

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Informaatikainstituut

Infosüsteemide õppetool

Ajaandmete haldamise üks

võimalik käsitlus PostgreSQL

andmebaasisüsteemi näitel

Magistritöö

 Üliõpilane: Sander Laasik

Üliõpilaskood: 132460IAPM

Juhendaja: dotsent Erki Eessaar

Tallinn

2015

Autorideklaratsioon

Kinnitan, et olen koostanud antud lõputöö iseseisvalt ning seda ei ole kellegi teise

poolt varem kaitsmisele esitatud. Kõik töö koostamisel kasutatud teiste autorite tööd,

olulised seisukohad, kirjandusallikatest ja mujalt pärinevad andmed on töös viidatud.

(kuupäev) (allkiri)

Annotatsioon

Ajaandmete haldamise üks võimalik käsitlus PostgreSQL andmebaasisüsteemi näitel.

Temporaalsed on sellised andmed, millele on lisatud ajaline mõõde – see tähendab, et iga

faktiga käib alati kaasas ka ajavahemik, mille jooksul antud fakt kehtib. Andmetele ajalise

mõõtme andmine suurendab olulisel määral andmete analüüsimise võimalusi, lihtsustades

seeläbi äriliste otsuste tegemisi. Samas lisab see arendajatele ka palju probleeme, sest erinevate

vahemike võrdlemine, tabelipõhiste kitsenduste loomine ja tabelitevahelise andmekvaliteedi

kontrollimine võib kujuneda märksa keerulisemaks kui esmapilgul tundub.

C.J. Date, Hugh Darwen ja Nikos A. Lorenzos kirjeldavad oma raamatus „Temporal Data and

The Relational Model: A Detailed Investigation into the Application of Interval and Relation

Theory to the Problem of Temporal Database Management“ (Date et al 2002) (edaspidi

viidatud kui raamat) üht võimalikku aja- ehk temporaalandmete käsitlust relatsioonilistes

andmebaasides. Raamatus pakutakse välja rida põhimõtteid, mida järgides peaks

temporaalandmete hoidmine, lisamine ning nende kasutamine muutuma selgemaks ning

lihtsamaks.

Kuigi SQL on loodud relatsioonilisele andmemudelile põhinedes, on relatsioonilise

andmemudeli ja SQL-i aluseks oleva andmemudeli vahel erinevusi. Samuti on praegustel

populaarsetel SQL-andmebaasisüsteemidel (DBMS-id) relatsioonilise andmudeliga võrreldes

üsna palju lisakitsendusi ning puudusi. Seega pole kindel, kas raamatus toodud käsitluse

kasutamine SQL-andmebaasides on üldse võimalik.

Käesoleva töö eesmärk on PostgreSQL 9.3 andmebaasisüsteemi näitel proovida realiseerida

selle käsitluse kasutuselevõtmiseks vajalik funktsionaalsus. Selle eesmärgi saavutamiseks on

kõigepealt vajalik selle käsitlusega tutvuda ja seda ka magistritöö lugejatele tutvustada.

Käsitluse realiseerimine ühes SQL-andmebaasisüsteemis annab kindlust (kuid muidugi mitte

garantii), et seda on põhimõtteliselt võimalik realiseerida ka teistes SQL

andmebaasisüsteemides.

Käesoleva töö tulemusena on täidetud järgnevad ülesanded:

1. Kirjeldada raamatus pakutud lahendust. See on refereering, püüdmaks võimalikult hästi

edasi anda autorite ideid ning põhimõtteid.

2. Kasutades PostgreSQL 9.3 andmebaasisüsteemi, realiseerida võimalikult suur hulk

raamatus väljapakutud operaatoreid ja disainipõhimõtteid.

3. Kasutades loodud funktsionaalsust, disainida ning realiseerida näidisandmebaas, mis

peaks neid põhimõtteid võimalikult lihtsasti kirjeldama.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 88 leheküljel, 3 peatükki, 2 joonist, 52

tabelit.

Abstract

One Possible Approach of Temporal Data Management Using PostgreSQL Database

Management System as an Example

Data is called temporal when it has the dimension of time – every fact has a range of time

indicating the period when this fact was considered to be true. Making data temporal drastically

increases the possibilities how this data can be analysed. It can make business decisions much

easier. On the other hand, many problems arise for developers because comparing different data

ranges, creating constraints on tables, and checking data quality between tables becomes much

more complex than it might seem at first.

C.J. Date, Hugh Darwen, and Nikos A. Lorenzos describe in their book „Temporal Data and The

Relational Model: A Detailed Investigation into the Application of Interval and Relation Theory to

the Problem of Temporal Database Management“ (Date et al 2002) (Referenced as the book from

this point forward) one possible approach for the management of temporal data in relational

databases. The book provides many principles that should make storing, adding, and using the

temporal data easier and more transparent.

Although SQL has been created based on the relational data model there are differences in the

relational data model and the underlying data model of SQL. In addition, current popular SQL

database management systems (DBMSs) have quite a lot of additional restrictions and deficiencies

compared to the relational data model. Thus, it is not clear as to whether one can use the approach

from the book in SQL databases.

The goal of the thesis is to implement in the example of PostgreSQL 9.3 DBMS the functionality

that is needed to support the approach offered in the book. To achieve the goal, one firstly has to

understand the approach and introduce it to the readers of the thesis. Implementation of the

approach in case of one SQL DBMS gives confidence (but of course not a guarantee) that one

could implement the approach in other SQL DBMSs.

The following main tasks are accomplished as a result of this thesis.

1. We describe the solution provided in the book. This is a summary of the ideas and

principles of the authors.

2. We use PostgreSQL 9.3 DBMS to implement as much different operators and design

principles from the book as possible.

3. We use the new functionality to create an example database that should explain the

solution as well as possible.

The thesis is in English and contains 88 pages of text, 3 chapters, 2 figures and 52 tables.

Definitions and abbreviations

DBMS Database Management System – “a set of programs that enables users

to store, modify and extract data from a database” (Webopedia, 2015). It

is also the gatekeeper of the database meaning that all the usage of the

management of the structure, behaviour, and data content of the database

goes through it.

SQL Structured Query Language – SQL is a standardized database language

for requesting information from a database, assigning new values to the

database, transaction and privilege control as well as managing data

types, data structures, constraints, operators, and their surrounding

ecosystem of other types of database objects (Webopedia, 2015). It is a

domain-specific computer language in the domain of databases. SQL has

been created based on (is an implementation of) the relational data model

but does not follow it completely.

DML Data Manipulation Language – a subset of a database language meant

for inserting, retrieving, and changing data in the database. Common

statement types in SQL for doing it are INSERT, UPDATE and DELETE

DDL Data Definition Language – a subset of a database language meant for

managing the structure and behaviour of data types, data structures,

constraints, operators, and their surrounding ecosystem of other types of

database objects. Common statement types in SQL for changing the

structure of the database are CREATE, ALTER and DROP.

SQL DBMS A database management system where one can use SQL for the data

management and that uses the underlying data model of SQL to organize

data in the database

List of figures

Figure 1 Conceptual view on point and interval types ... 32

Figure 2 Model of the initial database .. 59

List of tables

Table 1 .. 25

Table 2 .. 26

Table 3 .. 26

Table 4 .. 33

Table 5 .. 33

Table 6 .. 34

Table 7 .. 35

Table 8 .. 36

Table 9 .. 36

Table 10 .. 37

Table 11 .. 37

Table 12 .. 39

Table 13 .. 40

Table 14 .. 40

Table 15 .. 42

Table 16 .. 42

Table 17 .. 43

Table 18 .. 44

Table 19 .. 45

Table 20 .. 46

Table 21 .. 46

Table 22 .. 46

Table 23 .. 47

Table 24 .. 47

Table 25 .. 48

Table 26 .. 49

Table 27 .. 49

Table 28 .. 49

Table 29 .. 51

Table 30 .. 52

Table 31 .. 52

Table 32 .. 52

Table 33 .. 52

Table 34 .. 55

Table 35 .. 64

Table 36 .. 65

Table 37 .. 65

Table 38 .. 66

Table 39 .. 67

Table 40 .. 68

Table 41 .. 69

Table 42 .. 69

Table 43 .. 70

Table 44 .. 71

Table 45 .. 72

Table 46 .. 74

Table 47 .. 74

Table 48 .. 75

Table 49 .. 77

Table 50 .. 78

Table 51 .. 78

Table 52 .. 78

Table of Contents

1. Introduction .. 15

1.1 The Background and the Problem .. 15

1.2 The Tasks of this Thesis ... 16

1.3 Methodology ... 16

1.4 Overview of the Work .. 18

1.5 Some Other Approaches of Maintaining Temporal Data in SQL Databases 18

1.5.1 SQL:2011 Standard ... 18

1.5.2 Anchor Modelling ... 20

1.5.3 Oracle Workspace Manager .. 21

1.5.4 Teradata Temporal Table Support ... 22

2. Principles from the Book “Temporal Data and the Relational Model” 24

2.1 Introduction .. 24

2.2 Point Type, Interval Type, and Operations on Them ... 27

2.2.1 Point Type ... 27

2.2.2 Interval Type ... 27

2.2.2.1 Single Interval Operators .. 28

2.2.2.1.1 BEGIN ... 28

2.2.2.1.2 END ... 28

2.2.2.1.3 𝒑 ∈ 𝒊 ... 28

2.2.2.1.4 PRE .. 28

2.2.2.1.5 POST ... 28

2.2.2.1.6 𝒊 ∋ 𝒑 or CONTAINS(i, p) ... 29

2.2.2.2 Comparison operators ... 29

2.2.2.2.1 EQUALS ... 29

2.2.2.2.2 INCLUDES (⊇) and INCLUDED_IN (⊆) .. 29

2.2.2.2.3 BEFORE and AFTER ... 29

2.2.2.2.4 MEETS .. 29

2.2.2.2.5 OVERLAPS .. 30

2.2.2.2.6 MERGES ... 30

2.2.2.2.7 BEGINS ... 30

2.2.2.2.8 ENDS ... 30

2.2.2.3 Other operators ... 30

2.2.2.3.1 COUNT ... 30

2.2.2.3.2 MAX .. 30

2.2.2.3.3 MIN ... 31

2.2.2.3.4 UNION .. 31

2.2.2.3.5 INTERSECT .. 31

2.2.2.3.6 MINUS .. 31

2.2.3 Summary of Point and Interval Types ... 32

2.3 The EXPAND and COLLAPSE Operators .. 33

2.3.1 The EXPAND Operator .. 33

2.3.2 The COLLAPSE Operator .. 35

2.4 The PACK and UNPACK Operator ... 36

2.4.1 The UNPACK Operator .. 36

2.4.2 The PACK Operator .. 37

2.4.3 Packing and Unpacking on no Columns and on Several Columns 38

2.4.4 Relational Operators .. 44

2.4.5 Possible Database Designs to Represent Temporal Data .. 47

2.4.5.1 Current Tables Only ... 47

2.4.5.2 Historical Tables Only .. 48

2.4.5.3 Both Current and Historical Tables .. 51

3. Implementing the Ideas into a PostgreSQL Database .. 54

3.1 Introduction .. 54

3.2 Point Type and Interval Type Operators .. 55

3.3 Relational Operators ... 57

3.4 Example Database with Temporal Support .. 58

3.4.1 Introduction ... 58

3.4.2 Design Model of Initial Database .. 58

3.4.3 Enabling Temporal Support on an Attribute ... 59

3.4.4 Trigger Procedures for Satisfying the Temporal Requirements 63

3.4.4.1 Constraints on the DURING table .. 64

3.4.4.2 Data Integrity Requirements Across the Tables ... 67

3.4.5 Views for Providing Shorthand for the Users ... 77

3.4.6 Changing the Data in the Database ... 79

3.4.7 The Performance ... 80

4. Summary ... 83

Kokkuvõte .. 85

References .. 87

15

1. Introduction

1.1 The Background and the Problem

Temporal data has the time dimension meaning that every fact has a time period when it was

considered to be true. This means that we can store historicized data in the database and do

various analyses on it that can lead to making better business decisions, cutting costs, and

earning higher profit for the company. For many decades, storing history data was not very

easy but as the processors have become faster and disk storage has become cheaper, more and

more companies invest into building their data warehouses. A data warehouse provides the

company a single point of truth – data from different source (mainly operational) databases is

loaded and transformed into the data warehouse structures, various metrics are calculated, and

reports are put together. All of this has a business value only in case the data is trustworthy

and reliable meaning that there are no history overlaps, gaps, or redundancy in the data. Data

quality checks, constraints, and transparent development process contribute towards achieving

this.

The literature recognizes two separate dimensions of time:

1. Valid time – the period of time when some fact was considered to be true. Thus, valid

time reflects the real world understanding.

2. Transaction time – the period of time when the database showed that some fact was

considered to be true. Transaction time can be thought of as a timestamp that is used

for logging the states of the database information over time.

A table that contains information about both of these dimensions is called a bi-temporal table.

In the book (Date et al, 2002), an approach of handling temporal data is described. One major

difference compared to other approaches (though not all) is that it uses a special datatype –

interval – to store the periods. The interval value consists of values of the same point type and

has start and end points defined. For example, a date interval could consist of days

(represented by date values) between June 1, 2015 and June 5, 2015. Additionally, the book

provides a list of operators, design principles, and system level actions that should make

16

common temporal data related actions much easier, clearer, and quite fool proof. The ideas

are described to be used in a fully relational database with operators and examples written in

the database language called Tutorial D. SQL is a database language (a domain-specific

programming language) that is based on the relational model but does not follow it

completely. Thus, the main goal of this thesis is to try to implement this approach in an SQL

DBMS (more specifically PostgreSQL 9.3) as much as possible, and find out the obstacles

and difficulties that might come across when doing it.

1.2 The Tasks of this Thesis

The following tasks are accomplished as the result of this thesis:

1. We explain the solution provided in the book. Though the ideas in the book are meant

for using in a relational database, we explain them right away by using the concepts of

SQL.

2. We use PostgreSQL 9.3 DBMS, to implement as much different operators and system

level actions from the book as possible. Only support for data type DATE will be

implemented as it is sufficient for creating an example of a fully temporal database.

Adding support for other data types is seen as one of the possibilities to continue the

work of this thesis.

3. We use the new functionality, to create an example database that should illustrate the

solution as well as possible.

1.3 Methodology

The methodology we are using is design science research (Hevner et al, 2004). In the design-

science paradigm, knowledge and understanding of a problem domain and its solution are

achieved in the building and application of the designed artefact.

1. We shortly point to the other approaches of managing temporal data in relational/SQL

databases. Comparing these with the ideas and principles of the book is a possible

subject of another thesis. However, continuing work in this field should show that it is

an important and emerging field of study.

17

2. We summarize the approach that is described in the book. The approach requires

various operators that are needed for working with temporal data, the design pattern

that is based on the sixth normal form, and system level actions that are triggered

when DML or DDL statements are executed. We use examples to describe various

operators.

3. We have selected PostgreSQL as the DBMS where to implement the approach

provided in the book because PostgreSQL is popular, accessible to many users

(because it is free), and has also good built-in extensibility mechanism. In addition, the

advanced features of PostgreSQL make it suitable for data warehousing that could

benefit from the approach offered in the book. In May 2015 PostgreSQL is the fifth

most popular DBMS according the DB-Engines Ranking and fourth most popular

SQL DBMS (DB-Engines Ranking, 2015). Implementation of the solution does not

mean modification of the source code (although the source of PostgreSQL is public)

but the use of the extensibility mechanism of the DBMS to create new triggers,

functions, and operators. Implementation of the approach in case of one SQL DBMS

gives confidence (but of course not a guarantee) that one could implement the

approach in other SQL DBMSs.

4. To implement the functions, operators, and triggers, we firstly analyse the support for

temporal data in PostgreSQL 9.3 (PostgreSQL, 2015). Based on that, additional

PL/pgSQL functions and triggers are created to implement all the ideas described in

the first task. Although PostgreSQL supports many procedural languages and allows

developers to define new procedural languages, we use PL/pgSQL to implement the

functions. We do it because it is the best known of the PostgreSQL procedural

languages, it is installed to each database by default, and there are the most supporting

materials for this language.

5. We will create a simple database by using PostgreSQL 9.3 to better describe the

principles of the approach and conduct initial performance measurements. In addition,

we provide example statements for demonstrating that everything is working as

expected.

18

1.4 Overview of the Work

In the first chapter it is explained how a fully temporal relational database should look like

design wise, which data types and operators could be used, and how DML and DDL

statements should work there.

In the second chapter an overview of already existing temporal support in PostgreSQL 9.3 is

given. The list of operators from the book is provided and it is compared to the PostgreSQL

built-in functions and operators. Based on that, a list of user defined PL/pgSQL functions is

given that are implemented in the context of this thesis. We also describe different types of

base table (table) designs that facilitate temporal support. Finally, an example database is

created to better describe the functionality of trigger procedures and functions needed for the

temporal support. In this database, the needed temporal constraints are in place and all the

facts are stored in the tables that are in sixth normal form. We will use the example temporal

database to measure the performance of database queries and data manipulation statements.

1.5 Some Other Approaches of Maintaining

Temporal Data in SQL Databases

1.5.1 SQL:2011 Standard

The SQL:2011 standard introduced a set of temporal features (Kulkarni et al, 2012). The

transaction time dimension is called SYSTEM_TIME in SQL:2011 and the valid time is

referred as application-time period that can have any name the user specifies.

SQL:2011 does not introduce a new data type for storing periods as some of the DBMS

vendors do. Instead, it introduces period definitions as metadata to tables. It is a named table

component that identifies a pair of columns that act as start and end points of the period. The

period uses the closed-open approach, meaning that the start point of the period is inclusive

and the end point is exclusive. The period member columns must be of data type DATE or

TIMESTAMP and they both must be of the same data type.

19

One problem with this approach is that the valid time period is not a column but a metadata of

the table. It cannot be used in the SELECT clause, thus the period cannot be used outside of a

subquery that references the history table (Darwen, 2013).

SQL:2011 also specifies a PORTION syntax that can be used for specifying the period when

some changes should be applied on. This can be used only in UPDATE and DELETE

statements. As a result, the UPDATE and DELETE statements whose search condition finds

one or more rows result with insertion of new rows to the same table. Each row in the table

represents a proposition that was true during the given application-time period.

The WITHOUT OVERLAPS syntax can be used when creating primary key constraints that

involve application-time periods. This means that the table cannot contain two or more

primary key values where application-time period overlaps. Furthermore, application-period

can be used for creating FOREIGN KEY constraints to make sure that each foreign key value

that is active during some period has the corresponding value active in the referenced table.

For example, there can be no contracts for customer 1 on day D1 if the customer 1 is only

active since the day D4.

The SQL:2011 standard also introduces a set of operators that provide a shorthand for better

using the period. This includes the operators CONTAINS, OVERLAPS, EQUALS,

PRECEDES, SUCCEEDS, IMMEDIATELY PRECEDES, and IMMEDIATELY

SUCCEEDS.

When the WITH SYSTEM VERSIONING syntax is used while creating a table, the

transaction time dimension will be handled automatically by the system. This means that the

user cannot change the values of the member columns of SYSTEM_TIME and each time an

INSERT, UPDATE or DELETE statement is executed on a system versioned table, the

system will automatically make the needed changes in the database. As a result, UPDATE

statements whose search condition finds one or more rows result with insertion of new rows

to the same table to record historic row versions. DELETE statements whose search condition

finds one or more rows result with updating instead of deleting the rows to indicate the end

time of the existence of these rows as current rows. The table contains both historic and

current row versions but users can only update or delete current row versions.

20

1.5.2 Anchor Modelling

Anchor Modelling is an Open Source database modelling technique that supports handling

temporal data in an SQL/relational database in a way that a large change outside the model

will result as a small change within the model (Anchor Modelling, 2015). It is based on the

sixth normal form meaning that each fact could have a time dimension added to it, making it

independent from other facts. For example, we can track the history of changes in customer’s

height and weight over time when we have these values stored in tables that are in the sixth

normal form. Tables in the sixth normal form cannot be decomposed in a nonloss manner to

tables that have fewer columns than the original (Date, 2006).

Anchor Modelling has four basic concepts that are used for modelling (Rönnbäck et al, 2010):

 Anchor that is used to identify entities with the same type (for example Customer).

 Attribute that corresponds to a named property of sets of entities with the same type

(for example, First Name of customers).

 Tie that is used for modelling types of relationships between Anchors (for example a

relationship type between contract and its owner).

 Knot that is used for modelling classifiers (for example contract status types).

One can historicize attributes and ties to facilitate storing of their corresponding data changes

over time. Anchor Modelling offers both web-based modelling software for creating anchor

models as well as generators for generating corresponding base tables, views, and functions.

Views and functions offer more “traditional” denormalized view to the data. There are already

generators for MS SQL Server, Oracle, and PostgreSQL (Saal, 2015).

Anchor Modelling will result in many tables as opposed to fewer tables with many columns.

The benefit of this approach is that the system is handling different changes better as every

change is an independent extension that keeps the current applications unaffected. The biggest

threat is that joining all of these separate tables can result in bad performance, though it is said

that modern DBMSs can cope with it using table elimination optimization while executing the

queries.

21

Unfortunately, we could not use Anchor Modelling as a basis of our implementation of the

ideas from the book because it uses only the start point for keeping the history of a fact. On

the other hand, the cornerstone of the ideas in the book is to have interval data types in place

to store the validity period of a fact as a single value. Analysing the possibilities of making

Anchor Modelling compatible with interval data types would be an interesting subject to some

other thesis, though.

1.5.3 Oracle Workspace Manager

Oracle Workspace Manager is a feature of Oracle Database DBMS that enables application

developers and DBAs to manage current, proposed and historical versions of data in the same

database. It provides workspaces as a virtual environment to isolate a collection of changes to

production data, keep a history of changes to data and create multiple data scenarios for “what

if” analysis (Oracle, 2015).

If versioning is turned on for a table, then Workspace manager drops the base table and

creates a set of tables, views and triggers that all contribute to keeping the versioning up and

running. This involves a table with suffix _AUX for handling workspace conflicts and table

with suffix _LT for storing the last available version. Additionally, a set of system views (with

a read-only access for the users) are created for handling metadata about tables, workspaces,

saving points, locks, users, privileges and conflicts. Moreover, there are views with the

following suffixes created – for every versioned table:

 _CONF – view for the conflicts,

 _DIFF – view for the version differences,

 _HIST – history view (if storing of history is enabled),

 _LOCK – view for the workspace locks,

 _MW – multi-workspace view.

A set of INSTEAD OF triggers are also created for deleting, inserting and updating data in the

non-temporal tables. This is done because the end user still sees the versioned table with the

same structure as it was created (Potter, 2013).

22

An important difference from the approaches that use tables in the sixth normal form is that if

a row is updated (values in some fields are replaced with some new values), then the old

version of the entire row (including fields that were not modified) is kept by the system. If

one uses tables in the sixth normal form, and modifies some attribute value, then the system

does not have to duplicate unchanged data to keep the old version. Similarity with the Anchor

Modelling approach is that internal “machinations” of the system to keep old versions of facts

are hidden behind virtual database layer that is an interface consisting of functions and views.

Database user can/should access the elements of this layer.

One can think about the entire versioning approach of the Workspace Manager as a possible

implementation of system versioning specified in the SQL:2011 standard.

1.5.4 Teradata Temporal Table Support

Teradata is a DBMS that is mainly developed for data warehouses. Thus, Teradata 13.10 has a

vast support for temporal concepts (Teradata, 2010). Teradata 13.10 supports both valid time

and transaction time concepts, where the valid time shows us the period when some fact was

considered to be true and the transaction time shows the time when some row was physically

marked as active in the database. Teradata provides a special data type PERIOD for storing

the time periods that can consist of values of data types DATE, TIME and TIMESTAMP for

valid time columns and TIMESTAMP for transaction time columns. The begin point of a

period is always considered inclusive and the end point is considered exclusive. Furthermore,

there are special variables to mark the end point of periods that are still active –

UNTIL_CLOSED is used for transaction time and UNTIL_CHANGED is used for valid time

columns. The data type of UNTIL_CLOSED is TIMESTAMP(6) WITH TIME ZONE and its

value is equal to TIMESTAMP '9999-12-31 23:59:59.999999+00:00'. UNTIL_CHANGED

can be used only for periods that consist of values of data types DATE and TIMESTAMP and

has the value equal to DATE ‘9999-12-31’ or TIMESTAMP '9999-12-31

23:59:59.999999+00:00' correspondingly.

Teradata 13.10 provides a set of shorthand commands that can be used for retrieving currently

active information, information that was active between a specified period, or information that

has been active as of some point in the history. Furthermore, when a column is specified as a

valid time column and the user executes a statement that changes the data, then automatic

statements are executed additionally that are needed for maintaining the history correctly.

23

It is difficult to cover all the features that Teradata provides for temporal support, thus we can

conclude this section by stating that it is one of the best DMBS currently available for

maintaining a truly temporal database. Unfortunately, all this comes with a price tag since

Teradata is not an open source system nor it is free. They have stated, though, that their

products are highly price-competitive compared to their biggest competitors (Teradata

Magazine, 2011)

One problem we have with Teradata is that it uses the design of historical tables only (to be

discussed later) for temporal tables. It brings along the problem of using a variable

(UNTIL_CHANGED) to store the end point of an active fact – this, unfortunately, as we will

discuss later, is not a wise approach according to the authors of the book.

24

2. Principles from the Book “Temporal

Data and the Relational Model”

2.1 Introduction

In this section, a summary of the ideas and principles from the book are provided. The order

of introducing the topics mostly remains the same as in the book. First, a small overview of

the temporal approach is provided. Next, the concepts point and interval types, which play an

important role in this approach, are introduced. After that, all the needed operators on these

types are listed and finally the database design and needed system level actions are described.

Note that the authors of the book have meant the ideas to be used in a database that fully

supports the relational model. As the aim of our work is to implement them in an SQL DBMS

(that does not completely support the relational model), we will explain the ideas using SQL

counterparts for the terms instead. For example, instead of terms relation variable or relvar,

virtual relvar and attribute we use table, view and column. Please note that this is not only the

question of terminology but these terms represent different concepts that have considerable

differences in details. We will point to the differences where it is needed.

One can very loosely divide databases into the following groups based on the pattern of their

usage:

1. Operational (non-temporal) databases that store only the current data, meaning that

if something is deleted or updated in the database, then no history is kept.

2. Temporal databases that store the historical data instead of or in addition to the

current data. For example, data warehouses, which have become widespread in the

recent decades.

3. Hybrid of the previous two where in case of some types of facts the history is kept

and in case of some, it is not.

If data in general can be regarded as encoded representation of propositions, then temporal

data can be regarded as propositions with timestamps. For example, an operational database

25

can answer a question like “How big is the current debt of customer J. Smith?”, then temporal

database can answer questions like “What date did customer J. Smith’s first overdue start

on?” or “How big was customer J. Smith’s debt on 24th April 2013?”. These were all

examples of the valid time that shows when some fact in real world was considered to be true

as opposed to the transaction time that shows when the database showed that some fact was

considered to be true. Though the authors of the book also describe the transaction time

concept quite thoroughly, we will leave it out of the scope of this thesis because we are more

interested in the ideas about storing the valid time information.

Temporal data is usually represented by using Start and End date columns for showing the

duration of the period when some fact was considered to be true. Such approach makes it very

difficult to define different data quality and integrity constraints, and write complex database

queries. Many examples are given in the book to illustrate the problem. As an example of

using Start and End dates, Table 1 shows the table CUSTOMER_STATUS_HIST that stores

status history for a customer with Customer_Id 1 (Status_Start_Date and Status_End_Date

are both inclusive)

Table 1

CUSTOMER_STATUS_HIST

Customer_Id Status_Type_Code Status_Start_Date Status_End_Date

1 1 2014-06-28 2014-07-01

1 2 2014-07-02 NULL

These records show that this customer had status 1 from 2014-06-28 to 2014-07-01. Starting

from 2014-07-02 the status has been 2. Usually a NULL (often incorrectly called “NULL

value”) is used to represent the current state of the fact but this is not how it should be done

according the authors of the book. The relational model does not support NULLs (it is a

difference of the relational model and the underlying model of SQL) and requires that in each

field of each row there must be exactly one value that belongs to the type of the corresponding

column. The proposed approach is to have two different tables for storing the temporal data in

a fully temporal way.

26

The first table is for storing fully historical data with Start and End dates both earlier than

today. Instead of using Start and End dates, an interval data type is introduced to store the

whole period in one field. The historical period from our example (the first row in Table 1)

can be represented in four ways if using an interval type:

 [2014-06-28:2014-07-01] – Period start and end dates are both inclusive

 [2014-06-28:2014-07-02) – Period start date is inclusive and end date is exclusive

 (2014-06-27:2014-07-01] – Period start date is exclusive and end date is inclusive

 (2014-06-27:2014-07-02) – Period start and end dates are both exclusive

Thus, the fully historical table CUSTOMER_STATUS_HIST could look like shown in Table 2

Table 2

CUSTOMER_STATUS_HIST

Customer_Id Status_Type_Code Status_During

1 1 [2014-06-28:2014-07-01]

The second table is for storing only the current status of a customer with the Since column to

show the date when current status was assigned to the customer. Thus, the second table

CUSTOMER_STATUS_CURRENT could look like shown in Table 3.

Table 3

CUSTOMER_STATUS_CURRENT

Customer_Id Status_Type_Code Status_Since

1 2 2014-07-02

We will come back to this approach in a more detailed manner, after we have explained the

concept of the interval type, the point type, and the operations used on them.

27

2.2 Point Type, Interval Type, and Operations on

Them

2.2.1 Point Type

Each data type is a named set of values. Point type is the data type of the values that the

interval consists of. In the introduction of this chapter, the column Status_During contained

interval values consisting of date values. Thus, the point type corresponding to Status_During

was DATE. Since our aim is to provide a better way to store temporal data, then temporal data

types are in the most interest for us. Intervals can consist of values with other kind of point

types as well, though. For example, these could be integers or decimals.

In order to use a type T as a point type, it must fulfil all of the following requirements.

 A total ordering, according to which the operator ">" (greater than) is defined for

every pair of values v1 and v2 of type T; if v1 and v2 are distinct, exactly one of the

expressions "v1 > v2" and "v2 > v1" returns true and the other returns false.

 Nullary (with no arguments) "first" and "last" operators that return the smallest and the

largest value of T, respectively, according to the aforementioned ordering.

 Monadic (with one argument) "next" and "prior" operators that return the successor

and the predecessor, respectively, of any given value of type T, according to the

aforementioned ordering. The "next" and "prior" operators are undefined if the given

value of type T is in fact the "last" or "first" value, respectively, of that type.

Explicit operators FIRST_T(), LAST_T(), NEXT_T(t T), and PRIOR_T(t T) should be defined

for each point type where T is the corresponding type name and t a value of type T. For

example, in an Oracle database, FIRST_INTEGER() should return -2147483648 and

NEXT_DATE(TO_DATE(‘2014-12-01’, ‘YYYY-MM-DD’)) should return the date ‘2014-

12-02’.

2.2.2 Interval Type

An interval value consists of the values of a corresponding point type. For each point type

there should be a separate interval invocation selector INTERVAL_T() defined, where T again

represents the type name of the point type. Thus, in our example, the definition of an interval

28

would be INTERVAL_DATE([2014-06-28:2014-07-01]). Selector is “an operator for

selecting, or specifying, an arbitrary value of a given type” (Date, 2006).

Interval type has several very useful operators that make the creation of temporal data related

constraints and complex queries much easier. We will now list all of them, using i to represent

an interval value (consisting of points of type T) and p to represent a value of type T.

2.2.2.1 Single Interval Operators

The following operators are meant to provide shorthand for quickly getting the most needed

point values of an interval and to check as to whether a point is contained in an interval.

2.2.2.1.1 BEGIN

BEGIN(i) returns the begin point of the interval. For example, BEGIN ([2014-06-28:2014-07-

01]) would return the date 2014-06-28

2.2.2.1.2 END

END(i) returns the end point of the interval. For example, END ([2014-06-28:2014-07-01])

would return the date 2014-07-01

2.2.2.1.3 𝒑 ∈ 𝒊

𝒑 ∈ 𝒊 returns TRUE if and only if 𝑝 ≥ 𝐵𝐸𝐺𝐼𝑁(𝑖) 𝐴𝑁𝐷 𝑝 ≤ 𝐸𝑁𝐷(𝑖). For example, 2014-06-

30 ∈ [2014-06-28:2014-07-01] would return TRUE, while 2014-07-03 ∈ [2014-06-28:2014-

07-01] would return FALSE

2.2.2.1.4 PRE

PRE (i) returns BEGIN (i) – 1 (what the “-1” means depends on the semantics of the point

type; in this case it means “-1 day”). For example, PRE ([2014-06-28:2014-07-01]) would

return the date 2014-06-27

2.2.2.1.5 POST

POST (i) returns END (i) + 1 (what the “+1” means depends on the semantics of the point

type; in this case it means “+1 day”). For example, POST ([2014-06-28:2014-07-01]) would

return the date 2014-07-02

29

2.2.2.1.6 𝒊 ∋ 𝒑 or CONTAINS(i, p)

𝒊 ∋ 𝒑 returns TRUE if and only if 𝒑 ∈ 𝒊 returns TRUE

2.2.2.2 Comparison operators

The following operators, called Allen’s operators are meant for comparing two intervals that

must be of the same interval type INTERVAL_T. For simplicity, b1 and e1 will represent

begin and end values of interval value i1 correspondingly. b2 and e2 will mean the same for

interval value i2.

2.2.2.2.1 EQUALS

i1 EQUALS i2 or i1=i2 returns TRUE if and only if b1=b2 and e1=e2 both return TRUE.

2.2.2.2.2 INCLUDES (⊇) and INCLUDED_IN (⊆)

𝑖1 ⊇ i2 is TRUE if and only if 𝑏1 ≤ 𝑏2 and 𝑒1 ≥ 𝑏2 are both TRUE. 𝑖2 ⊆ i1 is TRUE if

𝑖1 ⊇ i2 is TRUE.

2.2.2.2.3 BEFORE and AFTER

i1 BEFORE i2 is TRUE if and only if e1<b2 is TRUE. i2 AFTER i1 is true if i1 BEFORE i2 is

TRUE

2.2.2.2.4 MEETS

i1MEETS i2 is TRUE if and only if b1=e1+1 is TRUE or b1=e2+1 is TRUE (it follows that

i2MEETS i1 is TRUE if i1 MEETS i2 is TRUE)

b1 e1

b2 e2

b1 e1

b2 e2

b1 e1 b2 e2

b1 e1 b2 e2

30

2.2.2.2.5 OVERLAPS

i1 OVERLAPS i2 is TRUE if and only if 𝑏1 ≤ 𝑒2 and 𝑏2 ≤ 𝑒1 are both TRUE (it follows that

i2 OVERLAPS i1 is TRUE if i1 OVERLAPS i2 is TRUE).

2.2.2.2.6 MERGES

i1 MERGES i2 is TRUE if and only if i1 OVERLAPS i2 is TRUE or i1MEETS i2 is TRUE (it

follows that i2 MERGES i1 is TRUE if and only if i1 MERGES i2 is TRUE).

2.2.2.2.7 BEGINS

i1 BEGINS i2 is TRUE if and only if 𝑏1 = 𝑏2 is TRUE and 𝑒1 ≤ 𝑒2 is TRUE

2.2.2.2.8 ENDS

i1 ENDS i2 is TRUE if and only if 𝑒1 = 𝑒2 is TRUE and 𝑏1 ≥ 𝑏2 is TRUE

2.2.2.3 Other operators

2.2.2.3.1 COUNT

COUNT(i) returns a count of the number of points in interval i (also called the cardinality or

the length of the interval). For example, COUNT ([2014-06-28:2014-07-01]) would return 4.

2.2.2.3.2 MAX

If p1 and p2 are values of point type T, then MAX (p1, p2) returns p1, if p1≥p2 and p2, if

p2>p1

b1 e1

b2 e2

b1 e1 b2 e2
OR

b1 e1

b2 e2

b1

e1

b2

e2

b1

e1

b2

e2

31

2.2.2.3.3 MIN

If p1 and p2 are values of point type T, then MIN (p1, p2) returns p1, if p1≤p2 and p2, if

p2<p1

2.2.2.3.4 UNION

i1 UNION i2 returns an interval [MIN(b1, b2):MAX(e1, e2)] if i1 MERGES i2 is TRUE and is

otherwise undefined

2.2.2.3.5 INTERSECT

i1 INTERSECT i2 returns an interval [MAX(b1, b2):MIN(e1, e2)] if i1 OVERLAPS i2 is

TRUE and is otherwise undefined

2.2.2.3.6 MINUS

i1 MINUS i2 returns an interval [b1:MIN(b2-1,e1)] if b1<b2 and e1≤e2 are both TRUE,

[MAX(e2+1, b1):e1] if b1≥b2 and e1>e2 are both TRUE, and us otherwise undefined.

e1 b1

b2 e2

i1 UNION i2

i1

i2

b1 e2

e1 b1
i1

i2
b2 e2

i1 INTERSECT i2

b2 e1

i1

i2 b2 e2

i1 MINUS i2

b1 b2-1

b1 e1

32

2.2.3 Summary of Point and Interval Types

In Figure 1, a class diagram for visualizing the point type and interval type is provided. Here,

the PointType class is abstract, with the required four operators that must be provided. As said

earlier, each concrete data type acting as a point type must have its own operators defined.

Figure 1 Conceptual view on point and interval types

33

2.3 The EXPAND and COLLAPSE Operators

In this section operators EXPAND and COLLAPSE are introduced that apply on sets of

interval values (intervals), unlike the operators described previously, which applied on a

single interval or pairs of intervals. They take a set of intervals (all of the same interval type)

as input and they produce another set of intervals as their result. The result can be regarded as

a particular canonical form of the input set. In the book, operators EXPAND and

COLLAPSE were first described as applying to regular sets of intervals. We describe them

straight away as applying on unary tables (one column) of such intervals.

2.3.1 The EXPAND Operator

Let X1 and X2 be two unary tables consisting of values of the same interval type. We can say

that these two tables are equivalent if the set of all points contained in X1 intervals is equal to

the set of all points contained in X2 intervals. This by the way assumes that the table has a

key (in this case (X1)) that prevents duplicate rows in the table. This is something that the

relational model requires (each base table must have a key) but SQL does not. Moreover, the

relational model requires that all the duplicate rows must be automatically eliminated from the

query result but SQL does not.

For example, tables X1 and X2 are shown in Table 4 and Table 5. They both contain date

intervals.

Table 4

X1

[2014-06-28:2014-06-30]

[2014-06-28:2014-06-29]

[2014-07-04:2014-07-04]

[2014-07-03:2014-07-05]

Table 5

34

X2

[2014-06-28:2014-06-28]

[2014-06-29:2014-06-30]

[2014-07-03:2014-07-04]

[2014-07-05:2014-07-05]

These tables are clearly not equal but they are equivalent according to our definition, since

they both contain only the dates 2014-06-28, 2014-06-29, 2014-06-30, 2014-07-03, 2014-07-

04 and 2014-07-05.

For reasons that will come clear soon, we are actually interested not so much in the points, but

the unit intervals instead. An interval is a unit interval in case its begin and end points are

equal. Thus, unit intervals in case of these tables are [2014-06-28:2014-06-28], [2014-06-

29:2014-06-29], [2014-06-30:2014-06-30], [2014-07-03:2014-07-03], [2014-07-04:2014-07-

04] and [2014-07-05:2014-07-05].

EXPAND operator does exactly that – transforms the input unary table to its expanded form.

In our case, either of the tables X1 or X2, when EXPAND operator is applied on them, will

result in the expanded form X3 shown in Table 6.

Table 6

X3

[2014-06-28:2014-06-28]

[2014-06-29:2014-06-29]

[2014-06-30:2014-06-30]

[2014-07-03:2014-07-03]

[2014-07-04:2014-07-04]

35

X3

[2014-07-05:2014-07-05]

Thus, we can say that two unary tables containing intervals are equivalent if they have the

same expanded form.

2.3.2 The COLLAPSE Operator

Tables X1, X2 and X3 in the previous sub-section had different cardinality (count of rows).

For X1 it was four, for X2 it was four, and for X3 it was six. The result of the COLLAPSE

operator must produce a table that has the same expanded form as the input table but with

minimum cardinality. This is called the collapsed form. In our example, the collapsed form of

tables X1 and X2 is the table X4 shown in Table 7:

Table 7

X4

[2014-06-28:2014-06-30]

[2014-07-03:2014-07-05]

If X is a table that contains values of the same interval type, then a table Y is the collapsed

form of X, when:

 X and Y have the same expanded form

 No two distinct intervals i1 and i2 in Y are such that i1 MERGES i2 is defined.

 No two distinct intervals i1 and i2 in Y are such that i1 INTERSECT i2 is defined.

 No two distinct intervals i1 and i2 in Y are such that i1 UNION i2 is defined.

It follows from this last point that Y can be computed from X by successively replacing pairs

of intervals in X by their union until no further such replacements are possible.

36

2.4 The PACK and UNPACK Operator

The PACK and UNPACK operators are certain relational operators that build on operators

COLLAPSE and EXPAND introduced in the previous chapter. They both provide shorthand

to use the COLLAPSE and EXPAND operators on multiple attributes with one command and

provide some additional benefit as well.

2.4.1 The UNPACK Operator

We start with the UNPACK operator. To better explain it, we use the example from Table 8:

Table 8

CUSTOMER_STATUS_HIST

Customer_Id Status_Type_Code Status_During

1 1 [2014-06-28:2014-07-01]

1 2 [2014-07-02:2014-07-03]

The expression „UNPACK CUSTOMER_STATUS_HIST ON Status_During“ would then

result as shown in Table 9. Note that „ON Status_During“ means that grouping is done based

on all other columns apart Status_During.

Table 9

CUSTOMER_STATUS_HIST

Customer_Id Status_Type_Code Status_During

1 1 [2014-06-28:2014-06-28]

1 1 [2014-06-29:2014-06-29]

1 1 [2014-06-30:2014-06-30]

1 1 [2014-07-01:2014-07-01]

1 2 [2014-07-02:2014-07-02]

37

CUSTOMER_STATUS_HIST

Customer_Id Status_Type_Code Status_During

1 2 [2014-07-03:2014-07-03]

The result is called the unpacked form of the initial table and could be used to get the

information in an atomic level.

2.4.2 The PACK Operator

The PACK operator provides us the packed form of the initial table and could be used to get

the information in clumps. For example, we have, for some reason, such overlapping in Table

10:

Table 10

CUSTOMER_STATUS_HIST

Customer_Id Status_Type_Code Status_During

1 1 [2014-06-28:2014-06-30]

1 1 [2014-06-29:2014-07-01]

1 2 [2014-07-02:2014-07-02]

1 2 [2014-07-02:2014-07-03]

The expression „PACK CUSTOMER_STATUS_HIST ON Status_During“ would then result

as shown in Table 11.

Table 11

CUSTOMER_STATUS_HIST

Customer_Id Status_Type_Code Status_During

38

CUSTOMER_STATUS_HIST

Customer_Id Status_Type_Code Status_During

1 1 [2014-06-28:2014-07-01]

1 2 [2014-07-02:2014-07-03]

Note that „ON Status_During“ means that grouping is done based on all other columns apart

Status_During, so in this case based on columns Customer_Id and Status_Type_Code.

2.4.3 Packing and Unpacking on no Columns and on

Several Columns

Up to now, we have used packing and unpacking only on a single column. However, it is

possible to use them on any set of columns as long as all of the columns are of interval type.

And since empty set is a subset of any set, packing and unpacking can be used on no columns

as well. The result of packing or unpacking a table t on no columns would return the same

table.

For example, if CUSTOMER_STATUS_HIST in Table 11 would be packed on no columns,

then the same CUSTOMER_STATUS_HIST would be the result.

The following two conclusions can be made when packing and unpacking is used on no

columns:

1. Packing a table t on no columns and then unpacking the result, also on no columns,

returns t.

2. Unpacking a table t on no columns and then packing the result, again on no

columns, returns t.

Unpacking on several columns:

UNPACK r ON (AI, A2, ..., An) = UNPACK (... (UNPACK (UNPACK r ON B1) ON B2)

...) ON Bn, where the sequence of column names B1, B2 , Bn is some arbitrary

permutation of the specified sequence of column names AI, A2, ..., An.

39

So UNPACK on several columns just calls UNPACK on all the specified columns in any

order. And UNPACK (A1, A2) = UNPACK (A2, A1)

In Table 12 there is a table CUSTOMER_PRODUCT_HIST with 3 columns: Customer_Id –

identifier of the customer, Product_Id_Interval – the range of product id values that the

customer is consuming, Date_Interval – the range of dates during the customer was

consuming the list of products. For example, if we look at the first row, then it states that

customer with Customer_Id 1 was consuming products with Product_Id values 3, 4, 5 during

days 2014-06-28, 2014-06-29 and 2014-06-30.

Table 12

CUSTOMER_PRODUCT_HIST

Customer_Id Product_Id_Interval Date_Interval

1 [3:5] [2014-06-28:2014-06-30]

1 [6:7] [2014-06-29:2014-07-01]

1 [8:8] [2014-07-01:2014-07-01]

1 [9:9] [2014-07-01:2014-07-01]

If we would now unpack this table on columns Product_Id_Interval and Date_Interval, then

by definition we would have two consecutive calls of the UNPACK operator:

UNPACK (

UNPACK

CUSTOMER_PRODUCT_HIST

ON Product_Id_Interval

) ON Date_Interval

After the first unpacking (done on column Product_Id_Interval) the intermediate result would

look like as shown in Table 13.

40

Table 13

CUSTOMER_PRODUCT_HIST

Customer_Id Product_Id_Interval Date_Interval

1 [3:3] [2014-06-28:2014-06-30]

1 [4:4] [2014-06-28:2014-06-30]

1 [5:5] [2014-06-28:2014-06-30]

1 [6:6] [2014-06-29:2014-07-01]

1 [7:7] [2014-06-29:2014-07-01]

1 [8.8] [2014-07-01:2014-07-01]

1 [9:9] [2014-07-01:2014-07-01]

Next we will unpack this intermediate result on column Date_Interval and we will get the

final result in Table 14

Table 14

CUSTOMER_PRODUCT_HIST

Customer_Id Product_Id_Interval Date_Interval

1 [3:3] [2014-06-28:2014-06-28]

1 [3:3] [2014-06-29:2014-06-29]

1 [3:3] [2014-06-30:2014-06-30]

1 [4:4] [2014-06-28:2014-06-28]

1 [4:4] [2014-06-29:2014-06-29]

1 [4:4] [2014-06-30:2014-06-30]

41

CUSTOMER_PRODUCT_HIST

Customer_Id Product_Id_Interval Date_Interval

1 [5:5] [2014-06-28:2014-06-28]

1 [5:5] [2014-06-29:2014-06-29]

1 [5:5] [2014-06-30:2014-06-30]

1 [6:6] [2014-06-29:2014-06-29]

1 [6:6] [2014-06-30:2014-06-30]

1 [6:6] [2014-07-01:2014-07-01]

1 [7:7] [2014-06-29:2014-06-29]

1 [7:7] [2014-06-30:2014-06-30]

1 [7:7] [2014-07-01:2014-07-01]

1 [8:8] [2014-07-01:2014-07-01]

1 [9:9] [2014-07-01:2014-07-01]

Packing on several columns:

PACK r ON (At, A2, ... An) = PACK (... (PACK (PACK r' ON AI) ON A2) ...) ON An,

where r’ is UNPACK r ON (At, A2, . . . , An).

Thus, order of PACK operations is important, and UNPACK (A1, A2) ≠ UNPACK (A2, A1)

Also, a preliminary unpacking on all the columns is needed to make sure that there would not

be any redundancy in the result.

So, if we would pack the table CUST_PRODUCT_HIST from Table 12 on columns

Product_Id_Interval and Date_Interval, we would make such steps:

PACK (

42

PACK (

UNPACK CUSTOMER_PRODUCT_HIST ON (Product_Id_Interval,

Date_Interval)

) ON Product_Id_Interval

) ON Date_Interval

As we have the result of the preliminary unpacking already in Table 14, we can right away

carry on with the packing on column Product_Id_Interval. The result of this first packing is

seen in Table 15.

Table 15

CUSTOMER_PRODUCT_HIST

Customer_Id Product_Id_Interval Date_Interval

1 [3:5] [2014-06-28:2014-06-28]

1 [3:7] [2014-06-29:2014-06-29]

1 [3:7] [2014-06-30:2014-06-30]

1 [6:9] [2014-07-01:2014-07-01]

Now, to get the final result, we will do the second packing – this time on column

Date_Interval. The final result is seen in Table 16. Table CUSTOMER_PRODUCT_HIST is

in its packed form - with minimum cardinality and without any redundancy. By “without any

redundancy” is meant that there are no two rows that are stating the same fact twice. For

example, it is only said in the first row that customer with Customer_Id 1 was consuming

product with Product_Id 3 on date 2014-06-28.

Table 16

CUSTOMER_PRODUCT_HIST

Customer_Id Product_Id_Interval Date_Interval

1 [3:5] [2014-06-28:2014-06-28]

43

CUSTOMER_PRODUCT_HIST

Customer_Id Product_Id_Interval Date_Interval

1 [3:7] [2014-06-29:2014-06-30]

1 [6:9] [2014-07-01:2014-07-01]

For showing that the order of the columns the table is packed on is important, we provide a

step by step example of PACK CUSTOMER_PRODUCT_HIST(Date_Interval,

Product_Id_Interval) as well.

So, if we would pack the table CUST_PRODUCT_HIST from Table 12 on columns

Date_Interval and Product_Id_Interval, we would make such steps:

PACK (

PACK (

UNPACK CUSTOMER_PRODUCT_HIST ON (Date_Interval,

Product_Id_Interval)

) ON Date_Interval

) ON Product_Id_Interval

As we have the result of the preliminary unpacking already in Table 14 (since the order of the

parameters is not important in an UNPACK operation), we can right away carry on with the

packing on column Date_Interval. The result of this first packing is shown in Table 17.

Table 17

CUSTOMER_PRODUCT_HIST

Customer_Id Product_Id_Interval Date_Interval

1 [3:3] [2014-06-28:2014-06-30]

1 [4:4] [2014-06-28:2014-06-30]

1 [5:5] [2014-06-28:2014-06-30]

44

CUSTOMER_PRODUCT_HIST

Customer_Id Product_Id_Interval Date_Interval

1 [6:6] [2014-06-29:2014-07-01]

1 [7:7] [2014-06-29:2014-07-01]

1 [8:8] [2014-07-01:2014-07-01]

1 [9:9] [2014-07-01:2014-07-01]

Now, to get the final result, we will do the second packing – this time on column

Product_Id_Interval. The final result is seen in Table 16. As it is clearly seen, results in Table

16 and Table 18 are different but they are equivalent. The result is still the packed form of

CUSTOMER_STATUS_HIST and it is only said in the first row that customer with

Customer_Id 1 was consuming product with Product_Id 3 on date 2014-06-28.

Table 18

CUSTOMER_PRODUCT_HIST

Customer_Id Product_Id_Interval Date_Interval

1 [3:5] [2014-06-28:2014-06-30]

1 [6:7] [2014-06-29:2014-07-01]

1 [8:9] [2014-07-01:2014-07-01]

2.4.4 Relational Operators

Relational operators, such as UNION, MINUS and INTERSECT are used for combining

multiple tables (constructed by using a query) together. In the book, a set of new operators

are introduced, with a slightly improved functionality for providing better support for queries

45

that involve columns with an interval data type. The new operators are named U_UNION,

U_MINUS, U_INTERSECT, etc. and their logic is similar:

1. UNPACK both of the queries using some interval column. Note that the prefix “U_”

is added because of the keyword USING that specifies that grouping is be done based

on all the columns except the one stated after the USING keyword. For example, if the

component queries return columns Customer_Id, Country_Code and During, and the

epression is USING During SELECT Query_1 U_MINUS Query_2, then results of

both of the component queries will first be unpacked with GROUP BY Customer_Id,

Country_Code.

2. Run the corresponding operator on the unpacked query results

3. PACK the result of the operator on the same interval column

This provides us the functionality to look at the interval columns as they really are – a set of

point type values as opposed to the way the regular relational operators see them. For

example, consider the following two queries with their results shown in Table 19.

Query 1: SELECT Customer_Status_During AS During FROM

CUSTOMER_STATUS_HIST WHERE Customer_Id=1 AND

Customer_Status_Code=1

Query 2: SELECT Customer_Status_During AS During FROM

CUSTOMER_STATUS_HIST WHERE Customer_Id=2 AND

Customer_Status_Code=1

Table 19

Query1 During Query2 During

[2014-06-27:2014-07-01] [2014-06-29:2014-07-02]

If the regular MINUS is used then SELECT Query1 MINUS Query2 gives us the result shown

in Table 20 – the result is equal to the result of Query1.

46

Table 20

Query1 MINUS Query2 During

[2014-06-27:2014-07-01]

Now, if we use the operator U_MINUS, then first the results of both of the queries are

unpacked as seen in Table 21.

Table 21

Query1_Unapacked During Query2_Unapacked During

[2014-06-27:2014-06-27] [2014-06-29:2014-06-29]

[2014-06-28:2014-06-28] [2014-06-30:2014-06-30]

[2014-06-29:2014-06-29] [2014-07-01:2014-07-01]

[2014-06-30:2014-06-30] [2014-07-02:2014-07-02]

[2014-07-01:2014-07-01]

Then the regular MINUS operator is run on the unpacked queries and the result is shown in

Table 22.

Table 22

Query1_Unapacked MINUS Query2_Unapacked During

[2014-06-27:2014-06-27]

[2014-06-28:2014-06-28]

Finally, the result of the MINUS operator is packed and it gives us the following interval as a

result: [2014-06-27:2014-06-28].

In addition to these three operators, there were more listed and modified version was created –

U_JOIN and U_= among others. We will not give an example of each of those operators but

47

will wrap up this section by stating that they all provide convenient shorthand for using the

interval data types as any other data type.

2.4.5 Possible Database Designs to Represent Temporal

Data

2.4.5.1 Current Tables Only

Most of the operational databases store the information in a semi-temporal manner. It means

that there is usually a Since column that shows since when the current information shown in

the row has been considered to be true. There is a big problem with this approach, though,

because right after a value in some of the column changes, we will lose the information about

the past. For example, as shown in Table 23, the fact that customer 1 has had the name Mari

Tamm and status 1 since 2015-01-01 is shown by the column Since.

Table 23

CUSTOMER

Customer_Id Since Customer_Name Customer_Status

1 2015-01-01 Mari Tamm 1

Now if she would get married on 2015-04-01, and the name would change to Mari Kask, then

the column Since would get a new value 2015-04-01 and we would lose the information that

she has had the status 1 since 2015-01-01. However, this problem is easy to fix: we will

replace the Since column by three such columns, one for each of the other (“nonsince”)

columns. After this horizontal decomposition, the table would look like as seen in Table 24.

Table 24

CUSTOMER

Customer

_Id

Customer_S

ince

Customer_

Name

Customer_Name

_Since

Customer_S

tatus

Customer_Status

_Since

1 2015-01-01 Mari Kask 2015-04-01 1 2015-01-01

48

The problem still remains that it can show the current information only and we have lost the

information that customer 1 had last name Tamm from 2015-01-01 to 2015-04-01.

We add a constraint right away that all the values of the Since columns that do not correspond

to the primary key must be greater or equal to the Since column that goes along the primary

key. In the table shown in Table 24, columns Customer_Name_Since and

Customer_Status_Since must always have their value less than or equal to the value of

column Customer_Since.

Note: Yes, this table can show some historical information – namely the period that is

between the Since column and today. We also note that adding a Since column to each

“nonsince” column is of course not needed if we are not interested in the history of this

column. For instance, the value of column Customer_Name hardly changes for a customer

and it might not be needed to add the Customer_Name_Since column. But this is a decision to

be made when designing a concrete database.

2.4.5.2 Historical Tables Only

We now turn to the design that includes historical information only, loosely, since such tables

can also contain information about the future. An example of such table is shown in Table 25.

Table 25

CUSTOMER_HIST

Customer_Id During Customer_Name Customer_Status

1 [2015-01-01:“the

last day“)

Mari Tamm 1

Note: The marker “the last day“ is used in this example for showing that the end point of the

During value is not known currently so the fact is currently considered to be true. We will

have more to say in the end of this section.

Suppose now we find out that the customer got married on 2015-04-01 and her last name

changed to Kask. In order to make the needed changes in the database, we need to make the

following changes:

49

1. Update the current row and set the end point of the During column value to 2015-03-

31.

2. Insert a new row to showing that customer 1 has last name Kask from 2015-04-01 to

“the last day“).

This example shows that such design is not very good because it timestamps a combination of

all of the columns. We would rather do a vertical decomposition and create a separate history

table for each of those columns. Thus, in the example case, we would have three separate

tables for customer, customer name, and customer status as shown in Table 26, Table 27, and

Table 28 respectively.

Table 26

CUSTOMER_HIST

Customer_Id During

1 [2015-01-01:“the

last day“)

Table 27

CUSTOMER_NAME_HIST

Customer_Id Customer_Name During

1 Mari Tamm [2015-01-01:2015-04-01)

1 Mari Kask [2015-04-01:“the last day“)

Table 28

CUSTOMER_STATUS_HIST

Customer_Id Customer_Status During

1 1 [2015-01-01: “the last day“)

50

Vertical decomposition transformed the information to be stored in the tables in the sixth

normal form. The tables have primary key (Customer_Id, Country_Code and During) and at

most one additional column. Values of the columns in a traditional historical table can change

with a different rate (for instance, customer’s status can change much more often than his/her

customer’s name) and it is not wise to “drag” the values of other columns along each time.

One of the benefits of the vertical decomposition is that we can update the values of each

attribute independently from others (Customer_Status and Customer_Name are attributes of

entity type Customer).

Please note that the support to application-time and system-time period by SQL:2011 means

that current and historic data is together in the same table. Creating these tables in sixth

normal form is a possible design approach of these tables.

However, we still cannot be one hundred per cent happy with the approach of using historical

tables only. The reason is that, in case of a currently effective fact – current customer name,

for example – we need to put something to mark the end point of the interval. What we need

is something saying that this fact is currently true until further notice. This is the problem of

“the moving point now”. One possibility that has been under consideration is a NOW variable

indicating the current time. An example of such interval value is [2015-01-01:NOW] that

denotes the interval between January 1, 2015 and current date (end points included).

However, this brings a lot of problems especially when the granularity of the point the

interval consists of is very small – for instance with the precision of a millisecond. Moreover,

the authors of the book believe that introducing such a variable would be a mistake – as it

was a big logical mistake to implement NULL in SQL (Date, 2006). Actually many databases

have NULL indicating the end point of some period but as said, this is not how it should be.

Another option would be to use a variable referring to “the last day” but this would mean that

a. we would store a lie in the database since the end point of such fact clearly

cannot be “the last day”

b. users should interpret “the last day” to mean “until further notice” in most of

the cases

Thus, we need an approach that does not tell. The best way not to tell a lie is not to say it at all

– if we currently do not know what the end point of some period is, then we simply do not

show it. This brings us to the proposed design that we will discuss in the next section.

51

2.4.5.3 Both Current and Historical Tables

As described in the previous two sections, the first approach of only current tables is great for

storing current information and the second approach of having only historical tables is great

for storing historical information. The proposed solution in the book is a combination of both

of these approaches:

 We will store the current information in the current tables.

 We will store the historical information in the historical tables. NB! Only the

information with validity in the past will be stored in them.

With this approach, we can correctly store the historical information while avoiding the

problem of “the moving point now”. This approach is actually a good example of the

“separation of concerns” design principle (Separation of concerns). There are separate tables

for current data (one concern) and separate tables for historic data (another concern). Concern

is “A canonical solution abstraction that is relevant for a given problem” (Separation of

concerns). One problem (that needs a solution) is how to represent current data and another

how to represent historic data.

Let’s go through an example of how we get the proposed design from a regular historical

table shown in Table 29.

Table 29

CUSTOMER_HIST

Customer_Id During Customer_Name Customer_Status

1 [2015-01-01:2015-04-01) Mari Tamm 1

1 [2015-04-01:2015-05-01) Mari Kask 1

1 [2015-05-01:“Last day“) Mari Kask 2

First, we create a current table CUSTOMER with all the columns except During and we add a

corresponding Since column for each of these columns. We include only the current

information about each attribute into this table. The result is shown in Table 30.

52

Table 30

CUSTOMER

Customer

_Id

Customer_S

ince

Customer_

Name

Customer_Name

_Since

Customer_S

tatus

Customer_Status

_Since

1 2015-01-01 Mari Kask 2015-04-01 2 2015-05-01

Next, a historical table is created for each of these columns and we will move the remaining

information there from Table 29. The result is shown in Table 31, Table 32, and Table 33.

Note that CUSTOMER_HIST does not have any rows since there is only current information

about it.

Table 31

CUSTOMER_HIST

Customer_Id During

Table 32

CUSTOMER_NAME_HIST

Customer_Id Customer_Name During

1 Mari Tamm [2015-01-01:2015-04-01)

Table 33

CUSTOMER_STATUS_HIST

Customer_Id Customer_Status During

1 1 [2015-01-01: 2015-05-01)

In the book a set of integrity constraints we described that should be created on these tables

for protecting the data from various temporal data quality issues. Additionally, it was

proposed to create a view for each of the temporalized attributes that would combine the

current and historical information of each of these attributes (undoing the horizontal

53

decomposition). Furthermore, there should be a view created that would join all of these

attribute views together for providing users a comprehensive picture about the history of the

entity and its attributes. Finally, there should be a mechanism in place on top of these views

that should make data changes easier for the user by generating and executing DML

statements automatically on the background. All of these actions should be done

automatically by the system, after the user has specified that an attribute needs to be

temporalized. We will cover them in more detail in the next chapter where the implementation

of the ideas in PostgreSQL is introduced.

54

3. Implementing the Ideas into a

PostgreSQL Database

3.1 Introduction

In this chapter we will describe the development tasks needed for implementing the ideas

proposed in the book using PostgreSQL 9.3 DBMS. All the database objects that were

developed are uploaded to a GitHub repository that is accessible with the following link:

https://github.com/SanderLaasik/temporal. The code is open source with MIT license,

meaning that everyone can copy, modify, and publish it. There are two ways for adding the

database objects from this repository:

a) Execute all the statements from the file temporal--x.y (where x.y is the version

number of the file)

b) Put the files temporal--x.y and temporal.control into the PostgreSQL installation

directory SHAREDIR/extension and then use the CREATE EXTENSION syntax

for creating all the database objects from the file temporal--x.y.

As a result of executing the statements from the file temporal--x.y, the schema named

TEMPORAL is created. All the functions are created into this schema and therefore the

schema name should be specified when using any of the functions. Furthermore, the table

named TEMPORAL_METADATA is created that will store the metadata about the tables and

attributes that the temporal support is enabled on. This table is used by some functions and

trigger procedures for lookup of the temporal metadata. We will provide the list of its

columns and their descriptions later on.

For representing and storing the intervals, PostgreSQL has a set of range data types. The

boundary values can be set exactly how we need it and how it was described in the book – for

inclusive bounds brackets “[]” and for explicit bounds parenthesis “()” should be used. In

addition, there is a special range point variable infinity introduced for showing that the range’s

https://github.com/SanderLaasik/temporal

55

upper bound is infinity. Currently there are six system-defined (built-in) range types

implemented:

 int4range – Range of integer

 int8range – Range of bigint

 numrange – Range of numeric

 tsrange – Range of timestamp without time zone

 tstzrange – Range of timestamp with time zone

 daterange – Range of date

As the aim of this thesis is to add the temporal support to intervals that are consisting of date

values, we can use daterange for it.

PostgreSQL also allows user-defined range types to be created using the CREATE TYPE

syntax.

3.2 Point Type and Interval Type Operators

PostgreSQL has a set of system-defined operators for dealing with intervals. We will now

provide a comparison of the interval operators described in the book and the operators that

are available in PostgreSQL. The comparison is shown in Table 34 and the description of

each of these operators can be found in Sections 2.2.1 and 2.2.2. As seen from Table 34, most

of the needed operators are already available in PostgreSQL but we have also created

corresponding PL/pgSQL functions based on the logic provided in the book to give a more

understandable name for them. For the operators that are missing in PostgreSQL, we have

created a PL/pgSQL function based on the logic provided in the book.

Table 34

Point type operators for data type date

Operator from the
book

PostgreSQL
equivalent Comment My implementation for data type date

NEXT_T NA NEXT_DATE(Date d)

PRIOR_T NA PRIOR_DATE(Date d)

56

Point type operators for data type date

Operator from the
book

PostgreSQL
equivalent Comment My implementation for data type date

FIRST_T NA FIRST_DATE()

LAST_T NA LAST_DATE()

Singe interval operators

Operator from the
book

PostgreSQL
equivalent Comment My implementation for data type date

INTERVAL_T
Regular data type
specification

Used PostgreSQL system defined type
DATERANGE

BEGIN LOWER() BEGIN(Daterange i)

END UPPER()-1*
* - for some reason, UPPER returns “The
last point + 1" END(Daterange i)

p ∈ i <@ element is contained by range CONTAINED_IN(Date d, Daterange i)

I ∋ p @> contains element CONTAINS(Daterange i, Date d)

PRE NA PRE(Daterange i)

POST UPPER()*
* - for some reason, UPPER returns “The
last point + 1" POST(Daterange i)

COMPARISON OPERATORS

Operator from the
book

PostgreSQL
equivalent Comment My implementation for data type date

EQUALS (=) = equals EQUALS(Daterange i, Daterange i)

INCLUDES (i1 ⊇
i2) @> contains range INCLUDES(Daterange i, Daterange i)

INCLUDED_IN (i1

⊆ i2) <@ range is contained by INCLUDED_IN(Daterange i, Daterange i)

BEFORE << strictly left of BEFORE(Daterange i, Daterange i)

AFTER >> strictly right of AFTER(Daterange i, Daterange i)

MEETS -|- is adjacent to MEETS(Daterange i, Daterange i)

OVERLAPS && overlap (have points in common) OVERLAPS(Daterange i, Daterange i)

MERGES NA MERGES(Daterange i, Daterange i)

BEGINS NA BEGINS(Daterange i, Daterange i)

ENDS NA ENDS(Daterange i, Daterange i)

OTHER OPERATORS

Operator from the
book

PostgreSQL
equivalent Comment Our implementation for data type date

COUNT NA COUNT(Daterange i)

MAX NA MAX(Daterange i)

MIN NA MIN(Daterange i)

UNION + union UNION(Daterange i, Daterange i)

INTERSECT * intersection INTERSECT(Daterange i, Daterange i)

MINUS -|- difference MINUS(Daterange i, Daterange i)

EXPAND NA

EXPAND (Daterange[] i)
Note: First use ARRAY_AGG() on the
input parameter to transform rows into an
array of dateranges

COLLAPSE NA

COLLAPSE(Daterange[] i)
Note: First use ARRAY_AGG() on the
input parameter to transform rows into an
array of dateranges

PACK NA EXPAND (using GROUP BY)

UNPACK NA COLLAPSE (using GROUP BY)

57

We have not implemented the PACK and UNPACK operators because the result of their logic

(used on one column) can be accomplished using the EXPAND and COLLAPSE operators,

and the GROUP BY syntax. Support of using the PACK and UNPACK operators on multiple

attributes is not supported because based on our knowledge and understanding it would have

required modifications in the source code of PostgreSQL by adding a USING keyword with

the logic described in the book. The main reason is that the current grouping functionality in

SQL – GROUP BY – expects the user to provide the list of columns that the dataset should be

grouped by. The “USING <column name of interval data type>” syntax, as described in the

book, will do the grouping automatically based on all the other columns except the <column

name of interval data type>. Most probably it is possible to add this support using PL/pgSQL

also but we decided not to spend more time on it. Our decision is supported by the fact that

the proposed database design can survive without having it – none of the tables contains more

than one column with an interval data type. But we agree that support to such functionality

should be added with some future developments.

NB! There is a limitation in the function EXPAND that if the upper bound of an interval is

‘infinity’, then the unit intervals are only created up to current_date. Without this limitation,

the execution would run forever since it is defined as “later than all other time stamps”.

3.3 Relational Operators

As described in section 2.4.4 the regular relational operators such as MINUS, INTERSECT

and JOIN were used to create modified versions of them, named U_MINUS, U_INTERSECT,

and U_JOIN respectively. We have implemented five of them as PL/pgSQL functions named

TEMPORAL_EQUALS, TEMPORAL_INTERSECT, TEMPORAL_MINUS,

TEMPORAL_UNION, and TEMPORAL_JOIN. Again, they were created to support only the

data type daterange. They all work as expected but they look very clumsy and are not very

easy to use. Mostly because of the same problem as stated in the previous section – SQL does

not have the USING keyword in place. As said earlier, all of them use the PACK and

UNPACK operators that are aggregate in their logic and this brings us back to the need for

specifying the list of columns to be used for grouping the rows. Nevertheless, we have used

some of them (or at least the logic of them) when creating temporal constraints that will be

discussed in the next section.

58

3.4 Example Database with Temporal Support

3.4.1 Introduction

In this section, the creation of a fully temporal database is described. We will build it up step

by step, starting from defining the initial semi-temporal database and then adding temporal

support to its tables and their columns.

We will use the term entity for referring to an object of a fact – for example a customer – and

the term attribute for referring to the named properties of these entities – for example the

name of the customer. Entity type is a set of entities with common attributes.

As said earlier, this design keeps the current data of all attributes in a current table (with a

corresponding Since column for each attribute, and no Since column can have value later than

today) and the historical data of each attribute is stored in a separate history table. We will

call the historical table the DURING table and the current table the SINCE table from this

point forward.

After a user enables temporal support on any of the columns, all the needed activities are done

automatically by the system. This includes creating a history table for the attribute in

question, creating a set of PL/pgSQL trigger procedures for keeping the data satisfying a set

of temporal requirements, creating a view for this attribute that combines the historical and

current data together and also creating (or replacing) a summary view that combines together

data from all of these views.

3.4.2 Design Model of Initial Database

We now introduce design model of the initial database. Conceptually the database stores

information about customers and their contracts. Figure 2 shows the database design model in

detail.

Customer data is stored in a table named CUSTOMER. It has a primary key consisting of

columns Customer_Id and Country_Code. In addition it has columns Customer_Name and

Customer_Segment_Code, and columns Customer_Name_Since and

Customer_Segment_Since that shows the validity start date of these attributes

correspondingly.

59

Figure 2 Model of the initial database

Customer’s relations to its contracts are stored in table CUSTOMER_CONTRACT that has the

primary key consisting of columns Customer_Id, Country_Code and Contract_Nbr.

Furthermore, columns Customer_Id and Country_Code are foreign key members referencing

the primary key of table CUSTOMER.

In addition, there are two classifier tables COUNTRY and CUSTOMER_SEGMENT_TYPE

that store for each classifier value a code and a description.

3.4.3 Enabling Temporal Support on an Attribute

In order to enable temporal support for some entity, the SINCE table needs to be in place and

preferably populated with the current data about this entity. This SINCE table needs to have a

corresponding Since column for each attribute that needs to be temporalized, and no Since

column can have value later than today.

We have created a PL/pgSQL function called TEMPORALIZE to enable temporal support on

some attribute. The function uses dynamic SQL for reusing the same code for all the attributes

that one may want to temporalize. It has six input parameters that require corresponding

argument when one invokes the function. For each parameter, we next provide its name, type,

and a short description.

60

1. In_Schema_Name TEXT – specifies the name of the schema where the SINCE table is

located. For example FTE

2. In_Table_Name TEXT – specifies the name of the SINCE table of the entity in

question. For example CUSTOMER

3. In_Table_Columns_Names TEXT – specifies the list of column names that the

attribute consists of. For normal cases there is only one column (for example

Customer_Name) but in some cases there can be multiple columns, especially when

enabling temporal support on the primary key (for example, if the table CUSTOMER

has primary key consisting of columns Customer_Id and Country_Code)

4. In_Since_Name – specifies the name of the Since column in the SINCE table. For

example Customer_Name_Since

5. In_Hist_Table_Name – specifies the name of the “to be” DURING table name. For

example CUSTOMER_NAME_HIST

6. In_Combining_View_Name – specifies the name of the “to be” view name that will

combine the historical and current information about this attribute

If a table T contains data corresponding to N attributes and one wants to temporalize (in terms

of making possible preserving historic attribute values) all these attributes, then:

 one has to add the since column for each attribute,

 one has to invoke the TEMPORALIZE function N times – once for each attribute.

The TEMPORALIZE function and the trigger procedures it references use the table

TEMPORAL_METADATA for storing and using metadata about the temporalization of some

entity and its attributes. The table consists of the following columns.

1. Schema_Name VARCHAR(63) – value of input parameter In_Schema_Name will be

stored here

2. Table_Name VARCHAR(63) – value of input parameter In_Table_Name will be

stored here

61

3. Property_Column_List TEXT – value of input parameter In_Table_Columns_Names

will be stored here

4. Is_Property_PK BOOLEAN – if the columns listed in In_Table_Columns_Names

match the primary key members of the table, then the value will be TRUE and FALSE

otherwise

5. Since_Column_Name VARCHAR(63) – value of input parameter In_Since_Name

will be stored here

6. Hist_Table_Name VARCHAR(63) – value of input parameter In_Hist_Table_Name

will be stored here

7. Combining_View_Name VARCHAR(63) – value of input parameter

In_Combining_View_Name will be stored here

The type is VARCHAR(63) because by default in PostgreSQL the maximum identifier length

is 63.

The primary key of the table TEMPORAL_METADATA consists of columns Schema_Name,

Table_Name and Property_Column_List.

After calling the function TEMPORALIZE for some attribute, the following actions will be

executed.

1. If this is not a primary key attribute, then a check is made – based on the information

in TEMPORAL_METADATA – if the table in question has temporal support enabled

for primary key. If, then the temporalization fails because it is mandatory to have

temporal support enabled on the primary key first.

2. DURING table for this attribute is created in the specified schema with the specified

name. It has the following columns: SINCE table’s primary key members + the

columns listed in the input parameter In_Columns_Names + column During. Its

primary key will consist of the SINCE table’s primary key members + During. For

example, if the attribute Customer_Name is temporalized (with In_Hist_Table_Name

value CUSTOMER_NAME_HIST) then the corresponding DURING table with the

name CUSTOMER_NAME_HIST is created that will have columns Customer_Id,

62

Country_Code, Customer_Name and During. Furthermore, the primary key will

consist of columns Customer_Id, Country_Code and During.

3. The fact that this attribute is temporalized is inserted into a metadata table

TEMPORAL.TEMPORAL_METADATA.

4. A set of constraint triggers are created both on the SINCE and DURING tables to make

sure that the information stored in the database is in accordance with the temporal

requirements. We will discuss these requirements and the trigger procedures the

triggers invoke in detail in the next section.

5. A view is created that will combine the historical and current information of this

attribute together. It takes all the rows from the DURING table of this attribute and the

needed columns from the SINCE table and – using the UNION ALL operator –

combines them together. The header of the view is equal to the header of the DURING

table. Furthermore, the Since value of this attribute is casted as an interval, with begin

point equal to the value of Since and end point is set to ‘infinity’. For example, the

view for attribute Customer_Name would have columns Customer_Id, Country_Code,

Customer_Name and During. This view returns all the rows from

CUSTOMER_NAME_HIST. In addition, it returns all the rows from CUSTOMER with

the needed columns and During values with begin point equal to

Customer_Name_Since and end point set to ‘infinity’.

6. Finally, a view with the name <In_Table_Name>_FULL_VW is created that will join

all the combining views of attributes together. Note that the logic of operator U_JOIN

is used for doing it. First, all the attribute views are unpacked to contain only unit

intervals in their During columns. Then they are joined using the columns of the

primary key view and the expanded During value. Finally, the resulting rows are

packed using the During column of the primary key view. For example, in our

example the combining views CUSTOMER_VW, CUSTOMER_NAME_VW and

CUSTOMER_SEGMENT_VW are joined together and the view named

CUSTOMER_FULL_VW will be created.

63

3.4.4 Trigger Procedures for Satisfying the Temporal

Requirements

We will now describe the temporal requirements described in the book and create a set of

PL/pgSQL trigger procedures to satisfy them. The aim of these constraints is to make sure

that all the data contained in this database is both logically and design wise correct. This

involves avoiding redundancy, circumlocution and contradiction in the data.

We will now explain the constraints one by one and describe the trigger procedures and

constraint triggers that are created to satisfy them. We use the example database to illustrate

the constraint triggers and the trigger procedures they invoke.

The logic of implementing these constraints is as follows.

1. The file temporal—x.y contains a set of PL/pgSQL trigger procedures with dynamic

SQL that make the needed checks on the specified tables and their columns in a

declarative manner

2. The function TEMPORALIZE creates constraint triggers that invoke these trigger

procedures on the specified tables and columns. All the constraint triggers are

specified to execute for each row modification and after all the statements in the

transaction have finished – this is done by using the DEFERRABLE INITIALLY

DEFERRED syntax:

CREATE CONSTRAINT TRIGGER <Trigger name>

AFTER INSERT OR UPDATE OR DELETE

DEFERRABLE INITIALLY DEFERRED

FOR EACH ROW EXECUTE PROCEDURE <Trigger procedure name

with parameters>

Possibility of creating constraint triggers, which execution can be deferred to the end of a

transaction, is specific to PostgreSQL. It is not specified in the SQL standard (the last version

at the time of writing the thesis is SQL:2011). Thus, there is no reason to expect such feature

in other SQL DBMSs. We would have better used assertion objects (Gulutzan and Pelzer,

1999) that are general declarative constraints created as separate schema objects.

Unfortunately, it was not supported in PostgreSQL at the time of writing the thesis. The

author is currently aware of only one DBMS - TimeDB - that implements SQL assertion

64

object (TimeDB). In addition, PostgreSQL currently (spring 2015) does not permit subqueries

in table CHECK constraints that could also be used for this purpose.

We created and ran a set of tests on the constraints to make sure that everything is working as

expected. The tests can be seen in the file constraint_tests.sql, located in the GitHub

repository accessible with the following link: https://github.com/SanderLaasik/temporal. We

will specify each test when we describe the corresponding constraint.

3.4.4.1 Constraints on the DURING table

First, there are two integrity constraints that should be added to all DURING tables (in the

book, there were also exceptions listed but we do not discuss them in scope of this thesis).

The book describes both of them as lines of text and we have done our best to implement

them using PL/pgSQL.

The first of these constraints prevents two integrity problems – redundancy and

circumlocution – from occurring in a table.

Redundancy means that there are multiple rows saying the same thing. For example, the

situation shown in Table 35 is a redundancy problem.

Note: we remind that using brackets means that the begin/end point of an interval is inclusive

and using parenthesis means that it is exclusive.

Table 35

CUSTOMER _NAME_HIST

Customer_Id Country_Code Customer_Name DURING

1 1 Mari Tamm [2015-01-01:2015-02-01)

1 1 Mari Tamm [2015-01-30:2015-07-01)

Table CUSTOMER_NAME_SINCE clearly says twice that customer 1 had the name “Mari

Tamm” on days 2015-01-30 and 2015-01-31. We would better like to see this information

stored in a single row with a During value [2015-01-01:2015-07-01).

Circumlocution means that there are multiple rows saying something that could better be said

with a single row. For example, the situation shown in Table 36 is a circumlocution problem.

https://github.com/SanderLaasik/temporal

65

Table 36

CUSTOMER _NAME_HIST

Customer_Id Country_Code Customer_Name DURING

1 1 Mari Tamm [2015-01-01:2015-02-01)

1 1 Mari Tamm [2015-02-01:2015-07-01)

It uses two separate rows for saying that Customer 1 had the name “Mari Tamm” during

period [2015-01-01:2015-07-01).

Thus, both of these examples should actually be stored as shown in Table 37 where the table

CUSTOMER_NAME_HIST is in its packed form. Therefore, the book proposes to introduce a

table level PACKED ON constraint for making this check.

Table 37

CUSTOMER_NAME_HIST

Customer_Id Country_Code Customer_Name DURING

1 1 Mari Tamm [2015-01-01:2015-07-01)

We have implemented it as a PL/pgSQL trigger procedure called CHK_PACKED_ON. As the

name suggests, it checks if the DURING table is still in its packed form. It is invoked by a

constraint trigger for each row after INSERT, UPDATE or DELETE statement is executed on

the DURING table. For example, a part of check made on table CUSTOMER_NAME_HIST

would look as follows:

SELECT COUNT(*) AS Error_Cnt

FROM (

 SELECT Customer_Id, Country_Code, Customer_Name, DURING

 FROM FTE.CUSTOMER_NAME_HIST AS T1

 EXCEPT

 SELECT Customer_Id, Country_Code, Customer_Name, TEMPORAL.COLLAPSE(ARRAY_AGG(DURING))

 FROM FTE.CUSTOMER_NAME_HIST AS T2

 GROUP BY Customer_Id, Country_Code

) SUB;

66

The Error_Cnt must be equal to zero, meaning that the current dataset of the table is equal to

the collapsed form of the dataset, otherwise the check will fail.

An example of such situation is provided in the test named Test_CHK_PACKED_ON.

The second constraint is meant for avoiding the contradiction problem. What it means is that

a table contains records with contradicting information. For example, the rows shown in Table

38 clearly say that Customer 1 had two names – Mari Tamm and Mari Kask – on days 2015-

01-30 and 2015-01-31.

Table 38

CUSTOMER_NAME_HIST

Customer_Id Country_Code Customer_Name DURING

1 1 Mari Tamm [2015-01-01:2015-02-01)

1 1 Mari Kask [2015-01-30:2015-07-01)

To fix the contradiction problem, the book proposes to introduce the WHEN/THEN

constraint that checks that if a table would be UNPACKED (each row’s During value is a unit

interval), then the primary key constraint should still be satisfied.

We have implemented it as a PL/pgSQL trigger procedure called

CHK_WHEN_UNPACKED_THEN_KEY. As the name suggests, it checks that if the

DURING table would be in its unpacked form then the primary key constraint would still be

satisfied. It is invoked by a constraint trigger for each row after INSERT, UPDATE or

DELETE statement is executed on the DURING table. For example, a part of check made on

table CUSTOMER_NAME_HIST would look as follows:

SELECT COUNT(*) AS Error_Cnt

FROM (

 SELECT Customer_Id, Country_Code, DURING, COUNT(*) C

 FROM (

 SELECT Customer_Id, Country_Code, Customer_Name,

TEMPORAL.EXPAND(ARRAY_AGG(DURING)) AS DURING

 FROM FTE.CUSTOMER_NAME_HIST

 GROUP BY Customer_Id, Country_Code, Customer_Name) SUB

 GROUP BY Customer_Id, Country_Code, DURING

 HAVING COUNT(*)>1

67

) SUB1;

The Error_Cnt must be equal to zero, meaning that if the current dataset of the table is

unpacked using During, then there are no two names for a customer active on the same day.

Otherwise the check will fail.

An example of such situation is provided in the file constraint_tests.sql, test named

Test_CHK_WHEN_UNPACKED_THEN_KEY.

3.4.4.2 Data Integrity Requirements Across the Tables

Next, we turn to temporal requirements that are needed to check the data integrity across the

tables. There were nine of them in total presented in the book but as some of them were

logically the same (just enabled for different tables and some were combined together) we can

narrow the count to four. The book described the constraints implementing these

requirements using the database language Tutorial D. We tried to use the same logic of these

Tutorial D statements to write the constraints using PL/pgSQL. Next, we will discuss all of

them and provide the trigger procedures that implement the constraints.

 REQUIREMENT R1 – If the database shows some fact to be true on day D1,

then it must contain only one row that shows the fact.

This constraint is meant for avoiding redundancy across the DURING and SINCE tables as we

have already made sure that the DURING nor the SINCE table themselves cannot contain

such information (PACKED ON and WHEN/THEN constraints in the DURING table and

primary key constraint in the SINCE table). So we need to make sure that if there is a record

in SINCE table showing some fact to be true on day D1 then the DURING table must not

contain a record that says the same thing and vice versa. For example, without this constraint,

the situation shown in tables Table 39 and Table 40 could occur.

Table 39

CUSTOMER

Customer_Id Country_Code … Customer_Name Customer_Name_Since

1 1 … Mari Tamm 2015-01-31

68

Table 40

CUSTOMER_NAME_HIST

Customer_Id Country_Code Customer_Name DURING

1 1 Mari Tamm [2015-01-01:2015-02-01)

These tables both say that customer 1 had the name Mari Tamm on 2015-01-31. For fixing

this problem, we need to check if all the values of column During in the DURING table are

less than the corresponding Since value in the SINCE table.

We have implemented it as a PL/pgSQL trigger procedure called

CHK_NO_REDUNDANCY_ACROSS_SINCE_AND_DURING. It checks if the Since value of

an attribute in SINCE table is greater than the During value in the DURING table. It is

invoked by constraint triggers for each row after an INSERT, UPDATE or DELETE

statement is executed on SINCE or DURING table. For example, a part of check made on

tables CUSTOMER_NAME_HIST and CUSTOMER would look as follows:

SELECT COUNT(*) AS Error_Cnt

FROM FTE.CUSTOMER AS T_SINCE

JOIN FTE.CUSTOMER_NAME_HIST AS T_DURING

 ON T_SINCE.Customer_Id=T_DURING.Customer_Id

 AND T_SINCE.Country_Code=T_DURING.Country_Code

 AND T_SINCE.Customer_Name_Since<=TEMPORAL.END(T_DURING.DURING);

The Error_Cnt must be equal to zero, meaning that none of the values of column

Customer_Since is less or equal to the end point of the corresponding During value.

Otherwise the check will fail.

Examples of such situation are provided in the file constraint_tests.sql. The test named

Test_CHK_NO_REDUNDANCY_ACROSS_SINCE_AND_DURING shows that the constraint

works on the SINCE table and the test named

Test_CHK_NO_REDUNDANCY_ACROSS_DURING_AND_SINCE does the same on the

DURING table.

69

Note: this constraint also works in case the attribute’s values in the SINCE and DURING

tables are indeed different but the value of column Since is less or equal to the end point of

the During value.

 REQUIREMENT R2 – If the database shows some fact to be true on day D1 and

D1+1, then it must contain only one row that shows the fact.

This constraint is meant for avoiding circumlocution problem across the DURING and SINCE

tables as we have already made sure that the DURING nor the SINCE table themselves cannot

contain such information (PACKED ON constraint in the DURING table and primary key

constraint in the SINCE table). Thus, we need to make sure that if there is a record in SINCE

table showing some fact to be true on day D1 then the DURING table must not contain a

record that shows the same fact being true on day D1+1 and vice versa. For example, without

this constraint, the situation shown in Table 41 and Table 42 could occur.

Table 41

CUSTOMER

Customer_Id Country_Code … Customer_Name Customer_Name_Since

1 1 … Mari Tamm 2015-01-31

Table 42

CUSTOMER_NAME_HIST

Customer_Id Country_Code Customer_Name DURING

1 1 Mari Tamm [2015-01-01:2015-01-31)

As said earlier, in case of a circumlocution problem, something is said with multiple rows

when a single row would suffice. This is the case with these rows in tables CUSTOMER and

CUSTOMER_NAME_HIST as well. Instead, we would better like to store this information as

shown in Table 43.

70

Table 43

CUSTOMER

Customer_Id Country_Code … Customer_Name Customer_Name_Since

1 1 … Mari Tamm 2015-01-01

To avoid the circumlocution problem from occurring across the DURING and SINCE tables,

we need to introduce a constraint that in case the attribute values are equal in both of the

tables, the value of column Since cannot be equal to the day immediately after the end point

of the During column value.

We have implemented it as a PL/pgSQL trigger procedure called

CHK_NO_CIRCUMLOCUTION_ACROSS_SINCE_AND_DURING. It runs the

abovementioned check on SINCE and DURING tables in case the values of the attribute are

equal. It is invoked by constraint triggers after INSERT, UPDATE or DELETE statement is

executed on SINCE or DURING table. For example, a part of check made on tables

CUSTOMER_NAME_HIST and CUSTOMER would look as follows:

SELECT COUNT(*) AS Error_Cnt

FROM FTE.CUSTOMER AS T_SINCE

JOIN FTE.CUSTOMER_NAME_HIST AS T_DURING

 ON T_SINCE.Customer_Id=T_DURING.Customer_Id

 AND T_SINCE.Country_Code=T_DURING.Country_Code

 AND T_SINCE.Customer_Name=T_DURING.Customer_Name

 AND T_SINCE.Customer_Name_Since=TEMPORAL.NEXT_DATE(TEMPORAL.END(DURING));

The Error_Cnt must be equal to zero, meaning that if a customer has same values of column

Customer_Name in tables CUSTOMER and CUSTOMER_NAME_HIST, then the value of

column Customer_Name_Since is not equal to the next day after the end point of the During

value. Otherwise the check will fail.

Examples of such situation are provided in the file constraint_tests.sql. The test named

Test_CHK_NO_CIRCUMLOCUTION_ACROSS_SINCE_AND_DURING shows that the

constraint works on the SINCE table and the test named Test_CHK_NO_

CIRCUMLOCUTION_ACROSS_DURING_AND_SINCE does the same on the DURING

table.

71

 REQUIREMENT R3 – If the database shows some entity to be present on day

D1, then all of its attributes must have some value on that day as well (and vice

versa).

This constraint is meant for making sure that all the entity attributes have a value assigned

throughout the time it exists in the database. For example, in our example database, the

customer must have a name assigned on every day the customer is linked to the company.

Therefore, if a customer is shown as linked to the company by column During in table

CUSTOMER_HIST and/or column Customer_Since in table CUSTOMER, then corresponding

values must be present in the column During of table CUSTOMER_NAME_HIST and/or in

the column Customer_Name_Since of table CUSTOMER. Furthermore, this must be true the

other way around as well – for each day when a customer name is shown to be true in a

database, the customer must be linked to the company.

First, we need to make sure that the value of the attribute’s SINCE column is greater or equal

than the SINCE column value of the entity. We have created a CHECK constraint on the

SINCE table that will take care of this.

Secondly, in the SINCE table, we only have to check the cases where the attribute’s Since

column value is greater than the entity’s Since value – in our example it means that we make

this check only if Customer_Name_Since value is greater than the value of Customer_Since.

If this is the case, then the table CUSTOMER_NAME_HIST must contain row(s) that show

customer’s name values for all the days between the values of Customer_Since and

Customer_Name_Since-1.

An example situation where this requirement is not met for table CUSTOMER is shown in

Table 44 in case the table CUSTOMER_NAME_HIST does not contain the row shown in

Table 45.

Table 44

CUSTOMER

Customer_Id Country_Code Customer_Since Customer_Name Customer_Name_Since

1 1 2015-01-01 Mari Tamm 2015-01-03

72

Table 45

CUSTOMER_NAME_HIST

Customer_Id Country_Code Customer_Name DURING

1 1 Mari Mets [2015-01-01:2015-01-03)

We have implemented it as a PL/pgSQL trigger procedure called

CHK_ATTRIBUTE_TEMPORAL_INTEGRITY. It runs the abovementioned check on the

SINCE table, on the attribute’s DURING table, and on the DURING table of the entity. It is

invoked by constraint triggers after INSERT, UPDATE, or DELETE statement is executed on

the SINCE table, on the attribute’s DURING table or on the DURING table of the entity. For

example, a part of check made on tables CUSTOMER_NAME_HIST and CUSTOMER would

look as follows:

SELECT TEMPORAL.TEMPORAL_EQUALS(

 'SELECT Customer_Id, Country_Code, DURING

 FROM FTE.CUSTOMER_HIST AS T1

 UNION ALL

 SELECT Customer_Id, Country_Code, CAST(''[''||Customer_Since ||'','' ||

TEMPORAL.PRIOR_DATE(Customer_Name_Since)||'']'' AS DATERANGE) AS DURING

 FROM FTE.CUSTOMER

 WHERE Customer_Since<Customer_Name_Since',

 'SELECT Customer_Id, Country_Code, DURING

 FROM FTE.CUSTOMER_NAME_HIST AS T2',

 NULL,

 'DURING'

) AS Res;

Note that this constraint uses the function TEMPORAL_EQUALS, that implements the logic

of operator U_= that was described in the book and in sections 2.4.4 and 3.3.

The Res must be TRUE, meaning that there is a corresponding record about the customer

available in the union of tables CUSTOMER and CUSTOMER_HIST for each of the records

in the table CUSTOMER_NAME_HIST. Otherwise the check will fail.

Examples of such situation are provided in the file constraint_tests.sql. The test named

Test_CHK_ATTRIBUTE_TEMPORAL_INTEGRITY1 shows that the constraint works on the

SINCE table. The test named Test_CHK_ATTRIBUTE_TEMPORAL_INTEGRITY2 does the

same on the DURING table of the attribute. The test named

Test_CHK_ATTRIBUTE_TEMPORAL_INTEGRITY3 does the same on the DURING table of

the entity.

73

After this constraint is created on the tables, then all the data manipulation statements that are

needed for each other must be executed in the same transaction – BEGIN and COMMIT

commands must be used. For example, if the name of the customer changes then the

following statements are needed to be executed (we assume here that the all the foreign key

constraints in other tables that reference the table CUSTOMER are defined as

DEFERRABLE).

1. UPDATE row in table CUSTOMER that shows the new name of the customer and its

starting point.

2. INSERT a new row into CUSTOMER_NAME_HIST that shows the period the

customer had his/her previous name

3. COMMIT transaction that unleashes all the deferred constraint triggers.

All of them should be executed in the same transaction. Otherwise they will fail since the

trigger procedure CHK_ATTRIBUTE_TEMPORAL_INTEGRITY reports an error about

temporal integrity.

Note: This constraint brings up (at least) two problems when used in an SQL database.

1. When a new attribute, say phone number of a customer, is added to an entity and we

only have the current information (with Since column value equal to today) about this

attribute for all entities, then this constraint causes the insert into table SINCE to fail

because there is no history to put into the corresponding DURING table. A

workaround for it would be to set the new attribute’s Since column value equal to the

Since value of the primary key, though this is basically telling a lie again. It means that

the constraint starts to hamper evolution of database schema and one must decide as to

whether to lie to have constraints in place or not to enforce this constraint in the

database.

2. Another problem is that when we do not know what the phone number of some

customer is, or the customer does not have a phone (nor a phone number) at all. Most

SQL databases would have a NULL marker showing it but as said earlier, many

authors consider it a logical mistake in SQL. One of the possibilities of avoiding

NULLs is to design the database using further horizontal decomposition by creating

tables in the sixth normal form (Darwen, 2003). However, it still would not help us

74

with our problem because this approach would just create us more tables where this

constraint should added to. Thus, as a workaround, the constraint could be modified to

check only the rows not containing NULL markers for the attributes.

 REQUIREMENT R4 – If the database shows some fact to be true on day D1, and

the table that stores this fact has a foreign key constraint, then there must be a

row in the referenced table that shows a corresponding fact to be true on that day

This requirement is needed for avoiding contradiction across the fact table and the referenced

table. For example, if a row in CUSTOMER_CONTRACT or

CUSTOMER_CONTRACT_HIST shows that customer 1 has a contract “A1” on day D1 then

there must be a record in CUSTOMER or CUSTOMER_HIST that shows that customer 1 was

linked to the company on D1.

An example situation where this requirement is not met for table CUSTOMER_CONTRACT is

shown in Table 46 in case the row shown in Table 47 is present in table CUSTOMER.

Table 46

CUSTOMER_CONTRACT

Customer_Id Country_Code Contract_Nbr Customer_Contract_Since

1 1 A1 2014-12-01

Table 47

CUSTOMER

Customer_Id Country_Code Customer_Since

1 1 2015-01-01

These rows say that customer 1 had contract “A1” since 2014-12-01 while the customer is

linked to the company not earlier than 2015-01-01.

The first constraint that we need is to check if the value of Customer_Since in table

CUSTOMER is less or equal to the value of Customer_Contract_Since in table

CUSTOMER_CONTRACT.

75

We have implemented it as a PL/pgSQL trigger procedure named

CHK_SINCE_IN_FK_SINCE. It runs the abovementioned check on the SINCE table. It is

invoked by a constraint trigger after INSERT, UPDATE, or DELETE statement is executed

on the SINCE table or the referenced table. For example, a part of check made on tables

CUSTOMER_CONTRACT and CUSTOMER would look as follows:

SELECT COUNT(*) AS Error_Cnt

FROM FTE.CUSTOMER AS T1

JOIN FTE.CUSTOMER_CONTRACT AS T2

 ON T1.Customer_Id=T2.Customer_Id

 AND T1.Country_Code=T2.Country_Code

 AND T1.Customer_Since>T2.Customer_Contract_Since;

The Error_Cnt must be equal to zero, meaning that there is no record in the table

CUSTOMER_CONTRACT with the value of column Customer_Contract_Since less than the

value of column Customer_Since in the table CUSTOMER. Otherwise the check will fail.

NB! There is a limitation that the foreign key member columns must have the same names in

both of the tables. Otherwise this constraint is not created automatically and must be created

manually by the user. The reason is that we could not find – based on the metadata available

in PG_CATALOG and INFORMATION_SCHEMA - a solution how to determine which

columns should be matched in the JOIN condition when making this check. So this is done

currently based on the equal column names.

An example of such situation is provided in the file constraint_tests.sql. The test named

Test_CHK_SINCE_IN_FK_SINCE shows that the constraint works on the SINCE table that

has a foreign key referencing a table with enabled temporal support.

The second constraint is for checking the temporal integrity across the fact and its foreign key

reference. For example, if the table CUSTOMER_CONTRACT_HIST contains a row as shown

in Table 48, then there must be a row in table CUSTOMER or CUSTOMER_HIST showing

that customer 1 was linked to the company during this period.

Table 48

CUSTOMER_CONTRACT_HIST

Customer_Id Country_Code Contract_Nbr DURING

1 1 A1 [2014-12-01, 2015-04-01)

76

We have implemented it as a PL/pgSQL trigger procedure named

CHK_FK_TEMPORAL_INTEGRITY. It runs the abovementioned check on the DURING

table and on the referenced SINCE table and its DURING table. It is invoked by constraint

triggers after INSERT, UPDATE or DELETE statement is executed on the DURING table or

on the referenced SINCE table and its DURING table. For example, a part of check made on

tables CUSTOMER_CONTRACT and CUSTOMER would look as follows:

SELECT COUNT(*) AS Error_Cnt

FROM ((

 SELECT SUB1.*

 FROM (

 SELECT Customer_Id, Country_Code, TEMPORAL.EXPAND(ARRAY_AGG(DURING)) AS DURING

 FROM (

 SELECT Customer_Id, Country_Code, DURING

 FROM FTE.CUSTOMER_CONTRACT_HIST AS T1

) AS QUERY1

 GROUP BY Customer_Id, Country_Code

) SUB1

) EXCEPT (

 SELECT SUB2.*

 FROM (

 SELECT Customer_Id, Country_Code, TEMPORAL.EXPAND(ARRAY_AGG(DURING)) AS DURING

 FROM (

 SELECT Customer_Id, Country_Code, DURING

 FROM FTE.CUSTOMER_HIST AS T2

 UNION ALL

 SELECT Customer_Id, Country_Code, CAST('['||Customer_Since ||', INFINITY]' AS

DATERANGE) AS DURING

 FROM FTE.CUSTOMER

) AS QUERY2

 GROUP BY Customer_Id, Country_Code

) SUB2

)

) RES;

Note that this constraint uses the logic of function TEMPORAL_MINUS, that implements the

logic of operator U_MINUS that was described in the book and in sections 2.4.4 and 3.3. We

could not use the function TEMPORAL_MINUS itself due to some technical difficulties.

The Error_Cnt must be equal to zero, meaning that there is no record in the table

CUSTOMER_CONTRACT_HIST that does not have a corresponding record in the union of

tables CUSTOMER and CUSTOMER_HIST. Otherwise the check will fail.

77

An example of such situation is provided in the file constraint_tests.sql. The test named

Test_CHK_INTEGRITY_IN_FK_TABLES shows that the constraint works on table

CUSTOMER_CONTRACT_HIST.

3.4.5 Views for Providing Shorthand for the Users

After the constraints are in place, a couple of views are created. They provide the user a level

of abstraction for accessing the information in a more convenient way.

First, the original horizontal decomposition will be undone. What we mean by the original

horizontal decomposition, is that the historical information from the initial semi-temporal

SINCE table was split into a set of DURING tables, each for every attribute. The

TEMPORALIZE function will create a view for each attribute that will combine the attribute’s

historical and current information. This is done with the help of the UNION ALL operator.

We take all the rows from the attribute’s DURING table, then all the information about this

attribute from the SINCE table, and then the two datasets are combined together. Furthermore,

the value of the attribute’s Since column is transformed into an interval with begin point equal

to the Since column value and the end point is set to ‘infinity’. For example, the view that is

created for accessing the full information of customer names will combine all the rows from

CUSTOMER_NAME_HIST table plus current customer name values from the CUSTOMER

table. To better illustrate this example, the result of view CUSTOMER_NAME_VW is shown

in Table 49 in case the tables CUSTOMER and CUSTOMER_NAME_HIST contain the rows

as shown in Table 44 and Table 45 correspondingly.

Table 49

CUSTOMER_NAME_VW

Customer_Id Country_Code Customer_Name DURING

1 1 Mari Tamm [2015-01-03:INFINITY)

1 1 Mari Mets [2015-01-01:2015-01-03)

We also provide an example definition of the view CUSTOMER_NAME_VW:

CREATE VIEW FTE.CUSTOMER_NAME_VW AS (

SELECT customer_id, country_code, customer_name,

 (('['::text || customer_name_since) || ',INFINITY)'::text)::daterange AS during

78

FROM customer

UNION ALL

SELECT customer_id, country_code, customer_name, during

FROM customer_name_hist

);

Finally, TEMPORALIZE will create one more view that is replaced every time temporal

support is enabled on some attribute. This view will undo the original vertical decomposition,

meaning that all the views of different attributes are joined together, providing the user a

possibility to see all the information about all the attributes in one place. Furthermore, first all

the views are unpacked and then joined together using the unit interval values. After the

joining is done, only one During column is included into the final column list and the data is

packed on this column. This will give an overview of the history, when some combination of

attribute values was valid for each entity. For example, the view CUSTOMER_FULL_VW

will contain all the information from each of the attribute views. To better illustrate this

example, the result of view CUSTOMER_FULL_VW is shown in Table 52 in case the views

CUSTOMER_VW, CUSTOMER_NAME_VW, and CUSTOMER_SEGMENT_VW contain the

rows as shown in Table 50, Table 49, and Table 51 correspondingly.

Table 50

CUSTOMER_VW

Customer_Id Country_Code DURING

1 1 [2015-01-01:INFINITY)

Table 51

CUSTOMER_SEGMENT_VW

Customer_Id Country_Code Customer_Segment_Code DURING

1 1 2 [2015-01-04:INFINITY)

1 1 1 [2015-01-01:2015-01-04)

Table 52

CUSTOMER_FULL_VW

Customer_Id Country_Code Customer_Name Customer_Segment_Code DURING

79

CUSTOMER_FULL_VW

Customer_Id Country_Code Customer_Name Customer_Segment_Code DURING

1 1 Mari Tamm 2 [2015-01-04:INFINITY)

1 1 Mari Tamm 1 [2015-03-01:2015-01-04)

1 1 Mari Mets 1 [2015-01-01:2015-01-03)

We also provide an example definition of the view CUSTOMER_FULL_VW:

CREATE VIEW FTE.CUSTOMER_FULL_VW AS (

SELECT t1.customer_id,t1.country_code,t1.customer_name,t2.customer_segment_code,

 temporal.collapse(array_agg(CASE WHEN temporal."end"(t1.during) = 'now'::text::date THEN

(('['::text || temporal.begin(t1.during)) || ',INFINITY)'::text)::daterange ELSE t1.during

END)) AS during

FROM (SELECT customer_name_vw.customer_id,

 customer_name_vw.country_code,

 customer_name_vw.customer_name,

 temporal.expand(array_agg(customer_name_vw.during)) AS during

 FROM customer_name_vw

 GROUP BY customer_name_vw.customer_id, customer_name_vw.country_code,

customer_name_vw.customer_name

) t1

JOIN (SELECT customer_segment_vw.customer_id,

 customer_segment_vw.country_code,

 customer_segment_vw.customer_segment_code,

 temporal.expand(array_agg(customer_segment_vw.during)) AS during

 FROM customer_segment_vw

 GROUP BY customer_segment_vw.customer_id, customer_segment_vw.country_code,

customer_segment_vw.customer_segment_code

) t2

 ON t1.customer_id = t2.customer_id

 AND t1.country_code = t2.country_code

 AND t1.during = t2.during

JOIN (SELECT customer_vw.customer_id,

 customer_vw.country_code,

 temporal.expand(array_agg(customer_vw.during)) AS during

 FROM customer_vw

 GROUP BY customer_vw.customer_id, customer_vw.country_code

) t3

 ON t2.customer_id = t3.customer_id

 AND t2.country_code = t3.country_code

 AND t2.during = t3.during

 GROUP BY t1.customer_id, t1.country_code, t1.customer_name, t2.customer_segment_code;);

3.4.6 Changing the Data in the Database

Writing queries to maintain the data in the temporal database can quickly become a complex

task. There are a lot of things one needs to keep in mind when making changes in the data and

the constraints described earlier help us to guard against some of the problems that could

occur without them. Changing the data should not be thought of as inserting, updating, and

deleting rows in the database. Rather it should be thought of as adding, modifying, and

removing propositions. In the database with the proposed design, changing one proposition

80

very often results in changing multiple rows in the database. For example, if the customer

name changes on day D1 then there must be the following statements executed:

1. UPDATE row in table CUSTOMER that shows the new name of the customer and its

starting point.

2. INSERT a new row into CUSTOMER_NAME_HIST that shows the period the

customer had his/her previous name

3. COMMIT transaction that unleashes all the deferred constraint triggers.

The views that were created should provide a possibility to make the data changes a bit easier

for users. PostgreSQL database supports the creation of INSTEAD OF triggers on views that

could execute the needed statements on the background. For example, for the abovementioned

change of customer name, the user should only execute an UPDATE statement on the view

CUSTOMER_NAME_VW and then the data manipulation statements that are needed for

persisting this change would be executed automatically. The automatic creation of such

triggers is outside the scope of this thesis because it is clearly a complex assignment with a lot

of things to analyse and should not be done in a rush. However, it would be an excellent

subject for another thesis to provide a comprehensive set of such INSTEAD OF triggers.

3.4.7 The Performance

We have run some performance tests on our example database to understand a bit how the

proposed approach is performing. The approach requires many row-level constraint triggers

on the tables in case of our current implementation. Row-level means that trigger procedures

are executed for each inserted/updated/deleted row. It is not a surprise that the performance

suffers because of that. Furthermore, the bigger the volume of the data in the database is, the

slower the data manipulation statements are. If we look at the table CUSTOMER, then we can

see that there are nine constraint triggers in total that are executed when a row gets inserted,

updated, or deleted in it.

We have created a simple java program that can be used for generating insert statements for

testing the performance. It is named Data generator.jar and it is located in

https://github.com/SanderLaasik/temporal. The user needs to fill in the output filename and

https://github.com/SanderLaasik/temporal

81

the count of rows to be inserted into each of the tables. Currently it creates statements for

tables CUSTOMER, CUSTOMER_HIST, and CUSTOMER_CONTRACT.

The server we used for making these performance tests had the following technical

characteristics: Virtual machine QEMU Virtual CPU version, 811 GB HDD, 40 GB RAM, 15

virtual CPUs, CentOS 6.4.

Our first test is to insert one row into each of the tables CUSTOMER, CUSTOMER_HIST, and

CUSTOMER_CONTRACT when they are empty. These three inserts took 91 milliseconds in

total, thus inserting into an empty table is with quite a good performance time wise.

Our second test is to measure the performance with inserting initial 500 rows into tables

CUSTOMER, CUSTOMER_HIST, and CUSTOMER_CONTRACT – 1500 rows in total.

Execution of these insert statements took us 200 milliseconds or 3.3 minutes to execute so the

performance is considerably bad. Most probably there are many possibilities to improve this

by, for example, creating indexes on the tables. The biggest win would come from improving

the constraint triggers and the functions (especially the EXPAND and COLLAPSE functions)

they use. After the 1500 rows had been added into the tables, the insertion of one more row

into each table took 1452 milliseconds. Thus the execution time had increased almost 16

times. Finally we deleted all the rows form these three tables and it took us 13531

milliseconds.

Next, we performed the insertion of 10000 rows into each of the tables. Insertion of these

rows took us over 18 hours. Thus, the performance has gone considerably worse. Inserting

one additional row into each of the table1es containing 10000 rows took 15 seconds.

Data warehouses feature tables with millions of rows and loading data to the tables is one of

the main type of operations in them. Thus, the current implementation is not suitable for

actual data warehouse environment.

Using the combining views can be another bottleneck performance wise. The performance of

both the attribute’s view and the full view of the entity must be further analysed.

The attribute’s view uses the UNION ALL operator that has better performance than the

regular UNION operator does since it does not remove duplicates from the result. As we

already know, the DURING table and the SINCE table cannot contain redundant information.

82

Therefore, there is no need to use the UNION operator. With big data volumes, though, the

attribute’s view can still become slow.

The entity’s full view joins all the attribute views together so there should be the needed

indexes in place on foreign keys that make the JOIN operator to perform faster. In case of our

approach the history tables have primary keys that overlap with foreign keys that reference to

the since table. Because PostgreSQL creates automatically indexes for the primary keys there

are already indexes for the foreign keys as well. Furthermore, PostgreSQL has a feature called

join removal that can help us to skip some joins when any of the attributes are not mentioned

in the SELECT clause and the overall content would not change because of that (Postgres

Wiki, 2014).

83

4. Summary

Maintaining the temporal data has long been with low priority for the SQL standard. Thus, the

users of SQL databases have been struggling with designing and developing databases that are

meant for storing temporal data. The aim of this thesis was to implement as much as possible

the ideas provided in the book “Temporal Data and the Relational Model” by C.J. Date, H.

Darwen and N.A. Lorenzos, using PostgreSQL 9.3 DBMS. A successful implementation in

PostgreSQL would give us confidence, but not a guarantee of course, that the approach

described in this book can also be implemented in other SQL database management systems.

All the developed source code is made accessible to all counterparties who have interest in

this work via shared GitHub repository located at https://github.com/SanderLaasik/temporal.

The most important results are that most of the operators described in the book were

implemented successfully for the data type date, using PL/pgSQL functions. Additionally,

function is provided that automatically creates:

 a history table and a combining view for the attribute that is wished to be

temporalized;

 a set of constraint triggers that implement the constraints protect the data from several

temporal integrity issues;

 aview that combines all the attributes of an entity together, providing a comprehensive

picture about the entity and its attributes over time;

We can confidently say that it is possible to successfully implement the approach provided in

the book in PostgreSQL. However, because the implementation relies extensively on deferred

constraint triggers that are specific to PostgreSQL, we cannot claim that it is universally

possible in case of any SQL DBMS. Furthermore, the created triggers did not have good

performance characteristics. Thus, they can be considered as a “proof of concept” and further

research is needed about improving the performance.

The implemented approach avoids the use of a NOW marker when storing the data, thus

avoiding “the problem of the moving point now”. Furthermore, the data is logically

https://github.com/SanderLaasik/temporal

84

decomposed both horizontally and vertically, meaning that the historical and current data are

stored in different tables, and there is a separate history table for each of the attributes of an

entity. The performance of the DML statements is quite bad thanks to the complex constraint

triggers that are executed at the end of transactions for each modified row. Thus, the

possibilities on how to make the constraints to perform better must be thoroughly analysed. In

addition, the usage of the combining views can become a bottleneck soon if the creation of

additional indexes is not added to the functionality and database statistics is not regularly

refreshed.

Future work should also include the following.

1. Test the triggers in a situation when there are lot of parallel data modifications in the

database.

2. To provide a support for other data types, for example timestamp with different

precisions.

3. To provide a set of INSTEAD OF triggers on top of the combining views that make

updating of data through the generated views possible. These triggers should be

automatically generated. In the current implementation, data modifications in a SINCE

table do not cause automatic addition of new rows to the history tables.

4. Implement the USING syntax that would make creation of many of the operators a lot

easier and clearer, should be added.

5. Investigate the use of the approach in case of schema evolution where one wants to

add columns to tables or remove columns from tables.

6. Investigate how to deal with missing information in case of this approach.

85

Kokkuvõte

Ajaandmete haldamine on pikka aega olnud SQL standardi jaoks madala prioriteediga,

mistõttu on SQL-andmebaaside kasutajad pidanud ajaandmete hoidmise jaoks mõeldud

andmebaaside disainimise ja loomisega palju vaeva nägema. Käesoleva töö eesmärk oli

proovida võimalikult palju realiseerida ideid, mis pakuti välja C.J Date’i, H.Darweni ja N.A.

Lorezose kirjutatud raamatus „Temporal Data and the Relational Model“, kasutades

PostgreSQL 9.3 andmebaasisüsteemi. Õnnestunud realisatsioon PostgreSQL

andmebaasisüsteemis annaks meile kindluse, kuid mitte garantii, et antud põhimõtteid on

võimalik realiseerida ka teistes PostgreSQL andmebaasisüsteemides.

Kogu arendatud lähtekood on kõigile huvilistele kättesaadav GitHub’i koodihoidla kaudu,

millele saab ligi järgnevat linki kasutades: https://github.com/SanderLaasik/temporal.

Käesoleva töö põhitulemuseks on, et enamik raamatus kirjeldatud operaatorid said PL/pgSQL

funktsioone kasutades date andmetüübi jaoks realiseeritud. Lisaks loodi abifunktsioon, mis

loob:

 ajalise toe vajadusega atribuudi jaoks ajalootabeli ja vaate, mis ühendab selle atribuudi

ajaloolised ja praegused andmed

 hulk kitsendustrigereid, mille realiseeritavad kitsendused kaitsevad andmeid erinevate

ajalise iseloomuga kvaliteediprobleemide eest

 vaate, mis ühendab antud olemi kõik atribuudid kokku, pakkudes ülevaatliku pildi

selle olemi ja tema atribuutide ajaloo kohta.

Me võime kindlalt väita, et raamatus pakutud põhimõtteid on võimalik PostgreSQL

andmebaasisüsteemis realiseerida. Samas, kuna antud realisatsioon sõltub tugevasti

kitsendustrigeritest, mis on PostgreSQL-i spetsiifilised, ei saa me väita, et see on

universaalselt võimalik kõigi SQL-andmebaasisüsteemide puhul. Lisaks on loodud trigeritel

üsna halb jõudlus, mistõttu neid tuleks võtta kui antud lähenemise võimalikkuse tõestamist

ning jõudluse parendamiseks on vajalik uurimistööga jätkata.

https://github.com/SanderLaasik/temporal

86

Antud lähenemine väldib andmete hoidmisel NOW markeri kasutamist, vältides seeläbi ka

probleeme, mis sellega tavaliselt kaasnevad. Andmed on nii horisontaalselt kui ka

vertikaalselt tükeldatud, mis tähendab, et ajaloolisi ja praegusi andmeid hoitakse eraldi

tabelites, ning iga atribuudi ajalooandmete hoidmiseks on eraldi tabel. Andmete muutmise

lausete jõudlus on üsna halb, kuna keerukaid kitsendustrigereid käivitatakse iga sisestatud,

muudetud või kustutatud rea kohta. Seega peaks põhjalikult analüüsima erinevaid võimalusi,

kuidas nimetatud kitsendusi parema jõudlusega tööle saada. Lisaks võib üheks pudelikaelaks

osutuda loodud vaadete kasutamine, kui funktsionaalsusele ei lisata täiendavate indeksite

loomist ning ei toimu regulaarset statistika kogumist.

Tulevaste arenduste hulka peaks samuti kuuluma järgnev.

1. Testida loodud trigereid olukorras kus andmebaasis on palju samaaegseid

andmemuudatusi.

2. Luua tugi vähemalt andmetüübile timestamp ning selle erinevatele täpsusastmetele

3. Pakkuda loodud vaadetele hulk INSTEAD OF trigereid, mis võimaldaksid vaadete

kaudu andmebaasis andmemuudatusi teha. Sellised trigerid tuleks automaatselt

genereerida. Praeguses realisatsioonis ei põhjusta andmete muutmine hetkeversiooni

sisaldavas tabelis uute ridade automaatset lisamist ajalooliste andmete tabelitesse.

4. Realiseerida USING süntaks, mis muudaks paljude operaatorite loomise märksa

selgemaks ning lihtsamaks.

5. Uurida, kuidas selle lähenemise kontekstis peaks toimuma skeemi evolutsioon kui

tabelisse lisatakse uusi veerge või tabelist eemaldatakse veerge.

6. Uurida, kuidas tulla selle lähenemise kontekstis toime puuduvate andmetega.

87

References

1. Anchor Modelling [WWW] http://www.anchormodeling.com (05.04.2015)

2. Darwen H., 2003 How To Handle Missing Information Without Using NULL.

3. Date C.J., Darwen H., Lorenzos N.A., 2002. Temporal Data and the Relational Model: a

detailed investigation into the application of interval and relation theory to the problem of

temporal database management. Morgan Kaufmann.

4. Darwen H., 2013. Temporal Data and the Relational Model. Warwick University.

5. Date, C.J., 2006. The relational database dictionary. A comprehensive glossary of

relational terms and concepts, with illustrative examples. O’Reilly.

6. DB-Engines Ranking, 2015. May, 2015. [WWW] http://db-engines.com/en/ranking

(09.05.2015)

7. Gulutzan, P., Pelzer, T., 1999. SQL-99 Complete, Really. Miller Freeman.

8. Hevner A.R, Salvatore T.M, Jinsoo P, Sudha R, 2004. Design Science in Information

Systems Research. MIS Quarterly Vol. 28 No. 1, pp. 75-105/March 2004

9. Kulkarni K., Michels J.-E., 2012. Temporal Features in SQL:2011. SIGMOD Record,

September 2012 (Vol. 41, No. 3)

10. Oracle Database documentation [WWW]

http://www.oracle.com/technetwork/documentation/index-087067.html (05.04.2015)

11. PostgreSQL 9.3.1 Documentation, 2015. [WWW]

http://www.postgresql.org/docs/9.3/interactive/index.html (05.09.2015)

12. PostgreSQL Wiki, 2014. [WWW]

https://wiki.postgresql.org/wiki/What%27s_new_in_PostgreSQL_9.0#Join_Removal

(12.05.2015)

http://www.anchormodeling.com/
http://db-engines.com/en/ranking
http://www.oracle.com/technetwork/documentation/index-087067.html
http://www.postgresql.org/docs/9.3/interactive/index.html
https://wiki.postgresql.org/wiki/What%27s_new_in_PostgreSQL_9.0#Join_Removal

88

13. Potter, E., 2013. A Comparison Between Anchor Modeling and Oracle Workspace

Manager in Managing Temporal Data in SQL Databases. Bachelor thesis. TUT Institute

of Informatics. (in Estonian)

14. Rönnbäck, L., Regardt, O., Bergholtz, M., Johannesson, P., Wohed, P., 2010. Anchor

modeling —agile information modeling in evolving data environments. Data & Knowl.

Eng. 69, 1229–1253.

15. Saal, E., 2015. A Generator for Generating Implementation of Anchor Modelling Models

in PostgreSQL. Master thesis. TUT Institute of Informatics. (in Estonian)

16. Separation of Concerns [WWW]

http://trese.cs.utwente.nl/taosad/separation_of_concerns.htm (13.05.2015)

17. Teradata Magazine – Busting the Pricing Myth [WWW], 2011

http://www.teradatamagazine.com/v11n01/Viewpoints/Busting-the-Pricing-Myth/

(12.05.2015)

18. Teradata Temporal Table Support [WWW]

http://www.info.teradata.com/HTMLPubs/DB_TTU_13_10/index.html#page/SQL_Refere

nce/B035_1182_109A/title.01.2.html (11.05.2015)

19. TimeDB - A Bitemporal Relational DBMS [WWW]

http://www.timeconsult.com/Software/AboutTimeDB1.0.html (14.05.2015)

20. Webopedia [WWW] http://www.webopedia.com/ (22.03.2015)

http://trese.cs.utwente.nl/taosad/separation_of_concerns.htm
http://www.teradatamagazine.com/v11n01/Viewpoints/Busting-the-Pricing-Myth/
http://www.info.teradata.com/HTMLPubs/DB_TTU_13_10/index.html#page/SQL_Reference/B035_1182_109A/title.01.2.html
http://www.info.teradata.com/HTMLPubs/DB_TTU_13_10/index.html#page/SQL_Reference/B035_1182_109A/title.01.2.html
http://www.timeconsult.com/Software/AboutTimeDB1.0.html
http://www.webopedia.com/TERM/R/RDBMS.html

