
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY

Department of Software Science

Maj-Annika Tammisto, 162768IABM

A RISK-BASED APPROACH TO STUDENT

SATELLITE SOFTWARE QUALITY

ASSURANCE ON THE EXAMPLE OF THE

TTU 100 SATELLITE MISSION CONTROL

SOFTWARE
Master`s thesis

Supervisor: Evelin Halling

 MSc

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Tarkvarateaduse instituut

Maj-Annika Tammisto, 162768IABM

RISKIPÕHINE LÄHENEMINE

TUDENGISATELLIIDI TARKVARA

KVALITEEDI TAGAMISELE TTU 100

SATELLIIDI MISSIOONIJUHTIMISE

TARKVARA NÄITEL
Magistritöö

Juhendaja: Evelin Halling

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Maj-Annika Tammisto

07.05.2018

4

Abstract

The purpose of this thesis is to create a methodical quality assurance plan for assuring the

quality of communication between the Mission Control Software (MCS) and Electrical

Power Supply (EPS) of TTU 100 Satellite that is designed, built and launched as part of

the TTU Mektory Nanosatellite Programme. Quality assurance is an important topic in

student satellite projects because of the high risk of mission failure that is associated with

them.

The methodology to be used for achieving the purpose is mainly based on syllabi of the

International Software Testing Qualifications Board (ISTQB) and includes risk

assessment, test process definition and usage of different testing techniques. In addition

to that, best practices from other spacecraft projects are considered and due to that model-

based testing is implemented as part of the Common Verification and Validation

Environment (CVE) of the MCS.

The limited resources of student projects such as building TTU 100 satellite is taken into

account when planning the structure of this thesis, therefore the thesis will not concentrate

on how spacecraft software quality is to be assured in perfect conditions. The actual

situation, including limited manpower, time, budget and lack of experience is considered

when moving towards the purpose of this thesis.

The basis of the quality assurance plan consists of two important building blocks: the

requirements that are defined for MCS in different documents and technical risks that are

identified, assessed and covered with risk mitigation activities. The quality assurance plan

exceeds the scope of traditional software test strategy and test plan documents as there

are requirements and risks that cannot be verified or mitigated with functional and non-

functional testing only.

The quality assurance plan structure shall be re-usable for other MCS modules and

potentially also other software to be developed in the TTU Mektory Nanosatellite

Programme or other student satellite projects.

5

This thesis is written in English and is 40 pages long, including 5 chapters, 9 figures and

14 tables.

6

Annotatsioon

Riskipõhine lähenemine tudengisatelliidi tarkvara kvaliteedi

tagamisele TTU 100 satelliidi missioonijuhtimise tarkvara

näitel

Käesoleva magistritöö eesmärk on luua TTÜ Mektory Satelliidiprogrammi raames

ehitatava TTÜ 100 satelliidi maapealse missioonijuhtimise tarkvara (MCS) ning satelliidi

pardal oleva elektroonilise toiteploki (EPS) omavahelise suhtluse kvaliteedi tagamiseks

metoodiline kvaliteedi tagamise plaan. Kõrgendatud tähelepanu pööramine kvaliteedi

tagamisele on tudengite satelliidiprojekti juures oluline, kuna sarnaste projektidega

kaasneb kõrge missiooni ebaõnnestumise risk.

Töö eesmärgi saavutamiseks kasutatav metoodika põhineb peamiselt International

Software Testing Qualifications Board (ISTQB) poolt väljastatud juhenditel ja sisaldab

riskihindamist, testiprotsessi kirjeldamist ning erinevate testitehnikate kasutamist. Sellele

lisaks arvestatakse teiste kosmosetööstuse projektide juures kasutatava praktikaga ning

rakendatakse missioonijuhtimise tarkvara testkeskkonna (CVE) loomisel mudelipõhist

testimist.

Töös arvestatakse tudengiprojektidele iseloomulike piiratud ressurssidega, mille tõttu

töös ei keskenduta sellele, kuidas kosmosetööstuses kasutatava tarkvara kvaliteedi

tagamine ideaalsetes tingimustes toimuma peab, vaid proovitakse leida optimaalseim

lahendus TTÜ 100 satelliidi ehitamise projekti ressursse ja iseärasusi arvesse võttes.

Kvaliteedi tagamise plaan põhineb kahel olulisel sisendil: missioonijuhtimise tarkvarale

kehtivad nõuded ning tuvastatud, hinnatud ning vastumeetmetega kaetud tehnilised

riskid. Selle tulemusena on kvaliteedi tagamise plaan laiapõhjalisem kui traditsioonilised

testistrateegia ja testiplaani dokumendid, kuna see arvestab ka nõuete ning riskidega,

mida ei ole võimalik vaid funktsionaalsete ja mittefunktsionaalsete testidega katta.

7

Käesoleva töö raames loodava kvaliteedi tagamise plaani struktuur on kasutatav ka teiste

missioonijuhtimise tarkvara moodulite ning potentsiaalselt ka muu TTÜ Mektory

Satelliidiprogrammi või teiste tudengisatelliidi programmide raames loodava tarkvara

jaoks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 40 leheküljel, 5 peatükki, 9

joonist, 14 tabelit.

8

List of abbreviations and terms

MCS Mission Control Software

TRL Technology Readiness Level

EPS Electrical Power Supply

ESA

ID

OBC

ISTQB

Ku-Band

IQ

UHF

CVE

TCP/IP

DOA

MC/DC

OWASP

MBT

SUT

RGB

NIR

FPGA

LED

PIC

API

GUI

TLE

European Space Agency

Identificator

On-Board Computer

International Software Testing Qualifications Board

10 GHz band

Quadrature modulated signal I & Q components

Ultra-High Frequency

Common Verification and Validation Environment

Transmission Control Protocol/Internet Protocol

Dead on Arrival

Modified Condition/Decision Coverage

Open Web Application Security Project

Model-Based Testing

System Under Test

Red, Green, Blue

Near Infrared

Field-Programmable Gate Array

Light-Emitting Diode

Programmable Interface Controller

Application Programming Interface

Graphical User Interface

Two-Line Element set

9

Table of contents

1 Introduction ... 13

1.1 Theoretical background .. 13

1.1.1 TTU Mektory Nanosatellite Programme ... 13

1.1.2 Nanosatellite .. 14

1.1.3 TTU 100 Satellite Mission Statement ... 15

1.1.4 Mission Control Software .. 15

1.2 Problem definition .. 17

1.3 Objective of the Master’s thesis ... 19

2 Requirement specifications ... 20

2.1 TRL 6 assessment guidelines ... 20

2.2 System requirements for the MCS.. 22

2.3 Requirements for the Common Verification and Validation Environment (CVE)

 .. 24

3 Risk analysis .. 25

3.1 Risk identification... 25

3.2 Risk assessment .. 28

3.3 Risk mitigation ... 34

4 Quality Assurance Plan: low-level communication between MCS and EPS 37

4.1 Requirements to be fulfilled ... 38

4.2 Risk mitigation activities to be considered ... 39

4.3 Test process .. 41

4.3.1 Planning, monitoring and control .. 41

4.3.2 Analysis and design ... 42

4.3.3 Implementation and execution .. 43

4.3.4 Evaluating exit criteria and reporting .. 47

4.3.5 Test closure activities .. 48

4.4 Compliance check ... 48

10

5 Summary .. 51

References .. 53

Appendix 1 – Thread Identification Protocol ... 55

Appendix 2 – Likelihood and Impact Definition Protocol ... 57

Appendix 3 – Testing and Verification Plan for Mission Control Software (MCS) 59

Appendix 4 – Low-level test cases for MCS communication with EPS 67

11

List of figures

Figure 1 - The space system [1] ... 13

Figure 2 - CubeSat specifications [3] ... 14

Figure 3 - General architecture of MCS [4]. .. 16

Figure 4 - Mission status for Hobbyist CubeSats in 2000-2015 [7] 18

Figure 5 – Technology Readiness Levels Diagram used by ESA [5] 21

Figure 6 – Three types of software risk [11] .. 26

Figure 7 – Test Cases Overview [18] ... 44

Figure 8 - DTRON deployment outline [21] .. 46

Figure 9 – Sample Uppaal model for communication between the MCS and EPS 46

12

 List of tables

Table 1 – TRL requirements for the MCS [5] .. 21

Table 2 – System requirements for the MCS [1] .. 22

Table 3 - Requirements for the Common Verification and Validation Environment

(CVE) [8] .. 24

Table 4 – Identified risks .. 27

Table 5 - Identified risks with categories ... 29

Table 6 – Likelihood scale definition [12] ... 31

Table 7 - Impact scale definition [12] .. 31

Table 8 – Risk Assessment Matrix ... 32

Table 9 – Risk mitigation activities for product risks with risk levels 1-3 35

Table 10 - Requirements applicable for MCS integration with EPS 38

Table 11 – Risk mitigation activities applicable for MCS integration with EPS 40

Table 12 – Test Conditions ... 42

Table 13 – Compliance check list... 49

Table 14 – Test Cases ... 67

13

1 Introduction

1.1 Theoretical background

1.1.1 TTU Mektory Nanosatellite Programme

The TTU Mektory Nanosatellite Programme is a pilot project started by TTU Mektory

Space Centre in the fall semester of 2014. The goal of this programme is to design a space

system which consists of a Space Segment (Satellite) and a Ground Segment as shown in

Figure 1 [1].

Figure 1 - The space system [1]

There are several teams working on this satellite project, each of which is responsible for

a specific field: Electronics, Optics, Software etc. The work of these teams is led by

academic supervisors [2].

14

1.1.2 Nanosatellite

Hundreds of satellites have been launched to space since the historic launch of Sputnik 1

in 1957. The space industry has traditionally produced large and sophisticated aircraft for

several decades, but recent advances in technology miniaturization have provided a low-

cost and low-power alternative with reduced size and complexity [3].

Created by Stanford and California Polytechnic State Universities in 1999, the CubeSat

standard specifies a standard 1U unit as a 10 cm cube (10×10×10 cm3) with a mass of up

to 1.33 kg [3].

CubeSats are divided to classes based on their mass as shown on Figure 2.

Figure 2 - CubeSat specifications [3]

15

The official name of the satellite built in the TTU Mektory Nanosatellite Programme is

“TTU 100 Satellite” and it is defined as “…a 1U size nanosatellite, according to CalPoly

Cubesat Design Specification, on Earth’s Sun Synchronous Orbit (~650km altitude)” [1].

This definition corresponds to the specification on Figure 2, based on which a 1U size

CubeSat is indeed a Nanosatellite.

1.1.3 TTU 100 Satellite Mission Statement

The mission statement of TTU 100 Satellite is to monitor the Earth, demonstrating the

technology that is necessary for this and conducting different scientific experiments on

board the satellite.

The payload of TTU 100 Satellite includes:

 A red, green and blue colour space (RGB) camera that provides coloured images

taken with visible light;

 A near-infrared (NIR) camera for monitoring climate and vegetation;

 A field-programmable gate array (FPGA) chip for testing fault tolerance of data

communication;

 Light-emitting diodes (LED) and laser diodes for evaluating different methods of

sending optical signals.

1.1.4 Mission Control Software

The Mission Control Software of the TTU 100 Satellite (hereinafter referred to as MCS)

is a part of the Ground Segment and it consists of five main components:

 Back-office (Spring Boot + AngularJS);

 Public web-based interface (Application Programming Interface (API) +

Graphical User Interface (GUI));

16

 Main calculation and planning module (Mission Planning, Orbit and Contact

Prediction, Orbital Data Module, Communication Module, Telemetry Module,

Remote Sensing Module, Monitoring);

 Message broker (ActiveMQ);

 Database (Postgres) [4].

Figure 3 - General architecture of MCS [4].

It enables the following actions:

 building the experiment schedule and showing the results of experiments

conducted on board of the satellite;

 exchanging data and files with the satellite;

17

 sharing information (satellite position over world map, latest time of contact etc.)

with the publicity via a public web-based interface;

 receiving ultra-high frequency (UHF) telemetry data from other radio amateurs;

 providing a satellite orbit propagation interface to external clients;

 providing satellite orbit propagation data to the Ground Station system over

Transmission Control Protocol/Internet Protocol (TCP/IP) interface;

 providing satellite orbit propagation data to external users for tracking the satellite

with optical telescopes [1].

The MCS shall comply with the Technology Readiness Level 6 as specified in the

“Technology Readiness Levels Handbook for Space Applications” published by the

European Space Agency (ESA) [5].

1.2 Problem definition

The statistics published in Aerospace Conference 2015 [6] states that universities have

been showing a constant CubeSat mission failure rate of 40% over a period on 15 years

(2000 – 2014) which could indicate that universities are not getting better in achieving

mission success.

In 2016 [7] these statistics were specified when the group that was previously referred to

as “universities” was divided into four categories of mission developer. New universities

working on their first-ever spacecraft project fall into the category of Hobbyists who are

showing extremely poor success rates where less than 40% of missions achieve even a

subset of their objectives and who are therefore heavily contributing to the overall high

mission failure rate of universities.

Mission status for Hobbyist CubeSats in 2000-2015 is illustrated in the graph below,

where the mission stages are defined as follows:

0 - (Prelaunch). The mission has been manifested, but has not launched;

1 - (Launched). The mission has launched. Missions lost to launch failure remain at status

1; they are listed as Launch Fail on the charts;

18

2 - (Ejected). The ejection of the secondary from the launch vehicle has been confirmed.

Missions that are ejected, but never contacted, remain at status 2 and are listed as Dead

on Arrival (DOA);

3 - (Commissioning). Two-way communication has been established, and the spacecraft

is being commissioned for operations. Missions that remain at status 3 are marked as

Early Loss;

4 - (Initial operations). The spacecraft has commenced primary operations and are listed

as Partial Mission;

5 - (Mission success). Minimum mission success has been achieved; these are marked as

Full Mission [7].

Figure 4 - Mission status for Hobbyist CubeSats in 2000-2015 [7]

A CubeSat Database (https://sites.google.com/a/slu.edu/swartwout/home/cubesat-

database) has been created and maintained by M. Swartwout, PhD of Saint Louis

University and it is claimed to include all CubeSats that have ever flown, showing their

mission status and therefore providing up-to-date information about the success and

failure rate of CubeSat missions.

19

By being a pilot project with the goal of launching a first-ever CubeSat developed by

TTU, the Mektory Nanosatellite Programme team with no previous experience in

spacecraft development falls in the category of Hobbyists. Among other things the

Hobbyists are characterized by low-cost, fast-turnaround and a lack of standard practices

when it comes to integration and test [7].

The problem addressed in this thesis is the high risk of mission failure of the Mektory

Nanosatellite Programme CubeSat TTU 100 based on the statistics of previous first-time

university spacecraft missions.

1.3 Objective of the Master’s thesis

The overall goal of this thesis is to create a methodical quality assurance plan for assuring

the quality of communication between the Mission Control Software (MCS) and

Electrical Power Supply (EPS) in order to reduce the risk of mission failure caused by the

failure of MCS. The structure of this Plan shall be re-usable for other modules of the

MCS.

The thesis shall provide one example of software quality assurance for future student

satellite projects, as existing best practices that don not only concentrate on software

testing, but on quality assurance in general, are hard to find. Furthermore, if proven to be

efficient, the same approach or at least some parts of it could be used in other CubeSat

development fields that are not in the scope of this Master’s thesis such as Satellite on-

board software, Electronics, Optics etc.

The methodology to be used in this thesis is mainly based on syllabi of the International

Software Testing Qualifications Board (ISTQB). In addition to that, state of the art from

other spacecraft projects is considered with consideration to the fact that the resources

that are in disposal of student satellite project teams are considerably smaller than those

possessed in spacecraft industry in general.

20

2 Requirement specifications

Agile methodology is followed in the development process of the MCS, therefore there

are no detailed functional requirements that need to be followed. Nevertheless, the MCS

needs to comply with the following documents in general:

 The maturity of the MCS shall be consistent with TRL 6 or higher according to

the “Technology Readiness Levels Handbook for Space Applications” published

by ESA [5].

 The MCS shall comply with the general System Specifications Document for the

TTU 100 Satellite [1].

 The MCS shall include a Common Verification and Validation Environment

(CVE) as described in the Design Definition File Template Document [8].

The scope of this thesis includes the low-level integration of the MCS with EPS. A

general description and working examples of the EPS communication protocol are

provided by the EPS development team, but other than this EPS is considered as a black

box.

2.1 TRL 6 assessment guidelines

According to the Technology Readiness Levels definition, TRLs are “a set of

management metrics that enable the assessment of the maturity of a particular technology

and the consistent comparison of maturity between different types of technology - all in

the context of a specific system, application and operational environment” [5]. The

purpose of using TRLs is to inform management and to support decisions in advanced

technology system development projects.

There are 9 levels on the TRL scale used by ESA as illustrated in the figure below.

21

Figure 5 – Technology Readiness Levels Diagram used by ESA [5]

In order to comply with TRL 6, the system has to successfully meet all criteria of all lower

TRLs that are applicable for software systems as well as the requirements of TRL 6 [5].

The list of requirements that apply to the MCS are listed in the table below. Requirements

that are defined for assessing the readiness of capabilities of new scientific facts or

principles are excluded.

Table 1 – TRL requirements for the MCS [5]

ID Requirement description

TR-1 The new technology, including the design of demonstrations performed and

explanation of how the testing environment is relevant to the expected

operational environment is clearly described.

TR-2 A document describing in full detail the expected functional and environmental

requirements that the new technology must satisfy within the context of the

envisaged application is present.

22

ID Requirement description

TR-3 Rigorous system-level demonstrations, including testing of key elements

individually and/or in integrated fashion, have successfully been performed in

a relevant environment and documented.

TR-4 Technical risk (Low, Medium, High) and required effort (Low, Medium,

High) to advance to the next TRL level is evaluated.

2.2 System requirements for the MCS

System requirements for the MCS and other sub-systems of the satellite are described in

the general system specifications document for the TTU 100 Satellite [1].

Table 2 – System requirements for the MCS [1]

ID Requirement description

SR-1 The MCS provides user interface for conducting experiments on the satellite

and visualizing the downloaded data.

SR-2 The MCS enables the user to build the experiment schedule.

SR-3 The MCS enables the user to exchange data/files with satellite.

SR-4 The MCS chops data into individual packets to be sent to satellite via ground

station. Communication with the satellite may happen in burst mode where a

number of packets are sent and a number of packets are expected from the

satellite.

SR-5 The MCS receives all frames from ground station and extracts data from

frames into respective data structures.

SR-6 All 10 GHz band (Ku-band) high speed downlink frames received from

satellite shall be stored in ground station data storage in raw Quadrature

modulated signal I & Q components (IQ) data format in addition to normal

decoded format for a period of 1 month.

23

ID Requirement description

SR-7 All of the data downlinked to the ground segment, via UHF and Ku-band

downlink channels, shall be stored in a dedicated server for up to 1 year after

the completion of the mission.

SR-8 The MCS shall implement communication sessions using priorities so that

higher priority communications take precedence over lower level priority

communications.

SR-9 The MCS shall enable communication sessions that consist of multiple flybys.

SR-

10

The MCS shall assemble the communication frame structure in such a way that

time to radio silence (radio eclipse) is considered in satellite expected response

scheduling.

SR-

11

The MCS shall visualize the satellite position over world map.

SR-

12

The MCS shall provide means to send and receive data files form space

segment On-Board Computer (OBC).

SR-

13

The MCS shall provide interface to assemble high level command sequences

into transmit and receive frame sequences to be communicated with satellite at

predefined times.

SR-

14

The MCS shall provide interface for assembling high level mission

descriptions to the satellite.

SR-

15

The MCS shall enable describing a terrestrial point to the satellite to track with

cameras (regardless of satellite orbital position) and have an option to take a

number of pictures with certain delays.

SR-

16

The MCS shall enable describing a terrestrial point or sequence of points and

satellite orbital positions from where to take pictures with one or both of the

satellite cameras.

SR-

17

The MCS shall provide a public, web based, user

interface with the following functionality:

 Satellite current position visualization over earth map

 Latest time of contact

 Latest telemetry status of parameters: TBD

 Number of orbits since deployment

 Time in orbit since deployment

24

ID Requirement description

SR-

18

The MCS shall provide an interface to receive UHF telemetry data from other

radio amateurs.

SR-

19

The MCS shall provide satellite orbit propagation interface to external clients.

SR-

20

The MCS shall provide satellite orbit propagation data to ground station system

over TCP/IP interface.

SR-

21

The MCS shall provide satellite orbit propagation data to external users for

tracking the satellite with optical telescopes.

2.3 Requirements for the Common Verification and Validation

Environment (CVE)

The overall objective of creating a CVE is to align the verification methodology and

approach in various work packages in order to improve the visibility of verification status

and to achieve higher productivity through reusing tests at various integration levels [8].

Table 3 - Requirements for the Common Verification and Validation Environment (CVE) [8]

ID Requirement description

CVE-

1

The CVE shall enable stand-alone module level verification.

CVE-

2

The CVE shall enable verification of integrated modules.

CVE-

3

The CVE shall enable verification of integrated satellite.

CVE-

4

The CVE shall provide templates for test case implementation.

CVE-

5

The CVE shall provide a common environment for test implementation.

CVE-

6

The CVE shall enable re-using of common sequences and functions at

various verification stages and integration levels.

CVE-

7

The CVE shall enable repeatability of tests.

CVE-

8

The CVE shall enable test automation.

CVE-

9

The CVE shall enable test plan tracking.

25

3 Risk analysis

The overall high risk of mission failure described in section 1.2 is addressed by analysing

technical risks related to the MCS out of which some, in case of realisation, could

potentially lead to overall failure of the Mektory Nanosatellite Programme. Identifying

risks that are high and that can, in case of realization, most likely contribute to overall

mission failure, will help the team to concentrate their quality assurance resources on

appropriate risk mitigation activities.

The method used for this analysis is based on the Risk-Based Testing approach described

in the ISTQB Technical Test Analyst Syllabus [9]. ISTQB (International Software

Testing Qualifications Board) was founded in November 2002 and is a not-for-profit

association based on volunteer work of international testing experts. The main activity of

this organisation is the certification of competences in software testing [10].

The risk analysis includes the following three tasks:

 Risk identification;

 Risk assessment;

 Description and planning of risk mitigation activities.

3.1 Risk identification

In the context of this risk analysis, risk is defined as the possibility of an event happening

(thread).

There are three types of software risks:

 Project risks: risks that are mainly related to project management, contracts,

resources etc.;

26

 Process risks: risks that are mainly related to planning and development process;

 Product risks: technical risks that are specifically related to the software product

(security, performance etc.) [11].

Figure 6 – Three types of software risk [11]

The risk analysis concentrates on product/technical risks in particular, as these are the

ones that we can directly influence on the working level. Project and process risks that

are identified based on the risk identification process are forwarded to the Academic

Supervisor of the MCS team.

All relevant stakeholders, in this case the MCS development team (Academic Supervisor,

Developers, Architect and Software Tester) are included in the risk identification process,

as advised in the ISTQB Technical Test Analyst Syllabus [9].

The tasks in the risk identification process are:

 Listing all possible threads related to the MCS during a brainstorming event.

27

Responsibility: the whole MCS team.

 Defining the risk related to every thread listed.

Responsibility: the author of this thesis

 Defining the type of every risk listed.

Responsibility: the author of this thesis

The protocol of the brainstorming event as well as the full list of identified threads is

included in Appendix 1 of this thesis. The list of identified risks is presented in the

following table.

Table 4 – Identified risks

ID Thread

No.
Risk description

PR-1 1 There may be integration issues between different modules and systems.

PR-2 2 Incorrect or faulty software may be uploaded on the satellite.

PR-3 3 A malicious user may gain access to MCS back-office.

PR-4 4 An error in bit stuffing may cause radio silence.

PR-5 5 The satellite may send us false information.

PR-6 6 A malicious user may gain access to ActiveMQ.

PR-7 7 We may not be able to access the server in case of urgencies.

PR-8 8 We may lose data due to poor reaction of server failure.

PR-9 9 Radio noise caused by amateurs may hinder our communication with

the satellite.

PR-

10

10 Amateur Telemetry may accidentally be considered as our own by the

MCS.

PR-

11

11 The MCS may cause physical damage to our antenna.

PR-

12

12,

15

Physical damage to the satellite in space may not be identified,

communicated or understood through the MCS.

28

ID Thread

No.
Risk description

PR-

13

13 Data may not be stored according to requirements and for the required

amount of time.

PR-

14

14 Data may accidentally be deleted.

PR-

15

16 The Git Repository may accidentally be deleted.

PR-

16

17 MCS performance issues may cause delays in sending commands to

the satellite.

PR-

17

18 The message to/from the satellite or a part of it may become lost when

transferring the message from one module or system to the other.

PR-

18

19 Docker or the server on which Docker is running may crash

unexpectedly.

3.2 Risk assessment

Risk assessment is performed on the basis of the shortlist of MCS-related product risks.

The tasks in the risk assessment process are:

 Categorizing product risks based on the specific area that they influence.

Responsibility: the author of this thesis.

 Defining the likelihood and impact of every risk.

Responsibility: the whole MCS team.

 Creating a risk assessment matrix.

Responsibility: the author of this thesis.

The categories of all identified risks are given in the table below. The following product

risk categories are used:

 Reliability risk: the risk related to the software not meeting the specification,

requirements or the functionality being inadequate for achieving the expected

results;

29

 Security risk: the risk related to possible unauthorized access, malicious usage or

unintentional actions with negative consequences;

 Performance risk: the risk related to software performance.

Risks that are not in one of the above mentioned categories in relation to the MCS are

forwarded to the Academic Supervisor and excluded from further analysis.

Table 5 - Identified risks with categories

ID Category Risk description

PR-1 Reliability risk There may be integration issues between different

modules and systems.

PR-2 Reliability risk Incorrect or faulty software may be uploaded on the

satellite.

PR-3 Security risk A malicious user may gain access to MCS back-

office.

PR-4 Reliability risk An error in bit stuffing may cause radio silence.

PR-5 A Product risk

related to Satellite

on-board software

The satellite may send us false information.

PR-6 Security risk A malicious user may gain access to ActiveMQ.

PR-7 Planning risk We may not be able to access the server in case of

urgencies.

PR-8 Reliability risk We may lose data due to poor reaction of server

failure.

PR-9 Reliability risk Radio noise caused by amateurs may hinder our

communication with the satellite.

PR-

10

Reliability risk Amateur Telemetry may accidentally be considered

as our own by the MCS.

PR-

11

Reliability risk The MCS may cause physical damage to our

antenna.

PR-

12

Reliability risk Physical damage to the satellite in space may not be

identified, communicated or understood though the

MCS.

PR-

13

Reliability risk Data may not be stored according to requirements

and for the required amount of time.

PR-

14

Security risk Data may accidentally be deleted.

PR-

15

Security risk The Git Repository may accidentally be deleted.

30

ID Category Risk description

PR-

16

Performance risk MCS performance issues may cause delays in

sending commands to the satellite.

PR-

17

Performance risk The message to/from the satellite or a part of it may

become lost when transferring the message from

one module or system to the other.

PR-

18

Reliability risk Docker or the server on which Docker is running

may crash unexpectedly.

Risks are assessed using the qualitative risk assessment method where the likelihood and

impact of every risk are measured on a relative scale. The likelihood and impact ratings

are transferred to a risk assessment matrix in order to define the risk level of every risk

[12]. Risk levels are categorized with a value from 1 to 5, with 1 being the highest risk

[9].

By defining likelihood and impact ratings, the following factors are considered:

 Complexity of technology;

 Complexity of code structure;

 Conflict between stakeholders regarding technical requirements;

 Communication problems resulting from the geographical distribution of the

development organization;

 Tools and technology;

 Time, resource and management pressure;

 Lack of earlier quality assurance;

 High change rates of technical requirements;

 Large number of defects found relating to technical quality characteristics;

 Technical interface and integration issues [9].

The following likelihood and impact scales are used in this risk assessment:

31

Table 6 – Likelihood scale definition [12]

Rating Likelihood Description

1 Very low Highly unlikely to occur. May occur in exceptional

situations.

2 Low Most likely will not occur. Infrequent occurrence in

other Satellite/Space Technology projects.

3 Moderate Possible to occur.

4 High Likely to occur. Has occurred in other Satellite/Space

Technology projects.

5 Very high Highly likely to occur. Has occurred in other

Satellite/Space Technology projects and conditions

exist for it to occur in this project.

Table 7 - Impact scale definition [12]

Rating Impact Description

1 Very low No increase in budget or schedule. No effect on critical

functionality of the system or reputation of the project.

2 Low May cause a small increase of budget (< 5%) and

slight delays in schedule (< 1 week). May slightly

affect critical functionality of the system and the

reputation of the project.

3 Moderate May cause a 5-10% increase of budget and a 1-2 week

delay in schedule. Probably affects critical

functionality of the system and may affect the

reputation of the project.

4 High May cause 10-20 % increase of budget and at least a

2-4 week delay in schedule. Affects critical

functionality of the system and probably also the

reputation of the project.

32

Rating Impact Description

5 Very high May cause > 20 % increase of budget and no less

than a 4 week delay in schedule. Significantly affects

critical functionality of the system and the reputation

of the project.

The Risk Assessment Matrix, including risk levels from 1-5 is shown in the table below:

Table 8 – Risk Assessment Matrix

L
ik

el
ih

o
o
d

5

4

3

2

1

 1 2 3 4 5

 Impact

Legend

 Risk Level 1

 Risk Level 2

 Risk Level 3

 Risk Level 4

 Risk Level 5

33

A full likelihood and impact definition protocol with likelihood and impact associated

with every product risk is included in Appendix 2 of this thesis.

Based on their likelihood and impact, product risks are prioritized according to

corresponding risk levels as follows:

Risk

Level

ID Category Risk description

1 PR-2 Reliability risk Incorrect or faulty software may be uploaded on

the satellite.

2 PR-1 Reliability risk There may be integration issues between

different modules and systems.

2 PR-

11

Reliability risk The MCS may cause physical damage to our

antenna.

2 PR-

12

Reliability risk Physical damage to the satellite in space may

not be identified, communicated or understood

though the MCS.

2 PR-

17

Performance risk The message to/from the satellite or a part of it

may become lost when transferring the

message from one module or system to the

other.

3 PR-3 Security risk A malicious user may gain access to MCS

back- office.

3 PR-4 Reliability risk An error in bit stuffing may cause radio silence.

3 PR-6 Security risk A malicious user may gain access to

ActiveMQ.

3 PR-8 Reliability risk We may lose data due to poor reaction of

server failure.

3 PR-

14

Security risk Data may accidentally be deleted.

3 PR-

16

Performance risk MCS performance issues may cause delays in

sending commands to the satellite.

34

3.3 Risk mitigation

Risk mitigation activity is an activity that is aimed for reducing the likelihood and/or

impact of a certain risk. Risk mitigation does not necessarily mean that the realization of

all identified and assessed risks need to be avoided.

Considering that the MCS team of the TTU Mektory Nanosatellite Programme consists

mostly of students and volunteers who are working on the project besides their studies

and day-jobs, it is also not feasible to have every single risk covered with risk mitigation

activities. Instead, risks with the highest risk level will be addressed and risks with the

lowest risk level will be tolerated, in order to achieve software quality that is sufficient

[13] for saying that the critical functionality of the MCS will very likely work as expected.

The risk-based approach allows the team to concentrate on the factors that can with the

highest probability lead to the project failure instead of putting their time and effort on

less critical things. On the other hand, it will make all identified risks visible for all

stakeholders. Therefore it will also be visible which risks are knowingly taken [11].

In the current risk analysis risk mitigation activities are defined for product risks with risk

levels 1-3. Risks are regularly evaluated based on additional information gathered as the

project unfolds and should a previously tolerated risk reach a risk level where mitigation

actions are necessary, the gathered information will be used to implement the actions

aimed at decreasing the likelihood or impact of such risk [9].

35

Table 9 – Risk mitigation activities for product risks with risk levels 1-3

Risk

Level

ID Risk mitigation activities

1 PR-2 Software shall be uploaded to the satellite only after successful

flat-sat level tests on the CVE.

 Software code to be uploaded to the satellite that is developed

by the MCS team is to be tested to 100% Modified

Condition/Decision Coverage (MC/DC) as specified in the

ISTQB Technical Test Analyst Syllabus [10].

 Software code to be uploaded to the satellite that is not

developed by the MCS team is uploaded only after receiving a

written confirmation from the developer that the provided

version of code is tested and safe to upload. The developer is

encouraged to test the code to 100% Modified

Condition/Decision Coverage (MC/DC) as specified in the

ISTQB Technical Test Analyst Syllabus [10].

2 PR-1 Integration testing shall be performed on the CVE, in which the

integration of some components as well as the integration of the

whole satellite and the Ground Segment is tested on flat-sat

level.

2 PR-

11
 Specification of the antenna is requested in order to define its

physical limits.

 Test cases are designed using black-box testing techniques

(boundary values, equivalence classes) as specified in the

ISTQB Foundation Level Syllabus [18] specifically for

identifying potential defects in controlling the antenna.

2 PR-

12
 An Analysis shall be performed in order to define the

possibility of developing a warning system or a set of

parameters that could indicate that the satellite has been

physically damaged in space.

 Test cases are designed using black-box testing techniques

(boundary values, equivalence classes) as specified in the

ISTQB Foundation Level Syllabus [18] for the warning

system, should one be developed.

36

Risk

Level

ID Risk mitigation activities

2 PR-

17
 An Architectural Review as specified in the ISTQB Technical

Test Analyst Syllabus [10] shall be conducted in order to

identify possible places and/or situations where the message or

a part of it can potentially be lost.

 Test cases shall be designed and tests performed based on the

results of this review, using an appropriate testing technique

(black-box testing, integration testing etc.) as specified in the

ISTQB Foundation Level Syllabus [18].

3 PR-3 User authentication process shall be analysed, defined and

implemented.

 Security tests shall be designed based on the Open Web

Application Security Project (OWASP) Authentication Cheat

Sheet [14] and executed.

3 PR-4 Test cases are designed using black-box testing techniques

(boundary values, equivalence classes) as specified in the

ISTQB Foundation Level Syllabus [14] specifically for

identifying potential defects in bit stuffing.

3 PR-6 User authentication process shall be analysed, defined and

implemented.

 Security tests shall be designed based on the OWASP

Authentication Cheat Sheet [14] and executed.

3 PR-8 Server health monitoring possibilities shall be analysed,

defined and implemented.

 A process of regular server back-ups shall be analysed, defined

and implemented.

3 PR-

14
 Giving write permission to live database is carefully

considered. For most team members, read permission shall be

enough.

 A process of regular database back-ups shall be analysed,

defined and implemented.

37

Risk

Level

ID Risk mitigation activities

3 PR-

16
 An Architectural Review as specified in the ISTQB Technical

Test Analyst Syllabus [9] shall be conducted in order to

identify any potential performance issues.

 Performance tests shall be designed and performed on the

CVE.

4 Quality Assurance Plan: low-level communication between

MCS and EPS

EPS (Electrical Power Supply) is a sub-system on the Satellite bus that consists of

rechargeable batteries and solar cells and provides electrical supply for all systems and

instruments on board. It logs data such as solar cell voltages and currents for all solar cell

groups, battery voltage and currents for all battery groups, voltage and current for all

power rails, battery temperatures, EPS processor reset event counts, power off-on reset

counts, battery charging levels etc. [1].

All data is organised in form of 16-bit registers (2 bytes). There are 101 data registers in

total with numbering from 0 to 100. Some of these data registers are editable, others are

write-protected (read-only). In addition to that, there are additional special registers for

outputs control, transmitting user messages via Lasers, Firmware update and Log reading

[14].

EPS receives commands in case they are sent directly to its address 0x04 and replies to

these commands [14]. It does not support multi-threading [15].

The following commands are supported:

 Read holding registers (0x03)

 Write holding register (0x06)

38

 Write multiple registers (0x10)

Reset command is executed when transmitted to circular address 0x55 [14].

4.1 Requirements to be fulfilled

Tables with requirements that the MCS needs to meet are given in sections 2.1, 2.2 and

2.3. The following of these requirements are relevant to the integration of MCS with EPS:

Table 10 - Requirements applicable for MCS integration with EPS

ID Requirement description

TR-1 The new technology, including the design of demonstrations performed and

explanation of how the testing environment is relevant to the expected

operational environment is clearly described.

TR-2 A document describing in full detail the expected functional and environmental

requirements that the new technology must satisfy within the context of the

envisaged application is present.

TR-3 Rigorous system-level demonstrations, including testing of key elements

individually and/or in integrated fashion, have successfully been performed in

a relevant environment and documented.

TR-4 Technical risk (Low, Medium, High) and required effort (Low, Medium,

High) to advance to the next TRL level is evaluated.

SR-3 The MCS enables the user to exchange data/files with satellite.

SR-4 The MCS chops data into individual packets to be sent to satellite via ground

station. Communication with the satellite may happen in burst mode where a

number of packets are sent and a number of packets are expected from the

satellite.

SR-5 The MCS receives all frames from ground station and extracts data from

frames into respective data structures.

SR-6 All Ku-band high speed downlink frames received from satellite shall be stored

in ground station data storage in raw IQ data format in addition to normal

decoded format for a period of 1 month.

39

ID Requirement description

SR-7 All of the data downlinked to the ground segment, via UHF and Ku-band

downlink channels, shall be stored in a dedicated server for up to 1 year after

the completion of the mission.

SR-8 The MCS shall implement communication sessions using priorities such that

higher priority communications take precedence over lover level priority

communications.

SR-9 The MCS shall enable communication sessions that consist of multiple flybys.

SR-

10

The MCS shall assemble the communication frame structure in such a way that

time to radio silence (radio eclipse) is considered in satellite expected response

scheduling.

CVE-

2

The CVE shall enable verification of integrated modules.

CVE-

4

The CVE shall provide templates for test case implementation.

CVE-

5

The CVE shall provide a common environment for test implementation.

CVE-

6

The CVE shall enable re-using of common sequences and functions at

various verification stages and integration levels.

CVE-

7

The CVE shall enable repeatability of tests.

CVE-

8

The CVE shall enable test automation.

CVE-

9

The CVE shall enable test plan tracking.

4.2 Risk mitigation activities to be considered

A list of risk mitigation activities needed to consider throughout the whole project is given

in section 3.2. The following product risks that require risk mitigation activities are

relevant to communication between MCS and EPS:

40

Table 11 – Risk mitigation activities applicable for MCS integration with EPS

Risk

Level

ID Risk mitigation activities

2 PR-1 Integration testing shall be performed on the CVE, in which the

integration of some components as well as the integration of the

whole satellite and the Ground Segment is tested on flat-sat

level.

2 PR-

12
 An Analysis shall be performed in order to define the

possibility of developing a warning system or a set of

parameters that could indicate that the satellite has been

physically damaged in space.

 Test cases are designed using black-box testing techniques

(boundary values, equivalence classes) as specified in the

ISTQB Foundation Level Syllabus [16] for the warning

system, should one be developed.

2 PR-

17
 An Architectural Review as specified in the ISTQB Technical

Test Analyst Syllabus [9] shall be conducted in order to

identify possible places and/or situations where the message or

a part of it can potentially be lost.

 Test cases shall be designed and tests performed based on the

results of this review, using an appropriate testing technique

(black-box testing, integration testing etc.) as specified in the

ISTQB Foundation Level Syllabus [16].

3 PR-4 Test cases are designed using black-box testing techniques

(boundary values, equivalence classes) as specified in the

ISTQB Foundation Level Syllabus [16] specifically for

identifying potential defects in bit stuffing.

3 PR-

16
 An Architectural Review as specified in the ISTQB Technical

Test Analyst Syllabus [9] shall be conducted in order to

identify any potential performance issues.

 Performance tests shall be designed and performed on the

CVE.

41

4.3 Test process

Testing of low-level communication between MCS and EPS follows the fundamental test

process as described in the ISTQB Test Analyst syllabus [17]. The activities are:

 Planning, monitoring and control;

 Analysis and design;

 Implementation and execution;

 Evaluating exit criteria and reporting;

 Test closure activities.

4.3.1 Planning, monitoring and control

The general MCS Test Plan included in Appendix 3 is followed therefore no separate Test

Plan is necessary for testing MCS integration with EPS.

The following metrics are monitored throughout the whole test process:

 The number of identified product risks covered with tests;

 The number of identified product risks not covered with tests;

 The total number of test cases defined;

 The number of test cases automated;

 The number of test cases executed;

 The number of defects reported.

Accurate metrics indicate whether change (for example additional test effort in specific

areas) is needed [17].

42

4.3.2 Analysis and design

Test analysis defines test conditions, more specifically what is to be tested. Test

conditions are viewed as detailed measures and targets for success that are identified by

analysis of the test basis, test objectives and product risks [17].

The following general test conditions are specified for testing the low-level

communication between MCS and EPS:

Table 12 – Test Conditions

ID Requirement Product

Risk
Test Condition

CO-1 TR-3

SR-3

SR-4

SR-5

SR-8

SR-9

SR-10

CVE-2

CVE-4

CVE-5

CVE-6

CVE-7

CVE-8

CVE-9

PR-1

PR-4

PR-12

PR-16

PR-17

Send a valid command that is supported by EPS and

validate the response.

CO-2 TR-3

SR-3

SR-4

SR-5

SR-8

SR-9

SR-10

CVE-2

CVE-4

CVE-5

CVE-6

CVE-7

CVE-8

CVE-9

PR-1

PR-4

PR-12

PR-16

PR-17

Send an invalid command that is supported by EPS

and validate the error.

43

ID Requirement Product

Risk
Test Condition

CO-3 TR-3

SR-3

SR-4

SR-5

SR-8

SR-9

SR-10

CVE-2

CVE-4

CVE-5

CVE-6

CVE-7

CVE-8

CVE-9

PR-1

PR-4

PR-12

PR-16

PR-17

Send a valid command that is not supported by EPS

and validate the error.

CO-4 TR-3

SR-3

SR-4

SR-5

SR-8

SR-9

SR-10

CVE-2

CVE-4

CVE-5

CVE-6

CVE-7

CVE-8

CVE-9

PR-1

PR-4

PR-12

PR-16

PR-17

Send >1 concurrent commands and validate the

response to the first command sent.

CO-5 SR-6

SR-7

(PR-

13)

Perform storage testing and verify that data is stored

according to requirements.

4.3.3 Implementation and execution

Test implementation involves a detailed description of test environment (in this thesis

referred to as the CVE), test data and test cases.

In order to achieve high test coverage, satellite software design process evolves towards

model-based approaches. Considering verification and validation, there are two classes

of approach:

44

 Based on human operation and expertise and may be qualified rather empirical

even though they are computer aided.

 Automated and may be based on formal notation tools and methods to produce,

or to check the properties of the embedded software [18].

The figure below illustrates the difference between the number of test cases manually

generated by testers and the number of test cases generated by using a Model-Based

Testing (MBT) tool called SpecExplorer on the Earth Sensor Module of Galileo IOV.

Figure 7 – Test Cases Overview [18]

As visible from the numbers in the figure, a MBT tool is highly more efficient in

generating test cases and therefore, also assuring a better test coverage.

Nevertheless, using model-based approach in designing a CVE for the Mektory

Nanosatellite Program, the following aspects need to be considered:

 There is a lack of open-source MBT tools on the market that would be suitable for

testing spacecraft software in terms of allowing behaviour modelling of the

system, low-level and high-level testing and being able to communicate with

System under Test (SUT) either directly or via an Adapter.

45

 The usefulness of MBT generated tests is strongly related to the quality of the

model that has been defined by the tester. In case the model does not fully reflect

the behaviour of the SUT, test coverage will actually be lower than presumed.

 The number of test cases generated by the MBT might explode quite fast.

Considering the limited resources of a student project, maintaining, running and

evaluating these tests might require more man-hours than the team can afford to

spend for this purpose.

The practice of using model-based testing in the verification and validation process of

spacecraft software is considered when designing the CVE, but instead of using a

dedicated MBT tool, an integrated tool environment for modelling, validation and

verification of real-time systems called Uppaal together with the DTRON framework is

used. In Uppaal, real-time systems are modelled as networks of timed automata and

extended with different data types (bounded integers, arrays, etc.) [19].

Uppaal contains a model checking engine that allows the user to run the model and to

identify any deadlocks that it contains in order to avoid modelling errors. The tool can be

used free of charge for academic purposes [19].

DTRON is a framework for model-based testing that extends Uppaal and the online test

execution tool TRON, enabling coordination, synchronization and online distributed

testing [20]. When DTRON executes the xml model created with Uppaal, it will intercept

the prefixed Uppaal channel synchronizations within the model. Spread toolkit/server is

used for forwarding intercepted synchronizations to the SUT [21].

46

Figure 8 - DTRON deployment outline [21]

Pre-defined test cases are used for modelling different positive and negative scenarios

and their expected outcomes. Low-level test cases for MCS communication with EPS are

listed in Appendix 4. Whenever the expected outcome is not achieved, it is considered to

be a potential defect.

Figure 9 – Sample Uppaal model for communication between the MCS and EPS

47

Model-based testing with Uppaal and DTRON form an important part of the CVE. No

responses shall be mocked and only real software shall be used as SUT in order to keep

the testing environment as similar to the expected operational environment as possible.

Once the test object (SUT) is delivered and the entry criteria to test execution is satisfied,

tests will be executed. The following entry criteria applies to test execution for the

communication between the MCS and EPS:

 Test cases are designed.

 The SUT is modelled in Uppaal.

 The CVE (Uppaal model, DTRON, SUT) is ready for usage.

 The defect tracking tool is in place [17].

4.3.4 Evaluating exit criteria and reporting

Defect reporting is an ongoing process in which defects are reported as soon as possible.

Defects are prioritized and high priority defects are addressed prior to those with lower

priority. High priority defects can be:

 Those that can potentially cause the realization of a product risk with risk level 1-

3.

 Those that can potentially change the risk level 4 or 5 of a product risk to 1-3.

 Those that are not considered in the risk assessment, but can significantly affect

critical functionality of the system and the reputation of the project.

The testing of MCS communication with EPS is considered to be complete if the

following exit criteria is met:

 All defined test cases are executed;

 All identified high priority defects are fixed;

 All identified low priority defects are reported;

48

 A process for regression testing is in place.

4.3.5 Test closure activities

The following test closure activities shall be considered as suggested in the ISTQB Test

Manager Syllabus:

 Test completion check - ensuring that all test work is indeed concluded: all

planned tests are either run or deliberately skipped and all known defects are either

fixed and verified, deferred for a future release, or accepted as permanent

restrictions;

 Handover of test artefacts - delivering valuable work products to those who need

them. For example, known low priority defects deferred or accepted are

communicated to those who will use and support the use of the system;

 Lessons learned - performing a retrospective meeting where good practices and

things that need improving can be documented;

 Archiving results, logs, reports, other documents and work products in a dedicated

system.

4.4 Compliance check

Requirements to be met and risk mitigation activities to be considered were listed in

sections 4.1 and 4.2 of this thesis. This section will verify the compliance of the quality

assurance plan with the defined requirements and risk mitigation activities.

49

Table 13 – Compliance check list

ID Considered

in the quality

assurance

plan?

Comment

TR-1 Yes Model-based testing with Uppaal and DTRON form an

important part of the CVE. No responses shall be mocked and

only real software shall be used as SUT in order to keep the

testing environment as similar to the expected operational

environment is as possible.

TR-2 Yes Requirements are presented in section 4.1.

TR-3 Yes Test conditions are presented in section 4.3.2.

TR-4 Yes Risks together with their risk levels and risk mitigation

activities are presented in section 4.2.

SR-3 Yes Covered with Test Conditions CO-1, CO-2, CO-3 and CO-4.

SR-4 Yes Covered with Test Conditions CO-1, CO-2, CO-3 and CO-4.

SR-5 Yes Covered with Test Conditions CO-1, CO-2, CO-3 and CO-4.

SR-6 Yes Covered with Test Condition CO-5.

SR-7 Yes Covered with Test Condition CO-5.

SR-8 Yes Covered with Test Conditions CO-1, CO-2, CO-3 and CO-4.

SR-9 Yes Covered with Test Conditions CO-1, CO-2, CO-3 and CO-4.

SR-

10

Yes Covered with Test Conditions CO-1, CO-2, CO-3 and CO-4.

CVE-

2

Yes Covered with Test Conditions CO-1, CO-2, CO-3 and CO-4.

CVE-

4

Yes Covered with Test Conditions CO-1, CO-2, CO-3 and CO-4.

CVE-

5

Yes Covered with Test Conditions CO-1, CO-2, CO-3 and CO-4.

CVE-

6

Yes Covered with Test Conditions CO-1, CO-2, CO-3 and CO-4.

CVE-

7

Yes Covered with Test Conditions CO-1, CO-2, CO-3 and CO-4.

CVE-

8

Yes Covered with Test Conditions CO-1, CO-2, CO-3 and CO-4.

50

ID Considered

in the quality

assurance

plan?

Comment

CVE-

9

Yes Covered with Test Conditions CO-1, CO-2, CO-3 and CO-4.

PR-1 Yes Covered with Test Conditions CO-1, CO-2, CO-3 and CO-4.

PR-

12

Yes Covered with Test Conditions CO-1, CO-2, CO-3 and CO-4.

PR-

16

Yes Covered with Test Conditions CO-1, CO-2, CO-3 and CO-4.

PR-

17

Yes Covered with Test Conditions CO-1, CO-2, CO-3 and CO-4.

PR-4 Yes Covered with Test Conditions CO-1, CO-2, CO-3 and CO-4.

51

5 Summary

The purpose of this thesis was to create a methodical quality assurance plan for assuring

the quality of communication between the Mission Control Software (MCS) and

Electrical Power Supply (EPS) of TTU 100 Satellite.

The methodology that was used for achieving the purpose was mainly based on syllabi of

the International Software Testing Qualifications Board (ISTQB) and included risk

assessment, test process definition and usage of different testing techniques. In addition

to that, best practices from other spacecraft projects were taken into account with

consideration of available resources in the TTU Mektory Nanosatellite Programme.

The biggest lesson learned while working on this thesis was the absolute necessity of

identifying and assessing technical risks and defining risk mitigation activities with the

whole team. As in most developer teams, every team member in the MCS team is also

working on a specific task in a specific area, making it difficult for them to comprehend

the whole project. Great synergy can be achieved and very valuable thread suggestions

received during collective brainstorming.

Considering the number of student satellites launched, the author of this thesis was

surprised to learn that there is much less best practice information available for satellite

software quality assurance than expected. Most of the information that is available

concentrates on traditional software testing or even on one software test technique in

particular. Based on the risks identified in this thesis the author is convinced that only

testing is most likely not enough and additional measures such as reviews, additional

analysis etc. are needed.

The author of this thesis would have liked to see the CVE in action before the submission

of this thesis. Setting up the CVE, including Uppaal, DTRON, SUT Adapter and SUT is

in scope of another Master’s thesis and is currently still in process of development. In

addition to that, the effectiveness of the risk-based quality assurance approach suggested

in this thesis can be truly evaluated once the satellite is on the orbit and we can hopefully

confirm that the mission was successful and the software is working as expected.

The next activities include implementing Uppaal and DTRON as a part of the CVE and

running the model with pre-defined test cases included in it. Additional quality plans shall

52

be made based on the structure presented in this thesis, the next one will most likely

concentrate on assuring the quality of MCS communication with the satellite on-board

communication protocol.

Finally, the author of this thesis would like to thank her supervisor Ms. Evelin Halling for

all her support and guidance with this thesis, the MCS team for actively participating in

the risk assessment process, Mr. Rauno Gordon, Head of the TTU Mektory Nanosatellite

Programme, for his kind and operative assistance with all questions related to the satellite

mission in general and last but not least, her extended family for supporting her during

the two years of Master’s studies and for helping her with assuring the quality of English

in this thesis.

53

References

[1] R. Adelbert, TUT-MEKTORY NANOSATELLITE System Requirements

Specification TMSS-SYS-RS-01, ver 0.5, Tallinn, 2016.

[2] “TTÜ Mektory Satelliidiprogramm,” [Online]. Available:

https://www.ttu.ee/projektid/mektory-est/satelliidiprogramm-4. [Accessed 15

August 2017].

[3] A. Poghosyan and A. Golkar, “CubeSat evolution: Analyzing CubeSat capabilities

for conducting science missions,” Progress in Aerospace Sciences, vol. 88, pp.

59-83, 2017.

[4] S. Romanov, Kuupsatelliidi missioonijuhtimistarkvara arhitektuur, TTU Master

Thesis, Tallinn, 2017.

[5] TEC-SHS/5551/MG/ap, Technology Readiness Levels Handbook for Space

Applications, revision 6, ESA, 2009.

[6] M. Swartwout, “Secondary spacecraft in 2015: Analyzing success and failure,” in

Aerospace Conference, 2015 IEE, 07-14.03.2015, Big Sky, 2015.

[7] M. Swartwout, “Secondary spacecraft in 2016: Why some succeed (And too many

do not),” in Aerospace Conference, 2016 IEE, 05 – 12.03.2016, Big Sky, 2016.

[8] R. Adelbert, TUT-Mektory nanosatellite design definition file template TMSS-SYS-

MM-02, ver 0.1, Tallinn, 2016.

[9] G. Bath, P. Jorgensen and J. Mitchell, Certified Tester Advanced Level Syllabus

Technical Test Analyst, version 2012, International Software Testing

Qualifications Board, 2012.

[10] “International Software Testing Qualifications Board,” [Online]. Available:

https://www.istqb.org/about-as.html. [Accessed 11 April 2018].

[11] P. Gerrard and N. Thompson, “Risk-Based Testing, version 1.0a,” in EuroSTAR

Conference, Edinburgh, 2002.

[12] “Qualitative Risk Analysis and Assessment,” [Online]. Available:

https://www.project-management-skills.com/qualitative-risk-analysis.html.

[Accessed 12 March 2018].

[13] H. Hartmann, F. van der Linden and J. Bosch, “Risk Based Testing for Software

Product Line Engineering,” in Proceedings of the 18th International Software

Product Line Conference - Volume 1, Florence, 2014.

[14] “OWASP Authentication Cheat Sheet,” [Online]. Available:

https://www.owasp.org/index.php/Authentication_Cheat_Sheet. [Accessed 29

April 2018].

[15] V. Sinivee, EPS communication protocol and register map, Tallinn, 2016.

[16] R. Adelbert, TUT-Mektory Nanosatellite Satellite TCTM Protocol Description

TMSS-SYS-TN-02, Tallinn, 2016.

54

[17] T. Müller, D. Friedenberg and t. I. W. F. Level, Certified Tester Foundation Level

Syllabus, version 2011, International Software Testing Qualifications Board,

2011.

[18] J. McKay, M. Smith and E. Van Veenendaal, Certified Tester Advanced Level

Syllabus Test Analyst, version 2012, International Software Testing Qualifications

Board, 2012.

[19] M. Zeuner, H. Gogl, H.-J. Herpel, G. Willich and M.-F. Wendland, “Testing

Satellite on-board Software - A Model Based Approach,” IFAC Proceedings

Volumes, vol. 46, no. 19, pp. 167-171, 2013.

[20] “Uppaal,” [Online]. Available: http://www.uppaal.org/. [Accessed 29 April 2018].

[21] A. Anier, J. Vain and L. Tsiopoulos, “DTRON: a tool for distributed model-based

testing of time critical applications,” Proceedings of the Estonian Academy of

Sciences, vol. 66, no. 1, p. 75–88, 2017.

[22] A. Anier, DTRON tutorial, https://cs.ttu.ee/dtron/dtronTutorial.pdf, 2018.

[23] S. A. Jacklin, “Survey of Verification and Validation Techniques for Small

Satellite Software Development,” in Space Tech Expo Conference, Long Beach,

2015.

[24] L. S. Sterling, The Art of Agent-Oriented Modeling, London: The MIT Press,

2009.

55

Appendix 1 – Thread Identification Protocol

Date: April 17th 2018 and April 24th 2018

Participants: Academic Supervisor of the MCS team and 10 development team members

Process description: the participants were asked to suggest threads related to the MCS

software. There were no right or wrong suggestions, all of them were accepted and

documented in order to support a free, creative and informal ambiance.

Suggested threads:

No Thread description

1 Even if different modules are successfully integrated in the test environment,

problems with integration can still occur in the product environment.

2 Wrong software is accidentally sent up to the satellite and the satellite won´t

work anymore.

3 A malicious user gains access to MCS back office and send for example the

shut-down command to the satellite.

4 An error in bit stuffing (for example a missing flag) causes radio silence.

5 The satellite sends false information during flyover.

6 A malicious user gains direct access to Active MQ and posts malicious

messages directly.

7 Only one team member possesses crucial information like server passwords.

8 We are currently not monitoring our server and we might lose important data

when the Orbit server fails.

9 An amateur might cause so much noise with his/her antenna that we can´t

hear our satellite anymore.

10 We might accidentally consider an amateur Telemetry as our own.

11 When we do not have clear description of what are the physical limits of our

antenna, we might accidentally break it with our steering system (for example

by ordering it to rotate more than it physically can).

56

No Thread description

12 When something physically happens with the satellite in space and we do not

have enough information for understanding the cause and consequences.

13 When we are not able to store data for the requested period of time.

14 An accidental drop table in the database (live or test).

15 The electronics on the satellite is damaged because of magnetic storms.

16 When someone accidentally deletes our Git repository and we will not be

able to figure out after restoring it which version is on the satellite.

17 When we fail to send an urgent command to the satellite during planned

flyover because of MCS performance issues.

18 There are several places where the message to/from the satellite can get lost.

19 When either Docker of the server on which Docker is running crashes.

57

Appendix 2 – Likelihood and Impact Definition Protocol

Date: May 4th 2018

Participants: Academic Supervisor of the MCS team and 10 development team members

Process description: the participants were asked to evaluate pre-defined likelihood and

impact scores for Product Risks related to the MCS software and to request changes where

necessary. The final likelihood and impact scores for threads are given in the table below.

ID Category Risk description Likeli-

hood

Impact

PR-1 Reliability risk There may be integration issues between

different modules and systems.

4 4

PR-2 Reliability risk Incorrect or faulty software may be

uploaded on the satellite.

4 5

PR-3 Security risk A malicious user may gain access to MCS

back office.

2 4

PR-4 Reliability risk An error in bit stuffing may cause radio

silence.

4 3

PR-6 Security risk A malicious user may gain access to

Active MQ.

2 4

PR-8 Reliability risk We may lose data due to poor reaction of

server failure.

4 3

PR-9 Reliability risk Radio noise caused by amateurs may

hinder our communication with the

satellite.

1 4

PR-

10

Reliability risk Amateur Telemetry may accidentally be

considered as our own by the MCS.

1 4

PR-

11

Reliability risk The MCS may cause physical damage to

our antenna.

3 4

PR-

12

Reliability risk Physical damage to the satellite in space

may not be identified, communicated or

understood though the MCS.

4 4

PR-

13

Reliability risk Data may not be stored according to

requirements and for the required amount

of time.

2 2

PR-

14

Security risk Data may accidentally be deleted. 2 4

PR-

15

Security risk The Git Repository may accidentally be

deleted.

1 3

58

ID Category Risk description Likeli-

hood

Impact

PR-

16

Performance risk MCS performance issues may cause

delays in sending commands to the

satellite.

2 4

PR-

17

Performance risk The message to/from the satellite or a

part of it may be lost when transferring

the message from one module or system

to the other.

4 4

PR-

18

Reliability risk Docker or the server on which Docker is

running may crash unexpectedly for

several reasons.

3 2

59

Appendix 3 – Testing and Verification Plan for Mission

Control Software (MCS)

TUT Mektory Nanosatellite Programme

Testing and Verification Plan for Mission Control Software

(MCS)

60

Document versions

Document ID and date Author Remarks

 v1 06.12.2016 First version

 V2 02.05.2018 MATLAB removed

 YouTrack changed to

GitLab

 Roles and responsibilities

updated

 Estimated launch date

postponed

61

Contents

1. Introduction

2. Objective

3. Scope

4. References

5. Resources

6. Testing and verification strategy

6.1 Unit Testing

6.2 System and Integration Testing

6.3 Stress and Load Testing

6.4 User Acceptance Testing

6.5 Automated Regression Testing

7. Control procedures

8. Roles & responsibilities

9. Schedules

62

1. Introduction

 The Mission Control Software (MCS) is the main interface between the ground operator

and the satellite. It consists of six main components that are responsible for the following

operations:

 Radio driver – communication between the Radio Control Unit, MCS and Active

MQ;

 Two-line element (TLE) service – downloading the list of orbital elements of the

satellite in a two-line element set (TLE) from web on an hourly basis (once an

hour) and forwarding the information messages to Active MQ;

 Monitoring (Limit check);

 Public Telemetry Endpoint;

 Archiver – logging data received from Active MQ and sending the logs to

database.

2. Objective

The objective of this test and verification plan is to describe the strategies, methods,

environments and tools used in the test and verification process of the MCS.

The MCS shall correspond to Technology Readiness Level (TRL) 6 according to the ESA

Technology Readiness Levels Handbook for Space Applications, which is considered the

service level agreement in the current test and verification plan.

3. Scope

 The scope includes verification of all components of the MCS and all possible interfaces

between the MCS and external systems and applications. Software verification is the

testing done to make sure the software code performs the functions it was designed to

perform [22].

The scope does not include testing and verification of external systems and applications

that are communicating with the MCS. All data received from external systems are taken

63

“as it is” and it is not validated, unless the validation of incoming data is a specified

functionality of the MCS.

Integration testing is done by creating an environment that is as close to the estimated real

situation as possible. Using real external systems (or their test environments) is preferred.

If this is not possible, then emulators will be created for simulating external systems and

applications.

4. References

 ESA Technology Readiness Levels Handbook for Space Applications

5. Resources

 GitLab – sprint planning, story/task descriptions, bug reporting;

 TestLink test management system;

 Jenkins and Selenium for automated system testing;

 Slack communication platform – team communication, real-time messaging;

 Git version control system.

6. Testing and verification strategy

The development process of the MCS follows an iterative model. Testing is a part of

every phase in the cycle.

Different techniques and open source tools may be used for testing, based on the specific

situation. Test cases are defined and automated, where reasonable and possible.

6.1 Unit Testing

The general approach in the project is that developers are responsible for creating unit

tests for their own code using suitable tools.

More specific guidelines for creating and running unit tests as well as code coverage goals

are to be defined in the next version of this document.

64

6.2 System and Integration Testing

Test cases for system and integration testing are planned and conducted based on use

cases.

Priorities are set on use cases in order to define the most critical functionalities.

Different testing techniques are used for creating system test cases (boundary values,

equivalence classes, classification trees etc.). The specific techniques are chosen based

on concrete functionalities and priorities.

System and integration tests shall be automated mainly if they can be used as regression

tests later. Otherwise they will be executed manually.

Integration testing may require creation of emulators for external systems.

System and integration testing will be planned and conducted by software tester(s).

6.3 Stress and Load Testing

The purpose of Stress Testing is to determine the robustness of software by testing beyond

the limits of normal operation.

Stress tests will be designed with the aim to confirm that the system can maintain its

functionality under heavy load and to find:

- Possible concurrency issues or deadlocks;

- Certain type of bugs that may be difficult to detect over the relatively short period

of time when testing is performed.

6.4 User Acceptance Testing

The purpose of acceptance test is to confirm that the system is ready for operational use.

Acceptance test cases will be conducted based on pre-defined use cases.

65

6.5 Automated Regression Testing

Regression testing is the selective retesting of a system or component to verify that

modifications have not caused unintended effects and that the system or component still

works as specified in the requirements.

Regression tests for most critical functionality can be designed and automated as soon as

a component has reached the necessary level of maturity for carrying out its main

function.

7. Control procedures

The main channel for problem reporting is GitLab.

Incidents encountered while testing that are verified as errors are reported as error or

“bug” tickets in GitLab.

8. Roles & responsibilities

Product owner, team leader;

Architect/developer: Mission control software architecture and core;

Developer: Communication protocol;

Developer: Telemetry/payload commanding;

Developer: Integration with Mission Planning;

Developer: MCS user interface;

Developer: Mission planning;

Developer: Common Validation and Verification System;

Quality Assurance Specialist: Testing and verification.

66

9. Schedules

Sprint length: 1 week.

Project reviews: at the end of every semester (first review on December 7th 2016).

Estimated live/launch of the satellite: 2019.

67

Appendix 4 – Low-level test cases for MCS communication

with EPS

Black-box techniques used for test case creation:

 Use case testing;

 Boundary value testing;

 Equivalence class testing.

Table 14 – Test Cases

ID Test

condition
Test case description Expected result

TC-1 CO-1 Read from one register (No 25)

/ read the temperature of

Battery

The temperature of Battery A in C

TC-2 CO-1 Read from two registers (No

25 and 26) / read the

temperature and voltage of

Battery A

The temperature (in C) and

voltage (in V) of Battery A

TC-3 CO-1 Read from 0 registers No response

TC-4 CO-1 Read from all registers Data from all registers

TC-5 CO-2 Read from 102 registers Wrong command (0x01)

TC-6 CO-2 Read from 256 registers Wrong command (0x01)

TC-7 CO-2 Write to a read-only register Wrong command (0x01)

TC-8 CO-1 Write to one register No 59 Data written

TC-9 CO-1 Write to registers 59 and 60 Data written

TC-10 CO-2 Write to all registers Wrong command (0x01)

TC-11 CO-2 Write to register No 256 Wrong command (0x01)

68

ID Test

condition
Test case description Expected result

TC-12 CO-4

CO-1

Send two concurrent

commands:

Write to one register No 59

Read from all registers

Data written

TC-13

CO-4

CO-2

Send two concurrent

commands:

Read from 256 registers

Write to one register No 59

Wrong command (0x01)

TC-14 CO-3 Send a reset command to

address 0x04

Wrong command (0x01)

TC-15 CO-3 Send a Programmable Interface

Controller (PIC) Program

Memory Update command to

address 0x04

Wrong command (0x01)

TC-16 CO-3 Send a PIC Program Memory

Read command to address 0x04

Wrong command (0x01)

TC-17 CO-3 Send a Read Memory

Checksum command to

address 0x04

Wrong command (0x01)

TC-18 CO-2 Send a read command to

address 0x55

Wrong command (0x01)

TC-19 CO-2 Send a write command to

address 0x55

Wrong command (0x01)

TC-20 CO-2 Send a write to multiple

registers command to address

0x55

Wrong command (0x01)

TC-21 CO-3 Send a PIC Program Memory

Update command to address

0x04

Wrong command (0x01)

TC-22 CO-3 Send a PIC Program Memory

Read command to address

0x04

Wrong command (0x01)

TC-23 CO-3 Send a Read Memory

Checksum command to

address 0x04

Wrong command (0x01)

TC-24 CO-2 Send more than one byte with

CTRL byte

No response: CTRL byte of the

frame is ignored on reception

TC-25 CO-3 Send a command with CMD

(0x01)

Wrong command (0x01)

TC-26 CO-3 Send a command with CMD

(0x02)

Wrong command (0x01)

TC-27 CO-3 Send a command with CMD

(0x04)

Wrong command (0x01)

TC-28 CO-3 Send a command with CMD

(0x05)

Wrong command (0x01)

TC-29 CO-3 Send a command with CMD

(0x07)

Wrong command (0x01)

69

ID Test

condition
Test case description Expected result

TC-30 CO-3 Send a command with CMD

(0x08)

Wrong command (0x01)

TC-31 CO-3 Send a command with CMD

(0x09)

Wrong command (0x01)

TC-32 CO-3 Send a command with CMD

(0x011)

Wrong command (0x01)

TC-33 CO-1 Write 2 bytes to a read-write

register

Data written

TC-34 CO-2 Write 3 bytes to a read-write

register

Wrong command (0x01)

TC-35 CO-5 Verify the storage of Ku-band

high speed downlink frames

received from EPS

Data is stored in ground station

data storage in raw IQ data format

in addition to normal decoded

format for a period of 1 month

TC-36 CO-5 Verify the storage of data

downlinked to the ground

segment, via UHF and Ku-

band downlink channels

Data is stored in a dedicated

server for up to 1 years after the

completion of the mission

