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Abstract 

Modern policies that fight climate change regulate carbon dioxide emissions and make energy 

more expensive each year. This challenge for the society can be solved in two ways: either to 

generate more energy with renewables or stimulate society to consume less energy.  

Stimulating society to consume less energy is unpopular but an innovation like a modern 

technology could help with this. 

Modern technologies generate large amounts of data with the potential to be analyzed by 

different analysis methods. One of this technology pieces is a smart electrical meter which can 

generate high frequency electricity consumption data. If there was an efficient and cheap 

technology that could show which devices are enabled or consume a lot of energy it could help 

people to adjust their behavior to consume less energy. 

 

One of technologies is NILM (Nonintrusive load monitoring). This technology has been 

researched for the last decade with multiple techniques being proposed. One of these techniques 

is NSGA-II based NILM implementation. NSGA-II in NILM domain has not been well validated 

[1]. This thesis aims to explore different details in NSGA-II implementation, compare it with 

other NILM techniques and finally attempt to validate NSGA-II in NILM domain. 

 

The thesis is in English language and contains 50 pages, 13 chapters, 19 figures, 6 tables, 3 

algorithms and 5 equations. 
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Annotatsioon 

 

Kaasaegne kliimamuutustega võitlev poliitika reguleerib süsinikdioksiidi heitkoguseid ja 

muudab energia hinda igal aastal kallimaks. Seda väljakutset ühiskonnale saab lahendada kahel 

viisil: kas toota taastuvate energiaallikatega rohkem energiat või stimuleerida ühiskonda vähem 

energiat tarbima. Ühiskonna stimuleerimine - vähema energia tarbiseks on ebapopulaarne, kuid 

uuenduslikkus kaasaegse tehnoloogia ees, võiks sellele kaasa aidata.  

Kaasaegsed tehnoloogiad genereerivad suures koguses andmeid, mida on võimalik analüüsida 

erinevate analüüsimeetodite abil. Üks sellistest tehnoloogia toodetest on nutikas elektriarvesti, 

mis võimaldab genereerida kõrgsageduslikke elektritarbimise andmeid. Kui oleks olemas tõhus 

ja odav tehnoloogia, mis suudaks näidata, millised seadmed on lubatud kasutada või millised 

tarbivad palju energiat, võib see aidata inimestel oma käitumist muuta ehk hakkata kohandama 

oma energia tarbimist.  

Üks sellistest tehnoloogiatest on NILM (mittetungiv koormuse jälgimine). Seda tehnoloogiat on 

viimase kümne aasta jooksul uuritud, pakkudes välja mitu tehnikat. Üks neist meetoditest on 

NSGA-II-põhine NILM-i juurutamine. NILM-i domeenis olevat NSGA-II poole kinnitatud [1]. 

Selle lõputöö eesmärk on uurida erinevaid detaile NSGA-II juurutamisel, võrrelda seda teiste 

NILM-i tehnikatega ja lõpuks proovida NSGA-II valideerida NILM-i domeenis. 

 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 50 leheküljel, 13 peatükki, 19 joonist, 6 

tabelit, 3 algoritmi ja 5 võrrandit. 
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List of abbreviations and terms 

NILM -      Non-Intrusive Load Monitoring 

NILMTK - Non-Intrusive Load Monitoring toolkit 

HMM -       Hidden Markov model 

CO -           Combinational Optimization 

REDD -      Reference Energy Disaggregation Data Set  

AMPds2 -  The Almanac of Minutely Power dataset Version 2 

TC -           Termination Condition 

DM -          Decision Maker 
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Introduction 

Nonintrusive load monitoring (NILM) is a process for analyzing data generated by electric 

meter. It offers a cheaper way to determine an individual energy consumption of devices within a 

household by analyzing and disaggregating voltage and current changes in the power source 

cable.  

The first NILM technique was patented in 1986 by George W. Hart [2]. It featured a digital AC 

monitor measuring both real and reactive power and an admittance measurement device whose 

output would be normalized and recorded. A cluster analysis then would help to determine 

enabled appliances behind the AC monitor. 

In 2010s a large variety of open datasets [3] containing appliance consumption in apartments 

have appeared. These datasets remove the costly need to handle the measuring of appliance 

consumption and help researchers to focus solely on energy consumption disaggregation 

problem. The dataset only requires researcher to have a computer. No doubt this factor has 

helped for multiple NILM techniques to appear. 

Since original patent in 1986 several new techniques have been developed and papers published. 

Several papers point out that NILM process implementations are feasible for determining 

individual energy consumptions [4]. 

 

NILM solution can be split into two parts: training of individual device consumption model and 

energy disaggregation. 

One of the disaggregation techniques relies on an elitist multi objective genetic algorithm:  

NSGA-II [5]. This will be a core component of this thesis. 

Although NSGA-II in NILM domain is well defined [5] little is written about how it copes with 

different training techniques and there are little attempts to validate it [1]. This thesis aims to 

integrate NSGA-II with different training techniques and see how well it performs. Two training 

techniques were designed during this thesis, and a training component of popular FHMM was 

also used. 

 Theis work relies on NILMTK for data collection in a python client.  

The learning (except for FHMM) and energy disaggregation would be then performed on a Java 

server. Client and server communicate via WebSocket. Once client receives disaggregation result 

it will compare its accuracy and recall with other NILM technique implementations provided in 

NILMTK. These accuracy test result help with NSGA-II verification in NILM domain.  
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Problem statement 

We are given two datasets: first contains only appliances individual consumption readings and 

the second has aggregated power consumption that was measured by the site meters to which 

these individual consumers are connected. These datasets are measured at different timeframes. 

The first goal of this thesis is to write a software capable of learning from the first dataset and 

then determining on or off state of these consumers given only the second dataset.  This is also 

known as an energy consumption disaggregation problem. We prefer if the software had a 

scalability potential, thus it comes as a server that receives data with TCP based protocols. 

Several datasets contain both load power consumption and a reactive power consumption. 

Despite reactive component may play a crucial role in improving an accuracy of an output, for 

the sake of simplicity this will be ignored. 

Figure 1 illustrates how both datasets are collected. Readings of both site meter featuring a total 

power consumption and appliances individual consumption are stored in data storage. 

 

 

Figure 1 Energy consumption dataset collection site 

  

Figure 2 is a graphical representation of one of the samples from REDD [6] dataset. Sum of site 

meters load power consumptions represent aggregated power consumption. It also includes 
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individual appliance power consumption. The Figure shows that a single appliance may have 

several discrete power consumption modes.  

 

 

Figure 2 REDD dataset sample 

 

 

NSGA-II was picked as a key algorithm for this thesis.  On its own it cannot solve problems in 

NILM domain, it needs a proper consumption model. Second goal of this thesis is to find an 

algorithm that can generate this model that can be used by NSGA-II to solve NILM domain 

problem. 

We also aim to answer these questions in the thesis: 

• How well NSGA-II copes with different training techniques that generate consumption 

model and what is the resulting accuracy 

• What are the benefits of NSGA-II when compared to disaggregation techniques from 

NILMTK 
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• How do results of disaggregation change when NSGA-II Decision maker (fitness) 

function changes slightly 

• Are NSGA-II disaggregation accuracy and recall homogeneous between different 

datasets 

• How easy is it to integrate with NILMTK 

We plan to answer these questions by analyzing the disaggregation results based on different 

datasets with different properties. 

 

NILMTK 

NILMTK (Non-Intrusive Load Monitoring toolkit) is an open-source set of tools that help to 

organize a NILM based technique [3]. The toolkit is hosted on GitHub [7] and there have been 

several contributions recently in the repository. It interfaces to available open-source datasets 

such as REDD, AMPds2 [8] providing a single and simple API for each of them. NILMTK also 

provides instructions to write a custom dataset converter [9]. Both real and reactive power is 

supported. Moreover, it contains tools for data set diagnostics, statistics, and chart generation. It 

also gathers statistics about each appliance in the dataset, like minimum device off state duration, 

appliance type. This appliance metadata could be helpful when increasing accuracy of energy 

disaggregation. Several learning and disaggregation techniques are also implemented in the 

toolkit allowing to compare the solution of this thesis to other techniques. The toolkit uses 

python environment and depends on pandas and Matplotlib for data handling and visualization. 

The variety of tools has motivated me to create a client-server application where client mostly 

relies on NILMTK to load and analyze data. This toolkit will be often used and mentioned in this 

thesis.  
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Datasets 

Several datasets were used in this thesis. Using different datasets helps to see a broader picture of 

NILM solution. Both datasets contain separate appliances with the same name. In order to 

distinguish these appliances, we feature appliance label and id in logs and charts. 

These datasets have got different frequency of power measurements. Higher frequency allows to 

apply a wider range of techniques for NILM domain problem [10]. Lower frequency does not 

come with real benefits, but it is suitable for this thesis: it will allow to cover wider time range of 

measurements. 

REDD 

Introduced in 2011 this dataset is the first publicly and freely available dataset aimed at NILM 

research. 

It contains detailed power usage information from several homes. The dataset [11] contains 

power consumption data from both site meters and individual devices. Thus, making the dataset 

friendly to both supervised and unsupervised NILM training. Data was collected at the frequency 

close to 15kHz for the whole house electricity signal. Individual circuits and plug monitors were 

recorder at 0.5 and 1 Hz respectively.  Since AC waveform was collected, both real and reactive 

power is present in the dataset [6]. 

A low frequency sub samples with only real power consumption were used in the thesis. 

Individual appliance is available at 0.33 Hz. This data will be used during training phase and 

during accuracy measurement. The site consumption meters recordings are available at 1Hz. This 

data is used during disaggregation phase. REDD dataset contains two site meters for some 

buildings and NILMTK sees them. Thus, client will aggregate site meter data into single source 

during disaggregation. Dataset from building 1 is used in tests. 

FHMM requires at least 64GB ram to train and disaggregate with this dataset with no limits. 

A specific timeframe from REDD dataset was used during disaggregation and its length is 900 

measures. Figure 3 and Figure 4 provide an overview of REDD dataset sample. 
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Figure 3. REDD dataset total power consumption 



   
 

13 
 
 

 

 

Figure 4. All appliances power consumption in REDD 
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AMPDs2 

The Almanac of Minutely Power dataset Version 2 has been released to help computational 

sustainability researchers, power, and energy engineers, building scientists and technologists and 

other organizations. It contains data with electricity, water, and gas consumption over an 

extended period of two years [12]. Despite data being collected at 1Hz per site meter, electricity 

consumption of measures with a period of 1 minute are only available. Higher frequency is 

unavailable for neither NILMTK HDF5 bundle [8] nether for CVS file [13]. The 1Hz data 

collected here was included in RAE dataset [14]. Tests performed in this thesis mentioning 

AMPds2 reference 1/60 Hz measurements. 

During runs with AMPDs2 with all appliance's consumption data FHMM training phase required 

128GB of memory. Thus, FHMM was only provided with a limited number of appliance 

consumption data while testing on AMPDs.  

A specific timeframe from AMPDs2 dataset was used during disaggregation and its length is 840 

measures. 

 

Figure 5. AMPDs2 total energy consumption 
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Figure 6. All appliances power consumption in AMPDs2 
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Overview of NILM techniques 

 

Solving energy disaggregation consists of two subtasks: learning and disaggregation [15]. 

First learning phase is conducted which results in individual device consumption model. 

This model is then used during disaggregation phase. This phase is sometimes mentioned as 

prediction phase in this paper. 

Overview of modern NILM training techniques 

The NILM techniques first rely on learning techniques to determine a model of consumer 

devices. The learning technique can be either supervised or unsupervised [15].  

Supervised techniques require training data to include individual appliance consumption. The 

process of collecting this data is expensive, time consuming and thus have scalability limitations 

[16]. There are different supervised techniques researched. These include Support Vector 

Machine (SVM), k-Nearest Neighbors, graph signal processing and HMM [15] [16]. HMM is 

considered to be a state-of-the-art unsupervised training algorithm. A variation of HMM, 

factorial HMM is implemented in NILMTK [3].  

Unsupervised learning does not need individual appliance consumption data, only aggregated 

energy consumption is needed. Since this technique is more cost effective it has more potential in 

everyday usage and thus a lot of NILM research focuses on unsupervised learning. A lot of 

unsupervised learning techniques are a subset of HMM [15] [17]. Other techniques rely on Deep 

learning algorithms [15]. 

 

Overview of disaggregation techniques 

Second phase of NILM solution involves applying individual device power consumption model 

acquired during training phase against the power output values of site meters to get a list of 

enabled devices. This paper will call this phase a disaggregation phase. The data that is used in 

the disaggregation phase will be called test data. 

The simplest implementation of disaggregation phase would be a combinational optimization. It 

would find the best combination of appliance states where the difference between observed 

aggregate power and the sum of predicted appliances power consumption is minimal [3].  

Although an easy implementation it becomes an overly complex computation task if the number 

of appliances is high. 

Second solution would be to implement a set of genetic algorithms. One of the algorithms is an 

NSGA-II [5].  Lastly, FHMM being a full solution to NILM domain problem, also has a 

disaggregation phase. 
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Methodology 

Picking training and disaggregation techniques 

Amount of training techniques is abundant. Most of them are complex and focus on accuracy. 

 During review of training techniques, I wanted to see a simple, fast algorithm that would create 

an individual device consumer model. Since the datasets have power consumption data per each 

device supervised learning was selected. Two training algorithms were chosen. Both focus on 

clustering each individual appliance consumption dataset.   

K-means based clustering 

Firstly k-means clustering algorithm [18] was picked for training. It aims to split N electricity 

consumption measures for each device into K clusters. It is a complex, NP-hard algorithm [19] 

but simple to implement and widespread. At its core k-means will pick k random points in the 

dataset. Then each point in the dataset will be assigned to the nearest randomly generated point. 

This results in k clusters. After all points are assigned, centroid of each cluster is calculated. The 

centroid becomes the next point and new cluster is calculated again using the same technique. 

The centroids are recalculated until the list of assigned points from dataset stop switching 

clusters. 

Number of power consumption modes per each consumer appliance in training dataset was 

manually analyzed by observing power consumption density charts per each device. This data 

then was provided to the training model. The consumed power values then would be clustered. 

Each cluster power consumption centroid would be then saved and used in disaggregation phase. 

In order to ignore rare power fluctuations or noise the solution look for 2*n clusters and ignore 

the less populated clusters before ending algorithm. As seen in Fig 7, k-means was directed to 

use 8 clusters, of which clusters 1-4 were picked. And crossed clusters are not used during 

disaggregation phase. 

One of the problems of k-means is that sometimes a cluster is empty, and it cannot be 

repopulated during re-clustering. The solution is to delete this cluster since the number of 

clusters is larger than initial n. The result will still contain K clusters in this case. 
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Fig 7 K-means based cluster illustration 

 

 

  



   
 

19 
 
 

 

 

 

The accuracy of this method was not measured, but when visually compared with density chart 

of a single chart consumption this algorithm mostly produces adequate numbers. 

E.G. Dish washer cluster average were calculated as [5.95, 227.25, 1129] and they correspond to 

Figure 8. 

Algorithm 1. K-means based clustering 
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Figure 8 Dish washer power consumption density in REDD building 1 

 

But the algorithm will struggle when there are density local maximums: it cannot detect local 

maximum when it has a lot of plateau properties. 

E.G. Cluster average for sockets in REDD building 1 were calculated as [21.74, 44.46, 67.90] 

and Figure 9 is generated based on the same dataset. It is seen that the local maximum at around 

100 was not identified correctly, but 67.90 was picked instead. 
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Figure 9. Socket #3 power consumption density in REDD building 1 

To combat this inaccuracy, careful cluster numbers per each device was picked. This training 

technique but its accuracy under certain conditions and the need for human interaction means 

that it should be either updated or replaced by another algorithm in the future. But we still will 

conduct accuracy test with this training technique as it will allow to evaluate NSGA-II. 

The future replacement algorithm could look for local maximums of energy consumption 

densities in energy datasets. 
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Fast clustering 

Second training algorithm (Algorithm 2) is a straightforward O(n*ln(n)) algorithm where n is a 

size of the dataset. No academic papers were researched: this is a quick and rough attempt to 

cluster data. Its most complex operation is dataset sorting. There are no expectations about 

accuracy: it may only work with a primitive consumption condition and will only be referenced 

as a benchmark. This has also struggled to provide a good model and was inferior to FHMM. 

 

 

 

Hidden Markov Model 

Last training algorithm used in this thesis is FHMM. HMM is a Markov model when states of the 

Markov model are unknown. Instead, only observables are known. In case of NILM, the power 

consumption at the site meter and its fluctuations are observables and individual appliance on/off 

states are hidden variables [15]. 

HMM is characterized by finite number of states for each appliance and finite number of 

observables per each state. The transition matrix would then represent a probability of moving 

between states of the appliance (between previous and current power consumption measure). The 

factorial HMM (FHMM) is an extension of the HMM with multiple independent hidden state 

sequences and each observation is dependent upon multiple hidden variables [15] [20]. FHMM is 

a preferred method for modelling time-dependent processes. 

NILMTK has got an implementation of this algorithm. The generated power consumption model 

will be used both with NSGA-2 and FHMM disaggregation implemented in NILMTK. After 

Algorithm 2.Fast clustering 
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training phase NILMTK FHMM model transforms transition matrix into a dataset where each 

appliance power consumption modes and their power consumption can be observed. The NSGA-

2 implementation then can use this dataset during disaggregation algorithm. One of the 

downsides of the FHMM is a monstrous appetite for memory of the transition matrix. The more 

appliances there are in the model the larger memory consumption. NILMTK will warn about this 

and suggest using fewer appliances in training set if the training fails. Though memory 

constrains may be negated with modern hardware and a more optimized software: during test 

runs 64GB of RAM was enough to run FHMM with a one of the datasets. But another dataset 

required 128GB RAM. 

Disaggregation 

NSGA-II 

 NSGA-2 would be used in disaggregation phase due to its simplicity and the fact that it is not 

that researched. Papers [21] [5] were used as a reference during implementation. Offspring 

generation, initial random population and NSGA-II termination conditions were not mentioned 

in papers; thus, following algorithms were implemented: (3) for offspring and algorithm (4) for 

termination condition.  

Initial random population generation and offspring generation have a common feature: each 

product of these functions is checked for duplicates by a fast, hash table-based algorithm. If a 

similar individual was or about to be checked by NSGA-II for elitism, meaning its duplicate is 

already in the population, it will be considered a duplicate and will not be inserted into the 

population.  

Random population generation is a simple function that generates individual with some devices 

enabled. It is more likely to generate and individuals with a lot of appliances enabled. This bias 

ensures the variety of population. After all there are more potential individual combinations with 

N +1 devices enabled than with N devices enabled.  

Offspring generation is described by Algorithm 3. If you look at Figure 10. Small appliance 

dataset you will notice the dataset may contain a appliances (E.G. light, sockets and other small 

electronics) that have small power consumption while enabled. It is possible that during 

offspring generation enabling some of these devices will not drastically increase total power 

consumption by an individual and thus offspring still features main traits of its parents. Because 

of this fact it was decided that offspring generation algorithm should be able to add a lot of traits 

(enabled devices) with a small probability. 
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Algorithm 3. Generate offspring 
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Figure 10. Small appliance dataset 

Termination condition (TC) for NSGA-II impacts how long the disaggregation will run. Once 

TC is triggered the best individual is selected, and we start disaggregating the next measure. 

When the NSGA-II cycle starts, the probability of the best individual being in the population is 

low. If the best individual would be selected during the first cycles and the NSGA-II terminates, 

the accuracy of the result would be small. On the other hand, once the best individual is in the 

population there is no point of issuing more NSGA-II cycles. Termination condition duty is to 

detect this moment once the best individual has entered the population and stop NSGA-II cycle 

as soon as possible. 

There are two termination conditions implemented in thesis: 
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Firstly, after reaching a certain DM function score the TC is triggered. Since tests are conducted 

with different training techniques and different datasets the TC needs to be agile. It is not 

possible to set the score of DM after which termination occurs: the best TC trigger scores will be 

different for each dataset. Instead, the score is extremely strict at the beginning and gets less 

strict for each next set of NSGA-II cycles. If the best DM value does not change for some 

number of cycles, the TC trigger score becomes even less strict increasing the chance of TC 

being triggered. 

Secondly, there are some training techniques and dataset combinations that provide a small 

number of possible individual combinations. For these reasons if the population already contains 

ninety percent of possible individuals the TC will trigger. This is more likely to occur if 

NIKMTK FHMM was used during training. 

NILMTK Disaggregators 

NILMTK contains an implementation of combinational optimization. It will be used as a 

reference benchmark for NSGA-2 implementation. There are also other disaggregation 

techniques but current thesis will not use them. 
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Technique summary 

In Table 1 you will find all learning and disaggregation techniques used in this thesis. Table 2 

describes pros and cons of each technique discovered during tests. 

 

Table 1. List of training and disaggregation algorithm combination used in thesis. 

combination training 
algorithm 
name 
 

training 
algorithm 
implemen
ted in 

disaggregati
on 
algorithm 
 

disaggregation  
algorithm 
implemented in 

name in charts and 
logs 

Fast cluster + 
NSGA2 

Fast 
cluster 

Thesis 
work 
 

NSGA2 
 

Thesis work 
 

Serializer 

K-means based 
clustering + 
NSGA2. 
 

K-means 
based 
clustering. 

Thesis 
work 

NSGA2 Thesis work 
 

Serializer_k_means 

FHMM+NSGA2 FHMM NILMTK NSGA2 
 

Thesis work 
 

FHMM_NSGA_2 

CO  CO NILMTK 
 

CO NILMTK 
 

CO 

FHMM FHMM NILMTK 
 

FHMM 1d 
disaggregati
on 

NILMTK 
 

FHMM 
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Table 2. Technique pros and cons 

 

Technique Pros Cons 

Fast cluster Simple and fast implementation Limited accuracy 

K-means based 

clustering 

Simple implementation Limited accuracy 

Human interaction required 

NSGA-II Possible to adjust execution time and 

accuracy 

A better genetic algorithm 

Slow disaggregation time  

FHMM Better accuracy 

Widely used in research 

High memory consumption 

Slow disaggregation time 

CO Simple implementation 

High speed 

Low recall in tests 

 

Architecture 

File Converter 

The solution implementation consists of 3 components: file converter, client and server.  

File converter role is to transform any energy consumption dataset into the NILMTK HDF5 file 

format. HDF (Hierarchical data format 5) is a data format and a set of tools meant to store and 

organize enormous amounts of data [22]. NILMTK provides enough support for this format [3]. 

It also proves an API for the format, enough for any NILMTK user to ignore inner workings of 

the format. It is a script that uses NILMTK package. NILMTK supports several data formats. 

HDF5 file format is similar regardless of input file format. This allows for the remaining to 

abstract over the analyzed data format.  

In this thesis REDD and … datasets were successfully converted into HDF5 files and later used. 

Client 

Client is responsible for loading converted HDF5 files into memory, sending it to the server, 

receiving disaggregation results and then visualizing, comparing and analyzing data. It can also 

launch other energy disaggregation techniques provided by NILMTK. The client flow chart is 

visually described in a flowchart Figure 11. 

The client is a python-based script. All operations in the client code are blocking and single 

threaded. Its lifecycle is bound to a single problem solution: once data has been disaggregated 

and visualized the runtime environment is terminated. The script is based on [23] and starts by 

loading a subset of dataset (E.G. All power consumption data of a specific building) and its time 

limitations. There are two categories of data: data meant for training that contains both submeter 
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and site meter readings and a data for disaggregation: it will contain only information about 

aggregated power consumption.  

 WebSocket was chosen as a mean of communication between server and client. Although HTTP 

protocol is a simpler solution it does not support transport of large amounts of data. A classical 

TCP socket was considered, but WebSocket message handling functionality made it a preferred 

candidate.  

Once desired data is loaded into memory a WebSocket communication channel with the server 

will be opened. Once opened a handshake between client and server will be done. As a result of 

handshake, the client will be granted with an id of the training and disaggregation session. All 

subsequent WebSocket messages are in json format. Then a training stage begins. Energy 

consumption of all submeters will be sent through WebSocket to server. Since the training data 

volume may be large for any http packet or WebSocket message it is sent in small chunks in json 

format. Once all training data is sent client waits for the server to acknowledge that all training 

data has been received and processed.  

Next stage is for the client to send the data meant for disaggregation. Once all data has been sent 

the client will send a signal that all data is sent, and it will wait for server to send all 

disaggregation results. 

Client now has the disaggregation data; it now runs other disaggregation techniques provided by 

NILMTK. This is done so that the work in this thesis can be compared to other NILM 

techniques. 

Last stage for client is to draw charts and run disaggregation accuracy analysis. Data received 

from server is organized in NILMTK friendly format. This allows to interface with other 

NILMTK tools. 

During chart and accuracy analysis the following is done: 

• Generate chart that compares predicted total consumption and real data from the same 

moment. 

• Calculate accuracy, recall and f-measure. 

The chart is useful as it displays how well a NILM solution focuses on either preserving power 

consumption states between each value in test dataset or either picking the ideal combination of 

device modes so that the difference between estimated chart consumption and given 

consumption is minimal. 

 

 Once this is done the client finishes execution and python runtime terminates. 
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Figure 11. Client and server flowcharts 
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Server 

Server role is to receive data from the client, both training and test data. Server opens a port and 

actively listens to new connections. 

Once a connection is established server will send a unique identification number which will be 

used to distinguish this client from others. Server then expects data from the client in specific 

order: train data, test data and a signal to start disaggregation. Last chunk of train data contains a 

flag so that the server should start training, thus building a consumption model. Ideally, server 

should start building model right away, but the wish to keep the implementation simple dictates 

otherwise. Then the test data is sent, and server starts disaggregation phase once a signal is to 

start it is received. Once disaggregation phase finishes all calculated data is sent back to the 

client via WebSocket and connection terminates. 

Server also logs crucial information like results of fast clustering and k-means clustering training 

sessions. 

Architecture summary 

A good question about architecture would be: “Why not to merge both client and server 

architectures into a single python runtime? This would even make it possible to add NSGA-2 

implementation into NILMTK toolkit. “.  Though there are some benefits to a monolith 

application a distributed solution has its own pros. These are:  

• Loose coupling: server would not be dependent on data parsing and its errors. 

• Server can potentially serve other clients on a remote host or a cloud: a real-world 

friendly business case. 

• I have a lot of experience with Java and wanted to implement a solution using a Java. 

Writing a Java only solution was not a realistic since the list of tools for parsing available energy 

consumer data sources was almost absent. Generating charts was also easier with python. 

 

Technologies and tools  

Client is built around NILMTK. It uses python runtime and Anaconda [24] to manage NILMTK 

library dependencies. 

In order to run a client, one should install anaconda and create anaconda environment provided 

by NILMTK. 
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NILMTK stores datasets mostly in pandas [25]. In order to be compatible with NILMTK a lot of 

client produced data is stored in pandas. Matplotlib [26] is used to generate charts illustrated in 

this paper. Matplotlib is used because it is integrated into pandas [27] which itself is heavily used 

by NILMTK. Since Matplotlib is widely used in data science, there are a lot of instructions to a 

lot of chart related tasks. Python built in WebSocket package is used to do communications with 

server. NILMTK tools are interfaced around Pandas data-frames based format. Thus, client 

stores train, test and disaggregation data in pandas as well. 

 

Server is run in Java environment. It is picked since I have experience with Java and comfortable 

with its environment. Gradle [28] is used for building, testing, deploying and library 

management. It is a well-supported Java tool and offers more minimalistic configuration 

compared to other Java environment build tools. Server runtime is based on spring boot [29]. 

Spring boot was chosen because it has integrated got a WebSocket support [30] and dependency 

injection. Dependency injection helps with component organization. Server has no persistence: 

all data is stored in memory. Supervised training is performed in a multi-threaded environment 

(each thread per each device) which makes the process faster. 

Details on how to run client and server are in README.md file. 
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Evaluation 

To have a good overview of the NILMTK a range of different accuracy metrics can be used. 

 

True positives, false positives, false negatives, true negatives. 

With datasets providing data for supervised learning, it is possible to compare results of the 

disaggregation with individual appliance on-off states at the same time. Each device in the house 

on/off state can be compared between control dataset and disaggregation result at each 

timeframe. These statistical errors and states can be included in statistics: 

• True positive (TP): device on state was correctly predicted during disaggregation state. 

• False positive (FP) or type 1 error: device on state was identified as on, but it was 

disabled in control dataset. 

• False negative or type 2 error (FN): device on state was identified as on, but it was 

enabled in control dataset. 

• True negative (TN): device was correctly identified as off. 

 

The device was considered on when its power consumption was greater than certain margin. 

 

Per each device and electric measure in the dataset used in disaggregation we calculate number 

of each of these metrics' occurrences. Based on these statistics precision (1), recall (2) and F-

score (3) can be calculated [31]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
          (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
          (2) 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
           (3) 

 

 

The larger each of these scores and closer to 1 the better disaggregation technique performs.  
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These scores were calculated separately for each device in the dataset and combined for each 

disaggregation technique. 

For a more detailed analysis, the test in thesis work collects metrics not only for all devices 

combined but per each device as well. 
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Results and analysis 

We publish recall and accuracy results against all NILM techniques in Table 3 and Table 4. 

Table 3. REDD disaggregation results 

 accuracy recall F-score Total time 
(sec) 

Training time 
(sec) 

K-means + NSGA II 
 

0.44 0.69 0.53 1797 18.59 

Fast cluster + NSGA II 
 

0.48 0.55 0.51 1775 17.62 

FHMM + NSGA II 
 

0.66 0.33 0.44 1079 34.20 

Combinational 
optimization 
 

0.87 0.31 0.46 
 

6.66 5.26 

FHMM + FHMM 0.83 0.86 0.85 14467 43.75 

 

Table 4. AMPDs2 disaggregation results 

 

 accuracy recall F-score Total time 
(sec) 

Training time 
(sec) 
 

K-means + NSGA II 
 

0.62 0.73 0.67 2489 4.92 

Fast cluster + NSGA II 
 

0.66 0.70 0.68 2634 4.60 

FHMM + NSGA II* 
 

0.85 0.79 0.81 1756 19.49 

Combinational 
optimization 
 

0.73 0.47 0.57 4.42 4.02 

FHMM + FHMM* 0.94 0.97 0.96 3919 19.85 

*Not all devices were used in training set.  

 

Let us compare full NILMTK FHMM with NSGA-II implementation + FHMM training phase 

since they use similar training technique and have best results.  
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Test results show that FHMM is a beast when it comes to accuracy and recall. However, high 

memory and CPU time consumption do not let it scale well for everyday usage. This is 

especially true the more devices there are in training dataset (test trials with limited number of 

devices in dataset showed small execution times for the same datasets). While it is possible to 

run REDD based disaggregation without limits it is impossible to do so with AMPDs2. Set of 

training devices was thus limited. 

 It takes 10 more times to disaggregate REDD dataset by FHMM in NILMTK than by NSGA-II.  

On the other hand, NSGA-II can be easily scaled since it can be configured to consume less CPU 

and memory. But it does however struggle with REDD dataset when it comes to accuracy and 

recall. In Figure 12 and Figure 13 you can notice that NSGA-II is more likely to change states 

between two disaggregation measures. This is especially true for appliances with low power 

consumption as there are less problems with high consumption devices as seen in Figure 14. 

 

 

Figure 12. Predicted result and control value for fridge power consumption IN REDD dataset 

 

 



   
 

37 
 
 

 

 

Figure 13. Predicted total result and control site meter value in REDD dataset 

 

 

Figure 14. Predicted and control power consumption for high consumption device in AMDs2 dataset 
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Once tests were conducted it was clear that despite decision making function [5] penalizes for 

switching devices states between measures, it would still generate predictions that have a sum of 

all enabled device states close to the measure in the dataset. This is observed among all datasets 

and their devices. 

 

This can also be seen in Figure 15 with other NSGA-II implementations, when compared with 

CO.  

 

Figure 15. Predicted total result and control site meter value in REDD dataset 

Although same pattern can also be observed in CO for individual devices. Figure 16 and Figure 

16 show that both CO and NSGA-II tend to actively switch on/off states of individual devices. 
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Figure 16. Predicted CO and NSGA-II and control Light power value in AMPDs2 dataset 
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Figure 17 Predicted CO and NSGA-II and control socket power value in REDD dataset 
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This could be happening because not enough appliance consumption states are known: 

1. NILMTK CO code analysis shows it can generate maximum 3 device consumption 

states. 

2. Low count of states (0-6) was manually specified while generating consumption model 

with K-means. 

3. Fast cluster algorithm design ensures it will not generate separate states with a difference 

more than 10 W 

2 and 3 could be changed to ensure more device consumption modes are generated. This could 

be done in future research. 

 This fact of rapid appliance mode change combined with test results from [32] suggest there is a 

chance to improve the accuracy of NSGA-II if DM function would penalize more for switching 

appliances’ states between measures. Let us test this hypothesis by slightly altering the DM (4) 

function for NSGA-II. 

 

(4) 

After running the tests with new DM function on REDD dataset, we can see in Figure 18 that 

NSGA-II is less likely to switch device modes. 

 



   
 

42 
 
 

 

 

Figure 18. Altered DM disaggregation result 

Table 5. Modified DM results with REDD dataset 

 accuracy recall F-score Total time (sec) 

Fast cluster + NSGA II 0.48 0.55 0.51 1775 

Fast cluster + NSGAII with (4) 
 

0.50 0.63 0.56 1661 

FHMM + NSGA II 0.66 0.33 0.44 1079 

FHMM + NSGA II with (4) 
 

0.48 0.57 0.52 1605 

Fast cluster+ NSGA II with (4) 0.46 0.98 0.55 1640 

 

As seen in test results with REDD dataset in Table 5 the recall of disaggregation has increased. 

But accuracy changes differ for techniques. 

(5) 

We have also tried NSGA-II with DM function (5) which has lower impact of f1 of individual 

with the site meter value. This function has the best results so far.  
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Table 6. Modified DM results with REDD dataset 

 accuracy recall F-score 

K-means + NSGA II 
 

0.42 0.56 0.48 

K-means + NSGAII with (5) 
 

0.53 0.58 0.56 

FHMM + NSGA II 0.66 0.33 0.44 

FHMM + NSGA II with (5) 
 

0.75 0.36 0.48 

Fast cluster + NSGA II 0.48 0.55 0.51 

Fast cluster + NSGAII with (5) 0.46 0.56 0.50 

 

As seen in Table 6 the recall and accuracy with new DM function and REDD dataset are either 

better or the same as the original.  

This does not mean that DM proposed in (6) is wrong, but this means that the DM should be 

further researched with more datasets and more training techniques. After all current test in this 

paper haves got low F-score to begin with. This could also be a result of large number of 

appliances in the dataset. 

Other observations 

• Comparison between REDD and AMPDs2 datasets also hints that accuracy and recall 

may differentiate between datasets. All training and disaggregation techniques showed 

better F-score in AMPDs2 dataset. This is also true for NILMTK provided techniques. 

We cannot explain the reason for this trend. 

• CO tends to have a higher accuracy and low recall rate. This means that while a lot of 

predicted appliances ON states were accurate, there were a lot of cases when enabled 

appliance was not predicted correctly. 

• The more devices there are in training dataset the more CPU time during disaggregation 

and memory during training FHMM implementation in NILMTK needs. This is seen in 

Table 3 and Table 4 results. It was also observed during tests that lowering number of 

devices used in training dataset resulted in lower memory and CPU time consumption by 

FHMM. 

• Despite being not that complex on paper it took a lot of time to do fast cluster training 

during tests. It is possible that the implementation has got a problem. 

• High recall for fast cluster and NSGA-II combination in Table 5 is probably an anomaly. 

We need more tests and datasets to control this. 
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Experience with NILMTK 

NILMTK has a steep learning curve for newcomers. Its data structures are not documented 

enough leading to difficulties during implementation. Sometimes same code resulted in 

NILMTK returning different python types when running with different datasets. I still have a 

feeling that I would be more productive without NILMTK. NILMTK provides a sample for 

running disaggregation techniques, but it would be better if this code sample were already in the 

NILMTK toolkit. NILMTK also does not contain any accuracy and recall tests: in my opinion if 

NILMTK had these tests in its package then it could be standardized and used by other 

researchers. 

Despite all these shortcomings, NIMTK does come with its benefits like dataset integration and 

packaged NILM solutions for reference. It would be great if contributions to the project continue. 

This thesis shows that NSGA-II is compatible with NILMTK, thus both NILMTK and NSGA-II 

research would also benefit a lot if NILMTK had a proper implementation of NSGA-II algorithm 

coming as a part of NILMTK package. This would mean that more researchers would compare 

NSGA-II to other algorithms, run NSGA-II with more datasets and learn its specifics. 

 

Future work vector suggestions from author 

 

As seen in Figure 19 there are appliances (a socket in the example), that have a continuous 

fluctuating power consumption in the dataset. This puts stress on the disaggregation techniques 

as it is hard for trained model to represent such appliance behavior. As seen in tests NSGA-II 

implementation used in this thesis struggles with such appliances.  

It is though possible to mark such devices as volatile, calculate power consumption limits during 

volatility and pass this knowledge in consumption model. It is also possible to add more 

dimensions to NSGA-II and change its decision function. The third dimension in NSGA-II could 

improve such results if it detected power fluctuations in nearby measurements and increased the 

probability of such devices being enabled in disaggregation result. 
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Figure 19. Redd dataset sample with continuous fluctuating power consumption 

 

 

Speaking of other NSGA-II in NILM domain improvement work we advise to conduct more 

research regarding DM function declared in [5] as tests in this thesis show it is not guaranteed to 

be optimal. 

Running tests took a lot of time during work on thesis and this has resulted in slow productivity. 

During test runs only a single thread was used. This may be a problem should NSGA-II be 

widely used in NILM domain since single threaded algorithm lacks in scalability. The possibility 

of implementing a parallel NSGA-II in this thesis was observed, though abandoned as it was 

considered complex. There are papers [33] that suggest that NSGA-II can be run in parallel, thus 

a parallel NSGA-II for NILM domain research is advised. This would help with productivity and 

possibly let to implement the NILM solution on the GPU which is good in parallel execution. 

Fast cluster and K-means based clustering techniques implemented in this thesis and their 

consumption had low accuracy and recall compared with FHMM based model. During design of 

both techniques, different changes to both were considered but the simplest solutions were 

preferred. It would make sense to tweak both techniques to improve accuracy, recall of NSGA-II 

and their CPU time. 

Lastly, NILM domain would benefit if more NSGA-II compatible training techniques were 

researched. 

All code written for this thesis will be made publicly available in Github. 



   
 

46 
 
 

 

 

Summary 

 

This thesis had two goals: one was to implement a software capable of learning and then 

disaggregating energy consumption datasets and second was to find a compatible training 

technique for NSGA-II based disaggregation.  

The first goal was fully achieved: work on thesis has resulted in client and server combination 

capable of parsing multiple datasets, solving NILM domain problem and then calculating 

precision and recall of disaggregation results. 

The second goal achievement is arguable. Although several of training techniques have resulted 

in device consumption model that can be used with NSGA-II, the disaggregation result accuracy 

and recall have small or comparable margins compared to results published in other papers 

[3][6]. This suggests that more research needs to be conducted in field of training algorithms that 

are compatible with NSGA-II. 

 

On the bright side, it was found that the DM function for NSGA-II declared in [6] could not be 

optimal and that it may need more research. 

During work on thesis, I have learned a lot about NILM domain problems, solutions to them and 

research. Several NILM techniques were run and tested. Moreover, it was learned that different 

datasets result in different accuracy and recall of these techniques. I also learned about python 

scientific tools and some data processing algorithms. 

 NILM domain is relatively young and it has a lot of research to be done until there is a realistic 

NILM solution to energy problems. A good solution installed in many households may improve 

population consumer behavior thus helping to stop climate change. Hopefully, this paper helps 

other people to find and explore better NILM solutions. To help this I plan to make the code used 

in this project publicly available after this thesis is defended.  
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