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The ocean is a wilderness reaching round the globe, wilder than a Bengal jungle, 
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Introduction 

State-of-the-art of the runup problem 
Giant surface waves approaching the coast frequently cause extensive coastal 
flooding, destruction of coastal constructions and loss of lives. Such waves can be 
generated by various phenomena: strong storms and cyclones, underwater 
earthquakes, high-speed ferries, aerial and submarine landslides. The most resent 
examples of such events are the catastrophic tsunami in the Indian Ocean, which 
occurred on 26 December 2004 (Lay et al., 2005) and hurricane Katrina (28 August 
2005) in the Atlantic Ocean (Kim et al., 2008). The huge storm in the Baltic Sea on 
9 January 2005, which produced unexpectedly long waves in many areas of the 
Baltic Sea (Soomere et al., 2008) and the influence of unusually high surge created 
by long waves from high-speed ferries (Soomere, 2005; Parnell et al., 2007), 
should also be mentioned as examples of regional marine natural hazards 
connected with extensive runup of certain types of waves.  

The prediction of possible flooding and properties of the water flow on the coast 
is an important practical task for a coastal and port engineering. That explains the 
multitude of empirical formulas describing runup characteristics, available in the 
engineering literature (see, for instance, Le Mehaute et al., 1968; Stockdon et al., 
2006). For the most part these formulas are specific for different geographic areas 
due to particularities of local wave regimes (wind direction, coastal effects of wave 
refraction and diffraction).  

The wave transformation and shoaling of water waves in the basin of variable 
depth is a well developed task of fluid dynamics and has numerous applications in 
physical oceanography (Le Blond & Mysak, 1978; Massel, 1989; Mei, 1989; 
Dingemans, 1996). Asymptotic methods are widely applied to describe the wave 
field for slow variations of water depth (Shen, 1975; Mei, 1989; Dingemans, 1995; 
Berry, 2005; Dobrokhotov et al., 2006, 2007). In the simplified case of the 1D 
linear shallow-water wave propagation, asymptotic methods lead to well-known 
Green’s law 4/1~ −hA  for the changes in the wave amplitude A  ( h  is water 
depth), derived from the energy flux conservation. Not all amplitude changes 
follow this law; for example, the height of a solitary wave (soliton) may vary as 

1~ −hA  in the framework of the weakly nonlinear and dispersive theory 
(Grimshaw, 1970; Ostrovsky & Pelinovsky, 1970). A more complicated formula 
can be obtained for a solitary wave of arbitrary height (Pelinovsky, 1996). The 
particular law of dependence of the wave amplitude on the combination of the 
properties of the attacking wave and of the medium, and the related problem of 
wave runup is one of the central questions in tsunami modelling and the modelling 
of flooding. 

If the water depth in the coastal zone varies rapidly, the exact analytical 
solutions for the wave transformation can be found within a linear shallow-water 
theory for different bottom profiles. Such solutions are usually expressed in terms 
of special functions (Le Blond & Mysak, 1978; Massel, 1989; Mei, 1989). 
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Analytical rigorous solutions of the nonlinear shallow-water system are only 
known to exist for the beach of constant slope in the vicinity of the shoreline 
(Carrier & Greenspan, 1958). The solution of the nonlinear problem strongly 
depends on the initial wave shape. Various shapes of the periodic incident wave 
trains have been analysed: the sine wave (Kaistrenko et al., 1991; Madsen & 
Fuhrman, 2007) and cnoidal wave (Synolakis 1991). 

Relevant analysis has also been performed for a variety of solitary waves and 
single pulses, such as soliton (Pedersen & Gjevik, 1983; Synolakis, 1987; Kanoglu, 
2004), sine pulse (Mazova et al., 1991), Lorentz pulse (Pelinovsky & Mazova 
1992), Gaussian pulse (Carrier et al., 2003; Kanoglu & Synolakis, 2006), N-waves 
(Tadepalli & Synolakis, 1994) and “characterized tsunami waves” (Tinti & Tonini, 
2005). It is important to mention that many analytical formulas of wave runup have 
been confirmed in laboratory tanks (Lin et al, 1999; Li & Raichlen, 2002) and are 
now actively used in predictions of marine natural hazards (see, for instance Curtis 
& Pelinovsky, 1999; Pelinovsky & Kharif, 2008). 
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Fig. 1. The bottom profile measured at Pirita Beach, Estonia (dashed line) and its 
approximation with a power law with 3/4=d  (solid line). Modified from 
Soomere et al. (2007) 

 
Most of the studies into wave transformation and runup have been performed 

for linearly varying depth. This approximation is not always particularly realistic. 
Various bottom profiles in the vicinity of the shoreline following power laws 
( ) dxxh ~  have been discussed in literature. The most popular profile is the famous 

Dean’s Equilibrium Profile with 3/2=d  (see, for example, Dean & Dalrymple, 
2002). This approximation with 78.0=d  fits for Dutch dune profiles better 
(Steetzel, 1993). Kit & Pelinovsky (1998) found the range of 1.173.0 −=d  for 
Israeli beaches. The power law approximation for beach profiles is used also in 
theoretical models (Kabayashi, 1987; Kit & Pelinovsky, 1998). However, in many 
cases, bottom profiles have a complex structure and their shape in the immediate 
vicinity of the shoreline differs from that of the profiles at larger depths. Figure 1 
demonstrates the bottom profile measured at Pirita Beach, Estonia (Soomere et al., 
2007).  
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It is clearly seen that the bottom profile for the depths of 2–10 m can be 
reasonably described by a power law with 3/4=d . Similar types of profiles 
following power laws with 1>d  can be found for the continental Pacific shelf of 
Northern Chile for the coastal line up to 5 km (Fig. 2).  

So, the wave transformation and runup should be analysed for various bottom 
profiles following more general power laws (not only the popular case 1=d ). The 
analysis of wave properties along a specific type of convex bottom profile with 

3/4=d  is one of the main goals of this study. 
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Fig. 2. The bottom profile extracted from Historical Tsunami 
Data Base (Gusiakov, 2002) for the Pacific coast of Northern 
Chile (coordinates of the coastal point are 7.70ºS, 78.51ºW) 
 

Outline of the thesis 
The thesis constitutes a study of the long wave dynamics in the coastal zone for 
various approximations of the bottom profile. The case 3/4=d  is analysed in 
Chapter 1 within a linear approximation. The relevant results are presented in 
Paper V. This case is of special interest, because the solution of linearized shallow-
water equations can be obtained in closed form in terms of elementary functions 
for this profile (Cherkesov, 1975; Pelinovsky, 1996; Tinti et al., 2001). In the cited 
papers this solution was considered mainly to simplify the final expressions 
describing wave dynamics, but a comprehensive analysis of wave properties and 
transformation along this type of coastal slope is missing. 

Main attention is paid to the unsteady dynamics of water displacement and 
depth-averaged flow induced by the wave field. The structure of the travelling 
wave is described in detail in Section 1.2. It is shown that the surface elevation is 
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always sign-variable. The full solution of the relevant Cauchy problem is obtained 
in Section 1.3. It describes the generation of waves by arbitrary initial disturbances, 
their transformation and reflection from the beach. It is found that a sort of “relict” 
weak non-uniform current is formed in the region of the initial disturbance after the 
waves have left this zone. 

The wave reflection from the shore is studied in Section 1.4. It is shown that 
amplification of waves due to the shoaling effect along a convex bottom slope is 
much larger than for other bottom profiles. The reflection of waves occurs only in 
the vicinity of the shoreline. Some interesting features are found for a special case 
of wave reflection from the zone of increased depth (Section 1.5). It is shown that 
the reflected wave always has a sign-variable shape, even when the incident wave 
is a pure elevation wave.  

The results of analytical studies of long wave runup on a plane beach in a more 
complex nonlinear framework are presented in Chapter 2. Basic equations and the 
method of solving the nonlinear shallow-water system suggested by Carrier & 
Greenspan (1958) are briefly described in Section 2.2. A two-step approach for 
determining the runup characteristics is developed in Section 2.3. The fundamental 
advantage of this method is that extreme characteristics of the runup process (runup 
and rundown amplitudes, extreme values of on- and offshore velocities, the wave 
breaking condition) of nonlinear waves can be found within a linear approximation. 
The “real” nonlinear dynamics of the moving shoreline requires the nonlinear 
theory which is also described in Section 2.3. As the developed theory is correct 
only for non-breaking waves, it is important to specify the conditions (increase in 
the amplitude) at which wave breaking occurs exactly on the shoreline. In this case 
the velocity of the shoreline has the shape of a shock wave and the function 
describing the water displacement has a jump of the first derivative in the wave 
trough. 

The runup of solitary waves of various shapes is analysed in Section 2.4. It is 
shown that with the use of a convenient definition of the “significant” wavelength, 
the dependence of the extreme runup of waves with symmetric profiles on the 
incident wave shape is very weak. This feature allows derivation of universal 
formulas for rapid estimation of runup characteristics provided the length and 
height of the approaching waves are known. Such formulas can be used for 
engineering applications and for mitigation of the tsunami hazard. The runup of 
asymmetric waves with a steep front is discussed in Section 2.5. It is shown that 
such waves penetrate much deeper inland and that inland-moving water flow is 
faster than in the case of symmetric waves of the same height and length. 

Particularly high and steep (freak or rogue) waves are one of the most 
dangerous events that a traveller at sea may encounter. Often such waves 
(frequently called sneaker waves) occur in the coastal zone. Onshore freak wave 
events are analysed in Chapter 3. The onshore freak waves that occurred in 2005 
(Paper I) are described in Section 3.2. These accidents are related to unexpected 
wave impact upon the coast and engineering structures or sudden intensive 
flooding of the coast. Runup of irregular waves, including freak waves, modelled 
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as superposition of Fourier harmonics with random phases, is studied in the 
framework of nonlinear shallow-water theory (Section 3.3). It is shown that an 
average runup height for waves with a wide spectrum is higher than for waves with 
a narrow-band spectrum. The possibility of the appearance of freak waves on a 
beach is analysed in Section 3.4. The distribution functions of runup characteristics 
are computed under an assumption that the incident wave represents an irregular 
sea state with a Gaussian spectrum. The asymptotic behaviour of probability 
distribution functions of the occurrence of large amplitude waves for estimation of 
freak wave formation at the shore is studied. 

Approbation of the results 
The basic results described in this thesis have been presented in the following 
international conferences, symposiums, and workshops: 
 
Conferences: 

Solutions to Coastal Disasters Conference 2008, Oahu, Hawaii (2008); 
Joint workshops “Implications of climate change for marine and coastal safety” 
and “Applied Wave Mathematics” of Marie Curie networks SEAMOCS and 
CENS-CMA, and Eco-NET network “Wave Current Interaction in Coastal 
Environment”, Palmse, Estonia (2007); 
General Assembly of the International Union of Geodesy and Geophysics (IUGG) 
(2007); 
European Geosciences Union (EGU), Vienna, Austria (2006, 2007). 
 
Seminars: 

Seminar paper “Shoaling and runup of long waves generated by high-speed ferries” 
at Department of Civil & Environmental Engineering, Cornell University (2008); 
Seminar paper “New Trends in the Nonlinear Theory of Long Wave Runup on a 
Beach” at the Department of Civil & Environmental Engineering, Massachusetts 
Institute of Technology (2008); 
Seminar paper “Long waves in a coastal zone” at Lund University (2007); 
Seminar paper “Mathematical modelling of long waves (tsunami waves)” at the 
Institute of Cybernetics, Tallinn University of Technology (2007) 
Seminar paper “Runup of nonlinear asymmetric waves on a plane beach” at the 
University of Oslo (2006); 
Seminar paper “Runup of nonlinear deformed waves” at Det Norske Veritas, DNV 
Research (2006). 
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1. Long wave dynamics along a convex bottom profile 

1.1. Introduction 
In this chapter, results of the study of the linear dynamics of shallow-water waves 
are presented for the convex depth profile ( ) 3/4~ xxh  for a wide class of initial 
conditions. The main goal is to establish potential threats to the coastal zone 
through enhanced amplitude amplification of approaching waves and potentially 
larger runup height of long waves along beaches containing convex sections of the 
coastal slope. The relevant results have been presented in Paper V. 

The properties of travelling waves along convex bottom are described in 
Section 1.2. The uniqueness of such travelling wave solutions is proved in 
Section 1.3 by means of introducing a 1:1 transformation of the governing wave 
equation with varying coefficients to the constant-coefficient wave equation. This 
transformation makes it possible to obtain the solution of the Cauchy problem and 
to study wave evolution for various initial conditions in a straightforward manner. 
Wave runup on a beach with the profile ( ) 3/4~ xxh  is analysed in Section 1.4, with 
an important implication that the wave amplification for such a beach can be much 
more significant than for a plane beach. The wave propagation along the beach 
containing a shallow coastal area of constant depth and a section of convex beach 
is studied in Section 1.5. The main results are summarized in the conclusion. 

1.2. Travelling waves above an uneven bottom 
The basic model for the linear 2D shallow-water waves in the basin of variable 
depth is a linear wave equation for the vertical displacement of the water surface 
( )tx,η : 

( ) 02
2

2

=⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂

−
∂
∂

x
xc

xt
ηη ,          ( ) ( )xghxc = ,                    (1.2.1) 

 
where ( )xc  is the wave speed, ( )xh  is the water depth and g is the gravity 
acceleration. The domain, boundary and initial conditions for Eq. (1.2.1) will be 
discussed later. 

Travelling wave solutions for the wave equation with slowly varying 
coefficients, equivalently, for the waves above slowly varying bottom relief, are 
usually studied with the use of asymptotic methods. These methods lead to an exact 
solution of the wave equation for a sine wave above a convex beach with 3/4=d  
(Cherkesov, 1975; Pelinovsky, 1996). These results are shortly recalled here from 
the viewpoint of the structure of travelling water waves. 

Travelling (progressive) waves are sought in the form 
 

( ) ( ) ( )[ ]{ }xt-ixAtx Ψ= ωη exp, ,                               (1.2.2) 
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where ( )xA  and ( )xΨ  are real functions (the local amplitude and phase, 
respectively) which should be determined, and ω  is the wave frequency. After 
substitution of Eq. (1.2.2) to Eq. (1.2.1) the real and imaginary parts of the 
resulting equation are two ordinary differential equations:  
 

( ) ( ) 01
2

2
2

2

=⎥
⎦

⎤
⎢
⎣

⎡
++⎥

⎦

⎤
⎢
⎣

⎡
−

dx
dA

dx
dh

hdx
AdAxk

xgh
ω ,                       (1.2.3) 

 

012 =++ kA
dx
dh

hdx
dkA

dx
dAk .                                   (1.2.4) 

 
Here ( ) dxdxk /Ψ=  is the local wave number. Equation (1.2.3) can be interpreted 
as the generalized dispersion relation for waves in an inhomogeneous medium, 
whereas Eq. (1.2.4) has the meaning of the energy flux conservation law. While 
Eq. (1.2.4) can be easily integrated: 
 

( ) ( ) ( ) const2 =xhxkxA ,                                       (1.2.5) 
 

Eq. (1.2.3) is a second-order differential equation with variable coefficients and 
generally has no analytic solutions in closed form. This equation is not simpler than 
the initial wave equation (1.2.1). 

Further progress in analytical solving of Eq. (1.2.3) can be made when a wave 
propagates above slowly a varying bottom. In this case variations of both the water 
depth and the wave amplitude are slow. The terms in the second bracket of 
Eq. (1.2.3) are small compared to other additives and can be ignored in the first 
approximation. In this case the solution of Eq. (1.2.3) is simple: 
 

( )
( )xgh
ωxk = .                                           (1.2.6) 

 
Equation (1.2.6) is a generalization of the well-known dispersion relation for water 
waves in the basin of slowly varying depth. Solution (1.2.6), together with 
Eq. (1.2.5), determines the wave amplitude (which in the case of question evidently 
follows Green’s law) and phase. The relevant asymptotic procedure and all higher-
order corrections of the wave amplitude and phase are described in detail in 
(Maslov, 1987, 1994; Babich & Buldyrev, 1991; Berry, 2005). 

Basically, Eq. (1.2.3) can be solved numerically for an arbitrary function ( )xh . 
Analytical solutions exist for specific bottom profiles. After solving Eq. (1.2.3), 
solution (1.2.2) can be determined completely. Sometimes, solutions of this type 
are called travelling waves in an arbitrarily inhomogeneous medium (without any 
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specific applications for water waves). Strictly speaking, however, such solutions 
can be interpreted as complicated physical processes of wave transformation and 
reflection in the basin of variable depth (Ginzburg, 1970; Brekhovskikh, 1980).  

One of the central problems of this thesis is the analysis of the potential 
existence of exact travelling wave solutions to Eq. (1.2.1) and their propagation 
and reflection properties. There exists no comprehensive description of the 
procedure to select the travelling wave solution from the entire set of solutions of 
Eq. (1.2.3) in scientific literature. Historically, a subset of such solutions has been 
found by requesting that the equations 
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and 

01
2

2

=⎥
⎦

⎤
⎢
⎣

⎡
+

dx
dA

dx
dh

hdx
Ad                                     (1.2.8)  

 
are satisfied simultaneously. Obviously, any set of solutions { }hkA ,,  to 
Eqs. (1.2.7) and (1.2.8) also solves Eq. (1.2.3) [although generally solutions to 
Eq. (1.2.3) do not solve Eqs. (1.2.7) and (1.2.8) simultaneously]. The solution of 
Eq. (1.2.7) is straightforward and given by Eq. (1.2.6); thus the function )(xk  is 
uniquely defined. The system of Eqs. (1.2.5) and (1.2.8) is overdetermined for the 
wave amplitude. Its consistent solution can be achieved if and only if 
 

3/4)()( bxpxh += ,                                           (1.2.9) 
 
where p  and b  are arbitrary constants. The desired solution therefore only exists 
for beaches having a specific convex bottom profile. As constant b  can be 
eliminated by a shift bxx −=~  of the x-axis, we can assume 0=b  without the loss 
of generality. Doing so simply means that the origin 0=x  is located at the 
coastline. For the bottom profile presented by Eq. (1.2.9) the components of the 
travelling wave in ansatz (1.2.2) are then completely and uniquely defined: 
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gp
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xA = .  (1.2.10) 

 
The corresponding full solution to Eq. (1.2.1) can be re-written as a travelling 
wave:  
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where 0A  and 0h  are the amplitude and the water depth at the point 0xx = , 
respectively. The location of the point 0xx =  can be chosen arbitrarily. This 
feature makes it possible to analyse the evolution of both waves approaching from 
offshore and waves generated in the vicinity of the coast. The solutions given by 
Eq. (1.2.11) correspond to right-going (propagating offshore in this geometry) 
monochromatic wave trains and are equivalent to those found in Cherkesov (1975) 
and Pelinovsky (1996). The resulting expressions coincide with the asymptotic 
wave solution for a slowly varying bottom profile, but are correct for any bottom 
slope. 

A similar solution can be evidently obtained for a wave propagating to the left 
(onshore direction) by simply picking up another sign of ( )xτ  in Eq. (1.2.11). In 
the linear framework these waves do not interact with each other: the resulting 
surface displacement in the areas where they excite water displacement or local 
current, the resulting wave profile or current speed is just the sum of displacements 
or currents caused by the counterparts.  

Previous studies into the problem in question have been limited to the analysis 
of properties of monochromatic or sine waves. An obvious generalization of the 
existing results consists in the use of Fourier analysis to obtain the superposition of 
such sine waves with different frequencies, the technique obviously being 
applicable in this linear framework. With the use of the Fourier integral of spectral 
components (1.2.11), the travelling wave of an arbitrary shape can be presented in 
a general form (Paper V) 
 

( ) ( ) ( )[ ]xtfxAtx τη −=, ,                                      (1.2.12) 
 
where ( )tf  describes the wave shape (interpreted here as the variation with time of 
the surface elevation at a fixed point). An important feature is that representation 
(1.2.12) allows considering wave pulses of finite duration – generalized solutions 
of the wave equation. 

Another important property of the shallow-water wave field is the wave-
induced, depth-averaged flow velocity. This velocity can be calculated from the 
water displacement using one of the equations of the linear shallow-water system: 
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In particular, the velocities induced by the monochromatic wave (1.2.11) and by a 
pulse (1.2.12) are  
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where ( ) ( ) ξξξ df∫=Φ  and ( )xt τξ −= . The details of derivation of Eqs. (1.2.14) 

and (1.2.15) can be found in Paper V. Notice that the first terms in Eqs. (1.2.14) 
and (1.2.15) correspond to the asymptotic solution of Eq. (1.2.1) above a slowly 
varying bottom, for which the shapes of the water displacement and the wave-
induced water flow coincide. The second term becomes important in the vicinity of 
the shoreline. 
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Fig. 1.2.1. The shape of a travelling wave (left) and the water flow (right) at 
various distances (m) from the shoreline. Time is given in seconds 

 
The natural restriction for realistic pulses is that the disturbance should have a 
limited energy (equivalently, finite effective wave duration). This assumption leads 
to the condition  

( )∫ =
+∞

∞−
0dttf ,                                           (1.2.16) 

 
from which it follows that the shape of the water displacement should be sign-
variable. This condition is valid for a travelling wave only (Paper V). As it is not 
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obvious from the viewpoint of the classical d’Alembert solution of the generic 
wave equation (which may consist of two sign-constant impulses propagating in 
different directions), we will discuss this feature in more detail in Section 1.3. 

Figure 1.2.1 shows the evolution of the shape of a travelling wave propagating 
onshore along a coast with the bottom profile (1.2.9) with the coefficient  

01.0=p  m-1/3. This value will be used in all computations below. The figure 
illustrates the conservation of the shape of the water displacement and strong 
deformation of the water flow. The shapes of the vertical displacement and the 
water flow are almost identical offshore (at great depths), but different near the 
shoreline (at small depths). While the wave shape remains symmetric, the wave-
induced water flow is asymmetric: at small depths it is directed offshore rather than 
onshore (for a given shape of wave elevation). Considerable amplification of wave 
amplitudes occurs when such a wave approaches the shoreline. From Eqs. (1.2.12) 
and (1.2.15) it follows that the amplitude of the “velocity wave” varies more 
strongly than the amplitude of surface displacement. 

1.3. Generation of waves by initial disturbances  
From Eq. (1.2.11) it follows that the function ( )[ ]txf ±τ  should satisfy a wave 
equation with constant coefficients. The key component of the analysis of the 
existence and uniqueness of solutions to Eq. (1.2.1) corresponding to travelling 
waves in a basin of variable depth is establishing a 1:1 transformation of 
Eq. (1.2.1) to a similar equation with ( ) constxc = . 

Let us seek the solution of Eq. (1.2.1) in the form 
 

( )[ ]txHxBtx ,)(),( τη = ,                                      (1.3.1) 
 
where )(xB  and )(xτ  should be determined, and the function H  satisfies the 

constant-coefficient wave equation with 1=c : 
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Substitution of Eq. (1.3.1) into Eq. (1.2.1) results in Eq. (1.3.2) if and only if the 

unknown functions )(xB  and )(xτ  satisfy the following three equations: 
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dx
dxgh τ .                                           (1.3.5) 

 
These equations are generalizations of Eqs. (1.2.5), (1.2.7) and (1.2.8). They are 
also overdetermined in the sense that they have a solution if and only if )(xh  is 
given by Eq. (1.2.9). In other words, the desired transformation exists if and only if 
the bottom profile is ( ) 3/4~ xxh . This solution is unique for a reasonable choice of 
initial or boundary conditions and coincides with that of Eqs. (1.2.10), (1.2.11) if 
( ) ( )xAxB = . Moreover, if )(xB  and )(xτ , together with ( ) 3/4~ xxh , solve 

Eqs. (1.3.3)–(1.3.5), then the transformation given by Eq. (1.3.2) reduces 
Eq. (1.2.1) to Eq. (1.3.2) for the unknown function H . 

The existence of transformation (1.3.1) if and only if the bottom profile is 
( ) 3/4~ xxh  proves that exact travelling wave solutions for the above considered 

type of varying bottom relief are unique to this shape of the bottom profile1. 
There is another important consequence from the existence of transformation 

(1.3.1). Namely, wave equation (1.3.2) has been extensively studied in 
mathematical physics, and many theorems and approaches can be directly applied 
to the particular solutions in question. In what follows this connection is used for 
constructing the general solution of Eq. (1.2.1). 

First of all, wave equation (1.2.1) has a clear meaning in the given geometry 
and should be solved on a semi-axis ( ∞<<τ0 ) only, whereas the origin 0=x  is a 
singularity point of the solution. An important simplification of the problem is that 
the point 0=τ  corresponding to the shoreline ( 0=x ) is not singular in Eq. (1.3.2). 
The natural boundary condition for Eq. (1.3.2) at this point is 
 

0),0( == tH τ .                                          (1.3.6) 
 
This condition implies that the water displacement ( )tx ,0=η  always remains 
bounded at the shoreline. In this case the domain for Eq. (1.3.2) can be formally 
extended to the whole axis ( +∞<<∞− τ ). The extension is physically meaningful 
if the initial conditions are continued for 0<τ  as )0,()0,( ττ HH −=− . 
Nevertheless, the wave field has a clear physical interpretation in the domain 0≥τ  
only. 

The general solution of the Cauchy problem for Eq. (1.2.1), describing free 
evolution of waves generated from the generic initial disturbance of water surface 
and given velocity field 

 
)()0,( 0 xx ηη = ,         )()0,( 0 xuxu = ,                         (1.3.7) 

                                                 
1 This result does not exclude the existence of analogous solutions obtainable with the use 
of transformation of Eq. (1.2.1) to some other type of exactly solvable equation. 
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can be expressed as 
 

{ }])([])([])([1),( 3/1 txftxftxf
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(1.3.9) 
 
where functions +f  and −f  (representing the waves propagating offshore and 
onshore, respectively) can be found from initial conditions (1.3.7) and 

( ) ( ) ξξξ df∫ ±± =Φ . Condition (1.3.6) is satisfied automatically.  

In the theory of tsunami wave generation above an inclined bottom only the 
vertical displacement of the source is usually used (Pelinovsky, 1996; Carrier et al., 
2003; Tinti & Tonini, 2005; Dutykh et al., 2006). In this case  
 

( )[ ] ( )xxxfff 0
3/1

0 5.0 ητ === −+ .                           (1.3.10) 
 

Generally, function 0f  can have an arbitrary shape determined by the initial 
displacement.  
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Fig. 1.3.1. Water displacement (left) and velocity (right) for initial 
disturbance (1.3.11). The bottom profile is shown at the bottom 
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Figure 1.3.1 displays the water displacement and velocity for the case where the 
initial displacement in the source (located approximately at a depth of 20 m) is a 
sign-variable function (N-wave) that satisfies Eq. (1.2.16): 
 

]3/)60(2[cosh
]3/)60(2tanh[

3
4)( 20 −

−
−=

τ
ττ sf ,                             (1.3.11) 

 
where s  is a numerical coefficient with dimension m4/3. In all following 
calculations it is assumed that 1=s .  

The initial disturbance is split into two waves after some time. The right-going 
wave moves quickly offshore. Its amplitude decreases rapidly and it propagates out 
of the domain ( 500≤x  m) after 20 s. The amplitude of the left-going wave 
increases as it approaches the shore. The maximum amplitude occurs at the 
coastline. The solution experiences perfect reflection from the shore and 
propagates to the right with the amplitude decreasing afterwards. 

Another instructive example (Fig. 1.3.2) is the propagation of an initial 
disturbance located entirely above the calm water level. Let us consider evolution 
of the wave system generated from a disturbance in the form of a solitary wave:  
 

]3/)60(2[sech)( 2
0 −⋅= ττ sf .                              (1.3.12) 

 
An interesting feature here is the formation of a weak current between left-going 
and right-going pulses. The existence of a non-zero current follows from the 
behaviour of functions ( )ξ±Φ . The magnitude of this current is very small, only a 
few per cent from the maximum flow velocities near the wave crests (Fig. 1.3.3).  

Initially, only positive disturbances of the water surface are present in the 
system. As in the previous example, the right-going wave propagates soon out of 
the computational domain without qualitative changes in its shape. The sign of the 
water elevation caused by the left-going wave, however, is inverted in the process 
of reflection from the coastline. After this reflection, two right-going waves exist in 
the system, forming together a sign-variable disturbance as expected from 
Eq. (1.2.11). 

It is straightforward to extend the above analysis to the case of waves 
propagating along an ambient current. The latter can be expressed via a non-zero 
initial velocity field. The procedure of finding the solution is then as follows. One 
of the functions, for instance +f , can be expressed through the initial displacement 
(1.3.8) 
 

( ) ( ) ( )τητ −+ −= fxxf 0
3/1 .                               (1.3.13) 

 
For the other function, the following differential equation for −f  (or −Φ ) can be 
derived from (1.3.9): 
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Fig. 1.3.2. Water displacement (left) and velocity (right) for the 
initial disturbance presented by Eq. (1.3.12) 
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Fig. 1.3.3. Formation of space-variable current between two pulses 
in Fig. 1.3.2 
 

This equation can be easily integrated to give 
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∫
Γ

−=Φ− ζ
ζζττ d)()( .                                   (1.3.15) 

 
The effect of the initial velocity is manifested in an additional difference between 
the left-going (onshore) and right-going (offshore) waves. 

1.4. Wave reflection from the shore 
From the practical point of view the behaviour of the wave field on the shoreline 
( 0=x ) is the most interesting. Details of process of wave reflection, 
accompanying amplitude amplification and potential runup have important 
applications in tsunami modelling, forecast and mitigation studies. Formally, the 
linear theory is not valid in the vicinity of the shoreline where the wave amplitude 
becomes comparable with the water depth. In the case of a plane beach of constant 
slope it has been demonstrated that the extreme runup characteristics can be 
calculated rigorously from the linear shallow-water theory even for the nonlinear 
problem (see Chapter 2 and Paper II). The approach used in these studies is applied 
to the case of a convex beach bottom profile (1.2.9). 

If the wave approaches the beach from the infinity, the wave solution of 
Eq. (1.2.1), satisfying also the boundary condition at the shoreline (1.3.6), has the 
following form (see Eqs. (1.3.8) and (1.3.9)):  
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where ( )τ+tf  is the shape of an incident wave approaching the shoreline 0=x  
( 0=τ ). The vertical displacement of the water surface at 0=x  can be found from 
Eq. (1.4.1) exactly by using Taylor’s series in the vicinity of 0=τ : 
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tdf

gp
ttR )(6),0()( 0τη

−
== ,                                (1.4.3) 

 
where 0τ  is the travel time from a fixed point Lx =  (chosen far offshore) to the 
shore. Taking into account that the shape of the incident wave at the point Lx =  is 
 

3/1
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L
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Eq. (1.4.3) can be re-written as 
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dt
tdtR in )(2)( 0

0
τητ −

= .                                     (1.4.5) 

 
Thus, the amplitude of water level oscillations at the shoreline is proportional to the 
vertical velocity of water particles in the incident wave. If the incident wave has 
the form of a solitary crest, the water level on the shoreline experiences first runup, 
followed by rundown. The runup height is determined by the ratio of the travel 
time 0τ  to the wave period T . Therefore it is greater if the incident wave 
approaches from deeper waters. This feature suggests that beaches that have 
extensive convex slopes offshore may experience considerable amplification of 
waves compared to beaches with linearly increasing depth. 

The maximum velocity of water particles in the vicinity of the shore 0=x  is 
unbounded and proportional to  
 

x
tf

p
gtxu )(2),0( ≈→ .                                  (1.4.6) 

 
This feature may be interpreted as an implicit manifestation of wave breaking. 
However, wave breaking is not accounted for in the framework of Eq. (1.2.1). 
Although water velocity becomes infinitely large at the shoreline, the water 
discharge is bounded, because 
 

0)(2),()( 3/1 →→ tfxgptxuxh .                          (1.4.7) 
 
The shore therefore plays a role of a vertical wall perfectly reflecting the wave 
energy. 

The singularity of the water velocity in the vicinity of the shoreline can be 
excluded by a small variation of the bottom profile, more precisely, by variations 
of the face slope which is zero in a given geometry. However, the water level is not 
sensitive to bottom variations in the vicinity of the shoreline. That is why we do not 
study in detail characteristics of the velocity field at the shoreline. 

To illustrate the processes in the vicinity of the coastline, time records of the 
water displacement during the runup of a sign-variable wave (N-wave) 
[Eq. (1.3.11)], computed numerically with the use of Eq. (1.4.1), are presented in 
Fig. 1.4.1 for selected points of the coastal slope. Far from the shoreline, the time 
series contain both incident and reflected waves (the latter having an inverted shape 
as discussed above). Wave amplification when the wave approaches the shore and 
the transformation of the wave shape at the shoreline are clearly seen in this figure. 
For this particular wave shape, the rundown amplitude significantly (approximately 
three times) exceeds the runup amplitude. According to Eq. (1.4.5), the maximum 
runup height is 5.7 m and rundown depth 17 m for the initial amplitude of 11 cm. 
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The wave amplitude on such a beach can be amplified by an order of magnitude 
and even more.  

As an example, let us calculate the runup height analytically for the case where 
the incident wave is the soliton solution of the Korteweg–de Vries (KdV) equation: 
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The runup height induced by the approaching solitary wave is 
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Fig. 1.4.1. Time series of the water surface of the wave system 
generated from the initial disturbance given by Eq. (1.3.12) at the 
shoreline and at two offshore points 

 
If we introduce the mean slope of a beach Lh /=α , expression (1.4.9) can be re-
written as 
 

2/3
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h
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α
= .                                    (1.4.10) 

 
Comparison of this result with the asymptotic formula for the runup of a solitary 
wave on a plane beach (Synolakis, 1987) 
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suggests that the runup of solitary waves of moderate amplitudes on convex 
beaches may lead to considerably wider inundation than a similar process next to 
beaches of constant slope.  

The runup of waves of arbitrary shape can be studied in a similar way. Recently 
it has been shown in the framework of the Carrier – Greenspan transformation for a 
plane beach that the runup height of asymmetric incident waves (the face slope of 
which exceeds the back slope) is higher than the runup of symmetric waves (Paper 
II). This feature may occur for beaches of various profiles. It is inherently evident 
from Eq. (1.4.5) for a convex beach.  

1.5. Wave reflection from a zone of increasing depth 
For engineering purposes it is important to establish what happens with the wave 
that once approached the coast from offshore, was then reflected from the shore 
and propagated back from offshore over a shallow area. It is well known that in the 
case of a step-like bottom profile the offshore-going wave may be re-reflected from 
the step and the wave energy may be trapped in the shallow area (Dean & 
Dalrymple, 1991). Analogous effects may also occur for the wave reflection from 
the border of the zone of increasing depth. 
 To analyse such effects, consider a situation when a wave moves in a channel of 
small but finite depth, which serves as a prolongation of a convex coastal slope. 
This situation mimics processes occurring in entrance channels of several ports or 
in a small river with a weak current. This can be done by considering the geometry 
of the following bottom relief in which the origin separates the shallow area of 
constant depth from the convex slope (Fig. 1.5.1): 
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In this case the velocity field is bounded everywhere. The coastal slope is 
discontinuous at the origin. The presence of this inflection point gives rise to a 
specific problem of transmission of wave energy between different areas and 
reflection from this point. 

Let us first consider the case where an incident sine wave approaches a convex 
coast from the zone of constant depth ( 0<x ). Following the classical theory of 
long wave reflection, the wave field in this zone is presented by the superposition 
of the incident and reflected waves: 
 

( ) ( )[ ] ( )[ ]00 expexp, x/ctiAx/ctiAtx ri ++−= ωωη .                  (1.5.2) 
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Fig. 1.5.1. Sketch of geometry 

 
Here 00 ghc =  is the long wave speed along the even bottom and iA  and rA  are 
the amplitudes of the incident and reflected waves, respectively. The 
monochromatic wave along the convex slope is described by Eq. (1.2.11) and has 
an amplitude 0A  at the point 0=x . At the inflection point the solutions expressed 
by Eqs. (1.5.2) and (1.2.11) must match each other in terms of the continuity of 
water level and total discharge. These boundary conditions allow calculating the 
relative amplitudes of the reflected and transmitted waves from the following 
expressions for the coefficients of reflection and transmission (Paper V): 
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where 0/6 cL=τ . These amplitudes depend on the ratio of the wave period and the 
travel time to the zone of variable depth. As expected, for steep bottom slopes 
( 1<<ωτ ) the wave is almost completely reflected and experiences a phase shift of 
180º. For gentle slopes ( 1>>ωτ ) the incident wave passes to the zone of variable 
depth almost without reflection.  

Another important particular case is the reflection of a solitary wave 
propagating offshore. In this case Eq. (1.5.3) presents the operator form of the 
ordinary differential equation (that can be obtained from this equation by replacing 
ωi  by dtd / ):  
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This equation allows determination of the reflected wave in the vicinity of the 
inflection point if the incident wave at the same point is known. The details of 
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dispersion-related transformation to differential equations in a general case are 
described in Whitham (1974). The reflected wave can be calculated as an integral: 
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τη ,                      (1.5.5) 

 
whereas it is assumed that the reflected wave is absent before the incident wave 
approaches the inflection point. If the incident wave is a pulse of finite duration T  
( Tt <<0 ), then from Eq. (1.5.5) it follows that the reflected wave amplitude at the 
inflection point decreases exponentially after passing the incident wave Tt > : 
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From Eq. (1.5.6) it follows that the solitary wave in the channel may entirely 

cross the convex slope and the inflection point without any loss of its energy. This 
happens for specific shapes of the incident wave and specific values of beach 
parameters, for which integral (1.5.6) is equal to zero. The analysis of these 
specific cases is out of the scope of the present thesis.  

From Eq. (1.5.4) it follows that 
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Thus, if the incident wave is a wave of elevation (pure crest), a wave of depression 
(pure trough) dominates in the reflected wave. This feature can be interpreted as a 
generalization of the above-discussed property of inversion of the shape in the 
process of reflection from the coastline. 

As an example of the transformation of a wave pulse of limited duration we 
consider an incident sine pulse (Fig. 1.5.2) 
 

⎩
⎨
⎧ <Ω<Ω

=
interval  theofout 0

0)sin(
)(

π
η

tt
Ati .                         (1.5.8) 

 
An instructive feature of such a pulse is that it originally contains discontinuities of 
the surface slope that are gradually smoothed in the process of propagation. The 
profile of surface elevation in the reflected wave, computed from Eq. (1.5.5), is  
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Fig. 1.5.2. Relative water surface elevation in the 
incident wave described by Eq. (1.5.8)  
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Fig. 1.5.3. The shape of reflected waves for various 
values of the parameter q  

 
In accordance with the above analysis, the reflected wave is inverted for all values 
of the parameter q  (Figs. 1.5.2 and 1.5.3). Its amplitude decreases and its tail gets 
gradually longer. The growth of the tail is more pronounced for gentle beaches. In 
the case of steep beaches the shape of the reflected wave is almost the same as for 
the incident wave but has opposite polarity.  
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Expressions (1.5.9) and (1.5.10) describe the shape of the reflected wave near 
the inflection point. It is straightforward to show, using Fourier superposition of the 
spectral components [Eq. (1.5.2)], that the reflected wave preserves its shape at all 
distances from the inflection point. 

In the immediate region of the inflection point the transmitted wave can be 
found from the boundary condition of continuity of water displacement: 
 

( ) ( ) ( )ttt rit ηηη += .                                        (1.5.11) 
 
Due to Eq. (1.5.7), condition (1.2.16) is satisfied automatically. This feature was 
expected for the travelling wave solution (see Chapter 2) and is confirmed here by 
Eqs. (1.5.11) and (1.5.7). 

The oscillations of the water level in the immediate vicinity of the inflection 
point are of specific importance, because they can be the starting point of further 
description of the wave attack and runup with the use of more detailed models of 
the coastal zone. The time series of water surface at this point are presented in 
Fig. 1.5.4 for the incident sine pulse. The figure shows that a sign-variable wave is 
excited and propagates onshore after the inflection point. As expected, the 
amplitude of this wave is quite small in the case of steep convex beaches, yet 
almost full transmission may occur if the convex section of the beach has a 
moderate slope.  
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Fig. 1.5.4. The shape of the transmitted wave (left) and transmitted velocity 
(right) after the inflection point for various values of the parameter q   

 
According to Eq. (1.2.12), the transmitted wave does not change its shape, but its 
amplitude and phase do change with the distance from the inflection point. The 
shape of the velocity field in the transmitted wave changes with the distance as 
well [see Eq. (1.2.15)]. In the immediate vicinity of the inflection point the velocity 
of wave particles can be found from the boundary condition of the continuity of 
discharge:  
 

( ) ( ) ( )[ ]tt
h
gtu rit ηη −=
0

.                                    (1.5.12) 
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The time series of velocity are presented in Fig. 1.5.4 for the case of an incident 

sine pulse for several values of the parameter q. The velocity is always positive (as 
for the incident wave). The velocity pulse is, however, somewhat modified and 
contains an elongated tail, the effective duration of which is larger for gentle 
beaches. The shape of the velocity variations in a transmitted wave varies with 
distance according to Eq. (1.2.15) and not necessarily follows the shape of the 
water surface displacements. Nevertheless, far from the inflection point the first 
term in Eq. (1.2.15) dominates and the shape of the velocity variations matches the 
shape of surface displacements. These processes are illustrated in Fig. 1.5.4. 

1.6. Concluding remarks 
The above analysis of linear long wave dynamics in a basin of variable depth first 
confirms the intuitively clear opinion that exact travelling wave solutions of the 
variable-coefficient wave equation (1.2.1) exist for a very limited number of 
situations. In fact, such solutions only exist for a convex bottom, the water depth 
along which increases as ( ) 3/4~ xxh . For this particular case a 1:1 transformation 
converts the general 1D wave equation into an analogous equation with constant 
coefficients. In other words, the analysed situation is the sole case in which the 
complex dynamics and reflections of long waves propagating over an uneven 
bottom can be fully described in terms of simple solutions for basins of constant 
depth. Notice that the other generic form of the wave equation (valid for water 
velocity) allows such solutions for another profile ( ( ) 4~ xxh ) of the coastal slope 
(Didenkulova et al., 2008). 

The obvious gain from the existence of such solutions it that quite complex 
wave phenomena can be analysed with the use of the large pool of results obtained 
for a much simpler framework. This similarity allows getting an important insight 
into how long travelling waves behave when approaching convex sections of the 
ocean coasts. While the majority of properties of wave propagation along a convex 
bottom mirrors those occurring in the basin of linearly varying depth, some 
interesting distinguishing features become evident; for example the shapes of water 
displacement and velocity in the travelling wave do not coincide. As expected, the 
general solution of the Cauchy problem to the wave equation in the case of the 
convex bottom profile in question is expressed through two travelling waves 
propagating in opposite directions. A zone of space-variable current generally 
exists between these two waves. 

A deeply interesting feature is that shoaling and runup of certain wave classes 
on a beach with this sort of bottom relief may be considerably higher than for a 
beach with a linear profile and an equal mean slope. This property has been shown 
to hold for shallow-water KdV solitary waves (solitons) that are frequently used as 
a convenient model of tsunami waves. It is also shown that the shape of water 
oscillations at the shoreline is determined by the first derivative of the incident 
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wave shape. As a result, if the incident wave has a steep front, the runup height will 
be higher.  

Although the exact results of the above studies are valid for a limited class of 
bottom profiles, they are eventually approximately correct for a much wider class 
of basins with a convex bottom slope, or containing extensive sections of such 
slopes. An important aspect to be mentioned once more is that the performed 
analysis does not require slow variation of the basin depth and remains valid for 
quite large slopes. This property allows extensive use of the obtained solutions and 
results for developing practically usable models of, e.g., tsunami and freak waves 
and also opens new perspectives in developing the weakly nonlinear theory of 
water waves in a basin of variable depth. 
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2. Long wave runup on a plane beach 

2.1. Introduction 
The above studies allowed establishing certain important properties of long wave 
dynamics in the linear framework, however realistic description of processes 
occurring in the vicinity of the coastline is only possible with the use of more 
complicated, nonlinear models. Still, the results obtained in the linear 
approximation have a key role in such studies, because in many important 
applications the nonlinear problem can be (partially) reduced to a linear one. An 
example of extensive use of such an approach is the theory of nonlinear long wave 
runup. 

The first rigorous solutions describing the nonlinear long wave runup on a plane 
beach were obtained by Carrier & Greenspan (1958). They reduced a nonlinear 
shallow-water system to a linear wave equation. Their approach was actively 
applied in tsunami studies (Pedersen & Gjevik, 1983; Synolakis, 1987; Mazova & 
Pelinovsky, 1992; Tinti & Tonini, 2005) and is used as the basis of the relevant 
studies described in this thesis. The key and novel moments of the developments of 
the analytical theory of long wave runup on a plane beach presented in this chapter 
are: (i) parameterization of basic formulas for extreme runup characteristics and (ii) 
runup analysis of asymmetric waves with a steep front. The basis of the former 
development is the weak dependence of several runup features on the initial wave 
shape (which is usually unknown in real sea conditions), provided the shape is 
symmetric with respect to the wave crest. The central message from the latter 
development is that waves with a steeper face slope penetrate inland over larger 
distances and with greater velocities than symmetric waves. The chapter reflects 
the results published in Papers II, III and IV. 

An analytical model of wave runup, which is based on nonlinear shallow-water 
equations and is valid only for non-breaking waves, is described in Section 2.2. A 
method of reducing the nonlinear shallow-water system to the linear wave 
equation, suggested in the original paper of Carrier & Greenspan (1958), is briefly 
reproduced. The basic advantage of their approach, as shown below (Paper II), is 
the proof that extreme characteristics of the nonlinear runup process (runup and 
rundown amplitudes, extreme values of on- and offshore velocities, the wave 
breaking condition) can be found within a linear approximation. The nonlinear 
dynamics of the moving shoreline is described in Section 2.3 for the case of non-
breaking waves. With the increase in the amplitude first the wave breaks on the 
shoreline. In this case the velocity of the shoreline has the shape of a shock wave, 
whereas the water displacement has a jump of the first derivative in the trough. A 
simplified criterion of wave breaking is obtained. The runup height of solitary 
waves of various shapes is analysed in Section 2.4. It is shown that with the use of 
a convenient definition of the “significant” wavelength, formulas for extreme 
runup characteristics become universal in the sense that their dependence on the 
incident wave shape is very weak. Such formulas can be used for engineering 
applications. The runup of asymmetric waves with a steep front is discussed in 
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Section 2.5. It is shown that such waves penetrate inland over larger distances and 
with greater velocities than symmetric waves. 

2.2. Analytical model of wave runup 
The main equations describing the processes analysed in this chapter are nonlinear 
shallow-water equations  
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is the total water depth. Equations (2.2.1) and (2.2.2) represent a hyperbolic system 
of partial differential equations with constant coefficients. It allows using the 
hodograph transformation to reduce nonlinear equations to a linear system with 
variable coefficients. This transformation was first obtained by Carrier & 
Greenspan (1958) for water waves. The details of this transformation are given in 
Paper II.  

According to this method, Eqs. (2.2.1) and (2.2.2) can be reduced to the linear 
wave equation 
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and all variables are expressed through the wave function ( )σλ,Φ :  
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Wave equation (2.2.4) is solved for the fixed semi-axis 0≥σ  (the point 0=σ  
corresponds to the moving shoreline). Notice that the initial shallow-water 
equations are generally solved in the domain with an unknown, moving boundary. 
The natural condition at the point 0=σ  is the boundedness of physical variables 
η  and u . This follows from Eq. (2.2.6): 
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The general initial conditions for η  and u  

 
)()0,( 0 xx ηη = ,                 )()0,( 0 xuxu = ,                          (2.2.8) 

 
should be transformed into initial conditions for ( )σλ,Φ . Thus, for example for 

( ) 00 =xu  (a popular presentation of the tsunami source in the framework of the 
piston model), the initial conditions are formulated for 0=λ  instead of 0=t :  
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where 1Φ  is parametrically defined by Eqs. (2.2.6).  

Linear wave equation (2.2.4) defined on a semi-axis is well studied in 
mathematical physics and the corresponding Green’s function can be written in the 
integral form. Several authors have used the Green’s function approach in the 
runup problem (Carrier et al., 2003; Kanoglu & Synolakis, 2006). The 
transformation of the initial wave field )(0 xη  and )(0 xu  to the wave function 
( )σλ,Φ  and back to the water wave field ( )tx,η  and ( )txu ,  is described by 

implicit formulas (2.2.5) and (2.2.6). There are only a few examples when the 
solution of Eqs. (2.2.1) and (2.2.2) can be found explicitly (Carrier & Greenspan, 
1958; Spielfogel, 1976; Pedersen & Gjevik, 1983). In practice, this transformation 
can be done numerically.  

Waves usually approach the shore from the open sea where the depth is great 
and wave amplitudes are small compared to the depth. Therefore it is correct to 
assume that the incident wave is mostly (almost) linear (except for laboratory 
experiments, where the mechanically generated wave frequently has an amplitude 
comparable with the depth). Under this assumption the formulas of the Carrier – 
Greenspan transformation (2.2.6) can be simplified far from the coast: 
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As a result, all formulas become explicit, and the transformation of initial 
conditions (2.2.8) from the physical space ( )tx,  to the space ( )σλ,  is trivial: 
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Since initial conditions for wave equation (2.2.4) are fully determined for a 
general case of non-zero velocities, the general solution of the Cauchy problem can 
be obtained by applying the described procedure. It is the main advantage of the 
use of the linear approximation for solving a nonlinear problem. 

Moreover, if we consider the linear shallow-water system 
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and apply the linearized Carrier-Greenspan transformation (2.2.5), (2.2.10), we 
reduce Eqs. (2.2.12) to wave equation (2.2.4). Equation (2.2.4) should be solved for 
the same initial conditions (2.2.11) and boundary condition (2.2.7) on a semi-axis. 
The most important conclusion from the presented line of reasoning is that the 
formal solutions ( )σλ,Φ  and ( )lll σλ ,Φ  of the basic nonlinear and linear systems, 
respectively, are identical. 

The physical meaning of variables and certain components of these solutions is 
of course different. First, the interpretation of the boundary point 0=σ  is different 
in nonlinear and linear cases. In the nonlinear problem the point 0=σ  corresponds 
to the moving shoreline: the total water depth (2.2.3) is equal to zero at 0=σ , 
while in the linear problem the same point corresponds to the unperturbed shoreline 
(still sea level): the unperturbed water depth ( )xh  is equal to zero. 

The dynamics of the moving shoreline in the nonlinear problem is described by 
the function ( )0, =Φ σλ . In particular, the maximum runup height is achieved 
when 0=u : 
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[see (2.2.6)]. The wave field at the shoreline ( 0=x ) in the linear problem is 
described by the function ( )lll σλ ,Φ . The maximum wave height at this point is 
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At the same time, as we pointed above, if initial conditions are given far from 

the shoreline where the wave is linear, functions ( )σλ,Φ  and ( )lll σλ ,Φ  are 
identical. It means that the maximum value of the runup height in the nonlinear 
theory is equal to the wave height on the unperturbed shoreline in the linear theory. 
Therefore, the maximum runup height can be found in the framework of the linear 
theory, a feature which is extremely important for engineering applications. This 
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non-trivial conclusion is rigorously proved, for instance, in Pelinovsky & Mazova 
(1992); see also Paper II.  

The same results can also be applied in order to find the maximum value of 
rundown depth and the onshore and offshore velocities of the moving shoreline. 
Thus, all important extreme characteristics of the runup process can be found in the 
framework of the linear shallow-water theory. It is the main advantage of the use of 
the approach originally developed by Carrier & Greenspan (1958).  

As an example we consider the runup of a sine wave with frequency ω  on a 
plane beach. The well-known bounded solution of the linear wave equation (2.2.4) 
is expressed through Bessel functions: 
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where ( )zJ0  is the Bessel function of zeroth order. Far from the shoreline the wave 
field can be presented asymptotically as the superposition of two sine waves of 
equal amplitude propagating in opposite directions: 
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where ( )xA  is the instantaneous wave amplitude and )(xτ is the propagation time 
of this wave over the distance x  in a fluid of variable depth. 

The ratio of the maximum amplitude 0R  of the approaching wave (with the 
wavelength 0λ  determined from the shallow-water dispersion relation 

( ) 02 λπω Lgh= ) to the initial amplitude 0A  at the fixed point Lx =  can be 
found from Eq. (2.2.17): 
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The amplification factor 00 AR  in Eq. (2.2.18) is a generalization of the shoaling 
coefficient in the linear surface wave theory. As pointed above, it is the same in the 
nonlinear theory. This feature allows determining the extreme runup characteristics 
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in both linear and nonlinear cases as soon as the initial wave amplitude and 
wavelength at a fixed offshore point Lx =  are known. 

Formally, solutions of wave equation (2.2.4) can be obtained for different depth 
profiles either numerically or analytically (as it was done in Chapter 1 for a special 
beach profile). An important limitation of the approach used in this chapter is that 
the equivalence between nonlinear and linear theories in calculating the extreme 
characteristics has been established only for a plane beach. This limitation is only 
substantial in the region where the wave is essentially nonlinear. Therefore the 
approach can still be used far offshore (where the wave is linear) where the bottom 
relief can have any shape, but in the vicinity of the shoreline the rigorous nonlinear 
results are only applicable if the shallow-water coastal region has an almost plane 
slope. A more realistic situation can thus be modelled by a combination of a flat 
bottom (roughly representing the wave propagation in the area where the wave is 
almost linear) and a plane beach (on which nonlinear effects may become 
substantial), presented in Fig. 2.2.1.  
 

α
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Fig. 2.2.1. Sketch of geometry  
 

The wave field on such a beach is described by Eq. (2.2.15). On a flat bottom the 
solution of wave equation (2.2.4) is 
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where 0A  and rA  are the amplitudes of the incident and reflected waves, and c  is 
a long wave speed on a flat bottom. Matching solutions (2.2.15) and (2.2.19) 
requires the continuity of water level and velocity in the joint point. These 
conditions allow finding rA  (see Pelinovsky, 1982; Madsen & Fuhrman, 2008) and 
the runup height R : 
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Here ck /ω=  is the wave number of the incident wave. For large values of kL  
Eqs. (2.2.18) and (2.2.20) coincide (Fig. 2.2.2). If the beach width L  tends to zero, 
the runup amplitude twice exceeds the incident wave amplitude.  
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Fig. 2.2.2. Runup height versus beach width 

2.3. Dynamics of the moving shoreline 
As discussed above, the linear theory predicts extreme characteristics of the long 
wave runup. This theory can also be used for calculating “real” (nonlinear) 
dynamics of the moving shoreline. For instance, the velocity of the moving 
shoreline in the nonlinear theory can be derived from Eq. (2.2.6) for 0=σ : 
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This equation implicitly determines the time dependence of the velocity of the 
moving shoreline and can be written as 
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The physical meaning of the function ( )tU  is a “linear” velocity on the 

shoreline. Implicit formula (2.3.2) demonstrates that the “nonlinear” velocity of the 
moving shoreline can be obtained from the “linear” solution by a specific alteration 
of the time axis (so-called Riemann transformation of time). It is clear from 
Eq. (2.3.2) that extreme values of functions )(tu  and ( )tU  coincide, which 
confirms the conclusion made in Section 2.2. Thus, the presence of nonlinearity 
only modifies velocity time series but does not influence the maximum velocity. 

It is straightforward to find horizontal and vertical coordinates of the moving 
shoreline by integrating the “nonlinear” velocity of the moving shoreline: 
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∫= dttutx )()( ,          
α

)()( txtz = .                                  (2.3.3) 

 
The vertical displacement of the water level at the shoreline in the linear theory 
( ) ( )0, == xttZ lη  can be calculated from the solution of linear wave equation 

(2.2.4) with the use of traditional methods of mathematical physics or numerical 
modelling. It is related to the “linear” velocity as follows: 
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α
= .                                           (2.3.4) 

 
The “nonlinear” vertical displacement of the moving shoreline ( )tr  can be 

obtained from Eqs. (2.2.6) and (2.3.2): 
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An important conclusion from Eq. (2.3.5) is that extremes of the vertical 
displacement (the runup and rundown heights) in the linear and nonlinear theories 
coincide, as expected from the discussion in Section 2.2. Therefore, the linear 
theory adequately describes the runup height, which is an extremely important 
characteristic of the action of long waves (tsunami, storm surges) on the shore.  

The central outcome of the presented analysis is that the solution of the linear 
problem together with the Riemann transformation of time (two-step analysis) 
allows calculating the runup characteristics. This is much easier than the use of the 
complicated Carrier–Greenspan transformation. Such an approach was obviously 
first suggested in Pelinovsky & Mazova (1992) and then applied in several cases in 
Paper II, III and IV. 

Another important outcome of the proposed approach is a simple definition of 
the first breaking condition of long waves on a beach. Very long waves with small 
amplitudes do not break at all. They just result in a slow rise in the water level 
resembling a surge-like flooding. With the increase in the wave amplitude, 
breaking appears seawards from the runup maximum. Depending on the wave 
amplitude and the bottom slope, breaking may occur relatively far offshore in the 
form of, e.g., plunging breakers. 

The two-step approach described above allows exact determination of certain 
properties of waves with the limitation that the first wave breaking occurs precisely 
on the shoreline. The temporal derivative of the “nonlinear” velocity of the moving 
shoreline, calculated from Eq. (2.3.2), 
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dt
dU
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α
/1−

= ,                                          (2.3.6) 

 
tends to infinity when the denominator of the right-hand side of Eq. (2.3.6) 
approaches zero. As follows from the theory of hyperbolic equations, it leads to the 
so-called gradient catastrophe. This instant is usually identified as the start of the 
(plunging) breaking of long water waves, which implies the condition of the first 
wave breaking  
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where the parameter Br  has the meaning of the breaking criterion. Condition 
(2.3.7) has a simple physical interpretation: the wave breaks if the maximum 
acceleration of the shoreline 1'' −αZ  along the sloping beach exceeds the along-
beach gravity component (αg). This interpretation, although convenient for 
illustration of the process, is figurative, because formally ''Z  only presents the 
vertical acceleration of the shoreline in the linear theory, but the “nonlinear” 
acceleration dtdu  actually tends to infinity at the breaking moment. Criterion 
(2.3.7) can be re-written with the use of the relation between dtdU /  and x∂∂ /η  
from linear equation (2.2.12) on the shore 0=x : 
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α
η xBr .                                         (2.3.8) 

 
The physical meaning of this notation is that the wave steepness should be equal to 
the bottom slope. In this case curves of the water level and the bottom profile do 
not cross. This form of the criterion is popular in oceanography where it was 
obtained heuristically; see for instance Massel (1989).   

Thus, the nonlinear dynamics of the moving shoreline can be fully determined 
from Eqs. (2.3.2) and (2.3.5) by finding first the solution of the linear problem and 
calculating water displacement on the unperturbed shoreline. The breaking 
condition can be found in the same way. In the particular case of a sine wave runup 
on a plane beach the breaking parameter is 
 

g
RBr 2
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= ,                                               (2.3.9) 

 
where ω  is the frequency of a sine wave. The maximum runup height of a non-
breaking wave can be found from the breaking condition 1=Br : 
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2
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max 4π
α TgR = ,                                          (2.3.10) 

 
where T  is a wave period. This height depends on the bottom slope and the wave 
period (Fig. 2.3.1).  
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Fig. 2.3.1. The breaking criterion for long waves on a plane beach 

 
Wind waves are relatively short and have a characteristic period of 10 s. In 

many cases they start to break if their amplitudes exceed 10 cm. That is why the 
process of the wind wave breaking on a beach is observed almost always. Tsunami 
waves have a characteristic period of 10 min and break if their heights exceed 10 
m. As a result, we come to a paradoxical conclusion that huge tsunami waves may 
climb the beach without breaking, while small-amplitude wind waves almost break 
offshore. According to the observations by Pelinovsky (1982), approximately 75% 
of tsunamis approach the shore without breaking. 

Detailed analysis of the nonlinear dynamics of the moving shoreline for the case 
where a monochromatic wave approaches the beach can be performed based on the 
Riemann transformation (2.3.2). It is convenient to use non-dimensional variables  
 

Ruu ωα /=′ ,            RUU ωα /=′ ,            tt ω=′ .            (2.3.11) 
 
In this case Eq. (2.3.2) becomes  
 

)()( uBrtUtu += ,                                        (2.3.12) 
 
where Br  is determined by Eq. (2.3.9) and primes are omitted for simplicity. The 
“linear” vertical displacement of water on the shoreline can be found from 
Eq. (2.3.4) by introducing non-dimensional variables: 
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∫= dttUtZ )()( .                                          (2.3.13) 

 
The “real”, nonlinear vertical displacement of the moving shoreline in non-

dimensional variables is defined by Eq. (2.2.6):  
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Fig. 2.3.2. Velocity and vertical displacement of the moving shoreline (dimensionless 
variables) when the sine wave approaches the coast for 2.0=Br  (dotted line), 5.0=Br  
(dashed line) and 1=Br  (solid line) 
 
Equations (2.3.12) and (2.3.14) give a parametric presentation of the moving 
shoreline for any shape of the incident wave. In particular, for a sine wave the 
parametric formulas are 
 

λλ cosBrt −= ,                       λλ 2cos
2

sin Brr −= .           (2.3.15) 

 
The dynamics of the moving shoreline under the influence of a sine wave 
(Fig. 2.3.2) can be computed from Eq. (2.3.15). If the wave amplitude is small 
enough ( 1<<Br ), the shoreline changes in time as a sine function. If the wave 
amplitude increases and the parameter Br  tends to 1, the water moves onshore 
faster and recedes to the sea more slowly. The first wave breaking with the increase 
in the amplitude occurs at the stage of the maximum rundown.  

2.4. Runup of solitary waves 
The above-described two-step procedure for calculating runup characteristics can 
be applied to all types of incident waves approaching the shore from the open sea, 
provided waves can be assumed as linear in a certain sea area. This assumption 
allows using the principle of linear superposition for offshore wave description. 
The first step of the above procedure – the (general) solution of the linear wave 
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equation for runup characteristics – can be presented as a Fourier superposition of 
elementary solutions (2.2.15) with various frequencies and spectral amplitudes. 
The Fourier superposition is valid for both an incident wave field (its elementary 
solution for the fixed point Lx −=  is given by the left term in Eq. (2.2.16)) and for 
vertical oscillations of the water level at the shoreline 0=x  (its elementary 
solution is given by Eq. (2.2.15)). An incident wave field given far from the 
shoreline (at Lx −= ) is 
 

( ) ( )∫
∞

∞−

= ωωωη dtiAt exp)( ,                                     (2.4.1) 

  
where the complex amplitude ( ) ( )ωω *AA =−  provides a real part of the function 
( )tη . A similar formula can be written for the vertical oscillations of the water 

level on the shoreline: 
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If a solitary wave approaches the coast, the incident wave is characterized by 

two parameters: wave amplitude (height) 0H  and wave duration 0T . The third 
parameter determining the wave phase can be eliminated by an appropriate time 
shift. It is convenient to present the incident wave, its runup displacement and 
velocity in a non-dimensional form: 
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where 
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As the breaking parameter is determined by the linear solution, it can also be 
presented by a Fourier superposition:  
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The convergence of integrals (2.4.3)–(2.4.7) gives a limitation on the smoothness 
of the incident wave shape. From Eq. (2.4.7) it follows that a non-breaking runup 
may only occur if the spectrum ( )ωB  decays faster than 2/7−ω . Notice that a 
sufficient criterion is that the wave amplitude is bounded. Therefore, disturbances 
of finite duration (usually used in numerical simulations) cannot contain points of 
inflection and generally should be quite smooth if one aims at the simulation of 
non-breaking runup processes. For example, the runup of a single sine-shaped 
wave crest cannot be considered as non-breaking, because its spectrum decay is 
proportional to 2−ω  and such a wave has to break for all values of its amplitude. In 
fact, only the third- and higher-order derivatives of the pulse shape may have 
discontinuities for a non-breaking runup.  

Formulas (2.4.3)–(2.4.7) can be re-written in a more convenient form: 
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where  

0
0

0 λ
π4 HLR = ,               000λ Tgh= .                         (2.4.9) 

 
Here 0λ  is the wavelength, 0h  is the water depth at the point Lx =  and numerical 
coefficients Rp , Up  and bp  characterize the incident wave shape. 

In many cases it is not clear how to determine the wavelength 0λ  and the 
duration 0T  of a solitary pulse. In particular, most of the wave shapes (represented 
by analytical functions that are continuous by all derivatives) are non-zero 
everywhere at ∞<<∞− t . There is obvious ambiguity in the definition of their 
wavelength (or duration) that can be interpreted as their width at any level of 
elevation, or by the value of an appropriate integral (see for details Papers III and 
IV). Even if the incident wave has finite duration, its definition through the length 
of its carrier not necessarily characterizes the wave shape properly. 

A convenient definition of the wavelength is the extension (spatial or temporal) 
of the wave profile elevation exceeding the 2/3 level of the maximum wave height. 
This choice is inspired by the definition of the significant wave height and length in 
physical oceanography and ocean engineering. Detailed justification of this choice 



 51

is presented in Papers III and IV. For symmetric solitary waves, the significant 
wave duration and significant wavelength are 
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Here 1−f  is the inverse function of f . Thus formulas (2.4.8) for the maximum 
displacement, velocity of the moving shoreline and the breaking parameter can be 
expressed as 
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where coefficients +

Rµ , +
Uµ  and Brµ  (called form factors) depend on the wave 

shape:  
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Analogous formulas can be derived for the rundown depth and velocity (see 
Paper IV). 

A remarkable property of this choice of significant wave duration is that the 
difference in solitary wave shapes has a fairly small effect on runup characteristics. 
This feature will be discussed in more detail below. The analytical expressions for 
the maximum runup characteristics (runup height, rundown depth, runup and 
rundown velocities, and breaking parameter) become universal and depend on the 
height and duration of the incoming onshore wave only. 

This statement is proved by considering a variety of solitary pulses of different 
shape (Papers III and IV). Let us first consider incident wave crests having the 
shape of various “powers” of a sine pulse: 
 

( ) ( )πζcosζ nf = ,  ...5,4,3=n ,                       (2.4.13) 
 

which are defined on the segment (– 1/2, 1/2). Their shapes have certain similarity, 
but their wave characteristics (mean water displacement, energy and wave duration 
on various levels) differ considerably (Fig. 2.4.1). The functions representing such 
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impulses have different smoothness: their n th-order derivatives are discontinuous 
at their ends.  

Form factors for runup and rundown heights ( +
Rµ  and −

Rµ ), runup and rundown 
velocities ( +

Uµ  and −
Uµ ) and the breaking parameter Brµ , calculated for sine power 

pulses (2.4.13) with the use of the definition of the characteristic wavelength sλ  at 
the 2/3 level of the maximum height, are presented in Figs. 2.4.2 and 2.4.3. Their 
values for the maximum wave runup ( )02.0161.3µ ±⋅=+

R  and rundown 
( )28.0178.1µ ±⋅=−

R  have a fairly limited variation in terms of means and root-
mean-square deviations (Table 2.4.1).  
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Fig. 2.4.1. Family of sine power pulses (2.4.13): solid 
line 3=n  and dashed line 10=n  

 
First of all, it is significant that the runup height is higher than the rundown depth. 
This feature is observed for all sets of positive impulses. The form factor for the 
maximum wave runup is almost independent of the power n , showing that the 
influence of the initial wave shape on the extreme runup characteristics can be 
made fairly small by an appropriate choice of the characteristic wavelength. The 
above choice of the (significant) wavelength reduces the variation of the form 
factor for the sine power pulses to a notably small value, about 2%. 

The deepest rundown is more affected by the wave shape: the relevant form 
factor varies by up to 28%. This feature can be explained by the presence of a 
complex field of motions in the rundown phase. A positive wave first executes 
runup and only later rundown. Therefore runup is predominantly governed by the 
incident wave dynamics, while rundown occurs under the influence of a set of 
distributed wave reflections and re-reflections from the slope and consequently is 
more sensitive to wave shape variations. 

Similar analysis is applied to maximum runup and rundown velocities of the 
moving shoreline in Paper IV. The calculated form factors +

Uµ  and −
Uµ for the 
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maximum runup and rundown velocities are presented in Fig. 2.4.2. The maximum 
values for the rundown velocity are always greater than for the runup velocity for 
initial unidirectional impulses. The form factor for the rundown velocity 

( )01.0198.6µ ±⋅=−
U  is almost constant for all values of n  (root-mean-square 

deviation is 1%), whereas that of the runup velocity ( )30.0165.4µ ±⋅=+
U  changes 

in a wider range (±30%); see Table 2.4.1. 
Variations of the form factor for the breaking parameter are also weak (see 

Fig. 2.4.3, triangles). The relevant form factors ( )10.0137.13µ ±⋅=Br  can be 
considered a constant with reasonable accuracy (Table 2.4.1).  

Thus, form factors for the most important parameters such as runup height, 
rundown velocity, and to some extent for the breaking parameter, are universal and 
weakly depend on the particular shape of the sine power impulse. Variations of 
form factors for rundown height and runup velocity are more significant (about 
30%), but they can also be neglected for express engineering estimates.  

Similar analysis is performed for the family of solitary waves, described by the 
expression 
 

( ) ( )ζ4sechζ nf = , ...3,2,1=n .                               (2.4.14) 
 
These impulses are unlimited in space, whereas they exponentially decay for large 
values of ζ . The case 2=n  corresponds to the well-known soliton solution of the 
Korteweg–de Vries (KdV) equation, which is frequently used as a generic example 
of shallow-water solitary waves. The runup of the KdV solitons on a beach of 
constant slope was studied previously by Synolakis (1987). In our notation, 
Synolakis obtained that 
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The significant length of the soliton is easily calculated from the well-known 
analytical expression for a soliton in a constant-depth basin  
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and has the explicit form: 
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where ( )z-1sech  is the inverse function of ( )zsech . Substituting this expression into 
the right-hand side of Eq. (2.4.15), we obtain: 
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max = .                                  (2.4.18) 

 
Numerical calculations lead to the same value of the form factor, 4913.3µ =+

R  at 
2=n . This example indicates that the theory of soliton runup on a beach, which 

leads to a nonlinear relation between the runup height and the soliton amplitude, is 
consistent with a general theory of the runup of solitary waves on a beach and 
represents a special case. 
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Fig. 2.4.2. Calculated form factors for the maximum runup ( +

Rµ ) and rundown ( −
Rµ ) heights 

and runup ( +
Uµ ) and rundown ( −

Uµ ) velocities for sine power pulses (triangles), soliton-like 
(diamonds) and Lorentz-like (circles) impulses 

Similar results are obtained for solitary ridges of a Lorentz-like shape with 
algebraic decay 
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The maximum runup and rundown characteristics of a solitary wave on a beach 
(Table 2.4.1, Figs. 2.4.2 and 2.4.3) virtually do not depend on the form of the 
incident wave if the wave duration is appropriately defined. It is especially evident 
for the runup height and rundown velocity; their variations for all given classes of 
wave shapes do not exceed 8%. 

Based on the analysis in Paper IV, the following semi-empirical formulas for 
express estimations of the runup and rundown characteristics of long waves on a 
beach are recommended: 
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where +R  and −R  are the maximum values of runup and rundown heights, and +U  
and −U  are the maximum values of runup and rundown velocities. 
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Fig. 2.4.3. Calculated form factors for the breaking 
parameter Brµ  for sine power pulses (triangles), 
soliton-like (diamonds) and Lorentz-like (circles) 
impulses 

 
   Table 2.4.1. Calculated form factors for different wave shapes 

µ  Sine power Soliton power Lorentz pulse power 
 Mean Normalized 

standard 
deviation 

Mean Normalized 
standard 
deviation 

Mean Normalized 
standard 
deviation 

+
Rµ  3.61 0.02 3.55 0.05 3.53 0.08 
−
Rµ  1.78 0.28 1.56 0.28 1.51 0.44 
+
Uµ  4.65 0.3 4.15 0.22 4.07 0.26 
−
Uµ   6.98 0.01 6.98 0.02 6.99 0.04 

Brµ  13.37 0.1 12.90 0.03 12.99 0.13 
 

As indicated above, extreme runup characteristics can be found within the linear 
theory. For calculating the real dynamics of the moving shoreline, the nonlinear 
theory based on transformations (2.3.2) and (2.3.5) should be used. The computed 
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shoreline velocity and vertical displacement for the incident KdV soliton are shown 
in Fig. 2.4.4. As for a sine wave, the first breaking occurs on the stage of maximum 
rundown, which takes place after the flooding induced by a long wave runup on a 
beach.  
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Fig. 2.4.4. Velocity and vertical displacement of the moving shoreline (dimensionless 
variables) for the incoming KdV soliton; the breaking parameter 0=Br  (dotted line), 

5.0=Br  (dashed line) and 1=Br  (solid line) 

2.5. Runup of asymmetric periodic waves 
Asymmetric waves, the front slope steepness of which exceeds the back slope 
steepness, constitute another class of incident wave shapes of specific interest. 
Such waves are rather often observed in a coastal zone (Fig. 2.5.1).  

Such a wave shape is intrinsically formed in the process of realistic, nonlinear 
propagation of initially symmetric (incl. sine) waves in the ocean, even if the water 
depth is constant (Paper II). The wave shape gradually deforms due to the 
difference in the speed of the crest and trough, which is always present in a 
nonlinear system. The wave steepness therefore increases when it propagates. 
 

 
Fig. 2.5.1. Asymmetric wave 
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The theoretical model for the runup of periodic, asymmetric waves on a beach 
is similar to a solitary wave runup, and the basic formulas are the Fourier series 
instead of Fourier integrals in Eqs. (2.4.3)–(2.4.7). In particular, the incident wave 
is presented as 
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and Re means a real part of the complex sum in Eq. (2.5.1).  

Similarly to Section 2.4, the linear “runup” wave field can be written in non-
dimensional form: 
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Here 
ωπ /2λ 0000 ghTgh ==                                 (2.5.5) 

 
is the wavelength of the incident wave at the point Lx =  with a water depth 0h . 
The breaking parameter can also be presented through the Fourier series:  
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It is natural to request that the series in Eq. (2.5.6) converges. This is only true if 
spectral amplitudes nB  of the incident wave decrease with number n  increasing 
faster than 2/7−n . In other words, the shape of the incident wave should be smooth 
enough.  

Several periodic incident wave shapes have been described in literature. 
Synolakis (1988) considered the runup height of a cnoidal wave – the steady-state 
solution of the Korteweg–de Vries equation 
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Here cn  is the elliptic Jacobi function, λ  and T  are the wavelength and the period 
of a periodic wave, K  is the complete elliptic integral of the first kind, m  is an 
elliptic parameter and >< 2cn  is a mean value for the whole period. The cnoidal 
wave (2.5.7) is a monochromatic (cosine) wave for 0→m . In the other limit 

1→m  it is transformed to a KdV soliton.  
All extreme runup characteristics of a cnoidal wave can be computed by 

calculating its Fourier spectrum (Synolakis, 1988). The runup height of the cnoidal 
wave is greater than for a sine wave, and therefore, the contribution of high 
harmonics (obertones) is important. 

The runup of a periodic nonlinear asymmetric (deformed) wave is studied in 
Paper II. The considered geometry is a flat bottom joined with a plane beach 
(Fig. 2.2.1). The spectral amplitudes can be expressed through the face-slope 
steepness  
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where 0s  is the initial steepness (in the case in question it is the steepness of a sine 
wave) and B  is the non-dimensional amplitude of the incident (sine) wave in the 
open sea. The analysis in Paper II demonstrates that the distribution of spectral 
amplitudes becomes universal for waves with steep fronts (Fig. 2.5.2).  

Runup characteristics of such asymmetric (deformed) waves on a plane beach 
are studied within the above-described approach in Paper II. The runup properties 
are appreciably different as compared to symmetric waves. Non-dimensional runup 
and rundown amplitudes (normalized by 0R ) turn out to be functions of the wave 
steepness (Fig. 2.5.3). The rundown depth weakly depends on the wave steepness: 
it differs from the rundown caused by a sine wave by no more than 30%. Therefore 
Eq. (2.3.13) can still be used for the express evaluation of its magnitude. However, 
the runup height significantly depends on the wave steepness. It tends to infinity 
for a shock wave within a given model of non-breaking waves. The realistic runup 
is limited by the wave breaking. 

Thus the wave asymmetry is the most important parameter of the runup process. 
An asymmetric wave with a steep front penetrates inland over a much larger 
distance than a symmetric wave of the same height and length. This result partially 
explains why tsunami waves with a steep front (for example, the 2004 tsunami in 
the Indian Ocean) penetrate extremely deep inland. 

A similar analysis for the extreme characteristics of the shoreline velocity 
shows that the runup velocities of asymmetric waves may considerably exceed the 
rundown velocities (Fig. 2.5.3). The “nonlinear” time history of the water level and 
velocity of the moving shoreline for different values of the breaking parameter Br  
shows that time records of asymmetric waves are substantially asymmetric even 
when the wave amplitude is small (Fig. 2.5.4). 
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Fig. 2.5.2. Amplitudes of high harmonics versus 
face-slope steepness. Adapted from Paper II 
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Fig. 2.5.3. Dependence of extreme runup ( +R ) and rundown ( −R ) heights and runup ( +U ) 
and rundown ( −U ) velocities (dimensionless variables) on the wave steepness 
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deformed wave ( 2/ 0 =ss ) in non-dimensional variables; the breaking parameter 0=Br  
(dotted line), 5.0=Br  (dashed line) and 1=Br  (solid line) 

 
The runup height and velocity are higher than rundown depth and velocity even 

for very low-amplitude but asymmetric waves. The runup process of a very 
asymmetric wave (s = 10s0) causes extremely strong flow moving inland during a 
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short time (Fig. 2.5.5). The runup height is considerably higher than the rundown 
depth. Such intense flows can be identified on many photos of the 2004 tsunami in 
the Indian Ocean. Very steep waves, however, break relatively fast. 
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Fig. 2.5.5. Velocity and vertical displacement of the moving shoreline for a nonlinear 
deformed wave ( 10/ 0 =ss ) in non-dimensional variables; the breaking parameter 0=Br  
(dotted line), 5.0=Br  (dashed line) and 1=Br  (solid line) 

2.6. Concluding remarks 
The long wave runup on a plane beach is described analytically in the framework 
of rigorous solutions of the nonlinear shallow-water theory. Such solutions can be 
obtained with the use of the hodograph transformation of the nonlinear shallow-
water system to the linear wave equation (Carrier & Greenspan, 1958). A two-step 
algorithm for computing the nonlinear dynamics of the moving shoreline is 
developed. This approach allows calculation of extreme characteristics of the runup 
process (runup and rundown amplitudes, extreme values of on- and offshore 
velocities and the wave breaking condition) within the linear approximation, 
although the realistic dynamics of the moving shoreline is described by the 
nonlinear theory. 

This approach also allows considering properties of breaking waves if the first 
breaking of the wave occurs on the shoreline. In this case the velocity of the 
shoreline has the shape of a shock wave and the water displacement has a jump of 
the first derivative in the trough. The criterion for such wave breaking is obtained 
in a form that is convenient for the use in practice.  

The runup of solitary waves of different shapes (various powers of a sine crest, 
soliton and Lorentz pulses) is analysed within the same approach. It is shown that 
the use of the significant wavelength (defined as the extent of the elevation 
exceeding 2/3 of the maximum elevation) leads to universal formulas of 
appreciable accuracy for extreme runup characteristics, the dependence of which 
on the particular incident wave shape becomes very weak. Such formulas can be 
used for engineering estimates.  
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Analysis of the runup process of asymmetric waves has revealed that such 
waves penetrate inland over larger distances and with greater velocities than 
symmetric waves of the same height and length.  
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3. Freak waves in coastal areas 

3.1. Introduction 
Descriptions of unusually high waves appearing on the sea surface for a short time 
(freak, rogue or killer waves) have long been considered as part of marine folklore. 
Recently, however a number of instrumental registrations have appeared, which 
have made the community pay attention to this problem and reconsider the known 
observations of freak waves (some of them are presented in Mallory, 1976; Torum 
& Gudmestad, 1990; Olagnon & Athanassoulis, 2001; Kharif & Pelinovsky, 2003; 
MaxWave, 2003). Nowadays it has become clear that such waves may have played 
a crucial role in many accidents that have led to ship damages and losses of lives 
(Lavrenov & Porubov, 2006; Toffoli et al., 2006). 

Rogue waves in the open sea may be detected by altimeters installed on 
offshore platforms or deployed buoys, or via synthetic aperture radar (SAR) image 
processing. These data are trustworthy and may be used for accurate analysis. 
Similar events are also observed nearshore. These are seldom registered by e.g. tide 
gauges and have mostly been reported by eyewitnesses. Observations of such 
events become more frequent, and they broaden the area of possible freak wave 
occurrence. 

Usually freak events occurring onshore result in a short-time sudden flooding of 
the coast, or strong impact upon the steep bank or coastal structures. Some 
descriptions of these accidents are given in the above-mentioned reviews and 
Rabinovich & Monserrat (1998) and Dean & Dalrymple (2002). Some accidents 
are explained as “meteorological tsunamis”, but similar phenomena may be caused 
by a much larger class of water motions (see, for instance, theoretical study of edge 
waves by Kurkin & Pelinovsky (2002). 

In this chapter nearshore and onshore freak wave events are analysed on the 
basis of the results published in Papers I and VI. Descriptions of freak waves that 
occurred onshore in 2005 are presented in Section 3.2. These accidents are related 
to unexpected wave impact upon the coast and coastal engineering structures or 
with sudden intensive flooding of the coast. Runup of irregular waves, including 
freak waves, modelled as superposition of Fourier harmonics with random phases, 
is studied in the framework of the nonlinear shallow-water theory (Section 3.3). 
The possibility of the appearance of freak waves on a beach is analysed in 
Section 3.4. The distribution functions of runup characteristics are computed for a 
case where an incident wave represents an irregular sea state with a Gaussian 
spectrum. The asymptotic behaviour of probability functions in the range of large 
amplitudes for estimation of freak wave formation in the nearshore is studied. It is 
shown that the average runup height of waves with a wide spectrum is higher than 
that of waves with a narrow spectrum. 
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3.2. Observations of freak wave events 
Numerous descriptions of dangerous events that occurred in the nearshore or in the 
coastal area include six accidents nearshore that took place in 2005. These can be 
interpreted as true freak events. The reasons for limiting the analysis to this set are 
described in detail in Paper I. The basic distinguishing feature is that, according to 
the information about significant wave height in the nearby offshore area (NOAA 
data of satellite observations) the impact of such waves was much larger than 
expected. Distinction is to some extent involuntary, because no quantitative 
measurement of wave impacts has been used in literature to select nearshore freak 
wave events.  

 
Fig. 3.2.1. A wave over 9 m high washed two people off the breakwater in Kalk Bay on 
26 August. Photo by Mr Philip Massie 
 
26 August, Kalk Bay. A wave washed two people off the breakwater in Kalk 

Bay (South Africa). Both were rescued, although one received serious head injuries 
(Hunter, 2005). The wave height was over 9 m (Fig. 3.2.1). The offshore 
significant wave height near South Africa coast was up to 4.5 m (Live Access 
Server, 2006). A similar case was registered at the same place on 21 April 1996, 
when three people were washed off; only one survived that time (Hunter, 2005). 
On 22 July 2006 a 60-year-old man was swept off Kalk Bay harbour (Ndenze, 
2006). 

16 October, Maracas Beach. Panic arose at Maracas Beach (Trinidad Island, 
the Antilles), when a series of towering waves, many over 7 m high according to 
eyewitnesses, sent sunbathers, vendors and lifeguards running for their lives 
(Fig. 3.2.2), taking everyone by surprise around 14:15 local time. The waves raced 
past the shoreline onto vending stalls, crossed the roadway and flooded the car park 
and bake and shark vendors' stalls on the northern side of the main thoroughfare 
(Paper I). Refrigerators, stoves and gas tanks stood in knee-high water inside 
vendor stalls. The swells, which began pounding the North Coast shoreline around 
11:00, continued late into the evening. There were reports that pirogues at Las 
Cuevas, Blanchisseuse and La Fillette were destroyed by the swells (Stapleton, 
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2005). The offshore significant wave height for Maracas Bay was about 1.5 m 
(Live Access Server, 2006). 
 

 
Fig. 3.2.2. The waves at Maracas Beach on 16 October (Stapleton, 2005) 

 
11 November, Port Orford. A wave swept three people into the Pacific Ocean, 

killing two and injuring one in Port Orford (Southern Oregon, USA) (The Seattle 
Times, 2005). No reliable estimates of the wave are available, but one of the three 
persons was reported to be elderly (72 years old). This most probably implies that 
the rogue wave was exeptionally high. The offshore significant wave height on that 
day was up to 3.8 m. 

The observation data show wide distribution of freak wave events in the coastal 
zone. During the time of writing, one such event occurred at the western coast of 
Korea near Kunsan at Boryeong, 200 km southwest of Seoul on 4 May 2008. An 
unusually high wave of 4–5 m swept many people (tourists and fishermen) from a 
bulwark and nine people died. According to the first reports, the event occurred 
without any prior notice of increasing wave heights in the region. 

More or less regular occurrence of such waves at different coasts suggests that a 
sub-population of (possibly nonlinear) waves may exist, similar to the set of freak 
waves in deep ocean or in shallow areas, which exert extremely large runup. Thus, 
developing adequate theoretical and prognostic models is necessary.  

3.3. Runup of irregular waves  
The analytical model described in Chapter 2 can be applied to describe the runup of 
irregular long waves as well. As mentioned above, it is rather difficult to calculate 
all the wave characteristics, because the Carrier–Greenspan transformation is 
implicit. The key benefit of the method used in Chapter 2 is that calculations of the 
extreme runup characteristics can be made with the use of the linear approach. In 
this case we need to find extremes of the Fourier series  
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where A  and φ  are spectral amplitudes and phases, ω  is the basic frequency of 
the incident wave  
 

( ) ( )( )[ ]∫ +== ωωφωωη dtiALxt exp)(, ,                     (3.3.3.) 

 
and τ  is the travel time to the coast. Notice that series (3.3.1) and (3.3.2) can be 
used to calculate positive and negative runup amplitudes but they cannot be applied 
for many other purposes; for example, to calculate moments and distribution 
functions of the water displacement at the shoreline.  

The ensemble of realizations of incident wave fields with random phases φ  is 
taken for a numerical simulation of irregular waves. For this purpose we discretize 
Fourier series (3.3.1)–(3.3.3) and use real functions. As a result, equations for the 
shape of the incoming wave, water surface displacement and velocity of the 
shoreline in non-dimensional variables can be rewritten as  
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where ωω ∆= )(2 nn SA  are calculated with the use of the frequency spectrum of 
the incoming wave field )(ωS , T/2πω =∆  is the sampling rate, T  is the size of 
time domain and ωω ∆= nn . It is assumed that random spectral phases nφ  are 
distributed uniformly within the interval ( )π2,0 . 
First, let us consider a random wave field with Gaussian statistics, where the 
frequency spectrum )(ωS  of the incoming field is   
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with the central frequency 0ω  and the spectrum width l . The constant Q  in 
Eq. (3.3.7) can be found from the condition  
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is a complementary error function. In this case the frequency spectra for the 
shoreline displacement )(ωrS  and the shoreline velocity )(ωuS  are  
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Fig. 3.3.1. Incident field, runup and shoreline 
velocity spectra for 5.0=l   
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All these spectra in non-dimensional variables for 5.0=l  are shown in Fig. 3.3.1. 
It is obvious that spectra for the shoreline displacement )(ωrS  and the shoreline 
velocity )(ωuS  are asymmetric and shifted to the high-frequency area. Distribution 
functions for maximum amplitudes (positive and negative) of the wave field, 
defined as a maximum (minimum) between two zero points, are important for 
applications.  

3.4. Distribution functions of runup characteristics 
Detailed calculations of the distribution functions of runup amplitudes are given in 
Paper VI. The Fourier series of 512=N  harmonics with the sampling rate of 

01.0=∆ω  are used. The spectrum width l  varies from 0.1 to 0.7. The statistical 
characteristics are obtained with the use of ensemble averaging over 500 
realizations.  

The occurrence probability of the wave with an amplitude A  for a Gaussian 
narrow-band process can be described by the Rayleigh distribution (Massel, 1996): 
 

( )22exp)( AAP −= ,                                           (3.4.1) 
 

where A  is the wave amplitude normalized on the significant amplitude sA . The 
latter is defined as σ2≈sA . For the numerical estimation of positive (negative) 
amplitude distribution the statistical “frequency” F  (the ratio of the number of 
waves m with a fixed amplitude a to the total number of waves), 

 

N
mF = ,                                                  (3.4.2) 

 
and the statistical distribution function of amplitudes (equivalently, the frequency 
of occurrence of waves with the amplitude A larger than a), 
 

)()( aAFaP >= ,                                          (3.4.3) 
 

are calculated. As expected due to the applicability of expressions for extreme 
characteristics based on the linear approach, for the narrow-band incident wave 
field ( 1.0=l ) the distribution functions of the runup characteristics are described 
by the Rayleigh distribution. If the spectrum of incident waves is wider ( 7.0=l ), 
the asymmetry of the displacement and velocity spectra increases, but nevertheless 
the distribution functions of the maximum shoreline displacement (Fig. 3.4.1) and 
the maximum shoreline velocity (Fig. 3.4.2) differ insignificantly from the 
Rayleigh distribution.  
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Fig. 3.4.1. Distribution functions of maximum positive (left) and negative (right) 
amplitudes for incident wave (triangles) and shoreline displacement (circles) with the 
incident wave spectrum width 7.0=l . The solid line corresponds to the Rayleigh 
distribution 
 

 
Fig. 3.4.2. Distribution functions of maximum 
velocities for incident wave (triangles) and 
shoreline displacement (circles) with the 
incident wave spectrum width 7.0=l . The 
solid line corresponds to the Rayleigh 
distribution 
 

The spectral and probability distributions of the wave field serve as a basis for 
calculation of the runup characteristics on a beach. The (significant) runup height 
of the wave on a beach is  
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where the function  
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describes the influence of the width of the incident wave spectrum (Fig. 3.4.3). 
This function tends to one ( 1=F ) for the narrow-band process ( 0ω<<l ) and the 
significant runup height of the resulting wave field (which is equivalent to a 
monochromatic wave) can be described by the formula for the runup of a sine 
wave. The significant runup height increases with the increase in the spectrum 
width, especially when 0ω>l . Thus, the Gaussian approximation in the problem of 
wave runup on a beach works not only for the case of 0ω<<l , but also for 0ω<l , 
when the distribution function differs from the Gaussian. 
 

0 1 2 3
ω0/l

0

1

2

3

F

 
Fig. 3.4.3. Function of the influence of the 
incident wave spectrum width on the runup 
height of the wave 

 
The performed analysis used the wave field presented as the superposition of 

independent spectral components. Such an approach is widely employed to 
describe random water waves (Massel, 1996). However, the wave field in shallow-
water contains many coherent wave components, and the idea of presenting it as an 
ensemble of solitary waves with randomly distributed properties is very popular 
(see, for instance, Brocchini & Gentile, 2001). The runup of a solitary wave on a 
plane beach is well studied (Synolakis, 1987) and the runup amplitude can be 
expressed through the amplitude of the incoming soliton [Eq. (1.4.11)]. In fact, 
Eq. (1.4.11) can be derived from Eq. (3.3.1) by taking into account the relation 
between the soliton amplitude and duration. 

If the wave field consists of random solitons that are well separated from each 
other, the runup of each individual soliton represents an independent process. The 
(joint) distribution function of runup amplitudes can be found analytically if the 
distribution functions of individual solitons are known. Assuming for simplicity the 
Rayleigh distribution for soliton amplitudes and using Eq. (1.4.11), the exceedance 
frequency of the runup amplitude is 
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Expression (3.4.6) suggests that the probability of the appearance of large waves on 
the coast is high, provided the wave field is dominated by well-separated solitons. 
More detailed estimates of statistical runup characteristics of realistic ensembles of 
solitons are found in Brocchini & Gentile (2001).  

So, the modification of the incident wave field during the wave runup process 
on a plane beach leads to an increase in the probability of large-amplitude waves. 
This result suggests that freak (sneaker) wave phenomena may be more common in 
the immediate vicinity of the seaward border of the surf zone than in the open sea. 

3.5. Concluding remarks  

The observation data of freak wave events that occurred in 2005 on the shore 
suggest that in certain cases freak events become evident as unusual flooding on a 
beach or as huge slash on breakwaters. These data have revealed a wide range of 
magnitude and extension of rogue waves in the nearshore and on the shore, and the 
necessity of developing adequate theories to describe and forecast rogue waves in 
the context of coastal engineering. 

Freak wave events connected with specific features of long wave propagation 
are considered in the framework of the nonlinear shallow-water theory, with 
emphasize on the distribution functions of the extreme wave characteristics 
(displacement and velocity), caused by a wave coming from the open sea. A 
modelled (Gaussian) spectrum of the incident wave field is used for numerical 
simulations of the runup characteristics. It is shown that variations of the 
distribution functions for the maximum shoreline displacement and shoreline 
velocity are small for narrow-band processes. For this case the significant runup 
height of the wave can be described by the formula for the runup of a sine wave. 
For wide-band processes the significant runup height is notably larger. This effect 
may be one of the reasons why freak (sneaker) wave phenomena are relatively 
frequently observed. 
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Conclusions 

Summary of the results 
Long wave dynamics in the coastal zone is studied for two realistic bottom profiles. 
In the case of a convex profile described by ( ) 3/4~ xxh , the general solution of the 
Cauchy problem is obtained within the linear shallow-water theory. The wave 
system consists of two travelling waves propagating in opposite directions, 
whereas generally a zone of a weak current is formed between these two waves. 
The long wave runup on such beaches is analysed. It is shown that the runup height 
on this kind of bottom profile is significantly larger than the runup height of waves 
of the same height and length along a plane beach. The study of the reflection and 
transmission of waves from a zone of increasing depth, described by the same 
profile ( ) 3/4~ xxh , shows that a transmitted wave always has a sign-variable shape. 

In the case of a beach of a constant slope the problem of the long wave runup is 
discussed in the framework of the nonlinear shallow-water theory. A key finding of 
this study is that the definition of the wavelength for symmetric solitary incident 
waves at a 2/3 level of the maximum height is optimal for express prediction of 
their runup properties. The maximum runup and drawdown characteristics of a 
solitary wave on a beach virtually do not depend on the shape of the incident wave 
if the wave duration is appropriately defined. It is especially evident for the runup 
height and drawdown velocity; their variations for all given classes of wave shapes 
do not exceed 8%. 

The wave steepness is shown to have very strong influence on the runup 
characteristics of long waves. Although established in the framework of the 
analytical theory of nonlinear shallow-water waves, this finding is supported by 
numerous evidence of unexpectedly large extent of coastal flooding caused by 
several tsunamis. Among waves of a fixed amplitude and period (length), the 
steepest wave penetrates inland over the largest distance.  

The data on the freak wave events that occurred in 2005 on the shore show that 
some events are manifested as unusual flooding on a beach. A model to explain 
these data is developed in terms of the theory of runup of irregular wave fields. 
Distribution functions of the extreme wave characteristics are computed in the 
framework of the nonlinear shallow-water theory. Variations of the distribution 
functions for extreme runup heights and shoreline velocity were proved to be 
moderate for narrow-band processes, for which the significant runup height can be 
appropriately described by the formula for the runup of a sine wave. For wide-band 
processes the significant runup height is considerably larger. Thus, the presence of 
waves with different periods may lead to an increase in the probability of the 
appearance of large-amplitude (freak) waves. 
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Main conclusions proposed to defend  
1. The existence and uniqueness of linear travelling wave solutions above a 

convex bottom profile ( ) 3/4~ xxh  is proved. The technique of the reduction of 
the relevant equation to the wave equation with constant coefficients allows 
solving the Cauchy problem and studying long wave dynamics above a 
variable bottom. 

2. The wave system consists of two travelling waves propagating in opposite 
directions, whereas generally a zone of weak current is formed between these 
two waves.  

3. Wave reflection and runup on the convex beach is studied within a linear 
approximation. It is shown that the runup height along the convex profile is 
considerably larger than for beaches with a linear slope.  

4. Wave propagation and transformation between a shallow area of small but 
finite depth and a region with a convex coastal profile is studied within a linear 
model. Analysis of the wave reflection from and transmission to the zone of 
the increasing depth described by the convex profile shows that the transmitted 
wave always has a sign-variable shape.  

5. Long wave runup on a plane beach is investigated analytically in the 
framework of rigorous solutions of the nonlinear shallow-water theory. A two-
step algorithm for computing the nonlinear dynamics of the moving shoreline 
is developed. 

6. The use of the “significant” wavelength allows a simple but efficient and 
reasonably accurate parameterization of design formulas for extreme runup 
characteristics. Detailed analysis is performed for sine-power, soliton-like, 
Gauss-like and Lorentz-like pulses. The resulting formulas are suitable for 
engineering estimates. 

7. The runup characteristics of asymmetric waves are calculated. Such waves 
penetrate inland over larger distances and with greater velocities than 
symmetric waves of the same height and length. This can explain the observed 
large inland penetration of tsunami waves. 

8. Distribution functions of the extreme runup characteristics caused by irregular 
wave fields are studied in the framework of the nonlinear shallow-water 
theory. The variations of distribution functions for the maximum shoreline 
displacement and shoreline velocity are small for narrow-band processes. For 
very narrow-band wave fields the significant runup height coincides with the 
runup height of a sine wave. 

9. For a wide-band random process the significant runup height is considerably 
larger; therefore the presence of waves with different periods may lead to an 
increase in the probability of the appearance of large-amplitude (freak) waves 
in shallow-water. 

10. Data on freak and sneaker wave events that occurred on the shore in 2005 are 
collected and analysed. These events are manifested as unusual flooding on the 
beach or a huge slash on breakwaters. 



 73

Recommendations for further work  
Wave transformation above a convex bottom profile is studied here in the linear 
approximation. When the wave approaches the shore, its amplitude becomes larger 
and nonlinear effects should be taken into account. A comprehensive description of 
phenomena occurring during such processes is the major challenge for further work 
in this direction. First of all, a weakly nonlinear theory can be developed with the 
use of various asymptotic methods. It allows studying the nonlinear energy 
exchange between spectral harmonics and in many cases gives an insight into more 
complex phenomena occurring in the processes of nonlinear transformation and 
interaction of waves. In parallel, numerical methods should be applied to the 
analysis of the runup problem for getting quantitative information of the runup 
characteristics and breaking criterion.  

The description of the runup of irregular waves is not completely investigated 
even in case of the problem of long wave runup on a plane beach. The distribution 
functions of extreme runup heights have been computed, but statistical moments of 
the runup field have not been analysed yet. These results can be obtained 
numerically.  

Freak waves occurring in the immediate vicinity of the shoreline also require 
further study. The results obtained in this thesis are only the first step towards 
classification and quantification of such events. Relevant observations should be 
systematically collected, catalogued, analysed and modelled for developing 
methods for forecasting rogue waves.  

It is also important for future analysis to study wave dynamics above realistic 
beaches that usually contain several sections with different types of bottom profile. 
Quite frequently realistic beaches are composed of planar, convex and concave 
profiles. The progress here could be achieved through application of numerical and 
asymptotic methods, and using in situ instrumental or experimental data. Such an 
experiment is already planned in Tallinn Bay for 2008–2010 in the framework of 
the European economic area (EEA) project “Shoaling and runup of long waves 
generated by high-speed ferries”. The project addresses the problem of preventing 
and mitigation of natural coastal hazards associated with long wave dynamics by 
using fast ferries’ wakes as a dynamically similar input, allowing modelling and 
measurements of the shoaling and runup properties of extreme large-scale oceanic 
waves in well-controlled, safe conditions. Tallinn Bay, a semi-enclosed body of 
water that hosts extremely intense fast ferry traffic and provides calm conditions 
during part of the high season, is a suitable natural laboratory for such studies.  



 74

Bibliography 

List of references 
 
Babich, V.M., Buldyrev, V.S. Short-wavelength diffraction theory. Asymptotic 
methods. Springer, 1991. 
Batchelor, G.K. An introduction to fluid dynamics. Cambridge University Press, 
1967. 
Berry, M.V. Tsunami asymptotics. – New Journal of Physics 7 /129; 2005, 18 p. 
Brekhovskih, L.M. Waves in layered media. N.Y.: Academic Press, 1980. 
Broad, W. J. Rogue giants at sea. – New York Times 2006, 11. July. 
Brocchini, M., Gentile, R. Modelling the run-up of significant wave groups. – 
Continental Shelf Research 21; 2001, p. 1533–1550. 
Carrier, G.F., Greenspan, H.P. Water waves of finite amplitude on a sloping 
beach. – Journal of Fluid Mechanics 4; 1958, p. 97–109. 
Carrier, G.F., Wu, T.T., Yeh, H. Tsunami run-up and draw-down on a plane 
beach. – Journal of Fluid Mechanics 475, 2003, p. 79–99. 
Cherkesov, L.V. Hydrodynamics of surface and internal waves. Naukova Dumka, 
1976.  
Chien, H., Kao, C-C., Chuang, L.Z.H. On the characteristics of observed coastal 
freak waves. – Coastal Engineering Journal 44 /4; 2002, p. 301–319. 
Courant, R., Hilbert, D. Methods of Mathematical Physics. N.Y.: J Wiley & Son, 
1989.  
Curtis, G.D., Pelinovsky, E.N. Evaluation of tsunami risk for mitigation and 
warning. – Science of Tsunami Hazards 17 /3; 1999, p. 187–192. 
Dalrymple, R.A., Grilli, S.T., Kirby, J.T. Tsunamis and challenges for accurate 
modeling. – Oceanography 19 /1; 2006, p. 142–151. 
Dean, R.G., Dalrymple, R.A. Water wave mechanics for engineers and scientists. 
Advanced Series in Ocean Engineering 2. Singapore New Jersey London Hong 
Kong: World Scientific, 1991, Reprinted 2004, 353 p. 
Dean, R.G., Dalrymple, R.A. Coastal processes with engineering applications. 
Cambridge University Press, 2002. 475 p. 
Didenkulova, I.I., Kharif, Ch. Runup of biharmonic long waves on a beach. – 
Izvestiya, Russian Academy of Engineering Science 14; 2005, p. 91–97. 
Didenkulova, I.I., Pelinovsky, E.N., Soomere, T. Exact travelling wave solutions 
in strongly inhomogeneous media. – Estonian Journal of Engineering, 2008, in 
press. 
Dingemans, M.W. Water wave propagation over uneven bottom. Singapore: 
World Scientific, 1996. 



 75

Divinsky, B.V., Levin, B.V., Lopatukhin, L.I., Pelinovsky, E.N., Slyunyaev, 
A.V. A freak wave in the Black Sea: observations and simulation. – Doklady Earth 
Sciences 395A; 2004, p. 438–443. 
Dobrokhotov, S.Yu., Sekerzh-Zenkovich, S.A., Tirozzi, B., Volkov, B. Explicit 
asymptotics for tsunami waves in framework of the piston model. – Russian 
Journal of Earth Sciences 8; 2006, doi: 10.2205/2006ES000215. 
Dobrokhotov, S.Yu., Sinitsyn, S.O., Tirozzi, B. Asymptotics of localized 
solutions of the one-dimensional wave equation with variable velocity. 1. The 
Cauchy problem. – Russian Journal of Mathematical Physics 14; 2007, p. 28–56. 
Dutykh, D., Dias, F., Kervella, Y. Linear theory of wave generation by a moving 
bottom. Comptes rendus de l'Académie des sciences. Paris, Serie 1. 343; 2006, p. 
499–504. 
Ginzburg, V.L. Propagation of electromagnetic waves in plasma. N.Y.: Pergamon 
Press, 1970. 
Grimshaw, R. The solitary waves in water of variable depth. – Journal of Fluid 
Mechanics 42; 1970, p. 639–656. 
Gusiakov, V.M. Historical Tsunami Data Base. Novosibirsk, 2002. 
Hunter, I. Extreme wave conditions spread along the South African coast, 
www.weathersa.co.za/Pressroom/2005/2005Aug31ExtremeWaves.jsp, 31. August 
2005. 
Jeffrey, A., Majorana, A. Finite amplitude water waves above a sloping beach. – 
Wave Motion 7; 1985, p. 229–233. 
Kaistrenko, V.M., Mazova, R.Kh., Pelinovsky, E.N., Simonov, K.V. Analytical 
theory for tsunami run up on a smooth slope. – Science of Tsunami Hazards 9; 
1991, p. 115–127. 
Kânoğlu, U. Nonlinear evolution and runup-drawdown of long waves over a 
sloping beach. – Journal of Fluid Mechanics 513; 2004, p. 363–372. 
Kânoğlu, U., Synolakis, C. Initial value problem solution of nonlinear shallow 
water-wave equations. – Physical Review Letters 97; 2006, p. 148–501. 
Kharif, C., Pelinovsky, E. Physical mechanisms of the rogue wave phenomenon. 
– European Journal of Mechanics – B/Fluids 22; 2003, p. 603–634. 
Kim, K.O., Lee, H.S., Yamashita, T., Choi, B.H. Wave and storm surge 
simulations for Hurricane Katrina using coupled process based models. – KSCE 
Journal of Civil Engineering 12 /1; 2008, p. 1–8. 
Kit, E., Pelinovsky, E. Dynamical models for cross-shore transport and 
equilibrium bottom profiles. – Journal of Waterway, Port, Coastal, and Ocean 
Engineering 124 /3; 1998, p. 138–146. 
Kobayashi, N. Analytical solution for dune erosion by storms. – Journal of 
Waterway, Port, Coastal and Ocean Engineering 113 /4; 1987, p. 401–418. 
Kurkin, A., Pelinovsky, E. Focusing of edge waves above sloping beach. – 
European Journal of Mechanics – B/Fluids 21; 2002, p. 561–577. 



 76

Landry, D. Voyager damaged by heavy seas, http://cruise-
chat.com/eve/forums/a/tpc/f/533601132/m/339107609/inc/-1, 14. February 2005. 
Lavrenov, I.V., Porubov, A.V. Three reasons for freak wave generation in the 
non-uniform current. – European Journal of Mechanics – B/Fluids 25 /5; 2006, p. 
574–585. 
Lay, Th., Kanamori, H., Ammon, Ch.J., Nettles, M., Ward, S.N., Aster, R.C., 
Beck, S.L., Bilek, S.L., Brudzinski, M.R., Butler, Rh. DeShon, H.R., Ekström, 
G., Satake, K., Sipkin, S. The Great Sumatra-Andaman Earthquake of 26 
December 2004. – Science 308; 2005, p. 1127–1133. 
Le Blond, P.H., Mysak, L.A. Waves in the Ocean. Amsterdam: Elsevier, 1978. 
Le Mehaute, B., Koh, R.C., Hwang, L.S. A synthesis of wave run-up. – Journal 
of Waterway, Port, Coastal and Ocean Engineering 94; 1968, p. 77–92.  
Lemire, J. A long history of killer crests. – New York Daily News, N.Y. 2005, 17. 
April, p. 2. 
Li, Y., Raichlen, F. Non-breaking and breaking solitary wave run-up. – Journal of 
Fluid Mechanics 456; 2002, p. 295–318. 
Lighthill, J. Waves in Fluids. Cambridge University Press, 2001.  
Lin, P., Chang, K.-A., Liu, P.L.-F. Runup and rundown of solitary waves on 
sloping beaches. – Journal of Waterway, Port, Coastal and Ocean Engineering 125 
/5; 1999, p. 247–255.  
Live Access Server, www.las.aviso.oceanobs.com, 20. August 2006. 
Madsen, P.A., Fuhrman, D.R. Run-up of tsunamis and long waves in terms of 
surf-similarity. – Coastal Engineering 55; 2008, p. 209–223.  
Mallory, J. K. Abnormal waves on the south-east of South Africa. – International 
Hydrographic review 51; 1974, p. 89–129. 
Maslov, V.P. Asymptotic methods of solving pseudo-differential equations. 
Moscow: Nauka, 1987.  
Maslov, V.P. The complex WKB method for nonlinear equations. 1. Linear theory. 
Bassel: Birkhauser, 1994. 
Massel, S.R. Hydrodynamics of coastal zones. Amsterdam: Elsevier, 1989. 
Massel, S.R. Ocean surface waves: their physics and prediction. Singapore: World 
Scientific, 1996. 
MaxWave. Rogue waves: forecast and impact on marine structures. GKSS 
Research Center, Geesthacht, Germany, 2003. 
Mazova, R.Kh., Osipenko, N.N., Pelinovsky, E.N. Solitary wave climbing a 
beach without breaking. – Rozprawy Hydrotechniczne 54; 1991, p. 71–80. 
Mei, C.C. Applied dynamics of ocean surface waves. Singapore: World Scientific, 
1989. 
Ndenze, B. Grandfather tells of freak wave ordeal. – The Cape Times 2006, 25. 
July. 



 77

Olagnon, M., Athanassoulis, G. A. (Eds.) Rogue waves 2000. France: Ifremer, 
2001. 
Ostrovsky, L.A., Pelinovsky, E.N. Wave transformation of the surface of a fluid 
of variable depth. – Izvestiya, Atmospheric and Oceanic Physics 6; 1970, p. 552–
555. 
Parnell, K.E., McDonald, S.C., Burke, A.E. Shoreline effects of vessel wakes, 
Marlborough Sounds, New Zealand. – Journal of Coastal Research SI 50, 2007, p. 
502–506. 
Pedersen, G., Gjevik, B. Run-up of solitary waves. – Journal of Fluid Mechanics 
142; 1983, p. 283–299. 
Pelinovsky, E. Nonlinear dynamics of tsunami waves. Gorky: Applied Physics 
Institute Press, 1982. 
Pelinovsky, E. Hydrodynamics of tsunami waves. Nizhny Novgorod: Applied 
Physics Institute Press, 1996.  
Pelinovsky, E., Kharif, C. (Eds.) Extreme ocean waves. Springer, 2008. 
Pelinovsky, E., Mazova, R. Exact analytical solutions of nonlinear problems of 
tsunami wave run-up on slopes with different profiles. – Natural Hazards 6; 1992, 
p. 227–249.  
Peregrine, D.H. Water-wave impact on walls. – Annual Review of Fluid 
Mechanics 35; 2003, p. 23–43. 
Rabinovich, A.B., Monserrat, S. Generation of meteorological tsunamis (large 
amplitude seiches) near the Balearic and Kuril Islands. – Natural Hazards 18; 1998, 
p. 27–55. 
Shen, M.C. Ray method for surface waves on fluid of variable depth. – SIAM 
Review 17; 1975, p. 38–56. 
Soomere, T. Fast ferry traffic as a qualitatively new forcing factor of 
environmental processes in non-tidal sea areas: a case study in Tallinn Bay, Baltic 
Sea, Environmental Fluid Mechanics 5 /4; 2005, p. 293–323. 
Soomere, T., Behrens, A., Tuomi, L., Nielsen, J.W. Wave conditions in the 
Baltic Proper and in the Gulf of Finland during windstorm Gudrun. – Natural 
Hazards and Earth System Sciences 8 /1; 2008, p. 37–46. 
Soomere, T., Kask, A., Kask, J., Nerman, R. Transport and distribution of 
bottom sediments at Pirita Beach. – Estonian Journal of Earth Sciences 56 /4; 2007, 
p. 233-254. 
Spielfogel, L.O. Runup of single waves on a sloping beach. – Journal of Fluid 
Mechanics 74; 1976, p. 685–694. 
Stansell, P. Distributions of freak wave heights measured in the North Sea. 
Applied Ocean Research 26; 2004, p. 35–48. 
Stapleton, R. Shock Wave. Vendors’ stalls, car park over-run by 25-foot-high 
swirls. – Trinidad & Tobago Express 2005, 17. October. 



 78

Steetzel, H.J. Cross-shore transport during storm surges. Delft Hydraulics, Delft, 
The Netherlands Publ. 1993. No. 476. 
Stockdon, H.F., Holman, R.A., Howd, P.A., Sallenger, A.H. Empirical 
parameterization of setup, swash, and runup. – Coastal Engineering 53; 2006, p. 
573–588. 
Stoker, J.J. Water waves. The mathematical theory and applications. N.Y.: 
Interscience Publ., 1957.  
Synolakis, C.E. The runup of solitary waves. – Journal of Fluid Mechanics 185; 
1987, p. 523–545. 
Synolakis, C.E. Tsunami runup on steep slopes: How good linear theory really is? 
– Natural Hazards 1991, v. 4, 221-234. 
Synolakis, C.E., Deb, M.K., Skjelbreia, J.E. The anomalous behavior of the run-
up of cnoidal waves. – Physics of Fluids 31 /1, 1988, vol. 31, No 1, 3-5. 
Tadepalli, S., Synolakis, C.E. The runup of N-waves. – Proceedings of the Royal 
Society of London A445; 1994, p. 99–112. 
The Seattle Times. Wave kills two in Southern Oregon. November 11, 2005.  
Tinti S., Bortolucci, E., Chiavettieri, C. Tsunami excitation by submarine slides 
in shallow-water approximation. – Pure and Applied Geophysics 158; 2001, p. 
759–797. 
Tinti, S., Tonini, R. Analytical evolution of tsunamis induced by near-shore 
earthquakes on a constant-slope ocean. – Journal of Fluid Mechanics 535; 2005, p. 
33–64. 
Toffoli, A., Onorato, M., Monbaliu, J. Wave statistics in unimodal and bimodal 
seas from a second-order model. – European Journal of Mechanics – B/Fluids 25 
/5; 2006, p. 649–661. 
Torum, A., Gudmestad, O.T. (Eds.) Water wave kinematics. Dordrecht: Kluwer, 
1990. 
Whitham, J.J. Linear and nonlinear waves. N.Y.: Wiley, 1974. 
Zahibo, N., Didenkulova, I., Kurkin, A., Pelinovsky, E. Steepness and spectrum 
of nonlinear deformed shallow water wave. – Ocean Engineering 35 /1; 2008, p. 
47–52. 
Zahibo, N., Pelinovsky, E., Golinko, V., Osipenko, N. Tsunami wave runup on 
coasts of narrow bays. – International Journal of Fluid Mechanics Research 33 /1; 
2006, p. 106–118. 

Papers constituting the thesis 
 

I. Didenkulova, I., Slunyaev, A., Pelinovsky, E., Kharif, Ch. Freak waves in 
2005. – Natural Hazards and Earth System Sciences 6; 2006, p. 1007–1015. 



 79

II. Didenkulova, I., Pelinovsky, E., Soomere, T., Zahibo, N. Runup of nonlinear 
asymmetric waves on a plane beach. – In book: Tsunami & Nonlinear Waves 
(Ed: Anjan Kundu). Springer, 2007, p. 175–190.  

III. Didenkulova, I., Kurkin, A., Pelinovsky, E. Run-up of solitary waves on slopes 
with different profiles. – Izvestiya, Atmospheric and Oceanic Physics 43 /3; 
2007, p. 384–390. 

IV. Didenkulova, I., Pelinovsky, E. Runup of long waves on a beach: influence of 
the initial wave shape. – Oceanology 48 /1; 2008, p. 1–6. 

V. Didenkulova, I., Pelinovsky, E., Zahibo, N. Long wave reflection from “non-
reflecting” bottom profile. – Fluid Dynamics 43 /4; 2008, p. 101–107. 

VI. Didenkulova, I., Pelinovsky, E., Sergeeva, A. Runup of long irregular waves on 
a plane beach. – In book: Extreme Ocean Waves (Ed: Efim Pelinovsky and 
Christian Kharif). Springer, 2008, p. 83–94. 



 80

Abstract 
Long wave dynamics in the coastal zone is studied for two realistic bottom profiles. 
In the case of a convex profile the general solution of the Cauchy problem is 
obtained within the linear shallow-water theory. The wave system consists of two 
travelling waves propagating in opposite directions, whereas generally a zone of 
weak current is formed between these two waves. The long wave runup on such a 
beach is analysed. It is shown that the runup height on a convex bottom profile is 
significantly larger than that along a plane beach. The reflection and transmission 
of waves from a zone of increasing depth, described by the convex profile, is also 
studied. It is shown that a transmitted wave always has a sign-variable shape. 

In the case of a beach of constant slope the problem of the long wave runup is 
discussed in the framework of the nonlinear shallow-water theory. A key finding of 
this study is that the definition of the wavelength for symmetric solitary incident 
waves at a 2/3 level of the maximum height is optimal for express prediction of 
their runup properties. The maximum runup and drawdown characteristics of a 
solitary wave on a beach virtually do not depend on the shape of the incident wave 
if the wave duration is appropriately defined. It is especially evident for the runup 
height and drawdown velocity; their variations for all given classes of wave shapes 
do not exceed 8%. It is shown that the wave steepness has very strong influence on 
the runup characteristics of long waves. Among waves of a fixed amplitude and 
period (length), the steepest wave penetrates inland over the largest distance.  

The data on the freak wave events that occurred on the shore in 2005 show that 
some events are manifested as unusual flooding on a beach. A model to explain 
these data is developed in terms of the theory of runup of irregular wave fields. 
Variations of the distribution functions for extreme runup heights and shoreline 
velocity are moderate for narrow-band processes, for which the significant runup 
height can be appropriately described by the formula for the runup of a sine wave. 
For wide-band processes the significant runup height is considerably larger. 
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Resümee 
Väitekirjas analüüsitakse pikkade lainete dünaamikat rannikuvööndis kahe 
realistliku rannanõlva profiili (konstantse kaldega ning kumera profiiliga rannad) 
jaoks. Esmakordselt vaadeldakse süstemaatiliselt kumera profiiliga rannanõlval 
levivate lainete dünaamikat analüütiliste meetoditega. On leitud lineaarse 
muutuvate kordajatega ühemõõtmelise madala vee lainevõrrandi Cauchy ülesande 
üldlahend. Mistahes alghäiritusest tekkiv lainesüsteem koosneb üldiselt kahest 
vastassuunas levivast lainest, mille vahel paiknevas alas esineb nõrk hoovus. 
Analüüsitakse kirjeldatud süsteemis esinevate lainete uhtekõrgust ja rannaäärsete 
alade üleujutuste kulgemist. On tõestatud, et kumera profiili korral on sama kõrgete 
ja pikkade lainete uhtekõrgus märksa suurem võrreldes lineaarse profiiliga 
randadega. Vaadeldakse lainete dünaamikat juhul, kui rannanõlv koosneb kahest 
osast: madalaveeline horisontaalse põhjaga alaga piirneb kumera profiiliga 
rannanõlva sügavam osa. Selliste randade puhul kujuneb madalamas vees levivast 
lainest alati muutuva märgiga veepinna häiritus ranna sügavamas osas. 

Pikkade lainete uhtekõrguse problemaatikat konstantse kaldega rannanõlval 
vaadeldakse keerukamas raamistikus – mittelineaarsete madala vee võrrandite 
baasil. On näidatud et sümmeetriliste lainete poolt põhjustatud rannaäärsete alade 
üleujutuste ekstreemsed parameetrid (maksimaalne uhtekõrgus, maksimaalne 
veepinna alanemine jms.) praktiliselt ei sõltu lainete kujust ning on määratud 
lainete pikkusega. On demonstreeritud, et kõige olulisemad parameetrid – 
maksimaalne uhtekõrgus ja tagasivoolava veemassi maksimaalne kiirus – sõltuvad 
konkreetse laine kujust vähem kui 8% võrra. Optimaalseks uhtekõrgust 
iseloomustavaks suuruseks on lainete pikkus 2/3 kõrgusel laine maksimaalsest 
kõrgusest. On tuletatud uhtekõrguse operatiivprognoosiks sobivad empiirilised 
valemid nõnda defineeritud olulise lainepikkuse kaudu. 

On tõestatud, et lainete profiili võimalik asümmeetria võib oluliselt 
modifitseerida uhtekõrguse suurust ja teisi rannaäärsete alade üleujutuse 
parameetreid. Suhteliselt järsema frondiga lainete uhtekõrgus võib olla kordades 
suurem sama kõrgete ja pikkade, kuid sümmeetriliste lainete uhtekõrgusest. On 
näidatud, et mida järsem on randa saabuva laine esinõlv, seda kaugemale sisemaale 
jõuab vesi.  

Süstemaatiliselt analüüsitakse 2005. a. registreeritud hiidlainetega seonduvaid 
nähtusi. On näidatud, et mitmetel juhtudel on hiidlained põhjustanud ootamatuid 
üleujutusi rannaäärsetel aladel. On koostatud mudel, mis võimaldab kirjeldada 
hiidlainete anomaalselt suurt uhtekõrgust keerukate laineväljade uhtekõrguse 
teooria raames. On demonstreeritud, et maksimaalne uhtekõrgus ja laine frondi 
(veepiiri) liikumise kiirus varieerub suhteliselt vähe juhul, kui on tegemist kitsa 
spektriga lainesüsteemiga. Sellisel juhul saab nimetatud parameetreid adekvaatselt 
kirjeldada siinuslainete uhtekõrgust iseloomustavate seostega. Seevastu laia 
spektriga lainesüsteemide puhul on oodatav maksimaalne uhtekõrgus märksa 
suurem kui samade keskmiste parameetritega, kuid kitsa spektriga lainetuse puhul. 
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May 2005 – Jul. 2005 Institut de Recherche sur les Phenomenes Hors 
Equilibre (IRPHE), Marseille, France 

 
6. Professional employment 

Period Organisation Position 
2007 – to date Institute of Cybernetics, Tallinn 

University of Technology 
Experienced 
researcher 

2006 – to date (on leave) 
 

Institute of Applied Physics,  
Russian Academy of Sciences 

Researcher 
 

2003 – to date (on leave) Nizhny Novgorod State 
Technical University 

Assistant 

Apr. 2006 – Sept. 2006 Institute of Cybernetics, Tallinn 
University of Technology 

Researcher 

2003 – 2006 Institute of Applied Physics,  
Russian Academy of Sciences 

Junior Researcher 

2000 – 2003 Institute of Applied Physics,  
Russian Academy of Sciences 

Research Assistant 

 
7. Scientific work 

Conference presentations 

US-EU-Baltic 2008 International Symposium, Tallinn, Estonia: “Analysis of tide-
gauge records and their spectra of tsunami waves and background oscillations” 
(2008); 
Solutions to Coastal Disasters Conference 2008, Oahu, Hawaii: “Influence of the 
initial wave shape on tsunami wave runup characteristics” (2008); 
Joint workshops “Implications of climate change for marine and coastal safety” 
and “Applied Wave Mathematics” of Marie Curie networks SEAMOCS and 
CENS-CMA, and Eco-NET network “Wave Current Interaction in Coastal 
Environment”, Palmse, Estonia: “Long wave runup on the plane beach” (2007);’ 
General Assembly of the International Union of Geodesy and Geophysics (IUGG): 
“Long wave runup on the plane beach”, “Pointwise and distributed reflection of 
long waves from a beach”, “A comparison of tsunamis in Caribbean and 
Mediterranean; history, possibility, reality” (2007); 



 84

European Geosciences Union (EGU), Vienna, Austria: “Runup of nonlinear 
deformed waves on a beach”, “Spectrum and steepness of nonlinear deformed 
shallow waves”, “Freak runup of irregular waves”, “Tsunamis in Russian lakes and 
rivers”, “Freak waves in 2005”, “Runup of solitary waves of different shapes on a 
beach”, “Runup of irregular waves with various statistics”, “Freak waves in 2006”, 
“Characteristics of the nonlinear shallow water wave: shape, steepness and 
spectrum”, “Spectrum of the tide-gauge records in Pointe-a-Pitre bay, Guadeloupe” 
(2006, 2007); 
The Fifth International Symposium on Waves, Madrid, Spain: “Modelling of two 
global tsunamis in the Indian ocean (1883 Krakatau eruption and 2004 Sumatra 
earthquake)” (2005); 
International Symposium “Topical Problems of Nonlinear Wave Physics”, Nizhny 
Novgorod, Russia: “The Nizhny Novgorod tsunami on the Volga river” (2003); 
International Workshop “Local Tsunami Warning and Mitigation”, Petropavlovsk-
Kamchatsky, Russia: “The 1597 Tsunami in the River Volga” (2002); 
Nizhny Novgorod acoustical scientific session, Nizhny Novgorod, Russia: 
“Формирование волн большой амплитуды в рамках обобщенного уравнения 
Кортевега-де Вриза” (2002); 
The IV International young scientist’s scientific workshop “The future of technical 
science”, Nizhny Novgorod, Russia: “Сравнение двух цунами: индонезийского 
2004 года и Кракатау 1883 года” (2005); 
The IX Nizhny Novgorod young scientist’s session, Sarov, Russia: “Numerical 
simulation of tsunami Krakatau” (2004); 
The Workshop “Ecological and Industrial Safety”, Sarov, Russia: “Солитоны и 
кинки огибающей в решетках солитонов”, “Цунами на Волге”, “Численное 
моделирование цунами в реке” (2001, 2003, 2004); 
The Scientific Radiophysics Workshop, Nizhny Novgorod, Russia: “Солитоны и 
кинки огибающей в решетках солитонов модели Гарднера”, “Реконструкция 
волнового источника на примере цунами Кракатау” (2001, 2003). 
 
Seminars: 

10 Apr. 2008  Seminar paper “Shoaling and runup of long waves generated by 
high-speed ferries” at the Department of Civil & Environmental 
Engineering, Cornell University (Ithaca, USA) 

4 Apr. 2008 Seminar paper “New trends in the nonlinear theory of long wave 
runup on a beach” at the Department of Civil & Environmental 
Engineering, Massachusetts Institute of Technology (Boston, 
USA), 

20 Dec. 2007 Seminar paper “Long waves in a coastal zone” at Lund 
University (Lund, Sweden) 

9 Oct. 2007 Seminar paper “Mathematical modelling of long waves (tsunami 
waves)” at the Institute of Cybernetics, Tallinn University of 
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Technology (Tallinn, Estonia) 
25 Aug. 2006 Seminar paper “Runup of nonlinear deformed waves” at Det 

Norske Veritas, DNV Research (Høvik, Norway) 
22 Aug. 2006 Seminar paper “Runup of nonlinear asymmetric waves on a plane 

beach” at the University of Oslo (Oslo, Norway) 
 
Peer-reviewed publications 

1.1. Articles indexed by ISI Web of Science 

I. Didenkulova, E. Pelinovsky, and T. Soomere. Run-up characteristics of tsunami 
waves of “unknown” shapes. Pure and Applied Geophysics (2008) (accepted). 
B. H. Choi, E. Pelinovsky, D. C. Kim, I. Didenkulova. Two- and three-dimensional 
computation of solitary wave runup on non-plane beach. Nonlinear Processes in 
Geophysics (2008) (accepted). 
I. Didenkulova, E. Pelinovsky. Run-up of long waves on a beach: the influence of 
the incident wave form. Oceanology, 48, No 1, 1–6 (2008). 
N. Zahibo, I. Didenkulova, A. Kurkin, E. Pelinovsky. Steepness and spectrum of 
nonlinear deformed shallow water wave. Ocean Engineering, 35, No 1, 47–52 
(2008). 
I. Didenkulova, A. Kurkin, E. Pelinovsky. Run-up of solitary waves on slopes with 
different profiles. Izvestiya, Atmospheric and Oceanic Physics, 43, No 3, 384–390 
(2007). 
I. Didenkulova, N. Zahibo, A. Kurkin, E. Pelinovsky. Steepness and spectrum of a 
nonlinearly deformed wave on shallow waters. Izvestiya, Atmospheric and Oceanic 
Physics, 42, No 6, 773–776 (2006). 
I. Didenkulova, N. Zahibo, A. Kurkin, B. Levin, E. Pelinovsky, T. Soomere. Runup 
of nonlinear deformed waves on a beach. Doklady Earth Sciences, 411, No 8, 
1241–1243 (2006). 
I. Didenkulova, A. Slunyaev, E. Pelinovsky, Ch. Kharif. Freak waves in 2005. 
Natural Hazards and Earth System Sciences, 6, 1007–1015 (2006). 
 
1.2. Peer-reviewed articles in other international research journals 

I. Didenkulova, A. Zaytsev, E. Pelinovsky. The 1806 tsunami in Kozmodemyansk 
on Volga. Marine Hydrophysical Journal, Sevastopol, 1, 73–76 (2007). 
I. Didenkulova, E. Pelinovsky, N. Zahibo. Long wave reflection from “non-
reflecting” bottom profile. Fluid Dynamics, 43, No 4, 101–107 (2008). 
N. Zahibo, I. Didenkulova, E. Pelinovsky. Spectra of nonlinear shallow water 
waves. Journal of Korean Society of Coastal and Ocean Engineers, 19, No 4, 355–
360 (2007). 
I. Didenkulova, E. Pelinovsky. Phenomena similar to tsunami in Russian internal 
basins. Russian Journal of Earth Sciences, 8, No 6, ES6002, 
doi:10.2205/2006ES000211 (2006). 
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I. Didenkulova, E. Pelinovsky, A. Kurkin. Nonlinear shallow wave characteristics: 
shape, spectrum and steepness. Izvestiya, Russian Academy of Engineering 
Science, 18, 18–32 (2006). 
I. Didenkulova, E. Pelinovsky. Comparison of two global tsunami data in the 
Indian Ocean. Izvestiya, Russian Academy of Engineering Science, 18, 58–64 
(2006). 
A. Sergeeva, I. Didenkulova. Runup of irregular long waves on a sloping beach. 
Izvestiya, Russian Academy of Engineering Science 14, 98–105 (2005). 
I. Didenkulova, C. Kharif. Runup of biharmonic long waves on a beach. Izvestiya, 
Russian Academy of Engineering Science 14, 9–97 (2005). 
I. Didenkulova. Tsunamis in Russian lakes and rivers. Izvestiya, Russian Academy 
of Engineering Science 14, 82–90 (2005). 
I. Didenkulova, A. Zaytsev, А. Krasilshikov, A. Kurkin, E. Pelinovsky and A. 
Yalchiner. Nizhny Novgorod tsunami on the Volga river. Izvestiya, Russian 
Academy of Engineering Science 4, 170–180 (2003). 
 
3.1. Articles and chapters in books published by internationally renowned the 
publishers (including collections indexed by the ISI Web of Proceedings) 

I. Didenkulova, E. Pelinovsky, T. Soomere. Influence of the initial wave shape on 
tsunami wave runup characteristics. In: Proceedings the Conference Solutions to 
Coastal Disasters 2008. Tsunamis. American Society of Civil Engineers, 94–105 
(2008). 
I. Didenkulova, E. Pelinovsky, A. Sergeeva. Runup of long irregular waves on a 
plane beach. In: Extreme Ocean Waves (Ed: Efim Pelinovsky and Christian 
Kharif). Springer, 83–94 (2008). 
N. Zahibo, I. Nikolkina, I. Didenkulova. Extreme waves generated by cyclones in 
Guadeloupe. In: Extreme Ocean Waves (Ed: Efim Pelinovsky and Christian 
Kharif). Springer, 159–177 (2008). 
I. Didenkulova, E. Pelinovsky, T. Soomere, N. Zahibo. Runup of nonlinear 
asymmetric waves on a plane beach. In: Tsunami & Nonlinear Waves (Ed: Anjan 
Kundu), Springer, 175–190 (2007). 
E. Pelinovsky, B. Choi, A. Stromkov, I. Didenkulova, H. Kim. Analysis of tide-
gauge records of the 1883 Krakatau tsunami. In: Tsunamis: case studies and recent 
developments (Ed: Kenji Satake), Springer, 57–78 (2005). 
 
3.4. Articles and presentations published in other conference proceedings  

I. Didenkulova, E. Pelinovsky. Tsunami like events in Russian inland waters. 
Preprint of IAP RAS No754 (2008). 
I. Didenkulova, A. Zaytsev, А. Krasilshikov, A. Kurkin, E. Pelinovsky and A. 
Yalchiner. The 1597 Nizhny Novgorod tsunami on the Volga river. Preprint of IAP 
RAS No632 (2003). 
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I. Didenkulova. Runup of waves on a beach. In: Proceedings of the Fifth scientific 
workshop “Young people in science”, Sarov, 83–89 (2007). 
I. Didenkulova, E. Pelinovsky, N. Zahibo. Analytical expressions for runup 
characteristics of nonlinear long waves on a plane beach. In: Proceedings of the 
International Symposium Tsunami Disaster Mitigation for East Korean Coast, 
Korea, 1–4 (2007). 
I. Didenkulova, A. Kurkin, E. Pelinovsky, O. Polukhina, A. Sergeeva, A. Slunyaev. 
Onshore freak waves: observation and modelling. In: Proceedings of the VIII 
International Symposium “Modern methods of natural and anthropogenic hazards 
mathematical modelling”, Kemerovo, 147–157 (2005). 
E. Pelinovsky, B. Choi, A. Zaitsev, and I. Didenkulova. Modelling of two global 
tsunamis in the Indian ocean (1883 Krakatau eruption and 2004 Sumatra 
earthquake). In: Proceedings of the Fifth International Symposium Waves, Madrid, 
Paper No 213 (2005). 
I. Didenkulova, A. Zaytsev, А. Krasilshikov, A. Kurkin, Numerical simulation of 
tsunami in river, Proc. of the III Workshop “Ecological and Industrial Safety”, 
VNIIEF, Sarov, 227–234 (2004). 
I. Didenkulova, A. Zaytsev, А. Krasilshikov, A. Kurkin, E. Pelinovsky and A. 
Yalchiner. The Nizhny Novgorod tsunami on the Volga river. In: Proceedings of 
the International Symposium “Topical Problems of Nonlinear Wave Physics”, 
Nizhny Novgorod, 299–300 (2003). 
I. Didenkulova, E. Pelinovsky. Tsunami in the River Volga. In: Proceedings of the 
II Workshop “Ecological and Industrial Safety”, VNIIEF, Sarov, 311–315 (2003). 
I. Didenkulova, E. Pelinovsky, A. Stromkov. Reconstruction of the wave source on 
example of tsunami Krakatau. In: Proceedings of the VII Scientific Radiophysics 
Workshop, Nizhny Novgorod, 225–226 (2003). 
I. Didenkulova, E. Pelinovsky. The 1597 Tsunami in the River Volga. In: 
Proceedings of the International Workshop “Local Tsunami Warning and 
Mitigation”, Moscow, 17–22 (2002). 
I. Didenkulova, A. Slunyaev. Generation of large amplitude waves in the 
framework of extended Korteweg–de Vries equation. In: Proceedings of the 
Nizhny Novgorod acoustical scientific session, Nizhny Novgorod, 241–244 (2002). 
K. Gorshkov, I. Didenkulova. Envelope solitons and kinks in soliton lattices of 
Gardner model. In: Proceedings of the V Scientific Radiophysics Workshop, 
Nizhny Novgorod, 284–286 (2001). 
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8. Defended theses 

Runup of long waves on the sloping beach and analyses of real events. Candidate 
of Science’s degree. 
Reconstruction of wave source. Master’s degree. 
Envelope solitons and kinks in the framework of Gardner model. Bachelor’s 
degree. 
 

9. Main areas of scientific work/Current research topics 

Wave motion in the sea, wave runup on the beach, wave transformation, tsunami 
and freak waves, nonlinear theories, numerical simulation. 
 

10. Other research projects  

Leader of grant projects 

EEA grant “Shoaling and runup of long waves generated by high-speed ferries”, 
2008–2010; 
ProVention Consortium Research and Action Grants “Tsunamis in Russian Lakes 
and Rivers” No 3019, 2007–2008.  
 

11. Honours and awards  

Marie Curie Fellow, 2006–2009; 
INTAS Young Scientist Postdoctoral Fellowship “Study of the tsunami and freak 
wave runup on a beach” No 06-1000014-6046, 2007; 
The Medal of the Ministry of Education and Science of Russian Federation as “The 
best scientific student’s work” (MSc thesis “Reconstruction of the wave source”), 
2005; 
Scholarship of the French Embassy for a three-month period, for stay at the Institut 
de Recherche sur les Phenomenes Hors Equilibre (IRPHE) (Marseille, France), 
2005; 
Scholarship for young scientists of Academician Razuvaev, 2004. 
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Appendix B: Elulookirjeldus 
 

1. Isikuandmed 

 Ees- ja perekonnanimi  Ira Didenkulova 
 Sünniaeg ja -koht   23.05.1980, Gorki (Nižni Novgorod) 
 Kodakondsus    Venemaa 
 

2. Kontaktandmed 

Aadress                                Akadeemia tee 21, 12618, Tallinn 
Telefon                                   (+372) 620 4260 
E-posti aadress                         ira@cs.ioc.ee 

 
3. Hariduskäik 

Õppeasutus Lõpetamise aeg Haridus (eriala, kraad) 
Nižni Novgorodi Riiklik 

Tehnikaülikool, 
aspirantuur 

2006 Vedelike, gaaside ja plasma 
mehaanika, füüsika-

matemaatikakandidaat 
Nižni Novgorodi Riiklik 

Tehnikaülikool 
2003 Raadiofüüsika (akustika), 

magistrikraad 
Nižni Novgorodi Riiklik 

Tehnikaülikool 
2001 Raadiofüüsika, bakalaureuse kraad 

 
4. Keelteoskus (alg-, kesk- või kõrgtase) 

Keel Tase 
Vene emakeel 

Inglise kõrgtase 
 

5. Täiendõpe 

Õppimise aeg Täiendõppe koht või üritus 
märts 2008 Talvekool “Mittelineaarsed lained 2008”, Nižni 

Novgorod, Venemaa 
jaanuar – veebruar 2008 
jaanuar – august 2007 

november 2005 – veebruar 2006 

Universite des Antilles et de la Guyane, 
Guadeloupe, Prantsuse Ida-India 

august – september 2007 Rahvusvaheline suvekool “Lained ja 
rannikuprotsessid”, Tallinn 

august 2007 Välitööd orkaani Dean järel, Guadeloupe, 
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Prantsuse Ida-India 
august 2006 Rahvusvaheline suvekool “Mere ja atmosfääri 

interaktsioon”, Helsingi 
august – september 2005 Osalemine paleotsunamide uuringute 

välitöödel, Kunashir ja Shikotan (Kuriilid), 
Venemaa 

mai – juuli  2005 Institut de Recherche sur les Phenomenes Hors 
Equilibre (IRPHE), Marseille, France 

 
6. Teenistuskäik 

Töötamise aeg Organisasioon Ametikoht 
2007 – tänaseni Tallinna Tehnikaülikooli 

Küberneetika Instituut 
Erakorraline 
vanemteadur 

2006 – tänaseni 
(tööleping peatatud) 

Venemaa Teaduste Akadeemia 
Rakendusfüüsika Instituut 

Teadur 
 

2003 – tänaseni 
(tööleping peatatud) 

Nižni Novgorodi Riiklik 
Tehnikaülikool 

Assistent 

aprill – september 2006 Tallinna Tehnikaülikooli 
Küberneetika Instituut 

Erakorraline teadur 

2003 – 2006 Venemaa Teaduste Akadeemia 
Rakendusfüüsika Instituut 

Nooremteadur 

2000 – 2003 Venemaa Teaduste Akadeemia 
Rakendusfüüsika Instituut 

Tehnik 

 
7. Teadustegevus 

Ettekanded rahvusvahelistel teaduskonverentsidel: 

USA-Euroopa Liidu ja Baltimaade rahvusvaheline sümpoosium (Tallinn, 2008): 
“Analysis of tide-gauge records and their spectra of tsunami waves and background 
oscillations”; 
Rahvusvaheline konverents “Solutions to Coastal Disasters 2008” (Oahu, Havai, 
2008): “Influence of the initial wave shape on tsunami wave runup characteristics”; 
Marie Curie võrgustike SEAMOCS ja CENS-CMA ning Eco-NET’i võrgustiku 
“Wave Current Interaction in Coastal Environment” ühised konverentsid 
“Implications of climate change for marine and coastal safety” ja “Applied Wave 
Mathematics” (Palmse, 2007): “Long wave runup on the plane beach”; 
Rahvusvahelise Geodeesia ja Geofüüsika Liidu (IUGG) Peaassamblee (Perugia, 
2007): “Long wave runup on the plane beach”, “Pointwise and distributed 
reflection of long waves from a beach”, “A comparison of tsunamis in Caribbean 
and Mediterranean; history, possibility, reality”; 
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Euroopa Geoteaduste Liidu (EGU) Peaassambleed 2006 ja 2007 (Viin, 2006, 
2007): “Runup of nonlinear deformed waves on a beach”, “Spectrum and steepness 
of nonlinear deformed shallow waves”, “Freak runup of irregular waves”, 
“Tsunamis in Russian lakes and rivers”, “Freak waves in 2005”, “Runup of solitary 
waves of different shapes on a beach”, “Runup of irregular waves with various 
statistics”, “Freak waves in 2006”, “Characteristics of the nonlinear shallow water 
wave: shape, steepness and spectrum”, “Spectrum of the tide-gauge records in 
Pointe-a-Pitre bay, Guadeloupe”; 
Rahvusvaheline konverents “The Fifth International Symposium on Waves” 
(Madriid, 2005): “Modelling of two global tsunamis in the Indian ocean (1883 
Krakatau eruption and 2004 Sumatra earthquake)”; 
Rahvusvaheline sümpoosium “Topical Problems of Nonlinear Wave Physics” 
(Nižni Novgorod, 2003): “The Nizhny Novgorod tsunami in the Volga River”; 
Rahvusvaheline konverents “Local Tsunami Warning and Mitigation” 
(Petropavlovsk-Kamtšatski, 2002): “The 1597 Tsunami in the River Volga”; 
Rahvusvaheline akustikakonverents (Nižni Novgorod, 2002): “Формирование 
волн большой амплитуды в рамках обобщенного уравнения Кортевега-де 
Вриза”; 
IV rahvusvaheline noorte teadlaste konverents “The future of technical science” 
Nižni Novgorod, 2005): “Сравнение двух цунами: индонезийского 2004 года и 
Кракатау 1883 года”; 
IX Nižni Novgorodi noorte teadlaste konverents (Sarov, 2004): “Numerical 
simulation of tsunami Krakatau”; 
Konverentsid “Ecological and Industrial Safety” (Sarov, 2001, 2003, 2004): 
“Солитоны и кинки огибающей в решетках солитонов”, “Цунами на Волге”, 
“Численное моделирование цунами в реке”; 
Rahvusvahelised raadiofüüsika konverentsid (Nižni Novgorod, 2001, 2003): 
“Солитоны и кинки огибающей в решетках солитонов модели Гарднера”, 
“Реконструкция волнового источника на примере цунами Кракатау”. 
 
Teadusseminarid: 

10. aprill 2008  Ettekanne “Shoaling and runup of long waves generated by 
high-speed ferries” (Department of Civil & Environmental 
Engineering, Cornelli Ülikool, Ithaca, USA) 

4. aprill 2008 Ettekanne “New trends in the nonlinear theory of long wave 
runup on a beach” (Department of Civil & Environmental 
Engineering, Massachusettsi Tehnoloogiainstituut, Boston, 
USA), 

20. detsember 
 2007 

Ettekanne “Long waves in a coastal zone” (Lundi Ülikool, 
Rootsi) 

9. oktoober 2007 Ettekanne “Mathematical modelling of long waves (tsunami 
waves)” (ülelinnaline mehaanikaseminar, TTÜ Küberneetika 
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Instituut) 
25. august 2006 Ettekanne “Runup of nonlinear deformed waves” (Det Norske 

Veritas, DNV Research, Høvik, Norra) 
22. august 2006 Ettekanne “Runup of nonlinear asymmetric waves on a plane 

beach” (Oslo Ülikool, Norra) 
 
Eelretsenseeritud publikatsioonid: 

1.1. Artiklid, mis on kajastatud ISI Web of Science andmebaasis 

I. Didenkulova, E. Pelinovsky, and T. Soomere. Run-up characteristics of tsunami 
waves of “unknown” shapes. Pure and Applied Geophysics (2008) (accepted). 
B. H. Choi, E. Pelinovsky, D. C. Kim, I. Didenkulova. Two- and three-dimensional 
computation of solitary wave runup on non-plane beach. Nonlinear Processes in 
Geophysics (2008) (accepted). 
I. Didenkulova, E. Pelinovsky. Run-up of long waves on a beach: the influence of 
the incident wave form. Oceanology, 48, No 1, 1–6 (2008). 
N. Zahibo, I. Didenkulova, A. Kurkin, E. Pelinovsky. Steepness and spectrum of 
nonlinear deformed shallow water wave. Ocean Engineering, 35, No 1, 47–52 
(2008). 
I. Didenkulova, A. Kurkin, E. Pelinovsky. Run-up of solitary waves on slopes with 
different profiles. Izvestiya, Atmospheric and Oceanic Physics, 43, No 3, 384–390 
(2007). 
I. Didenkulova, N. Zahibo, A. Kurkin, E. Pelinovsky. Steepness and spectrum of a 
nonlinearly deformed wave on shallow waters. Izvestiya, Atmospheric and Oceanic 
Physics, 42, No 6, 773–776 (2006). 
I. Didenkulova, N. Zahibo, A. Kurkin, B. Levin, E. Pelinovsky, T. Soomere. Runup 
of nonlinear deformed waves on a beach. Doklady Earth Sciences, 411, No 8, 
1241–1243 (2006). 
I. Didenkulova, A. Slunyaev, E. Pelinovsky, Ch. Kharif. Freak waves in 2005. 
Natural Hazards and Earth System Sciences, 6, 1007–1015 (2006). 
 
1.2. Artiklid teistes rahvusvahelistes eelretsenseeritud teadusajakirjades 

I. Didenkulova, A. Zaytsev, E. Pelinovsky. The 1806 tsunami in Kozmodemyansk 
on Volga. Marine Hydrophysical Journal, Sevastopol, 1, 73–76 (2007). 
I. Didenkulova, E. Pelinovsky, N. Zahibo. Long wave reflection from “non-
reflecting” bottom profile. Fluid Dynamics, 43, No 4, 101–107 (2008). 
N. Zahibo, I. Didenkulova, E. Pelinovsky. Spectra of nonlinear shallow water 
waves. Journal of Korean Society of Coastal and Ocean Engineers, 19, No 4, 355–
360 (2007). 
I. Didenkulova, E. Pelinovsky. Phenomena similar to tsunami in Russian internal 
basins. Russian Journal of Earth Sciences, 8, No 6, ES6002, 
doi:10.2205/2006ES000211 (2006). 
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I. Didenkulova, E. Pelinovsky, A. Kurkin. Nonlinear shallow wave characteristics: 
shape, spectrum and steepness. Izvestiya, Russian Academy of Engineering 
Science, 18, 18–32 (2006). 
I. Didenkulova, E. Pelinovsky. Comparison of two global tsunami data in the 
Indian Ocean. Izvestiya, Russian Academy of Engineering Science, 18, 58–64 
(2006). 
A. Sergeeva, I. Didenkulova. Runup of irregular long waves on a sloping beach. 
Izvestiya, Russian Academy of Engineering Science 14, 98–105 (2005). 
I. Didenkulova, C. Kharif. Runup of biharmonic long waves on a beach. Izvestiya, 
Russian Academy of Engineering Science 14, 9–97 (2005). 
I. Didenkulova. Tsunamis in Russian lakes and rivers. Izvestiya, Russian Academy 
of Engineering Science 14, 82–90 (2005). 
I. Didenkulova, A. Zaytsev, А. Krasilshikov, A. Kurkin, E. Pelinovsky and A. 
Yalchiner. Nizhny Novgorod tsunami on the Volga river. Izvestiya, Russian 
Academy of Engineering Science 4, 170–180 (2003). 
 
3.1. Artiklid ja peatükid rahvusvaheliselt tunnustatud teaduskirjastuste poolt välja 
antud raamatutes ja kogumikes (sh. artiklid, mis on kajastatud ISI Web of 
Proceedings andmebaasis) 

I. Didenkulova, E. Pelinovsky, T. Soomere. Influence of the initial wave shape on 
tsunami wave runup characteristics. In: Proceedings the Conference Solutions to 
Coastal Disasters 2008. Tsunamis. American Society of Civil Engineers, 94–105 
(2008). 
I. Didenkulova, E. Pelinovsky, A. Sergeeva. Runup of long irregular waves on a 
plane beach. In: Extreme Ocean Waves (Ed: Efim Pelinovsky and Christian 
Kharif). Springer, 83–94 (2008). 
N. Zahibo, I. Nikolkina, I. Didenkulova. Extreme waves generated by cyclones in 
Guadeloupe. In: Extreme Ocean Waves (Ed: Efim Pelinovsky and Christian 
Kharif). Springer, 159–177 (2008). 
I. Didenkulova, E. Pelinovsky, T. Soomere, N. Zahibo. Runup of nonlinear 
asymmetric waves on a plane beach. In: Tsunami & Nonlinear Waves (Ed: Anjan 
Kundu), Springer, 175–190 (2007). 
E. Pelinovsky, B. Choi, A. Stromkov, I. Didenkulova, H. Kim. Analysis of tide-
gauge records of the 1883 Krakatau tsunami. In: Tsunamis: case studies and recent 
developments (Ed: Kenji Satake), Springer, 57–78 (2005). 
 
3.4. Artiklid ja ettekanded, mis on avaldatud jaotusse 3.1 mittekuuluvates 
konverentsikogumikes 

I. Didenkulova, E. Pelinovsky. Tsunami like events in Russian inland waters. 
Preprint of IAP RAS No754 (2008). 



 94

I. Didenkulova, A. Zaytsev, А. Krasilshikov, A. Kurkin, E. Pelinovsky and A. 
Yalchiner. The 1597 Nizhny Novgorod tsunami on the Volga river. Preprint of IAP 
RAS No632 (2003). 
I. Didenkulova. Runup of waves on a beach. In: Proceedings of the Fifth scientific 
workshop “Young people in science”, Sarov, 83–89 (2007). 
I. Didenkulova, E. Pelinovsky, N. Zahibo. Analytical expressions for runup 
characteristics of nonlinear long waves on a plane beach. In: Proceedings of the 
International Symposium Tsunami Disaster Mitigation for East Korean Coast, 
Korea, 1–4 (2007). 
I. Didenkulova, A. Kurkin, E. Pelinovsky, O. Polukhina, A. Sergeeva, A. Slunyaev. 
Onshore freak waves: observation and modelling. In: Proceedings of the VIII 
International Symposium “Modern methods of natural and anthropogenic hazards 
mathematical modelling”, Kemerovo, 147–157 (2005). 
E. Pelinovsky, B. Choi, A. Zaitsev, and I. Didenkulova. Modelling of two global 
tsunamis in the Indian ocean (1883 Krakatau eruption and 2004 Sumatra 
earthquake). In: Proceedings of the Fifth International Symposium Waves, Madrid, 
Paper No 213 (2005). 
I. Didenkulova, A. Zaytsev, А. Krasilshikov, A. Kurkin, Numerical simulation of 
tsunami in river, Proc. of the III Workshop “Ecological and Industrial Safety”, 
VNIIEF, Sarov, 227–234 (2004). 
I. Didenkulova, A. Zaytsev, А. Krasilshikov, A. Kurkin, E. Pelinovsky and A. 
Yalchiner. The Nizhny Novgorod tsunami on the Volga river. In: Proceedings of 
the International Symposium “Topical Problems of Nonlinear Wave Physics”, 
Nizhny Novgorod, 299–300 (2003). 
I. Didenkulova, E. Pelinovsky. Tsunami in the River Volga. In: Proceedings of the 
II Workshop “Ecological and Industrial Safety”, VNIIEF, Sarov, 311–315 (2003). 
I. Didenkulova, E. Pelinovsky, A. Stromkov. Reconstruction of the wave source on 
example of tsunami Krakatau. In: Proceedings of the VII Scientific Radiophysics 
Workshop, Nizhny Novgorod, 225–226 (2003). 
I. Didenkulova, E. Pelinovsky. The 1597 Tsunami in the River Volga. In: 
Proceedings of the International Workshop “Local Tsunami Warning and 
Mitigation”, Moscow, 17–22 (2002). 
I. Didenkulova, A. Slunyaev. Generation of large amplitude waves in the 
framework of extended Korteweg–de Vries equation. In: Proceedings of the 
Nizhny Novgorod acoustical scientific session, Nizhny Novgorod, 241–244 (2002). 
K. Gorshkov, I. Didenkulova. Envelope solitons and kinks in soliton lattices of 
Gardner model. In: Proceedings of the V Scientific Radiophysics Workshop, 
Nizhny Novgorod, 284–286 (2001). 
 



 95

8. Kaitstud lõputööd ja väitekirjad 

Runup of long waves on the sloping beach and analyses of real events. Nižni 
Novgorodi Riiklik Tehnikaülikool. Füüsika-matemaatikakandidaat. 
Reconstruction of wave source. Nižni Novgorodi Riiklik Tehnikaülikool. 
Magistrikraad. 
Envelope solitons and kinks in the framework of Gardner model. Nižni Novgorodi 
Riiklik Tehnikaülikool. Bakalaureusekraad. 
 

9. Teadustöö põhisuunad 

Pinnalained meres, lainete uhtekõrguse problemaatika, lainete ümberkujunemine 
madalas vees, tsunami ja hiidlained, mittelineaarne laineteooria, lainete 
evolutsiooni numbriline modelleerimine. 
 

10. Teised uurimisprojektid  

Grantid hoidjana: 

Pikkade lainete uhtekõrguse analüüs kiirlaevalainete baasil (EEA, hoidja, 2008–
2010). 
 Tsunamid Venemaa järvedes ja jõgedes (ProVention Consortium Research and 
Action Grant No 3019, hoidja, 2007–2008). 
 

11. Tunnustused 

Marie Curie stipendiaat (SEAMOCS, TTÜ Küberneetika Instituut, 2006–2009). 
INTAS noorteadlaste järeldoktori stipendium “Study of the tsunami and freak wave 
runup on a beach” No 06-1000014-6046, 2007. 
Vene Föderatsiooni Haridus- ja Teadusministeeriumi medal parima üliõpilaste 
teadustöö eest (magistritööd, väitekiri “Reconstruction of the wave source” 2005). 
Prantsusmaa saatkonna stipendium tööks Marseille’s, Institut de Recherche sur les 
Phenomenes Hors Equilibre (IRPHE), 2005. 
Akadeemik Razuvajevi nimeline noorteadlaste stipendium, 2004 
 
 
 
 
 


