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Abstract 

Today’s decision-makers need to tackle problems quickly, using the best knowledge 

possibly available to them. Data mining, through its goal of exposing previously unknown 

information in a dataset, is commonly used as a method to support decision-making. This 

thesis applies the theory of Formal Concept Analysis (FCA) and the notion of concept 

coverage to look at ways of efficiently displaying the most important parts of the dataset 

to a decision-maker. Principally, the thesis will examine some existing FCA algorithms 

and introduce a new algorithm – the Greedy Coverage. The algorithms are implemented 

and executed on several real life datasets, and compared in terms of how well they 

compute the optimum concepts for covering the data within a dataset. The business 

applicability of these algorithms is investigated, especially in terms of the notion of 

concept coverage and the new Greedy Coverage algorithm. Importantly, the Greedy 

Coverage algorithm outperforms the existing FCA algorithms, and proves valuable in 

business analysis by offering the data-miner an improved view of the dataset.  

This thesis is written in English and is 68 pages long, including 7 chapters, 12 figures and 

13 tables. 
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Annotatsioon 

Greedy Coverage – algoritm andmestiku katmiseks 

Tänapäeva otsustajad peavad probleeme lahendama kiiresti, kasutades parimat 

võimalikku teadmist mis neil on. Andmekaevet, mille eesmärk on tuua andmestikust esile 

info mida varasemalt ei teatud, kasutatakse laialdaselt otsuste langetamise toetamiseks. 

Käesolev magistritöö tugineb Formaalse Kontsepti Analüüsi (FCA) teooriale ning 

kontsepti katvuse ideele, et uurida kuidas tõhusalt kuvada otsustajale andmestikust kõige 

olulisemat. Peamiselt vaadeldakse töös mõningaid olemasolevaid FCA algoritme ja 

tutvustatakse uut algoritmi – Greedy Coverage. Algoritmid implementeeritakse ja 

käivitatakse mitmetel reaalsetel andmestikel. Algoritme võrreldakse selle osas kui hästi 

nad arvutavad kontsepte mis võimalikult hästi katavad andmestiku. Uuritakse ka 

algoritmide ärilist otstarvet, iseäranis kontsepti katvuse ning uue algoritmi rakendatavuse 

seisukohast. Tulem on, et Greedy Coverage edastab kõiki teisi uuritud FCA algoritme ja 

leiab tõestust algoritmi väärtus ärianalüüsi seisukohast – algoritm annab andmekaevajale 

parendatud ülevaate andmestikust. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 68 leheküljel, 7 peatükki, 12 

joonist, 13 tabelit. 
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List of abbreviations and terms 

1s Number of “one”-s in a dataset 

ARM Association Rule Mining 

FCA Formal Concept Analysis 

GC Greedy Coverage algorithm 

IL Iceberg Lattice algorithm 

LS Local Stability algorithm 

MSM Monotone Systems Method algorithm 

S Stability algorithm 
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1 Introduction 

This chapter offers the reader a foundation for understanding this thesis. Firstly, the 

background of the problem is explained, from the perspective of decision-making, via the 

area of data mining to the specific notion of data coverage. Then, the problem statements 

are proposed. The third part introduces the research process, and acknowledges potential 

considerations that the reader should keep in mind when interpreting the paper. The final 

subchapter outlines the structure and content of the main portion of the thesis. 

1.1 Background 

Technology, transportation and communication are continuously advancing, and with 

them the possibilities for companies and organizations are expanding. It is easier to start 

a company, smaller companies can more easily compete with established companies, and 

more companies are finding new ways to provide for the needs of the consumers [1], [2]. 

The competition is becoming more rapid and a more rapid competition requires faster 

actions – faster decision-making from leaders. However, the need for faster decisions 

denotes a caveat: an increase of groundless decisions. 

Striking a balance between the opposing forces of fast decisions and grounded decisions 

has many names: speed vs quality, efficiency vs effectiveness, tactics vs strategy, doing 

things right vs doing the right things. Regardless of the name, the problem is apparent – 

in order to survive the competition, decision-making needs to focus more on speed. Doing 

so, however, diminishes the importance of thorough investigation, and possibly 

undermines the correctness and value of the business decision. 

How to ensure that decision-makers can tackle problems quickly, using the best 

knowledge possibly available to them? Answering that question is one of the research 

outputs of the field of data mining. Increasing amounts of data from all parts of a business 

are recorded and stored. The datasets formed by the data enable businesses to extract new, 

or previously unknown information and knowledge about their processes [3]. The goal of 

data mining is to expose this type of novel information from datasets [4].  
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Data mining covers many domains – from statistics to machine learning [3] – and has 

many applications – from marketing and sales, to fields as varied as biology and 

manufacturing [4]. This paper focuses on the method of Formal Concept Analysis 

(FCA). Through its infusion of mathematics and philosophy, the FCA theory divides 

entities of data into concepts [5], [6], enabling a better understanding of the underlying 

data. Over the years, the FCA framework has become the basis for many data mining and 

data analysis methods [7], [8], [9]. One of the FCA theory core attributes is the data 

visualization method via line diagrams called the concept lattices [10], [11], [12]. 

However, it has been shown in various research that a lattice quickly becomes unreadable 

as the amount of data grows [13], [14], [15], thus rendering the lattice unusable by the 

decision-maker.  

In order to alleviate the unreadability issue, various algorithms have been proposed and 

compared [16], [17], [18], most of them applied via setting indices on the FCA concepts, 

effectively ranking and filtering the most relevant concepts. However, no known study 

has examined the algorithms and the concepts they calculate based on coverage – the 

percentage of data, or 1s (“one-s”) in the dataset, which are covered by the concept. 

Utilizing the concept coverage as a metric for ranking concepts and only retaining the 

most effective concepts could be a potential solution for giving decision-makers a quick 

and effective overview of the relevant data. 

1.2 Problem Statement 

Considering the issues introduced in the previous section, the underlying theme of the 

thesis is to explore how to extract the most relevant data out of a dataset. Grounded in the 

FCA theory and through the utilization of the coverage metric, the principal questions 

which this thesis will investigate are: 

1. Which FCA algorithms are most effective in covering the largest proportion of a 

dataset? 

2. Is it possible to implement a more efficient algorithm for calculating the optimum 

concepts for a dataset’s coverage? 

3. Do these FCA algorithms have business applications? 
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1.3 Research Process 

The high level steps which need to be taken in order to answer the posed questions, would 

be as follows: 

 Find and implement various FCA algorithms; 

 Find relevant and usable datasets on which to apply the algorithms; 

 Analyse the results presented by the FCA algorithms from a technical perspective 

– in other words, how well do the concepts that the algorithms output cover the 

dataset; 

 Explore a dataset from a decision-making analyst point-of-view, by drilling down, 

comparing and interpreting the results provided by the different algorithms. 

These steps also roughly correspond to the outline of the thesis, which will be introduced 

in Chapter 1.4. 

1.3.1 Restrictions and Considerations 

While the material presented in this thesis is based on thorough investigation, analysis 

and fair judgement, it needs to be brought out that due to the spectrum and complexity of 

the topic, similar research could be undertaken by employing alternative theories and 

methods instead of FCA. Furthermore, the theory of FCA itself has become wide and 

varied throughout the years – hence, only a portion of the theory will be presented in this 

paper. 

 As a consequence, the potential restrictions that the reader should acknowledge are: 

 FCA is just one methodology out of many for data mining and finding the most 

relevant pieces of data. The domains of both classification and clustering [4] can 

be considered similar to FCA depending of the context. Likewise, Association 

Rule Mining (ARM), which deals with finding popular and interesting patterns in 

a dataset [19], [20], has many analogous premises to FCA [21]. The mentioned 

disciplines will not be addressed thoroughly in the scope of this paper, but they 

may serve as potential alternatives for analysing the topic of this thesis. A short 

overview of ARM will be given in Chapter 2.1.1. 
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 FCA, at its core, was developed for handling Boolean datasets. Boolean data is 

logical and thus not always explicit in the physical representation of a business. 

So, it could be said that focusing the analysis only on Boolean datasets is a rather 

limited scope and not applicable to actual business cases. While some branches of 

FCA have investigated exploiting FCA on multi-valued datasets [11], [12], it is 

not a topic for this paper. However, as also demonstrated in Chapter 3, multi-

valued data can quite easily be transformed into Boolean data, and therefore the 

limitation of Boolean data is considered justified, practical, and well usable also 

in non-academic applications.    

 The set of algorithms investigated in this research paper is relatively small – the 

limitation came from the size and format of this paper. A similar work 

encompassing all or most of the FCA algorithms developed throughout the years 

would be better suited for publishing as a series of articles or possibly even a book. 

 The execution speed of the algorithms is important in real life situations, where 

the amount of data may be vast and the time to make a decision limited. However, 

execution speeds and possible optimizations are not considered in the scope of 

this paper. 

 Results and analysis presented in this thesis are carried out in an unprejudiced 

manner; nevertheless, scrutiny must be exercised by the reader, as the business 

problems vary between business sectors, industries and segments. Interpretations 

are inherently subjective, and challenging views and understandings by the reader 

are welcomed by the author. 

As mentioned, these bullet-points should be considered by the reader while working with 

the thesis, but they do not undermine the thesis. Rather, they function as reminders for 

awareness and possible paths for future work for the author, or also for the reader. 

1.4 Outline of the Thesis 

The thesis is structured into five chapters: 

1) The first, current, chapter provides a background and introduction to the research 

conducted, including the research process and some considerations; 
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2) The second chapter explains the theory behind the thesis. Firstly, the principles of 

FCA are explained, namely the notions of context, concept and lattice; the intent 

and extent of a concept. Some applications of FCA, as well as its drawbacks, are 

presented. Four existing FCA algorithms are introduced and implemented. 

Finally, some similar works are discussed, outlining also the uniqueness and 

novelty of the research in this thesis;  

3) The third chapter explains the methodology of the research. The chapter gives an 

overview of the datasets used in the research, including the pre-processing applied 

on the datasets. The idea of concept coverage is examined, as well as the notion 

of cumulative coverage of a dataset. Finally, the number of useful concepts is 

investigated, as it is to be used as a baseline in the research portion of the thesis. 

4) The fourth chapter introduces a novel FCA algorithm – the Greedy Coverage (GC) 

– as an algorithm for calculating interesting concepts. The chapter mainly deals 

with explaining the algorithm’s calculation methodology. The algorithm is the 

original work of the author of this thesis. 

5) The fifth chapter is the first, so called technical part of the results, showing the 

results attained by executing the algorithms introduced in the second chapter, 

together with the GC, on the datasets introduced in the third chapter. The 

methodologies from the third chapter are used as the basis for interpreting the 

results. The new GC algorithm outperforms the studied existing algorithms, 

effectively answering the first and second research question. 

6) In addition to a technical assessment, the sixth chapter provides the reader with a 

qualitative assessment of the results. An overview is given of the Instacart dataset, 

comparing the concepts calculated by the FCA algorithms in more detail. The 

outcome is that the GC algorithm, as well as the notion of concept coverage, are 

applicable in a business setting. 

7) The final chapter summarizes the thesis, revisiting all of the most important 

remarks from each of the thesis’ chapters, and proposing directions for future 

work. 
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2 Mining Meaningful Data 

This chapter introduces the underlying theory of this paper – Formal Concept Analysis 

(FCA). The reader is given an overview of the fundamental principles of FCA, including 

the definitions and representations of a formal context, a formal concept and a concept 

lattice. Some applications of FCA will be discussed, as well as the drawback of a lattice 

containing many concepts and its potential remedies. Four existing FCA indices are 

introduced, together with an overview of their inherent algorithms. Finally, some similar 

works are covered to denote the novelty of the research in this thesis. 

2.1 Formal Concept Analysis 

Formal Concept Analysis is a mathematical theory which emerged in the 1980s from the 

study of sets and lattices [12], [5]. The theory describes the philosophical notion of 

concept as an abstract unit comprising of a set of objects and a set of attributes [5], [10].  

In order to introduce the formal concept, firstly a definition of a formal context is needed. 

A formal context is a triple 𝐾 ∶= (𝐺, 𝑀, 𝐼), where G is the set of objects, M is a set of 

attributes and I is a binary relation between G and M, so that if the relation exists between 

object g from G and m from M, then it is said that object g has attribute m, i.e. (𝑔, 𝑚) ∈ 𝐼 

[5], [10]. Most commonly, a matrix table with binary relations is used for representing a 

formal context [6]. For the purpose of explanation, a context matrix has been constructed 

in Table 2.1. The matrix describes some example products of a financial institution, 

denoted by the attributes, or columns – and some customers, denoted by the objects, or 

rows. 

Table 2.1. An Example of a Formal Context. 

 Deposit 

Account 

Car 

Lease 

Home 

Loan 

Credit 

Card 

Customer 1 1 1 0 1 

Customer 2 1 0 1 1 

Customer 3 0 1 0 0 

Customer 4 1 1 1 0 
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The corresponding sets of the example would be as follows: 

G – the set of objects – is comprised of customer 1 to 4. 

M – the set of attributes – is comprised of the products: Deposit Account, Car Lease, 

Home Loan and Credit Card. 

I – the set of relations – is marked by a “1” in the appropriate row and column, if the 

relation is true, and by a “0” if the relation is not true. For example, Customer 1 has a 

deposit account, a car lease agreement and a credit card.  

A formal concept of a formal context (𝐺, 𝑀, 𝐼) is a pair (𝐴, 𝐵), where A is a subset of G, 

and B is a subset of M [5]. The set A is called the extent, and the set B the intent of the 

formal concept (𝐴, 𝐵) [12], [5]. In other words, the objects belonging to the concept 

(𝐴, 𝐵) are described by the extent of the concept, and the attributes of the concept (𝐴, 𝐵) 

are consequently described by the concept’s intent.  

Based on the definition, the concept can be understood as a unique segment of the context, 

composed of object and attribute relations. An example from our financial institution 

context would be: customers having both, a deposit account and a car lease agreement. 

As can be seen from Table 2.2, the concept contains Customer 1 and Customer 4, who 

both also have additional but different products associated with them. Additionally, both 

Deposit Account and Car Lease are contained by other customers, but no other customer 

has both of them. 

Table 2.2. A Formal Concept in a Context. 

 Deposit 

Account 

Car 

Lease 

Home 

Loan 

Credit 

Card 

Customer 1 1 1 0 1 

Customer 2 1 0 1 1 

Customer 3 0 1 0 0 

Customer 4 1 1 1 0 

 

The amount of concepts a concrete formal context holds is definitive and immune to 

permutation [10]. In other words, any formal context with the same structure – that is, 

with the same object-attribute relationships – will always hold the same amount of 

concepts with the same concept hierarchy. Also, the maximum amount of concepts in a 
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formal context is 2n, where n is the lower amount of either attributes of objects – 

whichever is smaller [10]. In the financial institution example, this would be 24 = 16. As 

can be understood, the amount of concepts grows exponentially, and a relatively small 

context of 100 objects and 20 attributes could theoretically have 220 = 1 048 576 concepts. 

That is, however, only theoretically likely to occur; actual contexts will generally hold far 

less concepts, as can be seen also in Chapter 3.1.  

An important property of the formal concepts is conceptual hierarchy: formal concepts 

are naturally ordered, having the subconcept-superconcept relation [10], [12]. The 

ordered set of all formal concepts of a formal context is called a concept lattice, with all 

concepts having a partial order relation (≤) [5], [6], [12]. Furthermore, any two concepts 

have a mutual superconcept – supremum – and a mutual subconcept – infimum – 

indicating that the concept lattice is a complete lattice [6], [10]. The concept lattice is 

most commonly depicted using a line diagram, where the more general superconcepts are 

visualized above the less general subconcepts, and connections are indicated via lines 

between the concepts. For the purpose of reference, all concept lattices in this thesis were 

drawn using the program Concept Explorer [22]. 

Figure 2.1 depicts all the concepts from the context introduced in Table 2.1. A concept is 

marked by a round node, and the connections are marked by a straight edge going from 

one node to another. The top most concept is the supremum, and the bottom most concept 

is the infimum. The supremum contains all of the objects of the context, as can be seen 

when following the descending lines (the extent): the concept is superconcept to all other 

concepts in the lattice. In this example, the supremum does not contain any attributes, 

because there is no product in the context which all customers would have. In such cases, 

it is said that the intent of the supremum is an empty set. This is common in most datasets, 

but may not always hold true, as an attribute may have a relation across all objects. 

Similarly, the infimum contains all of the attributes, as can be seen when following the 

ascending lines (the intent). Again, the infimum does not contain any objects in this 

example, since in the example there is no customer who has a relation with all the products 

in the context, but in general it is possible and thus an infimum containing an object in its 

extent indicates that the object contains all the attributes of the context.  

A concept lattice provides a visual overview of the context’s underlying concepts and the 

relations between the concepts, which may not otherwise be so obvious from looking at 
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the context. For example, when examining Figure 2.1, following the path down from the 

concept marked with “Credit Card”, it can easily be noticed that there are two customers 

in the concept’s extent: Customer 1 and Customer 2. Indeed, looking at the context from 

Table 2.1, one can see that those two customers have a credit card. It can also be observed 

that both Credit Card and Home Loan are marked as subsets of the concept holding the 

Deposit Account notation. That implies correctly that all customers who have either a 

credit card or a home loan also have a deposit account in our context. Also, it is important 

to note that concepts may not always match exactly to an attribute or an object, as can be 

seen by examining the concept from Table 2.2. In Figure 2.1, the concept is the left-most 

concept in the centre row and it has no denominators, because no customer or product 

matches to that concept in its full.  

 

Figure 2.1. Concept Lattice of the Context from Table 2.1. 

2.1.1 FCA Applications 

Already from its early days, FCA has seen application in various areas. Some of the early 

research fields included linguistics, text mining, association rule mining (ARM), data 

analysis, conceptual knowledge processing, and software engineering [5]. More recent 

years have added further to the spectrum, with additions such as security analysis, web 
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mining, social media mining, software testing, e-learning, bioinformatics, image 

processing and psychology [6], [8], [23], [24], [25]. Such a wide array of subjects 

indicates the usefulness and applicability of FCA.  

Albeit this thesis does not deal with ARM specifically, a short overview of the notion will 

be given here to help the reader in understanding some of the analysis and results parts of 

this thesis, as each of the business-related datasets introduced in Chapter 3.1 is a so called 

market basket – a matrix table of purchases (rows) and products (columns). ARM’s main 

goal is to find popular patterns in such datasets, most commonly so that if the purchase 

of one product strongly indicates the purchase of another product, then this connection is 

presented to the analyst of the dataset [19], [20]. While this methodology is useful for 

drilling down and understanding relationships between specific products, it is 

computationally heavy, and may provide a long list of associations which do not provide 

great value to the analyst in understanding the dataset as a whole [20], [21]. Thus, it is 

expected that if the results and analysis in this thesis will provide similar results as ARM, 

giving the analyst many associations of products, then the associations have to be very 

strong and justified in order to indicate value. That’s because, as listed in the problem 

statements in Chapter 1.2, the aim in this research paper is to find methods for quick and 

extensive overview of the dataset, not a drilled down strong correlation as would be 

expected from an ARM-focused study.   

2.1.2 FCA Drawbacks 

Having introduced the FCA theory and discussed briefly its applications, it is time to also 

visit some of its drawbacks. As discussed previously, a concept lattice is usually a much 

quicker and clearer way for the viewer to comprehend concepts and their relations, 

especially when compared to a matrix data table. However, a crucial impediment of the 

concept lattice is its scalability – as noted in Chapter 2.1, the amount of concepts in a 

context can grow exponentially as the context’s size increases. The financial institution 

example used previously has 4 objects, 4 attributes and 10 concepts, from a potential 

maximum of 16 concepts. A sparse dataset introduced and used later in this paper, 

containing grocery store data of 75 transactions (objects) and 99 commodity groups 

(attributes) has a concept count of 290, which might not seem like a lot, but as can be 

seen from Figure 2.2, the concept lattice is unreadable.  
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Figure 2.2. Concept Lattice of 290 Concepts. 

Naturally, one could drill down to specific concepts, and investigate the relations and 

implications of a specific subset, but this would be cumbersome and sluggish, and it 

would not give the data miner the quick overall picture of the dataset, which is largely the 

purpose of the lattice. 

The issue is not new to FCA [8], [13], [14], [15], and various methods have originated to 

tackle this. Some of the most published ones include: 

 Classification methods – these methods drastically reduce the amount of 

concepts by ways of building classes from a set of examples, and using the 

generated classes as a template in the generation of new examples [26], [27]. 

These methods have been found to be especially useful in the field of machine 

learning [28]. However, in data extraction, one should be careful in utilizing these 

methods, as a large portion of relevant data may be left out already at the creation 

of the concepts. 

 Nested line diagrams – this method is purely for simplifying the visualization of 

the concept lattice by nesting portions of the original lattice together, to form sets 

of smaller diagrams [5], [7], [12], [29]. The sets of smaller diagrams can, in turn, 

be presented as a lattice. While useful for visualization, it needs to be noted that 

such a solution would still hold all concepts of the context and thus would not be 

useful in determining which pieces of the data are most relevant. 
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 Concept indices [16], [17], [30]. Indices are used as a grading system for 

concepts, and based on the hierarchy provided by the index, only the best 

performing concepts are kept. These concepts can be used as a basis for generating 

a new, smaller and better readable lattice. 

With the goal of finding the most relevant and valuable pieces of data in a business 

context, the notion of concept indices is the preferred choice, as it considers all of the 

initial data, while compressing the data into a visually comprehensible form. 

Consequently, the next chapter will focus on introducing various algorithms designed for 

calculating indices and allowing for a ranking of the concepts within a context. 

2.2 Concept Indices 

As described in the previous sections, the number of concepts in a formal context may 

become too large for a viewer to comprehend. In order to extract meaning out of a dataset, 

some sort of filtering needs to be applied to limit the number of concepts. Understandably, 

the filtered concepts should be the most interesting, relevant and representative of the 

dataset. This section will introduce routines for finding the most relevant concepts of a 

context.  

Various algorithms have been developed throughout the years for finding the most 

meaningful concepts out of a concept set by grading the concepts based on some 

predefined metrics. A selection has been made in order to fit the constraints of this paper. 

Two indices with a widespread use and proven efficiency were chosen, namely the 

Stability index [16], [17], [23], [30], [31], [32], [33], [34], [35] and the Iceberg Lattice 

[10], [23], [30], [36], [37], [38]. A few less known but interesting methods were chosen 

as contrast: Local Stability [39] and a Monotone Systems Method [40], [41]. Some 

notable indices which were left out include the MONOCLE method [16], [41], which 

proved effective in smaller sample datasets but had to be removed due to performance 

restrictions, and probability and separation, which have good coverage in the academia 

[16] but have shown to be outperformed by the stability index in comparisons [17].  

The implementations of the algorithms shown in the following subchapters are done in 

Python 3.6.3 using the Concepts 0.7.12 module [42]. 
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2.2.1 Concept Stability 

Concept Stability (S) of formal concepts is a measure which has been proven effective in 

dealing with contexts which include noisy data [17], [30]. The intensional stability index 

used in this work indicates how much the concept intent depends on particular objects of 

the extent [32]. In other words, it is the probability of preserving the intent of the concept, 

after removing an arbitrary number of objects from the context [31]. Data which is noisy 

is more likely to be removed in such cases, and thus the concepts that have higher stability 

are possibly the ones the viewer may find more interesting and relevant. The 

implementation in Figure 2.3 is author’s implementation based on the pseudocode 

provided in [31]. 

Stability = {} 

CountedSubsets = {} 

for i in l: 

    TotalSubsets = 2**len(i.extent) 

    subsum = 0 

    for j in l.downset_union([i]): 

        if j != i: 

            subsum = subsum + CountedSubsets[j] 

    FinalSubset = TotalSubsets-subsum 

    CountedSubsets[i] = FinalSubset 

    Stability[i] = FinalSubset/TotalSubsets 

 

Figure 2.3. Stability Algorithm. 

The algorithm moves through the lattice starting from the bottom concept, calculating the 

subset amount and stability for the concept. The algorithm goes up to the next concept 

once all of the concept’s subconcepts’ stabilities have been calculated – this is not visible 

in Figure 2.3, as the lattice object l is pre-sorted. During the calculation, the amount of 

subsets from subconcepts is deducted when calculating a concept’s subset, in order to 

subtract the subsets of the concept intent which do not generate the concept extent [31]. 

The resulting stability of a concept is a value from 0 to 1, with 1 showing the highest 

stability.  

2.2.2 Iceberg Lattice 

Iceberg Lattice (IL) is one of the most widely addressed methods for keeping only the 

most relevant concepts in a lattice [10], [34], [36], [37]. The method is applied by setting 

a limit on the percentage or number of objects that a concept should cover [10], in other 
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words: it is a threshold on the number of objects that should be in the extent of the concept. 

The implementation in Figure 2.4 was done based on the explanation in [39]. 

IcebergLattice = {} 

for i in l: 

    IcebergLattice[i] = len(i.extent)/len(c.objects) 

 

Figure 2.4. Iceberg Lattice Algorithm. 

The name of the method comes from the fact that the most general concepts, which 

usually have the largest extents, are in the top part of the concept lattice, giving the viewer 

sort of an iceberg view of the lattice diagram [39]. It is also important to note that a bottom 

concept needs to be added to the iceberg view of the lattice in order to make the view a 

complete lattice again [10], since only having the concepts from the top of the lattice 

would not have a bottom closure. 

2.2.3 Local Stability 

Local Stability (LS) is an add-on to the calculation of the concept stability, with little 

evidence of use in research papers thus far. However, it is interesting because of its 

inherent method of eliminating residual concepts. Namely, applying LS maintains only 

the concepts which have stability at least as high as all of its upper and lower neighbours 

[39]. This means that the prerequisite for applying LS is the calculation of the stability 

index. The reasoning is that maintaining the concepts which have only the highest 

stability may give a one-sided view of a dataset, as concepts which are relevant but 

happen to have low stability due to context structure are removed. LS ensures that those 

concepts remain available for the viewer. The implementation in Figure 2.5 is built on the 

definition in [39].  

One notable property of the LS is that, unlike the rest of the algorithms included in this 

study, the LS only keeps a certain amount of concepts which pass the filtering. This means 

that the final number of concepts is possibly far less than the total number of concepts in 

the dataset. This feat can be observed also in the results part in Chapter 5.1. 
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LocalStability={} 

for i in Stability: 

    a = True 

    for j in i.upper_neighbors: 

        if Stability[j] > Stability[i]: 

            a = False 

            break 

    if a == True: 

        for j in i.lower_neighbors: 

            if Stability[j] > Stability[i]: 

                a = False 

                break  

    if a == True: 

        LocalStability[i] = Stability[i] 

 

Figure 2.5. Local Stability Algorithm. 

2.2.4 Monotone Systems Method 

A monotone system is described as a set of elements with a weight function, where the 

weight function measures the importance of the elements for the system [41]. One such 

measure for importance employed within monotone systems is called conformity [40], 

which has been used in FCA restrainedly thus far [41]. The premise of the Monotone 

Systems Method (MSM) employed here is influenced by the conformity scale: first, the 

weights of each attribute and object based on its frequency in the dataset are calculated; 

then, the concepts are ordered based on the area they cover within the context, taking into 

account also the uniqueness of the concept’s coverage [41]. In other words, the highest 

ranked concepts are the ones that cover a large part of the dataset, but do not share this 

coverage with too many other concepts from the context. The best concepts are the ones 

which have the highest weights score.  

The implementation in Figure 2.6 is done based on the example of [41]. The algorithm 

first calculates the sum of concepts which have at least one element in both extent and 

intent. The frequencies of each object and attribute within the concept set is calculated, 

which give the multipliers for the weight function. Finally, the weight for each concept is 

calculated by multiplying the object and attribute multipliers, taking into account also the 

uniqueness of the concept. 
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cCount = len(l) 

for con in l: 

    if (len(con.extent) == 0) or (len(con.intent) == 0): 

        cCount -= 1       

propvalues = [] 

for i in c.properties: 

    curval = 0 

    for a in l: 

        if (len(a.extent)) > 0: 

            if i in a.intent: 

                curval += 1 

    propvalues.append([i, curval]) 

objvalues = [] 

for i in c.objects: 

    curval = 0 

    for a in l: 

        if (len(a.intent)) > 0: 

            if i in a.extent: 

                curval += 1 

    objvalues.append([i, curval]) 

ConformityScale = [] 

for a in l: 

    objsum = 0 

    atrsum = 0 

    for i in a.intent: 

        j = c.properties.index(i) 

        objsum = objsum + (cCount - propvalues[j][1]) + 1 

    for i in a.extent: 

        j = c.objects.index(i) 

        atrsum = atrsum + (cCount - objvalues[j][1]) + 1 

    ConformityScale.append([a, objsum*atrsum]) 

ConformityScale = sorted(ConformityScale, key=lambda x: x[1], 
reverse=True) 

 

Figure 2.6. Monotone Systems Method Algorithm. 

2.3 Similar Works 

One of the key motivations for the subject of this thesis was that no reviewed or known 

paper had examined the same problems via the same methodology as listed in this thesis. 

However, there exists various scientific research where FCA algorithms are compared or 

concept interestingness in measured. The following is a short summary of some of the 

most relevant and related works: 

 On Interestingness Measures of Formal Concepts [16] 
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o Summary: The article investigates indices for calculating interesting 

concepts and compares the indices based on efficiency of computation and 

applicability to noisy data. An overview of 20 indices is given, together 

with a comparison between their key features and calculation complexity. 

The datasets are generated randomly, using different densities, and the 

comparison of interestingness is done by comparing correlations between 

the different indices.    

o Differences:  

 A larger number of algorithms (indices) is examined; 

 Contexts used are artificial, not real life; 

 Concept interestingness is measured based on similarity or 

correlation of the different algorithms. 

 Approaches to the Selection of Relevant Concepts in the Case of Noisy Data [17] 

o Summary: The aim of the article is to compare how FCA indices deal with 

noisy data. Four datasets and their lattices are generated, and different 

levels of noise are introduced into the datasets. Then, three indices - 

stability, separation and probability - are applied on the noise-included 

datasets to see how well the calculated concepts and the respective lattice 

corresponds to the original lattice of the dataset without noise. It is found 

that stability is the most efficient in correcting for the noise in datasets. 

o Differences:  

 Focus only on noise-filtering; 

 Contexts are generated, not real life. 

 Basic Level in Formal Concept Analysis: Interesting Concepts and Psychological 

Ramifications [18] 

o Summary: Taking the notion of basic level from psychology, the authors 

implement five different indices for compressing a set of concepts into 
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more general ones which would better explain the whole dataset. The 

datasets used in the experiments are both real life and generated. In some 

cases, the indices calculated quite similar results, and the correlation 

between the indices was examined in more detailed. The indices are found 

to produce more natural and perhaps interesting concepts.  

o Differences: 

 Only a novel and specific set of indices is implemented and 

compared; 

 Algorithms are compared based on similarity or correlation. 

Considering the above, the uniqueness of this research can be outlined as follows: 

 Comparison of algorithms only on real-life datasets. Further, partially executing 

the algorithms on business-relevant datasets – namely, market baskets; 

 Using context coverage as a comparison metric. 

Therefore, the research is deemed relevant. Having explored the background of the FCA 

theory, its applications and drawbacks, and potential remedies to the drawbacks via 

concept indices, the next chapter will now introduce the datasets on which the research 

will be conducted on, as well as the methodology principles of the study. 
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3 Research Methodology 

Having introduced the underlying theory and algorithms which will be used for 

conducting the research, this chapter will explain the applied methodology for validating 

and analysing the results. The chapter is divided into three parts: first, the datasets will 

be introduced and explained. Secondly, the notion of the area of a concept, also called the 

concept coverage will be examined. Finally, as also disclosed in the theory part – the 

number of concepts in a lattice can easily become very large, and as a result, analysing 

the dataset can become enigmatic. Thus, the third part of the chapter will establish some 

thresholds on what would be an optimum level of concepts to observe in a dataset. 

Altogether, by the end of this chapter, the foundation for conducting the research is in 

place, by having introduced what the research will be conducted on (datasets), what will 

be measured and how (concept coverage), and what will be the measuring points (number 

of concepts).  

3.1  Datasets 

In order to assertingly answer the research questions posed by this thesis, several datasets 

would need to be studied. The aim in choosing the datasets for conducting this research 

was to have substantially large datasets from different perspectives. In total, five datasets 

were chosen. As one of the goals of the paper is to verify the business applicability of 

FCA algorithms calculating concepts with high coverage, the selection preferred datasets 

originating from a business environment: three of the five datasets come from the retail 

world and comprise of market basket data. The other two datasets, which are not 

originating from a business environment, involve a set on voting records from the United 

States congressional voting, and a set on student performance from two Portuguese 

schools. However, the two datasets can of course be thought of as a model for how a 

customer segmentation dataset might look like. Thus, one could argue that including those 

two datasets is also well applicable to a business setting. 

The datasets’ descriptions and conducted pre-processing steps are given in the following 

subsections. The metadata in Table 3.1 provides the reader with info on the size of a 

dataset, a dataset’s density and an indication of potential similarity of the data within a 

dataset. 
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Table 3.1. Metadata of the Datasets. 

Dataset # 

attributes 

# 

objects 
# 1s 

Coverage 

by 1s 

# 

concepts 

Concepts-

to-1s ratio 

1984 House Votes 18 435 3 856 49.25% 10 644 2.76 

Student Performance 22 395 4 573 52.62% 64 422 14.09 

Basket Example 1 99 75 408 5.49% 290 0.71 

Basket Example 2 – E-Commerce 70 1 134 2 259 2.85% 851 0.38 

Basket Example 3 – Instacart 134 600 4 750 5.91% 18 897 3.98 

 

3.1.1 1984 House Votes 

The original dataset holds the votes of the United States House of Representatives 

Congressmen from 1984 on 16 key votes as identified by the Congressional Quarterly 

Almanac [43]. The following activities were done during the pre-processing of the data:  

 The first attribute, whether the Congressman was Democrat or Republican, was 

transformed into Boolean data type; 

 The votes for “yes” were counted as positive answers, marked by 1s. The votes 

with unknown or “no” were counted as negative answers. 

3.1.2 Student Performance 

This dataset represents information and grades of students in secondary education from 

two Portuguese schools [44]. In the original dataset there are two distinct sets: one for 

Mathematics and the other for Portuguese classes. The attributes in both sets are identical, 

containing some Boolean, a few nominal, and mostly numeric type attributes. The pre-

processing for the Student Performance dataset included the following: 

 Only the Mathematics set was kept; 

 The following attributes were removed from the dataset: school identifier, student 

age, parents’ education, parents’ jobs, reason for choosing that particular school, 

first period grade, second period grade. 

 All remaining attributes containing numerical or nominal values were transformed 

into Boolean values. For example, final grades below 10 were replaced by 

Boolean “Failed final” attribute. 
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3.1.3 Basket Example 1 

The first dataset of the business-related datasets is a small sample dataset of retail sales, 

including information about the sales and information about the products [45]. The 

product list is matching to a grocery store’s product list. It needs to be noted, however, 

that there is little information present about this dataset, thus some reservation might be 

needed in assessing the results from this analysis. Based on a critical judgement, the 

dataset appears to be coherent. Pre-processing which was done on the dataset: 

 Keeping only defined product category and basket matches; 

 Removing duplicates. 

3.1.4 Basket Example 2 – E-Commerce 

The dataset contains all transactions of a UK-based online retailer from a period of time 

in 2010 and 2011 [46]. Main articles of the retailer are all-occasion gifts, with many of 

the customers being wholesalers. The initial dataset is relatively large, containing over 

500 000 rows. Thus, in addition to pre-processing, a smaller sample of the dataset was 

chosen. A mixture of representative and random sample was used to ensure optimal data 

quality. The pre-processing activities done before sampling were as follows: 

 Rows with missing values were removed; 

 Duplicate orders were removed; 

 Orders which were cancelled were removed. 

3.1.5 Basket Example 3 - Instacart  

Instacart is a service in major cities in the US, where the consumer can shop for groceries 

in a variety of stores via the Instacart app and schedule a delivery of the groceries to their 

door-step [47]. In May 2017, Instacart open sourced a dataset of 3 million orders [48]. 

The dataset as a whole, according to Instacart, is not representative of their products or 

users [49]; but it nevertheless provides a highly detailed and large amount of data for 

analysis. As with the previous dataset, this dataset was also sampled to allow for a 

reasonable amount of concepts to emerge from the dataset. The full list of pre-processing 

activities were: 
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 Instead of products, aisles were mapped to specific orders to reduce noise and 

variance in data; 

 Duplicate order-aisle mappings were removed. 

3.2  Concept Coverage 

The notion of the concept coverage, also called the area of a concept, is relatively simple 

to understand – it is the sum of 1s (“one-s”) in the concept. The 1s are important, because 

they determine the existing relation between the object and the attribute. The absence of 

1 means that there is no linkage between the object and the attribute, and while the lack 

of relation may have implications of its own, it is generally not an insightful statement. It 

makes sense from a perspective of trying to understand the data and its relations to look 

at the 1s within the context. Thus, the concept coverage measures the number of the 

relations described by the concept. In other words, how many relations the concept 

covers. An example of concept coverage can be observed in Table 2.2: the coverage of 

the highlighted concept is 4, as the concept covers four 1s of the dataset. 

Surprisingly, concept coverage has appeared in relatively few research papers thus far –

that includes not only FCA, but also its related fields – at the same time, no paper has 

mentioned any shortcomings of looking at the concept coverage. The following is a brief 

summary of the most known mentions of the concept coverage and its importance: 

 In the field of clustering, the notion of Coverage Density, which in essence 

measures also the 1s of important data clusters, is used as a way to discover the 

optimal number of clusters a dataset should produce [50], [51]. 

 In the domain of role mining, which is a subdomain of data mining focusing on 

finding patterns within the rights and roles assigned to users of a system, a similar 

notion of finding areas covered by different roles is used as a way to distinguish 

the most dominant roles in the system [52].  

 In FCA-related research, the concept coverage has been used as a way to better 

describe the importance of concepts, indicating that a larger coverage of 1s gives 

prominence to concepts which are more relatable to common notions [41]. 
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However, there has been little further exploration into what the area of a concept 

might actually denote in relation to FCA concepts. 

A concept’s coverage is useful for understanding how big portion of the dataset the single 

concept covers. In order to measure the coverage across a whole dataset, the cumulative 

coverage of concepts in regards to the uncovered portion of the dataset will be examined. 

As an example, another concept from the example introduced in Chapter 2.1 is depicted 

in Table 3.1. This concept covers also four 1s, as the example in Table 2.2. If the concept 

from Table 3.1 is calculated after the concept from Table 2.2, then the 1s already covered 

by concept from Table 2.2 (underlined in Table 3.1) cannot be counted towards the 

cumulative coverage of the dataset. Thus, while the concept coverage of the concept in 

Table 3.1 is four, the addition to cumulative coverage is three – three 1s which were not 

covered previously.  

Table 3.2. Cumulative Coverage Example. Already counted 1s are underlined. 

 Deposit 

Account 

Car 

Lease 

Home 

Loan 

Credit 

Card 

Customer 1 1 1 0 1 

Customer 2 1 0 1 1 

Customer 3 0 1 0 0 

Customer 4 1 1 1 0 

 

Finally, in order for a metric to be effective and articulative, it needs to have a method for 

benchmarking – in other words, there has to be a threshold for using the metric. This will 

be discussed in the following section. 

3.3 Number of Useful Concepts 

Line diagrams have been proven to be an effective way for visualization of information 

[53]. However, as introduced in Chapter 2.2, the number of useful or relevant concepts is 

important in visualization, because the number of elements to be observed may be 

incomprehensibly large. Thus, in order for data mining to be effective, there should be set 

a maximum number of concepts which would keep the context and the lattice still 

perceivable to the viewer. Naturally, the data mining tasks may be of different urgency, 

and therefore 3 different levels of maxima will be set, to investigate instances of both 

more immediate data visualization needs and more exhaustive ones. 
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Research on human perception and information processing has shown that 8-10 elements 

are perceivable to an average human, depending of the stimuli [54]. Furthermore, it is 

natural that if a person is familiarized with the subject, then the amount of perceivable 

elements would increase. Based on this information, 10 concepts is taken as the smallest 

threshold; this should be the number of concepts that would enable the dataset’s 

implications to be immediately comprehensible to the viewer. The largest threshold to 

observe would be 50 concepts: while not based on empirical evidence, it is deemed as 

the largest possibly comprehensible number of concepts in a lattice for a thorough 

analysis project. As an example, if there was an important decision to be made and the 

highest possible confidence needed, 50 concepts would be feasible for an experienced 

data miner to analyse still in a quick and relatively efficient manner. Finally, the threshold 

of 30 concepts is taken as a mean of the previous two thresholds, to showcase a possible 

standard circumstance of a viewer finding an optimum between speed and confidence of 

the data analysis task. 

Thus, to summarize, the setup for conducting the research would be as follows: 

1) Execute concept indices from Chapter 2.2 on the concepts of the datasets 

introduced in Chapter 3.1, producing 5 ordered concept sets for each of the 5 

datasets; 

2) Calculate the concept coverages for the top 50 concepts from each of the concept 

sets; 

3) Calculate the cumulative coverages of the datasets at each concept; 

4) Compare the results at the 10-, 30- and 50-concept marks. 

The results based on this outline will be explored in Chapter 5. The next chapter 

introduces the Greedy Coverage, an algorithm developed by the author during the 

research in an effort to more efficiently calculate concepts with high cumulative coverage. 
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4 Greedy Coverage 

Following the foundation for the metrics and measurements of the research conducted in 

this paper, and some initial executions of the existing FCA algorithms, it became evident 

that a possibly more efficient algorithm could be constructed to find the concepts covering 

the whole context in a fewer amount of steps. This algorithm is introduced in this chapter 

and is part of the original work done by the author. 

4.1 The Algorithm 

One of the main research questions of this thesis is to find the algorithm for covering most 

effectively the biggest portion of the data. During the research, it was realized that a 

greedy algorithm which would choose concepts based on their addition to the cumulative 

coverage of the uncovered dataset may turn out to be a feasible alternative to the indices 

introduced in Chapter 2.2. Thus, the Greedy Coverage algorithm was developed by the 

author. The premise of the algorithm is as follows: 

1) Calculate the coverage of all concepts within the context; 

2) Choose the concept with the highest coverage of 1s; 

3) Remove the concept and its covered 1s from further calculations; 

4) Recalculate the coverage for all remaining concepts; 

5) Repeat steps 2-4 until full coverage of the context has been achieved. 

The implementation in Python 3.6 using Concepts 0.7.12 module is shown in Figure 4.1. 

Some of the variables are explained below to assist in understanding the algorithm: 

 GreedyCoverage – holder for the concepts and their respective cumulative 

coverage values; 

 CoverageList –  transitory holder for the concepts, used for choosing the next 

concept to be added to GreedyCoverage list; 

 BoolsList – holder for uncovered 1s in the dataset. 
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GreedyCoverage = [] 

CoverageList = [] 

BoolsList = [] 

rowCounter = 0 

totalOnes = 0 

for val in c.bools: 

    totalOnes += sum(val) 

for i in l: 

    z = [(d[0].index(p), d[1].index(q)) for p in i.extent for q 
in i.intent] 

    CoverageList.append([i,z]) 

for i in CoverageList: 

    i.append(len(i[1])) 

for j in c.bools: 

    columnCounter = 0 

    for k in j: 

        if k == True: 

            BoolsList.append((rowCounter, columnCounter)) 

        columnCounter +=1 

    rowCounter += 1 

CoverageList = sorted(CoverageList, key=lambda x: x[2]) 

GreedyCoverage.append(CoverageList.pop()) 

boolCount = GreedyCoverage[-1][2] 

while boolCount < totalOnes: 

    for i in GreedyCoverage[-1][1]: 

        if i in BoolsList: 

            del BoolsList[BoolsList.index(i)] 

    for j in CoverageList: 

        pointList = [] 

        for k in j[1]: 

            if k in BoolsList: 

                pointList.append(k) 

            else: 

                j[2] -=1 

        j[1] = pointList 

    CoverageList = sorted(CoverageList, key=lambda x: x[2]) 

    GreedyCoverage.append(CoverageList.pop()) 

    boolCount += GreedyCoverage[-1][2] 

 

Figure 4.1. Greedy Coverage Algorithm. 

Due to its proof-of-concept status, possible optimizations to the algorithm have not been 

considered within the scope of this paper. Based on the findings from the next chapters, 

a possible extension to the algorithm and its output is discussed in Chapter 7.1.  
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5 Results and Interpretation 

This chapter presents the results of the research done. The first part looks at the results on 

each of the datasets separately. The second part of the chapter summarizes the findings 

and presents some interpretations. 

5.1 Results of Algorithm Executions 

The research was done on the five datasets introduced in Chapter 3.1, using the five 

algorithms introduced – the four existing FCA algorithms introduced in Chapter 2.2, and 

the fifth – Greedy Coverage algorithm – introduced in Chapter 4. All algorithms were run 

on all datasets, producing an ordered list of concepts for all datasets. Then, calculation 

was done for determining how big area of the context – or how many of the 1s in the 

context – are covered in a cumulative manner. As an example, if the 2nd concept covers 

some 1s which were covered also by the 1st concept, then those 1s do not count towards 

the cumulative (dataset) coverage.  

Below is a short legend for understanding the graphs which depict the results: 

 X-axis: number of concepts; 

o Goes from 0 to 50 concepts; 

o 10-, 30- and 50-concept marks are indicated by a vertical line.  

 Y-axis: number of 1s; 

 Lines: the algorithms: 

o S = Stability; 

o IL = Iceberg Lattice; 

o LS = Local Stability; 

o MSM = Monotone Systems Method; 

o GC = Greedy Coverage. 
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5.1.1 1984 House Votes 

The first algorithm executions were done on the 1984 House Votes dataset. Recalling 

from Chapter 3.1, this dataset is quite dense, having a high number of 1s – 49.25%. The 

number of concepts is also quite big with 10 644. The graph of results from the algorithm 

executions can be seen in Figure 5.1. 

 

Figure 5.1. The Results of the 1984 House Votes Dataset. 

 

The clear winner in this dataset is the GC algorithm – it covers the most concepts in all 

checkpoints. In fact, the algorithm covers the whole dataset by the 41st concept. This is 

quite remarkable, considering the total amount of concepts. The weakest algorithm here 

is the MSM, which has high coverage with the first concept, but then has a low and steady 

climb for most of the observed experiment, except the 13th concept, when there is a high 

spike upwards. Another observance is that the IL is noticeably behind S at the 10-concept 

mark, closes the gap modestly by the 30-concept mark and surpasses S by the 50-concept 

mark. LS performs strong in the range of 5-10 concepts, but flats out thereafter and ends 

its run at the 24th concept – this is expected behaviour, as described in Chapter 2.2.3, the 

LS algorithm does not include all of the concepts present in the dataset.   

5.1.2 Student Performance 

The Student Performance dataset had the highest density – 52.62% - and the highest 

number of concepts, with a whopping 64 422. Looking at the results in Figure 5.2, the 

GC again outperforms other algorithms and comes out on top. Further, the GC also 
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manages again to reach the total coverage of the context before the 50-concept mark: in 

this context, all 1s are covered by the 46th concept. In comparison with other algorithms, 

the GC covers consistently 60-70% more 1s throughout the observed range. The S and IL 

algorithms perform quite equally until the 25th concept, but then S shows better results at 

both 30-concept and 50-concept mark. This time, the MSM is not as far behind as in the 

previous dataset, but it is still clearly losing to both S and IL at all checkpoints. Finally, 

the LS algorithm, while having more than 50 concepts in this context, performs poorer 

than any of its rivals at all 3 checkpoints.  

 

Figure 5.2. The Results of the Student Performance Dataset. 

5.1.3 Basket Example 1 

The first market basket example is the smallest studied dataset, both in terms of 1s and 

concepts. Analysing the results from Figure 5.3, the GC is again the algorithm showing 

the best results at all checkpoints. In fact, the difference between GC and the rest of the 

algorithms is increasing as the number of concepts increases. This indicates that other 

algorithms are calculating concepts which are similar to each other, and thus add 

diminishingly to the cumulative coverage. The second best algorithm this time at the 10-

concept mark is the IL, while at 30- and 50-concept mark the second best result is shown 

by S, albeit both mentioned algorithms are comparingly even throughout the experiment. 

The MSM shows poor results in the 10-concept mark, but then closes the gap and achieves 

almost equal results to S and IL by the 50-concept mark. LS algorithm fails to even deliver 

10 concepts, thus it is unusable on this dataset for the purposes of this research. 
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Figure 5.3. The Results of the Basket Example 1 Dataset. 

5.1.4 Basket Example 2 – E-Commerce 

The E-Commerce Dataset has the lowest density of 1s (2.85%) and the lowest concepts-

to-1s ratio (0.38). Furthermore, the dataset has the highest number of objects, giving the 

lowest amount of 1s per row – in average, two 1s per row. This indicates a low amount 

of combinations between different products. The results can be observed in Figure 5.4. 

 

Figure 5.4. The Results of the Basket Example 2 - E-Commerce Dataset. 

 

The results from the dataset exhibit the most similar results between algorithms examined 

thus far. At the 10-concept mark, GC, IL and MSM show equal results, and the S 

algorithm is underperforming the top 3 only by a small margin. The clearly weakest link 

is the LS, which also has the last calculated concept at the 10-concept mark. At the 30-
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concept mark, the GC shows the best results, S and IL share the 2nd place, and MSM is 

starting to lose its momentum and begins to flat out. The 50-concept mark sees also the 

GC having the highest number of covered 1s, but the difference with S and IL is very 

small in this dataset. MSM, however, is clearly 4th at this checkpoint. 

The possible reasons why this dataset shows different results than examined thus far in 

the other datasets could be, as mentioned, the low coverage of 1s, the low concept-to-1s 

ratio, and low amount of 1s per row. Clearly, there has been an impact for all algorithms 

– a possible learning, thus, would be that for datasets with such structure, S or IL 

algorithms would give comparable results to GC and may be preferred choices if they 

provide computational advantages. A more thorough understanding, however, would be 

a research topic for a different paper.  

5.1.5 Basket Example 3 - Instacart  

The Instacart dataset has the most 1s – 4 750 – and the highest number of concepts across 

the three basket example datasets – 18 897. The results in Figure 5.5 display again a 

strong lead for the GC algorithm at all 3 checkpoints. 

 

Figure 5.5. The Results of the Basket Example 3 - Instacart Dataset. 

 

Similarly as displayed in the Basket Example 1, the GC lead is increasing as the number 

of concepts increases, indicating that at smaller number of observed concepts, the 

algorithms are more comparable than if the number of concepts is increased. The 2nd 

position at all checkpoints is held by the S algorithm, while up until the 30-concept mark 
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the IL algorithm, which is 3rd in all measured checkpoints, shows quite similar results to 

S. MSM is 4th in all of the checkpoints, with relatively poor results – at the 30-concept 

mark, only 51% of the number of 1s covered by GC are covered by the MSM, 

deteriorating to 47% by the 50-concept mark. Nevertheless, the worst results are 

displayed by the LS algorithm, which has the least covered 1s at the 10- and 30-concept 

mark, and the algorithm generates only 35 concepts in this example. 

A notable peripheral observation, however, can be made in this dataset: at the 3rd concept, 

IL shows greater cumulative coverage than GC. This is, in fact, the only measuring point 

out of the 250 across the 5 datasets where GC is outperformed. Some possible learnings 

are investigated in Chapters 6.1.2 and 6.1.3, but one clear takeaway is that, depending of 

the goal concept by which to calculate coverage, a more efficient algorithm than GC is 

plausible. This is also briefly introduced as a possible future work in Chapter 7.1.  

5.2   Interpretation and Summary of Results 

Having executed the algorithms on all of the datasets and explored the individual results, 

it is time to make some conclusions. Table 5.1 displays information about each of the 

algorithm and dataset combination, including the checkpoints at 10-, 30-, and 50-concept 

mark. The number in the cells indicates the position of the algorithm, with 1 denoting that 

the algorithm showed best results and 5 indicating the worst results. A dash (-) shows that 

the algorithm did not compute enough concepts for that specific checkpoint. 

Table 5.1. Ranking of Algorithms. 

 House Votes Student Perf. Basket 1 Basket 2 Basket 3 

 10 30 50 10 30 50 10 30 50 10 30 50 10 30 50 

S 3 2 3 3 2 2 3 2 2 4 2 2 2 2 2 

IL 4 3 2 2 3 3 2 3 3 1 2 3 3 3 3 

LS 2 - - 5 5 5 - - - 5 - - 5 5 - 

MSM 5 4 4 4 4 4 4 4 4 1 4 4 4 4 4 

GC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

It becomes clear that the algorithms performed in a relatively stable manner across all 

datasets and checkpoints. LS was the worst performer, being unusable in more than half 

of the cases, and showing the worst results in almost all of the cases where the results 

were usable. MSM showed consistently 4th best results, with slight deviations in two of 
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the fifteen measuring points. IL, while showing some variance and achieving quite good 

results in 3 out of 5 datasets for the 10-concept mark, was mostly the 3rd best algorithm. 

Similarly, S showed some variance, but was 2nd in most of the checkpoints, including all 

30-concept checkpoints. Finally, GC showed an apparent superiority, achieving the best 

results across all datasets and checkpoints.  

One possibly interesting finding is that looking at the Figures 5.1 to 5.5, it can be noticed 

that all algorithms, except for GC, exhibit spikes in the amount of 1s they cover per 

number of concepts. That is, the algorithms’ calculations alternate between concepts 

which do not add many 1s to the cumulative coverage, and concepts which may raise the 

number of 1s covered in big jumps. Diametrically, the GC algorithm displays a clear tail: 

every following concept adds as much or less to the total coverage than the concept that 

was calculated before it. Naturally, this is reasonable since it was the way how the 

algorithm was developed, but a possible learning is that an algorithm which calculates a 

more effective concept after a less effective concept cannot be the optimum algorithm, if 

the viewer may be interested in any of the concepts. Put differently, in a 

range (1, 2, 3, … , 𝑛 − 1, 𝑛), if the viewer is only interested in coverage by n, then the order 

of concepts in the range does not matter. But if any arbitrary concept k may be observed 

as well, where 1 ≤ 𝑘 ≤ 𝑛, and the aim is to have highest possible coverage at each point 

of the range, then the cumulative coverage added by k+1 cannot be higher than the 

cumulative coverage added by k. However, this would have to be researched in further 

detail in order to provide value in development of coverage algorithms. 

All in all, the conclusion based on the produced results is that the developed GC algorithm 

is technically optimal for covering the largest number of 1s in a dataset with the least 

amount of concepts. The results effectively answer questions 1 and 2 from Chapter 1.2. 

That is, while existing FCA algorithms are moderately effective at covering a dataset, the 

new GC algorithm consistently outperforms the existing algorithms and shows thus 

higher efficiency. The third research question remains unanswered, and will be addressed 

in the following chapter. 
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6 Concept Coverage Effect on Business Value 

One question from the research questions proposed in Chapter 1.2 remains unanswered 

at this point – do FCA algorithms which efficiently calculate concept coverage have 

business application? Having compared the different algorithms from a technical 

perspective in the previous chapter, this chapter will look at one concrete dataset in an 

attempt to analyse the specific concepts that the different algorithms extracted. Further, 

as the Greedy Coverage algorithm performed best in covering the 1s of a dataset, then it 

will be investigated what differences there are between the concepts found by GC and 

other algorithms; and what implications do those findings hold in relation to business 

value. The concept lattices which can be construed from the compressed amount of 

concepts by each of the algorithms are visualized and discussed as well. Finally, some 

conclusions will be made, and by the end of the chapter all research questions posed in 

the beginning of the thesis will be answered. 

6.1 An In-depth Look at the Instacart Dataset 

This chapter will dive deeper into the specific concepts found for the 3rd basket example 

– the Instacart dataset. The reason for choosing that particular dataset is that its data is the 

most recent of all the datasets analysed and the dataset has a clear relation to business 

value – listing the sales of products. It is also the largest dataset out of the basket datasets, 

both in terms of 1s and concepts generated. 

The methodology for analysis is to look at the structure and metrics of the dataset, to 

provide a general overview of the dataset and how the different algorithms compare in 

some metrics. A more specific look will then be taken into the concept intents – aisles – 

generated by the algorithms, to reveal patterns in achieving a high coverage of the dataset. 

Combinations of aisles will be investigated, to see what the different concept intents 

provided by the algorithms imply. Finally, the concept lattices will be constructed and 

analysed, rounding up the analysis in this chapter.  

Only the 10-concept mark will be looked at more thoroughly, as it was visible in Chapter 

5.1.5 that the results between the measuring points did not differ greatly. Indeed, the 

analysis conducted in the following sections was done also on the 30- and 50-concept 

marks, but due to similar findings the analysis is not included in this chapter. Similar 
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tables as were constructed for the 10-concept analysis can be found in Appendix 1 – 

Additional Tables from Instacart Analysis for the 30- and 50-concept analysis. 

6.1.1 Dataset Overview and Metrics 

In order to follow the analysis part in an understandable manner, it is first important to 

explain some parts about the dataset and its structure, and how the concepts will be 

denominated in the analysis. The data in the dataset is organized as follows:  

 The columns represent aisles – the equivalent of product categories. In some of 

the further sections, products may also refer to aisles in terms of the dataset. The 

actual names of the aisles will not be used in the analysis – instead, the ids of the 

aisles will be denoted, as the actual description of the aisles does not play a role 

in this particular analysis. A full list of the aisles with descriptions can be found 

in Appendix 2 – Instacart Aisle Ids and Descriptions. 

 The rows represent purchases. One purchase may include products from 1…n 

aisles. Also, a single purchase from an aisle may contain n amount of different 

products belonging to that aisle, but for the purposes of this research, it was not 

distinguished whether several products were purchased or not – as long as there 

was a purchase from that aisle, it was marked with a 1. 

Due to the previous, the concepts in the next sections will be listed based on their intent 

– the aisles, or the columns of the dataset. The reasoning is that the concepts with the 

highest coverage, i.e. the ones that the algorithms have calculated, are more likely to 

include one or few aisles and many purchases. The probability of one purchase including 

products from almost all aisles is low, but a single aisle or a combination of aisles may 

be exhibited in many of the purchases, as certain products are more likely to be purchased 

frequently.  

Comparisons of some general metrics are listed in Table 6.1. The columns represent the 

metrics for each of the algorithms, the total and unique aisles can be explained as follows: 

 Total aisles – the subtotal amount of attributes across the intents of all 10 

concepts – an aisle is unique within one concept, but can theoretically occur in 

every concept; 
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 Unique aisles – the unique attributes across all 10 concepts’ intents. 

Table 6.1. Instacart Dataset 10-Concept Metrics. 

 S IL LS MSM GC 

Total aisles 15 15 28 20 12 

Unique aisles 7 6 14 5 11 

Unique % out of total 47% 40% 50% 25% 92% 

Total aisles per concept 1.5 1.5 2.8 2.0 1.2 

Unique aisles per concept 0.7 0.6 1.4 0.5 1.1 

 

 

Observing the metrics, it becomes clear that the algorithms produced quite different 

outputs. A high number of total aisles seems to indicate a poor result in coverage, as the 

LS which performed worst in terms of coverage by the 10th concept, had the highest 

number of total aisles with 28. The lowest amount of total aisles was displayed by GC, 

which also performed the best in terms of coverage. A high amount of unique aisles could 

also be used as a possible indication of a high coverage, except for the anomaly of LS 

which shows the highest amount of unique aisles.  

Possible explanation for a lower number of total aisles producing a higher dataset 

coverage could be that as the number of total aisles increases, so too increases the number 

of overlaps across concepts. This is further indicated by a low amount of unique aisles in 

most of the algorithms performing worse than GC. Naturally, only looking at the 

summarized metrics of the amount of aisles cannot be used as conclusive evidence for 

these assumptions – therefore, a more detailed look at the specific concepts and aisles 

calculated by the algorithms will be looked at next.  

6.1.2 Concepts and Their Cumulative Coverage 

The first ten concepts calculated by each algorithm are shown in Table 6.2. The concepts 

are depicted via their intents – the aisle ids that comprise the concept. The a stands for 

aisle, and the number following the a stands for the id of the aisle. If there are several 

aisle ids in a single cell, then it means that the concept is a combination of those aisles. 

As an example, the first concept returned by the Stability algorithm is represented as a24, 

a83, a123 – meaning that those 3 aisles comprise the intent of the concept. 
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Table 6.2. The First 10 Concepts from the Instacart Dataset. 

Concept S IL LS MSM GC 

1 a24, a83, a123 a24 a24, a83, a123 a24, a83 a24, a83 

2 a115 a83 a115 a24, a83, a123 a123 

3 a24, a123 a123 a24, a123 a24, a123 a24, a120 

4 a24, a83 a24, a83 a24, a83 a83, a123 a115 

5 a123 a24, a123 a123 a83 a21 

6 a83 a83, a123 a83 a24 a91 

7 a24 a120 a24 a123 a84 

8 a24, a120 a115 a13, a21, a24, a78, a83, a107, a123 a24, a120 a107 

9 a107 a21 a19, a24, a32, a116 a24, a83, a120 a31 

10 a21 a24, a83, a123 a14, a24, a83, a84, a123, a129 a21, a24, a83 a112 

 

The first observation is that there are repeating aisles which make up the top concepts for 

all algorithms: a24, a83, and a123 appear in some combination in the top 3 of all 

algorithms. These are also the aisles which appear in most purchases, and products from 

the aisles are also frequently bought together. However, there’s also an aisle which does 

not have strong connection to any other aisle: a115 appears in 4 out of 5 algorithms’ 

results, but it appears only as a single entity, not being combined with any other aisle. 

This variance indicates that the dataset is diversified and includes both, products which 

are frequently purchased together with others, and also products which are not as related 

to the purchases of other products. In order to take a more exhaustive look at the concepts 

and aisle combinations, Table 6.3 lists the concepts’ coverages (Con Cov), the cumulative 

coverage achieved by concept x (Cum Cov), and the percentage of how many new 1s of 

the dataset were covered by the concept (Con add%). 

Table 6.3. Concept and Cumulative Coverages per Algorithm. 

 S IL LS MSM GC 

# 
Con 

Cov 

Cum 

Cov 

Con 

add% 

Con 

Cov 

Cum 

Cov 

Con 

add% 

Con 

Cov 

Cum 

Cov 

Con 

add% 

Con 

Cov 

Cum 

Cov 

Con 

add% 

Con 

Cov 

Cum 

Cov 

Con 

add% 

1 390 390 100% 344 344 100% 390 390 100% 416 416 100% 416 416 100% 

2 145 535 100% 278 622 100% 145 535 100% 390 546 33% 253 669 100% 

3 382 657 32% 253 875 100% 382 657 32% 382 668 32% 246 837 68% 

4 416 813 38% 416 875 0% 416 813 38% 314 722 17% 145 982 100% 

5 253 875 25% 382 875 0% 253 875 25% 278 765 15% 140 1 122 100% 

6 278 945 25% 314 875 0% 278 945 25% 344 840 22% 129 1 251 100% 

7 344 1 020 22% 155 1 030 100% 344 1 020 22% 253 875 14% 122 1 373 100% 

8 246 1 143 50% 145 1 175 100% 35 1 040 57% 246 998 50% 105 1 478 100% 

9 105 1 248 100% 140 1 315 100% 8 1 046 75% 234 998 0% 94 1 572 100% 

10 140 1 388 100% 390 1 315 0% 12 1 052 50% 216 1 070 33% 93 1 665 100% 
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Two clear observations can be made from this data. First of all, GC is dominantly better 

at choosing concepts which add 100% of their coverage to the cumulative coverage. This 

is an indicator that all other algorithms keep calculating concepts with 1s which have 

already been partially, mostly, or totally covered, thus providing little value in giving new 

insights about the data. This proves the statement from the previous section that the other 

algorithms except for GC calculated concepts which overlapped. Secondly, single-aisle 

concepts seem to be much more effective in adding to the cumulative coverage – this can 

be observed from the concepts of GC, as well as IL. The former has the highest cumulative 

coverage by the 10th concept, and only two concepts with aisle combinations; the latter 

has additional coverage only from single-aisle concepts.  

Thus, the second observation proposes an interesting question: is it always more efficient 

to calculate single-attribute concepts? One could argue this from a logical point-of-view 

and say that no two concepts with single-attributes can overlap, and thus single-attribute 

concepts are indeed more efficient. Looking at the data seems to partially suggest so as 

well, especially when looking specifically at the aisles a24, a83 and a123. IL calculates 

the three aisles separately as the first 3 concepts, and consequently has the highest 

cumulative coverage by the 3rd concept; as noted previously, this is the only observed 

point in the whole research when GC is surpassed in terms of cumulative coverage. So 

what, if any, is the benefit of GC calculating the concept with the a24, a83 combination?  

The next section will look more thoroughly at the aisle combinations in concepts 

generated by the algorithms. The implications of such concepts will be examined, as well 

as the reasoning whether the specific combinations chosen by GC are better than other 

combinations in some ways. 

6.1.3 Attribute Combinations in Concepts 

In the Instacart dataset, all algorithms calculated some concepts with multiple attributes. 

As discussed, GC calculated the lowest amount of such concepts, while having the highest 

cumulative coverage of the dataset by the 10th concept – indicating, that single-attribute 

concepts may be more efficient in covering a dataset efficiently. To investigate this 

further, a list of all concepts with more than one attribute have been listed in Table 6.4.  

The table is to be read as follows: the concepts, and the algorithms where the concepts 

are present are listed in the first 2 columns. The main, middle part of the table shows the 
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concept coverage of the aisle. As an example, the concept a24, a83, a123 covers 38% of 

all of the 1s of the aisle a24; the concept a24, a123 covers 56% of the aisle a24. Finally, 

the last two columns show the minimum and maximum concept coverages of the concept 

across all the aisles in the concept’s intent. 

Table 6.4. Multiple-Aisle Concepts and Their Aisle Coverage. 

Concepts Algorithms a13 a14 a19 a21 a24 a32 a78 a83 a84 a107 a116 a120 a123 a129 MIN MAX 

a24, a83, a123 S, IL, LS, MSM     38%   47%     51%  38% 51% 

a24, a123 S, IL, LS, MSM     56%        75%  56% 75% 

a24, a83 S, IL, LS, MSM, GC     60%   75%       60% 75% 

a24, a120 S, MSM, GC     36%       79%   36% 79% 

a21, a24, a83 MSM    51% 21%   26%       21% 51% 

a83, a123 IL, MSM        56%     62%  56% 62% 

a24, a83, a120 MSM     23%   28%    50%   23% 50% 

a13, a21, a24, a78, a83, a107, a123 LS 20%   4% 1%  6% 2%  5%   2%  1% 20% 

a19, a24, a32, a116 LS   5%  1% 4%     2%    1% 5% 

a14, a24, a83, a84, a123, a129 LS  9%   1%   1% 2%    1% 5% 1% 9% 

 

Two cells in the last two columns are highlighted: these are the concepts with the highest 

minimum, and highest maximum concept coverage of the aisle. These happen to be 

precisely the two concepts with multi-aisle combinations which the GC algorithm has 

calculated. The indications behind a high minimum and high maximum can be described 

as follows: 

 A high minimum shows that all the aisles within the concept have high 

correlation between each other – in other words, all products in the intent 

strongly depend on the other product(s). In the case of a24, a83, 60% of the cases 

when a24 is bought, a83 is bought as well. Similarly, and even more notably, 

75% of the cases a83 is bought, a24 is bought as well. 

 A high maximum shows that at least one of the aisles is highly dependent on 

the other(s). In the case of a24, a120, the combination covers 79% of the cases 

where a120 is bought, indicating that 4/5 times the product is bought together 

with a24, while a similar feat cannot be observed the other way around – a24 is 

only bought in 36% of the cases when a120 is bought.   

Thus, it can be concluded that while GC does not calculate only single-attribute concepts 

– which may be more efficient in achieving a high dataset coverage, as seen in the 

previous section – when GC does calculate concepts with multiple attributes, then these 
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concepts stand out in terms of having a strong bond between the attributes. A much more 

extensive research should be done to prove whether this is a consistent pattern or not, but 

it proves at least the algorithm’s applicability on determining business value.  

To summarize, considering a dataset representing a market basket, and in an effort to 

understand which items are generating the most business value, other FCA algorithms 

seem to show more combinations of products, but this would not show uniquely which 

items are the main drivers of the business. On the other hand, it would be possible to only 

look at the sales figures and list the products based on that, but this would leave out strong 

relations between different products, should there be any. GC algorithm combines the 

best of both of these views, generating a concept list displaying the top selling products, 

together with sets of products which display a strong affinity.  

6.1.4 Lattices Comparison 

As a final step in analysing the business effect of concept coverage and the GC algorithm, 

it is time to look at the impact on the visual representation of data. Visual overview is one 

of the key benefits of FCA, since it is easy to draw a certain line diagram – a concept 

lattice – from the concepts of the context. The concept lattices, drawn for all 3 checkpoints 

and 5 algorithms, are displayed in Table 6.6, with the columns representing the 

checkpoints and each row showing the lattices of the concepts calculated by a specific 

algorithm. The concept intents – aisles – are used as basis for drawing the lattices, and 

the aisles themselves are marked by a label above the concept drawn in the lattice. 

The lattices drawn from the 10 concepts are all quite easily readable and understandable. 

The S and IL both have a few concepts directly connecting the supremum and infimum, 

and some concepts displaying interlinkage: these come from the cases where 1 aisle is 

present in several calculated concepts. The LS displays a variety of aisles in the bottom 

concepts. As shown in Table 6.1, LS also had the most unique aisles, so it makes sense 

that the LS diagram is more cramped by the aisles. Furthermore, LS has the highest lattice 

height – 5 – already with 10 concepts, as shown in Table 6.5. The MSM displays only 

intertwined concepts, as the algorithm calculated the fewest unique aisles, and all aisles 

which were calculated in single-aisle concepts were also present in some multi-aisle 

concept. Finally, the concepts calculated by the GC algorithm provide a lattice which is 

almost flat in its structure, with the lowest lattice height of 3. The only aisle showing 

interconnectedness is a24, which was present in two of the concepts calculated by GC. It 
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is also the only additional concept calculated by any of the algorithms at this point. This 

would, in general, add to the complexity of understanding of the diagram, but since there 

are so few concepts in these lattices, it is assumed there is no disadvantage due to this. 

Also, while the lattice of the GC does not appear as concept lattices commonly do, with 

multiple layers of concepts, it does provide exact reference to the way the GC calculated 

the most effective concepts: as single-aisle entities. 

Table 6.5. 10-Concept Lattice Metrics. 

 S IL LS MSM GC 

Concepts 12 12 12 12 13 

Edges 18 19 17 19 21 

Lattice height 4 4 5 4 3 

 

The 30-concept lattices already add additional complexity in deciphering their meaning. 

Nevertheless, S, IL and GC lattices remain quite comprehensible. MSM has comparably 

slightly more edges (Table 6.7), and due to the low number of unique aisles, it also 

increases the difficulty in reading the diagram. MSM has also calculated 2 extra concepts 

which do not map to any of the actual concepts calculated, which further adds to the 

difficulty at this point in understanding the lattice. Finally, the LS lattice has more than 

doubled the amount of concepts it actually calculated, due to the large intents of the 

concepts and their interconnectedness. The amount of edges presented by LS is also more 

than double that of other algorithms’ lattices at this point, thus showing that while LS 

covers the lowest amount of 1s in the context, it also presents the observer with the most 

incomprehensible lattice. 

The 50-concept lattices are difficult to interpret quickly and clearly, but they do give some 

indications regarding the underlying data. For example, looking at the S, IL or GC lattices, 

it is clear to see that there are some aisles which perform best on their own, and some 

aisles which perform best together with other aisles. In other words, from the business 

value perspective, it makes sense to look at those aisles as groups or clusters of 

information, and the rest of the aisles as individual entities, not so much dependent nor 

influential to the other aisles in terms of sales. The MSM lattice remains partly 

understandable, but hard to be deciphered in an efficient manner. The LS lattice is 

arguably providing very little visual value to the analyst by this point. Notably, GC has 

the lowest amount of concepts, edges and lattice height, indicating simplicity (Table 6.8). 
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Table 6.6. Lattices of the Calculated Concepts. 

10 concepts 30 concepts 50 concepts 

S S S 

   

IL IL IL 

     
 

 

LS LS LS 

       

MSM MSM MSM 

              
 

GC GC GC 

   

 



53 

Table 6.7. 30-Concept Lattice Metrics. 

 S IL LS MSM GC 

Concepts 32 32 79 34 32 

Edges 58 64 177 74 59 

Lattice height 5 4 6 5 3 

 

Table 6.8. 50-Concept Lattice Metrics. 

 S IL LS MSM GC 

Concepts 52 52 95 53 52 

Edges 100 112 220 123 99 

Lattice height 5 4 6 5 3 

 

To summarize, while the reading complexity increases as the number of concepts increase 

in the lattice, the algorithms performing best in the coverage of the context: the GC, S 

and IL, calculate concepts which form lattices that remain visually readable. The worst 

performers in terms of coverage of 1s also provide the analyst with lattices which prove 

of little value due to their interpretation complexity. 

6.2 Conclusions from the Analysis  

The previous sections provided an insight into potential business applications of the 

notion of concept coverage, and the new Greedy Coverage algorithm. This section will 

conclude the analysis part of this thesis by revisiting some of the emerged ideas from the 

previous chapter. 

Firstly, the metrics of the different FCA algorithms were compared in order to find out 

what are the possible separators of an algorithm calculating a high coverage. The main 

indicator seemed to be a low number of total attributes in the concepts’ intents, which 

indicated a high amount of overlap in the algorithms which performed worse than the 

GC algorithm.  

Thus, secondly, the concepts and their cumulative coverage were studied in higher detail. 

The proposition about overlapping was confirmed, and a further observation was made – 

single-aisle concepts seemed to have higher effectiveness in adding 1s to dataset 

coverage than concepts with a combination of aisles.  
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The third part looked at the attribute combinations and the notable discovery was that the 

multi-aisle concepts calculated by the GC were, in fact, prominent among the other 

similar concepts, due to their high display of affinity between the aisles that they 

contained. Importantly, this discovery proved that the GC algorithm and the notion of 

concept coverage have relevance in a business setting: for the studied dataset, the GC 

algorithm chose concepts which covered the aisles with highest business value, and also 

aisle combinations which were significantly strong. 

Finally, the lattices construed by the aisles from the calculated concepts were compared. 

The main finding here was that the higher coverage of a dataset by an algorithm seemed 

to provide lattices with higher readability.    

Naturally, finding business value will depend a lot on the type of data examined and the 

business problem or opportunity at hand. Some of the findings from the Instacart dataset 

are not applicable to, for example, more dense datasets such as the Student Performance 

dataset. An example of the GC lattices for the Student Performance dataset can be 

observed in Appendix 3 – GC Lattices for Student Performance Dataset. But as listed in 

Chapter 3.1, the main focus for looking at business applicability in this thesis is on the 

market basket datasets. A thorough look at further datasets with a different structure, 

density and business focus may give additional input into the usability of concept 

coverage and the Greedy Coverage algorithm. Ultimately, based on the observations done 

in this chapter, it can be concluded that FCA algorithms and concept coverage do have 

business applications, providing the data miner with an improved view of the dataset.  
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7 Summary 

The thesis set out to find Formal Concept Analysis (FCA) algorithms’ effectiveness in 

terms of coverage, and whether such algorithms have business applications. This was 

done through first introducing the FCA theory and its use of line diagrams called concept 

lattices to visually present data to the data miner. Then, the weakness of lattice readability 

was discussed, and four existing FCA algorithms which have previously been used as a 

way to rank concepts and compress the lattice to improve its readability were introduced. 

The third chapter explained the methodology for research, including the datasets on which 

the research would be done on, the notion of concept coverage and how it is measured, 

and the benchmarks on which to measure the effectiveness of the algorithms.  

Inspired by the theory and building on the methodology, a new algorithm – Greedy 

Coverage (GC) – was developed by the author, and the algorithm was introduced in 

Chapter 4. Chapter 5 applied everything previously introduced: the 5 algorithms, on the 

5 datasets, and compared the results in the 3 measuring points. The new GC algorithm 

proved superior to all other four algorithms across all datasets and measuring points, in 

terms of ranking concepts based on the coverage of the dataset. Thus, one part of the 

research objective was covered. The sixth chapter looked more deeply into one of the 

datasets and the results, investigating the potential application for a business setting. In 

summary, the GC algorithm was deemed as effective in providing the data miner with an 

improved view of the dataset. 

7.1 Future Work  

Three key approaches to future work have been identified by the author: 

1. A technical approach, investigating the effects of concept coverage and the 

performance of the algorithms on a wider spectrum of concept indices. Together 

with the new GC algorithm, only five indices were compared within this study, 

while potentially over twenty indices [16] could be investigated, providing a more 

substantial comparison of the algorithms and probably some novel insights into 

how the algorithms perform in terms of generating readable lattices. 
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2. A more business oriented approach, experimenting with the algorithms on more 

datasets containing different business objectives. This thesis focused on the 

market basket datasets, while potential extensions could be in datasets such as: 

a. Customer segmentation – which are the most definitive characteristics of 

loyal and high value customers? 

b. Supply chain management – what is the performance of the company’s 

suppliers and their products? 

c. Portfolio management – what are the key differentiating traits of projects 

that are financially successful? 

3. Finally, the third approach would focus on improvements or additions to the GC 

algorithm and the way how optimum coverage concepts are found. As 

witnessed in the Instacart dataset case, there was one point where the Iceberg 

Lattice had higher cumulative coverage than the GC, laying the groundwork for a 

further study of how to best find and rank the concepts. One possible thought 

could be a sort of K-Coverage algorithm, which would find the highest coverage 

by the Kth concept. 

 To summarize, the field of concept coverage, especially in terms of Formal Concept 

Analysis, seems to be quite unexplored and has plenty to offer for future research. 
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Appendix 1 – Additional Tables from Instacart Analysis 

Table Ap1.1 - Instacart Dataset 50-Concept Metrics. *LS metrics for 35 concepts 

 S IL LS MSM GC 

Total aisles 88 88 160 117 52 

Unique aisles 26 19 48 11 48 

Unique % out of total 30% 22% 30% 9% 92% 

Total aisles per concept 1.8 1.8 4.6* 2.3 1.0 

Unique aisles per concept 0.5 0.4 1.4* 0.2 1.0 

 

Table Ap1.2 - Additional Concepts from 10- to 30-Concept Mark 

Concept S IL LS MSM GC 

11 a77 a91 a21, a24, a61, a106, a123 a24, a120, a123 a24 

12 a91 a24, a120 a24, a88, a93, a107, a112, a123 a24, a83, a91 a86 

13 a24, a115 a84 a17, a21, a43, a67 a24, a91 a116 

14 a120 a107 a24, a57, a91, a112, a123 a21, a83 a78 

15 a21, a24, a83 a21, a24 a21, a83, a93, a104, a131 a115 a83 

16 a37 a24, a91 a21, a72, a104, a108 a24, a83, a120, a123 a77 

17 a84 a21, a83 a24, a77, a83, a89, a94 a24, a83, a91, a123 a37 

18 a112 a31 a24, a59, a81, a83, a116, a117 a120 a98 

19 a78 a112 a21, a37, a78, a94, a107, a123 a120, a123 a96 

20 a24, a84 a24, a84 a37, a83, a88, a94, a120 a24, a84 a88 

21 a24, a91 a86 a17, a29, a84, a117 a21, a24 a38 

22 a24, a83, a91, a123 a116 a4, a21, a107, a123, a129 a24, a91, a123 a67 

23 a83, a123 a24, a115 a38, a50, a94, a100 a24, a83, a84 a121 

24 a24, a83, a120 a120, a123 a17, a21, a93, a107, a108 a24, a115 a16 

25 a24, a83, a120, a123 a83, a120 a53, a77, a112, a115 a83, a120 a117 

26 a24, a31 a78 a24, a81, a83, a93, a115, a120, a123 a83, a91 a108 

27 a54 a24, a83, a120 a24, a31, a49, a83, a84, a106, a123 a91 a69 

28 a21, a24 a83, a91 a21, a24, a81, a83, a84, a88, a120 a24, a84, a123 a59 

29 a98 a83, a84 a4, a86, a93, a115 a83, a91, a123 a106 

30 a38 a21, a24, a83 a24, a78, a83, a91, a98, a115, a117, a123 a83, a120, a123 a36 
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Table Ap1.3 – 30-Concept Mark Concepts and Cumulative Coverages per Algorithm 

 S IL LS MSM GC 

# 
Con 

Cov 

Cum 

Cov 

Con 

add% 

Con 

Cov 

Cum 

Cov 

Con 

add% 

Con 

Cov 

Cum 

Cov 

Con 

add% 

Con 

Cov 

Cum 

Cov 

Con 

add% 

Con 

Cov 

Cum 

Cov 

Con 

add% 

11 64 1 452 100% 129 1 444 100% 10 1 058 60% 207 1 070 0% 344 1 756 26% 

12 129 1 581 100% 246 1 444 0% 12 1 066 67% 201 1 137 33% 89 1 845 100% 

13 172 1 581 0% 122 1 566 100% 8 1 074 100% 192 1 166 15% 87 1 932 100% 

14 155 1 613 21% 105 1 671 100% 15 1 083 60% 188 1 188 12% 80 2 012 100% 

15 216 1 613 0% 194 1 671 0% 15 1 095 80% 145 1 333 100% 278 2 082 25% 

16 63 1 676 100% 192 1 671 0% 16 1 111 100% 204 1 333 0% 64 2 146 100% 

17 122 1 798 100% 188 1 671 0% 15 1 120 60% 196 1 333 0% 63 2 209 100% 

18 93 1 891 100% 94 1 765 100% 18 1 132 67% 155 1 365 21% 63 2 272 100% 

19 80 1 971 100% 93 1 858 100% 18 1 146 78% 170 1 365 0% 62 2 334 100% 

20 184 1 971 0% 184 1 858 0% 15 1 158 80% 184 1 457 50% 61 2 395 100% 

21 192 1 971 0% 89 1 947 100% 12 1 168 83% 194 1 482 13% 60 2 455 100% 

22 196 1 971 0% 87 2 034 100% 15 1 176 53% 183 1 482 0% 59 2 514 100% 

23 314 1 971 0% 172 2 034 0% 12 1 187 92% 186 1 482 0% 58 2 572 100% 

24 234 1 971 0% 170 2 034 0% 15 1 199 80% 172 1 482 0% 58 2 630 100% 

25 204 1 971 0% 168 2 034 0% 12 1 208 75% 168 1 482 0% 57 2 687 100% 

26 140 2 041 50% 80 2 114 100% 21 1 216 38% 156 1 493 7% 56 2 743 100% 

27 49 2 090 100% 234 2 114 0% 21 1 227 52% 129 1 515 17% 54 2 797 100% 

28 194 2 090 0% 156 2 114 0% 21 1 231 19% 171 1 515 0% 53 2 850 100% 

29 63 2 153 100% 144 2 114 0% 12 1 239 67% 156 1 515 0% 51 2 901 100% 

30 60 2 213 100% 216 2 114 0% 24 1 249 42% 162 1 515 0% 50 2 951 100% 

 

 

Table Ap1.4 - Additional Concepts from 30- to 50-Concept Mark 

Concept S IL LS MSM GC 

31 a31 a24, a31 a17, a21, a67, a83, a86 a21 a54 

32 a116 a24, a120, a123 a24, a53, a72, a81, a83, a84, a123 a24, a115, a123 a32 

33 a24, a107 a91, a123 a4, a53, a72, a106 a21, a83, a123 a53 

34 a21, a24, a83, a123 a24, a86 a24, a63, a83, a86, a108, a123 a83, a84 a131 

35 a21, a83 a21, a123 a69, a72, a83, a93 a91, a123 a81 

36 a67 a84, a123 - a84 a9 

37 a24, a83, a84 a83, a115 - a24, a83, a84, a123 a52 

38 a24, a112 a24, a83, a91 - a21, a24, a83, a123 a72 

39 a72 a115, a123 - a115, a123 a93 

40 a96 a24, a116 - a84, a123 a26 

41 a24, a115, a123 a77 - a83, a115 a17 

42 a121 a98 - a24, a83, a86 a94 

43 a86 a37 - a24, a84, a120 a19 

44 a88 a24, a112 - a24, a83, a115 a3 

45 a24, a86 a96 - a24, a31 a128 

46 a108 a24, a83, a84 - a24, a86 a129 

47 a24, a83, a86 a83, a86 - a21, a24, a123 a4 

48 a117 a88 - a21, a123 a45 

49 a24, a120, a123 a24, a91, a123 - a83, a86 a104 

50 a24, a83, a91 a24, a107 - a24, a83, a116 a120 
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Table Ap1.5 – 50-Concept Mark Concepts and Cumulative Coverages per Algorithm 

 S IL LS MSM GC 

# 
Con 

Cov 

Cum 

Cov 

Con 

add% 

Con 

Cov 

Cum 

Cov 

Con 

add% 

Con 

Cov 

Cum 

Cov 

Con 

add% 

Con 

Cov 

Cum 

Cov 

Con 

add% 

Con 

Cov 

Cum 

Cov 

Con 

add% 

31 94 2 237 26% 140 2 114 0% 15 1 256 47% 140 1 536 15% 49 3 000 100% 

32 87 2 324 100% 207 2 114 0% 21 1 266 48% 159 1 536 0% 49 3 049 100% 

33 120 2 324 0% 138 2 114 0% 12 1 277 92% 159 1 536 0% 49 3 098 100% 

34 164 2 324 0% 138 2 114 0% 18 1 284 39% 144 1 546 7% 48 3 146 100% 

35 188 2 324 0% 136 2 114 0% 16 1 291 44% 138 1 546 0% 47 3 193 100% 

36 59 2 383 100% 136 2 114 0% - - - 122 1 566 16% 46 3 239 100% 

37 186 2 383 0% 134 2 114 0% - - - 160 1 566 0% 46 3 285 100% 

38 126 2 383 0% 201 2 114 0% - - - 164 1 566 0% 45 3 330 100% 

39 45 2 428 100% 132 2 114 0% - - - 132 1 566 0% 44 3 374 100% 

40 62 2 490 100% 128 2 114 0% - - - 136 1 566 0% 42 3 416 100% 

41 159 2 490 0% 64 2 178 100% - - - 134 1 566 0% 42 3 458 100% 

42 58 2 548 100% 63 2 241 100% - - - 150 1 616 33% 40 3 498 100% 

43 89 2 637 100% 63 2 304 100% - - - 141 1 616 0% 39 3 537 100% 

44 61 2 698 100% 126 2 304 0% - - - 150 1 616 0% 38 3 575 100% 

45 138 2 698 0% 62 2 366 100% - - - 140 1 686 50% 37 3 612 100% 

46 56 2 754 100% 186 2 366 0% - - - 138 1 705 14% 37 3 649 100% 

47 150 2 754 0% 124 2 366 0% - - - 153 1 705 0% 35 3 684 100% 

48 57 2 811 100% 61 2 427 100% - - - 136 1 705 0% 35 3 719 100% 

49 207 2 811 0% 183 2 427 0% - - - 124 1 717 10% 35 3 754 100% 

50 201 2 811 0% 120 2 427 0% - - - 141 1 764 33% 155 3 786 21% 

 

 

Table Ap1.6 – Top 5 Multiple-aisle Concepts from 50-Concept Mark, Sorted by Highest MIN 

# Concept Intent MIN MAX 

1 a24, a83 60% 75% 

2 a24, a123 56% 75% 

3 a83, a123 56% 62% 

4 a24, a83, a123 38% 51% 

5 a24, a120 36% 79% 

 

Table Ap1.7 – Top 5 Multiple-aisle Concepts from 50-Concept Mark, Sorted by Highest MAX 

# Concept Intent MIN MAX 

1 a24, a120 36% 79% 

2 a24, a86 20% 78% 

3 a24, a123 56% 75% 

4 a24, a83 60% 75% 

5 a24, a84 27% 75% 
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Appendix 2 – Instacart Aisle Ids and Descriptions 

Table Ap2.1 - Instacart Aisle Ids and Descriptions [48] 

a1 prepared soups salads 

a2 specialty cheeses 

a3 energy granola bars 

a4 instant foods 

a5 marinades meat preparation 

a6 other 

a7 packaged meat 

a8 bakery desserts 

a9 pasta sauce 

a10 kitchen supplies 

a11 cold flu allergy 

a12 fresh pasta 

a13 prepared meals 

a14 tofu meat alternatives 

a15 packaged seafood 

a16 fresh herbs 

a17 baking ingredients 

a18 bulk dried fruits vegetables 

a19 oils vinegars 

a20 oral hygiene 

a21 packaged cheese 

a22 hair care 

a23 popcorn jerky 

a24 fresh fruits 

a25 soap 

a26 coffee 

a27 beers coolers 

a28 red wines 

a29 honeys syrups nectars 

a30 latino foods 

a31 refrigerated 

a32 packaged produce 

a33 kosher foods 

a34 frozen meat seafood 

a35 poultry counter 

a36 butter 

a37 ice cream ice 

a38 frozen meals 

a39 seafood counter 

a40 dog food care 

a41 cat food care 

a42 frozen vegan vegetarian 

a43 buns rolls 

a44 eye ear care 

a45 candy chocolate 

a46 mint gum 

a47 vitamins supplements 

a48 breakfast bars pastries 

a49 packaged poultry 

a50 fruit vegetable snacks 

a51 preserved dips spreads 

a52 frozen breakfast 
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a53 cream 

a54 paper goods 

a55 shave needs 

a56 diapers wipes 

a57 granola 

a58 frozen breads doughs 

a59 canned meals beans 

a60 trash bags liners 

a61 cookies cakes 

a62 white wines 

a63 grains rice dried goods 

a64 energy sports drinks 

a65 protein meal replacements 

a66 asian foods 

a67 fresh dips tapenades 

a68 bulk grains rice dried goods 

a69 soup broth bouillon 

a70 digestion 

a71 refrigerated pudding desserts 

a72 condiments 

a73 facial care 

a74 dish detergents 

a75 laundry 

a76 indian foods 

a77 soft drinks 

a78 crackers 

a79 frozen pizza 

a80 deodorants 

a81 canned jarred vegetables 

a82 baby accessories 

a83 fresh vegetables 

a84 milk 

a85 food storage 

a86 eggs 

a87 more household 

a88 spreads 

a89 salad dressing toppings 

a90 cocoa drink mixes 

a91 soy lactosefree 

a92 baby food formula 

a93 breakfast bakery 

a94 tea 

a95 canned meat seafood 

a96 lunch meat 

a97 baking supplies decor 

a98 juice nectars 

a99 canned fruit applesauce 

a100 missing 

a101 air fresheners candles 

a102 baby bath body care 

a103 ice cream toppings 

a104 spices seasonings 

a105 doughs gelatins bake mixes 

a106 hot dogs bacon sausage 

a107 chips pretzels 

a108 other creams cheeses 

a109 skin care 

a110 pickled goods olives 
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a111 plates bowls cups flatware 

a112 bread 

a113 frozen juice 

a114 cleaning products 

a115 water seltzer sparkling water 

a116 frozen produce 

a117 nuts seeds dried fruit 

a118 first aid 

a119 frozen dessert 

a120 yogurt 

a121 cereal 

a122 meat counter 

a123 packaged vegetables fruits 

a124 spirits 

a125 trail mix snack mix 

a126 feminine care 

a127 body lotions soap 

a128 tortillas flat bread 

a129 frozen appetizers sides 

a130 hot cereal pancake mixes 

a131 dry pasta 

a132 beauty 

a133 muscles joints pain relief 

a134 specialty wines champagnes 
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Appendix 3 – GC Lattices for Student Performance Dataset 

 

Figure Ap3.1 – 10-Concept Lattice of Student Performance Dataset by GC 
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Figure Ap3.2 – 30-Concept Lattice of Student Performance Dataset by GC 

 

 

Figure Ap3.3 – 50-Concept Lattice of Student Performance Dataset by GC 

 


