
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Demur Nodia

166797IVSM

SDMX Type Provider for F#

Masters’s Thesis

Supervisor: Juhan-Peep Ernits

PhD

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Demur Nodia

166797IVSM

SDMX tüübitekitaja

programmeerimiskeelele F#

Magistritöö

Juhendaja: Juhan-Peep Ernits

PhD

Tallinn 2019

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Demur Nodia

06.01.2019

3

Abstract

The importance of making good quality statistical data easily accessible and usable is

ever increasing. Statistical databases are sources of huge amount of data that can yield

valuable insights when used appropriately. SDMX standard was devised by large data

providing organizations including e.g. European Central Bank to give standardized access

to statistical data. A recent version of the standard, version 2.1, includes a restful web

service by providing a data schema alongside the actual information [1].

On the other hand the F# programming language has a powerful feature called type

provider that enables generation of types at both design time and run time. Several type

providers have been implemented in the past. FSharp.Data is a library that is a collection

of frequently used type providers. Among these is a World Bank type provider that can be

used to query custom World Bank data API.

Within the current work we set out to develop an SDMX type provider that could be

used to access all SDMX standard version 2.1 compliant statistical data REST APIs. The

thesis document details the design decisions taken in the development process. The result

is validated by accessing World Bank and European Central Bank data via different APIs

and comparing the results.

Keywords:

F#, TypeProvider, functional programming, SDMX, data services

4

Annotatsioon

Hea kvaliteediga statistiliste andmete kerge kättesaadavuse ja kasutatavuse olulisus üha

kasvab. Statistika andmebaasid sisaldavad suures koguses andmeid, mis võivad korrektsel

ja asjakohasel kasutamisel pakkuda suurt lisaväärtust. Euroopa Keskpank koos teiste suurte

statistilisi andmeid pakkuvate organisatsioonidega töötas välja standardi SDMX, mis on

mõeldud statistiliste andmete ligipääsu ühtlustamiseks. Hiljutine versioon, versiooninum-

briga 2.1, sisaldab ka veebiteenuse REST liidest, võimaldades ligipääsu lisaks andmetele

ka andmete struktuurile [1].

Teisest küljest toetab programmeerimiskeel F# andmetüüpide tekitamist nii programmi

arendamise ajal kui ka programmi töö ajal. Seda omadust nimetatakse tüübitekitajaks

(ingl. k. type provider). F# keele jaoks on varasemalt arendatud mitmeid tüübitekitajaid,

millest paljud tihemini kasutatavad on koondatud teeki FSharp.Data. Nende hulgas on

tüübitekitaja, mis võimaldab pärida andmeid Maailmapanga statistikaandmebaasist.

Käesolevas töös töötame välja ja arendame valmis tüübitekitaja, mis võimaldab pöör-

duda kõigi SDMX standardi versiooni 2.1 ja REST liidesega statistiliste andmebaaside

poole. Töös on detailselt dokumenteeritud disainiotsused ja arendusprotsess. Töö tule-

must valideeritakse Maailmapanga ja Euroopa Keskpanga andmete abil pärides neid üle

erinevate liideste ning tulemusi võrreldes.

Keywords:

F#, tüübitekitaja, funktsionaalne programmeerimine, SDMX, andmeteenused

5

Contents

1 Introduction 8

2 Related work and background 11

2.1 Background . 11

2.2 Publishing statistical data on the web . 12

2.3 SDMX . 13

2.3.1 Background . 14

2.3.2 Domains . 15

2.3.3 Provider implementations . 15

2.3.4 Use Case . 16

2.3.5 Structural Metadata . 16

2.3.6 Tools . 18

2.3.7 SDMX RESTful API . 20

2.3.8 Dataflows . 22

2.3.9 Datastructures . 25

2.3.10 Data . 25

2.4 F# TypeProvider . 28

2.4.1 Strongly-Typed Language Support for Internet Scale Information

Sources . 28

2.4.2 How TypeProviders work . 30

2.4.3 Data exploration through Dot-driven Development 32

3 Design and implementation of SDMX TypeProvider 33

3.1 Development Environment . 33

3.2 Implementation details . 34

3.3 Project Structure . 35

3.4 Testing TypeProvider . 36

3.5 Type Structure Design . 37

3.6 Implementation . 39

3.7 Records Types and Caching . 44

6

4 Usage Scenarios and validation 45

4.1 WorldBank . 45

4.2 European Central Bank . 46

4.3 Future Work . 49

5 Summary 50

References 54

7

1 Introduction

TypeProvider is a powerful feature of the F# programming language. Type provider makes

it possible to provide types, properties, and methods for use in programming language at

design time and run time, which enables to benefit from the modern static type system

while working with data schemas, that are defined externally from the language, such

as databases, web services or any other data providers exposing information about their

schema.

There currently already exist multiple type provider implementations which already

work well in practice. Some of them are general-purpose ones like CSV [3] or JSON [4]

type providers from FSharpData [5]. they are very beneficial because they can be used

with a wide variety of data sources, they can work with local files as well as files served

from external sources via web. For example, JsonProvider [4] can be used with any kind

of JSON [6] format compatible data, the only requirement is to initially provide a schema,

based on which the type provider can infer types and provide them on the fly. This means

that the user will get suggestions after typing a dot(.) while writing F# code in the editor

and if you mistype a column name for example code will not compile.

Because of some web data providers may have more complex URLs, they also accept

some parameters which could be acquired from different endpoints, it is becoming more

complex to use general-purpose type providers for such cases. For example to consume

data from the WorldBank APIs one could use XmlProvider or JsonProvider but this

requires some domain specific knowledge. In comparison there is more specific type

provider WorldBank Provider [7] which does not require any knowledge from the user

about the API endpoints or their schema, the details are hidden behind the type provider

implementation and the user gets all the data into F# type system ready for exploring.

Listing 6 contains an example of a using the WorldBank type provider. As you can see

it is possible to navigate through data using dots and even more advantage comes from the

autocomplete suggestions of types provided via the IDE (or editor).

In 2001 several large data producing organizations such as e.g. European Central

Bank came together to devise a standard way to access data. The consortium came up

with the Statistical Data and Metadata eXchange (SDMX [1]) standard that has by now

matured and provides a way of publishing data on the web using sdmx-rest [8]. The

standard specifies a way of exposing schemas, metadata and an approach for querying

8

statistical multidimensional data through a RESTful API. In short, there is all the necessary

information a type provider might need in order to infer types and then allow the user to

query the data. The aim of the current thesis is to build an SDMX type provider which

would be generalized across all the SDMXdata providers. We will discuss the current

status and amount of data currently available adhering to the SDMX standard, also the

importance and benefits of having such type provider.

There are multiple areas to study that are in the scope of the current thesis. The two

major ones are F# type providers and the SDMX standard itself. For type providers, it is

important to know how they work, what difficulties or limitations exist and what kind of

data is necessary to create a new type provider.

For the SDMX standard important parts to know are how it exposes data, what are

available formats, how required information can be acquired. Also, identify some real-life

examples check how well they work and if they follow to the standard.

The following documentation is described in the Guidelines for the use of Web Services

Section 7 [9]. More specifically part 4: "SDMX RESTful API" is the one used in creating

the SDMX type provider.

The SDMX standards are developed publicly by the SDMX Technical Standards

Working Group [10] this is another good source of information about the technical details

and examples of how things work and how services should be used correctly.

Currently, SDMX is implemented by multiple organizations. Some of them are listed

by the working group [11]. Determining whether the data sources not listed by the working

group adhere to the standard is a separate task.

All the tools and technologies used in the scope of the current thesis are open source.

The resulting library developed in the context of the current thesis will also be open source,

open for contributions, with a steady baseline and potential to make it possible for other

people reproduce, maintain or improve.

Many new SDMX standard based data sources have emerged recently. The standard

is used by many organizations and a large amount of data is available through sdmx-rest

services. Thus the standard is a good fit for type provider approach and creates a higher

level of abstraction for F# users to work with such data.

It is possible to achieve even better results to make the data available and easy to use

not only for programmers but also for data journalists and readers. The Gamma [12]

9

project is an ongoing project, it is a great tool for open data storytelling. The approach lets

anyone modify the queries, aggregate and the visualize data. Creating pivot data services

for The Gamma tool becomes much easier using SDMX type provider.

On the other hand Statistics Estonia [13] adopted a new statistical database soft-

ware [13] called .Stat (DotStat) in 2018. This gives the possibility to use a new database

for implementing pivot data service for The Gamma project. After finishing the work data

journalists and storytellers will have a possibility to use real updated data directly from

Statistics Estonia and have all the features from The Gamma project. Finally, the whole

database is delivered in a simple usable form to F# programmers, data journalists, and

readers.

For the validation of the SDMX type provider implementation results it will be used

against real SDMX endpoints, for example against the WorldBank, European Central Bank

databases and validate if different data flows can be retrieved and used to build charts. In

the case of WorldBank, it will be easy to validate the results by providing the same data

that is available in the WorldBank type provider documentation [7]. In general the provider

should be generic enough to work with any standard-compliant SDMX data sources.

10

2 Related work and background

2.1 Background

In order to implement an SDMX type provider it is necessary to understand how type

providers work and how they are meant to be implemented and how SDMX is meant to

be used. Thus the main questions which need to be answered are: what is SDMX, F#

type provider and how those two fit together. In addition we will touch upon potential

use cases of the contribution, i.e. answer the questions why it is a good idea to spend

time on developing the type provider, what benefits and advantages can it have to different

segments of users, focussing mainly on developers and data journalists.

In the SDMX standard we mostly focus on sdmx-rest specification details, which will

cover

• web services

• URL schemes

• API versions

• supported features

• response formats

• internationalization.

The main reason for giving a priority in this direction is that the information acquired

will be essential to be able to fetch the metadata and data in a reliable way. The knowledge

will give ideas about type provider design possibilities and functionality. We will be able to

specify the minimum requirements to achieve viable functionality and suggest feature ideas

for the future roadmap of further development. Besides learning the standard it is important

to know about the existing, real-life SDMX implementations. How widely are these used

between organizations and what is the approximate amount of data available? Evaluation of

compatibility to the standard will give a solid understanding of implementation challenges

and possibilities to achieve simplicity of the design. SDMX is openly accessible to

everyone and organizations publishing the data to the world. People have already tried

to create simplified ways to access such data. The final part includes exploring already

11

available tools and libraries created for accessing SDMX data through the web APIs.

Learning the ways how people use and what their software offers can be useful for reusing

the approach and also will be good for comparison with TypeProvider approach to state

advantages or disadvantages between them.

The second major part is to research F# and the concept of type providers. We will

discuss the question: why is it a good idea to create generic TypeProvider for all SDMX

data sources? To answer this some related research materials will be discussed to explain

what are the underlying principles of type providers and what is possible to achieve at this

point. The literature contains a considerable amount of contributions towards the goal:

articles discussing possibilities and benefits of integrating big scale external information-

rich services into programming language type system. More specifically focus here is on

the development time when the IDE (or editor) triggers compiler to keep the connection

to an external data source and generate types on-demand while typing. There are many

type provider implementations available which give an important knowledge in practice

to quickly glance what is already available and what is possible to achieve. For example

open source project FSharp.Data [14] has a number of type providers available for use, it

is essential to use existing knowledge and experience while working on new type provider

implementation.

An additional section is to show possible future continuations and provide ideas about

usage scenarios. One way is to chain an SDMX type provider with The Gamma project,

which would act as the end point of the whole toolchain and deliver data from SDMX

restful API through F# Type Provider and the Gamma service to data journalists. They

can use all those tools on a high level, via a web browser. This enables data journalists

to create stories reaching out to actual data without needing much technical knowledge.

Readers have a simple interface to explore the data right in the browser.

2.2 Publishing statistical data on the web

Statistical data is provided by a myriad of organizations and good quality data is key

to evidence-based governance. Thus, in addition to making sure that the data collected

represents the reality in a true way, it is also important to make the data easy to access,

process and visualize. In governance, science, business and many other domains statistical

data analysis gives answers to important questions. Ways of publishing such data on the

12

web are described in the research paper [15]. There are two main tools discussed in the

research and both of them use the popular SDMX standard to represent multidimensional

data using RDF. There are many organizations already using the SDMX approach and

have real data publicly available. The number of publishers and data will grow over time.

That’s why it is important to have a standardized way to access data to enable consumers

of the data to build tools and focus on meaningful parts of usages rather than figuring out

ways of just fetching correct data and useful format.

We will discuss SDMX standard in more detail in the following section and emphasize

the relevant parts in the context of the requirements of type providers.

2.3 SDMX

SDMX, which stands for Statistical Data and Metadata eXchange is an international

initiative that aims at standardizing and modernizing the mechanisms and processes for the

exchange of statistical data and metadata among international organizations [16].

SDMX is initiated and sponsored by seven institutions: the Bank for International

Settlements (BIS), the European Central Bank (ECB), Eurostat (the statistical office of the

European Union), the International Monetary Fund (IMF), the Organisation for Economic

Co-operation and Development (OECD), the United Nations Statistics Division (UNSD),

and the World Bank [16].

There have been several version releases since the approval of the first version (1.0)

in 2005. Currently the latest version is 2.1, issued in May 2011. In 2013, SDMX was

published by the International Organization for Standardization (ISO) as International

Standard (IS) 17369 [17]. Since then several organizations implemented and showed how

it works in practice, we will specify some of those organizations in the following part of

this section.

The SDMX website provides comprehensive guidelines on the official website, not all

the parts are relevant for the scope of this thesis. The main focus will be on version 2.1.

All parts which describe web service specifications and message structures is a point of

interest. sdmx.org provides special introduction page [18] which contains SDMX 2.1 User

Guide [19]. Schema and Samples from SDMX version 2.1. We will mention some of

the key points from User Guide and then go more in details in Guidelines for the use of

Web Services section 7 [9]. SDMX has documented major version changes in a separate

13

document [20]. For example, we can read that Support for the RESTful interface has been

added to the web services specification in version 2.1.

2.3.1 Background

SDMX comes out of the world of official statistics. "Official statistics" are the data which

is collected and disseminated by a set of governmental and international organizations to

provide the factual basis for making policy and supporting research.

In general, SDMX supports improved business processes for any statistical organization

as well as the harmonization and standardization of statistical metadata. Documentation

includes:

• technical standards (including the Information Model)

• statistical guidelines

• an IT architecture and tools

From this huge information, we can focus on relevant parts throughout this thesis.

Technical Specifications [21] provides a full introduction to the technical side of the

standard and implementation details. This includes multiple stages, In this case, the main

points are in Section 7 – Web Services Guidelines [9] which describes ways to publish

statistical data and metadata on the web in the machine-readable format. For standardizing

metadata and data output special SDMX-ML specification was created. It documents the

schema and structure of the message. The XML format is used to describe data structure,

reference metadata.

Web applications traditionally expose their functionality through application program-

ming interfaces(APIs), SDMX is not an attempt to invent new way of sharing data, it

uses already well-established protocols(SOAP and REST), but in order to make more

complex data accessible and usable it provides SDMX-ML, a standardized XML format

for exchanging data and structural metadata within the statistical realm.

Besides REST specification SDMX also provides SOAP web services which were

supported even in earlier versions. For describing web services in a machine-readable way

WSDL (Web Services Description Language) and WADL (Web Application Description

Language) is used.

14

2.3.2 Domains

This chapter will characterize current users of SDMX according to the User Guide [19].

It has become very widely used in the world of official statistics, so much so that it is

difficult to form a comprehensive list of users. There is now a grown interest in setting

up a global registry so that all SDMX data and metadata sources can be easily found:

https://registry.sdmx.org. There are two most common uses:

• Use SDMX as a reporting and collection format within the central banking commu-

nity and among the statistical agencies in Europe.

• Dissemination of statistical data from websites

Domain usage is quite broad if you glance over an existing database collection you

will find very few domains not covered in total. Some of the major ones are listed below:

• Census and Demography

• Education

• Financial and Monetary Indicators

• Economic Indicators

• National Accounts

• Labour

• Food and Agriculture including fisheries

• Epidemiology

• Transport

• Data Quality

• Development Indicators

2.3.3 Provider implementations

There are two major groups of SDMX provider implementations first one is a group of

direct implementations of the standard without using any framework [22]. Few from such

examples are:

• ECB (European Central Bank) [2].

15

• EUROSTAT (Statistical Office of the European Union) [23].

• WorldBank [24].

Another group is .Stat Suite [25] use case. .Stat Suite is an SDMX based modular

Open Source platform already used by more than 10 organizations [26]. Few from such

examples are:

• Statistics Estonia [27].

• UKData Service [28].

• OECD (Organization for Economic Co-operation and Development) [29].

• Australian Bureau of Statistics [30].

2.3.4 Use Case

To see the whole picture lets review Web Data Dissemination System. The whole picture

is shown on Figure1. In our case, Data Web Service is the only part we will have direct

contact and everything behind this is hidden in as implementation details. Approximate

sequence of setting up the system is the following: (1)Based on the Structural metadata

database tables and relations are created. (2)load data into database from SDMX dataset

files. (3) Data discovery system helps to identify what kind of data is available. (4)

Start building a query which will be used to retrieve the data. (5)(6) Data and related

metadata are returned in a structured format which is possible to use for further processing

or visualizations(7).

2.3.5 Structural Metadata

It is important to understand structural metadata since the users of the API need this

knowledge in order to be able to use the service. The information acquired in this part is

necessary to build the data query. There are two main keywords in this context: Dataflow

and Dimensions. Dataflows is considered as a single set of data collection, can be relatively

compared to a database table. For example, Currency exchange rates can be a single

Dataflow. Once you have chosen a dataflow next is to get dimension information about it.

In most cases, there are more than one dimensions. Dimension information is represented

16

Figure 1. Process flow of an SDMX Web Data Dissemination System

as a DataStructure Component, each Datastrcture has a relation to Concepts which is more

detailed and human-readable description.

Figure 2. Structural and Provisioning Metadata Used in the Scenario

17

To query data according to the standard rules using REST API we need to build a query

string in which major part is the sequence of dimensions separated by dots(.). We will

provide examples metadata and data query is flowing sections.

2.3.6 Tools

Before actually diving into SDMX REST API and start fetching all the data using that, there

is one more interesting area to research. The growing availability of software tools which

support some of the aspects of SDMX, most of them is open source. This gives a chance

to observe and learn how people are using the standard. Based on research about already

existing client libraries and tools, I could discover several open source projects which can

work with SDMX API endpoints. One of them is SMDX Helper Tool [31] implemented in

Java as a cross-platform desktop application. It is very easy to run and is useful for trying

different providers, currently, it supports 19 different providers. This tool was also useful

to discover some of the providers and test them right away using user interface. UI looks

simple example is shown on Figure3. 3 main components: Dataflows, Dimensions, and

Dimension Values(Codelists) are displayed as a table and filtered depending on each other.

Queries sent in the background is logged in a bottom section which is useful to check what

are the endpoints and the parameters o the query.

SDMX Helper is a good tool to use as a desktop client to explore different provider

metadata. It is not possible to reuse as a component while building other applications. In

contrast to F# TypeProvider data fetched from service is just another structure which can

be used as any other kind of structure and sent to a visualizer or other part of the software

you are building.

Another open source tool is an object-oriented library sdmx-rest4js [32]. Javascript

implementation is reusable and embeddable to other applications. It represents a client

library for SDMX REST AP and is simple to install using the node package manager.

sdmx-rest4js allows to create metadata and data queries [33], as a result, you get simple

javascript object and traditional ways to manipulate. Example usage of how to query data

using sdmx-rest4js is shown in Listing 1.

When using sdmx-res4js library similarly to other object-oriented ones, you as a user

of the library need to be aware of some keywords which in this particular case are flow

and key values. To define this in terms of SDMX flow is a Dataflow and EXR would be

18

Figure 3. Sdmx Helper tool

1 var sdmxrest = require('sdmx-rest');
2 var query = {flow: 'EXR', key: 'A.CHF.EUR.SP00.A'};
3

4 sdmxrest.request(query, 'ECB')
5 .then(function(data) {console.log(data)})
6 .catch(function(error){console.log("something went wrong:

" + error)});↪→

Listing 1. Javascript: sdmx-rest4js usage example

Exchange Rates and key which is a combination of dimension values delimited by a dot(.).

In this example, there are 5 dimensions: Frequency, Currency, Currency denominator,

Exchange rate type, Series variation - EXR context.

Value of the key ’A.CHF.EUR.SP00.A’ represents ordered dimension values separated

by a dot, that would be: Annual, Swiss franc, Euro, Spot, Average. This is an example of

one specific Dataflow of one specific data provider, obviously, user needs a separate way

of looking up those flows and dimension values in order be able to query the data. Here we

can state an advantage of TypeProvide in case of SDMX services since type provider can

generate types on demand you don’t need to search ways of looking up dataflow names

19

or dimension values. After typing a dot(.) IDE(or editor) will provide suggestions of all

available values and filters while typing, this means you can create SDMX query in one go

and makes data exploration much easier.

2.3.7 SDMX RESTful API

The current section is strongly referenced to materials from SDMX standards: section

7 [9]. We will discuss most of the key technical details which are necessary to know for

retrieving metadata and data from provider endpoints.

In REST terminology any specific information is known as a "Resource". In SDMX

such specific resources are called code lists, concept schemes, Dataflows, dimensions etc.

It is possible to identify each of this resource by unique global URI. Even though REST

supports resource manipulation (POST, PUT, DELETE), SDMX covers only data retrieval

part(HTTP GET). It is possible to use HTTP Content Negotiation and the HTTP Accept

request header to request one from multiple available SDMX-ML representations.

Responsible party for writing REST API Specifications is SDMX Technical writing

group [10]. They announce a period of public reviews before every release which gives

every interested party possibility to participate. The very compact and informative page is

provided on a single cheat sheet [34].

There are two kind of queries supported first is structural metadata queries which

gives information about all the resources like dimensions, code lists, concept schemes, etc.

Second is a data query which needs some information from previous queries in order to

query desired data.

Both kinds of queries have the same starting point URL, named WsEntryPoint. For

structural metadata, queries it is possible to request to resolve references. For example,

when querying data structure definitions we can also request related concepts and code lists

used in data structure definitions. To do this we can use query parameter ?references =

children.

SDMX RESTful web services offer two modes of operation:

• Data retrieval, where users know the data they want to retrieve (e.g.: daily exchange

rates of the Japanese yen against the euro).

• Data discovery, where, using a metadata-driven approach, users need to discover the

data exposed by the web service.

20

Parameter Type Description

agencyID
String SDMX
common: NCNameIDType

The agency maintaining the artefact to be
returned

resourceID
String SDMX
common: IDType The id of the artefact to be returned

version
String SDMX
common:VersionType The version of the artefact to be returned

Table 1. Parameters are used for identifying resources

Keyword Scope Description

all agencyID Returns artefacts maintained by any maintenance agency

all resourceID
Returns all resources of the type defined by the resource
parameter

all version Returns all versions of the resource

latest version Returns the latest version in production of the resource

Table 2. Keywords used for resource group of resource identifiers

Structural metadata query looks like this:

URI: /resource/agencyID/resourceID/version/itemID?queryStringParameters

Resource in our case is one of the following: Datastructure, Conceptscheme, Codelist,

Dataflow. For the full list of resources check cheat sheet [34] It has 3 main parameters

for identifying resources details in Table 1. agencyID, resourceID, version. In case we

don’t know specific values for those parameters it is possible to use some keywords which

also default parameters in case you don’t provide one at all Table 2. For example, a valid

query using default keywords would look like that:

URI: /resource/all/all/latest/all?queryStringParameters

This works well when queering dataflows when we don’t know what kind of Dataflows

provider supports we could run a query like that:

URI: /dataflow/all/all/latest/

Sdmx Technical writing group wiki pages [33] has provided as a tutorial guideline for

people who are intending to use SDMX RESTful APIs.

Data queries for which resource is data and flowRef is Dataflow reference ID (e.g.

WDI). key is the most important part of the data query identifying the data requested.

providerRef (eg ECB, WB.) is an optional parameter by default keyword all is used.

21

queryStringParameters are optional query parameters which allow additional filterings

like exact period or specific data update time.

/resource/flowRef/key/providerRef?queryStringParameters

For short summary in order to get desired data there are at least three HTTP calls

required.

• structural metadata information: Dataflows

• structural metadata information: Datastructures(Dimensions, Concept Schemes,

Code Lists)

• data query

In the upcoming sections, we will discuss each of these calls separately based on

specific examples. I chose one direct SDMX implementation from WorldBank and will

follow process step by step until we get to the final part where we get desired data. Lets

set the goal to query Annual Agricultural land (sq. km) for Germany. The entry point for

WorldBank SDMX service is:

https : //api.worldbank.org/v2/sdmx/rest/

We will eliminate this part from URLs since it is the same for all the endpoints and use

only resource identifiers which varies, for purpose of keeping lines short.

2.3.8 Dataflows

To query all available dataflows is the very first step, this gives Dataflow identifiers which

is required for next the step of getting structural metadata information.

Dataflows: dataflow/all/all/latest/

XML Response contains message structure containing header and actual structure we

requested, for keeping result simple and compact some not important parts are eliminated

from Listing 2.

There are few information we can see in Listing 2. Two dataflows are available

• SDG

• World Development Indicators

There are just several information we need to extract, note that some of the tags i.e:

Name are available in different languages.

22

1 <Structure>
2 <Header>...</Header>
3 <Structures>
4 <Dataflows>
5 <Dataflow id="SDG" agencyID="UNSD" version="1.0"

isFinal="false">↪→

6 <Name xml:lang="en" >SDG</Name>
7 <Structure>
8 <Ref id="SDG" version="0.4" agencyID="UNSD" />
9 </Structure>

10 </Dataflow>
11 <Dataflow id="WDI" agencyID="WB" version="1.0"

isFinal="true">↪→

12 <Name xml:lang="en">World Development
Indicators</Name>↪→

13 <Structure>
14 <Ref id="WDI" version="1.0" agencyID="WB" />
15 </Structure>
16 </Dataflow>
17 </Dataflows>
18 </Structures>
19 </Structure>

Listing 2. XML response: WorldBank dataflows

23

1 let xd = XDocument.Parse(dataflowsXml)
2 let rootElement = xd.Root
3 let headerElement = rootElement.Element(xmes "Header")
4 let structuresElements = rootElement.Element(xmes

"Structures")↪→

5 let dataflowsEelements = structuresElements.Element(xstr
"Dataflows").Elements(xstr "Dataflow")↪→

6 let dataflows =
7 [for dataflowsEelement in dataflowsEelements do
8 let structureElement =

dataflowsEelement.Element(xstr "Structure")↪→

9 let refElement = structureElement.Element(xn "Ref")
10 let dataflowDisplayName =

dataflowsEelement.Element(xcom
"Name").Value.Trim()

↪→

↪→

11 let dataflowId = refElement.Attribute(xn
"id").Value↪→

12 let dataflowAgencyId = refElement.Attribute(xn
"agencyID").Value↪→

13 let dataflowVersion = refElement.Attribute(xn
"version").Value↪→

14 yield {
15 Id = dataflowId
16 Name = dataflowDisplayName
17 AgencyID = dataflowAgencyId
18 Version = dataflowVersion
19 }
20]

Listing 3. F# Parse dataflows

• Name: Structure>Structures>Dataflows>Dataflow>Name

• Id: Structure>Structures>Dataflows>Dataflow>Structure>Ref:id

• AgencyID: Structure>Structures>Dataflows>Dataflow>Structure>Ref:agencyID

• Version: Structure>Structures>Dataflows>Dataflow>Structure>Ref:version

Name Element: Structure>Structures>Dataflows>Dataflow>Name Containing names in

different languages. Ref Element: Structure>Structures>Dataflows>Dataflow>Structure>Ref

Containing: id, agencyID and version.

Following Code Listing shows WorldBank Example of how to acquire this information.

24

2.3.9 Datastructures

Next step is to get metadata structure information, there are several ways to fo this. one

is to query all of them separately and second is to use data structure references=children

parameter to resolve feature which helps to query all relevant information at once in a

single request. We are going to use id, agencyId and version information acquired in

previous step. Let’s say we choose World Development Indicators as a dataflow to proceed

according to this the final URL will look like the following:

Datastructures: datastructure/WB/WDI/1.0/?references = children

Response example in Listing 4. The example contains only important components

and reference ids for keeping it as compact as possible and at the same time maintain the

relations logic to be visible. Response contains Header with general information about

provider and Structures with Codelist, Concepts, Datastructures. The sequence of

extracting information start from looking into Datastructures which contains Dimen-

sions without names or descriptions it has just id and references to ConceptIdentity an

Enumeration. Concept scheme provides human-readable names and descriptions for each

dimension and relations is linked by Dimension>ConceptIdentity>Ref:id [35]. This means

that using that id it is possible to look up Concepts and extract Name and Description

information in proffered language. Next we look up for Codelists using reference id Di-

mension>LocalRepresentation>Enumeration>Ref:id [36]. These are values for frequency

dimension, so we can extract human-readable name in proffered language: in English

Annual and related id A. Other values can be Monthly : M , Quarterly : Q and so on

as many as provider outputs in response.

2.3.10 Data

After extracting all the ids and information we can construct query for data. Lets remember

what we were looking for: Annual Agricultural land (sq. km) for Germany. Those are

combination of all the dimensions provided in datastructure query. We need to take ids

of dimensions and sort it by the position attribute provided to each of them. In this case

data key would look like A.AG_LND_AGRI_K2.DEU since id for Annual is A, for

Agricultural land (sq. km) - AG_LND_AGRI_K2 and for Germany - DEU . Final data

URL will be following:

Data: data/WDI/A.AG_LND_AGRI_K2.DEU/

25

1 <Structure>
2 <Header>...</Header>
3 <Structures>
4 <Codelists>
5 <Codelist id="CL_FREQ_WDI">
6 <Name xml:lang="en">Frequency code list</Name>
7 <Code id="A">
8 <Name xml:lang="en">Annual</Name>
9 </Code>

10 </Codelist>
11 </Codelists>
12 <Concepts>
13 <ConceptScheme id="WDI_CONCEPT">
14 <Name xml:lang="en"> Default Scheme</Name>
15 <Concept id="FREQ">
16 <Name xml:lang="en" >Frequency</Name>
17 <Description xml:lang="en">
18 Indicates rate of recurrence...
19 </Description>
20 </Concept>
21 </ConceptScheme>
22 </Concepts>
23 <Datastructures>
24 <DataStructure id="WDI">
25 <DataStructureComponents>
26 <DimensionList>
27 <Dimension id="FREQ" position="1">
28 <ConceptIdentity> <Ref id="FREQ" />

</ConceptIdentity>↪→

29 <LocalRepresentation>
30 <Enumeration> <Ref id="CL_FREQ_WDI"/>

</Enumeration>↪→

31 </LocalRepresentation>
32 </Dimension>
33 </DimensionList>
34 </DataStructureComponents>
35 </DataStructure>
36 </Datastructures>
37 </Structures>
38 </Structure>

Listing 4. XML response: WorldBank datastructures

26

1 <GenericData>
2 <Header>...</Header>
3 <DataSet action="Append" structureRef="WB_WDI_1_0">
4 <Series>
5 <SeriesKey>
6 <Value id="REF_AREA" value="DEU" />
7 <Value id="SERIES" value="AG_LND_AGRI_K2" />
8 <Value id="FREQ" value="A" />
9 </SeriesKey>

10 <Obs>
11 <ObsDimension id="TIME_PERIOD" value="1964" />
12 <ObsValue value="194580" />
13 <Attributes>
14 <Value id="UNIT_MULT" value="0" />
15 </Attributes>
16 </Obs>
17 </Series>
18 </DataSet>
19 </GenericData>

Listing 5. XML response: WorldBank data

Data response is outputted as a Series of observations containing ObsDimension and

ObsValue which we can extract into a sequence of tuples or any other data structure.

27

2.4 F# TypeProvider

The second major part of the research is related to the TypeProvider. We will talk about

this feature in upcoming sections and relate a few pieces of research which leads provides

lots of examples and use cases prving the benefits TypeProviders. Feature was introduced

in F# 3.0 and it is defined to be an extension to the compiler that uses code generation

while type checking. To create both new types and new program code that makes use of

these types, with the aim of gaining the benefits of a static type system and the associated

tools while working with data sources external to the language ecosystem. Tools such

as IDE(or editors) gain access to provided types incrementally, as the type providers are

added to a program by a developer.

F# community has a range of type providers implemented which can work with external

data sources, like databases, some of the web APIs, File System and etc. FSharp.Data [14]

is a Library for Data access and contains several TypeProviders which is possible to

use while working with data. Researching this library and checking approaches is one

important part of the thesis since SDMX TypeProvider is strongly related to data with

external schema and experience of FSharp.Data is valuable to reuse and try to build new

TypeProvider on top of it.

2.4.1 Strongly-Typed Language Support for Internet Scale Information Sources

The world is experiencing an enormous growth of information available over the web.

Data is published using web APIs and it is already uncommon to see services which do

not expose data and provide access through the open web API. On the other hand, there

are programming services as components which consume, manipulate and reuse data in

larger systems. Nowadays it is rear to discuss a system which does not have at least one

external service integration. Despite this growth, there are few strongly typed programming

languages which can integrate such kind of external information sources as a language

component directly into the type system.

The size and number of information spaces are growing rapidly, with respect to both

data and metadata[37].

There are three main techniques used in traditionally statically typed languages while

connecting to external services.

• hand-written static libraries,

28

1 #r "../../../bin/lib/net45/FSharp.Data.dll"
2 open FSharp.Data
3

4 let data = WorldBankData.GetDataContext()
5

6 data
7 .Countries.``United Kingdom``
8 .Indicators.``Gross capital formation (% of GDP)``
9 |> Seq.maxBy fst

Listing 6. WorldBank usage example

• generated static libraries,

• dynamically-typed information representation.

None of those approaches scale with large metadata sizes: e.g. hundreds of thousands of

different types, schemas are read eagerly and they are not well connected with exploratory

programming with such big scale.

Dynamically-typed bridging mechanisms discard the benefits of strongly-typed programming[37].

Using this type of dynamic representation it is possible to achieve big scales, but it also

discards benefits strongly-typed programming.

Functional programming language F# makes this challenge easier to overcome, thanks

to the TypeProviders feature. It is a compile-time component that, given optional static

parameters identifying an external information space and a way of accessing that in-

formation space, provides two things to the host F# compiler/tooling[37]. We can see

existing WorldBank Provider example from FSharp.Data in reference section Example :

WorldBank[37]. Screenshots provided demonstrates how easy it is to explore types and

data provided by the service. We can also see the code of usage in Listing 6.

Using this feature F# has a scalable architecture for the direct integration of stable

external information spaces as strongly-typed components. Since types are inferred on

on-demand compiler can work with extremely large external data sources in a scalable

way. SDMX TypeProvider is another example of integrating external services just much

larger scopes since every standard complaint data service will be possible to explore the

same way, this will include WorldBank and many other SDMX-REST service providers.

Design-time Assistance

29

There are interesting of the benefits which TypePovider provides and makes the devel-

opment process more enjoyable and fast, in a sense that all the information you need about

the external source is available right in the editor.

• Interactive type checking during development (“red squigglies”)

• Provision of context-sensitive declaration lists (“auto-completion”)

• Type-directed information on gestures such as mouse-hover (“quick info”)

• Type and name-directed help systems (“F1 help”)

• Name-directed, type-directed or type-safe refactorings

This is known as a design-time experience for strongly typed languages. All new typed

languages should be in this kind of tooling experience in mind.

Current programming language challenge is to integrate internet-scale information

services directly into programming languages. This will increase programmer productivity,

performance, application robustness and application maintainability.

2.4.2 How TypeProviders work

There are two phases of running type provider design time and runtime. While design-

time type inference is performed. For this necessary schema information is requested.

Everything happens in a lazy way depends on usage of the type provider. IDE(or editor)

performs the main operations to trigger the process of compilation while writing code. For

example when initializing type provider or while typing .(dot) after a specific type.

Runtime phase comes in action when we send the type provider usage code to F#

interactive for evaluation. This may re-use some parts which were already done during

design time but in addition fetch more data and deliver F# data structures to the user for

further usage.

TypeProvider is loaded by the compiler and executed at compile-time. When refer-

encing a DLL into the source code and writing usage code, editor triggers compiler to

perform the type compilation. A type provider builds information about types and makes

them available to the compiler [38]. This is done in a lazy way so provider does not

need to provide types for entire information space. For building types initial information

context(schema) is required. There are 3 main possibilities of failure TypeProvider.

30

• Type provider failure. TypeProvider is implemented in F# and it can fail for several

reasons, for example if there is no internet to fetch the schema, or access to the

protocol is restricted. But if type provides succeeds it will generate valid F# code

without compilation errors.

• Runtime failure. When the outside information space changes while running the

type provider, for example some of the metadata information is removed, this may

result in runtime error.

• Recompilation failure. When the outside information space changes. For example

some enumerations are removed this will fail to recompile the same code, this can be

looked as negative aspect but there is a clear benefit that helps to detect the change

at earlier stages during recompilation.

Given the general definitions of the failures, we can now look at how those failures

would happen based on SDMX type provide an example. Let’s assume we have a working

SDMX type provider implementation.

• If there is no internet when using type provider for the first time. It is not able to

obtain any information about schema so no types will be generated. Since there will

be a caching support, it is possible to generate types offline for those ones which has

schema already cached.

• If a dataflow or some code list, for example country, or currency name is renamed.

type provider will still continue to work(there will be no runtime failure) because

for communicating with service providers APIs IDs of the code lists are used and

it will still work unless ID’s are not also changed. But in case of some code list

removal there will be runtime failure since type provide will use already removed or

depreciated id while communicating with service providers.

• If dataflow or some code list is renamed or removed, code which used to work before

will no longer compile because types will also adapt alongside to the new schema

and old type names will remain obsolete.

31

1 olympics = pd.read_csv("olympics.csv")
2

3 olympics[olympics["Games"] == "Rio (2016)"]
4 .groupby("Athlete")
5 .agg({"Gold" : sum})
6 .sort_values(by = "Gold", ascending = False)
7 .head(8)

Listing 7. Python, pandas access data

2.4.3 Data exploration through Dot-driven Development

Importance of data and ways to read represent or interact with it is becoming more and

more important. One of the goals while working in this direction is to achieve a simple

and intuitive way of interacting with data, which will be easy to learn and use for normal

people without any special technical background. In this paper design of data exploration

language is described and shown advantages to other approaches by examples. The way of

using type providers in new language simplifies the complexity of the language and makes

it easy to understand and straightforward to write for exploring data.

To see the difference and advantages of this language lets discuss the example query,

first using popular python library pandas [39]. The Listing 7 shows a pandas script which

finds top 8 athletes by the number of gold medals they won in Rio 2016, and it looks

simple and short but requires the user to understand python and should also be aware of

the pandas library, how it works.

We can see that [olympics["Games"] == "Rio (2016)"] is used for filtering data and

for aggregation we pass "Gold" : sum dictionary, here it is not possible to get the benefit

of autocompleting and even using group_by, agg, sort_values, requires knowledge of how

to use it, what parameters it expects, you may need to check the documentation for that.

The same query for the same data using the language presented in the paper will look

like in Listing 8. Which is the same size as previous but you can see a few advantages.

After typing each dot you get auto-completion which not only suggests the features

of the language but can see the data and provide ’Athlete’ or ’Gold’ as a suggestion, this

means that you don’t need to know much about the data you are expiring as you build the

query. And if you mistype Athlete error hint will correct about the issue, this means that

data is actually built in types which helps to eliminate typing issues as well. On the other

32

1 olympics
2 .'filter data'.'Games is'.'Rio (2016)'.then
3 .'group data'.'by Athlete'.'sum Gold'.then
4 .'sort data'.'by Gold descending'.then
5 .'paging'.take(8)

Listing 8. The Gamma query

hand in case of pandas you are required to know about the ’Athlete’ keyword exactly as it is

and the only way to get this information is by looking it up separately using documentation

or looking into the data source using different tools.

3 Design and implementation of SDMX TypeProvider

The implementation of the SDMX TypeProvider was difficult because the TypeProvider

SDK has had architectural and structural changes between releases. Some of the tutorials or

snippets from books are outdated and does not work anymore. This work is a contribution

to providing up to date step by step approach of how is it possible to achieve results as

we have in SDMX TypeProvider so that important parts of the code snippets and ideas to

considered are explained.

3.1 Development Environment

The recommended way to set up the development environment is Windows Operating

system and Visual Studio software, reasons for recommending this setup is because

of simplified installation and debugging possibilities. The simplest way of setting up

debugging TypeProviders is possible using Visual Studio Debug/Attachtoprocess. . .

option. Although F# works cross-platform, it is possible to set up the environment on

Linux or MacOS. Installation instructions are provided by fsharp.org [40]. During the

work of this thesis, both environments have been used. It is possible to confirm that both

approaches work and gives the possibility to use or create something real.

33

3.2 Implementation details

There are several ways to get started, one is to build everything from scratch which is

not recommended because this is not a trivial task and there already exists some basic

boilerplate code which simplifies the job a lot. Microsoft page provides a guideline to

get starting creating type provider [41]. By the recommendation, another way is to use

F# TypeProvider SDK [42]. ProvidedTypes.fs provided by the SDK gives an API for

creating TypeProviers, additionally Documentation and samples are provided on type

provider creation.

For the example of thesis third way was chosen, to contribute existing opensource

library FSharp.Data [14]. FSharp.Data is an open source project run by the community

it has already implemented TypeProviders for accessing the data. SDMX TypeProvider

would have many similarities to WorldBank TypeProvider, more specifically it could fetch

the same data, with two differences: using SDMX endpoints with slightly changed usage

and as a benefit, it would be more generic. Which means you could use same SDMX

TypeProvider for other SDMX endpoints. There was a suggestion made to the community

using public github.com issue with a brief summary and initial design [43]. Reference

to the idea suggested is to create an SDMX TypeProvider which can query same data as

WorldBank TypeProvider does, with the difference that it will use the SDMX APIs, as a

benefit provider should be generic enough to work with other data sources like European

Central Bank.

There was positive feedback provided from the community member on the issue,

which agreed that SDMX TypeProvider would be a good fit to FSharp.Data. This gives

another validation of the idea that contributing the FSharp.Data library could be beneficial.

Achieving all the community standards and getting more feedback it will be possible to

make a pull request to the main FSharp.Data source.

For a better understanding of how would, SDMX TypeProvider fit to FSharp.Data

library we can look at Figure 4. It shows some major components and connection between

them. The provider will communicate to different service providers using SDMX REST

API which will be configurable using static parameters while initializing a TypeProvider.

Data provided by the service providers will be based on SDMX-ML standard.

34

Figure 4. SDMXTypeProvider with FSharp.Data

3.3 Project Structure

There are two modes of running TypeProvider: DesignTime and RunTime. This means

that we should be able to understand difference and way these two modes connect each

other, in order to be able to configure the project and provide a working solution for a

specific scenario. Code for those two modes is split into two files(SdmxRuntime.fs and

SdmxProvider.fs) and each of those files compiles separately. Design time is responsible

to trigger compiler and generate types on the fly while the user interacts with editor or IDE.

For example, if we reference a TypeProvider in our script, design time code will already

start running first by checking and validating usage correctness and then generating types

depending on whether they are set to be delayed or not. As soon as user will execute

the code run time part of the project will execute. Design time requires some of the run

time components and code to be available. That’s project compilation file order should be

strictly set. Run time file should be before the design time file like it is in Listing 9.

Responsibilities are split this way, run time code is responsible for interaction with

35

1 <Compile Include="..\Sdmx\SdmxRuntime.fs" />
2 <Compile Include="..\Sdmx\SdmxProvider.fs" />

Listing 9. FSharp.Data.DesignTime.proj snippet

external data sources and extracting schema into F# data structures. It handles caching and

HTTP communications. The processing which is required to do in order to prepare schema

and data. The design time code is responsible for generating ProvidedTypes, constructors,

methods, and properties, setting the XmlDocs to members for better user experience. For

doing all this it is required to have schema information available since everything is based

on the schema, so every time during design time there is a need for details about schema

run time code should be able to provide this information.

3.4 Testing TypeProvider

There are some difficulties while testing TypeProviders while developing. The recom-

mended way is to have two separate instances of IDE or editor. One can be open all the

time for implementation of the provider. Another one is just for referencing compiled DLL

and testing the usage. The reason for such configuration is because of the issue of locking

DLL. When test instance process has the reference process open and at the same time the

next compilation of the TypeProvider fails with the following error.

Error MSB3021 Unable to copy file "..\FSharp.Data.DesignTime\bin\
Debug\net45\FSharp.Data.DesignTime.dll" to "..\..\bin\typeproviders\
fsharp41\net45\FSharp.Data.DesignTime.dll". The process cannot
access the file ’..\..\bin\typeproviders\fsharp41\net45\FSharp.
Data.DesignTime.dll’ because it is being used by another process.

There is no way of avoiding this issue other than killing processes which reference

the DLL file. A simple way is to close the test instance of IDE or editor, compile new

DLL and then re-open test version again. This makes the development process a bit slow

because there is extra manual work. Build time of the FSharp.Data project is roughly

50-130 seconds depending on the development machine computational power. One very

handy tip is to set different sound command outputs depending on build status, nice article

demonstrating this feature [44].

In order to use compiled TypeProvider, using a test version of IDE or editor we should

36

1 #r @"../../../../bin/lib/net45/FSharp.Data.dll"
2 open FSharp.Data

Listing 10. Reference FSharp.Data.dll

reference the relative or absolute path to initial lines and then open FSharp.Data namespace

Listing 10. This gives access to all available base types in the DLL file.

3.5 Type Structure Design

Designing type structure of the type provider is important for achieving a good level of

usability. You can always make a type provider which works but is difficult to use. It

is more challenging to achieve a simple type structure so it is intuitive and easy to use.

This can be a process of trying different versions of the design in practice and evaluate

usage simplicity. This process includes constant testing and validation of each small step.

The general guideline for design is simple. Keep type hierarchy as simple as possible and

use type provider infer as much of types as possible. At the same time maintain the high

scalability. In this way, user gets more out of the type system as protection and easier to

use the tool.

While working TypeProvider its good to make decisions about when to use different

components. Choose whether members should be static or not and do they need to be

delayed or not. Delaying members means that subtypes and members for the particular

type will not be generated until the user will type a dot(.). This is important because of a

few reasons. First one is for achieving better scalability and user experience while working

on large data structures. For example, if you do not make dimension types delayed this

will result in the following scenario. As soon as the provider will initialize, it will start

downloading all the dimensions for all the data flows. This might work in case of having

1 dataflow and 3 dimensions. But on a larger scale which SDMX offers in practice, the

approach will fail. Another benefit of correctly delaying members is independent failures.

For example, if some particular branch of the type structure is broken, because of this

external data source has an issue or it has been changed. The provider will still work for

other types which has a stable schema available. For example, if SDMX provider has an

issue for particular dataflow or dimension this only fails relevant type in TypeProvider but

37

other data flows and dimension types still will working.

To summarize work required to do for implementing SDMX type provider we can see

the following bullet points.

• Design type usage

• Implement Run Time

– Implement Connection

– Define Record Types based on SDMX structures

– Caching

• Provider Design Time

– Define static parameters and possible configurations

– Choose nested type structure and members: properties, methods

In the case of SDMX, we have a case of multidimensional data. When making a

query we need to provide a set of dimension value IDs to the query function. Chaining

dimensions as it is in WorldBank type provider might lead to too long nested type structures

since some of the data flows have more than 10 dimensions. For this reason, initial design

will have a possibility to generate separate types per each dataflow and per each dimension.

Dimension types will provide properties as values with all available and useful information

required for the data query. Currently, two properties are important

• Position - for sorting keys in the query string

• Dimension ID - for building . separated data query

Listing [11] shows an example of how a user will be able to use TypeProvider for

exploring and querying the data. Line 1 is the initialization of the type provider. Type

WDI as a ProvidedType can be instantiated by providing dimensions as arguments, since

each dimension has information about the position, the order of the arguments does not

matter and query function will sort the values accordingly. WDI exposes access to the

Dimensions fo that dataflow, and by following dimensions we can reach the dimension

values such as Frequency: Annual. After constructing and providing all the arguments to

38

1 type WB =
SdmxDataProvider<"https://api.worldbank.org/v2/sdmx/rest">↪→

2 type WDI = WB.``World Development Indicators``
3

4 let data =
5 WDI(WDI.Frequency.Annual_A,
6 WDI.``Reference Area``.``United Kingdom_GBR``,
7 WDI.Series.``Gross capital formation (% of

GDP)_NE_GDI_TOTL_ZS``)↪→

Listing 11. SDMX TypeProvider design

the WDI type we can execute the file. Note that until that time there is no need to execute

code and design time of the type provider was triggering compiler to provide all necessary

types. After executing we get a result object in data. Which by itself contains information

about the data and actual enumerated values.

There are two stages to complete, first is to make a working version of TypeProvider

which fetches the same data which is available in WorldBank TypeProvider documenta-

tion [7]. While doing this we should keep following SDMX standard guidelines and see if

the same provider will also work for European Central Bank data. This approach will make

it simple to compare existing provider to the new implementation and make the validation

process easier.

Challenge is to first make a provider which works for simple cases on smaller scales

and then incrementally try how it works on large scales and fix issues discovered. At the

same time, it is important to always keep in mind to maintain simple usage.

3.6 Implementation

Implementation starts by creating two files SdxmRuntime.fs and SdmxProvider.fs.

Since we already have initial type structure defined we can start building it. For this, we

need to implement run time code to prepare all the data required for generating types.

Run time part of the implementations is in SdxmRuntime.fs file. It contains three

main classes

• ServiceConnection - used for communicating with external services and extracting

schema from SDMX-ML format,

39

1 ProvidedTypeDefinition(asm, ns,
2 "SdmxDataProvider",
3 None,
4 hideObjectMethods = true,
5 nonNullable = true)
6

7 let parameters =
8 [ProvidedStaticParameter("WsEntryPoint", typeof<string>,

default)↪→

9 ProvidedStaticParameter("Asynchronous", typeof<bool>, false)
10 ProvidedStaticParameter("Language", typeof<string>, "en")]

Listing 12. SDMX Type Provider initial Definitions

• DataF lowObject Object reperenting Dataflows, which also will get access to the

data,

• DimensionObject Object reperenting Dataflows.

Design time implementation starts from defining a base type and deciding which static

parameters we need to provide. The base type is a starting point used for accessing the

whole inherited type structure. Name of the base type is SdmxDataProvider with one

required static parameter WsEntryPoint. This is an HTTP/HTTPS URL later used for

accessing the SDMX provider endpoints. Initially, two additional optional parameters

are available: Asynchronous like all other TypeProviders in FSharp.Data and Language

in case of multiple languages are available from data provider it is possible to force

the preferred one. Snippets from the implementation of base type definition and static

parameters are provided in Listing 12.

The next step is to attach other types to the base type. In the case of SDMX, we need

to browse as through the Dataflows and choose one of them. This makes it logical to

provide a list of data flows after user types dot(WB.). For this, we need to provide run

time implementation, which accepts WsEntryPoint argument and fetches Dataflows

according to the SDMX standard definitions. All the Dataflows are constructed into F#

record types[16] and provided to the design time component for usage. Listing 13 shows

how Dataflow types and constructors are defined.

For each dataflow separate type is generated which by itself can provide access to the

connected Dimensions and their values. At the same time, dataflow type has a possibility to

provide access to the data by calling a constructor which accepts the number of parameters

40

1 ProvidedTypeDefinition(dataflowName, Some
typeof<DataFlowObject>,↪→

2 hideObjectMethods = true, nonNullable =
true)↪→

3

4 ProvidedConstructor(
5 parameters = [
6 for dimension in connection.GetDimensions(agencyId,

dataflowId) do↪→

7 yield ProvidedParameter(dimension.Name,
typeof<DimensionObject>)↪→

8],
9 invokeCode = (fun args ->

10 let folder = fun state e -> <@@
(%%e:DimensionObject)::%%state @@>↪→

11 let dims = List.fold folder <@@ []:List<DimensionObject>
@@> args↪→

12 <@@
13 DataFlowObject(wsEntryPoint, dataId, %%dims)
14 @@>
15)
16)

Listing 13. SDMX TypeProvider Dataflows Type and Data Constructor

based on dimensions. Design decision which was made here is that dataflow Type is

self-containing and can provide ways of requesting data and at the same time help in

exploring and fetching every single dimension. Figure 5 shows accessing dataflows from

visual studio.

Figure 5. Access Datafows using SDMXTypeProvider

41

1 [for dimension in connection.GetDimensions(agencyId, dataflowId)
do↪→

2 if dataflowId = dimension.DataStructutpreId then
3 let dimensionTypeDefinition =
4 ProvidedTypeDefinition(dimension.Name,
5 Some typeof<DimensionObject>,
6 hideObjectMethods = true,
7 nonNullable = true)
8 let dimensionId = dimension.Id
9 for dimensionValue in dimension.Values do

10 let dimensionValueId = dimensionValue.Id
11 let dimensionValueProperty =
12 ProvidedProperty(dimensionValue.Name,
13 typeof<DimensionObject>,
14 isStatic=true,
15 getterCode = fun _ ->
16 <@@
17 DimensionObject(wsEntryPoint,

agencyId,↪→

18 dataflowId, dimensionId,
dimensionValueId)↪→

19 @@>
20)
21 dimensionTypeDefinition.AddMember

dimensionValueProperty↪→

22 dimensionTypeDefinition.AddXmlDoc(dimension.Description)
23 yield dimensionTypeDefinition]

Listing 14. SDMX WorldBank Type Provider Dimension types and dimension value
properties

According to SDMX, each Dataflow leads so the set of dimension. To translate this

into TypeProvider case, after choosing a Dataflow we need to get a list of dimensions and

their values with descriptions. For this, we can define nested types by attaching members

to each dataflow type. AddMembersDelayed is a method by ProvidedTypeDefinition

which accepts an anonymous function as an argument. This function should return a list of

new types configured as described above. Implementation of the function body is provided

in Listing 14.

After implementing run time and building the project DLL is ready to use. We can

check out usage example image in Figure 6.

Note here that each dimension value has ID appended in type name, this is made for

the following reason. In case we try to attach properties with the same name TypeProvider

SDK raises an error and does not display any properties at all. In Figure 7 is shown error

42

Figure 6. Access Dimensions using SDMXTypeProvider through the Dataflow Type

The type provider ’ProviderImplementation.SdmxProvider’ reported an error: Get-
MethodImpl. not support overloads, name = ’get_Serbian dinar’, methods - ’[|Method
get_Serbian dinar; Method get_Serbian dinar|]’, callstack = ’"

Figure 7. Property error message

message raised when exploring ECB Exchange rates Currency dimension. There are some

of the properties repeated i.e. Serbiandinar duplication shown in Listing 15. We cannot

just generate types for all of them. For that reason, some kind of uniqueness is required.

Appending ID fixed the uniqueness issue but made a type name a bit longer. ID appended

is used in data query URL on the later stage.

1 <Code id="CSD">
2 <Name xml:lang="en">Serbian dinar</Name>
3 </Code>
4

5 <Code id="RSD">
6 <Name xml:lang="en">Serbian dinar</Name>
7 </Code>

Listing 15. ECB Currency Codelists snippet: Name duplication.

43

1 type internal DataflowRecord =
2 { Id : string
3 Name : string
4 DataId : string
5 AgencyID : string
6 Version : string
7 Header : HeaderRecord}
8

9 type internal DimensionRecord =
10 { Name : string
11 Description : string
12 DataStructureId : string
13 AgencyId : string
14 Id : string
15 EnumerationId: string
16 Position: string
17 Values : DimensionValueRecord seq
18 Header : HeaderRecord}

Listing 16. SDMX TypeProvider Metadata Records

3.7 Records Types and Caching

For having an informative object representation in F# type system during run time it

is handy to have record types defined. Listing 16 shows F# representation of SDMX

responses in the two most important data structures Dataflows and Dimensions. It will

be possible to check Header or Agency information separately in Listing 11 by accessing

data(Dataflow) or Dimension object properties. This kind of design leaves options for

easier structure changes in the future in case there are optimization issues or some new

properties are required to add.

Caching responses from SDMX APIs is possible to do because SDMX-ML Schema is

stable and is not meant to change frequently over time. FSharp.Data is using file based

caching strategy for both Design time and Run time connections, there are cases when

same endpoints are requested twice, cached results will be reused fine in such situations.

More spesifically every time before requesting data froma specific URL first the local

cache is checked if it was already requested before during runtime or design time. If there

is no cached data only in this case new HTTP request will be sent and results will be stored

in the cache for futue use.

44

1 type WB =
SdmxDataProvider<"https://api.worldbank.org/v2/sdmx/rest">↪→

2 type WDI = WB.``World Development Indicators``
3

4 let data =
5 WDI(WDI.Frequency.Annual_A,
6 WDI.``Reference Area``.``United Kingdom_GBR``,
7 WDI.Series.``Agricultural land (sq.

km)_AG_LND_AGRI_K2``)↪→

Listing 17. SDMX TypeProvider design

4 Usage Scenarios and validation

4.1 WorldBank

At this point it is possible to use SDMX type provider for fetching exactly the same

data, which is presented in WorldBank [7] documentation from FSharp.Data. Listing 11

described in design section, is the working implementation. We can change the values of

dimensions in order to get different data, for example, to get annual agricultural land for

United Kinkdom we can update the dimension value of the series as in Listing 17.

45

1 #r @"../../../../bin/lib/net45/FSharp.Data.dll"
2 #load

@"../../../../packages/test/FSharp.Charting/FSharp.Charting.fsx"↪→

3 open FSharp.Data
4 open FSharp.Charting
5

6 type ECB =
SdmxDataProvider<"http://a-sdw-wsrest.ecb.int/service">↪→

7 type EXR = ECB.``Exchange Rates``
8 let ecbData = EXR(EXR.Frequency.Annual_A,
9 EXR.Currency.``US dollar_USD``,

10 EXR.``Currency denominator``.Euro_EUR,
11 EXR.``Exchange rate type``.Spot_SP00,
12 EXR.``Series variation - EXR

context``.Average_A)↪→

13 ecbData.Data |> Chart.Line

Listing 18. SDMX TypeProvider ECB Exchange Rates

Figure 8. ECB Exchange Rates data plot

4.2 European Central Bank

To validate that approach works for other service providers as well we will try to use

SDMX type provider against ECB. Let’s say we want to query Exchange Rates data. For

that we instantiate type provider as on line 6 in Listing 18. Then navigate to Exchange

Rates dataflow and begin providing dimension value arguments to the constructor. Once

we have provided all the arguments we can pass the data to the Charting library to see the

results visually in Figure 8.

For the second example, we can see more complex use case. In case the user wants to

46

explore the data referenced in e.g. the ECB Statistics Bulletin, it is necessary to establish

which data flows and combinations of dimensions are used. The ECB provides a tool

called Statistical Data Warehouse [45]. Where it is possible for the users to explore the

data in an interactive way.

Let us take a look at an example. Let us assume that we are interested in the data

provided in Figure 2.3.9 in the ECB Statistical Bulletin [46]. Instead of proportional

change, we would like to take a look at absolute changes in the types of loans. The data

table 2.3.7 in the bulletin has quarterly resolution. We can use the ECB Statistical Data

Warehouse to create the chart [47].

The resulting chart is given in Figure 9.

Figure 9. ECB Statistics Bulletin: Banking and investment funds

On the other hand, we can use the following code and the SDMX TypeProvider to

achieve a very similar result: Listing 19.

As a reult we get a chart provided by FSharp.Charting in Figure 10.

47

1 #r @"../../../bin/lib/net45/FSharp.Data.dll"
2 #load

@"../../../packages/test/FSharp.Charting/FSharp.Charting.fsx"↪→

3 open FSharp.Data
4 open FSharp.Charting
5

6 type BSI = ECB.``Balance Sheet Items``
7

8 let getLoanData creditDimension = BSI(
9 BSI.Frequency.Monthly_M,

10 BSI.``Counterpart area``.
11 ``Euro area (changing composition)_U2``,
12 BSI.``Adjustment indicator``.
13 ``Working day and seasonally adjusted_Y``,
14 BSI.``BS reference sector breakdown``.
15 ``Monetary and Financial Institutions (MFIs)_U``,
16 creditDimension,
17 BSI.``Original maturity``.Total_A,
18 BSI.``Data type``.``Financial transactions (flows)_4``,
19 BSI.``Reference area``.
20 ``Euro area (changing composition)_U2``,
21 BSI.``BS counterpart sector``.``Households and non-profit

institutions serving households (S.14 and S.15)_2250``,↪→

22 BSI.``Currency of transaction``.
23 ``All currencies combined_Z01``,
24 BSI.``Balance sheet suffix``.Euro_E)
25

26 let data = [getLoanData BSI.``Balance sheet item``.
27 ``Adjusted loans_A20T`` ;
28 getLoanData BSI.``Balance sheet item``.
29 ``Credit for consumption_A21``;
30 getLoanData BSI.``Balance sheet item``.
31 ``Lending for house purchase_A22``;
32 getLoanData BSI.``Balance sheet item``.
33 ``Other lending_A23``]
34

35 // alternative:
36 let data' = [BSI("M.U2.Y.U.A20T.A.4.U2.2250.Z01.E");
37 BSI("M.U2.Y.U.A21.A.4.U2.2250.Z01.E");
38 BSI("M.U2.Y.U.A22.A.4.U2.2250.Z01.E");
39 BSI("M.U2.Y.U.A23.A.4.U2.2250.Z01.E")]
40

41 data |> List.map Chart.Line
42 |> Chart.Combine
43 |> Chart.Show

Listing 19. SDMX TypeProvider ECB Bulletin Example Usage

48

Figure 10. SDMX Examle chart of ECB Statistics Bulletin: Banking and investment funds

4.3 Future Work

A possible follow up of the current work is to create an SDMX data service for the Gamma

project [12]. This is now much more easily achievable using the SDMX type provider.

Since the Gamma is a great tool for delivering data to the data journalists and readers, it will

become much more usable, since SDMX data service will open access to the larger scale

of statistical information. This can be done using only single data service implementation

which will use SDMX type provider by itself.

Some parts of the SDMX standard are not currently fully supported by the current

implementation. For example, it is not possible to apply additional parameter filtering

like periods, users will have to do the filtering locally. The paging support of the SDMX

standard is currently not supported. Some of the meta information, e.g. headers and

labels, are not fully extracted from metadata and provided. The remaining work is not

conceptually complicated and is achievable by incrementally without changing the core

functionality. The more important and difficult part is to test the type provider usage

against more data providers. This is a huge task and is not achievable to do by one person.

That is why it is important to involve the community and potential users in order to get

more examples and suggestion how type provider usage API can be improved.

49

5 Summary

At this point, the initial SDMX type provider is implemented and tested with two different

service providers, World Bank, and European Central Bank. The results allow us to

conclude that the basic scenario of using the SDMX type provider to access SDMX data

providers works at the proof of concept level. There are a few different directions of

work which will improve the stability and check for support of various features within the

standard. Checking the SDMX type provider against different service providers and data

flows may identify some of the issues which are not known currently. Fixing these issues

will improve the provider and make it more reliable. The current version does not support

wildcards, this means that it is not possible to query data for all the dimensions or choose

several dimensions(all countries or several countries). The .Stat suite already has a wide

group of data providers including the Statistics Estonia, stat.ee [13]. Providing support for

such endpoints will noticeably increase the amount of data access to which is supported by

the SDMX type provider. The source code of the implementation is publicly available on

github.com [48]. It includes example usage script in the examples folder.

50

References

[1] SDMX. Statistical data and metadata exchange. The official site for the SDMX

community. [Online]. Available: https://sdmx.org/

[2] E. C. Bank. European central bank. [Online]. Available: https://sdw-wsrest.ecb.

europa.eu

[3] CsvProvider. Csvprovider. [Online]. Available: http://fsharp.github.io/FSharp.Data/

library/CsvProvider.html

[4] JsonProvider. Jsonprovider. [Online]. Available: http://fsharp.github.io/FSharp.Data/

library/JsonProvider.html

[5] FSharp.Data. Fsharp.data. [Online]. Available: https://github.com/fsharp/FSharp.Data

[6] JSON. Json. [Online]. Available: http://json.org/

[7] FSharp.Data. Worldbank provider. [Online]. Available: http://fsharp.github.io/

FSharp.Data/library/WorldBank.html

[8] S. T. W. Group. Sdmx rest. [Online]. Available: https://github.com/sdmx-twg/

sdmx-rest

[9] sdmx. (2013) Guidelines for the use of web services section 7. [On-

line]. Available: https://sdmx.org/wp-content/uploads/SDMX_2-1-1-SECTION_07_

WebServicesGuidelines_2013-04.pdf

[10] SDMX. Sdmx technical standards working group. [Online]. Available: https:

//github.com/sdmx-twg

[11] sdmx twg. Where is sdmx used. [Online]. Available: https://github.com/sdmx-twg/

sdmx-rest/wiki/Where-is-it-used

[12] T. Petricek. The gamma project. [Online]. Available: https://thegamma.net/

[13] S. Estonia. Statistics estonia. [Online]. Available: https://www.stat.ee/database

[14] FSharp.Data. Fsharp.data docs. [Online]. Available: http://fsharp.github.io/FSharp.

Data/

51

https://sdmx.org/
https://sdw-wsrest.ecb.europa.eu
https://sdw-wsrest.ecb.europa.eu
http://fsharp.github.io/FSharp.Data/library/CsvProvider.html
http://fsharp.github.io/FSharp.Data/library/CsvProvider.html
http://fsharp.github.io/FSharp.Data/library/JsonProvider.html
http://fsharp.github.io/FSharp.Data/library/JsonProvider.html
https://github.com/fsharp/FSharp.Data
http://json.org/
http://fsharp.github.io/FSharp.Data/library/WorldBank.html
http://fsharp.github.io/FSharp.Data/library/WorldBank.html
https://github.com/sdmx-twg/sdmx-rest
https://github.com/sdmx-twg/sdmx-rest
https://sdmx.org/wp-content/uploads/SDMX_2-1-1-SECTION_07_WebServicesGuidelines_2013-04.pdf
https://sdmx.org/wp-content/uploads/SDMX_2-1-1-SECTION_07_WebServicesGuidelines_2013-04.pdf
https://github.com/sdmx-twg
https://github.com/sdmx-twg
https://github.com/sdmx-twg/sdmx-rest/wiki/Where-is-it-used
https://github.com/sdmx-twg/sdmx-rest/wiki/Where-is-it-used
https://thegamma.net/
https://www.stat.ee/database
http://fsharp.github.io/FSharp.Data/
http://fsharp.github.io/FSharp.Data/

[15] P. E. R. Salas, M. Martin, F. M. Da Mota, S. Auer, K. Breitman, and M. A. Casanova,

“Publishing statistical data on the web,” in Semantic Computing (ICSC), 2012 IEEE

Sixth International Conference on. IEEE, 2012, pp. 285–292.

[16] sdmx.org. What is sdmx. [Online]. Available: https://sdmx.org/?page_id=3425

[17] ——. Sdmx versions. [Online]. Available: https://sdmx.org/?page_id=2555/

[18] SDMX. Introducing sdmx. [Online]. Available: https://sdmx.org/?page_id=1119

[19] sdmx.org. Sdmx user guide. [Online]. Available: https://sdmx.org/wp-content/

uploads/SDMX_2-1_User_Guide_draft_0-1.pdf

[20] ——. Sdmx major version changes. [Online]. Available: https://sdmx.org/

wp-content/uploads/SDMX_2-1_Major_Changes.pdf

[21] ——. Sdmx technical specifications. [Online]. Available: https://sdmx.org/?page_id=

5008

[22] SDMX. Sdmx implementations by organisation. [Online]. Available: https:

//sdmx.org/?page_id=4713

[23] EUROSTAT. Statistical office of the european union. [Online]. Available:

https://ec.europa.eu/eurostat/web/sdmx-infospace/sdmx-projects/dsd-availability

[24] WorldBank. Worldbank sdmx api queries. [Online]. Available: https://datahelpdesk.

worldbank.org/knowledgebase/articles/1886701-sdmx-api-queries

[25] S. I. S. C. Community. [Online]. Available: https://siscc.org/what-we-do/products/

[26] ——. [Online]. Available: https://siscc.org/who-we-are/members/

[27] S. of Estonia. Sdmx database. Http://andmebaas.stat.ee/Index.aspx. [Online].

Available: http://andmebaas.stat.ee

[28] U. Service. Ukdata service. [Online]. Available: http://stats.ukdataservice.ac.uk/

[29] OECD. Organisation for economic co-operation and development. [Online].

Available: https://stats.oecd.org/

[30] A. B. of Statistics. [Online]. Available: http://stat.data.abs.gov.au

52

https://sdmx.org/?page_id=3425
https://sdmx.org/?page_id=2555/
https://sdmx.org/?page_id=1119
https://sdmx.org/wp-content/uploads/SDMX_2-1_User_Guide_draft_0-1.pdf
https://sdmx.org/wp-content/uploads/SDMX_2-1_User_Guide_draft_0-1.pdf
https://sdmx.org/wp-content/uploads/SDMX_2-1_Major_Changes.pdf
https://sdmx.org/wp-content/uploads/SDMX_2-1_Major_Changes.pdf
https://sdmx.org/?page_id=5008
https://sdmx.org/?page_id=5008
https://sdmx.org/?page_id=4713
https://sdmx.org/?page_id=4713
https://ec.europa.eu/eurostat/web/sdmx-infospace/sdmx-projects/dsd-availability
https://datahelpdesk.worldbank.org/knowledgebase/articles/1886701-sdmx-api-queries
https://datahelpdesk.worldbank.org/knowledgebase/articles/1886701-sdmx-api-queries
https://siscc.org/what-we-do/products/
https://siscc.org/who-we-are/members/
http://andmebaas.stat.ee
http://stats.ukdataservice.ac.uk/
https://stats.oecd.org/
http://stat.data.abs.gov.au

[31] A. Mattiocco. Sdmx helper tool. [Online]. Available: https://github.com/amattioc/

SDMX

[32] X. Sosnovsky. sdmx-rest4js. [Online]. Available: https://github.com/sosna/

sdmx-rest4js

[33] ——. Sdmx rest wiki. [Online]. Available: https://github.com/sosna/sdmx-rest4js/

wiki

[34] S. TWG. Sdmx cheat sheet. [Online]. Available: https://github.com/sdmx-twg/

sdmx-rest/blob/master/v2_1/ws/rest/docs/rest_cheat_sheet.pdf

[35] Metadatatechnology. Conceptscheme. [Online]. Available: https://

metadatatechnology.com/about-sdmx.php#conceptscheme

[36] Metadatatechnology.com. Codelist. [Online]. Available: https://metadatatechnology.

com/about-sdmx.php#codelist

[37] D. Syme, K. Battocchi, K. Takeda, D. Malayeri, J. Fisher, J. Hu, T. Liu, B. McNamara,

D. Quirk, M. Taveggia et al., “Strongly-typed language support for internet-scale

information sources,” Technical Report MSR-TR-2012–101, Microsoft Research,

2012.

[38] T. Petricek, D. Syme, and Z. Bray, “In the age of web: Typed functional-first pro-

gramming revisited,” arXiv preprint arXiv:1512.01896, 2015.

[39] pandas, https://pandas.pydata.org/.

[40] fsharp.org. Setup fsharp on linux and macos. [Online]. Available: https:

//fsharp.org/use/linux

[41] Microsoft. Tutorial: Create a type provider. [Online]. Avail-

able: https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/

creating-a-type-provider

[42] Fsprojects. fsprojects. [Online]. Available: https://github.com/fsprojects/FSharp.

TypeProviders.SDK/

53

https://github.com/amattioc/SDMX
https://github.com/amattioc/SDMX
https://github.com/sosna/sdmx-rest4js
https://github.com/sosna/sdmx-rest4js
https://github.com/sosna/sdmx-rest4js/wiki
https://github.com/sosna/sdmx-rest4js/wiki
https://github.com/sdmx-twg/sdmx-rest/blob/master/v2_1/ws/rest/docs/rest_cheat_sheet.pdf
https://github.com/sdmx-twg/sdmx-rest/blob/master/v2_1/ws/rest/docs/rest_cheat_sheet.pdf
https://metadatatechnology.com/about-sdmx.php#conceptscheme
https://metadatatechnology.com/about-sdmx.php#conceptscheme
https://metadatatechnology.com/about-sdmx.php#codelist
https://metadatatechnology.com/about-sdmx.php#codelist
https://fsharp.org/use/linux
https://fsharp.org/use/linux
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/creating-a-type-provider
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/creating-a-type-provider
https://github.com/fsprojects/FSharp.TypeProviders.SDK/
https://github.com/fsprojects/FSharp.TypeProviders.SDK/

[43] D. Nodia. (2018) Fsharp.data issue. [Online]. Available: https://github.com/fsharp/

FSharp.Data/issues/1203

[44] dailydotnettips.com. Visual studio tip. [On-

line]. Available: https://dailydotnettips.com/

did-you-know-you-can-play-sound-when-build-succeeded-or-failed-in-visual-studio/

[45] ECB. Statistics bulletin. [Online]. Available: https://sdw.ecb.europa.eu/reports.do?

node=1000005

[46] ——. Monetary statistics. [Online]. Available: https://sdw.ecb.europa.eu/reports.do?

node=10000030

[47] ——. Monetary chart. [Online]. Available: https://sdw.ecb.europa.eu/

browseChart.do?df=true&ec=&dc=&oc=&pb=&rc=&DATASET=0&removeItem=

&removedItemList=&mergeFilter=&activeTab=BSI&showHide=&BS_ITEM.14=

A20T&BS_ITEM.14=A21&BS_ITEM.14=A22&BS_ITEM.14=A23&DATA_

TYPE.14=4&BS_COUNT_SECTOR.14=2250&MAX_DOWNLOAD_SERIES=

500&SERIES_MAX_NUM=50&node=bbn30&legendRef=reference&SERIES_

KEY=117.BSI.M.U2.Y.U.A20T.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.

U2.Y.U.A21.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A22.A.4.U2.

2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A23.A.4.U2.2250.Z01.E

[48] D. Nodia. Sdmx typeprovider implementation. [Online]. Available: https:

//github.com/demonno/FSharp.Data/tree/sdmx-types

54

https://github.com/fsharp/FSharp.Data/issues/1203
https://github.com/fsharp/FSharp.Data/issues/1203
https://dailydotnettips.com/did-you-know-you-can-play-sound-when-build-succeeded-or-failed-in-visual-studio/
https://dailydotnettips.com/did-you-know-you-can-play-sound-when-build-succeeded-or-failed-in-visual-studio/
https://sdw.ecb.europa.eu/reports.do?node=1000005
https://sdw.ecb.europa.eu/reports.do?node=1000005
https://sdw.ecb.europa.eu/reports.do?node=10000030
https://sdw.ecb.europa.eu/reports.do?node=10000030
https://sdw.ecb.europa.eu/browseChart.do?df=true&ec=&dc=&oc=&pb=&rc=&DATASET=0&removeItem=&removedItemList=&mergeFilter=&activeTab=BSI&showHide=&BS_ITEM.14=A20T&BS_ITEM.14=A21&BS_ITEM.14=A22&BS_ITEM.14=A23&DATA_TYPE.14=4&BS_COUNT_SECTOR.14=2250&MAX_DOWNLOAD_SERIES=500&SERIES_MAX_NUM=50&node=bbn30&legendRef=reference&SERIES_KEY=117.BSI.M.U2.Y.U.A20T.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A21.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A22.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A23.A.4.U2.2250.Z01.E
https://sdw.ecb.europa.eu/browseChart.do?df=true&ec=&dc=&oc=&pb=&rc=&DATASET=0&removeItem=&removedItemList=&mergeFilter=&activeTab=BSI&showHide=&BS_ITEM.14=A20T&BS_ITEM.14=A21&BS_ITEM.14=A22&BS_ITEM.14=A23&DATA_TYPE.14=4&BS_COUNT_SECTOR.14=2250&MAX_DOWNLOAD_SERIES=500&SERIES_MAX_NUM=50&node=bbn30&legendRef=reference&SERIES_KEY=117.BSI.M.U2.Y.U.A20T.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A21.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A22.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A23.A.4.U2.2250.Z01.E
https://sdw.ecb.europa.eu/browseChart.do?df=true&ec=&dc=&oc=&pb=&rc=&DATASET=0&removeItem=&removedItemList=&mergeFilter=&activeTab=BSI&showHide=&BS_ITEM.14=A20T&BS_ITEM.14=A21&BS_ITEM.14=A22&BS_ITEM.14=A23&DATA_TYPE.14=4&BS_COUNT_SECTOR.14=2250&MAX_DOWNLOAD_SERIES=500&SERIES_MAX_NUM=50&node=bbn30&legendRef=reference&SERIES_KEY=117.BSI.M.U2.Y.U.A20T.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A21.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A22.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A23.A.4.U2.2250.Z01.E
https://sdw.ecb.europa.eu/browseChart.do?df=true&ec=&dc=&oc=&pb=&rc=&DATASET=0&removeItem=&removedItemList=&mergeFilter=&activeTab=BSI&showHide=&BS_ITEM.14=A20T&BS_ITEM.14=A21&BS_ITEM.14=A22&BS_ITEM.14=A23&DATA_TYPE.14=4&BS_COUNT_SECTOR.14=2250&MAX_DOWNLOAD_SERIES=500&SERIES_MAX_NUM=50&node=bbn30&legendRef=reference&SERIES_KEY=117.BSI.M.U2.Y.U.A20T.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A21.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A22.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A23.A.4.U2.2250.Z01.E
https://sdw.ecb.europa.eu/browseChart.do?df=true&ec=&dc=&oc=&pb=&rc=&DATASET=0&removeItem=&removedItemList=&mergeFilter=&activeTab=BSI&showHide=&BS_ITEM.14=A20T&BS_ITEM.14=A21&BS_ITEM.14=A22&BS_ITEM.14=A23&DATA_TYPE.14=4&BS_COUNT_SECTOR.14=2250&MAX_DOWNLOAD_SERIES=500&SERIES_MAX_NUM=50&node=bbn30&legendRef=reference&SERIES_KEY=117.BSI.M.U2.Y.U.A20T.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A21.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A22.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A23.A.4.U2.2250.Z01.E
https://sdw.ecb.europa.eu/browseChart.do?df=true&ec=&dc=&oc=&pb=&rc=&DATASET=0&removeItem=&removedItemList=&mergeFilter=&activeTab=BSI&showHide=&BS_ITEM.14=A20T&BS_ITEM.14=A21&BS_ITEM.14=A22&BS_ITEM.14=A23&DATA_TYPE.14=4&BS_COUNT_SECTOR.14=2250&MAX_DOWNLOAD_SERIES=500&SERIES_MAX_NUM=50&node=bbn30&legendRef=reference&SERIES_KEY=117.BSI.M.U2.Y.U.A20T.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A21.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A22.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A23.A.4.U2.2250.Z01.E
https://sdw.ecb.europa.eu/browseChart.do?df=true&ec=&dc=&oc=&pb=&rc=&DATASET=0&removeItem=&removedItemList=&mergeFilter=&activeTab=BSI&showHide=&BS_ITEM.14=A20T&BS_ITEM.14=A21&BS_ITEM.14=A22&BS_ITEM.14=A23&DATA_TYPE.14=4&BS_COUNT_SECTOR.14=2250&MAX_DOWNLOAD_SERIES=500&SERIES_MAX_NUM=50&node=bbn30&legendRef=reference&SERIES_KEY=117.BSI.M.U2.Y.U.A20T.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A21.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A22.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A23.A.4.U2.2250.Z01.E
https://sdw.ecb.europa.eu/browseChart.do?df=true&ec=&dc=&oc=&pb=&rc=&DATASET=0&removeItem=&removedItemList=&mergeFilter=&activeTab=BSI&showHide=&BS_ITEM.14=A20T&BS_ITEM.14=A21&BS_ITEM.14=A22&BS_ITEM.14=A23&DATA_TYPE.14=4&BS_COUNT_SECTOR.14=2250&MAX_DOWNLOAD_SERIES=500&SERIES_MAX_NUM=50&node=bbn30&legendRef=reference&SERIES_KEY=117.BSI.M.U2.Y.U.A20T.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A21.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A22.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A23.A.4.U2.2250.Z01.E
https://sdw.ecb.europa.eu/browseChart.do?df=true&ec=&dc=&oc=&pb=&rc=&DATASET=0&removeItem=&removedItemList=&mergeFilter=&activeTab=BSI&showHide=&BS_ITEM.14=A20T&BS_ITEM.14=A21&BS_ITEM.14=A22&BS_ITEM.14=A23&DATA_TYPE.14=4&BS_COUNT_SECTOR.14=2250&MAX_DOWNLOAD_SERIES=500&SERIES_MAX_NUM=50&node=bbn30&legendRef=reference&SERIES_KEY=117.BSI.M.U2.Y.U.A20T.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A21.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A22.A.4.U2.2250.Z01.E&SERIES_KEY=117.BSI.M.U2.Y.U.A23.A.4.U2.2250.Z01.E
https://github.com/demonno/FSharp.Data/tree/sdmx-types
https://github.com/demonno/FSharp.Data/tree/sdmx-types

	Introduction
	Related work and background
	Background
	Publishing statistical data on the web
	SDMX
	Background
	Domains
	Provider implementations
	Use Case
	Structural Metadata
	Tools
	SDMX RESTful API
	Dataflows
	Datastructures
	Data

	F# TypeProvider
	Strongly-Typed Language Support for Internet Scale Information Sources
	How TypeProviders work
	Data exploration through Dot-driven Development

	Design and implementation of SDMX TypeProvider
	Development Environment
	Implementation details
	Project Structure
	Testing TypeProvider
	Type Structure Design
	Implementation
	Records Types and Caching

	Usage Scenarios and validation
	WorldBank
	European Central Bank
	Future Work

	Summary
	References

