
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Marko Lindeberg 221892IVCM

ANALYSIS AND IMPLEMENTATION OF ‘APP.4.4:
KUBERNETES’ FROM THE ESTONIAN INFORMATION

SECURITY STANDARD (E-ITS)

Master’s Thesis

Supervisor: Siim Vene
MSc

Tallinn 2025

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Marko Lindeberg 221892IVCM

EESTI INFOTURBESTANDARDI (E-ITS) ’APP.4.4:
KUBERNETES’ ANALÜÜS NING TEOSTUS

Magistritöö

Juhendaja: Siim Vene
MSc

Tallinn 2025

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Marko Lindeberg

18.05.2025

1

Abstract

As software development has been shifting from monolithic architecture to microservices
architecture, containerisation has become one of the most common and popular way for
running and managing services efficiently, and independently. However, this comes with
an increasing reliance on container orchestration platforms, particularly Kubernetes, that
has transformed software deployment and scalability.
The increasing adoption of Kubernetes introduces significant security challenges that many
organizations struggle to address as default configuration often fail to meet the security
requirements, exposing clusters to vulnerabilities. According to a survey conducted by Red
Hat, 42% of respondents suggested that their company does not have enough capabilities
to address container security threats [1]. Additionally, the same report highlights that
67% of organizations have delayed or slowed down their deployments and 46% have lost
revenue or customers due to Kubernetes security incident [1]. To address these challenges,
the Estonian Information Security Standard (E-ITS) has released a module ’APP.4.4:
Kubernetes’ module in the baseline security catalogue.

E-ITS ’APP.4.4: Kubernetes’ offers a strong foundation for improving Kubernetes
security posture, however, without a practical guidance, many organizations face chal-
lenges to implement the security measures to meet the compliance requirements. A
Systematic Literature Review (SLR) is conducted to evaluate the existing research on
Kubernetes security, identifying key contribution, limitations and research gaps. A detailed
analysis of E-ITS APP.4.4: Kubernetes module to identify the specific security require-
ments followed by a high-level architectural design and suitable tool selection based on the
identified requirements. Finally, a comprehensive technical implementation is performed
followed by a validation process to ensure that the implemented Kubernetes cluster meets
the E-ITS APP.4.4: Kubernetes requirements. The outcome of this research provides a
practical implementation steps that can be used as a template, guidance or reference for
organization to achieve E-ITS compliance for their Kubernetes clusters.

The thesis is written in English and is 83 pages long, including 8 chapters, 20 figures and 5
tables.

2

Annotatsioon
Eesti infoturbestandardi (E-ITS) ’APP.4.4: Kubernetes’ analüüs ning

teostus

Tarkvaraarendus on liikumas monoliitselt arhitektuurilt mikroteenuste arhitektuuri suunas
ning seetõttu on peamiseks ning kõige populaarsemaks teenuste haldamise viisiks saanud
konteinerdus. Sellest tingituna, on suurenenud ka sõltuvus konteinerite orkesteerimise
platvormide vastu, eelkõige Kubernetese, mis on avaldanud suurt positiivset mõju tarkvara
paigalduses ja mastaabitavuses.

Kubernetese järjest kasvav kasutuselevõtt on toonud kaasa olulisi turbealaseid väl-
jakutseid, millega paljud ettevõtted silmitsi seisavad, kuna vaikeseaded ei vasta tihti
turvanõuetele ning sellest tingituna võivad jätta Kubernetese klastrid haavatavaks. Red
Hat-i poolt teostatud uuringu kohaselt leidis 42% vastajatest, et nende ettevõttel puudub
võimekus konteinerduse turvalisuse ohtude vastu võitlemiseks [1]. Samas raportis on
tõstatatud, et 67% ettevõtetest on pidanud erinevat Kubernetese turvaprobleemide tõttu
viivitama oma tarkvarajuurutusi, ning 46% ettevõtetest on kaotanud kas kliente või tulu
[1]. Nende väljakutsete lahendamiseks on Eesti Infoturbestandardi (E-ITS) etalonturbe
kataloogis moodul ’APP.4.4: Kubernetes’.

E-ITS ’APP.4.4: Kubernetes’ moodul on küll tugev põhi Kubernetese turvaohtude
likvideerimiseks, kuid ilma praktilise juhendita seisavad paljud ettevõtted siiski silmitsi
probleemiga nende tõhusaks lahendamiseks. Antud lõputöö raames teostatakse süstemaati-
line kirjanduse ülevaade, mille käigus analüüsitakse Kubernetese turvalisusega seotud
akadeemilist kirjandust, tuvastatakse peamised piirangud ning uuriislüngad. Seejärel
analüüsitakse põhjalikult E-ITS ’APP.4.4: Kubernetes’ moodulit, et tuvastada konkreetsed
turvanõuded ning luuakse arhitektuuriline lahendus ning valitakse välja sobivad tööriistad
ja tehnoloogiad, mis põhinevad tuvastatud nõuetel. Järgneb põhjalik tehniline teostus
koos valideerimisprotsessiga, mille käigus paigaldatakse ja seadistatakse Kubernetese
klaster, mis vastab E-ITS ’APP.4.4: Kubernetes’ mooduli nõuetele. Lõputöö tulemuseks
on tehniline teostus, mida ettevõtted saavad kasutada praktilise malli, juhendi või näitena,
et saavutada Kubernetese klastri vastavus E-ITS mooduli nõuetele.

3

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 83 leheküljel, 8 peatükki, 20
joonist, 5 tabelit.

4

List of Abbreviations and Terms

ASO Azure Service Operator, a Kubernetes operator that allows
managing Azure resources using Kubernetes manifests

BSI Bundesamt für Sicherheit in der Informationstechnik, Ger-
man Federal Office for Information Security

cgroups abbreviation from Linux control groups

CNCF Cloud Native Computing Foundation
CNI Container Network Interface, a framework for dynamically

configuring network interfaces in Linux containers
CSI Container Storage Interface, a standard for exposing arbitrary

block and file storage systems to containerized workloads
CVE Common Vulnerabilities and Exposures, publicly disclosed

cybersecurity vulnerabilities
etcd highly-available key-value store for Kubernetes cluster data
GID Group Identifier, a unique number assigned to each group

on Linux
GitOps an operational framework of DevOps best practices for in-

frastructure automation
ISO International Organization for Standardization
kubelet Kubernetes "node agent", responsible for managing contain-

ers created by Kubernetes
mTLS mutual Transport Layer Security, a method of mutual authen-

tication between client and server
Overlay an encapsulation of a network protocol that allows for the

creation of a virtual network on top of an existing network
Pod the smallest deployable unit in Kubernetes, a group of one

or more containers
RBAC Role-Based Access Control, a method for restricting system

access to authorized users
SIG Special Interest Group, a community-driven working group

in Kubernetes project
UID User Identifier, a unique number assigned to each user ac-

count on Linux

5

VNet Azure Virtual Network, a service that provides an isolated
network in Azure

6

Table of Contents

1 Introduction . 13
1.1 Motivation . 13
1.2 Research Problem . 13

1.2.1 Research Problem Statement . 13
1.2.2 Research Questions . 14

1.3 Scope and Goal . 14
1.3.1 Main objective . 14
1.3.2 Limitations . 14

1.4 Novelty . 15
1.5 Thesis Structure . 15

2 Literature Review . 17
2.1 Search Strategy . 17

2.1.1 Search Sources . 17
2.1.2 Search Terms . 18

2.2 Inclusion and Exclusion Criteria . 18
2.2.1 Inclusion criteria . 18
2.2.2 Exclusion criteria . 19

2.3 Data Extraction Criteria . 19
2.4 Selection . 20
2.5 Synthesis . 21

2.5.1 Kubernetes Security Challenges and Common Vulnerabilities . . . 21
2.5.2 Analysis of Existing Studies . 22
2.5.3 Gaps in the existing literature . 29

3 Research Methods . 31
3.1 Exploratory Phase . 31

3.1.1 Systematic Literature Review (SLR) 31
3.1.2 Document Analysis . 31

3.2 Constructive Phase . 32
3.3 Validation Phase . 32
3.4 Data Collection . 33
3.5 Data Analysis Techniques . 33

4 Analysis of E-ITS APP.4.4: Kubernetes . 34

7

4.1 Background and Context . 34
4.2 Description . 34

4.2.1 Purpose . 34
4.2.2 Responsibility . 35
4.2.3 Limitations . 35

4.3 Threats . 35
4.3.1 Control plane authentication and authorization errors 35
4.3.2 Loss of confidentiality of the token of a pod 36
4.3.3 Conflict of resources caused by a pod 36
4.3.4 Unauthorised changes in the Kubernetes cluster 36
4.3.5 Unauthorised access to a pod . 36

4.4 Measures . 36
4.4.1 Base Measures . 37
4.4.2 Standard Measures . 41
4.4.3 Advanced Measures . 44

4.5 Conclusion . 50

5 Technical Implementation . 51
5.1 Resource Platform . 51
5.2 High-Level Architecture . 51
5.3 Resource Deployment Tools . 52
5.4 Planning The Cluster Deployment . 53

5.4.1 Node Groups . 53
5.4.2 Bastion Host . 55
5.4.3 Network Design . 55
5.4.4 Instance Size and OS Selection 56

5.5 Initial Bootstrapping . 57
5.6 Securing the Cluster Components . 58

5.6.1 Control Plane and Data Plane Configuration Files 59
5.6.2 Kubernetes API Server . 59
5.6.3 Controller Manager . 60
5.6.4 Etcd . 61
5.6.5 Scheduler . 61
5.6.6 Kubelet . 61
5.6.7 Conclusion of Cluster Component Security 62

5.7 Deploying the Applications . 63
5.7.1 Core Applications . 63
5.7.2 Networking and Ingress . 67
5.7.3 Monitoring Stack . 69

8

5.7.4 Backup and Restore . 73
5.7.5 Security and Compliance Tools 75

5.8 Conclusion of Technical Implementation 78

6 Results . 81
6.1 Validation Strategy . 81
6.2 Validating E-ITS APP.4.4 Implemented Measures 81

6.2.1 Cluster Component Configuration Validation With ’kube-bench’ . 81
6.2.2 Validation of each E-ITS APP.4.4 implemented measure 83
6.2.3 Conclusion of the Validation . 88

7 Discussion . 90
7.1 Findings . 90

7.1.1 Answers to Research Questions 90
7.2 Limitations . 91
7.3 Recommendations . 92

8 Conclusion . 94
8.1 Summary . 94
8.2 Contribution . 94
8.3 Generalization . 95
8.4 Future Work . 95

References . 96

Appendix 1 – Non-Exclusive License for Reproduction and Publication of a
Graduation Thesis . 109

Appendix 2 – Secret encryption verification in etcd 110

Appendix 3 – Velero role definition . 111

Appendix 4 – kube-bench test results . 112

Appendix 5 – kube-bench cluster component manual verification steps. 116

Appendix 6 – Kubelet cgroup configuration and namespace isolation. 118

Appendix 7 – Azure Bastion (Management), control plane node, isolated node
and other data plane node subnets. 119

Appendix 8 – Velero backup validation in Azure portal. 120

9

Appendix 9 – Disabled automount for default service accounts. 121

Appendix 10 – Kubernetes health probe requirement validation. 122

Appendix 11 – Specialised Kubernetes nodes. 124

Appendix 12 – PEARO principle validation. 125

Appendix 13 – Provisioned resources in Azure Portal. 126

Appendix 14 – Isolated node group Security Group Rules. 127

Appendix 15 – Isolated node group connection testing. 128

Appendix 16 – Velero backup output with EncryptionAtRestWithPlatformKey. . 129

Appendix 17 – Validation of ’restarter’ CronJob. 130

10

List of Figures

1 Kubernetes API Server security configuration. 59
2 Controller Manager security configuration. 60
3 etcd encryption configuration. 61
4 Kubelet security configuration. 62
5 ESO SecretStore configuration. 65
6 ExternalDNS Azure configuration. 66
7 cert-manager recursive nameserver configuration. 66
8 HAProxy Service and annotation configuration. 68
9 Calico FelixConfiguration patching. 69
10 Auditlog configuration. 70
11 Audit log Policy. 71
12 Prometheus persistent storage definition. 72
13 Monitoring architecture overview. 73
14 Azure Storage Account and Storage Container configuration. 75
15 initContainer configuration for Azure provider. 75
16 Additional Kubelet TLS Configuration. 79

17 False positive errors in kube-bench. 82
18 ResourceQuota and LimitRange generation. 84
19 Kyverno ClusterPolicy for NetworkPolicy generation. 85
20 Deployed Kyverno ClusterPolicies. 87

11

List of Tables

1 Search results before and after selection process 21

2 Proposed Network Design Segmentation 55
3 Instance selection . 56
4 Secret Management tools comparison 64

5 PEARO principle validation . 125

12

1. Introduction

1.1 Motivation

The increasing adoption of Kubernetes introduces significant security challenges that many
organizations struggle to address as default configuration often fail to meet the security
requirements, exposing clusters to vulnerabilities. According to a survey conducted by Red
Hat, 42% of respondents suggested that their company does not have enough capabilities
to address container security threats [1]. Furthermore, the same report highlights that
67% of organizations have delayed or slowed down their deployments and 46% have lost
revenue or customers due to Kubernetes security incident [1].

E-ITS “APP.4.4: Kubernetes” offers a strong foundation for improving Kubernetes
security posture, however, without practical guidance, many organizations face challenges
in implementing these requirements effectively. This research is important because it
provides a comprehensive analysis of “APP.4.4: Kubernetes” module and demonstrates
how to implement its requirements in practice.

By offering a clear practical solution, this study aims to support organizations in Estonia,
and potentially beyond, to improve their security posture by aligning with E-ITS. The
outcome of this research will ease the adoption of E-ITS, by making it more accessible for
organizations to strengthen their Kubernetes security and overall security posture.

1.2 Research Problem

1.2.1 Research Problem Statement

Organizations are increasingly adopting Kubernetes to manage their containerized applica-
tions, however ensuring a comprehensive security compliance still remains a significant
challenge. While standards, such as E-ITS define the baseline security requirements, there
is a lack of clear practical guidance, methodologies and tools to achieve compliance. Al-
though Kubernetes security has been extensively studied, the existing literature focuses on
security vulnerabilities and high-level recommendations, rather than providing actionable
steps for organizations. Additionally, there is a lack of research that specifically addresses
Kubernetes security on country-specific standards, such as E-ITS. This shows that there
is a clear need to identify effective tools, processes and methods that can be used by

13

organizations to adopt E-ITS ’APP.4.4: Kubernetes’ module and improve their security
posture.

1.2.2 Research Questions

■ [RQ1]: How can organizations implement E-ITS ’APP.4.4: Kubernetes’ to achieve
compliance and enhance the security posture of their Kubernetes clusters?

■ [RQ2]: What tools, methods, processes can be used for the E-ITS ’APP.4.4: Kuber-
netes’ adoption?

■ [RQ3]: What are the specific security requirements outlined in E-ITS ’APP.4.4:
Kubernetes’ and how do they align with Kubernetes best practices?

■ [RQ4]: What gaps exist between E-ITS ’APP.4.4: Kubernetes’ and current Kuber-
netes security in academic literature?

1.3 Scope and Goal

1.3.1 Main objective

Many organizations, especially in the public sector, seek to improve their Kubernetes
security posture by complying with standards such as the E-ITS ’APP.4.4: Kubernetes’
module. This thesis aims to bridge the gap between understanding these requirements and
practical implementation. Its main objective is to provide organizations with a detailed
technical implementation guide that could be used as a template or a reference to achieve
compliance with this module. The research involves a comprehensive analysis of the
module’s requirements and its alignment with academic literature and best practices,
followed by a comparative selection of technologies and a technical implementation. The
final output will be a practical and actionable guide that is designed to help organizations
achieve E-ITS alignment and thereby increase their Kubernetes security posture.

1.3.2 Limitations

One limitation of this research is that it is not explicitly focusing on E-ITS ’SYS.1.6:
Containerisation’ module. Although, container security is an important topic, it focuses on
a rather narrow aspect of security, whereas Kubernetes is a huge and complex ecosystem of
numerous layers and aspects. Furthermore, the measures of ’APP.4.4: Kubernetes’ module
are always discussed together with the measures from module ’SYS.1.6: Containerisation’
[2, p. 1.3]. This implies that the container images that are used within the Kubernetes
cluster shall meet the module ’SYS.1.6: Containerisation’ requirements. Focusing on

14

SYS.1.6: Containerisation module in addition to APP.4.4: Kubernetes would significantly
broaden the scope of this Thesis and risk a scope creep.
Another limitation is that this Thesis does not focus on the managed Kubernetes services
offered by public cloud providers, such as Elastic Kubernetes Service (EKS) by Amazon
Web Services (AWS), Azure Kubernetes Service (AKS) by Microsoft Azure and Google
Kubernetes Engine (GKE) by Google Cloud Platform (GCP). This is due to the reason that
each service provider’s managed Kubernetes implementation could be different and not
allow as granular configuration as needed in E-ITS requirements.
Instead, this Thesis focuses on ’plain vanilla’ Kubernetes that is an open-source version of
Kubernetes hosted and maintained by the Cloud Native Computing Foundation (CNCF)
[3], as this version could be deployed anywhere - private cloud (on-premises), public-cloud
or hybrid-cloud.

1.4 Novelty

This study is novel in its focus to align Kubernetes security practices with the Estonian
Information Security Standard (E-ITS) “APP.4.4: Kubernetes” - a national framework that
lacks guidance for practical implementation. While existing research covers Kubernetes
security best practices, there are no studies that address specific requirements of E-ITS
’APP.4.4: Kubernetes’ or other national standards, such as BSI ’APP.4.4: Kubernetes’ and
NIST CSF 2.0. This thesis fills that gap by analysing E-ITS ’APP.4.4: Kubernetes’, identi-
fying alignment and contradictions in current practices and developing a comprehensive
practical guidance to achieve compliance.

The primary contribution of this study is the development of a practical guidance specifi-
cally focused on E-ITS ’APP.4.4: Kubernetes’. On top of providing a practical solution for
Estonian organizations to improve Kubernetes security, this guidance offers a model that
can be adapted for similar requirements in other country-specific standards.

1.5 Thesis Structure

This thesis is structured as follows:

■ Chapter 2 presents a Systematic Literature Review (SLR) which evaluates existing
research about Kubernetes security to identify the best practices, key contributions,
limitations and research gaps. This review provides essential context and founda-

15

tional knowledge relevant to RQ3 and RQ4 by identifying the Kubernetes best
practices and research gaps in the current literature.

■ Chapter 3 outlines the research methodology used in this thesis, describing the mixed-
method approach in phases, describing the data collection and analysis techniques
and the validation methods.

■ Chapter 4 provides a comprehensive analysis of E-ITS ’APP.4.4: Kubernetes’ mod-
ule, identifies its specific security requirements and their alignment with Kubernetes
best practices. This chapter primarily addresses RQ3 and RQ4, partly based on the
SLR findings in the SLR chapter.

■ Chapter 5 details the practical phase of this thesis. It describes the design choices,
such as resource platform, provides the high-level architecture, evaluates and selects
the suitable tools based on the identified requirements and comparative analysis, and
outlines the technical implementation steps for deploying and configuring an E-ITS
compliant Kubernetes cluster. Thus, contributing to RQ1 and RQ2 by providing
specific tools, methods and processes that can be used to implement E-ITS ’APP.4.4:
Kubernetes’ security measures.

■ Chapter 6 presents the outcomes of the technical implementation and focuses on val-
idating that the implemented Kubernetes cluster complies with each E-ITS ’APP.4.4:
Kubernetes’ security measure and therefore addresses RQ1 and RQ2.

■ Chapter 7 describes the findings of the research by providing comprehensive answers
to RQ1, RQ2, RQ3, RQ4, highlights the study limitations and offers recommenda-
tions for improvement.

■ Chapter 8 summarizes the entire study, reiterates the main contributions and suggests
the future work.

16

2. Literature Review

In this paragraph, a systematic literature review is conducted. This literature review system-
atically evaluates existing research on Kubernetes security, identifying key contributions,
limitations, and research gaps. Given that the E-ITS is a country-specific standard, this
review aims to assess how current studies address Kubernetes security and whether they
address country-specific frameworks or standards, such as E-ITS, and what aspects remain
unexplored in that context. This provides essential background and context for RQ3 and
RQ4 that will be addressed in the following chapters.

Kubernetes has become the de facto standard for container orchestration [2, p. 1.1], but its
security remains a critical challenge. Misconfigurations, unauthorized access, and insecure
network policies can expose clusters to attacks. Given the growing adoption of Kubernetes,
a comprehensive review of existing research is necessary to assess how security challenges
are being addressed and to identify gaps that require further study.

2.1 Search Strategy

While doing the initial research, it became clear that there is a fairly limited amount of
literature published on E-ITS as the standard itself is quite fresh - the initial version took
effect in 2023, and the current ’APP.4.4: Kubernetes’ module in use is from 2023. Thus, the
research criteria needed to be expanded to find literature on other country-specific standards
and frameworks, such as BSI [4], NIST [5] or any type of literature on Kubernetes security
in general.

2.1.1 Search Sources

The following databases were used in search strategy to find the literature:

■ Google Scholar
■ IEEE Xplore
■ Scopus
■ PRIMO Search Portal (ESTER and TalTech Library)

17

2.1.2 Search Terms

The following keywords and combinations were used:

Keywords

■ kubernetes
■ security
■ best practices
■ E-ITS, EITS, Estonian Information Security Standard
■ standard
■ framework
■ container orchestration

Combinations

■ ’"kubernetes security"’
■ ’kubernetes security best practices’
■ ’kubernetes AND security’
■ ’kubernetes framework OR standard’
■ ’kubernetes AND "E-ITS"’
■ ’"E-ITS" OR "EITS" OR "Estonian Information Security Standard"’
■ ’container orchestration AND security’

2.2 Inclusion and Exclusion Criteria

To refine the search results, the following inclusion and search criteria were used:

2.2.1 Inclusion criteria

■ Peer-reviewed journals, conference papers, books (by trusted publishers), theses,
publications from government agencies

■ Studies focused on Kubernetes security, misconfigurations, vulnerabilities and best
practices

■ Researches discussing frameworks or standards for Kubernetes security
■ Studies focusing on E-ITS, BSI, NIST or other standards and frameworks that are

related to Kubernetes

18

2.2.2 Exclusion criteria

■ Articles solely focusing on container security or application security but not on the
orchestrator

■ Articles not written in Estonian or English
■ Articles not focusing on Kubernetes
■ Articles that are focusing on Kubernetes but not on security
■ Articles published before 2020, unless highly relevant (e.g. NIST 800-190)
■ Articles behind paywalls
■ Articles that are still in-review, blog posts, vendor-specific whitepapers (to avoid

bias)
■ Articles focusing on tools or technologies not relevant this research
■ Articles focusing on only one aspect of the Kubernetes security
■ Articles shorter than 4 pages
■ Articles that are still in-review/preprint

2.3 Data Extraction Criteria

For consistent and systematic analysis of the selected studies, specific data is extracted
from each paper based on the defined criteria. This will help to identify common patterns,
trends and gaps in the existing literature. The following data points will be extracted from
each selected study:

■ Bibliographic Information
Publication title, authors, and year
Publication type (journal article, conference paper, technical report, etc.)

■ Research Focus and Scope
Primary security domain in Kubernetes (e.g., network security, access control,

container security)
Specific Kubernetes components that were addressed
Methodology used, if applicable

■ Addressed Security Aspects
Specific identified vulnerability or attack methods
Highlighted security misconfigurations
Discussed security controls
Proposed frameworks or remediation strategies

■ Implementation Details
Provided practical implementation guidelines/steps

19

Proposed and evaluated tools, technologies and solutions
Validation methods (metrics, benchmarks, etc)

■ Frameworks and Standards
References to existing frameworks or standards (NIST, CIS, E-ITS, BSI, etc.)
Mentined country-specific standards or regulations
Specific mentions of E-ITS or similar national standards

■ Limitations and Research Gaps
Explicitly stated limitations of the study
Proposed future works or areas by the authors
Identified gaps in the existing literature
Described challenges during the research (e.g., when implementing security

controls)
■ Target Audience and Context

Industry sector (if applicable)
Targeted audience (practitioners, researchers, etc.)
Operational context (e.g., enterprise environment, public or private cloud, critical

infrastructure, etc.)
Organizational context (e.g., small businesses, large enterprises, government

agencies, if applicable)
■ Technical Details and Relevance

The level of detail in the technical part
Code or configuration examples included
Specific versions mentioned (if relevant - avoid deprecated or outdated versions)

2.4 Selection

The initial search across multiple databases yielded 20,349 findings. Following the applica-
tion of inclusion and exclusion criteria, 559 results remained. After applying the inclusion
and exclusion criteria, duplicate studies were identified across various sources during
the relevance evaluation of the papers. The remaining papers were then systematically
evaluated against the data extraction criteria. Following the assessment of relevance and
the elimination of duplicate records, manual inspection of abstracts and conclusions, 30
studies remained. After further reading of the studies, 17 studies were excluded due to the
lack of relevance to the research topic. The remaining 13 studies were selected for the
literature review.

The results can be seen in Table 1.

20

Table 1. Search results before and after selection process

Database Initial Inclusion &
Exclusion

1st Manual
Inspection

Final

Google Scholar 10382 177 17 6

IEEE Xplore 5457 126 6 4

Scopus 3378 202 2 0

PRIMO 1132 54 5 3

2.5 Synthesis

This section focuses on key findings of 13 reviewed studies, frameworks and guidelines
and outlines the main security concerns, proposed solutions and limitations to highlight
the research gap.

2.5.1 Kubernetes Security Challenges and Common Vulnerabilities

Kubernetes is the most widely uses container orchestration platform in the world [6] that
allows organization to deploy and manage their containerized applications at scale. The
increasing adoption of Kubernetes across all industries has made it an attractive target for
adversaries. As Kubernetes is a complex system with different layers and components, the
attack surface is substantial and many organizations struggle to secure their Kubernetes
clusters, as any misconfiguration can have significant consequences. According to the
results of a survey conducted by Red Hat, nearly 90% of organizations have had at least 1
container or Kubernetes security incident in the last year [7].
As a result, a considerable amount of research has been conducted to explore this area in
more detail, with most of the studies emphasizing on the importance of securing Kuber-
netes environments.
Overall, the most studies in this area share a common goal - highlighting the importance of
a strong security controls in Kubernetes. However, the studies vary in their focus areas, as
some concentrate of specific security aspects, such as access controls, container runtime
security or networking, whereas others might focus on the security at a broader scale.
The following subsections outline the most commonly identified security risks and mitiga-
tion strategies from the reviewed literature.

21

2.5.2 Analysis of Existing Studies

Enhancing Communication Security in Kubernetes-Based Environments

This research [8] emphasizes the critical importance of securing communication in Kuber-
netes environments. It identifies the main security practices and tools that could be used to
enhance the overall Kubernetes cluster security posture. However, the experimental part
of the research is limited to implementing Kubernetes Network Policies and an mTLS
communication between the applications within the cluster by utilizing Istio Service Mesh
with ’AuthorizationPolicy’ [9]. Analysis why Istio Service Mesh was chosen, and not any
other solution, is missing. Nevertheless, the research provides valuable insight into service-
to-service encryption and overall communication security within the cluster. Additionally,
the security practices discussed in the paper give a good overview of the security measures
that should be taken into consideration.

Kubernetes Network Policy Engines and Enforcement

This research [7] focuses on the network policies and their enforcement as a solution to
security issues in Kubernetes, emphasizing that the wide variety of engines and technolo-
gies can be overwhelming for the administrators. A comparative analysis of top 5 CNIs is
conducted, identifying the use cases, challenges and limitations of each. Additionally, two
Kubernetes policy engines Open Policy Agent (OPA) with Gatekeeper [10] and Kyverno

[11] are thoroughly analyzed and compared. The author could’ve expanded the research
by including additional policy engines, such as Polaris [12] and jsPolicy [13], to provide
a more detailed overview of the available options. Overall, this analysis of CNIs and
Kubernetes Policy Engines is valuable and can be used as a reference for organizations
looking to implement network policies in their Kubernetes clusters.

Implementation of New Security Features in CMSWEB Kubernetes Cluster at CERN

This research [14] focuses on the implementation of new security features in the CMSWEB
Kubernetes cluster at CERN. The primary focus again is on enforcing Kubernetes Network
Policies, deploying Open Policy Agent (OPA) with Gatekeeper and integrating HashiCorp
Vault for Kubernetes secrets management. Although, this paper provides valuable insights
into securing Kubernetes clusters through network isolation, policy enforcement and
secrets management, it could’ve been expanded. While OPA is used to enforce compliance
at runtime, the paper could’ve discussed continuous auditing for configuration drift.

22

Security Misconfigurations in Open Source Kubernetes Manifests: An Empirical
Study

This study [15] investigates security misconfigurations in Kubernetes manifests - YAML-
based configuration files used to define Kubernetes resources. The authors identify and
categorize 11 types of security misconfigurations [15, p. 2.3] by utilizing SLI-KUBE [16],
a custom static code analysis tool developed by the authors:

■ lack of resource limits
■ lack of or privileged securityContext

■ enabling of hostIPC, hostPID and hostNetwork

■ misuse of capabilities (such as CAP_SYS_ADMIN that allows privilege escalation
[17])

■ Docker socket mounting
■ allowed privilege escalations for child processes
■ hard-coded secrets
■ insecure HTTP traffic both inside and outside the cluster

After the analysis, the authors have provided short and concise mitigation strategies for
each misconfiguration. As an outcome, the authors have concluded that the practitioners
agreed to fix 60 percent of the 10 misconfigurations after receiving the bug report [17,
p. 9], which indicates that some misconfigurations are easily fixable. Although the study
provides valuable insights into the most common misconfigurations, the authors could’ve
explained the reasoning why they chose to create a custom static code analysis tool instead
of using existing tools, such as KubeLinter [18], Kube-score [19] or checkov [20] (any
shortcomings on existing tools?).

XI Commandments of Kubernetes Security

This study [21] aims to help people in securing their Kubernetes clusters through a
systematization of Kubernetes security practices. A qualitative analysis was conducted on
Internet artifacts and the authors were able to identify 11 Kubernetes security practices
covering the key areas such as [21, p. 3]:

■ Authentication and Authorization
■ Kubernetes-specific Security policies
■ Vulnerability scanning
■ Logging
■ Namespace isolation
■ etcd restriction and encryption

23

■ Continuous updates
■ Resource quotas
■ Enabling SSL/TLS support
■ Workload separation
■ Securing metadata APIs

While the research can be used as a foundational reference for Kubernetes security practices,
it relies on non-academic sources only, such as blogs, online guides and community posts
[21, p. 2]. This means that they might not have been thoroughly reviewed for accuracy and
in my opinion, possibly weakens the credibility of this research. Additionally, the security
practices discussed in the paper are general and do not provide clear steps or guidance for
organizations how to implement any of the recommendations.

KubeHound: Detecting Microservices’ Security Smells in Kubernetes Deployments

This paper [22] proposes analysis techniques to automatically detect “security smells”
(recurring coding patterns that are indicative of security weakness and can lead to security
breaches [23]) issues in Kubernetes. The authors proposed a new tool KubeHound [24]
that complements already existing static and dynamic analysis tools with a specific focus
on previously defined "security smells" for microservices [25] that are categorized into
following groups:

■ Insufficient Access Control
■ Publicly Accessible Microservices
■ Unnecessary privileges
■ Own Crypto Code
■ Non-encrypted data
■ Hardcoded secrets
■ Unsecure service-to-service communication
■ Unauthenticated traffic
■ Multiple modes of Authentication
■ Centralized Authorization

The validation of the study is a controlled experiment that deploys a mock application with a
task to deliberately inject security smells into Kubernetes [22, p. 6], and using the proposed
tool to successfully detect these issues. This study provides valuable contribution for
near real-time monitoring for Kubernetes security by proposing a new tool that combines
the static and dynamic analysis techniques, especially in the context of microservices.
However, all applications deployed in Kubernetes are not microservices, and focusing on

24

microservices only might limit the applicability of the proposed tool so that additional
tools are needed to cover the possible gaps.

A Container Security Survey: Exploits, Attacks, and Defenses

Jarkas et al. conducted a study on container security by analyzing a dataset of over 200
vulnerabilities and proposing a new framework covering the security from Kernel to the
Application Layer (dividing the container architecture into 5 layers) with a holistic security
mapping to 4 hardware and 6 software mitigation strategies [26, p. 1]. The 5 container
architecture layers of the proposed framework are:

■ Orchestration Layer
■ Application Layer
■ Engine layers
■ Host Layer
■ Hardware Layer

In the context of E-ITS ’APP.4.4: Kubernetes’ module, the focus is on the orchestration
layer, engine layer, and host layer, as these discuss the vulnerabilities on container oper-
ations, access controls, container runtime configurations, and vulnerabilities on the host
level, such as namespace isolation. Taking into consideration that the authors have included
a comprehensive list of hardware and software mitigation strategies, this study that can be
used as a baseline for organization to improve their security posture.

Uncovering Threats in Container Systems: A Study on Misconfigured Container
Components in the Wild

Dongmin et al. conducted a study on security threats by misconfigured container compo-
nents that are exposed to the Internet, with a focus on Docker and Kubernetes. A huge
dataset of more than 1 million public IP addresses are compiled and then classified through
distinct type of each component [27, p. 3].
Some of the most notable findings are that organizations often rely on default configura-
tions, with 86% of the found API servers allowing anonymous authentication. Furthermore,
the results showed that most commonly used Kubernetes versions at the time of the study
are vulnerable to several CVEs that could be used to bypass security restrictions, the top 10
most exposed etcd versions that can be exploited to bypass authentication and gain value
to Kubernetes secrets. [27, p. 4].
The study highlights the importance of addressing the vulnerabilities in Kubernetes com-
ponents and the importance of securing the default configurations. Although the study
gives a great overview of the most common vulnerabilities that organizations could use

25

as a starting point, it does not provide any mitigation strategies or solutions how to tackle
these vulnerabilities, requiring additional effort from the organizations to find the solutions
themselves.

Automatic Detection of Security Deficiencies and Refactoring Advises for Microser-
vices

Ünver and Britto conducted a study with the objective of developing a set of tools to help
developers with microservices security issues [28]. The authors listed the security issues
based on the best practices in microservices and Kubernetes, and then compared a set of
tools against these security issues. The tools chosen for the Pomegranate suite are:

■ Docker Bench for Security
■ Trivy
■ Kube-hunter
■ Kube-bench
■ OWASP ZAP
■ Nmap
■ Terrascan

Unfortunately, the authors did not conclude a detailed selection process of the tools, after
they had benchmarked them against the security issues. Initially, the authors stated that
they had selected the tools based on their popularity in GitHub, however it is lacking a
comprehensive explanation why certain tools were chosen over the others. For example,
why Terrascan was chosen, even though Kube-hunter, nmap and OWASP ZAP meet the
same requirements?
Furthermore, the objective of the study was to develop a fully automated test suite, however
the bash script [29] that is provided to run the suite is relying on binaries, such as Trivy

and Terrascan CLI, that are not included in the repository or installation script, or the path
to the binary is incorrect.
Additionally, the script is using the ’latest’ tag for OWASP ZAP, which should be avoided,
especially in the production systems.
As a suggestion, the authors could’ve used a containerized solution to run the suite, as it
would eliminate the need for installing the tools separately and would make it easier to
update the tools.
Nevertheless, the authors provided a good overview of the common security issues in
Kubernetes and developed a suite of known open source tools to address these issues.

26

Security Audit of Kubernetes based Container Deployments: A Comprehensive
Review

A paper written by Agrawal and Abhijeet identifies various high-level security challenges
related to Kubernetes-based deployments and highlights a number of best practices when
deploying Kubernetes clusters, such as [30, p. 3]:

■ Preparation of worker nodes
■ Securing the host system, network and inspecting the containers
■ Securing the orchestrator (etcd, kubernetes API server, kubelet, etc.)

Although the study includes multiple chapters on different aspects of Kubernetes security,
it still lacks some of the aspects. For example, the study focuses on network security,
however it does not provide any details about network segmentation or Network Policies
to control the traffic between the Pods.
The study could be expanded by including more details about the security aspects that are
currently missing, such as Pod lifecycles, resource quotas, security of the service account,
system backups etc.

Kubernetes Hardening Guide

The National Security Agency (NSA) and Cybersecurity and Infrastructure Security
Agency (CISA) have developed a hardening guide for Kubernetes [31] that aims to help
organizations secure their Kubernetes clusters. The guide is focusing on 4 main areas:

■ Pod Security
■ Network segmentation and hardening
■ Authentication and authorization
■ Logging and monitoring

Each area is expanded with a list of best practices and recommendations (e.g. using TLS,
correctly set-up RBAC, limiting resource usage, setting up central logging system etc.),
emphasizing that default configurations are often not secure and lack proper security
controls to mitigate the risks. It includes some basic configuration examples that could
be used as a starting point, however similar and more refined examples can be found in
Kubernetes official documentation. I think that some examples could be either improved
or replaced with more relevant ones. For example, it includes an example manifest of a
Pod Security Policy (PSP), which is deprecated, but briefly mentions the Pod Security
Admission (PSA), which would be a more relevant alternative.
It may lack some practical examples but overall, this guide is a good starting point for

27

organizations that want to improve their Kubernetes security.

CIS Kubernetes Benchmark

CIS Kubernetes Benchmark focuses on technical configuration settings to increase the
Kubernetes security posture [32]. As this is a hands-on guide, it is intended for system
administrators, security specialist, auditors, platform engineers, etc., who are deploying or
managing Kubernetes clusters [32]. The benchmark is divided into 5 chapters:

■ Control Plane components (e.g. API server, controller manager, scheduler)
■ Securing the etcd database
■ Control Plane configurations (e.g. authentication, authorization and logging)
■ Data planes (e.g. kubelet and kube-proxy configurations)
■ Policies (e.g. RBAC, Network Policies, Secrets Management etc.)

Each chapter contains a list of Kubernetes hardening recommendations with its description,
rationale, potential impact and remediation steps. The benchmarks include either a Level 1
or Level 2 Profiles, where Level 1 is considered as a base recommendation to lower the
attack surface while keeping machines usable, and Level 2 as "defense in depth" that are
stricter but may impact the usability of the system [33].
There are various tools that use CIS Benchmark as a reference to check the system security
state - as it is a widely recognized by cybersecurity experts and organizations. Out of all
analyzed literature, this is the most detailed and practical guide that organizations can use
to improve the cluster security.

Application Container Security Guide

This is a NIST Special Publication 800-190 [5] that provides guidelines for container
security. Similarly to CIS Kubernetes Benchmark, it is intended for the same audience. It
is divided into 5 major risk sections and even though it is mainly focused on Container
Security, it includes sections on orchestration security and underlying host OS risks. Every
section expands on the risks and vulnerabilities followed by 5 countermeasure sections for
the same risks.
Although each countermeasure is explained, it is more of a high-level overview and
focuses rather on the organizational processes than specific technical implementations.
It is especially helpful in the design phase, however the thesis author believes that for
implementation, it should be used together with other guides, such as CIS Kubernetes
Benchmark or Kubernetes Hardening Guide.

28

2.5.3 Gaps in the existing literature

Despite the significant amount of research conducted on container orchestration security,
particularly on Kubernetes, there are still several gaps in the existing literature. The
following subsections outline the gaps that were identified during the literature review.

Narrow focus on specific security aspects

Many studies focus only on specific aspects of Kubernetes security. For example, some
studies are focusing container security only, leaving Kubernetes security underexplored.
For some studies, even if the title suggests the topic of Kubernetes security, further
investigation shows that Kubernetes security is either not the main focus of the study or it
is not discussed at all. This narrow perspective can have the effect of missing the bigger
picture and make it difficult for organizations to understand the threats and implement a
comprehensive security strategy.

Limited practical implementation

Most of the analyzed literature is theoretical and focuses on identifying and classifying
Kubernetes threats and vulnerabilities. While these studies provide valuable insight into
Kubernetes security posture, they lack the mitigation strategies. Generally, when some
researches do propose the mitigation strategies, they still conclude with a discussion about
these strategies without a practical validation (e.g. controlled experiments). As a result,
organizations looking for clear guidelines are left in the dark with the theoretical knowledge
and may struggle to implement the security measures in practice.

Lack of country-specific standards

The most significant gap in the literature is the lack of research that focuses on country-
specific standards or frameworks. While there are some studies that reference security
frameworks, benchmarks or best practices, such as NIST SP 800-190, OWASP Kubernetes
Top 10 or CIS Benchmark [34, 35, 32], there is no literature that focuses on country-specific
standards, especially on E-ITS.
This is specifically important for Estonian public sector organizations (but not necessarily
limited to - as it is also recommended for private sector companies, and could possibly be
used as a baseline security measure elsewhere) as they are required to comply with E-ITS.

Contribution to this Thesis

This leads us to:

29

■ [RQ4]: What gaps exist between country-specific standards such as E-ITS ’APP.4.4:
Kubernetes’ module and the Kubernetes security in academic literature?

This review has shown that there is a significant gap in the existing literature regarding
country-specific standards, such as E-ITS ’APP.4.4: Kubernetes’ module, especially in
the context of practical implementation. Existing research focuses on general Kubernetes
security best practices, misconfigurations and vulnerabilities but not on country-specific
implementations.

This Thesis aims to fill this gap by providing a comprehensive analysis of E-ITS ’APP.4.4:
Kubernetes’ module, and bridging the theory and practice by offering a practical guidance
for organizations to implement the requirements.

30

3. Research Methods

This study employs a mixed-method research approach to develop a comprehensive
practical guidance/reference for organizations that are seeking to comply with E-ITS
APP.4.4: Kubernetes module requirements. The methodology includes three phases:

■ Exploratory Phase: Initial understanding and definition of the problem space, in-
cluding the Systematic Literature Review (SLR) findings and detailed document
analysis.

■ Constructive Phase: Designing and technically implementing a Kubernetes cluster
compliant with E-ITS requirements.

■ Validation Phase: Verifying and validating the implemented solution to ensure
compliance with E-ITS APP.4.4: Kubernetes.

Each phase uses specific research methods to achieve the objectives described below.

3.1 Exploratory Phase

3.1.1 Systematic Literature Review (SLR)

The research begins with an SLR in Chapter 2, which identifies the current state of
Kubernetes security, the main threats and challenges organizations face, and the research
gaps. The SLR provides insights that guide the next steps in document analysis and design.

3.1.2 Document Analysis

A comprehensive document analysis is conducted focusing specifically on E-ITS
APP.4.4: Kubernetes module. This method includes a thorough review of the E-ITS
module documentation to identify and break down the requirements into specific technical
and procedural tasks. Furthermore, the official Kubernetes documentation, industry-
recognized hardening guides and security benchmarks, and other relevant forms of
documentation are examined to provide context and enhance the understanding of the
E-ITS requirements.

31

3.2 Constructive Phase

In this phase, the findings from exploratory stage are used to design and implement a
technical solution that involves:

■ A high-level architecture design based on the identified best practices and specific
E-ITS requirements.

■ A structured comparative analysis that evaluates the available tools and technologies
for Kubernetes and determines the most suitable to be used in the implementation.
This analysis includes a comparison of features, limitations, community support and
its alignment with E-ITS security measures.

■ Executing the designed architecture step by step in a controlled environment, di-
viding the tools into categories based on their functionality. Initially, the categories
are configured incrementally, and each category is systematically validated before
moving on to the next. Following this structured approach ensures that any potential
issues are identified early and addressed on time, preventing delays in the overall
implementation process.

3.3 Validation Phase

Validation ensures that the technical implementation has applied the E-ITS APP.4.4: Kubernetes
security measures by checking the cluster compliance against each E-ITS measure with a
combination of the following validation methods:

■ Experimental validation: conducted through controlled tests in the Kubernetes
cluster. This includes automated benchmarking tools with predefined security base-
lines complemented with manual testing scenarios (e.g., creating a resource and
verifying whether the policy works as expected) to verify that security measures
behave as intended.

■ Empirical validation: manual reviews of the cluster configurations, Kubernetes
manifests, as well as observations and metrics gathered from a live cluster to verify
that implemented measures are actually effective and persistent.

By combining these validation methods, the research ensures that the implemented solution
is practically effective and aligns with the E-ITS APP.4.4: Kubernetes security measures.

32

3.4 Data Collection

Data collection process uses various sources to ensure it is comprehensive and reliable.
The following sources are used:

■ Academic literature identified through the SLR
■ Technical documentation such as Kubernetes official documentation, vendor manuals

and technical specifications
■ Official E-ITS documentation (APP.4.4: Kubernetes module, implementation and

auditing guidelines and other relevant documents)
■ Recognized Kubernetes security guides, benchmarks and blueprints
■ Case studies, such as real-world experiences and public repositories (e.g., GitHub)

detailing issues, resolutions and lessons learned regarding Kubernetes security

3.5 Data Analysis Techniques

Data analysis techniques are used to extract meaningful information from the collected
data. The following two complementary techniques are used:

■ Thematic analysis to identify, analyze and synthesize patterns from the SLR, reg-
ulatory documents, technical guidance and other relevant literature to align E-ITS
requirements with industry best practices.

■ Comparative analysis to select and evaluate the most suitable tools and technologies
- each fulfilling a specific purpose, and complementary to each other - to ensure the
alignment with E-ITS security measures.

By employing these phases and methods, this research aims to deliver a thoroughly vali-
dated and practically applicable implementation of E-ITS APP.4.4: Kubernetes compliant
Kubernetes cluster.

33

4. Analysis of E-ITS APP.4.4: Kubernetes

Based on the findings in the SLR, this chapter helps to address the RQ3 and RQ4 by
providing a detailed analysis of E-ITS ’APP.4.4: Kubernetes’ module, identifying its
specific requirements and examining their alignment with Kubernetes best practices. Ad-
ditionally, it helps to understand the gaps between this module and current Kubernetes
security practices in academic literature.

4.1 Background and Context

The Baseline Security Catalogue of EITS is based on the German BSI IT-Grundschutz.
Additionally, EITS complies with the requirements of the ISO/IEC 27001 standard. The
’APP.4.4: Kubernetes’ module is part of the E-ITS and focuses on the security threats
and measures for Kubernetes clusters. The module is divided into three main sections:
Description, Threats, and Measures.
The following paragraph breaks down and analyses the E-ITS ’APP.4.4: Kubernetes’
module to understand and explain its requirements in detail. This is needed to understand
how it compares with the current best practices, and what kind of tools and technologies
are needed to meet these requirements in the technical implementation paragraph. The
’APP.4.4: Kubernetes’ module is divided into 3 main paragraphs:

■ Description
■ Threats
■ Measures

The content and purpose of each of these 3 main paragraphs will be expanded below.

4.2 Description

This paragraph is mainly introductory and outlines the Purpose, Responsibility and Limita-
tions of E-ITS ’APP.4.4: Kubernetes’ module.

4.2.1 Purpose

The purpose of this module is to present various measures for the containerization automa-
tion and management, with the purpose of protecting the data within Kubernetes cluster.

34

Furthermore, the paragraph describes the basics of Kubernetes, highlighting some of the
components and that Kubernetes is a de facto container orchestration solution in both
public and private clouds [2, Ch.1, Sec. 1.1].

4.2.2 Responsibility

It is emphasized that implementing the security measures for Kubernetes cluster is only
the responsibility of IT department and no additional personnel [2, Ch.1, Sec. 1.2].

4.2.3 Limitations

This paragraph outlines the limitations for ’APP.4.4: Kubernetes’ module, emphasizing
that it covers the measures related to deployment, implementation and administration of
Kubernetes cluster. That includes the hardware components, such as Container Network
Interface (CNI) and Container Storage Interface (CSI) [2, Ch.1, Sec. 1.3]. Additionally, as
already mentioned in the Introduction chapter, this module is always discussed together
with the measures from module ’SYS.1.6: Containerisation’ [2, Ch.1, Sec. 1.3], and
this implies that the container images used inside the Kubernetes cluster shall meet that
module’s requirements. The paragraph states that when implementing the measures, the
choice of Container Runtime is not important, highlighting some examples, such as Docker,
containerd, runC and Windows Container. However, since Kubernetes 1.24, Dockershim is
deprecated [36], it might be worth noting that using Docker as a Container Runtime works
only when using cri-dockerd as a shim for Docker Engine.

4.3 Threats

This chapter focuses on the defined threats in the E-ITS ’APP.4.4: Kubernetes’ module
that can be encountered in Kubernetes cluster. These threats are divided into five different
categories.

4.3.1 Control plane authentication and authorization errors

The control plane which includes the applications that orchestrate the operation of Kuber-
netes nodes, runtimes and clusters, needs privileged access (administrator permissions) to
work, and this access is usually provided through network ports or Unix Socket [2, Ch.2,
Sec. 2.1]. Misconfigurations on authentication and authorization of control plane can have
widespread impacts, potentially compromising the entire orchestration infrastructure.

35

4.3.2 Loss of confidentiality of the token of a pod

Pods use tokens for communication with the control plane, and the attack on a Pod could
result with the token ending up in the possession of the attacker [2, Ch.2, Sec. 2.2]. For
example, by default, kubelet automatically mounts the ServiceAccount’s API credentials
(unless explicitly configured otherwise) [37] to a Pod, which could then be used by
attacker to communicate with the Control Plane, and in case of elevated privileges, make
unauthorized changes in Control Plane settings or orchestration.

4.3.3 Conflict of resources caused by a pod

A single Pod can overload the node it is running on disrupt the entire Kubernetes orches-
tration. As a result, this may compromise the availability of all other Pods on that node or
prevent the node from functioning as expected [2, Ch.2 Sec. 2.3]. For example, if there are
no resource limits set for a Pod, and it starts consuming more memory than available on
the node, the OOM Killer can terminate kubelet process on the node, which causes the
node being unable to manage the Pods running on it.

4.3.4 Unauthorised changes in the Kubernetes cluster

For environments where automation processes (such as CI/CD tools) have privileged rights
to interact with Kubernetes clusters, there is a risk of unauthorized changes being made
in the clusters - whether by the automation or the users controlling them [2, Ch.2, Sec.
2.4]. For example, due to a configuration mistake made by a user, a CI/CD pipeline might
deploy this change to a production while it was actually intended for a QA cluster.

4.3.5 Unauthorised access to a pod

By default, all Pods have the capability to communicate with each other, with the nodes
in the cluster or with the other external systems (unless explicitly denied otherwise) [2,
Ch.2, Sec. 2.5]. For example, a Pod exploited by an attacker can be used to access other
Pods, or nodes (including the control plane) in the cluster. This can lead to serious security
incidents and other types of attacks.

4.4 Measures

The measures in the E-ITS ’APP.4.4: Kubernetes’ module are divided into three measure
categories:

36

■ Key measures
■ Standard measures
■ Advanced measures

Additionally, the measures can also be viewed from the perspective of the Lifecycle of the
Kubernetes cluster, which is divided into 3 lifecycles, and additional advanced measures:

■ Planning
■ Implementation
■ Operation
■ Additional advanced measures

This Lifecycle categorization logic is done such that Key measures, Standard measures
and Advanced measures are all spread across these four lifecycles.
However, some measures are related to the overall processes of the organization and cannot
be implemented directly on Kubernetes. For these measures, the industry best practices
and standards are used as a direction for organizations to follow.
We’ll focus on the measures in the same order they are presented in the E-ITS ’APP.4.4:
Kubernetes’ module, starting from Key measures, followed by Standard measures and
finally Advanced measures. Although advanced measures are applied only when "high" or
"very high" protection requirements are identified, we’ll analyze them as well, as they are
still part of the E-ITS ’APP.4.4: Kubernetes’ module.

4.4.1 Base Measures

Base Measures chapter focuses on the measures that need organizational processes and
policies to be implemented.

APP.4.4.M1 Designing the partition of applications

This paragraph focuses on how to design the application separation in Kubernetes. Before
thinking about deploying any applications, there should be a clear architectural under-
standing within the organization how the Kubernetes workloads are separated from one
another.

■ Development, Test, and Production environments shall be separated from one
another. As there are no direct recommendations from E-ITS or other frameworks
focusing on Kubernetes entirely on Kubernetes security, organizations should fol-
low the best practices and additional available frameworks in the industry. For

37

example, chapter ’Annex A 8.31 - Separation of Development, Test and Production
Environments’ of ISO 27002:2022 emphasizes on the importance of separating
the development, testing and production environments to prevent various security
incidents [38], and could be used as a reference for organizations to follow.

■ When designing the architecture for Kubernetes namespaces, meta tags (such as
labels and annotations), networks and for the clusters themselves, it is important to
base the decisions on the requirements and potential risks of the applications. In the
context of decision making on application security requirements and risks, chapter
’Control 8.26’ - Application Security Requirements’ in ISO 27002:2022 framework
[39] can be used as a good reference.

■ The decision how many nodes and node groups should be created and how to
categorize them, shall be based on the protection requirements of the applications
and the potential risks.

■ It shall be decided how different resources are separated from each other and how
many resources will be allocated, based on the design of the architecture. For
example, the CPU, memory and storage resources can be allocated and limited per
container, Pods or namespace. It is a common practice and a recommendation to use
Resource Quotas and Limit Ranges [31, pp. 50–51].

■ The network segmentation is a central concept of Kubernetes and 4 distinct net-
working problems shall be taken into consideration when designing the network
architecture of Kubernetes [31, 40, p. 14]:

– Pod-to-Pod communication
– Pod-to-Service communication
– Service-to-Service communication
– External-to-internal communication

■ Additionally, the applications shall be partitioned based on the general network
architecture of the organization and the overall zoning principles of the network [2,
Ch.3, Sec. 3.2]. NIST 800-215 [41] and OWASP Network Segmentation [42] are
great references for organizations to follow when designing the network architecture.

■ Namespaces are a way to partition cluster resources and every application shall
run in a designated Kubernetes namespace. Whether there’s a namespace for each
application, group of applications or any other form of grouping, it is important to
have a clear understanding of the namespace structure and how the applications are
separated from one another. It is also recommended in CIS Kubernetes Benchmark
[32, p. 275], NSA/CISA Kubernetes Hardening Guide [31, p. 14], and official
Kubernetes documentation [43] to use namespaces to isolate workloads from one
another.

■ Each cluster contains only applications with similar security requirements and attack
vectors. For example, from both privacy and security perspective, you cannot store

38

European customer data in a cluster that is located outside the EU. Clusters that
collect, process, or transmit individually identifiable electronic protected health
information have different compliance and security requirements than clusters that
do not process any sensitive data, and this is something that needs to be taken into
consideration when designing the application partitioning [44]. This is something
that has to be taken into consideration in design phase.

APP.4.4.M2 Automation of the development of applications with the help of CI/CD

When designing the CI/CD pipelines, it is important to understand the GitOps framework
and best practices to ensure the standard workflow for applications, increased security,
reliability and consistencty across clusters [45]. It is important to follow the least privilege
principle - define only the minimum set of permissions needed for tools to work.
Additionally, there must be a process that defines how to secure the data that is processed
by the CI/CD tools - how to ensure confidentiality, integrity and availability of that data. A
special publication from NIST, SP 800-204D focuses on the security of CI/CD pipelines
and provides a great starting point for organizations to follow [46, Ch. 4-5].
CI/CD pipelines shall be used throughout the entire application lifecycle - development,
testing, deployment, monitoring and updating. A great introduction to CI/CD pipelines is
provided by Codefresh, and this is something that organizations can use as a starting point
[47].

APP.4.4.M3 Planning the Kubernetes identity and rights management

API requests are tied to either a user (normal user or service account) or are treated as
anonymous requests, and authentication and authorization happens regardless of whether
the requests are made through a client, web interface or API. By default, Kubernetes allows
anonymous requests [48], however it is worth taking into account whether anonymous
discovery is an acceptable risk for the organization or not. If the Kubernetes API is using
RBAC authorization, it is considered reasonable to allow anonymous access to the API
server for health checks and discovery purposes [31, 32, p. 59], as otherwise the the health
probes would not be able to access the API server, and kube-apiserver static Pod would
not start. One workaround would be to use long-lived tokens and modify the health probes
to use these tokens, however this is not a recommended way in Kubernetes documentation
[49], or use an mTLS authentication - however, this would require additional certificate
management and distribution that might not be feasible in all environments.
Similarly to official recommendations from Kubernetes documentation, the principle of
the least privileges shall be followed, and only permissions explicitly required for their
operation should be used [50]. Although Kubernetes documentation does not describe
how the identities and access permissions should be managed, E-ITS explicitly requires,

39

similarly to a NIST CSF recommendation, a separation of duties and access control
management only by authorised personnel [51, pp. 19–20].
Kubernetes RBAC best practices state that Persistent Volumes should only be created by
trusted administrator [50], however E-ITS goes a step further and includes the modification
constraint as well. This is a bit contradicting, as PVC (Persistent Volume Claim) is usually
a part of the application lifecycle, created and managed together with other Kubernetes
resources for that application - assuming that a proper process is defined how the changes
are reviewed and approved, and that Storage Class is configured to Retain the data after
deletion, and the configuration of Storage Class and underlying storage is managed by
designated personnel.

APP.4.4.M4 Partition of pods

This chapter defines the requirement to use Linux namespaces and cgroups that are kernel
features used by Container Runtimes for isolation and resource limiting. This is a default
requirement by Kubernetes that kubelet and the underlying container runtime (e.g. con-
tainerd, CRI-O) need to interface with cgroups in order to enforce resource management
for Pods [52]. Namespace isolation (not to confuse with Kubernetes namespaces) limits
which resources a container may interact with and ensures that applications and processes
within the container only see the resources allocated to that container.
Expanding more on the fundamental isolation (provided by Linux namespaces) require-
ments by E-ITS - Kubernetes enables most of these by default (PID, IPC, network etc.),
and using hostPID, hostIPC or hostNetwork parameters would break this isolation and
shall be avoided. However, the current version of E-ITS (2023) does not require the use of
User Namespaces which is another Linux feature that isolates the UIDs and GIDs from the
host [53].

APP.4.4.M5 Backup of cluster information

Although Kubernetes has a way to back up all objects that are stored in etcd, there is
no automatic backup solution for this and Kubernetes documentation together with best
practices shall be used to back up the etcd cluster [54]. As E-ITS doesn’t specify the backup
means and methods (apart from the list of resources that shall be periodically backed up),
it is recommended to look at the best practices from Kubernetes documentation or other
frameworks and rely on the overall backup policy in the organization, depending on the
RTO and RPO.
It is recommended to use the backup capabilities of the underlying storage provider or use
the Kubernetes VolumeSnapshot API (not part of the core API toolset) as a standardized
way for CSI drivers to create and manage snapshots of Persistent Volumes [55]. Backup
solutions like Velero or Veeam Kasten have integrations with various CSI drivers and can

40

be used to utilize the VolumeSnapshot API for backup and restore [56, 57].

Additionally, it is recommended to separately backup OS-level files on control plane and
worker nodes, such as kubelet, kubeadm, container runtime and CNI configuration files by
using either configuration management tools or volume/OS-level backup solution. Overall,
organizations shall have a backup process in place, and E-ITS, NIST 800-34 provides a
great overview and starting point how to plan backup and recovery strategies [58, Ch. 3,
Sec. 3.4.1], [59, p. 65].

4.4.2 Standard Measures

APP.4.4.M6 Secure resetting of the pods

This measure aligns with Kubernetes defaults and overall best practices how to handle ap-
plication startup logic. It means that in case there are any pre-requirements (e.g. additional
configuration, file transmitting etc.) that need to be done before the container can start, it
shall be done by using initContainers, which are specialized containers that always run to
completion before the app containers in a Pod [60] ensuring they start in a clean state.

APP.4.4.M7 Partition of Kubernetes networks

Kubernetes clusters require non-overlapping IP addresses for Pods, Services and Nodes
assigned by the following components [61]:

■ CNI - configured to assign IP addresses to Pods
■ kube-apiserver - configured to assign IP addresses to Services
■ kubelet - configured to assign IP addresses to Nodes

However, it doesn’t define how the network partitioning should be done - whether to use
different networks for each of these components (by utilizing the Overlay network) or
not. To increase the security and reduce the attack surface of the cluster, E-ITS requires
network segmentation, as this is a common best practice and is recommended by different
frameworks.

Control plane, data plane (worker node), cluster (pod network) and administrative networks
shall be separated from each other [31, p. 19]. In the cluster network (Pod network), only
the ports required for the application functionality shall be open. The communication
between Kubernetes namespaces shall be blocked by default, and only the required network
connections whitelisted. This can be achieved by utilizing Kubernetes Network Policies
with an implicit deny rule to deny all traffics to and from Pods, and then explicitly allowing

41

the traffic on required ports and namespaces [62].
The ports required to manage the control plane and data planes shall be accessible only
from the designated administrative network or designated pods (Kubernetes operators that
manage various resources), preferably by using a dedicated computing resource. This
is recommended by CIS Control 12 [63, Ch. 12.8] and other frameworks focusing on
network best practices.
The CNIs and Network Policies shall be managed only be designated personnel or Ku-
bernetes operators. Either way, this assumes a proper review and approval process in the
organization.

APP.4.4.M8 Security of the Kubernetes configuration files

This section sets the requirements for Kubernetes configurations (including all extensions
and applications) management throughout their lifecycle. Although Kubernetes does
not have a built-in versioning system for resources, it is a common recommendation in
Kubernetes documentation [64] and an E-ITS requirement to have versioning for the
configuration files. This is usually done by using a version control system (e.g. Git). The
most common and recommended way for doing this is to use GitOps principles, which is a
set of best practices for managing infrastructure and application configuration [65].
By following the same GitOps principle, the configuration files are managed by special
tools (e.g. Argo CD, Flux CD, Octopus Deploy) to deploy the changes in the cluster. As
these tools are interacting with Kubernetes API, they need to have the required permissions
to do so. It is a requirement in E-ITS and an overall Kubernetes best practice to use the
least-privilege principle when granting RBAC permissions [50] these tools, particularly
when handling the read-write permissions of the control pane configuration.

APP.4.4.M9 Security of the Kubernetes service accounts

By default, when a Pod is created, Kubernetes automatically assigns the default service
account of that namespace unless specified otherwise [66], but this is not recommended
from security perspective. Similarly to CIS Benchmark recommendation, E-ITS requires
that no Pod should use the default service account and the permissions for ’default’ service
account shall be revoked entirely together with ’automountServiceAccountToken: false’ to
avoid the token being mounted to a Pod by accident [32, Ch. 5].
Furthermore, every application Pod (including the different automation tools) shall have
its own service account created, and the permissions shall use the least-privilege principle -
only the permissions that are required for the application functionality shall be granted.
Additionally, privileged permissions shall only be used for service account managing the
control plane or only for Pods where it is otherwise inevitable.
There is a contradicting statement about Pods that do not have a service account - this is

42

not a possible scenario in Kubernetes, as every Pod will have a service account assigned
to it. It is possible, and recommended when the application doesn’t need to access the
Kubernetes API, to not mount the service account token, but this is not considered as a
Pod without a service account.

APP.4.4.M10 Security of the automation process

This section addresses the security between the automation tools (e.g. CI/CD and pipelines)
and the Kubernetes cluster. Similarly to the previous measures, it is required to rely on the
best practices [50] and use the least-privilege principle when granting permissions to these
automation tools. Additionally, E-ITS focuses on the human element of the automation
process and requires the separation of duties - only authorized personnel shall be able to do
any changes on the Pod configuration or trigger the automation tools that would deploy the
changes. The least-privilege principle and separation duties is a common recommendation
in the industry and can be found in various frameworks, such as NIST CSF [51, pp. 19–20]
and 800-53 [67, pp. 36–38], NSA/CISA Kubernetes Hardening Guide [31, pp. 23–25] and
CIS Kubernetes Benchmark [32, p. 220].

APP.4.4.M11 Monitoring the use of containers

This section focuses on the utilization of Kubernetes health probes - a built-in feature that
performs a periodical diagnostic on a container [68]. Although a built-in feature, it is not
configured by default and needs to be explicitly defined in the resource manifest by the
user. However, it is a common recommendation to use these probes to ensure the liveness
and readiness of the application.
E-ITS requires that for each container in a Pod, the health probes (livenessProbe, readi-

nessProbe, startupProbe) are defined and configured according to the application require-
ments and expected behavior. Even though it might seem trivial, it is a common mistake
to either not define the probes at all, or use the values that are not suitable for the appli-
cation, setting either too optimistic or pessimistic values for the probes. This can lead to
unnecessary restarts of the application or the application being marked as ’ready’ when it
actually isn’t. Even though lifecycle hooks, particularly the preStop hook to ensure that the
application is stopped gracefully (e.g. the container needs to perform additional cleanup
tasks before termination), are not explicitly required by E-ITS, it can be essential in some
cases to ensure the graceful termination of the application - which itself is a requirement.
Unfortunately, the topic of health probes and lifecycle hooks are not covered in CIS Kuber-
netes Benchmark, NSA/CISA Kubernetes Hardening guide or NIST framework, so the
best way for organizations to learn about the health probes is to use the official Kubernetes
documentation [69, 68, 70, 71].

43

APP.4.4.M12 Security of infrastructure applications

This measure mandates specific security considerations when ’images’ (e.g. system images,
disk snapshots) are used for critical infrastructure tasks such as automation, hard drive
management or configuration file backups. The focus is on securing these images and the
tools that manage them (e.g. CSI Drivers for Volume Snapshots, backup solutions like
Velero and Veeam)

■ Data exchange and communication:

Data Exchange - images and its associated sensitive data must be encrypted
in-transit. This applies when the images are being copied and moved to external
storage (e.g., for backups) Images and associated sensitive data must be encrypted
during transit. This applies when images are being copied, moved to external storage
(e.g., for backups), or deployed across the network.

Data Communication - all network communication channels involved in manag-
ing or transferring these images must be encrypted. In Kubernetes, API communica-
tion is typically encrypted, but it needs to be ensured that pod-to-pod communication
is also secured, potentially using a service mesh (e.g. Istio, Linkerd) to enforce
mTLS. Communication with any external services handling these images (e.g. image
registries, backup storage) must also be encrypted.

■ Logging of changes:
A comprehensive logging of all changes related to these images is required. For
example, Kubernetes has the audit logging capabilities, however it is not enabled by
default and needs explicit configuration in audit policy manifests [72]. A central log-
ging solution is essential to collect audit and application logs from all applications in
the cluster. It should be ensured that Kubernetes logging best practices are followed
and containers are logging to stdout/stderr streams, so it can be correctly handled by
the container runtime. This ensures that logs are collected and aggregated by the
logging agent and sent to a central location for storage [73].

4.4.3 Advanced Measures

This chapter now describes the advanced measures that are required by E-ITS. These
measures are more specific and technical and are not focused as much on the organiza-
tional process as Key measures and Standard measures, rather they look it from the CIA
(Confidentiality, Integrity, Availability) Triad perspective.

44

APP.4.4.M13 Automatic configuration audits (C-I-A)

This section focuses on proactive approach on maintaining the Kubernetes security through
automated checks and continuous monitoring. It requires to continuously compare the
live configuration (node settings, Kubernetes components, Pods and other Kubernetes
resources) against the desired state. This is something that is not provided by Kubernetes by
default and requires organizations to use external tools. There are various tools providing
this functionality.
There are various tools that could be used for auditing purposes and policy enforcement. For
example, kube-bench, Kubescape can be used to check misconfigurations against various
frameworks (e.g. NSA/CISA, CIS Benchmark, MITRE ATT&CK) [74, 75], Kyverno,
OPA with Gatekeeper to enforce policies within Kubernetes cluster [11, 10], Argo CD or
Flux CD to ensure the desired application state (the application in this context may vary -
from Kubernetes resources to entire clusters or external services) with auto-remediation
[76, 77]. These are just a few examples of the tools that can be used to fulfill this E-ITS
requirement. However, the most important aspect of this requirement is that there should
be an organizational process in place that defines the ruleset how to choose and use these
tools.

APP.4.4.M14 Use of specialised nodes (C-I-A)

This section complements the APP.4.4.M1 key measure regarding the partitioning of the
Pods and focuses entirely on the segmentation of Kubernetes nodes. The main requirement
is to use specialized nodes depending on the tasks they are performing. This is not a
requirement or recommendation in Kubernetes documentation, however it is a common
practice to use specialized nodes in production environments to avoid the noisy neighbour

issues. The E-ITS requirement specifically emphasizes the following segmentation logic:

■ A general specialisation - the nodes shall be grouped based on the needs of the
applications and the task they are performing. For example, memory-intensive
workloads should be run on nodes with more memory, CPU-intensive workloads on
the nodes with a higher CPU core count, GPU-intensive workloads on the nodes
with GPU support and so on. After defining the node groups it is important to use
the built-in Kubernetes scheduling features to assign the Pods to the correct nodes
and prevent them from being scheduled on the wrong nodes. There are various ways
to do this, such as node selector, affinity/anti-affinity rules and taints/tolerations.
Kubernetes documentation provides a great overview how to use these features [78].

■ Nodes for network traffic - specific nodes are designated only for handling inbound
and outbound traffic between the cluster and external networks. Having dedicated
nodes for this purpose simplifies the network security management, enhances mon-

45

itoring (easier to pinpoint on issues) and isolates the components that are facing
external networks to reduce improve the security posture of the cluster.

■ Control plane components - It is an overall best practice that Kubernetes API server,
etcd, controller-manager, scheduler shall all run on dedicated nodes and nodes shall
not be used for any "regular" application Pods at all.

■ Storage nodes - Applications with a primary function of performing backups (e.g.
Velero, Veeam operators, Pods doing the actual backups) shall be grouped together
and run on dedicated nodes. As these Pods usually have higher I/O demands, the
nodes should be optimized for this purpose (when possible). Often times, these
nodes are used for running other stateful applications (e.g. databases, message
queues) as well. However, basing on E-ITS requirements it would be even better to
have separate nodes for these applications as they have different requirements and
workloads.

Although NSA/CISA Kubernetes Hardening Guidance briefly touches the topic about
the importance of node segmentation [31, pp. 19–20], it does not expand on this topic,
and other frameworks/guides do not mention this at all, making it unique to E-ITS in this
aspect.

APP.4.4.M15 Partition of applications at the levels of nodes and clusters (C-I-A)

This section requires a strong isolation for highly sensitive/secure applications running on
Kubernetes in two possible ways:

■ Deploying these applications into a completely separate Kubernetes cluster for
maximum isolation. From security perspective, this is the best option as it provides
the highest level of isolation, however it causes a lot of operational overhead, requires
additional resources for the cluster, which will results with higher costs.

■ Isolating these resources to dedicated nodes that are completely isolated from other
nodes in the cluster based on correct application of taints, tolerations, node selectors,
affinity rules and network policies. This is a more cost-effective solution with less
operational overhead, however it requires a lot of planning to ensure that these nodes
are isolated from the rest of the cluster.

Overall, the choice between these option depend on the requirements of the organization
(e.g. compliance, security, privacy and operational). Although not explicitly recommended
by spfecific Kubernetes hardening guides/frameworks, it is best to rely on Kubernetes doc-
umentation about multi-tenancy [43] and the general cybersecurity frameworks describing
the platform security and data flow controls [51, 67].

46

APP.4.4.M16 Use of Kubernetes operators (C-I-A)

This section focuses on the use of Kubernetes operators to automate the management of
critical applications and control plane components. Although Kubernetes provides the
framework for Operators [79], their use is optional but highly recommended for complex
and critical workloads.
The operator in this context is a software extension that uses custom resources to manage
applications and their components - such as cert-manager for managing TLS certificates,
Velero operator for managing backup or Prometheus operator for logging and metric
collection. Using these tools can significantly reduce the operational overhead, reduce the
risk of human error and help to improve the overall security posture of the cluster simply
by automating the tasks that would otherwise be done manually.
Choosing operators can be a difficult task as there are hundreds of different operators
available, and it is important to make the decision based on the needs. It is important to
secure them properly - use the least-privilege approach when granting RBAC permissions
(based on the requirements in APP.4.4.M9) and make sure that they are not running with
elevated permissions.
OperatorHub is a common place to find different Kubernetes operators together with their
documentation and installation instructions [80] and can be used as a good starting point
to find the right operators.
E-ITS is kind of unique in this section as the other guidances and frameworks do not
explicitly mention the recommendation to use operators at all.

APP.4.4.M17 Certification of nodes (C-I-A)

This section focuses on the certification aspect of Kubernetes nodes, and most of these
requirements are already facilitated by default when deploying the cluster with kubeadm
(as all certificates needed for the cluster are generated automatically) [81, 82].
However, it is still possible that some installation methods allow insecure communication
between the nodes and the control plane, or custom certificates (including the ones signed
by external CA). It is important that certificates are rotated regularly - usually this is done
automatically when upgrading the cluster or using the RotateKubeletServerCertificate

feature on kubelet. However, it is important to note that even though kubeadm renews all
certificates during control plane upgrade, it cannot manage certificates signed by external
CA [82], and 3rd party tools are needed to approve the CSR.
Another thing to note is that the default kubelet serving certificate is a self-signed certificate
and connections from external services like metrics-server to kubelet cannot be secured
with TLS [82], and this automatically does not meet the E-ITS requirement and shall
be mitigated by using the ’serverTLSBootstrap: true’ configuration when initializing the
cluster with kubeadm.

47

Additionally, TPM-based attestation is preferred whenever possible - instead of the usual
CSR process, the node is using the Endorsment Key of the TPM module to create the
CSR, which is then signed by the TPM CA on the control plane. However, this is not
always possible as virtualization platforms may not offer virtual TPM modules depending
on the virtual host. TPM is also mentioned in the NIST 800-190 under orchestrator
countermeasures but rather in a general context that software-based security measures can
take the organization just so far [5, p. 28], which makes E-ITS unique in this aspect as
well.

APP.4.4.M18 Microsegmentation (C-I)

This section sets the requirements on microsegmentation of the Kubernetes cluster with a
special focus on the CNI-based segmentation. Some requirements are already covered in
section APP.4.4.M7 regarding the utilization of network policies. However, this section
expands further and complements it with additional requirements that cannot be achieved
with the Kubernetes Network Policies only - such as data filtering based on service ac-
counts or certificate-based authentication.
This can be achieved by using the expanded capabilities of CNIs or Service Meshes, or the
combination of both. For example, Calico and Cilium are capable of enforcing network
policies based on service account names and other metadata [83, 84].
To comply with the E-ITS requirements in this section, Service Meshes shall be used to
expand even further by moving from L3 and L4 to L7 filtering. By utilizing CNI net-
work policies, it is possible to achieve the network policy requirements defined in section
APP.4.4.M7 in a more efficient way and with less operational overhead.
Although different frameworks and guidances mention the importance of overall net-
work segmentation, only E-ITS expands on this further and sets the requirements for
microsegmentation.

APP.4.4.M19 Guaranteeing the high availability of Kubernetes (A)

This section outlines the requirements for ensuring the availability and disaster recovery of
Kubernetes clusters and applications. In case of an outage or failure in one location, the
cluster and the applications should continue operating with a minimum downtime or be
able to recreated in another location. Meaning that all the configuration files, application
images, networks and other resources shall be prepared as much as possible for smooth
and quick recovery.
This comes down to the overall recovery requirements of the organization - when designing
the system, what is the acceptable RPO (Recovery Point Objective) and RTO (Recovery
Time Objective) for the applications running in the cluster.
Expanding on this requirement, it is important to ensure that underlying hardware of the

48

clusters, Pods, and applications have been distributed across different locations to ensure
high-availability. Although the default kubeadm setup creates a single control plane node,
it is recommended to use at least 3 control plane nodes for redundancy (either with stacked
or external etcd topology) [85, 86].
The data plane (worker) nodes should also be distributed across different locations, and
Kuberentes built-in scheduling features such as podAntiAffinity and topologySpreadCon-

straints should be used to ensure that applications are not running on the same node.
None of this is a requirement in Kubernetes documentation or in other Kubernetes specific
hardening guides - most likely because it is usually considered as a part of reliability and
not security. However, it is a common practice in the industry to have high-availability and
disaster recovery requirements in place.

APP.4.4.M20 Encryption of the control plane storage space (C)

This section sets the requirements for implementing both OS-level encryption and Kuber-
netes at-rest encryption for the control plane, with a special focus on the etcd database.
This is one of a few E-ITS requirements that is discussed in most Kubernetes frameworks,
hardening guides and official documentation because it is unencrypted and contains all
cluster information together with secrets in a plaintext format and therefore can be a target
for attackers.
For etcd encryption, it is best to use the Kubernetes documentation that explains the process
in detail with emphasis of the common mistakes that can happen during the configuration
[87] or other guides with specific examples [31, pp. 52–53],[32, pp. 111–113]. To encrypt
the volumes on OS-level, it is recommended to use either the provider’s volume encryption
solution or if that is not available, to use software that allows to encrypt the whole disk.

APP.4.4.M21 Periodic restarting of the pods (C-I-A)

This requirement is perhaps the most controversial in the E-ITS Kubernetes section.
Although initially Kubernetes was designed to be used for stateless applications, it has
now become a common practice to run stateful applications in Kubernetes, including
databases and message queues, especially with the increasing popularity of using operators
to manage these applications seamlessly.
Although it is critical to ensure the availability of Kubernetes applications during the restart
process, and design the applications in a way they can be shut down gracefully, it is not
a standard practice to manually restart the Pods periodically. This is either done by the
orchestrator based on actual need or shall be done with the help of operators that manage
the applications by utilizing Pod Management Policies, Pod Disruption Budgets and other
Kubernetes features.

49

4.5 Conclusion

This chapter provided an overview and analysis on ’E-ITS APP.4.4: Kubernetes’ module.
Each section was expanded with additional information and context to provide a better
understanding of the requirements, how do they compare with the overall best practices
and Kubernetes frameworks/guidances and what should be taken into consideration when
implementing them.
Although it is usual for standards to set the requirements and leave the implementation
up to the organizations, I believe that some requirements should provide more context
and explanation for the need, as the interpretation of them can vary from organization to
organization, and eventually cause potential issues during audits. Although the author of
this thesis has experience with Kubernetes and read the requirements multiple times in
Estonian and English, it was still difficult to understand either the requirement itself or
the reasoning behind it. It feels like some context is lost in translation from German to
Estonian (BSI to E-ITS) and then to English.
For example, the requirement to use CNI policies (a custom resource) for network seg-
mentation, although you’d only need a CNI that supports NetworkPolicies - of course,
these custom resources often expand the Kubernetes Network Policies and allow for more
defined outcomes. Additionally, the requirement that some Pods should run without a
service account, is not possible, as every Pod will have a service account assigned to it
and disabling the auto mounting of its token will contradict with the second part of the
requirement - using a token to authenticate to the Kubernetes API.
To conclude, the E-ITS Kubernetes module is a great addition to the Kubernetes security
landscape and compared with other frameworks, it expands more on the organizational
processes and advanced security measures that are not completely covered elsewhere. How-
ever, for the technical implementation, organizations still need to rely on the Kubernetes
documentation and practical hardening guides (e.g. CIS Benchmark, NSA/CISA Harden-
ing Guide) as standards provide you the objectives for end goal, but not the resources how
to achieve it.

50

5. Technical Implementation

In this technical implementation section, the focus is to deploy a self-managed Kubernetes
cluster in E-ITS ’APP.4.4: Kubernetes’ compliant way. It is based on the requirements
outlined in the previous analysis chapter to find the most suitable tools and technologies
to follow the best practices and achieve the desired outcome. Additionally, this chapter
provides a significant part of the RQ2 answer by identifying the tools and demonstrating
the implementation process that can be used for E-ITS adoption, and shows a concrete
path for addressing the RQ1.
Although the advanced measures are applied only when a "high" or "very high" protec-
tion requirement is detected, this technical implementation will treat as these protection
requirements are detected, and therefore the advanced measures will be implemented. This
is done to ensure that in case organizations have a higher protection requirement, this
implementation is still applicable and relevant.

5.1 Resource Platform

For the resource deployment platform, Microsoft Azure was selected due to multiple
reasons. In addition to providing all the resources that are needed to build a self-managed
Kubernetes cluster, the author of this thesis has access to Azure credits which allows the
creation of this environment without excessive costs. This is important because the author
does not have access to dedicated physical servers and alternatively, using other cloud
service providers without credit could become exceedingly expensive and risk the technical
implementation of the thesis.

5.2 High-Level Architecture

The high-level architecture designed in this study will be built taking into consideration
the best practices of security, scalability and high-availability to align directly with E-ITS
requirements. As described in the previous section, the cluster infrastructure will be built
in Microsoft Azure to leverage its capabilities, such as providing isolated and segmented
network and multiple availability zones to ensure resilience and fault tolerance. This
architecture consists of distinct node group, each dedicated to specific functionalities:

■ Control Plane Nodes - responsible for managing the Kubernetes cluster state. These
nodes will be deployed across 3 availability zones to ensure high availability and

51

fault tolerance.
■ Ingress Nodes - dedicated nodes to handle external inbound traffic, isolating ingress

workloads from other workloads for security and performance reasons (e.g., noisy
neighbor effect).

■ Monitoring Nodes - specific nodes to host monitoring and logging tools that are
often resource-intensive and would otherwise affect the performance of other work-
loads.

■ Storage Nodes - dedicated for storage-related workloads, such as cluster backups.
■ General Nodes - general-purpose nodes that are used to run other workloads that do

not require specific resources or configuration.
■ Isolated Nodes - dedicated nodes for running sensitive workloads (high protection

requirement) that require additional security measures on network level.

Network design includes a dedicated subnet for control plane nodes, and a separate subnet
for data plane nodes to comply with the E-ITS requirements. Additional subnet is created
for the management network which is used to access the control plane and data plane
nodes.
The following sections will describe the resource deployment tools, cluster deployment
planning, expanded node group choices and network design.

5.3 Resource Deployment Tools

Although, there are various tools and ways to deploy Azure resources, such as Terraform,
Bicep, AKS Engine, Azure CLI, etc., the chosen tool for this implementation is Cluster
API (CAPI) [88] with Cluster API Provider Azure (CAPZ) [89]. The reason for this choice
is that although the other tools are great, they do not simplify the cluster provisioning
and management as much as CAPI does - by making managing hundreds of clusters look
seamless. By using a declarative approach, and GitOps tools like Argo CD, it allows for
continuous reconciliation of the desired state of the clusters with their live configuration,
without the need of managing a state file (e.g. Terraform) or manually/on-schedule running
the tasks to stay in sync (e.g. Ansible). This is a significant advantage over the tools that
do require it.
Additionally, Microsoft has shifted its focus from AKS Engine to CAPZ, and they are
encouraging people to use it for deploying self-managed Kubernetes clusters in Azure
[90].
CAPI itself is an open-source subproject of Kubernetes focused on providing declarative
APIs and tooling to simplify the provisioning and lifecycle management of workload
clusters by using a management cluster - the cluster with one or more infrastructure
providers are installed [88]. On top of that, CAPZ provider allows efficient management at

52

scale of managed and self-managed Kubernetes clusters in Azure. Additionally, CAPZ is
seamlessly integrated with Azure Service Operator (ASO) [91] that allows to manage any
Azure infrastructure which could significantly reduce operational overhead as everything
can be stored in Git as YAML files, without requiring any additional languages.

5.4 Planning The Cluster Deployment

This section outlines the planning and design considerations for the Kubernetes cluster
deployment. It is based on the requirements identified in E-ITS base measures and the main
emphasis is on the environment and application partitioning, high-availability (HA), node
group planning and CI/CD integration. Development, test and production environments
are separated, although this implementation will focus on deploying only the production
environment. The following sections will mention different custom resources that are used
to deploy the cluster and its components. Every Azure resource is explained in detail
in the Self-managed Clusters paragraph in CAPZ documentation [89, Ch. 3], and every
non-Azure resource is explained in the CAPI documentation [88].

5.4.1 Node Groups

Control Plane

As one of E-ITS advanced measures is high-availability (HA), each node group needs to
be designed accordingly. For the stacked etcd topology, three control planes are needed
to ensure the HA and help with the leader selection in case of a machine failure [86, 85].
These control plane nodes are spread across three Availability Zones (AZ) to ensure that
it can withstand the failure of one zone. Control plane nodes are in a separate subnet
from the worker nodes to meet the network segmentation requirement and can be accessed
only through the Bastion in a separate management network. During the instance size
selection, the recommendations from Kubernetes and etcd documentation are taken into
consideration to avoid any resource starvation or performance issues [92, 93].

Ingress Node Group

A separate node group is created for the ingress controller to ensure that the external traffic
is handled separately. This is important from both security and performance perspective -
the ingress controller is exposed to the internet and needs to be secured properly, and traffic
spikes on the these nodes do not affect the performance of other workloads. Two nodes
are created in this node group, and they are spread across two availability zones to ensure
that it can withstand the failure of one zone. During the instance size selection, Azure

53

recommendations shall be taken into consideration so that compute optimized instances
with high network bandwidth and sufficient core count are selected [94].

Monitoring Node Group

Monitoring node group is created for the monitoring stack as these tools (e.g. log and metric
collection and aggregation) can be resource-intensive (often memory and I/O) and affect
the performance of other workloads if they are not isolated. Two nodes are created in this
node group and spread across two availability zones to ensure the HA. Having a dedicated
pool for monitoring tools makes it more efficient to manage the underlying resources by
choosing the instance size based on the actual workload requirements. Additionally, it
complies with the requirement for dedicated nodes for specialized tasks.

Storage Node Group

Storage node group is created for backup agents and controllers (e.g. Velero, Veeam) and
other storage-related workloads. It is created to ensure that the backup operations do not
affect the overall performance of the cluster. Similarly, with other node groups, two nodes
are created in this node group and spread across two availability zones for HA. Backup
operations can be heavily I/O and network bandwidth dependent. To avoid potential
performance degradation, Azure recommendations shall be taken into consideration so that
storage optimized instances with higher I/O capabilities are selected [94].

General Node Group

This node group is the primary pool that is dedicated to running the end-user applications.
This node group is using the general purpose instances that have a balance CPU and
memory ratio and are suitable for most workloads. A minimum of two nodes are created
in this node group and spread across two availability zones to comply with the HA
requirement. The instance size and the number of replicas are based on the actual workload
needs and can be adjusted either manually or by using the Cluster Autoscaler functionality
[95].

Isolated Node Group

This node group is created for running sensitive workloads with high protection require-
ments. It is created in a separate subnet and access to this subnet is limited by Network
Security Group rules, allowing only SSH access from the Bastion host and API Server
access with control plane subnet (for cluster management). Traffic between other Kuber-
netes nodes is not allowed. This node group uses the compute-optimised instances with a
minimum of two nodes spread across two availability zones for HA.

54

5.4.2 Bastion Host

A bastion host is created in a separate AzureBastionSubnet subnet, and it is used to
access the control plane and data plane nodes through SSH. The access to the bastion
network is restricted to specific network ranges. The SSH authorized keys and user
configuration are defined in KubeadmControlPlane, KubeadmConfig, AzureMachinePool

and AzureMachineTemplate sections of the Cluster API configuration file and are used to
allow access to the control plane and data plane nodes [96]. As the cluster is in private
network, access to tooling user interfaces (e.g. Argo CD, Grafana, Prometheus) is provided
through enableTunneling parameter which enables the native client support for the bastion
host [97, 98]. Additionally, it is possible to set up a VPN Gateway to set up either a
site-to-site or point-to-site VPN Connection to private network.

5.4.3 Network Design

The network is segmented into multiple subnets to comply with the E-ITS requirements - a
subnet for control planes, subnet for data planes, subnet for isolated nodes and a separate
subnet for the Bastion host. The subnet sizes are chosen based on the number of nodes
in each node group - except for the Bastion host, where the subnet size has to be at least
/26 or larger, and the name of the subnet needs to be AzureBastionSubnet [99]. In this
implementation, the number of nodes is fixed and quite small, however when designing an
environment with potential growth in mind, the subnet masks should be chosen accordingly
to facilitate the needed growth. The chosen network configuration can be seen in Table 2.

Table 2. Proposed Network Design Segmentation

Resource name Resource type CIDR
VNet Virtual Network 10.0.0.0/22
control-planes Subnet 10.0.0.0/27
data-planes Subnet 10.0.0.64/26
AzureBastionSubnet Subnet 10.0.0.128/26
isolated data-planes Subnet 10.0.0.192/26

When designing the network rules, it is important to ensure to minimally allow traffic for
necessary ports and protocols for the Kubernetes cluster to function properly. These ports
include Kubernetes API, etcd, kubelet, kube-proxy, NodePort, CNI (Overlay networking),
ingress controller etc., and can be found in documentation [100, 101].

55

5.4.4 Instance Size and OS Selection

Choosing the Instance Size

In addition to choosing the instance sizes based on the workload requirements, it is impor-
tant to check the availability of these instance types in the selected region(s) together with
the supported HyperVGenerations parameter.
This is important to note when choosing the OS image in AzureMachineTemplate and
AzureMachinePool templates, as some images support either Gen1 or Gen2 Virtual Ma-
chines, and this would prevent the nodes from booting up if the generations are not
compatible.
Additionally, vCPUsPerCore value should be noted because the vCPU count is not always
equal to the number of processor cores - this gets especially important when planning to
run CPU-intensive workloads. For example, on general-purpose instances vCPUsPerCore:
2 means that for 2 vCPUs, there is usually only 1 core available (but 2 threads), whereas
for compute-optimised instances there are usually 2 cores available.
The final choices for instance sizes can be seen in Table 3 and sizes are based on the
recommendations from Azure, Kubernetes, etcd and other documentation and the actual
workload planned for the cluster.

Table 3. Instance selection

Node Group VM Class VM Size Specifications
control-plane general

purpose
Standard_D2as_v5 vCPU: 2t, RAM: 8 GB

monitoring-node memory
optimised

Standard_D2as_v5 vCPU: 2t, RAM: 8 GB

ingress-node compute
optimized

Standard_F2s_v2 vCPU: 2c, RAM: 4 GB

storage-node memory
optimised

Standard_E2bs_v5 vCPU: 2t, RAM: 16GB,
high IOPS

general-node general
purpose

Standard_D2as_v5 vCPU: 2t, RAM: 8GB

isolated-node compute
optimised

Standard_F2s_v2 vCPU: 2c, RAM: 4GB

It is important to note that depending on the Azure Subscription type, the Total Regional
vCPUs quota may be limited to 20, and this should be increased before deploying the
cluster - otherwise the quota is exceeded, and the cluster cannot be deployed. This is

56

especially important when deploying multiple clusters in the same region, as the quota is
shared across all clusters within the subscription.

Choosing the OS

Choosing the OS for the nodes is an important step and there are hundreds of distributions
available - whether it is something based on Debian, RHEL (Red Hat Enterprise Linux),
CentOS or something else.
Ideally, the OS should be actively maintained, have a good balance between security and
stability and should be tested with Kubernetes. For example, Flatcar Container Linux is a
minimal OS designed for running containers [102], but it is still in the Incubating stage of
CNCF [102] and is not as widely used as other distributions and therefore could make it
harder to find help and support.
However, when choosing a general-purpose distribution, the potential attack surface can
be larger, as it comes with higher amount of pre-installed applications, and securing these
distributions can be difficult, and it is something that shall be taken into consideration. For
this implementation, the chosen distribution is Ubuntu 24.04 LTS (Long Term Support),
as Canonical (the company developing Ubuntu) is an official Kubernetes Certified Ser-
vice Provider. Ubuntu supports the latest Kubernetes v1.32, containerd v2.0, is actively
maintained and contains the native tooling for CIS benchmarks. [103].

5.5 Initial Bootstrapping

The initial bootstrapping of the workload cluster is done by defining the following resources
in the Cluster API configuration file, and then applying them through the management
cluster:

■ AzureClusterIdentity - defines the Azure identity that is used to authenticate and
manage the Azure resources (e.g. service principal, managed identity.). For this
implementation Service Principal is used to authenticate with Azure by following
the CAPZ documentation [104];

■ Cluster - the main object that defines the cluster configuration (e.g. name, version,
cluster network configuration, etc.);

■ AzureCluster - defines the Azure Cluster configuration (e.g. VNet, subnets, Bastion
host, etc.);

■ MachinePool - defines the set of data plane nodes that are created (e.g. failure
domains, number of replicas, Kubernetes version, etc.);

■ AzureMachinePool - a template for creating Azure Virtual Machine Scale Set that
will be used as Kubernetes nodes (e.g. instance size, OS image, disks, etc.);

57

■ AzureMachineTemplate - a template for creating Azure Virtual Machines that will
be used as Kubernetes nodes (e.g. instance size, OS image, disks, etc.);

■ KubeadmControlPlane - For managing the configuration and lifecycle of control
plane nodes by using kubeadm (e.g. control plane component configuration, disks,
users, replicas, etc.);

■ KubeadmConfig - Defines the kubeadm configuration that is used to bootstrap the
data plane node pools (e.g. users, ssh keys, additional scripts, etc.);

Since this is a self-managed Kubernetes cluster, a CNI plugin needs to be installed to enable
the networking between the nodes and pods. In this implementation, Calico is used as the
CNI plugin. Although multiple CNI plugins are available and were considered, Calico was
chosen for its maturity and reliability. While Cilium’s eBPF approach is different (can be
used without kube-proxy), it still has some limitations (its mTLS support is in Beta) and
this can introduce potential issues. Calico on the other hand supports mTLS by integrating
with Istio [105].
Calico CNI plugin is installed by utilizing the HelmChartProxy bootstrapping functionality
[106, 107], followed by the Cloud provider for Azure and Azure Disk CSI driver for
Kubernetes (allows Kubernetes to access Azure Disk volumes).
After that, HelmChartProxy is used again to bootstrap Argo CD together with its initial
app configurations that allows managing rest of the workload cluster applications with
the ’app-of-apps’ pattern [108]. This allows to seamlessly manage the applications and
their configuration with GitOps principles and will always ensure the desired applications
state. Additionally, when new applications are needed, creating a new ’Application’

in workload/apps/argoapps directory together with Helm Chart files in the respective
workload/apps directory in Git repository [109] is enough to deploy it automatically in the
cluster.
The Cluster API manifests, together with additional API Server configuration files, are
stored in the mgmt/azure/cluster directory, HelmChartProxy manifests are stored in the
mgmt/azure/helmproxycharts directory in Git repository [109] and are deployed by the
management cluster for bootstrapping.

5.6 Securing the Cluster Components

This section focuses on securing the cluster components, such as the API server, kubelet,
etcd, controller-manager, scheduler etc. Securing these components is crucial as it is
the backbone of the cluster and if compromised, it can lead to disastrous consequences.
Securing the control plane was done by using the KubeadmControlPlane resource, which
allows to configure each component separately. Achieving this is done by following the
CIS Kubernetes Benchmark v1.10.0 (the latest version at the time of writing), using this

58

widely accepted reference helps in meeting the E-ITS requirements that focus specifically
on the cluster component security (and often restricts more than E-ITS requires).

5.6.1 Control Plane and Data Plane Configuration Files

This section focused mainly on configuration file permissions and ownership, as these
files are critical for the overall cluster security. Most configuration file permissions were
already restricted to minimal access by default (e.g. static pod manifests, CNI configuration
files, etcd directory permissions, etc.), and the ownership was set to root:root. However,
Kubernetes PKI key and certificate file permissions were not as restricted as they should’ve
been (by allowing read access from other users), and this was mitigated by setting the
permissions to 600.

5.6.2 Kubernetes API Server

Kubernetes API Server configuration was done in the clusterConfiguration.apiServer.extraArgs

section, and its configuration is shown in Figure 1.

Figure 1. Kubernetes API Server security configuration.

kubelet-certificate-authority: "/etc/kubernetes/pki/ca.crt"
enable-admission-plugins: "AlwaysPullImages,NodeRestriction,EventRateLimit,

DenyServiceExternalIPs"
disable-admission-plugins: "AlwaysDeny"
admission-control-config-file: "/etc/kubernetes/config/AdmissionConfiguration.yaml"
encryption-provider-config: "/etc/kubernetes/config/EncryptionConfig.yaml"
profiling: "false"
audit-log-path: "-"
audit-log-maxage: "30"
audit-log-maxbackup: "10"
audit-log-maxsize: "100"
audit-policy-file: "/etc/kubernetes/config/auditlog.yaml"
request-timeout: 60s
service-account-lookup: "true"
tls-cipher-suites: "TLS_AES_128_GCM_SHA256,TLS_AES_256_GCM_SHA384,
TLS_CHACHA20_POLY1305_SHA256,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256"

This ensures that the API Server verifies the kubelet’s serving certificates, sets the list of
supported TLS cipher suites, configures the audit logging (will be explained in more detail
in the logging section), defines the encryption provider to secure the etcd data at rest by
utilizing the ’secretbox’ provider that ensures a strong encryption [87] (e.g. secrets, config
maps, etc.), enables the service account token lookup (by validating that it exists in etcd),
enables the admission control plugins, such as:

59

■ AlwaysPullImages - especially important in multi-tenant environments to ensure that
images can only be used by those entities who have credentials to pull them. As a
negative side, it increases the load on the image registry and ingress traffic.

■ NodeRestriction - ensures that kubelet can only modify API objects on their own
node, as it prevent them from modifying other node resources. This is additional
step for resource isolation.

■ EventRateLimit - enforces a limit on the number of events that API Server will accept
to prevent exhaustion either by DoS attacks or misbehaving workloads. Enabling this
plugin requires additional AdmissionConfiguration file that references to different
configuration files - in this implementation by limiting the number of queries per
second per user and namespace.

■ DenyServiceExternalIPs - prevents users from creating Services that use externalIPs,
and not add any external IP addresses to already existing services. In case this is
needed, a custom policy shall be used to allow it.

An important side note is that enabling kubelet’s serving certificate verification on the
API Server level requires a kubelet TLS Bootstrapping, otherwise the kubelet won’t be
able to communicate with the API Server. This is described more in detail in the kubelet
configuration section.

5.6.3 Controller Manager

Kubernetes Controller Manager configuration was done in the clusterConfiguration.controllerManager.extraArgs

section and its configuration is shown in Figure 2:

Figure 2. Controller Manager security configuration.

allocate-node-cidrs: "false"
cloud-provider: external
cluster-name: capi-test
terminated-pod-gc-threshold: "500"
profiling: "false"

An external (out-of-tree) cloud provider was set to ensure that Cloud provider Azure is
used for the cluster. This is important as this service is responsible for managing Azure
resources, such as provisioning and managing Azure internal and external load balancers.
Disabling profiling was done to prevent exposing system and program details that could be
used by the attackers to exploit the system. The default settings of the garbage collector
for terminated Pods was lowered to 500 to ensure that the terminated Pods are removed in
a timely manner, as the default value of 12500 could lead to performance issue considering
the resource specifications of the control plane nodes.

60

5.6.4 Etcd

In most cases, the default settings were used, as the default configuration mostly met
the security requirements (e.g. limited access to configuration files, TLS encryption
configuration, etc.). Access to etcd was already limited by separating the control plane
and data plane networks, and by allowing access to control plane nodes only through
the Bastion host. However, additional steps were taken to encrypt the confidential data
at rest. Although the EncryptionConfiguration file location is defined in the API Server
configuration, it increases the security of etcd, and hence the configuration is shown here
in Figure 3:

Figure 3. etcd encryption configuration.

apiVersion: apiserver.config.k8s.io/v1
kind: EncryptionConfiguration
resources:

- resources:
- secrets

providers:
- secretbox:

keys:
- name: key1
secret: ’[REDACTED]’

- identity: {}

Although the primary encryption provider was set to secretbox, a fallback configuration
was needed to read the unencrypted secrets during the initial migration as described in the
official documentation [87]. This was followed by performing a secrets replacement with
kubectl replace command to ensure that already existing secrets get encrypted.

5.6.5 Scheduler

Configuring the Kubernetes Scheduler was done in the clusterConfiguration.scheduler.extraArgs

section, and it didn’t require many changes from its default configuration to meet the
security requirements. Similarly, to etcd, Controller Manager, and Kubernetes API server,
profiling was disabled to prevent exposing system and program details to reduce the attack
surface.

5.6.6 Kubelet

Securing the kubelet was done in multiple resource sections, such as KubeadmControl-

Plane for the control plane nodes, and KubeAdmConfig for each node group. Initially,
KubeletConfiguration file was patched as shown in Figure 4.

61

Figure 4. Kubelet security configuration.

{
"apiVersion": "kubelet.config.k8s.io/v1beta1",
"kind": "KubeletConfiguration",
podPidsLimit: 4096,
serverTLSBootstrap: true,
tlsCipherSuites: [

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
TLS_RSA_WITH_AES_256_GCM_SHA384,
TLS_RSA_WITH_AES_128_GCM_SHA256

],
}

Enabling the serverTLSBootstrap is important to automatically request a serving certificate
signed by the cluster’s Certificate Authority for kubelet’s HTTPS endpoint. This secures
the communication initiated from the Kubernetes API server to kubelet (e.g. logs, exec into
Pods) by verifying kubelet’s identity and potentially preventing man-in-the-middle attacks.
Additionally, this enables the use of the RotateKubeletServerCertificate to automatically
rotate the certificates.
Due to security reasons, kube-controller-manager does not automatically approve kubelet-

serving Certificate Signing Requests (CSR), and the requests were approved manually with
kubectl certificate approve command. Although the kubelet-serving CSR approval can be
automated by using a 3rd party solution (e.g. kubelet-csr-approver), it should be carefully
considered by the organization as it introduces additional risks. For this implementation,
no additional solutions were used to ensure that only administrator-approved nodes can
join the cluster and communicate securely with the API Server to comply with E-ITS
APP.4.4.M17.

5.6.7 Conclusion of Cluster Component Security

In this section, the focus was on securing the cluster components and configura-
tion files. The full configuration for workload cluster bootstrapping is stored in
mgmt/azure/cluster/eits-cluster.yaml file in the Git repository [109]. Cluster API’s
management cluster features Argo CD that is used to bootstrap and manage the workload
cluster and includes the automatic configuration auditing, as automatic sync policy and
reconciliation guarantees the desired cluster state in Git backend is in sync with the
requirements set by E-ITS. Additionally, Cluster API itself continuously reconciles the
workload cluster resources based on their definitions and this ensures prevents the sync
drift.

62

5.7 Deploying the Applications

This section focuses on the applications that are deployed in the workload cluster. The
applications are divided into different categories based on their functionality and purpose.
Applications are deployed using Argo CD, which is deployed by using the HelmChartProxy

bootstrapping functionality, and is then used to manage itself and the rest of the applications
in GitOps way.
Although there are multiple tools available to manage the applications, such as Flux CD,
Octopus Deploy, etc., Argo CD was chosen for its simplicity, functionality compared
to other solutions (e.g. sync phases/waves) [110], integration with other Argo Project
tools (e.g. Argo Workflows, Argo Events, Argo Rollouts), its ease of use, and its huge
open-source community. Additionally, Argo CD has undergone internal and external
security reviews and penetration testing, which increases the overall security of application
management [111]. The applications are stored in a Git repository and are automatically
deployed and managed by Argo CD when the configuration is changed.

5.7.1 Core Applications

Some core applications, such as Calico CNI, Azure Disk CSI driver and Azure Cloud
provider are already deployed during the initial bootstrapping phase in the management
cluster as they are needed for the cluster to function properly. However, there are additional
applications that need to be deployed to ensure its basic functionality and security, such as
certificate management and secrets management. Although these could be considered as
security or networking applications, they are essential to securely handle the certificates,
secrets and other sensitive data in the cluster.

Secrets Management

Managing secrets in Kubernetes can be challenging, especially storing them in a version
control system securely, as Kubernetes secrets do not provide any encryption by default
and use only base64 encoding. This means that anyone with access to the version control
system (e.g. Git) can easily decode the secrets, and this could lead to serious security
incidents. Fortunately, there are different tools available to tackle this issue, such as Sealed
Secrets [112], External Secrets Operator (ESO) [113], Secrets Store CSI Driver [114], and
others.
However, each tool has its own advantages and limitations. For example, Sealed Secrets
is a great tool that doesn’t require any external backend system to store the secrets, but
because it stores the SealedSecrets (a custom resource that contains the encrypted value
of a secret) locally, it requires resealing the secrets for every cluster that is created, and

63

this can be cumbersome when managing a huge number of clusters. ESO and Secrets
Store CSI Driver require an external backend system to store the secrets (e.g. Azure Key
Vault, HashiCorp Vault, AWS Secrets Manager, etc.) and this can introduce another layer
of complexity to manage the RBAC permissions. However, when organizations already
have a centralized secrets’ management system in place, these tools can make it easier to
manage secrets in Kubernetes.
Secrets Store CSI Driver is a great tool that allows to mount the secrets directly into the
Pods as volumes, without exposing them in the environment variables [114], however the
setup can be complex, and it requires additional resources on the cluster (as it needs to run
on every node). In Table 4 is the comparison of the 3 most used secret management tools
in Kubernetes and the comparison is based on the official documentation of these tools.

Table 4. Secret Management tools comparison

Name Sealed Secrets ESO Secrets Store CSI
Driver

Store type Local External External

Dynamic up-
dates

No Yes Yes

Dependencies None External provider External provider

Setup Simple Moderate, requires
provider configura-
tion

Moderate, requires
CSI driver setup with
a provider

Cost No additional cost Provider prices may
apply

Provider prices may
apply

Advantages No dependencies,
automatic cert ro-
tation

Dynamic secret
updates, more
providers, central-
ized secrets

Secrets securely
mounted, dynamic
updates, centralized
secrets

Disadvantages Difficult to mi-
grate, needs sepa-
rate manifests for
each cluster

Provider depencency Provider dependency,
operational overhead,
less providers

Organizations that are already using a centralized secrets’ management system, or are
planning to have multiple clusters across different environments, should usually consider
using one with an external backend to make the management easier and allow better
overview of the secrets. As the author of this thesis is already utilizing Azure Key Vault to
store secrets, and the cluster is deployed in Azure, ESO has a good documentation with

64

examples, and a good community support, it was chosen as the secrets’ management tool
for this implementation.
In Figure 5 is the most important part of the ESO configuration is the SecretStore that
defines the secret provider configuration, such as the Vault URL, Tenant ID, and Authenti-
cation method.

Figure 5. ESO SecretStore configuration.

apiVersion: external-secrets.io/v1beta1
kind: SecretStore
metadata:

name: azure-kv
namespace: external-secrets

spec:
provider:
azurekv:
tenantId: "${TenantId}"
vaultUrl: "${MgmtVaultUrl}"
authSecretRef:
clientId:
name: azure-sp-secret
key: ClientID

clientSecret:
name: azure-sp-secret
key: ClientSecret

The full configuration is stored in workload/apps/external-secrets-operator directory of the
Author’s technical implementation Git repository [109] and is deployed by Argo CD.

DNS and Certificate Management

Although Kubernetes ships with either kube-dns or CoreDNS (depending on Kubernetes
version) DNS server, which is needed for the service discovery and resolution within the
Kubernetes cluster. However, managing the DNS records outside of Kubernetes cluster
(e.g. LoadBalancer and Ingress records, TXT records for domain validation etc.) is not
possible with these tools and for this reason, a 3rd party tools are needed. There aren’t
many options available and the most popular and recommended tool, also listed in the
Kubernetes SIGs (Special Interest Groups), for this is ExternalDNS - a tool to synchronize
the exposed Kubernetes Services and Ingresses with DNS providers [115].
ExternalDNS supports various DNS providers, including Azure Private DNS - this is
important as Cluster-API already utilizes Azure Private DNS for Kubernetes API Server
records, so it is possible to use the same DNS provider to manage Ingress and LoadBalancer
IP addresses as A type records, and the Provider metadata as TXT records. Figure 6
shows the Azure-specific configuration block for ExternalDNS that defines the Tenant
ID, Subscription ID, Resource Group, Service Principal’s Client ID and a Secret name
containing the secret value.

Securing Ingress and LoadBalancer communication with TLS certificates is crucial to

65

Figure 6. ExternalDNS Azure configuration.

provider: azure-private-dns
azure:

secretName: "azure-sp-secret"
cloud: "PublicCloud"
resourceGroup: "capi-ha"
tenantId: "${TenantId}"
subscriptionId: "${SubscriptionId}"
aadClientId: "${ClientId}"

ensure the confidentiality and integrity of the transmitted data. Managing the certificates
manually is not feasible and can become overwhelming - to simplify the process, a
certificate management tool shall be used instead. There are multiple tools available, such
as cert-manager [116], certbot [117], HashiCorp Vault [118].
Although Vault is a powerful tool with PKI capabilities, it’s a complex solution and
unless the organization already has it set up in place, configuring it only to generate TLS
certificates is not recommended due to the operational overhead.
Certbot is an easy-to-use tool for generating and managing TLS certificates with Let’s
Encrypt and even though it supports many DNS plugins [117], it does not support Azure
DNS out of the box and relies on a 3rd party plugin to be installed. However, this plugin
is lacking the community support, and it has an open issue related to Azure DNS plugin
[119] that could lead to issues on this technical implementation.
Cert-manager is a powerful tool to manager X.509 certificates in Kubernetes and it is the
most widely used tool for this purpose [116] with a huge community support. It has a
clear documentation with well-explained examples, supports various Issuers, the most
popular DNS providers for ACME challenges, and multiple out-of-tree DNS providers by
using webhooks [120]. Due to these reasons, cert-manager was chosen as the certificate
management tool.
To distribute the certificates across Kubernetes cluster, a ClusterIssuer resource is created
that defines the Issuer configuration and the Let’s Encrypt ACME server. The author of
this thesis has a domain name ’lndbrg.tech’ registered and managed by Azure DNS in the
management resource group that is used by cert-manager to validate the domain ownership
and issue the certificates.
As there is a Private Azure DNS zone with the same domain name, cert-manager tries
to create the validation TXT record in Private DNS zone, which would fail, as it’s not
reachable from public internet. To avoid this, recursive nameserver configuration in Figure
7 was used to ensure that the DNS records are created in the public DNS zone. For this
configuration, the public DNS servers from Cloudflare and Google were used.

Figure 7. cert-manager recursive nameserver configuration.

dns01RecursiveNameserversOnly: true
dns01RecursiveNameservers: "1.1.1.1:53,8.8.8.8:53"

66

Full ExternalDNS and cert-manager configurations with additional templates are stored in
workload/apps/external-dns and workload/apps/cert-manager directories of the Author’s
technical implementation Git repository [109] and are deployed by Argo CD.

5.7.2 Networking and Ingress

Networking is one of the most important parts of Kubernetes, as it allows the communica-
tion within the cluster and with external services. Although the chosen CNI plugin (Calico)
was already described in the previous section, there are additional components that are
needed to ensure secure and reliable networking.

Ingress Controller

After the CNI plugin is installed, an Ingress controller is needed to manage the ingress
traffic and route it to correct services. There are many Ingress Controllers available, and
choosing the most suitable one can be difficult. Fortunately, Kubernetes documentation
about Ingress Controllers [121] and CNCF Landscape’s Service Proxy and Cloud Native
Network sections [122] give a good overview of the most popular and recommended
ingress controllers to use in Kubernetes.
Apart from the cloud provider ingress controllers, some of the most popular are nginx,
HAProxy, Traefik, Kong (built on top of nginx), Cilium and Istio.

Although Cilium ingress controller introduces additional features compared to nginx,
HAProxy and Traefik, setting it up can be a complex task, and since Cilium was not chosen
as the CNI plugin, increasing the additional operational overhead for the sake of Ingress
controller is not preferred by the author. Nginx and HAProxy are the most widely used
ingress controllers that offer simplicity on setup, are well documented and easy to use.
Even though this simplicity comes with a cost of limited features, they are still leading
the way performance-wise, and there are many benchmark reports published by different
organizations [123, 124, 125, 126, 127] and individuals [128, 129], highlighting that the
highest performance is usually achieved by nginx and HAProxy. Taking everything into
consideration together with author’s personal experience, HAProxy Ingress Controller was
chosen for this implementation.
The most important parts of the HAProxy controller configuration can be seen in Figure 8
which configures the service type to LoadBalancer and annotates the resource to inform
the Cloud provider for Azure to create an internal Load Balancer.

The full configuration is stored in the workload/apps/haproxy directory in Git repository

67

Figure 8. HAProxy Service and annotation configuration.

service:
type: LoadBalancer

annotations:
service.beta.kubernetes.io/azure-load-balancer-health-probe-request-path: "/healthz"
service.beta.kubernetes.io/azure-load-balancer-internal: "true"

[109] is deployed by Argo CD.

Service Mesh

A service mesh is another important layer in the Kubernetes networking stack that provides
additional features such as seamlessly enabling the mTLS communication between the
application, without having to distribute the certificates manually. On top of that, it allows
for more refined traffic management either on L4 or L7 level, depending on the chosen
solution. There are multiple service mesh providers available, such as Istio, Linkerd,
Cilium, Consul, Traefik etc, however the first three are the most popular and widely used
solutions.
Although Linkerd is fastest in terms of performance and latency (according to benchmark
reports), it comes with some drawbacks - it is not as feature-rich as Istio and Cilium. For
example, both Istio and Cilium support onboarding external services into the service mesh,
whereas Linkerd does not. When organizations have external resources that need to be
onboarded, Linkerd would not be a suitable choice. It is using a sidecar proxy solution
whereas Cilium uses per-node proxy solution and Istio supports both. From the resource
consumption perspective, Linkerd is the heaviest as it relies on having a sidecar proxy for
every Pod which can become difficult to manage.
While Cilium is good at CNI-level networking with its eBPF support, it is not as feature-
rich on Layer 7 traffic management capabilities as Istio with Envoy proxy that has
significant customization options. The learning curve of Istio is steeper than Cilium and
Linkerd, and should be taken into consideration when choosing the service mesh, however
the base functionality to use mTLS support with Ambient mode (proxies on node level not
as a sidecar for Pod) is easy to set up and use. As the author of this thesis has previous
experience with Istio, and taking into consideration the aforementioned details, Istio in
Ambient Mode was chosen as the service mesh for this implementation.

Fortunately, Istio has a good documentation with various examples and Helm charts
available that made the setup easier. The most important part to take into consideration
when deploying Istio in Ambient mode is to ensure that the underlying operating system
supports the required kernel modules, especially when using a custom Linux kernels or
nonstandard distributions [130]. As Calico CNI plugin is used, its FelixConfiguration

68

needs to be patched as in Figure 9 to allow Pods use allowedSourcePrefixes to send traffic
with a source IP that is not theirs [131]. Additionally, Kiali was deployed to provide a
graphical representation of the service mesh and its components. To secure the Kiali access,
it was set up in read-only mode so that no changes to the mesh can be made from the UI.
Kiali’s configuration is stored in the workload/apps/kiali directory in Git repository [109].

Figure 9. Calico FelixConfiguration patching.

kubectl patch felixconfigurations default \
--type=’json’ -p= \
’[{"op":"add","path":"/spec/workloadSourceSpoofing","value":"Any"}]’

By implementing Istio Ambient mode, and using Argo CD to annotate namespaces with
istio.io/dataplane-mode: ambient, the communication between the Pods is automatically
secured with mTLS. Istio service mesh configuration manifests are stored in the workload-
/apps/istio directory in Git repository [109] gets deployed by Argo CD.

5.7.3 Monitoring Stack

This chapter describes the monitoring stack that is used to monitor the cluster resources
and applications. It is divided into multiple sections based on the functionality and purpose
of the tools. All the components are chosen thoroughly and are well-known and widely
used in the Kubernetes community.

Logging Stack

The logging section is divided into two parts, describing their implementation methods.
The first part describes the logging stack that is used for collecting and storing applications
logs, while the second part focuses on enabling and handling Kubernetes API Server audit
logs.
In both scenarios, a central logging system is required to aggregate logs, along with tools to
collect the data from log files or container stdout/stderr streams, and then transmit them to
central logging system. The most common log collection agents include Fluentd, Fluentbit,
Filebeat, Promtail and Grafana Alloy, while the most popular backends for storing logs
are ElasticSearch, OpenSearch, Splunk and Grafana Loki. For this implementation, the
author selected Grafana Loki, paired with Grafana Alloy for log collection. This choice
was made on several advantages over other tools:

■ Resource efficiency: Loki is designed to be lightweight and efficient, without
indexing the full content of logs and focusing only on metadata indexes. This
significantly reduces storage requirement and compute resources.

69

■ Operational simplicity: Architecture can be deployed in multiple ways, depending
on the needs - either simplifying and reducing the operational overhead by using
more of the monolithic approach, or scaling up each component separately, and
using cloud services as a storage backend.

■ Ecosystem integration: Both Loki and Alloy are part of the Grafana observability
stack and are designed to work seamlessly together. This allows for easy integration
with other tools such as Grafana Mimir and Tempo.

■ Cost: Both Loki and Alloy are open-source and free to use which eliminates software
licensing fees compared to Splunk.

Therefore, Grafana Loki and Alloy were chosen as the logging stack for this implementa-
tion as it provides a good balance between performance, cost, ease of use and its suitability
with Kubernetes.
To avoid additional operational overhead and scope creep, the author decided to use the
Loki’s ’monolithic deployment’ approach (although it is not monolithic and still uses
different components) that allows utilizing the persistent volumes for storage backend
instead of relying on external storage solutions, such as S3.
Grafana Alloy was configured to collect logs from Kubernetes nodes and applications,
including Kubernetes audit logs, and ship them to Loki. Loki and Alloy configuration
manifests are stored in the workload/apps/monitoring/grafana/loki and workload/apps/-
monitoring/grafana/alloy directories in Git repository [109].

Audit Logs

In addition to application logs, capturing Kubernetes API Server audit logs is critical for
security monitoring, compliance and to overall understand the changes in the cluster. Audit
logs were configured directly on Kubernetes API Server by using specific parameters. In
this implementation, it is configured in KubeadmControlPlane resource, which is used
to manage the control plane nodes. The parameters used to configure the audit logs are
shown in Figure 10, and perhaps the most important aspect is that audit-log-path is set to
"-" which means that the audit logs are written to stdout and can be collected by Alloy.

Figure 10. Auditlog configuration.

clusterConfiguration:
apiServer:

extraArgs:
audit-log-path: "-"
audit-log-maxage: "30"
audit-log-maxbackup: "10"
audit-log-maxsize: "100"
audit-policy-file: "/etc/kubernetes/config/auditlog.yaml"

Additionally, a specific audit policy file (auditlog.yaml) was created to have a more

70

balanced approach guided by the industry best practices and recommendations [32] to
ensure that critical events are captured without overloading the system with too much data.
The most important part of the audit policy file is shown in Figure 11 to guarantee that
changes on the Secrets, ConfigMaps and TokenReviews are logged, but no sensitive data is
exposed - this is done by logging only on Metadata level.

Figure 11. Audit log Policy.

- level: Metadata
resources:
- resources: ["secrets", "configmaps", "tokenreviews"]

The full audit log policy together with configuration parameters are stored in mgmgt/cluster/eits-
cluster.yaml file in Git repository [109] and is used by the management cluster to bootstrap
the workload cluster.

Telemetry Stack

For telemetry and observability, the most widely used and recommended tools in Kuber-
netes are Prometheus for telemetry collection and Grafana for visualization. There are a
few alternatives, such as New Relic, Zabbix, Nagios, VictoriaMetrics, etc. and they differ
in purpose and functionality. Apart from VictoriaMetrics and New Relic, the others are not
really cloud native, and the main use case is not for Kubernetes.
New Relic is a powerful solution that works well in Kubernetes, but it is mostly a paid
solution and which gets expensive quickly when scaling up. It does have a free tier, but it
is limited to 100 GB of data ingestion per month [132], which is usually not enough for
production workloads. Additionally, it is a SaaS model, which might not be suitable for
some organizations, especially in the public sector.
VictoriaMatrics is a fast a cost-effective monitoring solution and is perhaps the best
alternative to Prometheus, has some features that Prometheus is lacking (e.g. long-term
storage, horizontal scalability for data ingestion) [133] and organizations that need to
ingest high amount of data should consider using it. However, it is not yet as widely used
and does not have as big community support as Prometheus and the learning curve can be
steep, Prometheus fits the needs of this implementation better and is easier to set up and
manage.

Fortunately, there is a collection of Kubernetes manifests, Prometheus rules with docu-
mentations and scripts to have an end-to-end cluster monitoring by Prometheus [134]. It
is especially developed for Kubernetes and simplifies the deployment and management
by having an Operator that manages the custom resources. The installation comes with
a set of dependencies that are needed for the monitoring stack to work properly, such as

71

kube-state-metrics and Prometheus Node Exporter.
Kube-prometheus-stack was chosen for this implementation, and the configuration was
modified so that Pods are scheduled on ’monitoring’ node group by using the nodeSelector
and tolerations that allow scheduling on these nodes. The most important difference from
the default deployment was to use a persistent storage instead of emptyDir and this is
shown in Figure 12. This is important to ensure that the data is not lost in case the Pod is
restarted or scheduled to another node.

Figure 12. Prometheus persistent storage definition.

storageSpec:
volumeClaimTemplate:

spec:
storageClassName: standard
accessModes: ["ReadWriteOnce"]
resources:
requests:
storage: 50Gi

The full configuration manifest is stored in workload/apps/monitoring/kube-prometheus-
stack directory in Git repository [109].

Visualization and Reporting

The central platform for visualizing and interacting with collected monitoring data (teleme-
try, logs) is Grafana. It is the primary user interface that can be used by developers, DevOps
engineers, product managers and other stakeholders to have insights into the systems health
and performance.
The selection of Grafana was based on several factors that make it well-suited for this
implementation:

■ Native integrations: Grafana offers out-of-the-box integration for various data
sources, including Prometheus and Loki, that are used in this implementation.

■ De facto standard: Grafana can be considered as the de facto standard for observ-
ability in Kubernetes, that comes with pre-built dashboards and various integrations.

■ Unified visualization: The goal was to have a single interface for viewing and
analyzing logs and telemetry, and Grafana provides this capability by allowing
custom dashboards with mixed-data sources.

■ Extensibility: While primary use case in this implementation is to visualize teleme-
try and logs, it has additional features, such as alerting, reporting, and data transfor-
mation that provide flexibility.

Apart from configuring the Loki and Prometheus data sources, an Ingress resource was
created to expose Grafana outside of Kubernetes cluster. Additionally, the default adminis-

72

trator password was changed to a more secure one.

Monitoring Architectural Overview

This section provides the architectural overview of the monitoring stack that was used in
this implementation. On a high level, containers are exposing logs and telemetry data to
stdout/stderr streams, and metrics endpoints, which are then collected by the log collection
agents (Grafana Alloy) and the exposed telemetry (either by dedicated exporters or the
application endpoints) is then scraped by Prometheus and stored in its time-series database.
The collected logs are then shipped to a central logging system (Grafana Loki). The logs
and telemetry data are then visualized in Grafana that uses Loki and Prometheus as data
sources. The architecture diagram is shown in Figure 13.

Figure 13. Monitoring architecture overview.

The diagram shows the main components and their interactions, including the Kubernetes
node and node exporter, the applications as Pods, the log collection agents, telemetry
scrapers, and central logging system. The arrows indicate the direction of the data, and
although some components use push-based models rather than pull-based model, the
overall data flow direction is the same.

5.7.4 Backup and Restore

Ensuring the resilience, availability and recoverability of the Kubernetes cluster is critical
for any production workloads, and a reliable backup solution must capture both - the
Kubernetes resource configurations and the persistent data stored in the volumes, and
preferably in a way that allows to store the backups outside cluster in a central location
with restoring capabilities.
For this implementation, Velero was chosen - an open-source tool to safely back up,

73

restore and perform disaster recovery on Kubernetes resources and persistent volume [135].
Although Velero was chosen, several alternatives were considered:

■ Kasten K10: A powerful and feature-rich backup solution to back up Kubernetes
resources, including application-aware backups, disaster recovery [136]. However,
the free version is limited to maximum of 5 nodes which does not fit the needs of
this implementation. Additionally, it is a commercial solution and can be expensive,
especially when scaling up.

■ KubeStash: A cloud-native open-source backup and recovery solution for Kuber-
netes workloads. Although it is a good and simple alternative to Velero, it does
not support automatic backups and database backups in the community edition
[137], and the enterprise edition is not free, which doesn’t make it suitable for this
implementation.

■ Portworx Backup: A commercial backup solution that provides application-aware
and granular backup and restore capabilities for Kubernetes. It allows cloud snap-
shots, native CSI snapshots (for both on-premises and cloud solutions), and local
backups that can later be offloaded to external storage [138]. However, a free tier
can be used for 30 days, after which it requires a license. Unfortunately, the pricing
is not publicly available, and using a commercial solution is not preferred in this
implementation.

■ kube-dump: A simple open-source solution that backups Kubernetes resources
as YAML manifests [139]. Unfortunately, this solution does not support persistent
volumes, and although it could be used together with another solution to back up
persistent volumes, it isn’t actively maintained anymore (last commit was in 2022),
and from security perspective, it is not recommended to use anything that does not
at least get security updates.

Therefore, considering the limitations and drawbacks of other solutions, Velero was chosen
as the backup tool for this implementation. The key features that made Velero a suitable
choice include - it is free to use and open source, actively maintained and is a widely
used solution in the Kubernetes community, is well documented, and a complete solution
(backups, restore, disaster recovery, etc.), supports various storage providers, including
Azure Blob Storage and Azure Managed Disks that are suitable for this implementation.

Furthermore, due to seamless integration with Azure, it supports secure data backups and
restores by transmitting the already encrypted data over TLS to Azure Blob Storage, which
configuration is shown in Figure 14, where the data is again encrypted at-rest, which meets
the E-ITS requirements for secure data exchange and communication.

74

Figure 14. Azure Storage Account and Storage Container configuration.

az storage account create \
--name $AZURE_STORAGE_ACCOUNT_ID \
--resource-group $AZURE_BACKUP_RESOURCE_GROUP \
--sku Standard_GRS --encryption-services blob \
--https-only true --min-tls-version TLS1_2 \
--kind BlobStorage --access-tier Hot --location northeurope

az storage container create \
--name velero --public-access off \
--account-name $AZURE_STORAGE_ACCOUNT_ID

After the role creation, Velero documentation was followed further to configure the Backup
Storage Location and Volume Snapshot Location, together with a Kubernetes secret for
Azure Storage Account access. The most important part of the configuration is shown
in Figure 15 about initContainer settings - without this, Velero is unable to recognize
the backup locations and the provider plugin is not installed. Additionally, a schedule
was created to schedule a full backup every day at 1:00 AM (UTC). The full Velero
configuration is stored in the workloads/apps/velero directory in Git repository [109].

Figure 15. initContainer configuration for Azure provider.

initContainers:
- name: velero-velero-plugin-for-microsoft-azure

image: velero/velero-plugin-for-microsoft-azure:v1.11.0
imagePullPolicy: IfNotPresent
volumeMounts:

- mountPath: /target
name: plugins

5.7.5 Security and Compliance Tools

While security has been the foundational consideration throughout this implementation, this
chapter details the tools that are essential for ensuring the cluster’s compliance to defined
security policies and standards. This includes the policy enforcement for defining and
managing specific cluster and application configurations, followed by security assessment
tools for measuring against the recognized security benchmarks.

Policy Enforcement

Kyverno was selected for policy enforcement in this implementation due to its Kubernetes-
native approach. It manages policies as Kubernetes resources using YAML, making it easy
to integrate with existing Kubernetes workflows. Kyverno provides a comprehensive set of
tools to manage the Policy-as-Code (PaC) lifecycle for Kubernetes by allowing to validate,
mutate, generate and clean up any Kubernetes resource [11]. Although Kyverno is not the
only tool available for this purpose, it was chosen over the following alternatives:

75

■ OPA Gatekeeper: Although OPA Gatekeeper is a powerful policy engine that
allows policy enforcement, it doesn’t provide built-in policy templates and uses Rego
language for writing policies, which can be difficult to learn in this implementation
context. Additionally, the mutation capabilities are limited compared to Kyverno.

■ Kubewarden: It is a fast and powerful, developer-centric policy engine that allows
policies to be written in any programming language that compiles to WebAssembly
(Wasm). Although it is flexible and allows using libraries from programming
languages, compiling to Wasm introduces additional layer of complexity.

■ jsPolicy: Another developer-centric policy engine that allows policies to be written
in programming language - JavaScript or TypeScript. Although it is flexible and
allows using libraries from JavaScript ecosystem, from non-developer perspective,
learning JavaScript or TypeScript can be difficult.

■ Pod Security Admission: A built-in Pod Security admission controller that en-
forces Pod Security Standards at namespace level. As the name suggests, it is
limited to work only on Pods, and does not provide the same level of flexibility and
customization as Kyverno.

Therefore, this makes Kyverno the most suitable choice for policy enforcement tool in this
implementation.

Enforced Policies With Kyverno

This section describes the policies that were enforced by Kyverno in this implementation.
There were multiple types of policies used in this implementation that included validating,
mutating and generating policies. The most important policies with their objectives are
listed in the table below:

■ restrict-default-sa-automount: This policy restricts automounting the ’default’
service account token in each namespace by mutating the existing and new service
account resources with automountServiceAccountToken: false. This ensures that the
default service account token is not automatically mounted into a Pod when it is
created without specifying a service account. Enforcing this policy complies with
’APP.4.4.M9 Security of the Kubernetes service account’ security measure.

■ disallow-default-namespace: This policy disallows creating resources in the ’de-
fault’ namespace by validating the resource creation and denying it if the namespace
is ’default’. It is required by E-ITS that each application shall have their own
namespace, and not using a default namespace is a good practice that supports this
requirement.

■ generate-networkpolicy-exitsing: As the name implies, this policy generates a

76

network policy for each existing namespace and new namespace that is created.
The generated policy allows egress traffic within its own namespace, internal DNS
resolution on TCP and UDP port 53 to ’kube-system’ namespace and ingress traffic
from the link-local address 169.254.7.127/32 that is used by Istio Ambient mesh for
mTLS capabilities, and everything else is denied. This supports the ’APP.4.4.M7
Partition of Kubernetes networks’ requirement and complies with ’APP.4.4.M18
Microsegmentation (C-I)’.

■ require-pod-probes: This policy requires that all Pods have liveness and readiness
probes defined to ensure that the application is healthy and ready to serve the traffic,
and can be automatically restarted when needed. This policy was set to ’Audit’
mode, as not all applications have endpoints that can be used for probes. Although
it is a good practice to have them, and a custom probe can be created (relying on
telemetry or logs), it is not always reliable and can end up in a situation where the
application is healthy, but the probes are failing. This policy supports ’APP.4.4.M11
Monitoring the use of containers’ security measure.

■ require-requests-limits: This policy requires that all containers have resource
requests and limits defined. It was set to ’Audit’ mode, as not all applications have
init containers or sidecar containers defined, so it’s not possible to enforce this policy
explicitly on all containers. However, it reports that there are containers that do not
have the requests and limits defined and can be used as a reference to set them. This
helps to avoid conflicts created by applications that could consume all resources and
starve other applications.

■ generate-quotas: This policy generates Limit Range and Resource Quota for each
namespace, ensuring that the number of resources created into a namespace is
controlled, and provides the default resource limitations for the applications. This
supports the ’APP.4.4.M1 Designing the partition of applications’ base measure.

■ generate-peerauthentication: This ClusterPolicy generate a PeerAuthentication
configuration for Istio Ambient mTLS configuration for each namespace.

The content of these and other policies are stored in the workload/apps/kyverno/templates
directory in Git repository [109] and are deployed by Argo CD. The policies were created
to ensure that the cluster is compliant with security standards and best practices. As for the
enforced Network Policy - to still allow the cluster services to work without disruptions,
additional Network Policies were created for each application, taking into consideration
the explicit ports that are used by the application. These policies are either defined in the
values file of the Helm chart or stored as a template in application’s directory.

77

Tools for Security Assessment

For security posture assessment, kube-bench was selected. It’s an open-source tool de-
veloped by Aqua Security that checks the Kubernetes cluster against the CIS Kubernetes
Benchmark [74], which is vital for meeting the security requirements like E-ITS, and
in some measures is more strict. The tool is designed to be easy to use and provides a
comprehensive report on the security posture of the cluster, including recommendations
for remediation.
Although it is not the only tool available for this purpose, it was chosen over the following
alternatives:

■ Kubescape: A comprehensive open-source security platform developed by ARMO
with wide range of security scanning capabilities, such as vulnerability scanning and
compliance checks against multiple frameworks [140]. While it now supports CIS
Kubernetes Benchmark, the most common tool for this purpose is still kube-bench
as it is specifically designed for that purpose. Additionally, the reporting does not
provide the same level of explanation and detail for remediation as kube-bench.

■ Trivy: Also developed by Aqua Security, is an open-source scanner for vulnera-
bilities, misconfigurations, secrets and other types of security issues [141]. It is
richer in features than kube-bench, but it is not allow specifying the Benchmark
version, which means that cloud provider managed clusters (usually without access
to control plane) and self-managed clusters are scored in the same way. Additionally,
kube-bench runs as a lightweight Kubernetes Job, and can be easily managed.

■ Kube-score: A tool for static code analysis of Kubernetes objects that provides a list
of potential issues and recommendations for improvement [19]. While it is a useful
tool for identifying issues in Kubernetes manifest definitions, it doesn’t check the
life state of the cluster resources or its components (e.g. API Server, etcd, kubelet,
etc.) and therefore cannot be used to assess the security posture in the same way as
kube-bench.

Therefore, kube-bench was selected as the primary tool for security assessment in this
implementation due to its simplicity, feature-rich CIS Benchmark checks, and the fact that
it is widely used in the Kubernetes community.

5.8 Conclusion of Technical Implementation

The technical implementation has described the whole process of setting up the cluster.
Starting with a selection and the preparations of the resource platform and provisioning
tools, followed by a strategic planning of the cluster architecture and its components, initial

78

bootstrapping with the custom resource definitions, then securing the cluster components
according to the security requirements and best practices. After that, the applications
were categorized into different groups based on their functionality and purpose. For each
category, the most common, recommended and widely used tools were thoroughly evalu-
ated, and the most suitable ones were selected based on the outcome of the evaluation and
requirements of E-ITS.
The technical implementation started by provisioning the workload cluster in the man-
agement cluster’s Argo CD instance. After the resources were provisioned and validated,
Calico CNI and Cloud Controller Manager were deployed by using the HelmChartProxy

resources in management cluster’s Argo CD instance. Then Azure Bastion host was used
to access the workload cluster’s control plane to approve the kubelet-serving CSRs. This
was followed by doing the final modifications on kubelet configuration - running the script
shown on Figure 16 on each Kubernetes node to ensure that the tlsPrivateKeyFile and
tlsCertFile values are appropriate:

Figure 16. Additional Kubelet TLS Configuration.

#!/usr/bin/env bash
set -euo pipefail

CONFIG_FILE="/var/lib/kubelet/config.yaml"

Append the TLS settings to kubelet config
cat <<EOF >> "$CONFIG_FILE"
tlsPrivateKeyFile: /var/lib/kubelet/pki/kubelet-server-current.pem
tlsCertFile: /var/lib/kubelet/pki/kubelet-server-current.pem
EOF

Reload systemd and restart kubelet
systemctl daemon-reload
systemctl restart kubelet

echo "Appended TLS configuration."

The management cluster’s Argo CD instance was then used to bootstrap the ArgoCD
instance to workload cluster with its first Application (app-of-apps, containing the logic
for every other application deployment) by using HelmChartProxy resource, and Clus-

terResourceSet feature to automatically apply an initial set of secrets to the workload
cluster. This new Argo CD instance in the workload cluster then bootstrapped some core
applications in the workload cluster - Azure Disk CSI Driver, HAProxy Ingress Controller,
cert-manager, ExternalDNS and External Secrets Operator. After that, Calico CNI’s
FelixConfiguration was patched to allow Istio Ambient Mesh to work properly with the
CNI. The rest of the applications were then deployed by manually clicking on "Sync"
button in Argo CD.
An important thing to note is that the workload cluster is deployed to a private Azure
network, and a pre-requirement is that the management cluster is either in the same
network or has connectivity to that network. For this purpose, a VNet Peering was created

79

automatically (by Cluster API resource) between the management cluster network and
the workload cluster network. In this example, a single-node AKS cluster was used as the
management cluster, but it can be any Kubernetes cluster as long as it has connection to
the workload cluster’s private network.
Additionally, as this is a private cluster, accessing the exposed services (Ingress, Load
Balancer) such as Argo CD, Grafana, etc. is not possible without having a VPN connection
set up to the private network. For this implementation, a Gateway Subnet, Azure VPN
Gateway and a Point-To-Site VPN connection were created to allow the author to access
the services. However, Azure Private DNS Zone is used for storing DNS records. To
resolve the service names, a DNS Resolver is needed and as the VPN Gateway is already
expensive, and Azure DNS Resolver is expensive, the most cost-effective solution is to
manually add the host entries in the hosts file. Of course, the services can still be exposed
to public internet by modifying the HAProxy Load Balancer Service annotations, but for
this implementation, the author decided to keep the services private and not expose them
to public internet for increased security.

The practical outcome of this implementation will be presented and discussed in detail in
the subsequent Results chapter.

80

6. Results

This chapter delves into the results of this Kubernetes cluster implementation, with a focus
on validating compliance with the E-ITS APP.4.4: Kubernetes implemented measures.
The findings in this chapter provide crucial part for answering the RQ1 and RQ2.

6.1 Validation Strategy

To ensure comprehensive assurance of the implemented E-ITS measures. Two key valida-
tion methods were used:

■ Experimental validation: controlled tests in the cluster (e.g., kube-bench tests, policy
validation runs, etc.) to prove that security measures behave as expected under the
defined conditions.

■ Empirical validation: observations and metrics gathered from live cluster (e.g., man-
ually checking etcd encryption, container cgroup configuration, etc.) and inspecting
the defined Kubernetes configuration files (e.g., manifests, cluster component con-
figurations, etc.) to verify that the implemented security measures are effective and
persistent.

6.2 Validating E-ITS APP.4.4 Implemented Measures

To confirm that this Kubernetes cluster meets the APP.4.4 requirements, both automated
and manual verification assessments were used. First and foremost, a resource-level
validation was performed to ensure that the Azure resources were correctly provisioned
and configured. This involved checking the ’Cluster’ resource state in the management
cluster and verifying the provisioned resources in Azure portal as shown in Appendix 13 –
Provisioned resources in Azure Portal.

6.2.1 Cluster Component Configuration Validation With ’kube-
bench’

Then, kube-bench was used to perform automated and manual check against the latest
(at the time of writing v1.10) CIS Kubernetes Benchmark, verifying the security posture
of control plane configuration files, API Server, Controller Manager, Scheduler, etcd,

81

control plane authentication and authorization, audit logging, together with worker node
configuration files, kubelet and kube-proxy configuration.
This supports the overall validation process, as many controls are related to E-ITS APP.4.4
measures. Additionally, it provides remediation steps that can be used for verification.
The tests were run with the following targets: ’master, node, etcd, controlplane’ to cover
all cluster components. The test results are shown in Appendix 4 – kube-bench test results.
Although most tests were automatically validates, some tests required manual validation
(either) and those will be discussed in the next subsections.

False Positives

The number of false positives encountered during the validation was low, but they were
still present. The details of these false positives with manual verification and explanations
are shown in Figure 17.

Figure 17. False positive errors in kube-bench.

[FAIL] 1.1.12 Ensure that the etcd data directory ownership is set to etcd:etcd (
↪→ Automated)

etcd is in stacked configuration and located on control plane node, which does not
↪→ have ’etcd’ user at all. Instead’ root’ user is used as expected.

[FAIL] 4.1.1 Ensure that the kubelet service file permissions are set to 600 or more
↪→ restrictive (Automated)

Ownership is restricted, kubelet_service_config variable is set, still gives error
↪→ . Manual verification shows the kubelet service configuration file location
↪→ and then its permissions that are restricted to 600:

root@capi-ha-control-plane-h692g:~/kube-bench# systemctl status kubelet.service |
↪→ grep -A1 "Drop-In"
Drop-In: /usr/lib/systemd/system/kubelet.service.d

10-kubeadm.conf

root@capi-ha-control-plane-h692g:~/kube-bench# stat -c %a /usr/lib/systemd/system/
↪→ kubelet.service.d/10-kubeadm.conf

600

Manual Checks

Although the majority of the tests were automated, the following tests needed manual
verification. The details with the manual validation results are shown in Appendix 8.4.

Even though Kubernetes API server is configured to use anonymous authentication, as it
is considered reasonable as long as RBAC authorization is used, a work-around has been
provided to globally disable anonymous authentication and enable this feature only for
specific paths, granting that health probes are still working without issues.

82

RBAC and Other Pod Security Standards Checks

The remediation steps of kube-bench Policy tests were used to thoroughly validate that the
RBAC roles are configured by following the least-privilege principle. Additional checks
were performed to validate that hostPath, hostIPC, hostPID, hostNetwork were not used
where it was not needed, and the applications did not allow privilege escalation. After
manually running the commands provided in each remediation step, and investigating the
outcomes thoroughly, it was confirmed that these parameters were only used by Calico
CNI and Prometheus Node Exporter. Calico CNI requires it for networking purposes,
and Prometheus Node Exporter requires it to access the host system metrics. This is also
confirmed by the official documentation of the application [142]. To conclude this, the
manual steps were performed to check that applications are not using elevated privileges,
do not allow privilege escalation and are configured by following the industry best practices,
and with the thorough validation, it was confirmed.

6.2.2 Validation of each E-ITS APP.4.4 implemented measure

This section provides a detailed validation of each E-ITS APP.4.4 measure by taking into
account the results of kube-bench tests, and showing the additional manual validation steps
that were taken to ensure that the measures were implemented correctly.

The measures are grouped in the same way they are grouped by lifecycle in the E-ITS
APP.4.4 module:

Planning

■ APP.4.4.M1 Designing the partition of applications: ResourceQuota and Lim-
itRange definitions are stored in the workload/apps/kyverno/templates/resource-
QuotaLimitRange.yaml file [109] and are automatically applied to the cluster by
Kyverno.
Figure 18 shows the automatic generation of ResourceQuota and LimitRange for a
new namespace that was created in the cluster.
Networks segmentation is defined in the networkSpec.subnets field of the AzureClus-

ter resource in the mgmt/azure/cluster/eits-cluster.yaml file [109]. Each application
is assigned to work in their own respective namespace, except for the Kubernetes
system tools which are assigned to the kube-system namespace. The cluster contains
the applications with a similar security requirements - no specific applications are
deployed that would require different security posture.

■ APP.4.4.M2 Automation of the development of applications with the help of
CI/CD : Argo CD is used to manage the applications in the cluster, and not manual

83

Figure 18. ResourceQuota and LimitRange generation.

root@capi-ha-control-plane-ph7w5:~# kubectl get clusterpolicies.kyverno.io | grep "
↪→ add-ns-quota"

add-ns-quota true true True
↪→ 2m45s Ready

root@capi-ha-control-plane-ph7w5:~# kubectl create ns "test-quotas"
namespace/test-quotas created
root@capi-ha-control-plane-ph7w5:~# kubectl get resourcequotas -n test-quotas
NAME AGE REQUEST LIMIT
default-resourcequota 13s requests.cpu: 0/3, requests.memory: 0/12Gi limits.

↪→ cpu: 0/4, limits.memory: 0/16Gi
root@capi-ha-control-plane-ph7w5:~# kubectl get limitranges -n test-quotas
NAME CREATED AT
default-limitrange 2025-05-03T20:24:06Z

deployments can be done, as the access to the control plane is limited to only
approved users through the Bastion host (the user accounts have to be created
beforehand, and SSH keys need to be provisioned to the host). Access to Argo CD
instance is limited to only administrator and no one else. The data managed by Argo
CD (logs) are collected in the central logging system and are stored for 14 days.
Access to logging environment is limited to only administrator and no one else.

■ APP.4.4.M3 Planning the Kubernetes identity and rights management: RBAC
authorization is used for the Kubernetes API Server, AlwaysALlow authorization
mode is disabled. This was automatically validated by kube-bench 1.2.6-1.2.8 tests,
and the results are shown in Appendix 4 – kube-bench test results. Kubernetes
Storage Class is used to manage the Persistent Volumes in the cluster, and its
reclaimPolicy is configured to Retain the data, so even when Persistent Volumes are
deleted, the data is retained.
Storage Class is protected against accidental pruning in Argo CD by using the
following annotation: argocd.argoproj.io/sync-options: Delete=false, and this can
be modified only by Argo CD administrator. Storage Class configuration is stored in
workload/apps/azure-disk-csi/templates/storageclass.yaml [109].

Implementation

■ APP.4.4.M4 Partition of pods: Kubelet and containerd are configured to use
the systemd cgroup v2 driver, ensuring the Linux namespace isolation. Cgroup
configuration and container isolation validation steps are shown in Appendix 6 –
Kubelet cgroup configuration and namespace isolation.

■ APP.4.4.M6 Secure resetting of the pods: This measure shall not be enforced,
as it is not applicable in most cases. This is because most applications do not
require initContainers, as usually the configurations have already been done while
building the container image. However, when applications did require additional
configurations before starting, initContainers were used. This can be validated in

84

Figure 15.
■ APP.4.4.M7 Partition of Kubernetes networks: This was partially validated in

APP.4.4.M1, however Appendix 7 – Azure Bastion (Management), control plane
node, isolated node and other data plane node subnets shows subnet configuration
in Azure portal. Accessing control-plane, isolated data-plane nodes, and other
data-plane subnets is allowed only through the Bastion host, which is configured in
AzureCluster resource [109]. Additionally, isolated-data nodes allow traffic from
control-plane subnets for cluster management (as required by Kubernetes documents)
and traffic within its subnet, but prohibits any other inbound traffic for isolation
purposes.
CNI permissions restrictions were already validated with kube-bench 1.1.9 and
1.1.10 tests, and the results are shown in Appendix 5 – kube-bench cluster com-
ponent manual verification steps. Additionally, Kyverno enforces ’default-deny’
Network Policies for each namespace which are automatically generated for each
new namespace that is created in the cluster.

Figure 19. Kyverno ClusterPolicy for NetworkPolicy generation.

root@capi-ha-control-plane-ph7w5:~# kubectl get clusterpolicies.kyverno.io grep "
↪→ generate-networkpolicy"

NAME ADMISSION BACKGROUND READY AGE MESSAGE
generate-networkpolicy-existing true true True 65m Ready

Operation

■ APP.4.4.M5 Backup of cluster information : Cluster resources are automatically
backed up with Velero - etcd backup is stored in Azure Blob Storage container,
and Volume Snapshots of Persistent Volumes are stored directly in the management
resource group. The backup validations are shown in Appendix 8 – Velero backup
validation in Azure portal

■ APP.4.4.M8 Security of the Kubernetes configuration files: Kubernetes appli-
cation configurations include a version number with a short description of the
application - this is done in the Helm Chart configuration files and can be validated
with any Helm Chart that is stored in workload/apps/ directory [109].

■ APP.4.4.M9 Security of the Kubernetes service accounts: Each application that
needs a service account is using a dedicated service account. By following the
official documentation of the applications, service account permissions are set to
the minimum required for the application to work. Kyverno disables automountSer-

viceAccountToken for the ’default’ service account in each namespace, and this is
validated in Appendix 9 – Disabled automount for default service accounts.

■ APP.4.4.M10 Security of the automation process: Argo CD is using cluster-wide

85

permissions to manage the applications within the cluster. This is required as it
manages every namespace in the cluster. However, Argo CD instance can only be
accessed through internal network and only by the administrator.

■ APP.4.4.M11 Monitoring the use of containers: Kyverno ClusterPolicy requires
that all containers (including init containers, sidecar containers and ephemeral
containers) have defined health probes. However, the policy is set to ’Audit’ mode,
as some applications only have one endpoint defined (e.g. Grafana Alloy supports
only readinessProbe), and enforcing this policy would cause the applications to fail.
A validation of the health probe requirement is shown in Appendix 10 – Kubernetes
health probe requirement validation.

■ APP.4.4.M12 Security of infrastructure applications: Infrastructure applications
are secured, and each application is using a dedicated service account with minimal
permissions for the application to work (based on the official documentation). Velero
backups are encrypted in-transit by utilizing TLS encryption and the backup data is
encrypted at rest by Microsoft-managed keys. The encryption of backups was already
validated in APP.4.4.M5, and the encryption configuration is shown in Appendix
16 – Velero backup output with EncryptionAtRestWithPlatformKey. Additionally,
Istio Ambient is enabled in the cluster to use mTLS encryption for pod-to-pod
communication. This can be validated by checking from Kiali UI or by using the
istioctl command.

Additional advanced measures

■ APP.4.4.M13 Automatic configuration audits (C-I-A): kube-bench performs
daily automated audits via CronJobs by checking its configuration against the
CIS Kubernetes Benchmark v1.10. The results were already shown it Appendix
4 – kube-bench test results, and application configuration specifics are located in
workload/apps/kube-bench/templates directory [109]. For continuous auditing and
reporting, Kyverno is used. Kyverno rules are defined in the workload/apps/kyver-
no/templates directory [109] and the applied policies are shown in Figure 20. The
final layer of auditing capabilities is provided by Argo CD that verifies the state of
applications and against the desired state in Git.

■ APP.4.4.M14 Use of specialised nodes (C-I-A) : The following node groups were
created in the cluster: monitoring, ingress, storage, isolated and general, and are
shown in Appendix 11 – Specialised Kubernetes nodes with their configuration
defined in the respective KubeadmConfig section. Each application is configured to
run on the designated nodes based on the configured tolerations and nodeAffinity
rules in the Helm Chart configuration files. Access to Kubernetes nodes is allowed
only through the Bastion, which was explained in APP.4.4.M7.

86

Figure 20. Deployed Kyverno ClusterPolicies.

root@capi-ha-control-plane-ph7w5:~# kubectl get clusterpolicies.kyverno.io
NAME ADMISSION BACKGROUND READY AGE MESSAGE
allow-specific-kube-system true true True 2m36m Ready
allow-specific-kyverno true true True 2m36m Ready
add-ns-quota true true True 2m36m Ready
disallow-default-namespace true true True 3h1m Ready
generate-networkpolicy-existing true true True 3h1m Ready
generate-peerauthentication true true True 3h1m Ready
restrict-default-sa-automount true true True 3h1m Ready
require-pod-probes true true True 3h1m Ready
require-requests-limits true true True 3h1m Ready

■ APP.4.4.M15 Partition of applications at the levels of nodes and clusters (C-I-A):
Although there are no applications that require very high protection requirements, a
dedicated isolated node group was created in the cluster to facilitate the potential
need for such applications in the future. The creation of such node group can be
validated in Appendix 11 – Specialised Kubernetes nodes, and its Network Security
Group Rules is shown in Appendix 14 – Isolated node group Security Group Rules.
The isolated node group is configured to use a dedicated subnet, which is defined in
the networkSpec.subnets field of the AzureCluster resource, and the configuration
is stored in the mgmt/azure/cluster/eits-cluster.yaml file [109]. Additional manual
validation was performed to ensure that the isolated node group is not accessible
from the other node groups outside the control-plane subnet, and the outcome is
shown in Appendix 15 – Isolated node group connection testing.

■ APP.4.4.M16 Use of Kubernetes operators (C-I-A): This implementation uses
various operators to efficiently manage core application in Kubernetes cluster. The
most notable ones are: Velero, Calico CNI (Tiger Operator), Prometheus Operator
(in kube-prometheus-stack), and External Secrets Operator.

■ APP.4.4.M17 Certification of nodes (C-I-A): Each kubelet is authenticating to the
API Server using a serving TLS certificate, which was signed by the cluster CA.
Both kubelet and API server are configured to use strong cryptographic ciphers, and
kubelet server TLS certificates are configured to automatically rotate. This measure
was validated by automatically passing the following kube-bench tests:

API Server 1.2.4, 1.2.5, 1.2.24, 1.2.29 and 1.3.6

kubelet: 4.2.3, 4.2.10, 4.2.11 and 4.2.12

The whole content of the kube-bench test results is shown in Appendix 4 – kube-
bench test results. Additionally, TPM attestation was not used in this implementation
and will be explained in more detail in Discussion chapter.

■ APP.4.4.M18 Microsegmentation (C-I): The ’default-deny’ network policies are
automatically generated for each namespace and then enforces by Kyverno. Each
application has additional network policies defined based on the actual need and are
stored in each workload/apps/ directory [109].

87

■ APP.4.4.M19 Guaranteeing the high availability of Kubernetes (A): The cluster
is highly available - it is using three control-plane nodes, and two data-plane nodes
for each node group. This is shown in Appendix 11 – Specialised Kubernetes nodes.
Additionally, control-plane nodes are provisioned across three availability zones
and data-plane nodes are provisioned across two availability zones. Configuration
is done in KubeadmControlPlane for control-plane nodes and MachinePool for
data-plane nodes, which is stored in the mgmt/azure/cluster/eits-cluster.yaml file
[109]. Backups are stored off-site and were already validated in APP.4.4.M5.

■ APP.4.4.M20 Encryption of the control plane storage space (C): The underlying
virtual machines are using end-to-end encryption by utilizing the encryption at host
feature, which are configured in AzureMachineTemplate section for the control plane
nodes and AzureMachinePool for each data plane node group. Additionally, etcd

data is encrypted at rest by configuring EncryptionConfiguration for the API Server.
This is automatically validated by passing the 1.2.27 and 1.2.28 tests. Additional
manual validation was performed, and the results are shown in Appendix 2 – Secret
encryption verification in etcd.

■ APP.4.4.M21 Periodic restarting of the pods (C-I-A): Although manual appli-
cation restarting is not common in Kubernetes, as it’s supposed to be automatic
based on its defined configurations (e.g. health probes, etc.), or there are operators
managing the resources and restarting the Pods when needed, a feature for this mea-
sure was still implemented. A dedicated ServiceAccount, ClusterRole (permissions
following the least-privilege principle), ClusterRoleBinding and a CronJob were
created to restart the specified applications in the cluster periodically. The CronJob
is configured to run once a day at 01:00 and restart only the resources that have
been specified in the Helm values file, to avoid restarting the applications that do not
require it.
Appendix 17 – Validation of ’restarter’ CronJob shows the deployed CronJob, a Pod
created by the CronJob, and the logs confirming that the applications were restarted.

6.2.3 Conclusion of the Validation

In this chapter, the author demonstrated through the use of automated tools (kube-bench,
Kyverno, Argo CD, etc.) and targeted manual validation checks that the deployed and
configured Kubernetes cluster has fully implemented all E-ITS APP.4.4: Kubernetes
measures. The detailed pass/fail results of the automated tests are shown in Appendix 4 –
kube-bench test results, manual validation results are shown throughout this chapter, and
the Table Appendix 12 – PEARO principle validation applies the PEARO principle by
following the E-ITS application guide [143] to conclude the implementation status of each
measure.

88

This thesis delivered a detailed and practical implementation of Kubernetes cluster that
fully complies with E-ITS APP.4.4: Kubernetes requirements (has implemented each mea-
sure) and it can serve organizations as a guidance, reference deployment or a template
that can be adapted to their needs and requirements to achieve E-ITS compliance on their
Kubernetes clusters. All configuration manifests, scripts and other relevant resources are
published in the public Git repository [109].
For privacy and security reasons, some values such as Tenant ID, Subscription ID, etcd

encryption keys and other sensitive values have been redacted. Prior or during the workload
cluster deployment, organizations must provision any required secrets, such as Argo CD
repository credentials, External Secrets Operator and External DNS authentication creden-
tials either by using the ClusterResourceSet in the management cluster (as demonstrated in
the technical implementation chapter) or with their preferred bootstrapping method. While
this implementation used Argo CD for management cluster, it can be substituted with other
GitOps tools such as Flux, or simply by using ’kubectl apply’ command to deploy and
bootstrap the workload cluster.
Additionally, regions, instance types, network configurations, storage type and sizes,
and other resource parameters can be adjusted to fit the organization’s environment and
requirements.

89

7. Discussion

This chapter discusses the findings of the research by addressing the research questions,
highlighting the study limitations and potential recommendations for improvement.

7.1 Findings

The following section addresses the research questions set in the Introduction chapter, and
they are answered based on the findings of previous chapters.

7.1.1 Answers to Research Questions

[RQ1] How can organizations implement E-ITS ’APP.4.4: Kubernetes’ to achieve
compliance and enhance the security posture of their Kubernetes clusters?

Organizations can achieve E-ITS compliance through a structured approach that includes
exploratory analysis, constructive design and implementation and a thorough validation.
Initially, a Systematic Literature Review (SLR) could be combined with detailed document
analysis to provide clarity on specific E-ITS requirements and help to align them with
Kubernetes best practices. Then, a high-level architecture design is created based on the
identified requirements. Organizations should then follow a structured and incremental
implementation process (to simplify the implementation tasks) supported by a comparative
analysis to select the most suitable tools. Finally, a validation process through automated
benchmarks and manual validation ensures that the E-ITS compliance and enhanced
security posture. The technical implementation together with the validation process
outlined in this study can be used as a practical guideline or reference for organizations
trying to achieve similar compliance requirements.

[RQ2] What tools, methods, processes can be used for the E-ITS ’APP.4.4: Kuber-
netes’ adoption?

The adoption of E-ITS compliance can leverage structured methods and various tools
identified in this study. Initially, each E-ITS measure should be reviewed to understand the
specific security requirements and to determine the suitable combination of tools to address
them effectively. To simplify the implementation process, the tools can be grouped into
different categories based on their functionality, such as core applications (for the cluster to
function), secrets management, monitoring, DNS and certificate management, service mesh

90

and others. An iterative implementation process should be used to deploy and validate the
tools in each category before moving to the next one. This step-by-step approach simplifies
the troubleshooting process and addresses the security issues systematically, reducing the
risk of misconfigurations. The validation process should include both automated security
benchmarks and manual validation process to ensure that each measure is fully covered,
and the final outcome is a compliant Kubernetes cluster. The technical implementation
chapter can be used to get a detailed overview of possible tools that can be used to achieve
the E-ITS compliance.

[RQ3] What are the specific security requirements outlined in E-ITS ’APP.4.4: Ku-
bernetes’ and how do they align with Kubernetes best practices?

E-ITS APP.4.4: Kubernetes outlines several detailed security requirements that are based
on the 5 identified threat categories - control plane authentication and authorization, Pod
confidentiality breach, resource conflicts, unauthorized changes in the cluster and unautho-
rized Pod access. The measures aim to mitigate these threats by implementing security
controls across different layers of Kubernetes architecture. Generally, the requirements to
implement the outlined security measures are aligned with widely recognized Kubernetes
hardening guides (e.g., CTR Hardening Guide, CIS Kubernetes Benchmark) and overall
best practices.

[RQ4] What gaps exist between E-ITS ’APP.4.4: Kubernetes’ and current Kubernetes
security in academic literature?

The primary identified gaps between E-ITS and existing literature identified during the
SLR is the lack of possible security measures (with a few exceptions) after the threats have
been identified. The current academic literature often focuses on specific security aspects
or technical issues, whereas the scope of E-ITS is considerably broader. Additionally, there
is no literature that focuses on practical implementation of Kubernetes security measures
that are aligned with regulatory frameworks or country-specific standards. This study
bridges this gap by providing a comprehensive practical implementation that is tailored
for E-ITS APP.4.4: Kubernetes and can be used as a template, guidance or reference for
organizations trying to achieve the same or similar compliance requirements.

7.2 Limitations

A several limitations were identified during this research which potentially affected the
scope and execution of the study.

■ Lack of TPM-based attestation: APP.4.4.M17 Certification of nodes (C-I-A) mea-

91

sures preferred the use of Trusted Platform Module (TPM) for node attestation. This
was not implemented due to limited availability of Confidential Virtual Machine
instances in the chosen region or incompatibility of the supported Hyper-V genera-
tion with the OS images used for this implementation. The instance sizes that were
available in the region and were compatible with the Hyper-V generation were not
practical to use due to their resource specifications - minimum of 24 cores. This
made them impractical to use due to inefficient resource utilization and a huge cost.

■ Limited Scope to IPv4: The implementation was limited to IPv4-only network
configurations. No IPv6 or dual-stack configurations were implemented. Although
this was considered by the thesis author at the beginning of architecture design phase,
it was decided to limit the scope to IPv4-only to not extend the complexity of the
implementation and potentially delay the outcome of the project.

■ Azure Dependency: The practical implementation utilized Azure cloud services
as underlying infrastructure. While the core Kubernetes cluster configurations (e.g.,
API Server, etcd, kubelet, etc.) are platform-agnostic, certain custom resources (e.g.,
AzureCluster, AzureMachinePool) are Azure specific. This introduces a platform
dependency, however, these can be replaced with other provider’s resources (e.g.,
AWSCluster and AWSMachinePool) to achieve the same functionality

■ Budgetary constraints: Due to limited Azure credits, the full production-sized
cluster could not remain running for the entire duration of the research to avoid
running out of Azure credits and paying a hefty price for the resources. After each
deployment category was completed, the cluster was dismantled to avoid unnec-
essary costs. This on-off cycle of provisioning and deprovisioning the resources
significantly slowed down the progress and prevented the author from keeping the
cluster available during the writing phase of the next category.

7.3 Recommendations

Based on the findings throughout the research, several recommendations are proposed to
enhance the E-ITS APP.4.4: Kubernetes module and its implementation process:

■ Wording improvement: Some E-ITS requirements include a bit unclear wording or
potential translation ambiguities (possibly lost in translation from BSI sources) and
could benefit from a review to enhance the clarity. Additionally, some measures could
include more context or examples to help organizations understand the intention
behind them.

■ Revision of APP.4.4.M9 Security of the Kubernetes service accounts: This mea-
sure focuses on securing the Kubernetes service accounts. However, one of the
requirements states the following - "Those pods which do not require a service

92

account do not have one. Such pods use tokens for communicating with the Kuber-
netes control plane." [59]. This statement is misleading, as Pods will always have
a service account, either the default one or a designated one. It can be assumed
that the intention was to disable the automatic service account token mounting for
Pods that do not require it, but this does not equal to not having a service account
at all. The second part is missing the context - if there is no service account token
mounted, then which token is described in the second part of the statement? The
recommendation is to revise the wording of this measure to avoid confusion and
clarify the intention.

93

8. Conclusion

8.1 Summary

This thesis provided a structured and practical approach for organizations seeking to
implement and achieve E-ITS APP.4.4: Kubernetes compliance. The exploratory phase,
which included a Systematic Literature Review and document analysis, identified key
security challenges, industry best practices, and most notably the lack of concrete and
actionable guidance for compliance with standards such as E-ITS. The constructive phase
involved designing a high-level architecture, evaluating and selecting tools, followed
with a step-by-step technical implementation of E-ITS compliant Kubernetes cluster.
The validation phase included automated checks against the CIS Kubernetes Benchmark
complemented with a thorough manual verification process to confirm that the cluster has
been configured according to the E-ITS requirements.

Every configuration file used for technical implementation in this thesis (including Cluster
API resources and Kubernetes manifests) is stored in the author’s public GitHub repository.
It contains all the necessary files to deploy an E-ITS compliant Kubernetes cluster on Mi-
crosoft Azure using Cluster API. The repository is publicly accessible for anyone to use and
adapt for their own needs, and it can be accessed at: mlndbr6/e-its-kubernetes/.

8.2 Contribution

This work bridges the gap between theoretical security measures and a real-world imple-
mentation, providing a practical solution for organizations aiming to comply with E-ITS
APP.4.4: Kubernetes requirements and enhance their Kubernetes security posture. By pro-
viding a validated technical solution, this thesis delivers an actionable template, guidance
or reference for organizations to deploy and configure secure Kubernetes clusters that are
E-ITS compliant in a structured and a simplified way.

In addition to contributing to the academic literature on Kubernetes security with a spe-
cific focus on national security standards, it delivers a valuable practical solution to the
community, supporting organizations in building secure and compliant Kubernetes clusters.

94

https://github.com/mlndbr6/e-its-kubernetes/

8.3 Generalization

Although the implementation was based on Microsoft Azure infrastructure, the core
methods and configurations (e.g., cluster components, Kubernetes resources) are platform-
agnostic and can be adapted to other cloud providers or on-premises environments. This
shows the solution’s usefulness outside the specific context of this study, making it applica-
ble to a wide range of environments.

8.4 Future Work

While this implementation focused on identified requirements, the future research opportu-
nities include two identified limitations in Chapter 7. For example, implementing a TPM-
based node attestation as recommended in ’APP.4.4.M17 Certification of nodes (C-I-A)’,
extending the current implementation to support dual-stack networking configurations.
Additionally, the solution could be further enhanced by completely automating the kubelet
TLS bootstrapping process using the ’kubelet-csr-approver’ [144].
Furthermore, the existing Helm charts could be improved by modifying the current static
templates to a more dynamic and adaptable state, which would reduce code duplication
and enhance the flexibility of application deployments.
Finally, the research could be expanded to explore the use of security-focused operating
systems for the underlying Kubernetes nodes. As these systems are designed with security
in mind, they may limit in some functionalities and this needs to be studied further to
determine their suitability for this use case.

95

References

[1] The State of Kubernetes Security in 2024. en. URL: https://www.redhat.
com / en / blog / state - kubernetes - security - 2024 (visited on
11/16/2024).

[2] E-ITS. URL: https://eits.ria.ee/et/versioon/2023/eits-
poohidokumendid/etalonturbe- kataloog/app- rakendused/

app4-aerirakendused/app44-kubernetes (visited on 01/08/2025).

[3] Pure, upstream Kubernetes is the best Kubernetes. en-US. Jan. 2023. URL:
https://www.cncf.io/blog/2023/01/30/pure-upstream-

kubernetes-is-the-best-kubernetes/ (visited on 02/16/2025).

[4] BSI. APP.4.4 Kubernetes. URL: https://www.bsi.bund.de/SharedDocs/
Downloads/DE/BSI/Grundschutz/IT-GS-Kompendium_Einzel_

PDFs _ 2023 / 06 _ APP _ Anwendungen / APP _ 4 _ 4 _ Kubernetes _

Edition_2023.pdf?__blob=publicationFile&v=4 (visited on
02/09/2025).

[5] Murugiah Souppaya, John Morello, and Karen Scarfone. Application con-

tainer security guide. NIST SP 800-190. Gaithersburg, MD: National Insti-
tute of Standards and Technology, Sept. 25, 2017, NIST SP 800–190. DOI:
10.6028/NIST.SP.800-190. URL: https://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-190.pdf (visited
on 02/21/2025).

[6] What Is Container Orchestration? | IBM. en. Oct. 2024. URL: https://www.
ibm.com/think/topics/container-orchestration (visited on
02/23/2025).

[7] Kubernetes Documentation. en. URL: https://kubernetes.io/docs/
home/ (visited on 11/16/2024).

[8] Vladyslava Shekula and Edmund Laugasson. “Kommunikatsiooni turvalisuse
parandamine Kubernetesi põhistes keskkondades”. In: (May 2024). URL: https:
//digikogu.taltech.ee/et/item/bbe036c3-551a-4b7f-a672-

e01794b4de5d (visited on 11/16/2024).

[9] 12 Minute Read. Authorization Policy. en. URL: https : / / istio . io /
latest/docs/reference/config/security/authorization-

policy/ (visited on 01/22/2025).

96

https://www.redhat.com/en/blog/state-kubernetes-security-2024
https://www.redhat.com/en/blog/state-kubernetes-security-2024
https://eits.ria.ee/et/versioon/2023/eits-poohidokumendid/etalonturbe-kataloog/app-rakendused/app4-aerirakendused/app44-kubernetes
https://eits.ria.ee/et/versioon/2023/eits-poohidokumendid/etalonturbe-kataloog/app-rakendused/app4-aerirakendused/app44-kubernetes
https://eits.ria.ee/et/versioon/2023/eits-poohidokumendid/etalonturbe-kataloog/app-rakendused/app4-aerirakendused/app44-kubernetes
https://www.cncf.io/blog/2023/01/30/pure-upstream-kubernetes-is-the-best-kubernetes/
https://www.cncf.io/blog/2023/01/30/pure-upstream-kubernetes-is-the-best-kubernetes/
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/IT-GS-Kompendium_Einzel_PDFs_2023/06_APP_Anwendungen/APP_4_4_Kubernetes_Edition_2023.pdf?__blob=publicationFile&v=4
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/IT-GS-Kompendium_Einzel_PDFs_2023/06_APP_Anwendungen/APP_4_4_Kubernetes_Edition_2023.pdf?__blob=publicationFile&v=4
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/IT-GS-Kompendium_Einzel_PDFs_2023/06_APP_Anwendungen/APP_4_4_Kubernetes_Edition_2023.pdf?__blob=publicationFile&v=4
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/IT-GS-Kompendium_Einzel_PDFs_2023/06_APP_Anwendungen/APP_4_4_Kubernetes_Edition_2023.pdf?__blob=publicationFile&v=4
https://doi.org/10.6028/NIST.SP.800-190
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://www.ibm.com/think/topics/container-orchestration
https://www.ibm.com/think/topics/container-orchestration
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://digikogu.taltech.ee/et/item/bbe036c3-551a-4b7f-a672-e01794b4de5d
https://digikogu.taltech.ee/et/item/bbe036c3-551a-4b7f-a672-e01794b4de5d
https://digikogu.taltech.ee/et/item/bbe036c3-551a-4b7f-a672-e01794b4de5d
https://istio.io/latest/docs/reference/config/security/authorization-policy/
https://istio.io/latest/docs/reference/config/security/authorization-policy/
https://istio.io/latest/docs/reference/config/security/authorization-policy/

[10] Gatekeeper | Gatekeeper. URL: https://open-policy-agent.github.
io/gatekeeper/website/ (visited on 03/04/2025).

[11] Kyverno. URL: https://kyverno.io/ (visited on 03/04/2025).

[12] Fairwinds Ops Inc. Polaris | Open Source Policy Engine for Kubernetes. URL:
https://www.fairwinds.com/polaris (visited on 03/06/2025).

[13] Easier & Faster Kubernetes Policies | jsPolicy. URL: https://www.jspolicy.
com/ (visited on 03/11/2025).

[14] Aamir Ali et al. “Implementation of New Security Features in CMSWEB Ku-
bernetes Cluster at CERN”. en. In: EPJ Web of Conferences 295 (2024). Ed. by
R. De Vita et al., p. 07026. ISSN: 2100-014X. DOI: 10.1051/epjconf/
202429507026. URL: https://www.epj-conferences.org/10.
1051/epjconf/202429507026 (visited on 11/16/2024).

[15] Akond Rahman et al. “Security Misconfigurations in Open Source Kubernetes
Manifests: An Empirical Study”. In: ACM Trans. Softw. Eng. Methodol. 32.4
(May 2023), 99:1–99:36. ISSN: 1049-331X. DOI: 10.1145/3579639. URL:
https://doi.org/10.1145/3579639 (visited on 12/15/2024).

[16] akondrahman/sli-kube - Docker Image | Docker Hub. URL: https://hub.
docker.com/r/akondrahman/sli-kube (visited on 03/11/2025).

[17] Configure a Security Context for a Pod or Container. Kubernetes. Section: docs.
URL: https://kubernetes.io/docs/tasks/configure-pod-
container/security-context/ (visited on 03/11/2025).

[18] Introduction. URL: https : / / docs . kubelinter . io / #/ (visited on
03/13/2025).

[19] kube-score - Kubernetes object analysis with recommendations for improved

reliability and security. URL: https://kube- score.com/ (visited on
03/12/2025).

[20] What is Checkov? - checkov. URL: https : / / www . checkov . io / 1 .
Welcome/What%20is%20Checkov.html (visited on 03/13/2025).

[21] Md Shazibul Islam Shamim, Farzana Ahamed Bhuiyan, and Akond Rahman. XI

Commandments of Kubernetes Security: A Systematization of Knowledge Related

to Kubernetes Security Practices. Issue: arXiv:2006.15275 arXiv:2006.15275. June
2020. DOI: 10.48550/arXiv.2006.15275. URL: http://arxiv.org/
abs/2006.15275 (visited on 10/04/2024).

97

https://open-policy-agent.github.io/gatekeeper/website/
https://open-policy-agent.github.io/gatekeeper/website/
https://kyverno.io/
https://www.fairwinds.com/polaris
https://www.jspolicy.com/
https://www.jspolicy.com/
https://doi.org/10.1051/epjconf/202429507026
https://doi.org/10.1051/epjconf/202429507026
https://www.epj-conferences.org/10.1051/epjconf/202429507026
https://www.epj-conferences.org/10.1051/epjconf/202429507026
https://doi.org/10.1145/3579639
https://doi.org/10.1145/3579639
https://hub.docker.com/r/akondrahman/sli-kube
https://hub.docker.com/r/akondrahman/sli-kube
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://docs.kubelinter.io/#/
https://kube-score.com/
https://www.checkov.io/1.Welcome/What%20is%20Checkov.html
https://www.checkov.io/1.Welcome/What%20is%20Checkov.html
https://doi.org/10.48550/arXiv.2006.15275
http://arxiv.org/abs/2006.15275
http://arxiv.org/abs/2006.15275

[22] Giorgio Dell’Immagine, Jacopo Soldani, and Antonio Brogi. “KubeHound: De-
tecting Microservices’ Security Smells in Kubernetes Deployments”. en. In: Fu-

ture Internet 15.7 (July 2023). Number: 7 Publisher: Multidisciplinary Digital
Publishing Institute, p. 228. ISSN: 1999-5903. DOI: 10.3390/fi15070228.
URL: https://www.mdpi.com/1999-5903/15/7/228 (visited on
11/16/2024).

[23] Akond Rahman, Chris Parnin, and Laurie Williams. “The Seven Sins: Security
Smells in Infrastructure as Code Scripts”. In: 2019 IEEE/ACM 41st Interna-

tional Conference on Software Engineering (ICSE). 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering (ICSE). ISSN: 1558-1225. May
2019, pp. 164–175. DOI: 10.1109/ICSE.2019.00033. URL: https:
//ieeexplore.ieee.org/document/8812041 (visited on 03/20/2025).

[24] Home - KubeHound. URL: https://kubehound.io/ (visited on 03/14/2025).

[25] Francisco Ponce et al. “Smells and refactorings for microservices security: A
multivocal literature review”. In: Journal of Systems and Software 192 (Oct. 1,
2022), p. 111393. ISSN: 0164-1212. DOI: 10.1016/j.jss.2022.111393.
URL: https://www.sciencedirect.com/science/article/pii/
S016412122200111X (visited on 03/20/2025).

[26] Omar Jarkas et al. “A Container Security Survey: Exploits, Attacks, and Defenses”.
In: ACM Comput. Surv. 57.7 (Feb. 20, 2025), 170:1–170:36. ISSN: 0360-0300.
DOI: 10.1145/3715001. URL: https://dl.acm.org/doi/10.1145/
3715001 (visited on 03/21/2025).

[27] Choi Dongmin et al. Uncovering Threats in Container Systems: A Study on Mis-

configured Container Components in the Wild | IEEE Journals & Magazine | IEEE

Xplore. URL: https://ieeexplore.ieee.org/document/10788674
(visited on 03/21/2025).

[28] Burak Ünver and Ricardo Britto. “Automatic Detection of Security Deficiencies
and Refactoring Advises for Microservices”. In: 2023 IEEE/ACM International

Conference on Software and System Processes (ICSSP). 2023 IEEE/ACM In-
ternational Conference on Software and System Processes (ICSSP). May 2023,
pp. 25–34. DOI: 10.1109/ICSSP59042.2023.00013. URL: https://
ieeexplore.ieee.org/document/10169061 (visited on 03/22/2025).

[29] Pomegranate-suite/pomegranate-suite.sh at main · ramsessw/Pomegranate-suite.
GitHub. URL: https : / / github . com / ramsessw / Pomegranate -
suite/blob/main/pomegranate-suite.sh (visited on 03/24/2025).

98

https://doi.org/10.3390/fi15070228
https://www.mdpi.com/1999-5903/15/7/228
https://doi.org/10.1109/ICSE.2019.00033
https://ieeexplore.ieee.org/document/8812041
https://ieeexplore.ieee.org/document/8812041
https://kubehound.io/
https://doi.org/10.1016/j.jss.2022.111393
https://www.sciencedirect.com/science/article/pii/S016412122200111X
https://www.sciencedirect.com/science/article/pii/S016412122200111X
https://doi.org/10.1145/3715001
https://dl.acm.org/doi/10.1145/3715001
https://dl.acm.org/doi/10.1145/3715001
https://ieeexplore.ieee.org/document/10788674
https://doi.org/10.1109/ICSSP59042.2023.00013
https://ieeexplore.ieee.org/document/10169061
https://ieeexplore.ieee.org/document/10169061
https://github.com/ramsessw/Pomegranate-suite/blob/main/pomegranate-suite.sh
https://github.com/ramsessw/Pomegranate-suite/blob/main/pomegranate-suite.sh

[30] Mayank Agrawal and Kumar Abhijeet. “Security Audit of Kubernetes based Con-
tainer Deployments: A Comprehensive Review”. In: 07.6 (2020). URL: https:
//www.irjet.net/archives/V7/i6/IRJET-V7I6649.pdf.

[31] Updated: Kubernetes Hardening Guide | CISA. Aug. 30, 2022. URL: https:
//media.defense.gov/2022/Aug/29/2003066362/- 1/- 1/

0/CTR_KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF

(visited on 03/26/2025).

[32] CIS Kubernetes Benchmarks. CIS. URL: https://www.cisecurity.org/
benchmark/kubernetes (visited on 03/24/2025).

[33] CIS Benchmarks® FAQ. CIS. URL: https://www.cisecurity.org/cis-
benchmarks/cis-benchmarks-faq/ (visited on 04/15/2025).

[34] Murugiah Souppaya, John Morello, and Karen Scarfone. Application con-

tainer security guide. NIST SP 800-190. Gaithersburg, MD: National Insti-
tute of Standards and Technology, Sept. 25, 2017, NIST SP 800–190. DOI:
10.6028/NIST.SP.800-190. URL: https://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-190.pdf (visited
on 03/24/2025).

[35] OWASP/www-project-kubernetes-top-ten. original-date: 2022-03-31T16:26:46Z.
Mar. 23, 2025. URL: https://github.com/OWASP/www-project-
kubernetes-top-ten (visited on 03/24/2025).

[36] Updated: Dockershim Removal FAQ. Kubernetes. Section: blog. Feb. 17, 2022.
URL: https://kubernetes.io/blog/2022/02/17/dockershim-
faq/ (visited on 03/25/2025).

[37] Configure Service Accounts for Pods. Kubernetes. Section: docs. URL: https:
//kubernetes.io/docs/tasks/configure-pod-container/

configure-service-account/ (visited on 03/25/2025).

[38] Separation of Development, Test and Production Environments. https://www.isms.online/.
URL: https : / / www . isms . online / iso - 27002 / control - 8 -
31 - separation - of - development - test - and - production -

environments/ (visited on 03/26/2025).

[39] Control 8.26, Application Security Requirements | ISMS.online. https://www.isms.online/.
URL: https://www.isms.online/iso-27002/control-8-26-
application-security-requirements/ (visited on 03/26/2025).

[40] design-proposals-archive/network/networking.md at main · kubernetes/design-

proposals-archive. GitHub. URL: https://github.com/kubernetes/
design-proposals-archive/blob/main/network/networking.

md (visited on 03/26/2025).

99

https://www.irjet.net/archives/V7/i6/IRJET-V7I6649.pdf
https://www.irjet.net/archives/V7/i6/IRJET-V7I6649.pdf
https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF
https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF
https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF
https://www.cisecurity.org/benchmark/kubernetes
https://www.cisecurity.org/benchmark/kubernetes
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://doi.org/10.6028/NIST.SP.800-190
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://github.com/OWASP/www-project-kubernetes-top-ten
https://github.com/OWASP/www-project-kubernetes-top-ten
https://kubernetes.io/blog/2022/02/17/dockershim-faq/
https://kubernetes.io/blog/2022/02/17/dockershim-faq/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://www.isms.online/iso-27002/control-8-31-separation-of-development-test-and-production-environments/
https://www.isms.online/iso-27002/control-8-31-separation-of-development-test-and-production-environments/
https://www.isms.online/iso-27002/control-8-31-separation-of-development-test-and-production-environments/
https://www.isms.online/iso-27002/control-8-26-application-security-requirements/
https://www.isms.online/iso-27002/control-8-26-application-security-requirements/
https://github.com/kubernetes/design-proposals-archive/blob/main/network/networking.md
https://github.com/kubernetes/design-proposals-archive/blob/main/network/networking.md
https://github.com/kubernetes/design-proposals-archive/blob/main/network/networking.md

[41] Ramaswamy Chandramouli. Guide to a Secure Enterprise Network Landscape.
NIST Special Publication (SP) 800-215. National Institute of Standards and Tech-
nology, Nov. 17, 2022. DOI: 10.6028/NIST.SP.800-215. URL: https:
//csrc.nist.gov/pubs/sp/800/215/final (visited on 03/26/2025).

[42] Network Segmentation - OWASP Cheat Sheet Series. URL: https://cheatsheetseries.
owasp . org / cheatsheets / Network _ Segmentation _ Cheat _

Sheet.html#network- segmentation- cheat- sheet (visited on
03/26/2025).

[43] Multi-tenancy. Kubernetes. Section: docs. URL: https://kubernetes.io/
docs/concepts/security/multi-tenancy/ (visited on 03/26/2025).

[44] Container and Kubernetes compliance considerations. URL: https://www.
redhat . com / en / topics / containers / compliance (visited on
03/26/2025).

[45] What is GitOps? URL: https : / / www . redhat . com / en / topics /
devops/what-is-gitops (visited on 03/26/2025).

[46] Ramaswamy Chandramouli, Frederick Kautz, and Santiago Torres-Arias. Strate-

gies for the Integration of Software Supply Chain Security in DevSecOps CI/CD

Pipelines. NIST Special Publication (SP) 800-204D. National Institute of Stan-
dards and Technology, Feb. 12, 2024. DOI: 10.6028/NIST.SP.800-204D.
URL: https://csrc.nist.gov/pubs/sp/800/204/d/final (visited
on 03/26/2025).

[47] CI/CD: Complete Guide to Continuous Integration and Delivery. Codefresh. URL:
https://codefresh.io/learn/ci-cd/ (visited on 03/26/2025).

[48] Authenticating. Kubernetes. Section: docs. URL: https://kubernetes.
io/docs/reference/access-authn-authz/authentication/

(visited on 03/26/2025).

[49] Managing Service Accounts. Kubernetes. Section: docs. URL: https : / /
kubernetes . io / docs / reference / access - authn - authz /

service-accounts-admin/ (visited on 04/19/2025).

[50] Role Based Access Control Good Practices. Kubernetes. Section: docs. URL:
https://kubernetes.io/docs/concepts/security/rbac-

good-practices/ (visited on 03/26/2025).

[51] “Cybersecurity Framework”. In: NIST (Nov. 12, 2013). Last Modified: 2025-03-
14T14:55-04:00. URL: https://nvlpubs.nist.gov/nistpubs/CSWP/
NIST.CSWP.29.pdf (visited on 03/26/2025).

100

https://doi.org/10.6028/NIST.SP.800-215
https://csrc.nist.gov/pubs/sp/800/215/final
https://csrc.nist.gov/pubs/sp/800/215/final
https://cheatsheetseries.owasp.org/cheatsheets/Network_Segmentation_Cheat_Sheet.html#network-segmentation-cheat-sheet
https://cheatsheetseries.owasp.org/cheatsheets/Network_Segmentation_Cheat_Sheet.html#network-segmentation-cheat-sheet
https://cheatsheetseries.owasp.org/cheatsheets/Network_Segmentation_Cheat_Sheet.html#network-segmentation-cheat-sheet
https://kubernetes.io/docs/concepts/security/multi-tenancy/
https://kubernetes.io/docs/concepts/security/multi-tenancy/
https://www.redhat.com/en/topics/containers/compliance
https://www.redhat.com/en/topics/containers/compliance
https://www.redhat.com/en/topics/devops/what-is-gitops
https://www.redhat.com/en/topics/devops/what-is-gitops
https://doi.org/10.6028/NIST.SP.800-204D
https://csrc.nist.gov/pubs/sp/800/204/d/final
https://codefresh.io/learn/ci-cd/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/concepts/security/rbac-good-practices/
https://kubernetes.io/docs/concepts/security/rbac-good-practices/
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.29.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.29.pdf

[52] Cluster Architecture. Kubernetes. URL: https://kubernetes.io/docs/
concepts/architecture/ (visited on 03/28/2025).

[53] User Namespaces. Kubernetes. Section: docs. URL: https://kubernetes.
io/docs/concepts/workloads/pods/user-namespaces/ (visited
on 03/28/2025).

[54] Operating etcd clusters for Kubernetes. Kubernetes. Section: docs. URL: https:
//kubernetes.io/docs/tasks/administer-cluster/configure-

upgrade-etcd/ (visited on 03/28/2025).

[55] Volume Snapshots. Kubernetes. Section: docs. URL: https://kubernetes.
io / docs / concepts / storage / volume - snapshots/ (visited on
03/28/2025).

[56] velero/design/Implemented/csi-snapshots.md at main · vmware-tanzu/velero.
GitHub. URL: https : / / github . com / vmware - tanzu / velero /
blob/main/design/Implemented/csi-snapshots.md (visited on
03/28/2025).

[57] Storage Integration — Veeam Kasten 7.5.8. URL: https://docs.kasten.
io/latest/install/storage.html (visited on 03/28/2025).

[58] “NIST SP 800-34”. In: NIST (Jan. 12, 2020). Last Modified: 2021-04-23T09:21-
04:00. URL: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-34r1.pdf (visited on 03/28/2025).

[59] RIA. E-ITS English. URL: https://eits.ria.ee/api/2/main_menu/
asset/2023_eits_english.pdf (visited on 02/08/2025).

[60] Init Containers. Kubernetes. Section: docs. URL: https://kubernetes.io/
docs/concepts/workloads/pods/init-containers/ (visited on
03/28/2025).

[61] Cluster Networking. Kubernetes. Section: docs. URL: https://kubernetes.
io / docs / concepts / cluster - administration / networking/

(visited on 03/28/2025).

[62] Network Policies. en. Section: docs. Nov. 2024. URL: https://kubernetes.
io/docs/concepts/services-networking/network-policies/

(visited on 10/13/2024).

[63] CIS Control 12: Network Infrastructure Management - CIS Controls Assessment

Specification for Controls v8.1. URL: https://cas.docs.cisecurity.
org/en/latest/source/Controls12/ (visited on 03/28/2025).

101

https://kubernetes.io/docs/concepts/architecture/
https://kubernetes.io/docs/concepts/architecture/
https://kubernetes.io/docs/concepts/workloads/pods/user-namespaces/
https://kubernetes.io/docs/concepts/workloads/pods/user-namespaces/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://github.com/vmware-tanzu/velero/blob/main/design/Implemented/csi-snapshots.md
https://github.com/vmware-tanzu/velero/blob/main/design/Implemented/csi-snapshots.md
https://docs.kasten.io/latest/install/storage.html
https://docs.kasten.io/latest/install/storage.html
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-34r1.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-34r1.pdf
https://eits.ria.ee/api/2/main_menu/asset/2023_eits_english.pdf
https://eits.ria.ee/api/2/main_menu/asset/2023_eits_english.pdf
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://cas.docs.cisecurity.org/en/latest/source/Controls12/
https://cas.docs.cisecurity.org/en/latest/source/Controls12/

[64] Configuration Best Practices. Kubernetes. Section: docs. URL: https : / /
kubernetes . io / docs / concepts / configuration / overview/

(visited on 03/28/2025).

[65] GitOps with Kubernetes: Why It’s Different and How to Adopt It. Codefresh.
URL: https://codefresh.io/learn/gitops/gitops- with-
kubernetes-why-its-different-and-how-to-adopt-it/ (vis-
ited on 03/28/2025).

[66] Configure Service Accounts for Pods. Kubernetes. Section: docs. URL: https:
//kubernetes.io/docs/tasks/configure-pod-container/

configure-service-account/ (visited on 03/28/2025).

[67] Joint Task Force. Security and Privacy Controls for Information Systems and

Organizations. NIST Special Publication (SP) 800-53 Rev. 5. National Institute
of Standards and Technology, Dec. 10, 2020. DOI: 10.6028/NIST.SP.800-
53r5. URL: https://doi.org/10.6028/NIST.SP.800-53r5 (visited
on 03/29/2025).

[68] Pod Lifecycle. Kubernetes. Section: docs. URL: https://kubernetes.io/
docs/concepts/workloads/pods/pod- lifecycle/ (visited on
03/29/2025).

[69] Configure Liveness, Readiness and Startup Probes. Kubernetes. Section: docs.
URL: https://kubernetes.io/docs/tasks/configure-pod-
container/configure-liveness-readiness-startup-probes/

(visited on 03/29/2025).

[70] Liveness, Readiness, and Startup Probes. Kubernetes. Section: docs. URL: https:
//kubernetes.io/docs/concepts/configuration/liveness-

readiness-startup-probes/ (visited on 03/29/2025).

[71] Container Lifecycle Hooks. Kubernetes. Section: docs. URL: https : / /

kubernetes . io / docs / concepts / containers / container -

lifecycle-hooks/ (visited on 03/29/2025).

[72] Auditing. Kubernetes. Section: docs. URL: https://kubernetes.io/
docs/tasks/debug/debug-cluster/audit/ (visited on 03/29/2025).

[73] Kubernetes logging best practices. CNCF. July 3, 2023. URL: https : / /
www.cncf.io/blog/2023/07/03/kubernetes-logging-best-

practices/ (visited on 03/30/2025).

[74] Kube-bench. URL: https://aquasecurity.github.io/kube-bench/
v0.6.15/ (visited on 11/17/2024).

102

https://kubernetes.io/docs/concepts/configuration/overview/
https://kubernetes.io/docs/concepts/configuration/overview/
https://codefresh.io/learn/gitops/gitops-with-kubernetes-why-its-different-and-how-to-adopt-it/
https://codefresh.io/learn/gitops/gitops-with-kubernetes-why-its-different-and-how-to-adopt-it/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://doi.org/10.6028/NIST.SP.800-53r5
https://doi.org/10.6028/NIST.SP.800-53r5
https://doi.org/10.6028/NIST.SP.800-53r5
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/concepts/configuration/liveness-readiness-startup-probes/
https://kubernetes.io/docs/concepts/configuration/liveness-readiness-startup-probes/
https://kubernetes.io/docs/concepts/configuration/liveness-readiness-startup-probes/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/tasks/debug/debug-cluster/audit/
https://kubernetes.io/docs/tasks/debug/debug-cluster/audit/
https://www.cncf.io/blog/2023/07/03/kubernetes-logging-best-practices/
https://www.cncf.io/blog/2023/07/03/kubernetes-logging-best-practices/
https://www.cncf.io/blog/2023/07/03/kubernetes-logging-best-practices/
https://aquasecurity.github.io/kube-bench/v0.6.15/
https://aquasecurity.github.io/kube-bench/v0.6.15/

[75] kubescape/kubescape. original-date: 2021-08-12T10:39:29Z. Mar. 31, 2025. URL:
https://github.com/kubescape/kubescape (visited on 03/31/2025).

[76] Argo CD - Declarative GitOps CD for Kubernetes. URL: https://argo-
cd.readthedocs.io/en/stable/ (visited on 03/31/2025).

[77] Flux - the GitOps family of projects. URL: https://fluxcd.io/ (visited on
03/31/2025).

[78] Assigning Pods to Nodes. Kubernetes. Section: docs. URL: https://kubernetes.
io/docs/concepts/scheduling-eviction/assign-pod-node/

(visited on 03/31/2025).

[79] Operaptor pattern. Kubernetes. Section: docs. URL: https://kubernetes.
io/docs/concepts/extend-kubernetes/operator/ (visited on
03/31/2025).

[80] OperatorHub.io | The registry for Kubernetes Operators. URL: https : / /
operatorhub.io/ (visited on 03/31/2025).

[81] Securing a Cluster. Kubernetes. Section: docs. URL: https://kubernetes.
io/docs/tasks/administer-cluster/securing-a-cluster/

(visited on 03/31/2025).

[82] Certificate Management with kubeadm. Kubernetes. Section: docs. URL: https:
//kubernetes.io/docs/tasks/administer-cluster/kubeadm/

kubeadm-certs/ (visited on 03/31/2025).

[83] Use service accounts rules in policy | Calico Documentation. URL: https:
//docs.tigera.io/calico/latest/network-policy/policy-

rules/service-accounts (visited on 03/31/2025).

[84] Using Kubernetes Constructs In Policy — Cilium 1.18.0-dev documentation. URL:
https : / / docs . cilium . io / en / latest / security / policy /

kubernetes/ (visited on 03/31/2025).

[85] Creating Highly Available Clusters with kubeadm. Kubernetes. Section: docs.
URL: https : / / kubernetes . io / docs / setup / production -
environment/tools/kubeadm/high- availability/ (visited on
04/01/2025).

[86] Options for Highly Available Topology. Kubernetes. Section: docs. URL: https:
/ / kubernetes . io / docs / setup / production - environment /

tools/kubeadm/ha-topology/ (visited on 04/01/2025).

[87] Encrypting Confidential Data at Rest. Kubernetes. Section: docs. URL: https:
//kubernetes.io/docs/tasks/administer-cluster/encrypt-

data/ (visited on 04/01/2025).

103

https://github.com/kubescape/kubescape
https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/
https://fluxcd.io/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://operatorhub.io/
https://operatorhub.io/
https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-certs/
https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-certs/
https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-certs/
https://docs.tigera.io/calico/latest/network-policy/policy-rules/service-accounts
https://docs.tigera.io/calico/latest/network-policy/policy-rules/service-accounts
https://docs.tigera.io/calico/latest/network-policy/policy-rules/service-accounts
https://docs.cilium.io/en/latest/security/policy/kubernetes/
https://docs.cilium.io/en/latest/security/policy/kubernetes/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

[88] Introduction - The Cluster API Book. URL: https://cluster-api.sigs.
k8s.io/ (visited on 04/04/2025).

[89] Introduction - The Cluster API Provider Azure Book. URL: https://capz.
sigs.k8s.io/ (visited on 04/04/2025).

[90] Craig Peters Francis Jack. Introducing the Cluster API Provider for Azure (CAPZ)

for Kubernetes cluster management. Microsoft Open Source Blog. Dec. 15,
2020. URL: https://opensource.microsoft.com/blog/2020/
12/15/introducing- cluster- api- provider- azure- capz-

kubernetes-cluster-management/ (visited on 04/18/2025).

[91] Azure Service Operator v2. Azure Service Operator. URL: https://azure.
github.io/azure-service-operator/ (visited on 04/18/2025).

[92] Recommended Labels. Kubernetes. Section: docs. URL: https://kubernetes.
io/docs/concepts/overview/working-with-objects/common-

labels/ (visited on 03/26/2025).

[93] Hardware recommendations. etcd. Section: docs. URL: https://etcd.io/
docs/v3.3/op-guide/hardware/ (visited on 04/04/2025).

[94] mattmcinnes. Virtual machine sizes overview - Azure Virtual Machines. Nov. 19,
2024. URL: https : / / learn . microsoft . com / en - us / azure /
virtual-machines/sizes/overview (visited on 04/04/2025).

[95] Autoscaling - The Cluster API Book. URL: https://cluster-api.sigs.
k8s.io/tasks/automated-machine-management/autoscaling.

html?highlight=autoscaler#using-the-cluster-autoscaler

(visited on 04/18/2025).

[96] SSH Access to nodes - The Cluster API Provider Azure Book. URL: https:
/ / capz . sigs . k8s . io / self - managed / ssh - access . html ?

highlight=bastion#azure-bastion (visited on 04/04/2025).

[97] cherylmc. Connect to a VM using Bastion - Windows native client - Azure Bas-

tion. Jan. 28, 2025. URL: https://learn.microsoft.com/en-us/
azure/bastion/connect-vm-native-client-windows (visited on
04/04/2025).

[98] v1beta1 API - The Cluster API Provider Azure Book. URL: https://capz.
sigs.k8s.io/reference/v1beta1-api (visited on 04/04/2025).

[99] cherylmc. About Azure Bastion configuration settings. Mar. 14, 2025. URL:
https : / / learn . microsoft . com / en - us / azure / bastion /

configuration-settings (visited on 04/04/2025).

104

https://cluster-api.sigs.k8s.io/
https://cluster-api.sigs.k8s.io/
https://capz.sigs.k8s.io/
https://capz.sigs.k8s.io/
https://opensource.microsoft.com/blog/2020/12/15/introducing-cluster-api-provider-azure-capz-kubernetes-cluster-management/
https://opensource.microsoft.com/blog/2020/12/15/introducing-cluster-api-provider-azure-capz-kubernetes-cluster-management/
https://opensource.microsoft.com/blog/2020/12/15/introducing-cluster-api-provider-azure-capz-kubernetes-cluster-management/
https://azure.github.io/azure-service-operator/
https://azure.github.io/azure-service-operator/
https://kubernetes.io/docs/concepts/overview/working-with-objects/common-labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/common-labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/common-labels/
https://etcd.io/docs/v3.3/op-guide/hardware/
https://etcd.io/docs/v3.3/op-guide/hardware/
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/overview
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/overview
https://cluster-api.sigs.k8s.io/tasks/automated-machine-management/autoscaling.html?highlight=autoscaler#using-the-cluster-autoscaler
https://cluster-api.sigs.k8s.io/tasks/automated-machine-management/autoscaling.html?highlight=autoscaler#using-the-cluster-autoscaler
https://cluster-api.sigs.k8s.io/tasks/automated-machine-management/autoscaling.html?highlight=autoscaler#using-the-cluster-autoscaler
https://capz.sigs.k8s.io/self-managed/ssh-access.html?highlight=bastion#azure-bastion
https://capz.sigs.k8s.io/self-managed/ssh-access.html?highlight=bastion#azure-bastion
https://capz.sigs.k8s.io/self-managed/ssh-access.html?highlight=bastion#azure-bastion
https://learn.microsoft.com/en-us/azure/bastion/connect-vm-native-client-windows
https://learn.microsoft.com/en-us/azure/bastion/connect-vm-native-client-windows
https://capz.sigs.k8s.io/reference/v1beta1-api
https://capz.sigs.k8s.io/reference/v1beta1-api
https://learn.microsoft.com/en-us/azure/bastion/configuration-settings
https://learn.microsoft.com/en-us/azure/bastion/configuration-settings

[100] AKS as management cluster - The Cluster API Provider Azure Book. URL: https:
//capz.sigs.k8s.io/developers/tilt-with-aks-as-mgmt-

ilb.html?highlight=ports#challenges-and-solutions (vis-
ited on 04/04/2025).

[101] Ports and Protocols. Kubernetes. Section: docs. URL: https://kubernetes.
io/docs/reference/networking/ports-and-protocols/ (vis-
ited on 04/04/2025).

[102] Project Metrics. CNCF. URL: https : / / www . cncf . io / project -
metrics/ (visited on 04/06/2025).

[103] Security Compliance & Certifications for 24.04 | Ubuntu. URL: https://
ubuntu.com/security/certifications/docs/2404 (visited on
05/05/2025).

[104] Getting Started - The Cluster API Provider Azure Book. URL: https : / /
capz . sigs . k8s . io / getting - started . html ? highlight =

contributor#setting- up- your- azure- environment (visited
on 05/06/2025).

[105] Adopt a zero trust network model for security | Calico Documentation. URL:
https://docs.tigera.io/calico/latest/network-policy/

adopt-zero-trust (visited on 04/05/2025).

[106] Workload bootstrap using GitOps - The Cluster API Book. URL: https :
//cluster-api.sigs.k8s.io/tasks/workload-bootstrap-

gitops.html#bootstrap-managedcluster-using-argocd (vis-
ited on 04/05/2025).

[107] cluster-api-provider-azure/templates/addons/cluster-api-helm/cloud-provider-

azure.yaml at main · kubernetes-sigs/cluster-api-provider-azure. GitHub. URL:
https://github.com/kubernetes-sigs/cluster-api-provider-

azure/blob/main/templates/addons/cluster- api- helm/

cloud-provider-azure.yaml (visited on 04/06/2025).

[108] Cluster Bootstrapping - Argo CD - Declarative GitOps CD for Kubernetes. URL:
https://argo- cd.readthedocs.io/en/latest/operator-

manual/cluster-bootstrapping/ (visited on 04/05/2025).

[109] Marko Lindeberg. E-ITS technical implementation. URL: https://github.
com/mlndbr6/e-its-kubernetes.

[110] Argo CD vs. Flux: 6 Key Differences and How to Choose. Codefresh. URL: https:
//codefresh.io/learn/argo-cd/argo-cd-vs-flux-6-key-

differences-and-how-to-choose/ (visited on 04/18/2025).

105

https://capz.sigs.k8s.io/developers/tilt-with-aks-as-mgmt-ilb.html?highlight=ports#challenges-and-solutions
https://capz.sigs.k8s.io/developers/tilt-with-aks-as-mgmt-ilb.html?highlight=ports#challenges-and-solutions
https://capz.sigs.k8s.io/developers/tilt-with-aks-as-mgmt-ilb.html?highlight=ports#challenges-and-solutions
https://kubernetes.io/docs/reference/networking/ports-and-protocols/
https://kubernetes.io/docs/reference/networking/ports-and-protocols/
https://www.cncf.io/project-metrics/
https://www.cncf.io/project-metrics/
https://ubuntu.com/security/certifications/docs/2404
https://ubuntu.com/security/certifications/docs/2404
https://capz.sigs.k8s.io/getting-started.html?highlight=contributor#setting-up-your-azure-environment
https://capz.sigs.k8s.io/getting-started.html?highlight=contributor#setting-up-your-azure-environment
https://capz.sigs.k8s.io/getting-started.html?highlight=contributor#setting-up-your-azure-environment
https://docs.tigera.io/calico/latest/network-policy/adopt-zero-trust
https://docs.tigera.io/calico/latest/network-policy/adopt-zero-trust
https://cluster-api.sigs.k8s.io/tasks/workload-bootstrap-gitops.html#bootstrap-managedcluster-using-argocd
https://cluster-api.sigs.k8s.io/tasks/workload-bootstrap-gitops.html#bootstrap-managedcluster-using-argocd
https://cluster-api.sigs.k8s.io/tasks/workload-bootstrap-gitops.html#bootstrap-managedcluster-using-argocd
https://github.com/kubernetes-sigs/cluster-api-provider-azure/blob/main/templates/addons/cluster-api-helm/cloud-provider-azure.yaml
https://github.com/kubernetes-sigs/cluster-api-provider-azure/blob/main/templates/addons/cluster-api-helm/cloud-provider-azure.yaml
https://github.com/kubernetes-sigs/cluster-api-provider-azure/blob/main/templates/addons/cluster-api-helm/cloud-provider-azure.yaml
https://argo-cd.readthedocs.io/en/latest/operator-manual/cluster-bootstrapping/
https://argo-cd.readthedocs.io/en/latest/operator-manual/cluster-bootstrapping/
https://github.com/mlndbr6/e-its-kubernetes
https://github.com/mlndbr6/e-its-kubernetes
https://codefresh.io/learn/argo-cd/argo-cd-vs-flux-6-key-differences-and-how-to-choose/
https://codefresh.io/learn/argo-cd/argo-cd-vs-flux-6-key-differences-and-how-to-choose/
https://codefresh.io/learn/argo-cd/argo-cd-vs-flux-6-key-differences-and-how-to-choose/

[111] Overview - Argo CD - Declarative GitOps CD for Kubernetes. URL: https:
//argo-cd.readthedocs.io/en/stable/operator-manual/

security/ (visited on 04/18/2025).

[112] bitnami-labs/sealed-secrets: A Kubernetes controller and tool for one-way en-

crypted Secrets. URL: https://github.com/bitnami-labs/sealed-
secrets (visited on 04/19/2025).

[113] Introduction - External Secrets Operator. URL: https : / / external -
secrets.io/latest/ (visited on 04/19/2025).

[114] Introduction - Secrets Store CSI Driver. URL: https://secrets-store-
csi-driver.sigs.k8s.io/ (visited on 04/19/2025).

[115] external-dns. URL: https://kubernetes-sigs.github.io/external-
dns/latest/ (visited on 05/01/2025).

[116] cert-manager. cert-manager. URL: https://cert-manager.io/ (visited
on 05/01/2025).

[117] Certbot. URL: https : / / eff - certbot . readthedocs . io / en /
stable/using.html (visited on 05/01/2025).

[118] Vault | HashiCorp Developer. Vault | HashiCorp Developer. URL: https://
developer.hashicorp.com/vault (visited on 05/01/2025).

[119] Issue with Handling Multiple DNS Challenges in Azure DNS (TXT Record Concate-

nation) · Issue #51 · terricain/certbot-dns-azure. URL: https://github.com/
terricain/certbot-dns-azure/issues/51 (visited on 05/01/2025).

[120] DNS01. cert-manager. URL: https : / / cert - manager . io / docs /
configuration/acme/dns01/#supported- dns01- providers

(visited on 05/01/2025).

[121] Ingress Controllers. Kubernetes. Section: docs. URL: https://kubernetes.
io/docs/concepts/services-networking/ingress-controllers/

(visited on 05/03/2025).

[122] CNCF Landscape. URL: https://landscape.cncf.io/ (visited on
05/03/2025).

[123] Guest Author. Benchmarking 5 Popular Load Balancers: Nginx, HAProxy, Envoy,

Traefik, and ALB | Loggly. Log Analysis | Log Monitoring by Loggly. Dec. 10,
2018. URL: https://www.loggly.com/blog/benchmarking-5-
popular- load- balancers- nginx- haproxy- envoy- traefik-

and-alb/ (visited on 05/03/2025).

106

https://argo-cd.readthedocs.io/en/stable/operator-manual/security/
https://argo-cd.readthedocs.io/en/stable/operator-manual/security/
https://argo-cd.readthedocs.io/en/stable/operator-manual/security/
https://github.com/bitnami-labs/sealed-secrets
https://github.com/bitnami-labs/sealed-secrets
https://external-secrets.io/latest/
https://external-secrets.io/latest/
https://secrets-store-csi-driver.sigs.k8s.io/
https://secrets-store-csi-driver.sigs.k8s.io/
https://kubernetes-sigs.github.io/external-dns/latest/
https://kubernetes-sigs.github.io/external-dns/latest/
https://cert-manager.io/
https://eff-certbot.readthedocs.io/en/stable/using.html
https://eff-certbot.readthedocs.io/en/stable/using.html
https://developer.hashicorp.com/vault
https://developer.hashicorp.com/vault
https://github.com/terricain/certbot-dns-azure/issues/51
https://github.com/terricain/certbot-dns-azure/issues/51
https://cert-manager.io/docs/configuration/acme/dns01/#supported-dns01-providers
https://cert-manager.io/docs/configuration/acme/dns01/#supported-dns01-providers
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://landscape.cncf.io/
https://www.loggly.com/blog/benchmarking-5-popular-load-balancers-nginx-haproxy-envoy-traefik-and-alb/
https://www.loggly.com/blog/benchmarking-5-popular-load-balancers-nginx-haproxy-envoy-traefik-and-alb/
https://www.loggly.com/blog/benchmarking-5-popular-load-balancers-nginx-haproxy-envoy-traefik-and-alb/

[124] haproxytech/ingress-controller-benchmarks. original-date: 2020-08-17T06:18:15Z.
Apr. 3, 2025. URL: https://github.com/haproxytech/ingress-
controller-benchmarks (visited on 05/03/2025).

[125] Testing the Performance of NGINX Ingress Controller for Kubernetes – NG-

INX Community Blog. Apr. 11, 2019. URL: https://blog.nginx.org/
blog / testing - performance - nginx - ingress - controller -

kubernetes (visited on 05/03/2025).

[126] Benchmarking Linkerd and Istio. Linkerd. Section: blog. May 27, 2021. URL:
https : / / linkerd . io / 2021 / 05 / 27 / linkerd - vs - istio -

benchmarks/ (visited on 05/03/2025).

[127] Emre Çalışkan. Is Nginx dead? Is Traefik v3 20% faster than Traefik v2? Beyn Tech-
nology. Apr. 12, 2023. URL: https://medium.com/beyn-technology/
is-nginx-dead-is-traefik-v3-20-faster-than-traefik-

v2-f28ffb7eed3e (visited on 05/03/2025).

[128] gaplo917/load-balancer-benchmark: Apache Httpd vs Nginx vs Traefik vs

HAProxy. URL: https://github.com/gaplo917/load-balancer-
benchmark (visited on 05/03/2025).

[129] Gary Lo. gaplo917/load-balancer-benchmark. original-date: 2020-02-08T11:47:50Z.
Apr. 8, 2025. URL: https://github.com/gaplo917/load-balancer-
benchmark (visited on 05/03/2025).

[130] 2 Minute Read Page Test4. Platform Requirements. Istio. URL: https://istio.
io/latest/docs/ops/deployment/platform-requirements/

(visited on 05/03/2025).

[131] Felix configuration | Calico Documentation. URL: https://docs.tigera.
io/calico/latest/reference/resources/felixconfig (visited
on 05/03/2025).

[132] Free-Tier Pricing | Get More Observability For Less. URL: https://newrelic.
com/pricing/free-tier (visited on 05/03/2025).

[133] VictoriaMetrics. URL: https://docs.victoriametrics.com/victoriametrics/
(visited on 05/03/2025).

[134] helm-charts/charts/kube-prometheus-stack at main · prometheus-community/helm-

charts. GitHub. URL: https://github.com/prometheus-community/
helm- charts/tree/main/charts/kube- prometheus- stack

(visited on 05/03/2025).

[135] Velero. URL: https://velero.io/ (visited on 05/04/2025).

107

https://github.com/haproxytech/ingress-controller-benchmarks
https://github.com/haproxytech/ingress-controller-benchmarks
https://blog.nginx.org/blog/testing-performance-nginx-ingress-controller-kubernetes
https://blog.nginx.org/blog/testing-performance-nginx-ingress-controller-kubernetes
https://blog.nginx.org/blog/testing-performance-nginx-ingress-controller-kubernetes
https://linkerd.io/2021/05/27/linkerd-vs-istio-benchmarks/
https://linkerd.io/2021/05/27/linkerd-vs-istio-benchmarks/
https://medium.com/beyn-technology/is-nginx-dead-is-traefik-v3-20-faster-than-traefik-v2-f28ffb7eed3e
https://medium.com/beyn-technology/is-nginx-dead-is-traefik-v3-20-faster-than-traefik-v2-f28ffb7eed3e
https://medium.com/beyn-technology/is-nginx-dead-is-traefik-v3-20-faster-than-traefik-v2-f28ffb7eed3e
https://github.com/gaplo917/load-balancer-benchmark
https://github.com/gaplo917/load-balancer-benchmark
https://github.com/gaplo917/load-balancer-benchmark
https://github.com/gaplo917/load-balancer-benchmark
https://istio.io/latest/docs/ops/deployment/platform-requirements/
https://istio.io/latest/docs/ops/deployment/platform-requirements/
https://docs.tigera.io/calico/latest/reference/resources/felixconfig
https://docs.tigera.io/calico/latest/reference/resources/felixconfig
https://newrelic.com/pricing/free-tier
https://newrelic.com/pricing/free-tier
https://docs.victoriametrics.com/victoriametrics/
https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack
https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack
https://velero.io/

[136] Free Kubernetes: Start Your Journey with Veeam Kasten for Kubernetes. Veeam
Software. URL: https://www.veeam.com/products/free/kubernetes.
html?ck=1731487151821 (visited on 05/04/2025).

[137] AppsCode Inc. KubeStash - Backup and Recovery Solution for Kubernetes. URL:
https://kubestash.com/ (visited on 05/04/2025).

[138] Backup types by driver - Portworx Documentation. May 2, 2025. URL: https:
//docs.portworx.com/portworx-backup-on-prem/concepts/

backup-types (visited on 05/04/2025).

[139] Maxim Levchenko. WoozyMasta/kube-dump. original-date: 2021-02-03T00:53:49Z.
Apr. 16, 2025. URL: https://github.com/WoozyMasta/kube-dump
(visited on 05/04/2025).

[140] Kubescape. URL: https://kubescape.io/ (visited on 01/16/2025).

[141] aquasecurity/trivy: Find vulnerabilities, misconfigurations, secrets, SBOM in

containers, Kubernetes, code repositories, clouds and more. URL: https://
github.com/aquasecurity/trivy (visited on 05/10/2025).

[142] kube-prometheus security. GitHub. URL: https://github.com/prometheus-
operator/kube-prometheus/security/policy (visited on 05/06/2025).

[143] E-ITS. URL: https://eits.ria.ee/et/abimaterjalid/rakendusjuhend
(visited on 05/07/2025).

[144] postfinance/kubelet-csr-approver. original-date: 2021-11-19T16:17:46Z. May 6,
2025. URL: https://github.com/postfinance/kubelet-csr-
approver (visited on 05/07/2025).

108

https://www.veeam.com/products/free/kubernetes.html?ck=1731487151821
https://www.veeam.com/products/free/kubernetes.html?ck=1731487151821
https://kubestash.com/
https://docs.portworx.com/portworx-backup-on-prem/concepts/backup-types
https://docs.portworx.com/portworx-backup-on-prem/concepts/backup-types
https://docs.portworx.com/portworx-backup-on-prem/concepts/backup-types
https://github.com/WoozyMasta/kube-dump
https://kubescape.io/
https://github.com/aquasecurity/trivy
https://github.com/aquasecurity/trivy
https://github.com/prometheus-operator/kube-prometheus/security/policy
https://github.com/prometheus-operator/kube-prometheus/security/policy
https://eits.ria.ee/et/abimaterjalid/rakendusjuhend
https://github.com/postfinance/kubelet-csr-approver
https://github.com/postfinance/kubelet-csr-approver

Appendix 1 – Non-Exclusive License for Reproduction and
Publication of a Graduation Thesis1

I Marko Lindeberg

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis “Analysis and Implementation of ‘APP.4.4: Kubernetes’ from the Estonian
Information Security Standard (E-ITS)”, supervised by Siim Vene
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

18.05.2025

1The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean,
except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

109

Appendix 2 – Secret encryption verification in etcd
root@capi-ha-control-plane-j5v62:~#

ETCDL_API=3 etcdctl \

--cacert=/etc/kubernetes/pki/etcd/ca.crt \

--cert=/etc/kubernetes/pki/etcd/server.crt \

--key=/etc/kubernetes/pki/etcd/server.key \

get /registry/secrets/external-dns/azure-sp-secret \

| hexdump -C | awk ’{print $18}’ | head -n 5

|/registry/secret|

|s/external-dns/a|

|zure-sp-secret.k|

|8s:enc:secretbox|

|:v1:key1:.Q..!.~|

110

Appendix 3 – Velero role definition
{

"Name": "Velero",

"Description": "Velero permissions for backups, restores and deletions",

"Actions": [

"Microsoft.Compute/disks/read",

"Microsoft.Compute/disks/write",

"Microsoft.Compute/disks/endGetAccess/action",

"Microsoft.Compute/disks/beginGetAccess/action",

"Microsoft.Compute/snapshots/read",

"Microsoft.Compute/snapshots/write",

"Microsoft.Compute/snapshots/delete",

"Microsoft.Storage/storageAccounts/listkeys/action",

"Microsoft.Storage/storageAccounts/regeneratekey/action",

"Microsoft.Storage/storageAccounts/read",

"Microsoft.Storage/storageAccounts/blobServices/containers/delete",

"Microsoft.Storage/storageAccounts/blobServices/containers/read",

"Microsoft.Storage/storageAccounts/blobServices/containers/write",

"Microsoft.Storage/storageAccounts/blobServices/generateUserDelegationKey/action",

],

"DataActions" :[

"Microsoft.Storage/storageAccounts/blobServices/containers/blobs/delete",

"Microsoft.Storage/storageAccounts/blobServices/containers/blobs/read",

"Microsoft.Storage/storageAccounts/blobServices/containers/blobs/write",

"Microsoft.Storage/storageAccounts/blobServices/containers/blobs/move/action",

"Microsoft.Storage/storageAccounts/blobServices/containers/blobs/add/action"

],

"AssignableScopes": ["/subscriptions/$AZURE_SUBSCRIPTION_ID"]

}

111

Appendix 4 – kube-bench test results
root@capi-ha-control-plane-h692g:~/kube-bench# kubectl logs -n kube-bench kube-bench-

master-n4vc4

[INFO] 1 Control Plane Security Configuration

[INFO] 1.1 Control Plane Node Configuration Files

[PASS] 1.1.1 Ensure that the API server pod specification file permissions are set to

600 or more restrictive (Automated)

[PASS] 1.1.2 Ensure that the API server pod specification file ownership is set to root:

root (Automated)

[PASS] 1.1.3 Ensure that the controller manager pod specification file permissions are

set to 600 or more restrictive (Automated)

[PASS] 1.1.4 Ensure that the controller manager pod specification file ownership is set

to root:root (Automated)

[PASS] 1.1.5 Ensure that the scheduler pod specification file permissions are set to 600

or more restrictive (Automated)

[PASS] 1.1.6 Ensure that the scheduler pod specification file ownership is set to root:

root (Automated)

[PASS] 1.1.7 Ensure that the etcd pod specification file permissions are set to 600 or

more restrictive (Automated)

[PASS] 1.1.8 Ensure that the etcd pod specification file ownership is set to root:root (

Automated)

[WARN] 1.1.9 Ensure that the Container Network Interface file permissions are set to 600

or more restrictive (Manual)

[WARN] 1.1.10 Ensure that the Container Network Interface file ownership is set to root:

root (Manual)

[PASS] 1.1.11 Ensure that the etcd data directory permissions are set to 700 or more

restrictive (Automated)

[FAIL] 1.1.12 Ensure that the etcd data directory ownership is set to etcd:etcd (

Automated)

[PASS] 1.1.13 Ensure that the default administrative credential file permissions are set

to 600 (Automated)

[PASS] 1.1.14 Ensure that the default administrative credential file ownership is set to

root:root (Automated)

[PASS] 1.1.15 Ensure that the scheduler.conf file permissions are set to 600 or more

restrictive (Automated)

[PASS] 1.1.16 Ensure that the scheduler.conf file ownership is set to root:root (

Automated)

[PASS] 1.1.17 Ensure that the controller-manager.conf file permissions are set to 600 or

more restrictive (Automated)

[PASS] 1.1.18 Ensure that the controller-manager.conf file ownership is set to root:root

(Automated)

[PASS] 1.1.19 Ensure that the Kubernetes PKI directory and file ownership is set to root

:root (Automated)

[PASS] 1.1.21 Ensure that the Kubernetes PKI key file permissions are set to 600 (Manual

)

[INFO] 1.2 API Server

[PASS] 1.2.1 Ensure that the --anonymous-auth argument is set to false (Manual)

[PASS] 1.2.2 Ensure that the --token-auth-file parameter is not set (Automated)

[PASS] 1.2.3 Ensure that the --DenyServiceExternalIPs is set (Manual)

[PASS] 1.2.4 Ensure that the --kubelet-client-certificate and --kubelet-client-key

arguments are set as appropriate (Automated)

[PASS] 1.2.5 Ensure that the --kubelet-certificate-authority argument is set as

appropriate (Automated)

[PASS] 1.2.6 Ensure that the --authorization-mode argument is not set to AlwaysAllow (

112

Automated)

[PASS] 1.2.7 Ensure that the --authorization-mode argument includes Node (Automated)

[PASS] 1.2.8 Ensure that the --authorization-mode argument includes RBAC (Automated)

[PASS] 1.2.9 Ensure that the admission control plugin EventRateLimit is set (Manual)

[PASS] 1.2.10 Ensure that the admission control plugin AlwaysAdmit is not set (Automated

)

[PASS] 1.2.11 Ensure that the admission control plugin AlwaysPullImages is set (Manual)

[PASS] 1.2.12 Ensure that the admission control plugin ServiceAccount is set (Automated)

[PASS] 1.2.13 Ensure that the admission control plugin NamespaceLifecycle is set (

Automated)

[PASS] 1.2.14 Ensure that the admission control plugin NodeRestriction is set (Automated

)

[PASS] 1.2.15 Ensure that the --profiling argument is set to false (Automated)

[PASS] 1.2.16 Ensure that the --audit-log-path argument is set (Automated)

[PASS] 1.2.17 Ensure that the --audit-log-maxage argument is set to 30 or as appropriate

(Automated)

[PASS] 1.2.18 Ensure that the --audit-log-maxbackup argument is set to 10 or as

appropriate (Automated)

[PASS] 1.2.19 Ensure that the --audit-log-maxsize argument is set to 100 or as

appropriate (Automated)

[WARN] 1.2.20 Ensure that the --request-timeout argument is set as appropriate (Manual)

[PASS] 1.2.21 Ensure that the --service-account-lookup argument is set to true (

Automated)

[PASS] 1.2.22 Ensure that the --service-account-key-file argument is set as appropriate

(Automated)

[PASS] 1.2.23 Ensure that the --etcd-certfile and --etcd-keyfile arguments are set as

appropriate (Automated)

[PASS] 1.2.24 Ensure that the --tls-cert-file and --tls-private-key-file arguments are

set as appropriate (Automated)

[PASS] 1.2.25 Ensure that the --client-ca-file argument is set as appropriate (Automated

)

[PASS] 1.2.26 Ensure that the --etcd-cafile argument is set as appropriate (Automated)

[PASS] 1.2.27 Ensure that the --encryption-provider-config argument is set as

appropriate (Manual)

[PASS] 1.2.28 Ensure that encryption providers are appropriately configured (Manual)

[PASS] 1.2.29 Ensure that the API Server only makes use of Strong Cryptographic Ciphers

(Manual)

[INFO] 1.3 Controller Manager

[PASS] 1.3.1 Ensure that the --terminated-pod-gc-threshold argument is set as

appropriate (Manual)

[PASS] 1.3.2 Ensure that the --profiling argument is set to false (Automated)

[PASS] 1.3.3 Ensure that the --use-service-account-credentials argument is set to true (

Automated)

[PASS] 1.3.4 Ensure that the --service-account-private-key-file argument is set as

appropriate (Automated)

[PASS] 1.3.5 Ensure that the --root-ca-file argument is set as appropriate (Automated)

[PASS] 1.3.6 Ensure that the RotateKubeletServerCertificate argument is set to true (

Automated)

[PASS] 1.3.7 Ensure that the --bind-address argument is set to 127.0.0.1 (Automated)

[INFO] 1.4 Scheduler

[PASS] 1.4.1 Ensure that the --profiling argument is set to false (Automated)

[PASS] 1.4.2 Ensure that the --bind-address argument is set to 127.0.0.1 (Automated)

== Summary master ==

53 checks PASS

1 checks FAIL

5 checks WARN

0 checks INFO

113

[INFO] 2 Etcd Node Configuration

[INFO] 2 Etcd Node Configuration

[PASS] 2.1 Ensure that the --cert-file and --key-file arguments are set as appropriate (

Automated)

[PASS] 2.2 Ensure that the --client-cert-auth argument is set to true (Automated)

[PASS] 2.3 Ensure that the --auto-tls argument is not set to true (Automated)

[PASS] 2.4 Ensure that the --peer-cert-file and --peer-key-file arguments are set as

appropriate (Automated)

[PASS] 2.5 Ensure that the --peer-client-cert-auth argument is set to true (Automated)

[PASS] 2.6 Ensure that the --peer-auto-tls argument is not set to true (Automated)

[PASS] 2.7 Ensure that a unique Certificate Authority is used for etcd (Manual)

== Summary etcd ==

7 checks PASS

0 checks FAIL

0 checks WARN

0 checks INFO

[INFO] 3 Control Plane Configuration

[INFO] 3.1 Authentication and Authorization

[WARN] 3.1.1 Client certificate authentication should not be used for users (Manual)

[WARN] 3.1.2 Service account token authentication should not be used for users (Manual)

[WARN] 3.1.3 Bootstrap token authentication should not be used for users (Manual)

[INFO] 3.2 Logging

[PASS] 3.2.1 Ensure that a minimal audit policy is created (Manual)

[WARN] 3.2.2 Ensure that the audit policy covers key security concerns (Manual)

== Summary controlplane ==

1 checks PASS

0 checks FAIL

4 checks WARN

0 checks INFO

[INFO] 4 Worker Node Security Configuration

[INFO] 4.1 Worker Node Configuration Files

[FAIL] 4.1.1 Ensure that the kubelet service file permissions are set to 600 or more

restrictive (Automated)

[PASS] 4.1.2 Ensure that the kubelet service file ownership is set to root:root (

Automated)

[WARN] 4.1.3 If proxy kubeconfig file exists ensure permissions are set to 600 or more

restrictive (Manual)

[WARN] 4.1.4 If proxy kubeconfig file exists ensure ownership is set to root:root (

Manual)

[PASS] 4.1.5 Ensure that the --kubeconfig kubelet.conf file permissions are set to 600

or more restrictive (Automated)

[PASS] 4.1.6 Ensure that the --kubeconfig kubelet.conf file ownership is set to root:

root (Automated)

[WARN] 4.1.7 Ensure that the certificate authorities file permissions are set to 600 or

more restrictive (Manual)

[PASS] 4.1.8 Ensure that the client certificate authorities file ownership is set to

root:root (Manual)

[PASS] 4.1.9 If the kubelet config.yaml configuration file is being used validate

permissions set to 600 or more restrictive (Automated)

[PASS] 4.1.10 If the kubelet config.yaml configuration file is being used validate file

ownership is set to root:root (Automated)

[INFO] 4.2 Kubelet

[PASS] 4.2.1 Ensure that the --anonymous-auth argument is set to false (Automated)

[PASS] 4.2.2 Ensure that the --authorization-mode argument is not set to AlwaysAllow (

Automated)

114

[PASS] 4.2.3 Ensure that the --client-ca-file argument is set as appropriate (Automated)

[PASS] 4.2.4 Verify that the --read-only-port argument is set to 0 (Manual)

[PASS] 4.2.5 Ensure that the --streaming-connection-idle-timeout argument is not set to

0 (Manual)

[PASS] 4.2.6 Ensure that the --make-iptables-util-chains argument is set to true (

Automated)

[PASS] 4.2.7 Ensure that the --hostname-override argument is not set (Manual)

[PASS] 4.2.8 Ensure that the eventRecordQPS argument is set to a level which ensures

appropriate event capture (Manual)

[PASS] 4.2.9 Ensure that the --tls-cert-file and --tls-private-key-file arguments are

set as appropriate (Manual)

[PASS] 4.2.10 Ensure that the --rotate-certificates argument is not set to false (

Automated)

[PASS] 4.2.11 Verify that the RotateKubeletServerCertificate argument is set to true (

Manual)

[PASS] 4.2.12 Ensure that the Kubelet only makes use of Strong Cryptographic Ciphers (

Manual)

[PASS] 4.2.13 Ensure that a limit is set on pod PIDs (Manual)

[INFO] 4.3 kube-proxy

[PASS] 4.3.1 Ensure that the kube-proxy metrics service is bound to localhost (Automated

)

== Summary node ==

21 checks PASS

1 checks FAIL

2 checks WARN

0 checks INFO

== Summary total ==

77 checks PASS

3 checks FAIL

15 checks WARN

0 checks INFO

115

Appendix 5 – kube-bench cluster component manual verifi-
cation steps.
Manual validation shows correct permissions for Container Network Interface files:

[WARN] 1.1.9 Ensure that the Container Network Interface file permissions are set to 600

↪→ or more restrictive (Manual)

root@capi-ha-control-plane-h692g:~/kube-bench# stat -c %a /etc/cni/net.d/

600

Manual validation shows correct ownership of Container Interface files:

[WARN] 1.1.10 Ensure that the Container Network Interface file ownership is set to root:

↪→ root (Manual)

root@capi-ha-control-plane-h692g:~/kube-bench# stat -c %U:%G /etc/cni/net.d/

root:root

Manual validation shows correct permissions for PKI certificates as expected:

[WARN] 1.1.20 Ensure that the Kubernetes PKI certificate file permissions are set to 600

↪→ or more restrictive (Manual)

root@capi-ha-control-plane-h692g:~/kube-bench# stat -c ’%a’ /etc/kubernetes/pki/*.crt

600

600

600

600

600

600

Anonymous auth is enabled on Kubernetes API server, as it is generally considered

↪→ reasonable as long as RBAC authorization is enabled.

Additionally, this isn’t explicitly required by E-ITS, as long as the administrative

↪→ operations are performed by approved users.

[WARN] 1.2.1 Ensure that the --anonymous-auth argument is set to false (Manual)

It is set to 120s in KubeadmControlPlane configuration

[WARN] 1.2.20 Ensure that the --request-timeout argument is set as appropriate (Manual)

root@capi-ha-control-plane-ph7w5:~# cat /etc/kubernetes/manifests/kube-apiserver.yaml |

↪→ grep request-timeout

- --request-timeout=120s

3.1.1-3.1.3 are not used for users in this cluster. Access to the cluster is through

↪→ Bastion host

with SSH, and ~/.kube/config file is used for authentication.

[WARN] 3.1.1 Client certificate authentication should not be used for users (Manual)

[WARN] 3.1.2 Service account token authentication should not be used for users (Manual)

[WARN] 3.1.3 Bootstrap token authentication should not be used for users (Manual)

This is covered in audit logging configuration configuration file in

↪→ KubeadmControlPlane configuration.

[WARN] 3.2.2 Ensure that the audit policy covers key security concerns (Manual)

This is not applicable as kube-proxy kubeconfig parameters are configured as

↪→ Kubernetes ConfigMap.

[WARN] 4.1.3 If proxy kubeconfig file exists ensure permissions are set to 600 or more

↪→ restrictive (Manual)

[WARN] 4.1.4 If proxy kubeconfig file exists ensure ownership is set to root:root (

116

↪→ Manual)

Manually validated that the permissions are set to 600.

[WARN] 4.1.7 Ensure that the certificate authorities file permissions are set to 600 or

↪→ more restrictive (Manual)

root@capi-ha-control-plane-h692g:~/kube-bench# stat -c %a /etc/kubernetes/pki/ca.crt

600

117

Appendix 6 – Kubelet cgroup configuration and namespace
isolation.
root@capi-ha-control-plane-ph7w5:~# stat -fc %T /sys/fs/cgroup/

cgroup2fs

root@capi-ha-control-plane-ph7w5:~# cat /var/lib/kubelet/config.yaml | grep cgroup

cgroupDriver: systemd

root@capi-ha-control-plane-ph7w5:~# crictl ps --name=alloy -q

8afd1cf8a6737649f225584f200357cfe154d565455160463ac09870f1252bd6

root@capi-ha-control-plane-ph7w5:~# crictl inspect --output go-template --template ’{{.

↪→ info.pid}}’ 8afd1cf8a6737649f225584f200357cfe154d565455160463ac09870f1

252bd6

29620

root@capi-ha-control-plane-ph7w5:~# ls -l /proc/29620/ns

total 0

lrwxrwxrwx 1 root root 0 May 11 20:45 cgroup -> ’cgroup:[4026532821]’

lrwxrwxrwx 1 root root 0 May 11 20:45 ipc -> ’ipc:[4026532817]’

lrwxrwxrwx 1 root root 0 May 11 20:45 mnt -> ’mnt:[4026532819]’

lrwxrwxrwx 1 root root 0 May 11 20:45 net -> ’net:[4026532746]’

lrwxrwxrwx 1 root root 0 May 11 20:45 pid -> ’pid:[4026532820]’

lrwxrwxrwx 1 root root 0 May 11 20:45 pid_for_children -> ’pid:[4026532820]’

lrwxrwxrwx 1 root root 0 May 11 20:45 time -> ’time:[4026531834]’

lrwxrwxrwx 1 root root 0 May 11 20:45 time_for_children -> ’time:[4026531834]’

lrwxrwxrwx 1 root root 0 May 11 20:45 user -> ’user:[4026531837]’

lrwxrwxrwx 1 root root 0 May 11 20:45 uts -> ’uts:[4026532816]’

118

Appendix 7 – Azure Bastion (Management), control plane
node, isolated node and other data plane node subnets.

119

Appendix 8 – Velero backup validation in Azure portal.

120

Appendix 9 – Disabled automount for default service ac-
counts.
NAME ADMISSION BACKGROUND READY AGE MESSAGE

restrict-default-sa-automount true true True 3h1m Ready

root@capi-ha-control-plane-ph7w5:~# kubectl get sa -A -o=jsonpath=$’{range .items[*]}{@.

↪→ metadata.name}:{@.metadata.namespace}:{@..automountServiceAccountToke

n}\n{end}’ | grep "default:"

default:alloy:false

default:argocd:false

default:calico-apiserver:false

default:calico-system:false

default:cert-manager:false

default:default:false

default:external-dns:false

default:external-secrets:false

default:grafana:false

default:haproxy-controller:false

default:istio-system:false

default:kiali:false

default:kube-node-lease:false

default:kube-prometheus-stack:false

default:kube-public:false

default:kube-system:false

default:kyverno:false

default:loki:false

default:test-quotas:false

default:test:false

default:tigera-operator:false

default:velero:false

121

Appendix 10 – Kubernetes health probe requirement vali-
dation.
root@capi-ha-control-plane-ph7w5:~# kubectl get policyreports.wgpolicyk8s.io -n test-

quotas 845b7b1f-344b-42db-a478-c1c50b7bad99 -o yaml

apiVersion: wgpolicyk8s.io/v1alpha2

kind: PolicyReport

metadata:

creationTimestamp: "2025-01-11T23:29:15Z"

generation: 4

labels:

app.kubernetes.io/managed-by: kyverno

name: 845b7b1f-344b-42db-a478-c1c50b7bad99

namespace: test-quotas

ownerReferences:

- apiVersion: v1

kind: Pod

name: tmp-shell

uid: 845b7b1f-344b-42db-a478-c1c50b7bad99

resourceVersion: "272574"

uid: c335d246-0be9-4f50-bca8-0232022ec6fe

results:

- category: Multi-Tenancy

message: validation rule ’validate-namespace’ passed.

policy: disallow-default-namespace

properties:

process: background scan

result: pass

rule: validate-namespace

scored: true

severity: medium

source: kyverno

timestamp:

nanos: 0

seconds: 1747007156

- category: Best Practices

message: ’validation failure: Liveness, readiness, or startup probes are required

for all containers.’

policy: require-pod-probes

properties:

process: background scan

result: fail

rule: validate-probes

scored: true

severity: medium

source: kyverno

timestamp:

nanos: 0

seconds: 1747007156

- message: validation rule ’validate-resources’ passed.

policy: require-requests-limits

properties:

process: background scan

result: pass

122

rule: validate-resources

scored: true

severity: medium

source: kyverno

timestamp:

nanos: 0

seconds: 1747007156

scope:

apiVersion: v1

kind: Pod

name: tmp-shell

namespace: test-quotas

uid: 845b7b1f-344b-42db-a478-c1c50b7bad99

summary:

error: 0

fail: 1

pass: 2

skip: 0

warn: 0

123

Appendix 11 – Specialised Kubernetes nodes.
root@capi-ha-control-plane-tx9fg:~# kubectl get nodes

NAME STATUS ROLES AGE VERSION

capi-ha-control-plane-krkpk Ready control-plane 4m51s v1.32.0

capi-ha-control-plane-szk82 Ready control-plane 107s v1.32.0

capi-ha-control-plane-tx9fg Ready control-plane 9m v1.32.0

capi-ha-general000000 Ready <none> 7m37s v1.32.0

capi-ha-general000001 Ready <none> 7m31s v1.32.0

capi-ha-ingress000000 Ready <none> 7m30s v1.32.0

capi-ha-ingress000001 Ready <none> 7m32s v1.32.0

capi-ha-isolated000000 Ready <none> 7m39s v1.32.0

capi-ha-isolated000001 Ready <none> 7m33s v1.32.0

capi-ha-monitoring000000 Ready <none> 7m36s v1.32.0

capi-ha-monitoring000001 Ready <none> 7m36s v1.32.0

capi-ha-storage000000 Ready <none> 7m38s v1.32.0

capi-ha-storage000001 Ready <none> 7m37s v1.32.0

124

Appendix 12 – PEARO principle validation.

Table 5. PEARO principle validation

Measure Implementation Comment
APP.4.4.M1 R

APP.4.4.M2 R

APP.4.4.M3 R

APP.4.4.M4 R

APP.4.4.M5 R

APP.4.4.M6 R initContainers used where needed

APP.4.4.M7 R

APP.4.4.M8 R

APP.4.4.M9 R

APP.4.4.M10 R

APP.4.4.M11 R In ’Audit’ mode

APP.4.4.M12 R

APP.4.4.M13 R

APP.4.4.M14 R

APP.4.4.M15 R

APP.4.4.M16 R

APP.4.4.M17 R

APP.4.4.M18 R

APP.4.4.M19 R

APP.4.4.M20 R

APP.4.4.M21 R CronJob created, although usually appli-
cations are managed by operators and Ku-
bernetes itself

125

Appendix 13 – Provisioned resources in Azure Portal.

126

Appendix 14 – Isolated node group Security Group Rules.

127

Appendix 15 – Isolated node group connection testing.
A successful connection from the control plane to the isolated node

root@capi-ha-control-plane-tx9fg:~# nc -zv capi-ha-isolated000000 22 -w 10

Connection to capi-ha-isolated000000 (10.0.0.196) 22 port [tcp/ssh] succeeded!

A failed connection from the general node (in regular node subnet) to the isolated

node

root@capi-ha-general000000:~# nc -zv capi-ha-isolated000000 22 -w 10

nc: connect to capi-ha-isolated000000 (10.0.0.196) port 22 (tcp) timed out: Operation

now in progress

128

Appendix 16 – Velero backup output with EncryptionAtRest-
WithPlatformKey.
{

"name": "pvc-3317be7c-9b3e-4b89-bf2e-106124d94f3c-36fc38e9-3bc5-4c16-a1aa-395

d0cef9603",

"id": "/subscriptions/${subscriptionId}$/resourceGroups/mgmt-cluster/providers/

Microsoft.Compute/snapshots/pvc-3317be7c-9b3e-4b89-bf2e-106124d94f3c-36fc38e9-3

bc5-4c16-a1aa-395d0cef9603",

"type": "Microsoft.Compute/snapshots",

"location": "northeurope",

"tags": {

"app.kubernetes.io-instance": "velero",

"app.kubernetes.io-managed-by": "Helm",

"app.kubernetes.io-name": "velero",

"argocd.argoproj.io-instance": "velero",

"env": "capi-ha",

"helm.sh-chart": "velero-9.0.4",

"k8s-azure-created-by": "kubernetes-azure-dd",

"kubernetes.io-created-for-pv-name": "pvc-3317be7c-9b3e-4b89-bf2e-106124d94f3c",

"kubernetes.io-created-for-pvc-name": "storage-loki-0",

"kubernetes.io-created-for-pvc-namespace": "loki",

"velero.io-backup": "velero-mybackup-20250509233301",

"velero.io-pv": "pvc-3317be7c-9b3e-4b89-bf2e-106124d94f3c",

"velero.io-schedule-name": "velero-mybackup",

"velero.io-storage-location": "default"

},

"sku": {

"name": "Standard_LRS",

"tier": "Standard"

},

"properties": {

"creationData": {

"createOption": "Copy",

"sourceResourceId": "/subscriptions/${subscriptionId}/resourceGroups/capi-ha

/providers/Microsoft.Compute/disks/pvc-3317be7c-9b3e-4b89-bf2e-106124

d94f3c",

"sourceUniqueId": "dbaf148c-085a-4bcf-896f-feb4535212df"

},

"diskSizeGB": 10,

"encryption": {

"type": "EncryptionAtRestWithPlatformKey"

},

"incremental": false,

"networkAccessPolicy": "AllowAll",

"publicNetworkAccess": "Enabled",

"timeCreated": "2025-05-09T23:33:11.0358671+00:00",

"provisioningState": "Succeeded",

"diskState": "Unattached",

"diskSizeBytes": 10737418240,

"uniqueId": "372a3d94-e3be-4a57-a752-1a2c4a47a8ae"

},

"apiVersion": "2022-03-02"

}

129

Appendix 17 – Validation of ’restarter’ CronJob.
Created CronJob that restarts defined applications in the cluster based on schedule

root@capi-ha-control-plane-tx9fg:~# kubectl get cronjob -n restarter

NAME SCHEDULE TIMEZONE SUSPEND ACTIVE LAST SCHEDULE AGE

restart-applications 20 * * * * <none> False 0 71s 3m3s

Pod created by CronJob

root@capi-ha-control-plane-tx9fg:~# kubectl get pods -n restarter

NAME READY STATUS RESTARTS AGE

restart-applications-29123360-c8qns 0/1 Completed 0 77s

Pod logs confirming that ’argocd-server’ Deployment and ’argocd-application-controller

’ StatefulSet were restarted

root@capi-ha-control-plane-tx9fg:~# kubectl logs -n restarter restart-applications

-29123360-c8qns

Restarting Deployment argocd-server in namespace argocd

deployment.apps/argocd-server patched

Restarting StatefulSet argocd-application-controller in namespace argocd

statefulset.apps/argocd-application-controller patched

Verifying from "AGE" column that indeed the applications were restarted

root@capi-ha-control-plane-tx9fg:~# kubectl get pods -n argocd

NAME READY STATUS RESTARTS AGE

argocd-application-controller-0 1/1 Running 0 73s

argocd-applicationset-controller-84449fb775-589kf 1/1 Running 0 11m

argocd-redis-7459ddd4fc-jjb2l 1/1 Running 0 11m

argocd-repo-server-7c66dd8687-5xvxb 1/1 Running 0 11m

argocd-server-7b7c78b7b6-j472c 1/1 Running 0 76s

130

	Introduction
	Motivation
	Research Problem
	Research Problem Statement
	Research Questions

	Scope and Goal
	Main objective
	Limitations

	Novelty
	Thesis Structure

	Literature Review
	Search Strategy
	Search Sources
	Search Terms

	Inclusion and Exclusion Criteria
	Inclusion criteria
	Exclusion criteria

	Data Extraction Criteria
	Selection
	Synthesis
	Kubernetes Security Challenges and Common Vulnerabilities
	Analysis of Existing Studies
	Gaps in the existing literature

	Research Methods
	Exploratory Phase
	Systematic Literature Review (SLR)
	Document Analysis

	Constructive Phase
	Validation Phase
	Data Collection
	Data Analysis Techniques

	Analysis of E-ITS APP.4.4: Kubernetes
	Background and Context
	Description
	Purpose
	Responsibility
	Limitations

	Threats
	Control plane authentication and authorization errors
	Loss of confidentiality of the token of a pod
	Conflict of resources caused by a pod
	Unauthorised changes in the Kubernetes cluster
	Unauthorised access to a pod

	Measures
	Base Measures
	Standard Measures
	Advanced Measures

	Conclusion

	Technical Implementation
	Resource Platform
	High-Level Architecture
	Resource Deployment Tools
	Planning The Cluster Deployment
	Node Groups
	Bastion Host
	Network Design
	Instance Size and OS Selection

	Initial Bootstrapping
	Securing the Cluster Components
	Control Plane and Data Plane Configuration Files
	Kubernetes API Server
	Controller Manager
	Etcd
	Scheduler
	Kubelet
	Conclusion of Cluster Component Security

	Deploying the Applications
	Core Applications
	Networking and Ingress
	Monitoring Stack
	Backup and Restore
	Security and Compliance Tools

	Conclusion of Technical Implementation

	Results
	Validation Strategy
	Validating E-ITS APP.4.4 Implemented Measures
	Cluster Component Configuration Validation With 'kube-bench'
	Validation of each E-ITS APP.4.4 implemented measure
	Conclusion of the Validation

	Discussion
	Findings
	Answers to Research Questions

	Limitations
	Recommendations

	Conclusion
	Summary
	Contribution
	Generalization
	Future Work

	References
	Appendix 1 – Non-Exclusive License for Reproduction and Publication of a Graduation Thesis
	Appendix 2 – Secret encryption verification in etcd
	Appendix 3 – Velero role definition
	Appendix 4 – kube-bench test results
	Appendix 5 – kube-bench cluster component manual verification steps.
	Appendix 6 – Kubelet cgroup configuration and namespace isolation.
	Appendix 7 – Azure Bastion (Management), control plane node, isolated node and other data plane node subnets.
	Appendix 8 – Velero backup validation in Azure portal.
	Appendix 9 – Disabled automount for default service accounts.
	Appendix 10 – Kubernetes health probe requirement validation.
	Appendix 11 – Specialised Kubernetes nodes.
	Appendix 12 – PEARO principle validation.
	Appendix 13 – Provisioned resources in Azure Portal.
	Appendix 14 – Isolated node group Security Group Rules.
	Appendix 15 – Isolated node group connection testing.
	Appendix 16 – Velero backup output with EncryptionAtRestWithPlatformKey.
	Appendix 17 – Validation of 'restarter' CronJob.

