for the combination of weak memory and channel-based pro-gramming in the Go programming language.

6.5 Conclusion and Future Work
In this chapter, we described how to instantiate our framework from Chapter 5 to match(a fragment of) the multicopy-atomic ARM memory model. We validated a prototypeimplementation of our framework instantiation against the herd tool on a large numberof litmus-tests.

The reorderings we include to represent the ARMmemorymodel allow even relatively
113

small litmus-tests to have millions of unique executions. We are only interested in theresult, i.e., the final state an execution produces. Representative executions allow us toconsider a subset of all possible executions of a program. This of course relies on the factthat the executions we consider equivalent indeed produce the same final state.We did not prove that our translation of the axiomatic ARMmemory model is correct.It would be very nice to have this proof so that this operational translation could be usedwith confidence, even better if this were certified in a proof-assistant.A similar problem would be to investigate if axiomatic descriptions of relaxed memorymodels could be translated into this operational framework in a systematic way, i.e., if itis the case that, for some well-delineated class of axiomatic models, the correspondingoperational model can be constructed mechanically from the axiomatic model.

114

7 Conclusions and Future Work
7.1 Conclusions
In this dissertation, we have developed a framework for describing operational semanticswhere sequential composition of programs is interpreted in a weak manner. This weak-ness allows to describe certain kinds of relaxed memory models in the framework. Thismeans that we can instantiate the framework so that it can also produce program execu-tions that are not sequentially consistent, i.e., it is possible that the result of some exe-cution cannot be obtained just by interleaving the program-order instruction sequencesof individual threads. To achieve this, our framework allows the execution mechanism(processors) to modify the order of instructions that is specified by the program. Moreprecisely, our use of an independence relation makes sequential composition weaker forcertain pairs of instructions and so these pairs lose the ordering constraints otherwise in-troduced by sequential composition. For example, this means that in certain cases we canexecute a as the first instruction in the program p;a;q.The framework we have developed has several parameters: the alphabet of instruc-tions, the semicommutation relation that may be context-dependent, the reordering ac-tion and the continuation function. As a result, there are many possibilities to tune theframework by slightly modifying the parameters. Thus we hope that this framework ad-mits descriptions of several memory models. The framework does not have any reorder-ings built in and the reorderings that are allowed are controlled by the parameters: whenwe take an alphabet of instructions and trivially instantiate the other parameters, thenwe obtain sequential consistency.Since we are interleaving instruction sequences of multiple threads, our approach issusceptible to the combinatorial explosion problem. The reordering of instructionsmakesthis even worse. In this work, we were interested in the final states of the executions.Thus we should check each and every execution to see to what final state it takes us.We used normal forms as a sound mechanism to eagerly discard some executions fromconsideration. While this is quite effective for many of the litmus-tests we consider (evenwhen the independence relation used for normal forms is smaller than the independencerelation used for constructing the executions), it will run into problems at some point asthe input programs grow.Overall, we find the operational semantics we have defined based on the Antimirovreordering derivatives to be quite intuitive, at least when trying to explain or justify whysome program on some memory model can behave in a certain way. Roughly speaking,at every step of the execution, we just select an instruction from the current residualprogram and try to “drag” it to the front for execution. The derivative operation thentells us what is the new residual program, i.e., what is still left to execute after we haveexecuted the instruction we chose.
7.2 Future Work
In Chapter 3, we considered reordering derivative operations for a symmetric indepen-dence relation. It would be good to see which of these results continue to hold or whichmodifications are needed when we let go of the assumption that an independence rela-tion has to be symmetric.Another question to investigate might be to see what is the relationship between thereordering derivatives we have defined and Zielonka’s asynchronous automata. It is atheorem that a trace-closed language is recognisable iff it is recognised by a finite asyn-chronous automaton. At the same time, a trace-closed language is recognisable iff there

115

exists a star-connected expressionwith the same closure. For a star-connected expressionwe can construct a finite automaton accepting the closure of the language.In Chapter 4, we developed Foata and lexicographic normal forms for a generalisationof traces. In Chapter 6, we did not use these generalised normal forms as there we con-sidered a semicommutation relation and it was context-dependent in a slightly differentway. It would be good to see how to improve this situation.The type of axiomatic semantics that are often used to describe relaxedmemory mod-els is quite different from the operational approach we have developed here. A usefuldirection for further work would be to investigate how to systematically construct an op-erational description corresponding to a given axiomatic description. It would also beinteresting to consider the opposite direction, i.e., how to proceed from an operationaldescription to an axiomatic one. This of course raises the question: which memory mod-els can be represented in the current framework? Investigating the translation betweenseveral axiomatic and operational descriptions can reveal issues and shortcomings andthus lead to a more refined operational framework with more precise control over therelaxedness of the system.

116

References
[1] I. J. Aalbersberg and H. J. Hoogeboom. Characterizations of the decidability of someproblems for regular trace languages. Math. Syst. Theory, 22(1):1–19, 1989.
[2] I. J. Aalbersberg and G. Rozenberg. Theory of traces. Theor. Comput. Sci., 60(1):1–82,1988.
[3] I. J. Aalbersberg and E. Welzl. Trace languages defined by regular string languages.Theor. Inf. Appl., 20(2):103–119, 1986.
[4] P. A. Abdulla, S. Aronis, M. F. Atig, B. Jonsson, C. Leonardsson, and K. Sagonas. State-less model checking for TSO and PSO. Acta Inf., 54(8):789–818, 2017.
[5] P. A. Abdulla, M. F. Atig, B. Jonsson, and C. Leonardsson. Stateless model checkingfor POWER. In S. Chaudhuri and A. Farzan, editors, Computer Aided Verification -28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Pro-ceedings, Part II, volume 9780 of Lecture Notes in Computer Science, pages 134–156.Springer, 2016.
[6] J. Alglave. A shared memory poetics. PhD thesis, Université Paris Diderot, 2010.
[7] J. Alglave, D. Kroening, andM. Tautschnig. Partial orders for efficient boundedmodelchecking of concurrent software. In N. Sharygina and H. Veith, editors, ComputerAided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Rus-sia, July 13-19, 2013. Proceedings, volume 8044 of Lecture Notes in Computer Science,pages 141–157. Springer, 2013.
[8] J. Alglave, L. Maranget, andM. Tautschnig. Herding cats: Modelling, simulation, test-ing, and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74, 2014.
[9] A. V. Anisimov and D. E. Knuth. Inhomogeneous sorting. Int. J. Parallel Program.,8(4):255–260, 1979.
[10] V. M. Antimirov. Partial derivatives of regular expressions and finite automaton con-structions. Theor. Comput. Sci., 155(2):291–319, 1996.
[11] D. Aspinall and J. Sevcík. Formalising Java’s data race free guarantee. In K. Schneiderand J. Brandt, editors, Theorem Proving in Higher Order Logics, 20th InternationalConference, TPHOLs 2007, Kaiserslautern, Germany, September 10-13, 2007, Pro-ceedings, volume 4732 of Lecture Notes in Computer Science, pages 22–37. Springer,2007.
[12] M. Batty, K. Memarian, K. Nienhuis, J. Pichon-Pharabod, and P. Sewell. The problemof programming language concurrency semantics. In J. Vitek, editor, ProgrammingLanguages and Systems - 24th European Symposium on Programming, ESOP 2015,Held as Part of the European Joint Conferences on Theory and Practice of Software,ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume9032 of LectureNotesin Computer Science, pages 283–307. Springer, 2015.
[13] A. Bertoni, G.Mauri, andN. Sabadini. Equivalence andmembership problems for reg-ular trace languages. InM. Nielsen and E.M. Schmidt, editors, Automata, Languagesand Programming: 9th Colloquium, Aarhus, Denmark, July 12-16, 1982, Proceedings,volume 140 of Lecture Notes in Computer Science, pages 61–71. Springer, 1982.

117

[14] A. Bertoni, G. Mauri, and N. Sabadini. Unambiguous regular trace languages. InJ. Demetrovics, G. Katona, and A. Salomaa, editors, Algebra, Combinatorics, andLogic in Computer Science, volume 42 of CollquiaMathematica Societas János Bolyai,pages 113–123. North-Holland, 1986.
[15] A. Bouajjani, C. Enea, S. O.Mutluergil, and S. Tasiran. Reasoning about TSO programsusing reduction and abstraction. In H. Chockler and G. Weissenbacher, editors, Com-puter Aided Verification - 30th International Conference, CAV 2018, Held as Part ofthe Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,Part II, volume 10982 of Lecture Notes in Computer Science, pages 336–353. Springer,2018.
[16] G. Boudol and G. Petri. Relaxedmemorymodels: an operational approach. In Z. Shaoand B. C. Pierce, editors, Proceedings of the 36th ACM SIGPLAN-SIGACT Symposiumon Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January21-23, 2009, pages 392–403. ACM, 2009.
[17] G. Boudol, G. Petri, and B. P. Serpette. Relaxed operational semantics of concurrentprogramming languages. In B. Luttik and M. A. Reniers, editors, Proceedings Com-bined 19th International Workshop on Expressiveness in Concurrency and 9th Work-shop on Structural Operational Semantics, EXPRESS/SOS 2012, Newcastle upon Tyne,UK, September 3, 2012, volume 89 of EPTCS, pages 19–33. Open Publishing Associa-tion, 2012.
[18] M. G. Brin. On the Zappa-Szép product. Communications in Algebra, 33(2):393–424,2005.
[19] S. Broda, A. Machiavelo, N. Moreira, and R. Reis. Partial derivative automaton forregular expressions with shuffle. In J. Shallit and A. Okhotin, editors, DescriptionalComplexity of Formal Systems: 17th International Workshop, DCFS 2015, Waterloo,ON, Canada, June 25-27, 2015, Proceedings, volume 9118 of Lecture Notes in Com-puter Science, pages 21–32. Springer, 2015.
[20] J. A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.
[21] P. Cartier and D. Foata. Problemes combinatoires de commutation et rearrange-ments, volume 85 of Lecture Notes in Mathematics. Springer, 1969.
[22] S. Chakraborty and V. Vafeiadis. Grounding thin-air readswith event structures. Proc.ACM Program. Lang., 3(POPL):70:1–70:28, 2019.
[23] C. Chou and D. A. Peled. Formal verification of a partial-order reduction techniquefor model checking. J. Autom. Reasoning, 23(3-4):265–298, 1999.
[24] M. Clerbout and M. Latteux. Semi-commutations. Inf. Comput., 73(1):59–74, 1987.
[25] R. J. Colvin and G. Smith. A wide-spectrum language for verification of programson weak memory models. In K. Havelund, J. Peleska, B. Roscoe, and E. P. de Vink,editors, Formal Methods - 22nd International Symposium, FM 2018, Held as Part ofthe Federated Logic Conference, FloC 2018, Oxford, UK, July 15-17, 2018, Proceedings,volume 10951 of Lecture Notes in Computer Science, pages 240–257. Springer, 2018.
[26] V. Diekert and Y.Métivier. Partial commutation and traces. In G. Rozenberg and A. Sa-lomaa, editors, Handbook of Formal Languages, Volume 3: Beyond Words, pages457–533. Springer, 1997.

118

[27] S. Doherty, B. Dongol, H. Wehrheim, and J. Derrick. Verifying C11 programs oper-ationally. In J. K. Hollingsworth and I. Keidar, editors, Proceedings of the 24th ACMSIGPLAN SymposiumonPrinciples and Practice of Parallel Programming, PPoPP 2019,Washington, DC, USA, February 16-20, 2019, pages 355–365. ACM, 2019.
[28] M. Droste. Concurrency, automata and domains. In M. Paterson, editor, Automata,Languages and Programming, 17th International Colloquium, ICALP ’90, WarwickUniversity, England, UK, July 16-20, 1990, Proceedings, volume 443 of Lecture Notesin Computer Science, pages 195–208. Springer, 1990.
[29] D. S. Fava, M. Steffen, and V. Stolz. Operational semantics of a weak memory modelwith channel synchronization. J. Log. Algebr. Meth. Program., 103:1–30, 2019.
[30] J. L. Gischer. The equational theory of pomsets. Theor. Comput. Sci., 61(2-3):199–224,1988.
[31] P. Godefroid. Using partial orders to improve automatic verification methods. InE.M. Clarke andR. P. Kurshan, editors, Computer AidedVerification, 2nd InternationalWorkshop, CAV ’90, New Brunswick, NJ, USA, June 18-21, 1990, Proceedings, volume531 of Lecture Notes in Computer Science, pages 176–185. Springer, 1990.
[32] K. Hashiguchi. Recognizable closures and submonoids of free partially commutativemonoids. Theor. Comput. Sci., 86(2):233–241, 1991.
[33] T. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent Kleene algebra and itsfoundations. J. Log. Algebr. Program., 80(6):266–296, 2011.
[34] P. W. Hoogers, H. C. M. Kleijn, and P. S. Thiagarajan. A trace semantics for Petri nets.Inf. Comput., 117(1):98–114, 1995.
[35] R. Jagadeesan, G. Petri, and J. Riely. Brookes is relaxed, almost! In L. Birkedal, ed-itor, Foundations of Software Science and Computational Structures - 15th Interna-tional Conference, FOSSACS 2012, Held as Part of the European Joint Conferences onTheory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1,2012. Proceedings, volume 7213 of Lecture Notes in Computer Science, pages 180–194. Springer, 2012.
[36] A. Jeffrey and J. Riely. On thin air reads: Towards an event structuresmodel of relaxedmemory. Logical Methods in Computer Science, 15(1), 2019.
[37] J. Kang, C. Hur, O. Lahav, V. Vafeiadis, and D. Dreyer. A promising semantics forrelaxed-memory concurrency. In G. Castagna and A. D. Gordon, editors, Proceed-ings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,POPL 2017, Paris, France, January 18-20, 2017, pages 175–189. ACM, 2017.
[38] S. Katz and D. A. Peled. Defining conditional independence using collapses. Theor.Comput. Sci., 101(2):337–359, 1992.
[39] R. Kavanagh and S. Brookes. A denotational semantics for SPARC TSO. Logical Meth-ods in Computer Science, 15(2), 2019.
[40] S. C. Kleene. Representation of events in nerve sets and finite automata. In C. E.Shannon and J. McCarthy, editors, Automata Studies, volume 34 of Annals of Math-ematics Studies, pages 3–42. Princeton University Press, 1956.

119

[41] B. Klunder, E. Ochmański, and K. Stawikowska. On star-connected flat languages.Fund. Inf., 67(1–3):93–105, 2005.
[42] D. Kozen. A completeness theorem for Kleene algebras and the algebra of regularevents. Inf. Comput., 110(2):366–390, 1994.
[43] D. Kozen. Kleene algebrawith tests. ACMTrans. Program. Lang. Syst., 19(3):427–443,1997.
[44] L. Lamport. How to make a multiprocessor computer that correctly executes multi-process programs. IEEE Trans. Computers, 28(9):690–691, 1979.
[45] R. J. Lipton. Reduction: A method of proving properties of parallel programs. Com-mun. ACM, 18(12):717–721, 1975.
[46] H. Maarand and T. Uustalu. Operational semantics with semicommutations. Ac-cepted for publication in J. Log. Algebr. Methods Program.
[47] H. Maarand and T. Uustalu. Generating representative executions [extended ab-stract]. In V. T. Vasconcelos and P. Haller, editors, Proceedings of the Tenth Workshopon Programming Language Approaches to Concurrency- and Communication-cEntricSoftware, PLACES@ETAPS 2017, Uppsala, Sweden, 29th April 2017, volume 246 ofEPTCS, pages 39–48. Open Publishing Association, 2017.
[48] H. Maarand and T. Uustalu. Certified Foata normalization for generalized traces. InA. Dutle, C. A. Muñoz, and A. Narkawicz, editors, NASA Formal Methods - 10th Inter-national Symposium, NFM 2018, Newport News, VA, USA, April 17-19, 2018, Proceed-ings, volume 10811 of Lecture Notes in Computer Science, pages 299–314. Springer,2018.
[49] H.Maarand and T. Uustalu. Certified normalization of generalized traces. Innovationsin Systems and Software Engineering, 15(3-4):253–265, 2019.
[50] H. Maarand and T. Uustalu. Operational semantics with semicommutations. InT. Uustalu and J. Vain, editors, 31st Nordic Workshop on Programming Theory, NWPT2019, November 13-15, 2019, Tallinn, Estonia, Abstracts, pages 40–43. TTU, 2019.
[51] H. Maarand and T. Uustalu. Reordering derivatives of trace closures of regular lan-guages. In W. J. Fokkink and R. van Glabbeek, editors, 30th International Conferenceon Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Nether-lands, volume 140 of LIPIcs, pages 40:1–40:16. Schloss Dagstuhl - Leibniz-Zentrum fürInformatik, 2019.
[52] A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMIRep. PB-78, University of Aarhus, 1978.
[53] J. D. McKnight. Kleene quotient theorems. Pac. J. Math., 14(4):1343–1352, 1964.
[54] A. Meduna and P. Zemek. Jumping finite automata. Int. J. Found. Comput. Sci.,23(7):1555–1578, 2012.
[55] B. Nagy and F. Otto. Finite-state acceptors with translucent letters. In G. Bel-Enguix,V. Dahl, and A. O. de la Puente, editors, Proceedings of the 1st InternationalWorkshopon AI Methods for Interdisciplinary Research in Language and Biology (BILC-2011),pages 3–13. SciTePress, 2011.

120

[56] H. R. Nielson and F. Nielson. Semantics with applications - a formal introduction.Wiley professional computing. Wiley, 1992.
[57] K. Nienhuis, K. Memarian, and P. Sewell. An operational semantics for C/C++11 con-currency. In E. Visser and Y. Smaragdakis, editors, Proceedings of the 2016 ACMSIGPLAN International Conference on Object-Oriented Programming, Systems, Lan-guages, and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, TheNetherlands, October 30 - November 4, 2016, pages 111–128. ACM, 2016.
[58] U. Norell. Dependently typed programming in Agda. In P. W. M. Koopman, R. Plas-meijer, and S. D. Swierstra, editors, Advanced Functional Programming, 6th Inter-national School, AFP 2008, Heijen, The Netherlands, May 2008, Revised Lectures,volume 5832 of Lecture Notes in Computer Science, pages 230–266. Springer, 2009.
[59] E. Ochmański. Regular behaviour of concurrent systems. Bull. EATCS, 27:56–67, 1985.
[60] E. Ochmański. Recognizable trace languages. In V. Diekert and G. Rozenberg, editors,The Book of Traces, pages 167–204. World Scientific, 1995.
[61] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-TSO. InS. Berghofer, T. Nipkow, C. Urban, andM.Wenzel, editors, Theorem Proving in HigherOrder Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, Au-gust 17-20, 2009. Proceedings, volume 5674 of Lecture Notes in Computer Science,pages 391–407. Springer, 2009.
[62] S. Park and D. L. Dill. An executable specification, analyzer and verifier for RMO(relaxed memory order). In C. E. Leiserson, editor, 7th Annual ACM Symposium onParallel Algorithms and Architectures, SPAA ’95, Santa Barbara, California, USA, July17-19, 1995, pages 34–41. ACM, 1995.
[63] M. Paviotti, S. Cooksey, A. Paradis, D. Wright, S. Owens, and M. Batty. Modular re-laxed dependencies in weak memory concurrency. In P. Müller, editor, ProgrammingLanguages and Systems - 29th European Symposium on Programming, ESOP 2020,Held as Part of the European Joint Conferences on Theory and Practice of Software,ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, volume 12075 of LectureNotes in Computer Science, pages 599–625. Springer, 2020.
[64] D. A. Peled. All from one, one for all: on model checking using representatives. InC. Courcoubetis, editor, Computer Aided Verification, 5th International Conference,CAV ’93, Elounda, Greece, June 28 - July 1, 1993, Proceedings, volume 697 of LectureNotes in Computer Science, pages 409–423. Springer, 1993.
[65] J. Pichon-Pharabod and P. Sewell. A concurrency semantics for relaxed atomics thatpermits optimisation and avoids thin-air executions. In R. Bodík and R. Majumdar,editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-ciples of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -22, 2016, pages 622–633. ACM, 2016.
[66] G. D. Plotkin. A structural approach to operational semantics. Technical report,University of Aarhus, 1981.
[67] C. Pulte, S. Flur, W. Deacon, J. French, S. Sarkar, and P. Sewell. Simplifying ARM con-currency: multicopy-atomic axiomatic andoperationalmodels for ARMv8. Proc. ACMProgram. Lang., 2(POPL):19:1–19:29, 2018.

121

[68] C. Pulte, J. Pichon-Pharabod, J. Kang, S. H. Lee, and C. Hur. Promising-ARM/RISC-V: asimpler and faster operational concurrencymodel. In K. S.McKinley and K. Fisher, ed-itors, Proceedings of the 40th ACM SIGPLAN Conference on Programming LanguageDesign and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages1–15. ACM, 2019.
[69] M. O. Rabin and D. S. Scott. Finite automata and their decision problems. IBM J. Res.Devel., 3(2):114–125, 1959.
[70] A. Rensink and H. Wehrheim. Weak sequential composition in process algebras. InB. Jonsson and J. Parrow, editors, CONCUR ’94, Concurrency Theory, 5th InternationalConference, Uppsala, Sweden, August 22-25, 1994, Proceedings, volume 836 of Lec-ture Notes in Computer Science, pages 226–241. Springer, 1994.
[71] J. Sakarovitch. On regular trace languages. Theor. Comput. Sci., 52(1-2):59–75, 1987.
[72] J. Sakarovitch. The "last" decision problem for rational trace languages. In I. Si-mon, editor, LATIN ’92, 1st Latin American Symposiumon Theoretical Informatics, SãoPaulo, Brazil, April 6-10, 1992, Proceedings, volume 583 of Lecture Notes in ComputerScience, pages 460–473. Springer, 1992.
[73] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Understanding POWERmultiprocessors. In M. W. Hall and D. A. Padua, editors, Proceedings of the 32ndACM SIGPLAN Conference on Programming Language Design and Implementation,PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 175–186. ACM, 2011.
[74] V. Sassone,M. Nielsen, and G.Winskel. Deterministic behaviouralmodels for concur-rency. In A. M. Borzyszkowski and S. Sokolowski, editors,Mathematical Foundationsof Computer Science 1993, 18th International Symposium, MFCS’93, Gdansk, Poland,August 30 - September 3, 1993, Proceedings, volume 711 of LectureNotes in ComputerScience, pages 682–692. Springer, 1993.
[75] SPARC International Inc and D. L. Weaver. The SPARC Architecture Manual - version8. Prentice Hall, 1994.
[76] M. Sulzmann and P. Thiemann. Derivatives for regular shuffle expressions. InA. Dediu, E. Formenti, C. Martín-Vide, and B. Truthe, editors, Language and Au-tomata Theory and Applications: 9th International Conference, LATA 2015, Nice,France, March 2-6, 2015, Proceedings, volume 8977 of Lecture Notes in ComputerScience, pages 275–286. Springer, 2015.
[77] G. Winskel. Event structures. In W. Brauer, W. Reisig, and G. Rozenberg, editors,Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986, PartII, Proceedings of an Advanced Course, Bad Honnef, Germany, 8-19 September 1986,volume 255 of Lecture Notes in Computer Science, pages 325–392. Springer, 1986.
[78] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind. Nemos: A framework foraxiomatic and executable specifications of memory consistency models. In 18th In-ternational Parallel and Distributed Processing Symposium, 2004. Proceedings. IEEEComputer Society, 2004.
[79] N. Zhang, M. Kusano, and C. Wang. Dynamic partial order reduction for relaxedmemory models. In D. Grove and S. Blackburn, editors, Proceedings of the 36th ACMSIGPLAN Conference on Programming Language Design and Implementation, Port-land, OR, USA, June 15-17, 2015, pages 250–259. ACM, 2015.

122

[80] W. Zielonka. Notes on finite asynchronous automata. Theor. Inf. Appl., 21(2):99–135,1987.
[81] W. Zielonka. Asynchronous automata. In V. Diekert and G. Rozenberg, editors, TheBook of Traces, pages 205–247. World Scientific, 1995.

123

124

Appendix A Certified Normalisation of Generalised Traces
Here we give a more detailed account of the generalised Foata and lexicographic normal-isation we developed in Chapter 4. The main difference is that here we stay closer to theAgda formalisation. The following are the relevant sections from Publication III.In the electronic version, the definitions and lemmas given here also contain a hyper-link to the corresponding location in the HTML listing of the Agda code. The Agda formal-isation itself is available here: http://cs.ioc.ee/~hendrik/code/phd/isse.zip
Generalised Mazurkiewicz Traces
We consider the generalisation of traces introduced by Sassone et al. [74]. In this settingthe essential difference compared to ordinary traces is that the independence relation isno longer a binary relation but an assignment of an irreflexive and symmetric indepen-dence relation to every word u. More precisely, we assume that we have an alphabet Aand a context-dependent independence relation

I : A→ List> A→ A→ Set

The second parameter to I is for the context. We use cons-lists over A (elements of List
A) to represent strings (String = List A) and snoc-lists (List> A) to represent con-texts of strings and also (steps of) normal forms. Our notation for list operations followsthe convention that the angle bracket points to the direction where the head element is.In the formal development, A and I together with their properties are module parame-ters.We use both cons- and snoc-lists in the development, as this allows function definitionby structural recursion and proof by structural induction from the correct end of the listwhich can be on the left or on the right depending on what is being done in a given situ-ation. Typically, we want to work somewhere in the middle of a cons-list. We then splitit into two parts, the left half (prefix) being a snoc-list and the right half (suffix) being acons-list. Such pairs of snoc- and cons-lists are zippers for the cons-list type.We seek to follow the lexical convention described below where reasonable:

• a, b, c and d are letters;
• s, t, u and v are snoc- or cons-lists;
• ss and tt are snoc-lists of snoc-lists.
Next, we describe the equivalence relation induced by the context-dependent inde-pendence relation. First we define when two strings differ only by the ordering of twoadjacent independent letters.

Definition A.1. ∼ : List A→ List> A→ List A→ Set

a Iu+>s b

s >+< a <: b <: t ∼u s >+< b <: a <: t
swap

This says that the strings sabt and sbat are equivalent in the context u when theletters a and b are independent in the context u +> s. The context is represented as asnoc-list as we usually need to access it from the right while strings are represented ascons-lists as we usually need to access them from the left. We use <: or for cons, <+ forcons-append, :> for snoc and +> for snoc-append. We also use amixed append operation
>+< that takes a snoc- and a cons-list and produces a cons-list. Whenwe need to translate

125

http://cs.ioc.ee/~hendrik/code/phd/isse.zip
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Trace.html#_%E2%88%BC[_]_.swap

between the two representations, we use s2c for snoc-to-cons and c2s for cons-to-snoctranslation.Mazurkiewicz equivalence is the reflexive-transitive closure of the above relation.
Definition A.2. ∼∗ : List A→ List> A→ List A→ Set

s= t
s∼∗u t

refl∗
s∼u v v∼∗u t

s∼∗u t
swap-trans*

An element of s∼∗u t can be seen as a sequence of instructions for transforming s into
t by swapping adjacent independent letters. No letters from u can be involved in theseswaps.In generalised traces the family of independence relations is required to be consistent,i.e., stable under equivalence:

I-cons : u∼∗[] v→ a Iu b→ a Iv b

It is also required to be coherent:
I-co1 : a Iu b→ b Iua c→ a Iub c→ a Iu c

I-co2-e : a Iu b→ b Iu c→ a Iu c→ a Iub c

I-co2-r : a Iu b→ b Iu c→ a Iub c→ a Iu c

The e and r suffixes in the name I-co2 refer to extending and reducing the context.We have suppressed the formal notation for snoc-lists in the contexts here as the usual“silent” notation for strings is more readable.We take the same independence alphabet to be our running example as we did inChapter 4. Namely, the alphabet A consists of the letters a, b, c, d and the independence Iis the least consistent and coherent family of symmetric relations such that a I[] b, a I[] d,
b Ia d, b Iac d, c Iab d. Explicitly, thismeans thatwe also haveb I[] d (byI-co2-r), a Id b,
a Ib d (by I-co2-e) and c Iba d (by I-cons).
Generalised Foata Normalisation
In this section we describe Foata normal forms for generalised traces and the correspond-ing normalisation algorithm. We conclude with the correctness proof of the algorithm.
Normal FormsWe represent a Foata normal form as a snoc-list of steps which in turn are snoc-lists of let-ters. We define Step as a synonym for List> A and Foata as a synonym for List Step.These are the types of “raw” steps and normal forms.In order to define well-formed normal forms, we introduce some auxiliary notation.We define s �Iu a to be All (\ b → b Iu a) s, expressing that, for every letter b in
s, we have that b and a are independent in the context u. Similarly, we define s �Du ato be Any (\ b → b Du a) s, expressing that there is a letter b in s such that b and
a are dependent in the context u. Generally, the proposition All P xs holds when thepredicate P holds on every element of the list xs. A proof of Any P xs points to someelement in the list xs that satisfies the predicate P.A step (in a context u) is considered well-formed if it satisfies the following predicate.
Definition A.3. StepOk : List A→ Step→ Set

StepOk u [a]
sngl

126

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Trace.html#_%E2%88%BC[_]*_.refl*
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Trace.html#_%E2%88%BC[_]*_.swap-trans*
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormalForms.html#StepOk.sngl

StepOk u (s :> b) b≺ a (s :> b) �Iu a

StepOk u (s :> b :> a)
snoc

A well-formed step (in a context u) is either a singleton or it consists of a well-formedstep to which a new letter is added on the right, which has to be greater than the previousrightmost letter. The added letter and the step must be independent.We now turn to well-formed normal forms. A letter in a step of a Foata normal formmust have a dependent letter supporting it in the previous step. We formalise this by say-ing that the preceding normal form ss has to support the letter a, written as Sup ss a.This support is defined as P-ne (\ tt t → t �Dconcat>tt a) ss. Here we use a smallhelper P-ne P xswhich holds trivially when xs is empty andwhen xs is non-empty it re-quires that P ys y holds where ys and y are the tail and head of the snoc-list xs. A “raw”Foata normal form (a list of steps) is well-formed if it satisfies the following predicate.
Definition A.4. FoataOk : Foata→ Set

FoataOk []
empty

FoataOk ss StepOk (concat> ss) s All (Sup ss) s

FoataOk (ss :> s)
step

Thus a well-formed Foata normal form can either be the empty list of steps or consistof a well-formed normal form with an added step. This step must be well-formed in thecontext of the normal form and every letter in the added step must be supported by thenormal form.As strings and normal forms are represented by different data types, we need to asso-ciate to a normal form its string representation. The function emb for embedding a normalformback into strings is defined asemb ss = s2c (concat> ss). In otherwords, it justconcatenates the steps in the normal form.With our example independence alphabet, we have that (abd)(c) is a Foata normalform since we have a I[] b, a I[] d and b I[] d making (abd) a valid step and a D[] censuring that the sole letter in the step (c) is supported. We also have that (a)(c)(bd)is a normal form since b Iac d ensures that the step (bd) is well-formed and a D[] c, c Da band c Da d provide the requisite support for the letters in the steps (c) and (bd).
NormalisationThe normalisation algorithm traverses the input string (from the left) and inserts eachletter into an accumulating normal form (from the right). The main ingredient thus is afunction that takes a normal form and a letter and inserts the letter into its right placein the normal form. Given a normal form nf and a letter a, inserting the letter a into nfshould produce a normal form nf' such that emb nf' is equivalent to emb nf <+ [a].Wedefine a functionfind>parameterised by a deciderP?of a predicatePon a context(a snoc-list) and an element. It splits a given snoc-list xs into two parts, ls and rs, so thatall of the elements in rs satisfy the predicate and the rightmost element in ls violatesthe predicate.
Algorithm A.5 (find>).
find> : (∀ xs x → Dec (P xs x)) → List> X → List> X × List> X

find> P? [] = [] , []

find> P? (xs :> x) with P? xs x

find> P? (xs :> x) | yes _ =

127

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormalForms.html#StepOk.snoc
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormalForms.html#FoataOk.empty
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormalForms.html#FoataOk.step
http://cs.ioc.ee/~hendrik/code/phd/isse/Data.Snoc.html#find>

let ls , rs = find> P? xs in ls , rs :> x

find> P? (xs :> x) | no _ = xs :> x , []

Given a step and a letter, we use find> to find the right position for the letter in thestep.
Algorithm A.6 (insert-s).
insert-s : Step → A → Step

insert-s s a =

let ls , rs = find> (\ _ b → a ≺? b) s in

ls :> a +> rs

Notice that we use find> with a predicate that ignores the context. The step s is splitinto ls and rs so that everything in rs is greater than a and the rightmost letter in ls isnot. We assume that the ordering relation≺ is decidable, with≺? as the decider. Hence
a ≺? b is either yes (together with a proof of a ≺ b) or no (together with a proof of
¬(a≺ b)).Given a normal form and a letter, we use find> to find the correct step for the letter.
Algorithm A.7 (insert).
insert : Foata → A → Foata

insert ss a with find> (\ tt t → �I? tt t a) ss

insert ss a | ls , [] = ls :> ([] :> a)

insert ss a | ls , rs :> r =

let s , rs' = first rs r in

ls :> insert-s s a +> rs'

Here find> splits the normal form into two parts, ls and rs, so that all the steps in
rs are independent of a and the rightmost step in ls is dependent (or ls is empty). If
rs is empty, then we add a new step to the normal form. Otherwise, we insert a into theleftmost step in rs (the function first extracts leftmost element in a non-empty snoc-list). We assume that the independence relation I is decidable, with a decider I?. Herewe use a derived decider �I? for deciding whether a step and a letter are independent inthe given context.The normalisation function just traverses the input string from the left to the right andinserts each letter into the correct position in the accumulated normal form.
Algorithm A.8 (norm).
norm' : Foata → String → Foata

norm' ss [] = ss

norm' ss (a <: t) = norm' (insert ss a) t

norm : String → Foata

norm t = norm' [] t

We continue with our example and look at the evolution of the accumulator as thestring bacd is normalised. First, the letter b is inserted into the empty normal form, re-sulting in the normal form (b). Next, the letter a is inserted into this normal form, whichresults in (ab) because of a I[] b. Next, the letter c is inserted into the result. We have
128

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#insert-s
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#insert
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#norm

a D[] c, which means that a new step must be added and the result is (ab)(c). We nowneed to insert d into the normal form. We have c Iab d and in addition we also have
a I[] d and b I[] d. This makes the first step the earliest possible step for d and the resultis (abd)(c).
Correctness
We have now defined the Foata normalisation function, but we have no assurance yetthat it produces well-formed Foata normal forms (i.e., elements of Foata satisfying the
FoataOk predicate). Furthermore, we have no assurance that the elements satisfying
FoataOk indeed are normal forms. We will now proceed to show that the function normconstructs a well-formed normal form from the input string and that the elements satis-fying FoataOk are in bijection with equivalence classes of strings.We start by showing that inserting a letter into a well-formed step gives a well-formedstep.
Lemma A.9 (insert-sOk). ∀ u s a →
StepOk u s → s �Iu a → StepOk u (insert-s s a)

Proof. Since s is a well-formed step, the letters in it are sorted wrt. ≺ and unique (byirreflexivity of the independence relation). By definition, insert-s splits s into ls and
rs so that a is less than every letter in rs and a is not less than the rightmost letter in ls.We also have that s and a are independent, which implies independence of ls and rs of
a. This allows us to construct StepOk u (ls :> a +> rs).

To outline what we need to do next, let us look at a small example. Suppose we havea normal form stuv consisting of steps s, t, u, and v, and we wish to insert the letter
a into this normal form. It so happens that a will go into the step t. This means that,instead of the old context st, the letters in umust now be independent in the new context
s(insert-s t a). Likewise, the letters in v must now be independent in the context
s(insert-s t a)u. Furthermore, every letter in v must now be supported by a letterin u in the context s(insert-s t a).To show that the independence of letters in a step is preserved during an insert thatinserts a letter into the context, we have the following lemma.
Lemma A.10 (step-ext). ∀ u s a →
StepOk u s → s �Iu a → StepOk (u :> a) s

Proof. Since s is a well-formed step, we know that for any two distinct letters b and c from
swe have b Iu c. We also have b Iu a and c Iu a. Using I-co2-e, we can derive b Iu:>a c.Thismeans that pairwise independence of letters in s is preserved in the extended contextand the step is still well-formed.

Next, we are considering the situation where we are inserting the letter a into thenormal form ss :> s :> t and we have determined that a must go into a step in ss.We wish to show that the letters in t are still supported after the insert. We use PW Iu sto express that the predicate Iu holds between any two letters in s, i.e., the letters in sare pairwise independent in the context u. The normal form ss is considered here as thecontext u and b is a letter from the step t.
Lemma A.11 (�D-ext-lem). ∀ u s a b →
b Iu+>s a → PW Iu s → s �Iu a → s �Du b → s �Iu:>a b → ⊥

129

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#insert-sOk
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormalForms.html#step-ext
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.TraceProperties.html#%E2%97%86D-ext-lem

Proof. From the assumptions, we have that there is a letter d in s such that d Du b andthis dmust also satisfy d Iu a and d Iu:>a b. We have derived a version of I-co1 (named
�I-co1) that decreases the context not by a letter but by a step. We use this on s �Iu a,
a Iu+>s b, s �Iu:>a b and PW Iu s to derive a Iu b. We use I-co2-r on d Iu a, a Iu b, and
d Iu:>a b to get d Iu b. This contradicts d Du b.

This shows that, under suitable conditions, we can add a letter to the end of the contextand still have a supporting letter in the previous step. From I-cons, we know that thissupport is then preserved for any equivalent context. To show that insert preservesthe equivalence class, we first show that we can “slide” an independent letter past a stepwithout changing the equivalence class.
Lemma A.12 (slide-step). ∀ u s a →
s �Iu a → PW Iu s → s2c (u +> s :> a) ∼∗

[]
s2c (u :> a +> s)

Proof. The proof is by induction on s. In the casewhere s = s' :> b, we have s' �Iu a,
b Iu a, PW Iu s', s' �Iu b and we get b Iu+>s' a by a derived version of I-co2-e that al-lows us to extend the context by a step. This allows us to swap b and a in the string
u +> s' :> b :> a to obtain u +> s' :> a :> b and then apply induction hypoth-esis.
Lemma A.13 (insert-lem). ∀ ss a →
FoataOk ss → emb (insert ss a) ∼∗

[]
emb ss <+ [a]

Proof. The proof follows the analysis of ss done by insert. When a new singleton step isadded (ss is empty or ends with a step that supports a), then the two sides are equal andwe are done. When a is inserted into the last step s, then s and a must be independentands is split intols andrs. According toslide-step, we can slideapastrs to the endofthe normal formwithout changing the equivalence class. Whena is inserted into an earlierstep, then we use induction hypothesis to slide the letter a from its inserted position tothe beginning of the last step and, since a and the last step must have been independentto begin with, we can slide it past that step to the end of the normal form.
Lemma A.14 (sup-insert-lem). ∀ ss s a b →
FoataOk (ss :> s) → a Iconcat>(ss:>s) b →
¬ Sup (ss :> s) b → ¬ Sup ss b → Sup (ss :> s) a →
Sup (insert (ss :> s) b) a

Proof. Since neither ss :> s nor ss support b, we know that insert (ss :> s) b isthe same as insert ss b :> s. Thus we need to show Sup (insert ss b :> s) a.Since Sup (ss :> s) a just denotes the existence of a dependent letter in s, we use
�D-ext-lem to show that it cannot be the case thats �Iconcat>ss:>b a. Frominsert-lemwe know that this context is equivalent to concat> (insert ss b) and so there muststill be a supporting letter in s after the insert, thus Sup (insert ss b :> s) a.
Lemma A.15 (insertOk). ∀ ss a → FoataOk ss → FoataOk (insert ss a)

Proof. The proof follows the analysis of ss done by insert. When a letter a is insertedinto a particular step s, then insert-sOk ensures that the resulting step is valid. When
insert goes past a step s with the letter a, then step-ext ensures that the step sis still valid in the context extended with a and insert-lem ensures that s is valid af-ter the insert. When insert goes past two steps, s and t, with the letter a, then
sup-insert-lem ensures that all the letters in t are still supported by s in the contextresulting from the insert.

130

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.TraceProperties.html#%E2%97%BCI-co1
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#slide-step
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#insert-lem
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#sup-insert-lem
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#insertOk

Lemma A.16 (norm'Ok). ∀ ss t → FoataOk ss → FoataOk (norm' ss t)

Proof. The proof is by induction on t and just applies insertOk in the step case.
Proposition A.17 (normOk). ∀ t → FoataOk (norm t)

The correctness proof of the normalisation algorithm consists of the proofs of thesoundness and completeness properties. By soundness we mean that equivalent stringsmust get assigned the same normal form. By completeness we mean that any two stringsthat get assigned the same normal form must be equivalent. With these properties wehave a bijection between equivalence classes of strings and elements in the image of thenormalisation function. We also show that the set of elements satisfying the FoataOkpredicate is contained in the image of the normalisation function.The key lemma for completeness is that the result of normalising a string (and thenembedding it) is equivalent to that string. In other words, every string has a normal form.
Lemma A.18 (nf-exists'). ∀ ss t →
FoataOk ss → emb (norm' ss t) ∼∗

[]
emb ss <+ t

Proof. The proof is by induction on t. In the step case, we use insertOk to show thatinserting the first letter of t into ss is a normal form and then apply induction hypothesis.The equivalence follows from insert-lem.
Proposition A.19 (nf-exists). ∀ t → emb (norm t) ∼∗

[]
t

Corollary A.20 (completeness). ∀ t t' → norm t = norm t' → t ∼∗
[]

t'

Proof. Apply nf-exists to both t and t'.
To prove soundness of the normalisation algorithm, we first show the commutativity ofthe normalisation algorithm for independent letters. We start by showing that the orderin which we insert two independent letters into a step does not matter.

Lemma A.21 (insert-s-commutes). ∀ u s a b →
StepOk u s → a Iu+>s b → s �Iu a → s �Iu b →
insert-s (insert-s s a) b = insert-s (insert-s s b) a

Proof. By insert-sOk, we know that insert-s produces well-formed steps. The lettersin a well-formed step are sorted wrt. ≺ and unique. This means that the two ways toinsert the two letters must result in the same step. Hence the order of the inserts doesnot matter.
Lemma A.22 (insert-commutes). ∀ ss a b →
FoataOk ss → a Iconcat>ss b →
insert (insert ss a) b = insert (insert ss b) a

Proof. There are three cases to consider: both letters are supported by ss, only one ofthem is, or neither of them is.In the first case, a new step is added nomatter whether we insert a first or b first. Since
a and b are independent and supported by ss, both of them end up in the new step. Theorder in which the letters are inserted into the new step does not matter as the resultmust agree with the ordering on the alphabet.In the second case, say that a is the letter supported by ss. When we first insert aand then b, then a singleton step for a is added. Since a and b are independent and

131

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#normOk'
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#normOk
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#nf-exists'
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#nf-exists
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#completeness
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.InsertStepProperties.html#insert-s-commutes
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.InsertProperties.html#insert-commutes

b is not supported by ss, it must be that b is inserted to some step in ss, i.e., we have
insert (ss :> [a]>) b = insert ss b :> [a]>. This step is the samewhere
bwould be inserted if it were inserted first. Since a is supported by ss, then insert ss bmust also support a (this follows from sup-insert-lem) and thus a new singleton stepmust be added also in this case.In the third case, both letters are inserted into ss. Since ss cannot be empty, we take
ss = ss' :> s. Here we perform another case analysis on into which steps the lettersgo. If both go into s, thenwe apply insert-s-commutes. If one of the letters, say b, goesinto ss' and the other into s, then we argue similarly to the second case: if a is supportedby ss', then it is also supported by insert ss' b, and, if s and b are independent, thenso are insert-s s a and b. Thus the order of inserts does not matter. If both a and bgo into ss', then we apply induction hypothesis.
Lemma A.23 (norm'-commutes). ∀ ss a b →
FoataOk ss → a Iconcat>ss b →
norm' ss (a <: b <: []) = norm' ss (b <: a <: [])

Proof. This follows from insert-commutes.
Lemma A.24 (norm'-append). ∀ ss s t →
norm' ss (s <+ t) = norm' (norm' ss s) t

Proof. By induction on s.
Lemma A.25 (sound∼). ∀ ss t t' →
FoataOk ss → t ∼concat>ss t' → norm' ss t = norm' ss t'

Proof. We have that t and t' differ only by the ordering of two adjacent independentletters, i.e., t = uabv and t' = ubav for some u, v, a and b. The result follows from
norm'-commutes (norm' ss u) a b. We use norm'-append twice on both sides toget the result.
Lemma A.26 (soundness'). ∀ ss t t' →
FoataOk ss → t ∼∗concat>ss t' → norm' ss t = norm' ss t'

Proof. By induction on t∼∗concat>ss t'.
Proposition A.27 (soundness). ∀ t t' → t ∼∗

[]
t' → norm t = norm t'

The soundness and completeness proofs give us a certified decision procedure forcheckingwhether two strings are equivalent: normalise the two strings and checkwhetherthe normal forms are the same.
Algorithm A.28 (equivalent?).
equivalent? : (t t' : String) → Dec (t ∼∗

[]
t')

equivalent? t t' with foata-eq? (norm t) (norm t')

equivalent? t t' | yes feq = yes (completeness feq)

equivalent? t t' | no ¬feq = no (\ eqv → ¬feq (soundness eqv))

This procedure will either return yes, together with instructions how to turn u into v(which letters need to be exchanged), or no, together with a proof that it is not possibleto turn u into v. Here foata-eq? uses the decidable equality on the alphabet to decidewhether the two normal forms are the same.
132

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#norm'-commutes
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#norm-append
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#sound%E2%88%BC
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#sound*
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#soundness
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#equivalent?

We also have that the normalisation function is stable in the sense that normalising anormal form produces the same normal form. In other words, every normal form is thenormal form of something.
Proposition A.29 (stability). ∀ ss → FoataOk ss → norm (emb ss) = ss

Proof. This is by induction on the normal form. In the non-empty case, we have to showthat renormalising a step s in the context of the preceding normal form ss' results inthe same step. This is the case since we started with a normal form and thus the step iswell-formed and every letter in the step is supported by the preceding normal form. Byinduction hypothesis, we know that renormalising ss' results in ss'. Since letters from sare supported by ss', this means that no letter from s can be inserted into ss'. Similarly,all the letters from s fit into the same step. Hence the result is s.
Finally, we have that two normal forms (more precisely, their embeddings) can beequivalent only if the normal forms are the same.

Corollary A.30 (nf-unique). ∀ ss ss' →
FoataOk ss → FoataOk ss' → emb ss ∼∗

[]
emb ss' → ss = ss'

Proof. This follows from stability and soundness.
Generalised Lexicographic Normalisation
In this section, we give a characterisation of lexicographic normal forms for generalisedtraces and the corresponding normalisation algorithm. We conclude with the correctnessproof of the normalisation algorithm.
Normal Forms
We represent a “raw” lexicographic normal form as a snoc-list of letters (List> A). Theembedding function emb of normal forms into strings is s2c.We consider a list of letters to be a well-formed lexicographic normal form when eachletter in it is in a valid position. Similarly to the previous section, a letter is in a validposition in a normal form if it is supported by the preceding normal form.
Definition A.31. Sup : List> A→ A→ Set

P-ne (\ s' b → b Ds' a) s

Sup s a
D-sup

Sup s a b Is a b≺ a

Sup (s :> b) a
I-sup

Hence a letter is supported by a (snoc-)list if either the list is empty or ends with adependent letter or the tail of the list supports the letter and the head is independentof and smaller than the letter. A list of letters is a well-formed lexicographic normal formwhen every letter in the list is supported.
Definition A.32. LexOk : List> A→ Set

LexOk []
nil

LexOk s Sup s a

LexOk (s :> a)
snoc

133

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#stability
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#nf-uniq
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#Sup.D-sup
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#Sup.I-sup
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#LexOk.nil
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#LexOk.snoc

We continue with our example and show that abcd is a lexicographic normal form(according to our definition). From LexOk [] and Sup [] a, we get LexOk a. Next, weget Sup a b from Sup [] b using I-sup and thus get LexOk ab. We have Sup ab cby D-sup and b Da c, resulting in LexOk abc. Finally, we get Sup abc d from Sup [] dby applying I-sup three times. Thus the list abcd is a well-formed normal form.We now define what is a “chain” of independent letters wrt. a letter.
Definition A.33. CI : List> A→ List> A→ A→ Set

[] CIu a

b Iu+>s a s CIu a

(s :> b) CIu a

When s is a chain of independent letters wrt. a, then we can “slide” a past s, i.e., wehave the following equivalence: emb (s :> a) ∼∗u a <: emb s.The characterisation of lexicographic normal forms by Anisimov and Knuth [9] forbidsthe “bua” pattern. Our definition also forbids this pattern in the generalised case.
Proposition A.34 (LexOk-bua). ∀ t u v a b →
LexOk (t :> b +> u :> a +> v) → a It b → a≺ b → u CIt:>b a → ⊥

Proof. The proof is by induction on v. In the empty case, we have that a is supported bysomething since it is the last letter in a normal form. The actual supportmust come from tsince a is independent of both b and u (in the relevant contexts). This howevermeans that
b ≺ a since the support for amust have been constructed by I-sup. This contradicts ourassumption. In the case where v is non-empty, we apply induction hypothesis.

We use the strict total order ≺ on A to define the corresponding lexicographic orderrelation on strings, both in the non-strict and strict versions, and prove that it is a totalorder.
Definition A.35. �Lex: String→ String→ Set

[]�Lex t
nil

a≺ b
a <: s�Lex b <: t

lt
a= b s�Lex t

a <: s�Lex b <: t
eq

Lemma A.36 (antisym-�Lex). The relation�Lex is antisymmetric.
By definition, the lexicographic normal form is the least element in its equivalence classwrt. the lexicographic order�Lex. Here we show that the normal forms we have definedare indeed lexicographically smaller than any other string in their equivalence class.

Lemma A.37 (LexOk-lex'). ∀ u s t →
LexOk (u +> s) → emb s ∼∗u t → emb s �Lex t

Proof. The proof is by induction on the strings s and t. If both are empty, then we aredone since [] �Lex []. In the cases where one is empty and the other is not, we have acontradiction since equivalent strings must have the same length. In the case where bothare non-empty (a <: emb s and b <: t), we perform case analysis on the head ele-ments. If a ≺ b, then we are done. If b ≺ a, then we have a contradiction since bmustbe somewhere in emb s (by the equivalence) and the letters before b (including a) mustbe independent with it. This creates a forbidden pattern in u +> s. In the case of a = b,we get by induction hypothesis, after moving a to the context u, that emb s �Lex t.
Proposition A.38 (LexOk-lex). ∀ s t →
LexOk s → emb s ∼∗

[]
t → emb s �Lex t

134

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#LexOk-bua'
http://cs.ioc.ee/~hendrik/code/phd/isse/Utils.LexOrd.html#_Lex-%E2%89%A4_
http://cs.ioc.ee/~hendrik/code/phd/isse/Utils.LexOrd.html#_Lex-%E2%89%A4_
http://cs.ioc.ee/~hendrik/code/phd/isse/Utils.LexOrd.html#_Lex-%E2%89%A4_
http://cs.ioc.ee/~hendrik/code/phd/isse/Utils.LexOrd.html#Lex-%E2%89%A4-antisym
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#LexOk-lex'
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#LexOk-lex

NormalisationThe main ingredient in the normalisation algorithm is a function that inserts a letter intoits correct position in a list (which is assumed to be a well-formed normal form). Given astring s and a letter a, the idea is to split the string s into three parts: sd, sp, and si sothat sd ends with a letter dependent on a, all letters in sp are independent of and lessthan a, and letters in si are independent of a and the first letter of si is greater than a.
Algorithm A.39 (findPos).
findPos : List> A → A → List> A × List> A × List> A

findPos [] a = [] , [] , []

findPos (s :> b) a with I? s b a

findPos (s :> b) a | no _ = s :> b , [] , []

findPos (s :> b) a | yes _ with findPos s a

findPos (s :> b) a | yes _ | sd , sp , si :> i =

sd , sp , si :> i :> b

findPos (s :> b) a | yes _ | sd , sp , [] with b ≺? a

findPos (s :> b) a | yes _ | sd , sp , [] | no _ =

sd , sp , [] :> b

findPos (s :> b) a | yes _ | sd , sp , [] | yes _ =

sd , sp :> b , []

The function findPos implements the described functionality. Like before, we assumethat the independence relation I and the order relation≺ are decidable, with deciders I?and ≺?. The insert function now just plugs the letter between sp and si in the resultof findPos.
Algorithm A.40 (insert).
insert : List> A → A → List> A

insert s a =

let sd , sp , si = findPos s a in

sd +> sp :> a +> si

The normalisation algorithm just traverses the input string letter by letter and insertsthe letters into the accumulating normal form, just as in Foata normalisation.
Algorithm A.41 (norm).
norm' : List> A → String → List> A

norm' s [] = s

norm' s (a <: t) = norm' (insert s a) t

norm : String → List> A

norm t = norm' [] t

We continue with our example and look at what are the intermediate steps when nor-malising bacd. First, when inserting b into the empty normal form, insert splits it into
[], [], [] and the result is b. Next, when inserting a, the normal form b is split into
[], [], b since a ≺ b and b I[] a. The result is ab. When inserting c into ab, the splitis ab, [], [] and the result is abc. Finally, when inserting d into abc, the split is thetriple [], abc, [] and thus the result is abcd.

135

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#findPos
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#insert
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#norm

CorrectnessWe have now defined the lexicographic normalisation algorithm. This produces “raw”normal forms, i.e., just snoc-lists. Next we show that the snoc-lists constructed by thenormalisation function are well-formed normal forms in the sense that they satisfy thepredicate LexOk. We then show that the strings satisfying LexOk are in bijection with theequivalence classes of strings.We begin with a couple of lemmas exhibiting that findPos behaves as expected. Thefirst lemma says that findPos just splits the input string.
Lemma A.42 (findPos-split). ∀ s a →
let sd , sp , si = findPos s a in

sd +> sp +> si = s

Proof. From the definition of findPos it is clear that it does not rearrange the letters in
s (b always stays to the right of the result of the recursive call to findPos). The proof justfollows the analysis of s done by findPos.

The next lemma ensures that the si component in the result of findPos consists of a“chain” of independent letters.
Lemma A.43 (findPos-I). ∀ s a →
let sd , sp , si = findPos s a in

si CIsd+>sp a

Proof. Here the proof also follows the analysis of s done by findPos. When b is addedto the si component in the result, then we know that b and a must be independent.Induction hypothesis is used when the si component of the result of the recursive call isnon-empty.
The next lemma ensures that the leftmost letter of si in the result of findPos isgreater than the letter a. The proposition a ≺first si holds when a is less than thefirst letter of si.

Lemma A.44 (findPos-≺first). ∀ s a →
let _ , _ , si = findPos s a in

a ≺first si

Proof. From the definition of findPos we see that when the first letter is added to the
si component, then it must be greater than a since it is not smaller than a and cannot beequal by irreflexivity of independence.

We now show that insert preserves the equivalence class in the following sense:the normalisation algorithm uses insert in the situation where a prefix s has been nor-malised to nf and the suffix a <: t is yet to be normalised. Then insert will find theright place for a in nf such that the result of is equivalent to nf :> a.
Lemma A.45 (insert-lem). ∀ s a →
emb (insert s a) ∼∗

[]
emb s <+ [a]

Proof. By definition insert plugs the letter a between sp and si. From findPos-Iwe get that si is a chain of independent letters and thus we can move a past it withoutchanging the equivalence class.
The next lemma ensures that under certain conditions the support of a letter is pre-served when another letter is inserted into the supporting string.

136

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#findPos-split
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#findPos-I
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#findPos-<first
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#insert-lem

Lemma A.46 (slideSup). ∀ s ii i b a →
Sup (s +> ii :> i) a → (ii :> i) CIs b →
b Is+>ii:>i a → b ≺first (ii :> i) →
Sup (s :> b +> ii :> i) a

Proof. The proof is by induction on Sup (s +> ii :> i) a. The base case is D-sup,which means that we have i Ds+>ii a and we need to show that i Ds:>b+>ii a. This fol-lows from I-co1 and I-cons. In the I-sup case, we have i Is+>ii a, but we do notknow which is the dependent letter that supports a. If ii is empty, then b is insertedimmediately before i and we construct I-sup using I-co2-r and I-co2-e. In the non-empty case, we construct the support from induction hypothesis and use I-co2-r and
I-co2-e to show that i and a are still independent when the head of ii is added to thesupport.
Lemma A.47 (insertOk). ∀ s a → LexOk s → LexOk (insert s a)

Proof. The proof follows the analysis of s done by findPos. The result follows from
slideSup and the preceding lemmas about findPos.
Lemma A.48 (norm'Ok). ∀ s t → LexOk s → LexOk (norm' s t)

Proof. The proof is by induction on t and applies insertOk in the step case.
Proposition A.49 (normOk). ∀ t → LexOk (norm t)

Thus we have that the set of strings which satisfy the predicate LexOk (i.e., the normalforms) contains the image of the normalisation function. We continuewith the soundnessand completeness properties of the normalisation algorithm. By soundness wemean thatequivalent strings get assigned the same normal form. By completeness we mean thatany two strings that get assigned the same normal form must be equivalent. With thesepropertieswehave a bijection between equivalence classes of strings and the image of thenormalisation function. We also show that the set of strings which satisfy the predicate
LexOk is contained in the image of the normalisation function.The key lemma for the completeness proof is that the result of normalising a string isequivalent to that string. In other words, every string has a normal form.
Lemma A.50 (nf-exists'). ∀ s t → emb (norm' s t) ∼∗

[]
emb s <+ t

Proof. The proof is by induction on t. In the step case, we use induction hypothesis to-gether with insert-lem to show that inserting the first letter of t into s does not changethe equivalence class.
Proposition A.51 (nf-exists). ∀ t → emb (norm t) ∼∗

[]
t

Corollary A.52 (completeness). ∀ t t' → norm t = norm t' → t ∼∗
[]

t'

Proof. Apply nf-exists to both sides of the equation.
Continuing towards soundness, we first prove the uniqueness of normal forms.

Proposition A.53 (nf-unique). ∀ s s' →
LexOk s → LexOk s' → emb s ∼∗

[]
emb s' → s = s'

Proof. By LexOk-lex we obtain from the assumptions both emb s �Lex emb s' and
emb s' �Lex emb s, from which, by antisymmetry of�Lex, we have emb s = emb s'.Since emb = s2c is injective (inverted by c2s), s = s' follows.

137

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#slideSup
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#insertOk
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#norm'Ok
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#normOk
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#nf-exists'
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#nf-exists
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#completeness
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#nf-uniq

Corollary A.54 (soundness). ∀ t t' → t ∼∗
[]

t' → norm t = norm t'

Proof. By nf-exists both t and t' have a normal form and by assumption these areequivalent, i.e., we have emb (norm t) ∼∗
[]

emb (norm t'). The result follows fromthis by nf-unique and normOk.
From uniqueness of normal forms we also get the stability of the normalisation algo-rithm, i.e., every normal form is the normal form of something. Thus the set of normalforms is contained in the image of the normalisation function.

Corollary A.55 (stability). ∀ s → LexOk s → norm (emb s) = s

Proof. This follows from nf-unique, normOk and nf-exists.
An alternative approach to soundness would have been to prove the following lemma.

Lemma A.56 (insert-commutes). ∀ s a b →
LexOk s → a Is b → insert (insert s a) b = insert (insert s b) a

This leads to soundness, stability and uniqueness similarly to what we did for Foatanormal forms.Finally, we can now prove the converses of LexOk-lex and LexOk-bua showing thatthe least string in its equivalence class is the lexicographic normal form and that a stringwith no forbidden patterns is a lexicographic normal form.
Proposition A.57 (lex-LexOk). ∀ s →
(∀ t → emb s ∼∗

[]
t → emb s �Lex t) → LexOk s

Proof. By nf-exists we have that emb s ∼∗
[]

emb (norm (emb s)). Thus, by as-sumption, emb s �Lex emb (norm (emb s)). At the same time, by normOk we have
LexOk (norm (emb s)), from which emb (norm (emb s)) �Lex emb s follows by
LexOk-lex. By antisymmetry of�Lex, we have emb s = emb (norm (emb s)). As embis injective, this entails s = norm (emb s). Since we have LexOk (norm (emb s)),then we also have LexOk s.
Proposition A.58 (bua-LexOk). ∀ s →
(∀ t u v a b →

t :> b +> u :> a +> v = s → a It b → a ≺ b → u CIt:>b a → ⊥) →
LexOk s

Proof. If s = norm (emb s), then the result follows by normOk. If not, then we canfactor the two as s = tbuav and norm (emb s) = tau'bv'. By nf-exists, we have
emb tbuav ∼∗

[]
emb tau'bv'. The letter after t is the first position where the twodiffer (a 6= b). We have a It b, u CIt:>b a and u' CIt:>a b since norm hasmoved thempast each other. If a ≺ b, then we contradict the assumption that there are no forbiddenpatterns in s. If b ≺ a, then there is a forbidden pattern in norm (emb s), which is anormal form and thus, by LexOk-bua, does not contain a forbidden pattern.

138

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#soundness
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#stability
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#lex-LexOk
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#bua-LexOk

Acknowledgements
I am very grateful to my supervisor for his care and encouragement during my studies.Also, I am thankful to my colleagues at the institute for the nice atmosphere they haveprovided. I am also grateful to my friends for helping me relax and unwind. Most of all, Iam indebted to my family for my upbringing.My doctoral studies and the research reported herewas supported by the ERDF fundedEstonian national CoE project EXCITE (2014-2020.4.01.15-0018), the Estonian Ministry ofEducation and Research institutional grant no. IUT33-13, the Estonian IT Academy pro-gramme, the ERDF funded Dora Pluss programme, the EU COST action CA15123 (EUTYPES)and the Estonian Research Council/Campus France Estonian-French research cooperationprogramme Parrot.

139

Abstract

Operational Semantics of Weak Sequential Composition
In this dissertation, we propose an operational semantics where the effect of sequentialcomposition can be relaxed for certain pairs of instructions. This allows, in the program
p;q, to start with the execution of q even when p is not yet fully executed. Themotivationfor this work is that programs are often executed in a similarly relaxed manner: modernhardware often allows out-of-order execution and compiler optimisations can also movecode around. When the effects of such optimisations become visible in a system, thenthe system is said to have a weak consistency model. This is often referred to as weak orrelaxed memory models.Our approach is to consider the set of possible instructions as an alphabet and usean independence relation on the alphabet (as in Mazurkiewicz traces) to describe thosepairs of instructions that can be reordered during execution. We represent programs asregular expressions over the alphabet of instructions and consider program executions tobe words over this alphabet.As a first step, we develop reordering derivatives. More precisely, we provide syntac-tic derivative-like operations, defined by recursion on regular expressions, in the stylesof both Brzozowski and Antimirov, for trace closures of regular languages. Just as theordinary Brzozowski and Antimirov derivative operations correspond to the standard in-terpretation of regular expressions as regular languages, the derivative operations we de-velop here correspond to a non-standard interpretation of regular expressions as trace-closed languages. Similarly, these derivative operations can also be used to constructdeterministic and non-deterministic automata, respectively. The trace-closing interpreta-tion of regular expressions, however, does not yield a regular language in general, hencethese automata cannot be finite in general.We show that for star-connected expressions the Antimirov and Brzozowski automata,suitably quotiented, are finite. Furthermore, we also define a refined version of the An-timirov reordering derivative operation where parts-of-derivative (states of the automa-ton) are nonempty lists of regular expressions rather than single regular expressions. Wedefine the uniform scattering rank of a language and show that, for an expression whoselanguage has finite uniform scattering rank, the truncation of the (generally infinite) re-fined Antimirov automaton, obtained by removing long states, is finite without any quo-tienting, but still accepts the trace closure. We also show that star-connected languageshave finite uniform scattering rank.The operational semantics is then based on the Antimirov reordering derivative. Toaccomplish this we add parallel composition to the syntax, we let go of the requirementthat the independence relation has to be symmetric, we thread machine states throughthe rules and we interpret letters of the alphabet as state transformers.Representing executions as words allows the use of normal forms of Mazurkiewicztraces to alleviate the combinatorial explosion caused by reordering and interleaving theinstruction sequences of different threads. We do this by eagerly discarding non-normal-form executions.The specification of some memory models might require us to say that two instruc-tions are independent in some state but not in others. With this in mind, we also developFoata and lexicographic normal forms and corresponding normalisation algorithms for ageneralisation of traces introduced by Sassone et al. and formalise it in Agda. This gen-eralisation of traces makes the independence relation depend on a word parameter rep-resenting the left context which can be seen as a form of state. This context-dependent

140

approach can lead to larger equivalence classes. As a consequence, there are also morenon-normal-form executions which can be discarded.We then further extend the operational semantics to allow more intricate behaviours.For example, we will say that the semicommutation relation can be context-dependent(two instructions might commute in some machine state but not in others). We also con-sider what we call reordering actions. These allow us to describe how the reorderingof two instructions might modify these instructions. We also add the possibility to exe-cute an instruction in multiple steps. As an experiment, we describe a fragment of themulticopy-atomic ARMv8 memory model in this framework and validate a prototype im-plementation of the instantiation of the framework against thememorymodel simulationtool herd on a number of litmus-tests.

141

Kokkuvõte

Nõrga jadakompositsiooni operatsioonsemantika
Käesolevas doktoritöös arendame välja operatsioonsemantika, kus jadakompositsioonitoime teatud käsupaaridel võib olla lõtv ehk mitte täiesti järjestikune. See tähendab, etprogrammis p;q on võimalik q täitmist alustada juba siis, kui p ei ole veel lõpuni täidetud.Selle töö ajendiks on asjaolu, et programme sageli täidetaksegi taolisel lõdval viisil: kaas-aegne riistvara lubab käskude täitmist “väljaspool järjekorda” ning samuti võivad kompi-laatorid programmikoodi muuta. Kui taolised optimisatsioonid muutuvad süsteemis näh-tavaks, siis see süsteem järgib nõrka kooskõlamudelit. Sageli öeldakse siis, et tegu on nõrgavõi lõdva mälumudeliga.Selles töös me käsitleme võimalike käskude hulka kui tähestikku ning kirjeldame üm-berjärjestatavad käsupaarid sõltumatuse seosega sellel tähestikul naguMazurkiewiczi jäl-gede teoorias. Programme esitameme regulaaravaldistena sellel tähestikul ning program-mijooksud on sõnad samuti sellel tähestikul.Esimese sammuna taolise operatsioonsemantika suunas me töötame välja ümberjär-jestavad tuletised. Teisisõnu, me defineerime regulaarkeelte jälgsulundite jaoks nii Brzo-zowski kui ka Antimirovi stiilis süntaktilised, regulaaravaldistel opereerivad, tuletiselaad-sed tehted. Nii nagu tavalised Brzozowski ja Antimirovi tuletised vastavad regulaarvaldis-te harilikule interpretatsioonile regulaarkeeltena, vastavad meie poolt defineeritud üm-berjärjestavad tuletised regulaaravaldiste ebaharilikule interpretatsioonile regulaarkeeltejälgsulunditena. Samuti on võimalik ka ümberjärjestavaid Brzozowski ja Antimirovi tule-tisi kasutada regulaaravaldisest deterministliku ja mittedeterministliku automaadi moo-dustamiseks. Need automaadid aktsepteerivad avaldise keele jälgsulundi. Kuna aga regu-laarkeele jälgsulund ei ole üldjuhul regulaarne, ei saa ka need automaadid üldjuhul ollalõplikud.Lisaks me näitame, et piisaval faktoriseerimisel on tärn-sidusate avaldiste Antimirovija Brzozowski automaadid lõplikud. Me defineerime Antimirovi ümberjärjestavast tuleti-sest ka rafineeritud variandi, kus üksikute avaldiste asemel on tuletise osadeks (automaa-di olekuteks) mittetühjad avaldiste loendid. Me defineerime ka ühtlase laotusastaku ningnäitame, et avaldiste korral, mille keelel on lõplik ühtlane laotusastak, on avaldise kärbitudrafineeritud Antimirovi automaat lõplik, on seda täiesti faktoriseerimata ning aktseptee-rib avaldise keele sulundi. Kärpimine eemaldab automaadist pikad olekud. Lisaks näitameka, et tärn-sidusatel avaldistel on lõplik ühtlane laotusastak.Meie kirjeldatav operatsioonsemantika põhineb eelnimetatud Antimirovi ümberjärjes-taval tuletisel. Selleks lisame avaldiste hulka paralleelkompositsiooni, loobume nõude-st, et sõltumatuse seos peab olema sümmeetriline ning põimime masina olekud tuletisereeglitesse ja interpreteerime tähti olekuteisendajatena.Programmijooksude esitamine sõnadena võimaldab käsujadade ümberjärjestamiselning seejärgsel vaheldamisel tekkiva kombinatoorse plahvatuse pehmendamiseks kasu-tada Mazurkiewiczi jälgede normaalkujusid. Selleks me katkestame programmijooksu ge-nereerimise niipea, kui märkame, et see pole normaalkujuline.Mõningate mälumudelite spetsifikatsioon võib nõuda, et teatud käsupaarid on ühesolekus sõltumatud, aga teisesmitte. Seda silmas pidades laiendame Foata ja leksikograafi-lised normaalkujud ning vastavad normaliseerimisalgoritmid ka Sassone jt. poolt definee-ritud jälgede üldistusele ning formaliseerime need Agdas. See jälgede üldistus parametri-seerib sõltumatuse seose sõnaparameetriga, mis esitab tähepaari vasakut konteksti. Sedakonteksti saab vaadelda ka kui olekut. Taoline kontekstitundlikkus võib viia suuremate ek-vivalentsiklassideni. Tulemusena saame rohkem mittenormaalkujulisi programmijookse,

142

mille võime varakult katkestada.Viimaks laiendamemekirjeldatudoperatsioonsemantikat veelgi, et võimaldada ka kee-rukamate programmikäitumiste esitamist. Näiteks lubame me kontekstitundlikke pool-kommuteeruvuse seoseid ehk et käsupaar võib ühes masina olekus olla ümberjärjestatav,aga teisesmitte. Me lubame ka ümberjärjestamise toimed, mis võimaldavadmeil kirjelda-da, kuidas käsupaari ümberjärjestamine võib neid käske muuta. Lisaks lubame me käsketäita ka mitme sammu kaupa. Selle raamistiku võimekuse proovile panekuks me kirjelda-me selles osa ARMv8 mälumudelist ning valideerime vastava prototüübi hulgal lakmus-testidel mälumudelite simuleerimistööriista herd suhtes.

143

Curriculum Vitae
Personal data

Name Hendrik MaarandDate and place of birth 27 October 1988, Tallinn, EstoniaNationality Estonian
Contact information

Address Department of Software Science, Tallinn University of TechnologyAkadeemia tee 21B, 12618, Tallinn, EstoniaE-mail hendrik@cs.ioc.ee
Education

2015–2020 Tallinn University of TechnologyInformation and Communication Technology, PhD studies2012–2014 Tallinn University of TechnologyInformatics, MSc studies2008–2011 Tallinn University of TechnologyInformatics, BSc studies
Language competence

Estonian nativeEnglish fluentRussian basic
Professional employment

2017–. . . Department of Software Science, Tallinn University of Technology2015–2016 Institute of Cybernetics, Tallinn University of Technology2010–2015 Proekspert AS
Papers

1. H. Maarand and T. Uustalu. Certified normalization of generalized traces. Innova-tions in Systems and Software Engineering, 15(3-4):253–265, 2019
2. H. Maarand and T. Uustalu. Reordering derivatives of trace closures of regular lan-guages. InW. J. Fokkink and R. van Glabbeek, editors, 30th International Conferenceon Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, theNether-lands, volume 140 of LIPIcs, pages 40:1–40:16. Schloss Dagstuhl - Leibniz-Zentrumfür Informatik, 2019
3. H. Maarand and T. Uustalu. Operational semantics with semicommutations. InT. Uustalu and J. Vain, editors, 31st NordicWorkshop on Programming Theory, NWPT2019, November 13-15, 2019, Tallinn, Estonia, Abstracts, pages 40–43. TTU, 2019
4. H. Maarand and T. Uustalu. Certified Foata normalization for generalized traces.In A. Dutle, C. A. Muñoz, and A. Narkawicz, editors, NASA Formal Methods - 10thInternational Symposium, NFM 2018, Newport News, VA, USA, April 17-19, 2018,Proceedings, volume 10811 of Lecture Notes in Computer Science, pages 299–314.Springer, 2018

144

5. H. Maarand and T. Uustalu. Generating representative executions [extended ab-stract]. In V. T. Vasconcelos and P. Haller, editors, Proceedings of the Tenth Work-shop on Programming Language Approaches to Concurrency- and Communication-cEntric Software, PLACES@ETAPS 2017, Uppsala, Sweden, 29th April 2017, volume246 of EPTCS, pages 39–48. Open Publishing Association, 2017

145

Elulookirjeldus
Isikuandmed

Nimi Hendrik MaarandSünniaeg ja -koht 27.10.1988, Tallinn, EestiKodakondsus Eesti
Kontaktandmed

Aadress Tallinna Tehnikaülikool, Tarkvarateaduse instituut,Akadeemia tee 21B, 12618, Tallinn, EestiE-post hendrik@cs.ioc.ee
Haridus

2015–2020 Tallinna TehnikaülikoolInfo- ja kommunikatsioonitehnoloogia, doktoriõpe2012–2014 Tallinna TehnikaülikoolInformaatika, magistriõpe2008–2011 Tallinna TehnikaülikoolInformaatika, bakalaureuseõpe
Keelteoskus

eesti keel emakeelinglise keel kõrgtasevene keel algtase
Teenistuskäik

2017– . . . Tarkvarateaduse instituut, Tallinna Tehnikaülikool2015–2016 Küberneetika instituut, Tallinna Tehnikaülikool2010–2015 Proekspert AS
TeadustegevusTeadusartiklite loetelu on toodud ingliskeelse elulookirjelduse juures.

146

	List of Publications
	Author's Contributions to the Publications
	Introduction
	Preliminaries
	Word Languages
	Regular Languages
	Mazurkiewicz Traces
	Normal Forms

	Properties of Trace Closures of Regular Languages
	Rational and Recognisable Languages of Monoids
	Star-Connected Expressions
	Derivatives of a Language
	Brzozowski Derivative
	Antimirov Derivative

	Small-Step Operational Semantics
	Axiomatic Models

	Reordering Derivatives
	Prefixes and Suffixes of Representatives of Traces
	Trace-Closing Semantics of Regular Expressions
	Reordering Derivatives
	Reordering Derivative of a Language
	Brzozowski Reordering Derivative
	Antimirov Reordering Derivative
	Automaton Finiteness for Star-Connected Expressions

	Uniform Scattering Rank of a Language
	Scattering Rank vs. Uniform Scattering Rank
	Star-Connected Languages Have Uniform Rank

	Antimirov Reordering Derivative and Uniform Rank
	Refined Antimirov Reordering Derivative
	Automaton Finiteness for Regular Expressions with Uniform Rank

	Related Work
	Conclusion and Future Work

	Normal Forms of Generalised Traces
	Motivation
	Generalised Mazurkiewicz Traces
	Generalised Foata Normalisation
	Normal Forms
	Normalisation
	Correctness

	Generalised Lexicographic Normalisation
	Normal Forms
	Normalisation
	Correctness

	Example: TSO-like Independence Alphabet
	Related Work
	Conclusion and Future Work

	Operational Semantics with Semicommutations
	Motivation
	Preliminaries
	Semicommutations
	Programs

	Reordering Semantics
	Word Language Interpretation of Programs
	Reorderability
	Operational Semantics
	Parallel-Independent Programs

	Example: While Language
	Partial-Order Reduction
	Representative Executions
	Normal Forms

	Extending the Framework
	Operational Semantics in Context
	Context-Dependent Semicommutation Relation
	Reordering Actions
	Non-Atomic Instructions
	Extensions and Partial-Order Reduction
	Context-Dependence of and Actions

	Example: TSO-like Memory Model
	Related Work
	Conclusion and Future Work

	Example: Multicopy-Atomic ARMv8
	Abstract Machine
	From Axiomatic to Operational
	Prototype
	Related Work
	Conclusion and Future Work

	Conclusions and Future Work
	Conclusions
	Future Work

	References
	Certified Normalisation of Generalised Traces
	Acknowledgements
	Abstract
	Kokkuvõte
	Curriculum Vitae
	Elulookirjeldus

