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1 INTRODUCTION
1.1 Development of Imaging Flow Cytometry and Research Motivation
Flow cytometry (FC) is a powerful technology in biomedical research to characterise thecomplex phenotypes of the target samples, for example, micro-organisms or individ-ual cells. Imaging flow cytometry (IFC) combines traditional flow cytometry with highthroughput image acquisition, providing spatial information about cellular features. IFCallows simultaneously analyzing multiple parameters, e.g. cell morphology, protein local-ization, and fluorescence intensity in a single-cell. IFC captures high-resolution images ofcells flowing through the system, enabling researchers and practitioners to visualize andquantify cellular characteristics that were previously difficult to assess using conventionalflow cytometry alone. IFC has a wide range of applications, e.g. immunology, cancerresearch, and cell biology.

A short history of FC and IFC is depicted in Figure 1 and summarized in what follows.

Figure 1: Evolution of Imaging Flow Cytometry, from the first automatic particle counter to the inte-gration of AI/ML and the advent of portable flow cytometers

The groundwork of traditional flow cytometry began with the invention of the Coulter Counter by Wallace H. Coulter in 1953 [1]. The Coulter Counter was the first automated device to count and measure the size of particles suspended in a fluid, using changes in electrical impedance. In the late 1960s, Leonard Herzenberg and his colleagues intro-duced fluorescence-activated cell sorting (FACS) [2], another milestone of FC that allowed to label cells with fluorescent markers and sort them based on their fluorescence intensity.IFC itself was first proposed in 1979 [3] and then first commercially developed by Am-nis Corporation [4]. However, for nearly two decades, IFC faced significant challenges due to technological limitations, especially in terms of image resolution compared to fluores-cence microscopes. In the 1980s and 1990s [5], efforts focused on improving detectors and imaging systems.Then in 2005, an IFC instrument, the ImageStream System 100 (IS100) was introduced by Amnis, and subsequently the second generation of ImageStream instruments (the IS-X) was launched in 2009 [6]. The IS100 combined flow cytometry’s speed and pheno-typing capabilities with microscopy’s detailed imagery and functional insights, enabling simultaneous quantification of multiple fluorescent emissions and scattered light. The IS-X, ten times faster than its predecessor, significantly improved both sample (image) throughput and image quality, enabling faster and more detailed cellular analysis. Its modularity made it adaptable to a wider range of budgets and research needs, and thus more competitive against traditional flow cytometry systems. These advancements made IFC a powerful tool for biomedical research, particularly in cellular analysis.
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Until approximately 2010, research and studies in IFC focused on enabling the analysis of more complex biological systems with higher accuracy, and around 2015, artificial intel-ligence (AI) –in particular machine learning (ML)– began to play an increasingly important role in enhancing image analysis. ML-driven algorithms improved the ability to identify cellular features and classify cell types based on complex patterns.The most recent developments in IFC focus on image analysis capabilities using ML [7] and AI [8], [9] as well as the portability [10]. Portable IFC instrumentation devices, suitable for use in resource-constrained environments, are now being developed for point-of-care (PoC) diagnostics [11] and global health applications. These devices uses lightweight hardware components (such as miniaturized MF chips and detector), and use deep learning models for real-time data analysis, to bring the power of IFC outside the traditional laboratory environment. The target is to automate the classification of cellular objects and extract more information from image data than was previously possible with manual methods.As depicted in Figure 2, a typical IFC device based on a microfluidic (MF) droplet chip has three main modules: A. a sample pumping module, B. a droplet generation module which includes an excitation and detection lighting system, and C. an evaluation module.

Figure 2: Simplified diagram of a MF chip based IFC device

Using MF droplets in imaging flow cytometer holds great promise as this can performtypical laboratory operations by flowing two immiscible fluids, typically oil and water,within the microscale channels of the MF chip. Unlike continuous flow systems, droplet-based systems focus on creating few hundreds to thousands of uniform droplets in asecond [12]. Each droplet acts as tiny, isolated reaction chamber, which is particularlyadvantageous in biological and chemical studies requiring precisely controlled microen-vironments. Droplet formation in microfluidics is typically achieved through specializedgeometries and flow designs, such as flow-focusing, T-junction, and co-flow, that facili-tates accurate control over droplet size, generation rate and composition. Over the pastdecade, MF droplet generation and encapsulating cells in droplets has been used for cellanalysis, and medical diagnostics.
13



The principles of droplet generation and cell encapsulation are illustrated in Figure3, and actual examples of droplet images captured when flowing inside a microfluidicchannel (images extracted from the dataset used in later chapters of this thesis) as shownin Figure 4.

Figure 3: An example of MF droplet generation (Left) and cell encapsulation (Right). Reproducedfrom [13]

(a) Image showing two droplets: an empty droplet (right) and adroplet containing multiple cells (left) (b) Image showing a droplet containing 2 cells(right) and a droplet under formation (left)
Figure 4: Images of MF droplets flowing inside a microfluidic channel (images extracted from thedataset used in later chapters of this thesis).

In recent years, microfluidic droplet data analysis has gained significant attention infields such as biomedical research, drug discovery, and diagnostic testing. The analysis ofmicrofluidic object in a resource constrained platform at higher throughput could lead tothe development of portable imaging flow cytometry.
The research presented in this PhD thesis focuses on the generation module in IFC,specifically targeting the image quality assessment, droplet detection, tracking and clas-sification, through image analysis techniques suitable for resource constrained platforms.This involves investigating methods to accurately identify and monitor droplet within theportable IFC.
The motivation of this research, therefore, is to design efficient microfluidic dropletimage assessment and classification in resource constrained platform focusing onmoduledroplet generation.
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1.2 Challenges in Portable IFC Devices
IFC devices have gained significant attention over the past decade due to their applicabilityin high-throughput and high content screening [14], [15]. The research trends in this do-main of object detection and classification have evolved rapidly, driven by advancementsin imaging technologies and embedded systems design. Recent studies have emphasizedprecise detection and classification usingML, especially deep learningmethodologies [16],[17]. Additionally, there is a growing focus on conducting analyses on embedded plat-forms, facilitating the development of portable applications [18], [19].This PhD thesis revolves around a resource-efficient pipeline consisting of three pri-mary elements:

1. Blur-Free Image Acquisition: This component is responsible for acquiring good qual-ity, blur-free images of microfluidic droplets without necessitating additional hard-ware.
2. Image Quality Assessment: This component is responsible for evaluating dropletimage quality automatically prior to classification, allowing only suitable images tobe further processed.
3. Droplet Classification: Following image quality assessment, the pipeline aims toclassify MF droplets into three distinct categories: empty droplets, droplets con-taining a single cell, and droplets containing multiple cells.
Implementing the above components for blur-free image acquisition, image quality

assessment, and droplet classification on resource-constrained devices presents several
challenges due to the high computational demands associated both with conventional
signal processing and deep learning models.A first challenge is to avoid using complicated camera synchronization for acquiringblur-free single droplet images. Conventional hardware setups and corresponding algo-rithms are not suitable for obtaining droplet images that are clear and suitable for subse-quent classification, even within the constraints of embedded devices.Next, achieving fast inference times using DL models while maintaining classificationaccuracy presents a considerable obstacle. Indeed, most existing research predominantlyrelies on powerful desktop personal computers (PCs) and powerful graphics processingunits (GPUs), which are not suitable for portable applications.The challenges on resource constrained platform are induced from limited computa-tional power, memory, and power consumption, which can significantly impact the perfor-mance and accuracy of classification models. Resource-constrained platforms often lackthe computational capacity to support complexML/deep learning algorithms. This limita-tion compels to use simplifiedmodels for droplet classification. Additionally, the availablememory on such platforms can restrict the size of the models that can be deployed, lim-iting the complexity and number of features that can be utilized for droplet classification.Moreover, droplet classification algorithms must be optimized to minimize energy usage,which can often conflict with the need for more sophisticated and computationally inten-sive techniques. Hence, if the model is not selected carefully, it may inadequately capturethe dynamics of MF droplets, leading to potential classification errors and reduced accu-racy.Overall, addressing these challenges requires innovative approaches in model selec-tion, optimization, and the efficient use of hardware resources, ensuring that droplet clas-sification can be effectively implemented even in constrained environments.
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1.3 Problem Statement, Research questions and Research Hypothesis
IFC is a very valuable tool for various biomedical and diagnostic applications. However, as discussed above, the current systems that perform droplet imaging and classification often rely on high-performance computing platforms, which are not suitable for portable, resource-constrained environments. To summarize, the key challenges include: 1) The difficulty of capturing blur-free images in a dynamic, fast-moving MF environment, 2) the high computational cost of the models, which limits their deployment on embed-ded systems or single-board computers, and 3) the need for a lightweight image quality assessment mechanism to filter out low-quality images, ensuring the reliability of classi-fication models in resource-constrained environments.The problem this thesis addresses is how to design a blur-free image acquisition, im-age quality assessment and a lightweight classification model, all of which can operate efficiently on resource-constrained platforms such as Raspberry Pi. The general workflow is shown in Figure 5.

Figure 5: An overview of research task

Segmenting blur-free droplets from the video is crucial step for single droplet analysisas it reduces the possibilities of capturing duplicate image of the same droplet. The sec-ond task, i.e. automatic image quality assessment, plays an important role to filter outunnecessary data such as blurry images or low contrast droplet images. This process en-sures reliable data analysis. Lastly, classification is important to the analytical process incategorizing specific cellular entities. This overall workflow is designed for portable appli-cation. The research presented in this PhD thesis builds upon the following three researchquestions:
• RQ1: How to design a lightweight and effective image processing pipeline for de-tecting, counting and acquiring blur-free segmented droplet images suitable forapplication-specific resource-constrained platforms?
• RQ2: Can deep neural network replace conventional signal processing for achievingeffective image quality assessment on a resource-constrained platform?
• RQ3: How to design a custom droplet classifier (presence or absence of cells insidethe droplet) suitable for rapid inference on a resource-constrained platform whilemaintaining high classification accuracy?
The central hypothesis of this research is that it is possible to develop a resource-efficient pipeline for microfluidic droplet analysis that can deliver high classification ac-curacy and real-time performance on resource-constrained platforms by optimizing deeplearning models, reducing image acquisition blur, and implementing lightweight imagequality assessment algorithms. Specifically:
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• A deep learning model, such as Yolov4-tiny, can be compressed and tuned to runon low-power devices without significant loss of accuracy in droplet classification.
• Computational methods can be developed to ensure blur-free image acquisition inresource-limited environments, reducing the reliance on expensive hardware formotion stabilization.
• An image quality assessment mechanism can be implemented on a resource-constrained platform, which could later be used to filter low-quality images andimprove the overall performance of the classification pipeline.

1.4 Thesis Contributions
This thesis makes several contributions to the field of resource-efficient image processingand microfluidic droplet analysis:
Contribution 1 (addressing RQ1): Contrary to most existing systems that rely on com-plex hardware setups, I propose an image processing pipeline that utilizesminimum hardware and a lightweight algorithm for detecting, counting,and acquiring single object images. Implementation results show thatit is suitable for single object image acquisition in IFC on an embeddedportable platform
Contribution 2 (addressing RQ2): Image Quality Assessment on Embedded Platforms: Ipropose a lightweight deep learning solution that replaces conventionalsignal processing for image quality assessment on embedded platforms.I designed a new lightweight CNN-Transformer hybrid model and imple-mented it on Raspberry Pi 5. This approach enables objective IQA withinstrict computational andmemory constraints. The result establishes DNNas an effective and resource-efficient alternative for automated, portableIFC systems.
Contribution 3 (addressing RQ3): In order to bridge the gap between high-throughputrequirements and the limitations of resource-constrained platforms, I de-veloped a new customized YoloV4-tiny model incorporating model com-pression and architectural modification (e.g. reduced number of filtersfrom convolutional layers). Results show that the proposed approach en-ables rapid inference while maintaining high classification accuracy forcategorizing droplets containing no, one, or multiple cells.

Table 2 provides an overview of the mapping between the contributions, RQs, andpapers. The papers are available in full in Appendices I-V in this thesis.
Table 2: Summary of Contributions in Relation to Research Papers

RQ Contributions Publication I Publication II Publication III Publication IV Publication VRQ1 (Lightweightdroplet images ac-quisition)
C1 ✓ ✓

RQ2 (Image qualityassessment) C2 ✓

RQ3 (Droplet clas-sifier on embeddedplatforms)
C3 ✓ ✓ ✓
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1.5 Organization of the Thesis
This PhD thesis is structured into five chapters;

1. Introduction: The introductory chapter provides an overview of the historical back-ground of IFC, problem statement as well as research questions.
2. Chapter 2: begins with the background of single droplet image acquisition, imagequality assessment andMF droplet classification. Then provides the overview of ex-isting research for portable IFC. Note: themore specific state of the art work relatedto the individual contributions are presented in the following respective chapters.
3. Chapter 3: discusses the overview and challenges in blur free single droplet imageacquisition.
4. Chapter 4: discusses the overview and challenges for automatic IQA in IFC and suit-able model for portable system.
5. Chapter 5: discusses the overview and challenges for automatic droplet classifica-tion, showcasing proposed model for different embedded platform.
6. Chapter 6: provides the summary of the main contributions, presents the conclu-sion of the thesis as well as the future work.

The framework for the Ph.D. thesis including all the chapters (Chpt.) and correspond-ing publications is shown in Figure 6.The chapters provide an overview of the work and results; the reader is encouragedto read the aforementioned papers, provided in appendices, for additional details andresults.

Figure 6: Framework for the Ph.D thesis.

18



2 SOME BACKGROUND ON BLUR-FREE SINGLE DROPLET IM-
AGE ACQUISITION, QUALITY ASSESSMENT AND DROPLET
CLASSIFICATION IN IFC

As illustrated in Figure 7, in MF droplet IFC, acquiring blur-free single droplet image, per-forming image quality assessment2, and performing droplet classification are importantparts of the analysis. Each part has its own challenges and thus directly influence the reli-ability and precision of data analysis in e.g. biomedical applications. In addition, embed-ded platforms needed to realized point-of-care services also face challenges in each part,requiring careful selection of models or solution. This chapter provides the fundamen-tal background necessary to understand these challenges and their implications withinportable IFC research.

Figure 7: Illustration of MF Droplet Analysis with Embedded Platform Challenges.

Note that while the following sections offer a broad overview of these topics, the spe-cific state-of-the-art methodologies corresponding to each key contribution of this dis-sertation are presented in their dedicated chapters. The objective of this chapter is toestablish the essential background required to develop an understanding towards achiev-ing the PhD thesis’ objective.
2Since there is no standard for image quality in this domain, additional expert’s opinion wasconsidered as part of the PRG620 project under which this thesis was conducted
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2.1 Background on Blur-Free Single Droplet Image Acquisition
Research in droplet-based cell analysis has focused on the development of multiple sci-entific fields, i.e. cellular immunology [20], drug screening [21], etc. As previously stated, the fluid flow variation in MF IFC leads to motion blur if not synchronized with camera properties. Traditionally high speed cameras and complex optical setups have been used to capture blur-free images from rapid flow. For example, time delay integration CCD camera has been used in high-throughput IFC for blur-free fluorescence images of flowing cells [22]. Stroboscopic illumination can effectively freeze the object motion to obtain blur-free images, for example in [23] the authors used stroboscopic illumination to capture blur-free images with a CMOS camera. In [24], a polygon mirror scanner that moves along with cells to freeze the motion of the blood cells for further classification. However, these approaches are complicated and expensive and requires special optical modules that makes it unsuitable for portable applications.Software-based methods, including computer vision and deep-learning based single object image acquisition obtained popularity due to their adaptability and lower hard-ware dependency. Classical segmentation techniques, such as Otsu’s algorithm has been used for urine cell segmentation in [25], but this type of algorithm struggle with complex backgrounds and non-uniform lighting conditions. More recent studies have leveraged CNNs for single object image acquisition and provides higher accuracy compared to traditional methods. In [26], the authors used U-Net architecture that takes the features from multiple layers into account and provides good localization for cell level segmentation and counting. Deep CNN has been used to segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells [27]. Despite these advances, single object image acquisition challenges persist in embedded platforms because of resource constraints. Moreover, further optimizations, such as quantization and pruning, are necessary to make deep-learning models suitable for embedded devices.Although the scientifc literature review shows that the blur-free image can be acquired by developing dedicated hardware system or ML/DL based algorithm for single droplet image acquisition, these are either not suitable for portable platform or not developed for blur-free segmented object image. That is why it is necessary to go beyond the state of the art to develop a pipeline which can segment each droplet and acquire the image without any duplication.
2.2 Background on Image Quality Assessment for IFC
IQA is a key element in image quality evaluation and different types of IQA methodologies are widely applied in image generation and processing. Acquired images from IFC is usu-ally assessed by humans who are familiar with the system. Very limited research has been done to assess the quality of de-blurred or reconstructed images, although those are not fully dedicated for automated IFC system. With the development of computer graphics and digital photography, algorithms have been created to automate the assessment task and explored widely for generic images.

In Figure 15, the hierarchical classification of IQA is represented. The IQA method-ologies are mainly classified into subjective and objective; subjective IQA is based on hu-man evaluator assessment, while objective IQA provides quantitative assessment without needing any human evaluation.
These are further classified into three categories: (1) Full-Reference (FR), (2) Reduced-
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Reference (RR), and (3) No-Reference (NR) IQA approaches.

Figure 8: Hierarchical classification of IQA methodologies.

• Full Reference IQA (FR-IQA): This approach requires a high-quality reference imageto comparewith the target image. It involves computing similaritymeasures such asPeak Signal-to-Noise Ratio (PSNR) [28] and Structural Similarity Index (SSIM) [29].While FR-IQA provides accurate quality assessment, its dependency on referenceimages makes it impractical in real-time applications like IFC.
• Reduced-Reference IQA (RR-IQA): RR-IQA requires only partial information or spe-cific features from a reference image. It extracts key statistical or structural featuresfrom both the reference and evaluation images to estimate quality. This approachoffers a balance between accuracy and practicality but still requires some referencedata.
• No-Reference IQA (NR-IQA): NR-IQA assesses image quality without requiring a ref-erence image. It analyzes inherent features such as sharpness, contrast, and noiseto infer image quality. This makes NR-IQA particularly suitable for real-time appli-cations, where reference images are unavailable.
Automated IQA is critical for ensuring consistent and accurate image-based analy-ses in IFC. NR-IQA methods, such as blind/referenceless image spatial quality evaluator(BRISQUE) [30], natural image quality evaluator (NIQE) [31], [32], and perception basedimage quality evaluator PIQE [33], have been used to evaluate image quality. However,these metrics often show limited correlation with human perceptual scores. Most of theNR-IQA model are developed based on the publicly available datasets i.e Laboratory forImage & Video Engineering (LIVE) [34], Tampere Image Database (TID2013) [35], KonIQ-10k [36]. LIVE and KonIQ-10k database contains natural distortion datasets, there areother database as well but mostly contains synthetically distorted datasets.

21



2.2.1 Performance Metrics for IQAIQA is associated with performance metrics such as Pearson Linear Correlation Coeffi-cient (PLCC), Spearman Rank-Order Correlation Coefficient (SROCC), Kendall Rank OrderCorrelation Coeffcient (KROCC), and Root Mean Squared Error (RMSE). The mostly usedperformance metrics are PLCC and SROCC, as defined below:
• PLCC: evaluates how well the relationship between two variables can be describedby a straight line. The coefficient ranges from -1 to +1, where:

– +1 indicates a perfect positive linear correlation
– 0 indicates no linear correlation
– -1 indicates a perfect negative linear correlation

r =
∑(Xi − X̄)(Yi − Ȳ )√

∑(Xi − X̄)2
√

∑(Yi − Ȳ )2
(1)

PLCC is computed using (Eq. 1): where:
– Xi and Yi are individual data points.
– X̄ and Ȳ are the mean values of X and Y .
– The numerator represents the covariance between X and Y .
– The denominator normalizes the result using the standard deviations.

• SROCC measures the strength and direction of monotonic relationships betweentwo variables that means it assesses how well the relationship between twodatasets can be described by a monotonic function. If one variable increases,the other tends to increase (or decrease) consistently. SROCC can be expressedwith (Eq. 2):
ρ = 1− 6∑d2

i
n(n2 −1)

(2)
where:

– di is the difference between the rankings of the two variables for the ith ob-servation.
– n is the number of data points.

2.3 Background on Droplet Classification
As previously stated, automated classification of microfluidic droplets is essential for var-ious biomedical and chemical applications, including cell encapsulation and single-cellanalysis. ML and DL can be used for object classification. A ML based decision makeris used for tumor cell classification in [37]. ML based classification approaches throughfeature extraction can achieve reasonable but are limited to handle complex characteris-tics of objects.Recent advances in DL algorithms and AI has revolutionized object classification, withCNNs achieving SOTA performance. Depending on the available labeled training data, im-ages or objects can be classified into two or more classes using the DL method. A trainedResNet18model was implemented under the TensorRT framework on the NVIDIA GeForceGTX 1080 TI GPU to classify bead or cell images, total data processing including detection,
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tracking within 3ms [38]. Human white blood cell classification and sorting was achievedusing FPGA, Nvidia Quadro RTX A6000 GPU with an optimized custom CNN UNet model[39]. In [40], the authors used a faster RCNN architecture to identify and count malariainfected blood cells in bright field image. Unfortunately, the application of DL algorithmsto high-throughput IFC in embedded platform faces significant challenges because of theresource constraints.
2.3.1 Performance Metrics for classificationClassification performance evaluation is important to ensure the accuracy and reliability ofthe classification models. The most commonly used performance metrics in classificationtasks are accuracy, precision, recall, F1 score, as described below:

• Accuracy: The ratio of correctly classified objects to the total number of objects.
Accuracy =

T P+T N
T P+T N +FP+FN

(3)
where:

– TP (True Positive): Correctly classified positive objects.
– TN (True Negative): Correctly classified negative objects.
– FP (False Positive): Incorrectly classified negative objects as positive.
– FN (False Negative): Incorrectly classified positive objects as negative.

• Precision: Measures the proportion of correctly predicted positive instances amongall predicted positive instances.
Precision =

T P
T P+FP

(4)
• Recall (Sensitivity): Measures how well the model captures positive instances.

Recall =
T P

T P+FN
(5)

• F1-score: measures the model accuracy by representing the balance between pre-cision and recall and calculated from:
F1 = 2× Precision×Recall

Precision+Recall
(6)

2.4 Conclusion
This chapter concisely reviewed the key aspects of blur-free single droplet image acqui-sition, IQA, and droplet classification within the context of MF IFC. The challenges inacquiring blur-free single droplet images were discussed, highlighting the limitations ofexisting hardware and software-basedmethods. For IQA, differentmethodologies, includ-ing FR, RR, and NR approaches, were introduced, alongwith commonly used performancemetrics i.e. PLCC and SROCC. The importance of automatic IQA for improving portableMF imaging applications was emphasized. Furthermore, classification techniques basedon ML and DL were discussed, with a specific focus on CNN-based methods that offerbetter accuracy in classification. The evaluation metrics for classification models, such as
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accuracy, precision, recall, and F1-score were also included to provide a comprehensive understanding about the model performance.Despite advancements in these areas, challenges persist, particularly in the optimiza-tion of deep learning models for resource-constrained embedded platforms. To address these challenges, the rest of this thesis focuses on developing lightweight algorithms and models that can efficiently operate on portable and resource constrained devices while maintaining sufficient accuracy. By addressing these challenges, the development of portable MF droplet IFC imaging solutions can be improved, benefiting applications in biomedical research and single-droplet analysis.
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3 BLUR-FREE SINGLE-IMAGE ACQUISITION IN IMAGING FLOW
CYTOMETRY

This chapter presents a lightweight imaging pipeline designed to acquire blur-free single-droplet images in portable IFC. The proposed method requires minimal hardware, en-abling efficient single-droplet image acquisition and droplet counting on embedded plat-forms. The methodology uses color-based detection and Euclidean distance tracking, which is lightweight, making it suitable solution for portable devices.

This chapter is based on the following publications:

Publications I:

Afrin, Fariha & Pärnamets, Kaiser & Le Moullec, Yannick & Udal, Andres & Koel, Ants & Pardy, Tamas & Rang, Toomas, Embedded Blur-Free Single-Image Acquisition Pipeline for Droplet Microfluidic Imaging Flow Cytometry (IFC), IEEE Access, vol. 12, pp. 92431-92441, 2024, DOI: https://doi.org/10.1109/ACCESS.2024.3421637

Publication IV:

Jõemaa, Rauno & Afrin, Fariha & Gyimah, Nafisat & Ashraf, Kanwal & Pärnamets, Kaiser & Pardy, Tamas, Cogni-Flow: Integrated Modular System For Automated Droplet Microflu-idic Bio-analysis, EUROSENSORS XXXVI, 01-04 September 2024, Debrecen, Hungary.

3.1 Overview

As mentioned in the previous chapters, IFC droplet images are critical for e.g. drug dis-covery and medical diagnostics. However, high flow speeds within microfluidic channels often lead to motion blur, making it challenging to extract meaningful information from the images. This is because when the camera’s exposure time is not well synchronized with the flow rate of the object, it results in either motion blur (if the object moves too fast) or noise (if the exposure time is too long) [41], [42]. Traditional solutions to this problem typically involve high-speed imaging, advanced optical components, and high-end GPU that, while effective, significantly increase both the complexity and cost of the system.The summarized workflow and challenges in blur-free single droplet image acquisition for IFC are schematized in Figure 9.
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Figure 9: Summarized Workflow and Challenges in Blur-Free Single Droplet Image Acquisition for Imaging Flow Cytometry.

Controlling the fluid flow rate along with a velocity detection subsystem to synchronize the camera’s exposure time with the movement of the cells is an existing solution. For ex-ample, the Commercial ImageStream platform focuses on improving the optical setup of the flow cytometry systems as well as uses a precise pump [43]. Another approach is the use of parallelized microchannels to reduce the flow speed, thus ensuring better control over object imaging in high-throughput environments [44], [45]. The optical time-stretch imaging method is another significant advancement in high-speed imaging for IFC. This technique captures high-quality single object image in a highly dynamic environment by exploiting spatial and temporal dispersion [46], [47]. Another method, virtual motion-freezing fluorescence imaging (VIFFI), has been developed to achieve high-throughput imaging by freezing particle motion through an ultra-fast shutter, allowing the capture of blur-free images even at high speeds [48], [49]. However, these solutions require addi-tional hardware with complex optical setups, which makes them complex and costly [50],[51].In addition to developing a dedicated hardware set-up, the integration of ML and DL techniques has significantly improved the analysis and acquisition of single-object images. These approaches are widely used to process and classify images after acquisition. For instance, image reconstruction can be applied without integrating additional hardware, yet this process first identifies the blur and then processes the data [52]. Although ML and DL have enhanced capabilities in acquisition and further analysis, their computational complexity and hardware demands remain significant challenges. Most studies focus on improving accuracy, often overlooking the critical trade-off between speed, accuracy, and hardware requirements. For example, a portable flow cytometer that uses deep learning to detect Giardia lamblia cysts in water samples was reported, but data processing still relies on desktop PCs, limiting the applicability in portable IFC [10].The number of research papers directly comparable with our work are limited; the closest ones and their key features are summarized in Table 3.
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Table 3: Comparison of different techniques and the proposed method. Each key element (complex-ity, portability, etc.) used for the comparison is scored on a scale ranging from "+" to "+++". (Tablereproduced from publication I)
Techniques Complexity Portability Throughput/

accuracy
Cost Summary of the

methodologiesVirtual-freezing[49]
+++ + Throughput

>10,000cells/s; classifi-cation accuracy95.3%

+++ Acquires blur freesingle cell image byusing a sophisticatedsystem that includesa flow-controlledmicrofluidic chip, aspeed-controlled poly-gon scanner, and aseries of precise timingcontrol circuits.Deep learn-ing [52] + + 96.6% classifi-cation accuracy ++ Data processing runson the computerMachinelearning[53]
+++ ++ Detection rate93.8%; classi-fication rate99.8%

+++ Optofluidic detection atthe edge device reliesin the time trace
Deep learn-ing [10] + +++ Autofocus on asingle object in

<7 ms
++ Data processing runson the computer

OpenCV[19] + +++ Classificationand countingaccuracy areabove 95%

+ The detection andcounting system op-erate after saving 10videos (RPI4 platform).However, the pro-cessing time for eachobject detection is notreported in the paper.
Proposed
method

+ +++ Counting ac-
curacy is 100%
for the tested
videos

+ Acquires blur free
single droplet image
by using a lightweight
pipeline on embedded
platform

In [49] virtual-freezing technique uses a sophisticated hardware system, including aflow-controlled microfluidic chip, a speed-controlled polygon scanner, and precise timingcircuits to capture blur-free single-cell images at high throughput (>10,000 cells/s) with95.3% classification accuracy. Another work [52] applies deep learning-based classifica-tion and achieves 96.6% accuracy rate but the data processing is performed on a com-puter. Despite their effectiveness, they are highly complex, expensive, and lacks portabil-ity.
In [53] a machine learning model was used for edge-device classification, achieving99.8% classification accuracy with a 93.8% detection rate. The method relies on precisetime-trace data, making it highly complex but moderately portable. Another [25] deeplearning-basedmethod, focusing on autofocus capabilities (≈ 7ms per object) rather thanjust classification and data processing runs on a computer.
In [10], OpenCV is used to perform classification and counting with an accuracy of
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>95% on a RPi-4. While it is moderately complex, it is highly portable and cost-effective,making it a practical alternative. However, the processing time per object detection is notreported. Additionally, many studies focus on post-experimental data processing, whichis often impractical in real-time applications due to the limited memory capacity of em-bedded systems such as single-board computers (SBCs). This makes the application ofreal-time, edge-based solutions challenging, particularly in high-throughput IFC, wherelarge numbers of images must be captured and processed simultaneously.The main goal of this part of this PhD thesis is to acquire blur-free single droplet im-ages without any camera synchronization to handle the complexity and computational cost challenge. This method introduces a lightweight pipeline on an embedded platform to achieve blur-free single droplet imaging with 100% accuracy in tested videos. The pro-posed method offers high portability, low cost, and low complexity, making it a promising alternative to traditional IFC imaging solutions.
3.2 Method
The proposed pipeline was first tested with simulated two-phase flow videos, and then with real-world experimental fluorescent microscopy recordings. To provide an under-standing of these testing phase, a detailed explanation is provided here. The core mi-crofluidic chip made of a polydimethylsiloxane (PDMS), schematically represented in Fig-ure 10(a) (Figure reproduce from publication I). This chip’s design is based on a previously validated microfluidic platform documented in reference [54]. The chip’s architecture in-corporates several components: water and oil inlets, a gas spring connector (labeled as "air inlet" in Figure 10(a)), a flow-focusing junction measuring 90 µm in width and 100 µm in height, and a single outlet channel. The filtration systems integrated into the oil inlets, specifically to capture and remove any contaminants potentially present in the mineral oil (Sigma Aldrich 330779), thereby preventing channel obstruction and ensuring consistent fluidic flow.Simulated videos are generated using COMSOL Multiphysics version 5.6, implement-ing a sophisticated two-phase flow model previously established in [54]. The simulation parameters are carefully calibrated to maintain water and oil flow rates at precisely 10 µL/min and 67.7 µL/min, respectively. This 6.77:1 ratio of oil to water flow rate serves a critical function: it ensures sufficient spatial separation between generated droplets. Within the COMSOL visualization framework (illustrated in Figure 12) the liquid phases are represented through a color-coded system - red and blue for the respective phases, with green indicating interfacial regions where the relative water concentration approaches 50%.The experimental validation phase uses a significantly more complex setup. Deionized water is precisely formulated with 10 µg/ml fluorescein isothiocyanate-dextran (FITC) to enable fluorescent visualization. This fluorescent aqueous solution and oil are introduced into the fabricated PDMS chip through their respective inlets using calibrated 3 mL syringes. Flow rate control is achieved through a high-precision syringe pump (SpinSplit Netpump, manufactured by SpinSplit LLC, Budapest), with the notable absence of the air inlet in this experimental configuration. The optical detection system, depicted in Figure 10(b), uses a 488 nm laser light source (Sharp GH04850B2G equipped with specialized fo-cusing optics sourced from AliExpress) positioned strategically at the post-junction region where droplet formation occurs, as described in reference [31]. This positioning is critical for optimal excitation of the FITC fluorophore. The dynamic droplet flow through the PDMS microchannels is captured using a high-speed Basler Ace camera operating at an
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Figure 10: Droplet generation. (a) Schematic of the PDMS chip (not drawn to scale). (b) Experimentalsetup showing all (water, oil, air) inlets, the droplet outlet, the filter, and the excitation laser light.The power supply for driving the laser, the computer for controlling the syringe pump, and the BaslerAce camera are not visible here. Figure reproduced from Publication I (Figure 1).
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exceptional temporal resolution of 1000 frames per second (fps), enabling detailed anal-ysis of rapid droplet formation and movement dynamics. This dual-validation approach,combining both computational simulation and experimental verification, provides a ro-bust framework for assessing the proposed pipeline’s performance across different oper-ational scenarios and conditions.

Figure 11: Block diagram of the single-image acquisition process flow, consisting of (1) video stream-ing, which occurs at 1000 fps; (2) processing, which involves detecting droplets based on their colorand tracks; and (3) result acquisition, which involves acquiring a single image and counting the num-ber of droplets using the tracking result without any duplication. Figure reproduced fromPublicationI (Figure 2).

Figure 11 presents a detailed block diagram of the single-image acquisition work flow,consisting of three main stages: (1) video streaming, (2) processing, and (3) result acqui-sition.The pipeline was developed in Python 3.8 with OpenCV 4.5.5, incorporating customcolor-based detectionwith Euclidean distance tracker rather than Background SubtractionMixture of Gaussians-2 (BS-MOG2). This design choice was made because color-baseddetection demonstrated superior robustness against intensity variations in experimentalenvironments, whereas BS-MOG2 required specific history (100) and threshold (50) val-ues and performed poorly in non-simulated conditions. The pipeline begins with video
streaming, droplet movement through microfluidic channels. Then the processing stagewhich forms the core of the system and is divided into two main components:

1. Detection: This includes:
• ROI-1 Selection: Defining an initial region of interest for droplet detection
• Masking: Implementing color-based detection using HSV color space
• Contour Thresholding: Applying a threshold value (100 pixels) to excludenoise and identify valid droplet contours

2. Tracking: This includes:
• Unique ID & Tracking: Assigning and maintaining unique identifiers to eachdroplet using a Euclidean distance tracker algorithm
• ROI-2 Selection: Defining a secondary region of interest for counting. Moredetails are included later in Figure 12.

The tracker maintains positional proximity (less than 10 pixels) between frameswhich helps to prevent duplication. The algorithm calculates the Euclidean distance
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as follows [55]:
D = min

(√
(a j −ai)2 +(b j −bi)2

)
(7)

where D represents the Euclidean distance between previous and current tracks, adenotes the x-coordinate of the track box, b denotes the y-coordinate of the trackbox, j represents prediction boxes in the current frame, and i represents predictionboxes in previous frames. This tracking approach is particularly effective in the initialsection of the microfluidic channel, where droplets flows in a single flow patternwithout occlusion.
3. Result acquisition: this includes capturing single images of each droplet (that canbe exported in various formats (.tiff, .png, .gif, .jpeg, .bmp) for subsequent analysis)and accurately counting the total number of droplets without any duplication. Thedetailed process can be understood from the following pseudo code.
The memory usage, starting near 0 MIB and increasing gradually to approximately60 MIB. This represents the loading of the video processing libraries, initialization ofdata structures, and establishment of the processing pipeline. The maximum memoryutilization remains below 100MIB, indicating efficient resource utilization suitable for de-ployment on resource-constrained platforms like SBCs. Thismemory profile complementsthe previously discussed processing pipeline, representing that the implementation is notonly effective but also resource-efficient, aligning with the overall goal of developinglightweight image processing solutions for microfluidic applications.

Figure 12: Three different conditions for accurate counting (Top: COMSOL simulated two-phase flowvideo, bottom: experimental fluorescence video): (i) if the green bounding box is outside ROI-2, theoperation returns -1; (ii) if the bounding box is exactly on the boundary of ROI-2, it returns 0; and (iii)if the bounding box is inside ROI-2, it returns +1, which is the right condition to store the location.Figure reproduced from Publication I (Figure 5).
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Algorithm 1 PseudoCode for Proposed Pipeline. Reproduced fromPublication I(Algorithm1)
Data: Video frame
Result: Acquire single droplet image and count1. tracker = EuclideanDistTracker() // Initialize Euclidean distance tracker2. create_directory(’data’) // Create a directory named ’data’ for saving droplet images3. object_count = set() // Initialize droplet count set4. Process frames in a loopwhile True:frame = read_frame(cap) // Read a frame from the videoHsv_img = convert_to_hsv(frame) // Convert the frame to HSVmask_green = create_green_mask(Hsv_img, Low_Green, High_Green) // Createmask using color thresholdingcontours = find_contours(mask_green) // Find contours in the maskdetections = detect_objects(contours) // Detect droplets based on contour areaboxes_ids = tracker.update(detections, 1) // Update droplet tracking using theEuclidean distance tracker5. Process each detected and tracked objectfor box_id in boxes_ids:x, y, w, h, obj_id = box_iddraw_rectangle(frame, x, y, w, h) // Draw bounding boxdraw_text(frame, str(obj_id), x, y) // Text on the frameresult = point_in_polygon(roi_polygon, (x, y)) // Check if the droplet is inside thedefined counting areaif result:object_count.add(obj_id) // Update droplet_count based on the object IDsave_droplet_image(frame, obj_id) // Save image of the detected droplettotal_count, objects_in_second = calculate_count(object_count, fps_count) //Calculate total droplet count and droplets per seconddisplay_count(frame, total_count) // Display the droplet count on the frame6. Check for user input to exit the loopkey = wait_for_key()if key == 27:break7. Cleanup and release the video capture objectrelease_video_capture(cap) // Release the video capture objectdestroy_all_windows() // Destroy all open windowsEnd of Algorithm
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Figure 12 illustrates the implementation of region-based logic for accurate dropletcounting across COMSOL-simulated videowith color-coded droplets (numbered 9-14) andexperimental fluorescence videos with green bounding boxes identifying droplet posi-tions (numbered 1-3). The figure demonstrates three distinct scenarios that determinethe counting operation:

1. When the droplet bounding box is positioned outside ROI-2, the operation returns-1, indicating the droplet should not be counted.

2. When the droplet bounding box is positioned completely inside of ROI-2, the oper-ation return +1, representing the correct condition for storing the droplet location.

3. When the droplet bounding box is positioned overlappingwith ROI-2, the operationreturns 0, indicating the droplet should not be counted.

This conditional logic ensures that each droplet is counted exactly once as it passes through the designated region of interest, preventing duplicate counts.

3.3 Selected results of the single droplet image acquisition

As previously discussed, two algorithmic combinations were tested: (1) color-based de-tection with Euclidean distance tracker, and (2) BS-MOG2 with Euclidean distance tracker. These combinations were evaluated using two types of video data, simulated and experi-mental, on three hardware platforms: a desktop PC, a Raspberry Pi 4 (RPI4), and a NVIDIA Jetson Nano.The analysis shows that the color-based detection with Euclidean distance tracker ap-proach significantly outperforms the BS-MOG2 with Euclidean distance tracker approach across all platforms, offering faster processing times and demonstrating greater suitability for portable IFC applications. For simulated video data, the color-based method achieved processing times as low as 10 milliseconds on the Jetson Nano, whereas BS-MOG2 re-quired approximately 30 milliseconds on the same platform. More detail results are shown in Publication I.This performance analysis validates the selection of color-based detection as the pre-ferred algorithm for resource-constrained platforms, aligning with the goal of acquiring single droplet image in portable IFC.
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Table 4: Comparison of Most-closely related results vs. our work. Table reproduced from PublicationI (Table 4).
References Techniques Platform Processing time (ms) Counting ac-

curacy[56] Deep learning High-endNVIDIA V-100GPU
33 N/A

[49] Sophisticatedhardwaresetup
Desktop PC N/A N/A

[10] Deep learning Nvidia RTX2080 GPU ∼34 N/A
[19] OpenCV Raspberry Pi N/A 95.9% to99.7%This work Lightweightpipeline usingcolor-baseddetection andEuclidean dis-tance tracker

Jetson Nano 10 Countingaccuracy is100% forthe testedvideos

Moreover, Table 4 contrasts our proposed lightweight pipeline and othermost-closely-related state-of-the-art work for droplet detection and counting based on utilized plat-form, processing time and accuracy.
• Processing Time: Our lightweight pipeline implemented on Jetson Nano achievesa processing time of 10 ms per frame, which is approximately 3.3-3.4 times fasterthan deep learning approaches running on high-end GPUs ([56], [10]) that require33-34 ms per frame respectively. Copy
• Counting Accuracy: While many previous works ([56], [49] , [10]) do not reportcounting accuracy, openCV-based detection and classification implementations onRaspberry Pi platforms ([19]) reported 95.9% to 97.7% accuracy. While our approachobtains counting accuracy more than 95%.
• Platform: Our work specifically targets resource-constrained edge computing de-vices (Jetson Nano), whereas most comparable studies utilize high-performanceGPUs or desktop computers, making our solution more suitable for portable IFC.

This comparative analysis represents the balance between performance and resource ef-ficiency achieved by our pipeline, particularly for deployment in portable IFC.
Additionally, the pipelinewas also evaluatedusing an external reference brightfieldmi-croscopy video obtainedwith a similar chip design [57], successfully demonstrating single-droplet detection, image acquisition and counting shown in Figure 13.
This evaluation indicates the generalization and robustness of the developed pipelineacross different devices and video types.
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Figure 13: Single droplet image acquisition in brightfield microscopy (Left to right: video stream-ing, processing, and result). Masking (white boundary), contouring (yellow boundary) and tracking(green rectangle) shows only for one droplet from the video. Multiple saved droplet images areshown in result. Figure reproduced from Publication I (Figure 8).

3.4 Conclusion on Blur-Free Single-Image Acquisition in Imaging Flow Cy-
tometry

Single-droplet image acquisition plays an important role in extracting meaningful infor-mation about individual micro-particles. Due to the high throughput and rapid flow rate in IFC, most research efforts have focused on developing hardware-based solutions to capture blur-free single images. In contrast, the goal of this work was achieved with lightweight pipeline which, requires minimum hardware, making it suitable for portable IFC application.The pipeline employs a color-based detection algorithm that efficiently acquires each single-droplet images while simultaneously counting the total number of droplets from a single-line high-throughput droplet flow. The extracted images can be seamlessly in-tegrated into other algorithms for further analysis, such as classification, or any other morphology analysis. Droplet detection presents challenges due to the variation of fluid flow in the portable platform, but the proposed pipeline effectively mitigates these issues, ensuring reliable detection, counting and single droplet image acquisition.This fully automated system detects and counts droplets while capturing blur-free single-droplet images within 2ms. The initial phase requires a one-time manual setup for identifying the object’s color range and defining the threshold for mask creation. The pipeline was validated using external reference data. Additionally, it was tested on a desk-top PC and two embedded platforms, comparing the processing times of different object detection algorithms. The Jetson Nano SBC achieves a detection rate of 100 droplets per second (DPS), whereas a desktop PC processes droplets approximately five times faster (500 DPS).
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4 AUTOMATED DROPLET IMAGE QUALITY ASSESSMENT FOR
PORTABLE MICROFLUIDIC IMAGING FLOW CYTOMETRY

This chapter explores the suitability of IQA techniques and the challenges involved in dataset preparation within the context of a portable LoC microfluidic IFC system. The primary objective is to assess the applicability of IQA methodologies for portable IFC applications. The evaluation results presented in paper IV demonstrates the proposed model’s effectiveness, exhibiting good correlation coefficients with human Mean Opinion Score (MOS) and inference capabilities on RPI-5 resource constrained platform.
This chapter is based on the following paper:
Publication V:Afrin, Fariha, Ndubuisi Ezechukwu, Dismas, Le Moullec, Yannick, Pardy, Tamas, Rang, Toomas, "CNN-Transformer Hybrid Model Towards Automated Droplet Image Quality Assessment of Portable Imaging Flow Cytometer," Accepted to be presented at and pub-lished in the proceedings of IEEE EUROCON 2025 - 21st International Conference on Smart Technologies, 4-6 June 2025, Gdynia, Poland.

4.1 Overview
As previously discussed, IFC plays important role in biomedical imaging by integrating the high-throughput capabilities of flow cytometry with detailed morphological analysis through imaging [58]. However, ensuring good-quality image acquisition remains a critical challenge due to variations in lighting conditions and motion blur [52], [59]. Poor image quality can lead to inaccurate analysis in subsequent processing steps, potentially affect-ing the accuracy.Furthermore, in IFC, image quality is typically assessed subjectively, which is inade-quate for automated workflows in analysis. Implementing automated IQA is essential to ensure consistent and precise data interpretation. A reliable IQA system in portable plat-form directly impacts the accurate analysis of microparticles such as cells within droplets, thereby enhancing the robustness and reproducibility of IFC-based analysis where com-putational efficiency is a primary constraint.Figure 14 represents a flow chart depicting an automated IQA process for IFC. The process begins with an input image, which undergoes a quality assessment. If the image meets the predefined quality criteria, it proceeds to further analysis; otherwise, it is dis-carded, thereby reducing unnecessary analysis and improving the reliability of IFC-based applications.Traditional subjective assessment of image quality lacks consistency and reproducibil-ity, motivating the need for automated IQA methods. Recent research has increasingly focused on developing model based on CNN for no-reference image quality assessment (NR-IQA) [60] due to their capability to learn complex features directly from the image without requiring a reference image, while maintaining strong correlation with human opinion scores.In the field of natural image processing, extensive research has been conducted on NR-IQA methods, particularly for analyzing complex structures, with multiple studies comparing their performance across various datasets [61]. However, despite these ad-vancements, no dedicated research has been undertaken specifically for IFC applications
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Figure 14: Automated Image Quality Assessment for Imaging Flow Cytometry.

and existing research primarily focuses on general image restoration and deblurring qual-ity assessment [62], [52]. This leaves a significant research gap in the applicability of CNN-based IQA models for IFC, particularly their deployment on portable platforms. Ad-dressing this gap could significantly enhance the accuracy and efficiency of IFC analysis in real-world, portable applications, reinforcing the need for further advancements in automation, computational optimization, and real-time processing in constrained en-vironments. Thus, human-centric IQA techniques that can better align with subjective assessments in IFC are highly desirable.Quality assessment criteria are typically based on correlation with human opinion scores and statistical measures such as mean and standard deviation. While MOS is a widely used metric for evaluating perceived image quality, it remains insufficient for cap-turing the full extent of subjective diversity in human assessments. To address this limita-tion, the Distribution of Opinion Scores (DOS) provides a more comprehensive and objec-tive evaluation, ensuring greater consistency and reliability in subsequent image analysis.
In [63], the authors emphasize the importance of DOS acquisition, aiming to com-prehensively evaluate image quality by automatically predicting DOS rather than relying solely on MOS. Building upon this approach, this chapter aims to obtain both the quality score and DOS, ensuring strong correlation with subjective assessments, thereby enhanc-ing the robustness of automated image quality evaluation in IFC.
In [62], the authors introduced a U-Net-based CNN model for ovarian cell image restoration aimed at addressing the challenges posed by high flow speeds and reduced exposure times in IFC. The goal to enhance image quality under these conditions by com-pensating for the distortions caused by motion blur and limited exposure. The restored images were then assessed using the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE), the Naturalness Image Quality Evaluator (NIQE), and the Perception-based Image Quality Evaluator (PIQE). These are useful in quantifying image quality, but have shown limitations when compared to human perceptual scores.
Image deblurring is an important research in IFC [64], researchers developed a deep learning-based classifier combined with a deblurring system for red blood cell analysis [65]. The image quality was assessed with peak signal-to-noise ratio (PSNR) and struc-
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tural similarity index measure (SSIM), both of which require pristine reference images toquantify blur and structural distortions. However, in real-world imaging scenarios, high-quality reference images may not always be available, limiting the applicability of thesemetrics.In [52], gradient-basedmethod was used for the quantitative assessment of deblurredimages which estimates image sharpness by analyzing edge differences, making it partic-ularly effective for fluorescence images. However, this is not suitable for low-gradientimages with weak contrast and inherent blurriness, leading to inaccurate sharpness mea-surements. These limitations further emphasize the need for developing IQA method forIFC application, particularly in portable imaging environments.
4.2 Method
The initial selection of the models focused on architectures with low computational re-quirements to ensure compatibility with embedded platformswhilemaintaining high per-formance. Three lightweight CNN-based models were selected and evaluated on ourdataset: MobileNet [66], EfficientNet, and NasNet [67]. Among these, MobileNet demon-strated comparatively better performance; however, more optimization was necessary tomake it suitable for assessment applications. The whole workflow integrates data pre-processing, training, and deployment in embedded platform specifically optimized forportable droplet MF IFC applications.
4.2.1 Architecture for Microfluidic Droplet Image Quality Assessment
Figure 15 represents an end-to-end framework for predicting the quality ofMF droplet im-ages through a hybrid deep learning approach. The framework begins with data process-ing, where original droplet images undergo multiple augmentation techniques (motionblur, gaussian blur, contrast variation, rotation transformation, and cropping operations)to enhance the dataset diversity and model robustness. This enables the model to gen-eralize effectively under various image-quality conditions encountered in real-world MFexperiments.
4.2.2 Training
The produced dataset was split into training and validation dataset:

• 90% of the processed data was allocated as training set;
• 10% of the processed data was allocated as validation set.
As the total number of images in the dataset is not large, this split ensures sufficientdata for model training while keeping adequate data for validation, which helps to assessgeneralization performance.The architectural design (bottom section of the figure) represents neural networkstructure with several key components:
1. Input Layer: Accepts 224×224×3 image tensors, which is standardized dimension.
2. Feature Extraction Backbone: Uses MobileNetV2 pre-trained on ImageNet withfrozen initial layers.
3. Global Average Pooling: Reduces spatial dimensions to create a vector, making itsuitable for input to the transformer block.
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Figure 15: Proposed framework for predicting the quality of MF droplet images. Expanded versionof Figure 1 in Publication V.
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4. Transformer Block: The transformer block consists of a multi-head self-attentionmechanism with four attention heads, and a feed-forward network with 512 unitsfollowed by dropout for regularization to capture long-range dependencies be-tween image regions, which is particularly valuable for assessing overall imagequality.
The expanded view of the ’Transformer Block’ further details:

• Initial dense projection takes the data into a higher-dimensional space;
• Multi-headed attention mechanism with 4 heads allows the model to focuson different parts of the input simultaneously;
• Dropout regularization (0.1) for overfitting prevention;
• Feed-forward network with non-linear activations;
• Second dropout layer (0.1) for additional regularization;
• Final layer normalization for stable training.

5. Dense Layer: Provides final non-linear transformations before classification.
6. Output Layer: Produces the final quality prediction score.

4.2.3 Implementation
For implementation, TensorFlow along with Keras version 2.10.0 was used, running onan Intel 12th Gen Core i9-12900K processor (3.2 GHz, 16 cores). Upon completing thetraining process, the model was converted to TensorFlow Lite, an optimized version ofTensorFlow designed for mobile, embedded, and edge devices. This conversion ensuredefficient performance and seamless compatibility with the RPI-5 SBC.The overall framework represents the process of accurate quality assessment of MFdroplet images with minimal computational resources, making it suitable for integrationinto portable MF system.
4.3 Selected results on automated droplet image quality assessment for

portable microfluidic IFC
As discussed earlier, MobileNet showed comparatively better results, yet not suitable for successful IQA. The modification and fine-tuning struggled with generalization. Attempts to improve generalization through hyperparameter tuning, transfer learning, and dropout regularization did not lead to a significant improvement. To overcome this limitation, a lightweight transformer block was integrated into the modified MobileNet architecture, which effectively minimized the generalization gap.Table 5 compares the complexity (number of parameters) and performance of differ-ent IQA models using three evaluation metrics: SRCC, PLCC, and EMD. In [70], the SRCC and PLCC scores are highest: 0.88 and 0.86, respectively, but it has a very high parame-ter count, 152.45M, making it computationally expensive. In [71], [68] achieve high SRCC and PLCC values (0.86 and 0.84) with lower complexity compared to [70]. AlexNet [69], a well-known deep learning model, underperforms compared to other models, with a SRCC of 0.61. The proposed model has significantly lower complexity as it has 4.05M parame-ters, while achieving a reasonable performance (SRCC: 0.73, PLCC: 0.75). The EMD value (0.11), potentially indicating considerable performance. This table highlights the trade-off
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Table 5: Comparison of Model Complexity (number of parameters) and Performance with State-of-the-Art IQA Models Based on SRCC, PLCC, and EMD. Reproduced from Publication V (Table 1).
Model/Method Number of Parameters SRCC PLCC EMD

(in millions (M))BRISQUE [30] - 0.66 0.68 -TTL-IQA [68] - 0.86 0.84 -AlexNet [69] 60 0.61 0.67 -TReS [70] 152.45 0.88 0.86 -HyperIQA [71] 27.37 0.86 0.84 -Proposed 4.05 0.73 0.75 0.11

Figure 16: (a)Test image (example of a good image quality), and (b): Class prediction distribution ofthe image (MOS ± STD = 8.881 ± 1.095). Reproduced from Publication V (Figure 6).
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between model complexity and performance, showcasing the efficiency of the proposedmodel implemented in MF droplet IQA compared to larger architectures.Figure 16 consists of two subfigures illustrating the evaluation of image quality and itscorresponding prediction distribution for proposed model. Figure 16(a) shows a dropletimage representing a good-quality test image, as indicated through sharp boundaries,well-defined droplet borders, and minimal noise artifacts. Figure 16(b) represents theclass prediction distribution for the image quality assessment model. The horizontal axisrepresents quality classes (ranging from 1 to 10), while the vertical axis represents theprobability of the image belonging to each class. Class 9 exhibits the highest probability indistribution plot, followed by class 8 and class 10, suggesting the model is most confidentin classifying the image as higher categories. MOS ± STD is 8.881 ± 1.095, suggesting thatthe model rates this image as high quality.Finally, thememory consumption distribution of different components within the pro-posed model is evaluated when processing an input resolution of 224 × 224 with a batchsize of 1. ModifiedMobileNet is themost intensive part of themodel and consumes largestportion of memory which is (91.0%) as it is responsible for feature extraction. Then GAPconsumes 8.26% of memory usage. Transformer block and dense layer collectively con-sumes less than 1% of the 56.39 MB. The achievable inference time on RPI-5 is 110 mil-liseconds which corresponds 9 FPS. This result highlights the feasibility of deploying themodel on resource-constrained portable systems.
4.4 Conclusion on automated droplet image quality assessment for

portable microfluidic IFC
This chapter presented a hybrid IQAmodel for portable MF IFC. To address the challengesof IQA in embedded environments, three different lightweight CNN-based models wereevaluated: MobileNet, EfficientNet, and NasNet. Because of the limited dataset, transferlearning was incorporated duringmodel training. MobileNet performed best, yet sufferedwith generalization issue even after applying dropout regularization.To mitigate these limitations, a transformer block was integrated, enabling the modelto capture global features and reduce the gap between training and validation loss.Early stopping was also used to minimize computational costs. The proposed modifiedMobileNet-Transformer hybrid model stabilized significantly faster, converging at approx-imately 110 epochs. The model achieved a SRCC exceeding 70%, demonstrating strongcorrelation with human quality assessments. Furthermore, we deployed the model inRPI-5 and measured the inference time 110 ms, which yields 9 FPS.Overall, the proposed hybrid IQA has the potential to significantly asses the qualityof the MF droplet image. The findings in this chapter provide important insights into se-lecting NR-IQA techniques for portable IFC applications. This contribution could lead toadvancement in automatic image assessment in portable IFC as well as could be used toget feedback for adjustment to camera parameters to ensure good quality image acquisi-tion.

42



5 CLASSIFICATION OF MICROFLUIDIC DROPLET ON RESOURCE
CONSTRAINED PLATFORM

This chapter discusses microfluidic IFC droplet classification through the empirical opti-mization of a deep learning architectures specifically customized for resource-constrainedcomputational environments. The chapter addresses the research gap, challenges, andstrategies involved in developing an efficient model capable of classifying microfluidicdroplets. This work focuses on the need to balance speed and accuracy while meetingthe constraints imposed by limited computational resources, making it a contribution toportable IFC applications.
The work presented in this chapter constitutes an advancement in translating tradi-tionally resource-intensive deep learning approaches into deployable solutions for point-of-care devices for microfluidic droplet applications where computational infrastructureis severely limited. The work bridges the considerable gap between laboratory-basedhigh-performance computing implementations and portable microfluidic systems. Theempirical optimization strategies explore model compression techniques, parameter-efficient architectural modifications, and inference acceleration validated against experi-mental microfluidic datasets to ensure robustness. The analysis presented in this chapterprovides valuable insights for researchers and practitioners working at the intersection ofmicrofluidics, IFC, DL, and portable devices.

This chapter is based on the following publications:
Publication II:
Afrin, Fariha & Le Moullec, Yannick & Pardy, Tamas, Microfluidic Droplet Classificationthrough Tuned Convolutional Neural Network on a Resource Constrained Platform. 19thBiennial Baltic Electronics Conference (BEC2024), Tallinn, Estonia, October 2–4 2024. DOI:10.1109/BEC61458.2024.10737958.
Publication III:
Afrin, Fariha & Le Moullec, Yannick & Pardy, Tamas & Rang, Toomas, Lightweight CNN-based Microfluidic Droplet Classification for Portable Imaging Flow Cytometry. Acceptedfor publication in a future issue of the Proceedings of the Estonian Academy of Science.2025.
Publication IV:
Jõemaa, Rauno & Afrin, Fariha & Gyimah, Nafisat & Ashraf, Kanwal & Pärnamets, Kaiser &Pardy, Tamas, Cogni-Flow: Integrated Modular System For Automated Droplet Microflu-idic Bio-analysis, EUROSENSORS XXXVI, 01-04 September 2024, Debrecen, Hungary.
Note: Publication III extends Publication II with: a) 13 new references (of which 9 in thestate of the art, Section 1 in Publication III); b) a more detailed description of composi-tion, preprocessing, augmentation, and characteristics of the dataset (Sections 2.1 and 2.2in Publication III); c) expanded explanation of the model customization and optimization,including new Figure 2 and text (Section 2.3 in Publication III), and d) additional model(YoloV5-s) and target platforms (RPI-5 and MaixCam) and a wider and deeper compari-son of various ML model deployments, including physical size, power requirements, andhardware capabilities (Sections 3.4 and 3.5 in Publication III). The extended experimentalresults in Publication III show that YoloV5-s onMaixCam achieves significantly faster clas-
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sification time due to its onboard hardware accelerator at the cost of lower accuracy dueto quantization. This wider analysis highlights the importance of addressing the trade-offbetween computational efficiency and classification accuracy.
5.1 Overview
Accuratemicrofluidic droplet classification is essential research for analyzing or sorting thetarget particles in IFC, providing valuable insights for biomedical applications. Recent ad-vancements in DL have significantly transformed object detection and classification acrossvarious domains, including IFC, thanks to its automatic feature extraction and better per-formance than traditional approaches.

Figure 17: Visual representation of microfluidic droplet classification on resource constraint plat-forms with optimized CNN.

Existing methods are mostly based on DL, which includes single stage [72] and two-state detector [73], and are developed for lab-grade application using powerful GPUs.Faster and accurate droplet detection and classification implementation in resource-constrained platforms may significantly advance the field towards portability. However,the computational complexity and memory consumption poses challenges for their de-ployment on resource-constrained platforms. Despite the potential of CNNs to enhancedroplet classification in IFC, existing methods are computationally expensive and rely onpowerful GPUs, limiting their applicability in portable systems.This work focuses on improving a single layer CNN model to classify three differenttypes of droplets (empty droplet, dropletwith single cell, dropletwithmultiple cells), mak-ing it suitable to meet the IFC requirement (better accuracy and smaller inference time)on a resource constrained platform. Prior research has explored CNN-based algorithmsfor droplet and cell classification, achieving significant accuracy improvements but oftenrelying on desktop or GPU-based systems. For instance, theWeakly Supervised Cell Count-ing Network (WSCNet) achieved over 89% accuracy but required a desktop computer [74].Similarly, other works have demonstrated high accuracy in cell classification using transferlearning [75] and optimized models on high-end GPUs [38]. However, these approachesare not suited for portable applications due to their computational requirements.Figure 17 illustrates the complete representation from the microfluidic device throughimage acquisition to the optimized processing pipeline for droplet classification.This chapter presents a customized Yolov4-tiny model, optimized for deployment on
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resource-constrained devices, thereby addressing the limitations in conventional high-resource detection methodologies. The work includes three principal contributions thatcollectively advance the state-of-the-art in portable microfluidic analysis systems. Thecontributions are as follows:
• Dataset Generation: Creation of a microfluidic droplet dataset comprising 975microfluidic droplet images extracted from experimental video sequences. Thisdataset incorporates augmentation techniques to enhance the data diversity andmodel robustness. The dataset generation establishes an important foundationfor model optimization, providing sufficient variance while maintaining domainspecificity.
• Model Optimization: Reduction of convolutional filters by 20% and implementationof batch processing (6 images per batch) to improve inference speed while main-taining high accuracy. This balanced reduction preserves essential feature extrac-tion capabilities while significantly reducing the inference time.
• Portable Deployment: Successful deployment of the optimized YoloV4-tiny modelon Raspberry Pi-4 and Raspberry Pi-5, demonstrating significant improvements ininference speed and resource efficiency. Moreover, for comparison purposes, re-sults of a re-trained (with the same dataset) Yolov5-s model on RPI-5 and MaixCamare presented.

5.2 Method
The workflow is composed of three steps as shown in Figure 18.

Figure 18: The proposed conceptual workflow for droplet classification.

Theworkflowbeginswith input data consisting ofmicroscopic images of droplets, CNNarchitecture to classify microfluidic droplets based on their cellular content, categorizesthem into three distinct classes:
• Empty droplets (containing no cells)
• Droplets with a single cell
• Droplets with multiple cells
This automated approach eliminates the need formanual inspection and classificationbased on their cellular content utilizing modified Yolov4-tiny architecture optimized forresource-constrained environments while maintaining high classification accuracy.
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5.2.1 Dataset PreparationThe dataset was derived from two experimental videos recorded at 15 frames per sec-ond, capturing droplet formation at a T-junction in a microfluidic chip. To enhance modelrobustness, data augmentation techniques were applied, including:
• Contrast variation
• Apply blur
• Rotational transformations
These augmentations expanded the initial dataset to 975 images. Annotation was per-formed using the "makesense.ai" platform, where bounding boxes were precisely markedaround droplets.

5.2.2 Modified ArchitectureBased on Yolov4-tiny, a new lightweight object classifier with a 20% reduction in convo-lutional filters was developed (see Figure 19. This architectural modification resulted in aremarkable 36.16% decrease in model size while preserving detection accuracy.

Figure 19: Proposed customized YoloV4-tiny architecture: the backbone is made of CL blocks and CSP+ MaxPool blocks, the detection head is mainly composed of CL blocks and two Yolo heads. Figurereproduced from Publication III (Figure 2).

The principal module in the architecture is the Cross-stage Partial (CSP), which consistsof a Convolutional layer followed by Batch normalization and the Leaky-RELU activationfunction and skip connections for gradient flow optimization. Three CSPmodules progres-sively extract hierarchical features from input images. For the detection head, Yolov4-tinyuses two heads at dual scales:
• 13×13 feature maps targeting larger objects
• 26×26 feature maps optimized for smaller objects
A key observation in the proposed approach is that in the original Yolov4-tiny, whichemploys 512 and 256 convolutional filters in various layers, not all parameters contributesignificantly to prediction accuracy, allowing for empirical filter reductionwithout compro-mising performance. To reduce inference time, the number of filters in the convolutionallayers was reduced by 20%.
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Themodel was trained using the Darknet framework on Google Colaboratory Pro witha T4 GPU and training hyperparameters included a learning rate of 0.00261, decay of0.0005, momentum of 0.9, and batch size of 64.This empirical observation indicates filter reduction does not impact on steady con-vergence and sacrifice model performance for microfluidic droplet classification.
5.3 Overview of results of the classification of microfluidic droplet on

resource-constrained platforms
The optimizedmodel achieved a classification accuracy of over 98% and an inference timeof 13 ms on the Raspberry Pi-5, resulting 76 FPS. The performance metrics included a pre-cision of 0.95, recall of 1, and a mean average precision (mAP) of 99.95% at an IoU thresh-old of 0.5. These results indicate the reliability and effectiveness in identifying differentmicrofluidic droplets.

Figure 20: Visual examples of microfluidic droplet classification results after 6000 training itera-tions, where the prediction probability is above 99%. Figure reproduced from Publication III (Figure4).

Figure 20 represents validation exampleswhere the top image shows the classificationof a droplet containing a single cell, highlighted with a blue bounding box, with a predic-tion confidence of approximately 99%. The bottom image shows the classification of anempty droplet, markedwith a light green bounding box with a prediction confidence 99%.This indicates themodel is capable of distinguishing different types of droplets accurately.Moreover, the resource utilization evaluation on Raspberry Pi 5 demonstrates that themodified model operates with an average CPU usage of 70% and an average memory us-age of 60%. These results confirm that themodel is computationally efficient and suitablefor deployment on resource-constrained platforms like embedded devices. This work alsodiscusses the YoloV4-tiny model classification performance metrics against seven othermodels/platforms. Regarding the first five works in Table 6, one-to-one comparisons are
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not possible due to different applications and different computational power. Regarding resource-constrained platforms, to balance inference processing time and accuracy, model optimizations, hardware-aware deployment strategies, and empirical comparisons are used. In addition to the custom YoloV4-tiny deployed on RPI-5, YoloV5-s was retrained and deployed on the RPI-5 and MaixCam boards.The MaixCam board is a low-cost, compact edge device with an embedded neural processing unit. It is based on a LicheeRV Nano module itself based on a Sophgo Tech-nologies SG2002 system on chip (SoC). The board has a primary 700 MHz RISC-V C906 core, secondary boot-selectable 1 GHz RISC-V C906 core or 1 GHz ARM A53 core, and 256 MB on-chip RAM. The SG2002 features a TPU with performance up to 1 Tera Operations Per Second (TOPS) @INT8.We used the same dataset described earlier; empirical experiments with hyperparam-eters, e.g. batch size and learning found best validation accuracy for batch size = 4 and learning rate = 0.0001, yielding validation accuracy = 0.966 at epoch #120.Table 6 contrasts several closest-related droplet and cell classification methods across different platforms. Further details about the MaixCam and other platforms can be found in Publication III. Existing works do not target the same applications as that of this PhD work, and most existing studies implementation are on powerful desktop PCs and/or GPUs. In [76], 99.3% mAP at 0.5 and 74.3 ms processing time is obtained using YoloV5 on Intel Core i7-12650H, whereas the method proposed in this chapter yields 99.95% mAP and 13 ms processing time implementation on RPi-5. Other works include Mask-RCNN on Nvidia RTX 2080 Ti GPU that achieves 73% mAP for cell detection [77]. Also, CNN imple-mentations on high-end GPUs (Tesla K80, K40c) achieves 95.7 and 99% mAP respectively with lower processing time, but they are developed for different, non-portable applications [78], [79].When comparing resource-constrained deployments, the custom YoloV4-tiny on RPI5 performs well with a 13 ms inference time and 99.95% mAP@0.5. The MaixCam running YoloV5-s achieves a faster inference time of 5.34 ms but with a lower mAP of 55.09% due to INT8 TPU quantization. The YoloV5-s model on RPI5, while achieving 92.10% mAP@0.5, has a high inference time of 208.5 ms, making it less favorable. Performance scaling be-tween MaixCam and RPI5 shows MaixCam is about 39.1 times faster but suffers a 40.2%accuracy drop. A more detailed discussion of the results can be found in Publication III.The table shows that the modified Yolov4-tiny model successfully meets the research objectives of maintaining high classification accuracy while enabling deployment on resource-constrained devices for microfluidic droplet classification. Its deployment on RPI5 offers a good balance of accuracy and processing time for portable IFC devices, despite higher power consumption compared to MaixCam.
5.4 Conclusion on the classification of microfluidic droplet on resource

constrained platform
The successful development of a compressed Yolov4-tiny model for microfluidic dropletclassification represents a contribution in portable microfluidic droplet classification ap-plications. By reducing convolutional filter counts by 20% while maintaining classificationaccuracy above 99%, the proposed approach effectively addresses the challenges be-tween computational efficiency and classification performance on resource-constraineddevices.
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Table 6: Combinations of MLModels and Their Deployments. Table reorganized from Publication III(Table 3).
Reference Model Platform Object mAP (%) Average inferenceprocessing time per image[76] YoloV5 Intel Core i7-12650H Droplet 99.3@0.5 74.3 ms[77] Mask-RCNN Nvidia RTX 2080 Ti GPU Cells 73 Not reported in the paper[78] CNN NVIDIA Tesla K80 GPU Cells 95.7 2.2 ms[80] CNN High-end PC (assumed) Cells 93–99 Not reported in the paper[79] CNN Nvidia Tesla K40c GPU Cells 99 Not reported in the paper
This work Customized YoloV4-tiny RPI5 Droplet 99.95@0.5 13 msThis work YoloV5-s RPI5 Droplet 92.10@0.5 208.5 msThis work YoloV5-s MaixCam Droplet 55.09@0.5 5.34 ms

The experimental results validate that the proposed approach can reliably distinguish between empty droplets and those containing single or multiple cells, achieving 99.95%mAP with a processing time of 13ms on a RPI-5 platform; this demonstrates that the pro-posed deep learning approach can be successfully deployed on Single Board Computers (SBCs) without sacrificing classification reliability.The methodology developed here not only contributes to the specific field of microflu-idic droplet classification but also represents the adaptability of optimized deep learning architectures to resource-limited environments across various applications in PoC devices.
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6 CONCLUSION AND FUTURE WORK
6.1 Summary
The outset for this PhD was the increasing interest for the high-content screening capabil-ities of IFC, a high-throughput imaging technique used in immunology, cancer research,and cell biology. It was noted that recent research focuses on precise detection and classi-fication usingmachine learning, particularly deep learning; at the same time, there are in-creasing opportunities for developing IFC portable devices for PoC applications, leading tothe need for implementing IFC on embedded platforms. However, it was also noted thatimplementing droplet classification models in resource-constrained environments facesseveral key challenges:

1. Limited computational resources, including limited processing power and memory,which constrain the complexity of models that can be implemented.
2. The need for energy-efficient solutions, which often conflicts with the implementa-tion of advanced, computationally intensive techniques.
3. Challenges in obtaining clear, blur-free images in the dynamic environment of mi-crofluidic systems.
4. The requirement for streamlined, resource-efficient mechanisms to assess imagequality or to analyze the image such as object classification.
These constraints significantly affect the performance and precision of the modelswhen deployed on resource-constrainted devices. The majority of current research tar-gets high-computational powered hardware that is not suitable for portable devices.Consequently, achieving rapid inference while preserving accuracy presents a consider-able challenge. To overcome these hurdles, it was necessary to develop new solutions inareas such as model selection, optimization techniques, and the efficient exploitation ofavailable hardware resources.
To address these challenges, this PhD thesis has made three contributions to the fieldof IFC, i.e. Contribution 1) blur-free image acquisition, Contribution 2) image quality as-sessment, and Contribution 3) droplet classification, each corresponding to specific re-search question(s).Answers to the research questions, posed in the introduction of the thesis, are an-swered below.
• RQ1 was "How to design a lightweight and effective image processing pipeline fordetecting, counting and acquiring blur-free segmented droplet images suitable forapplication-specific resource-constrained platforms?"
This question was addressed through Contribution 1. The proposed design com-prises key novelties: i.e. a novel lightweight algorithm for detecting, counting, andacquiring single object images from video streams and techniques to address issuesof blur and duplicate droplet image acquisition. The experimental evaluation usingvideos of fast-moving droplets with fluid flow rates up to 67.7 µL/min demonstratesa 100% counting accuracy on tested videos, as well as processing times per dropletof 2 ms (500 DPS) on Desktop PC, 25 ms (40 DPS) on Raspberry Pi-4, and 10 ms(100 DPS) on Nvidia Jetson Nano. The Jetson Nano implementation (100 DPS) im-proves performance over existing similar studies and proved suitable for the targetapplication.
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Therefore, this lightweight pipeline enables efficient single object image acquisitionin IFC on embedded portable platforms, addressing limitations of current complex,non-portable hardware setups.
• RQ2 was "Can deep neural network replace conventional signal processing forachieving effective image quality assessment on a resource-constrained platform?"
This question was addressed through Contribution 2. A NR-IQA approach tech-niques within the context of a portable lab-on-chip microfluidic droplet IFC devicewas proposed. The key novelty is the developed new hybrid model comprising amodified MobileNet followed by a transformer block, specifically for microfluidicdroplet IQA. Competitive performancemetrics are illustrated in terms of SRCC: 0.73and PLCC: 0.75, as well as inference time on a RPI-5: 110 ms, translating to 9 FPS.
These results demonstrate that deep neural networks can effectively replace con-ventional signal processing for image quality assessment in resource-constrainedenvironments. The trade-off between accuracy and computational resources is fa-vorable, with the hybrid model achieving good correlation coefficients while main-taining a reasonable inference time on a low-power device.

• RQ3 was "How to design a custom droplet classifier (presence or absence of cellsinside the droplet) suitable for rapid inference on a resource-constrained platformwhile maintaining high classification accuracy?"
This question was addressed through Contribution 3, with key novelties being thenovel approach to classifying microfluidic droplets on resource-constrained plat-forms, i.e. 1) the development of a customized YoloV4-tinymodel for rapid inferencewhile maintaining high classification accuracy, 2) the creation of a custom datasetof 975 images from real-life microfluidic experimental setups, and 3) the classifica-tion of droplets into three categories (empty, single cell, multiple cells). The resultsdemonstrate an inference time of 13 ms per classification on RPI5 with mAP@0.5 of99.95%. Deployment of a YoloV5s model on the low-cost MaixCam board yields aninference time of 5.34 ms (faster than on RPI-4 due to onboard tensor processingunit) with mAP@0.5 of 55.09% (lower than on RPI-5 due to quantization).
These results show that careful system design can enable robust droplet classifica-tion performance even on devices with limited resources, successfully addressingthe challenge of droplet classification in portable IFC.

To sum-up, this PhD thesis has made contributions to the field of IFC, particularly inthe context of resource-constrained environments. The results illustrates that the contri-butions can address the challenges of blur-free image acquisition, image quality assess-ment, and droplet classification on portable platforms. The lightweight imaging pipeline(Contribution 1) provides a foundation for efficient image acquisition in portable IFC de-vices. The novel hybridmodel for imagequality assessment (Contribution 2) demonstratesthe potential of deep learning techniques in resource-limited settings. Finally, the cus-tomized YoloV4-tinymodel for droplet classification (Contribution 3) showcases the abilityto achieve high accuracy and rapid inference on resource constrained devices.
The achieved results open the way for further research, as exemplified in the perspec-tives presented in the next section.
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6.2 Perspectives
Several directions for future research could be pursued beyond the scope of the current work. Regarding lightweight imaging for IFC, this thesis has demonstrated competitive results on desktop and resource constrained platforms, but some applications may re-quire higher scaling of the throughput while maintaining image quality. Addressing this challenge would require research beyond the scope of this thesis, i.e. novel method-ological and algorithmic approaches. One promising option exemplified by [81], would be developing deep learning approaches that can analyze diverse datasets acquired from IFC, i.e. moving beyond simple image features to more sophisticated pattern recognition. Moreover, the development of reactive flow cytometry systems as explored by [82] could enable real-time feedback control over cell populations.When it comes to IQA, our model established a baseline for NR-IQA with good correlation coefficients but also identified the need to develop domain-specific quality metrics. Future research would require a significant interdisciplinary research effort between computer vision specialists and biologists to investigate quality metrics specifically tailored to biological relevance. A promising direction would be the integration of profiling techniques that analyze multiple cellular parameters simultaneously, considering not just traditional image quality metrics but also cellular morphology and protein localization [83].Finally, this thesis demonstrated real-world feasibility on resource constrained plat-forms, but the rapidly evolving landscape of edge AI hardware presents both new oppor-tunities and challenges. Hardware accelerators such as the Hailo-8 HAT for RPI5 with up to 26 TOPS capability [84] or the Sony IMX500 with its stacked sensor structure for edge AI processing [85] are promising platforms for reducing processing time while potentially maintaining accuracy. Leveraging these technologies and its inherent hardware-software co-optimizations require complex design space exploration and optimization strategies that represent a distinct research project rather than a mere extension of the current work.
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Abstract
Microfluidic Droplet Detection, Classification and Quality As-
sessment for Embedded Flow Cytometry Systems
Imaging flow cytometry (IFC) is a high-throughput technique with wide applications inimmunology, cancer research, and cell biology thanks to its high-content screening ca-pabilities. Recent research has focused on precise detection and classification using ma-chine learning, particularly deep learning, on computationally powerful setups. In paral-lel, there is also an increasing interest for developing portable applications in the field,such as point of care, which has triggered an increasing demand for implementing IFCsystems on embedded platforms. However, implementing droplet classification modelsin resource-constrained environments faces several key challenges, in particular limitedcomputational power and memory, energy efficiency requirements, difficulties in captur-ing blur-free images in dynamic microfluidic environments, and the need for lightweightimage quality assessment mechanisms. These limitations adversely impact model per-formance and accuracy, which is a significant obstacle to achieving fast inference timeswhile maintaining acceptable accuracy levels. This PhD thesis addresses these challengesthrough three contributions.First, the thesis introduces a novel, lightweight imaging pipeline for acquiring goodquality, blur-free images of microfluidic droplets without additional hardware, making itsuitable for portable applications. The proposed lightweight algorithm effectively detects,counts, and acquires single object images from video streams by addressing issues of mo-tion blur and duplicate droplet image acquisition. Experimental evaluation using videosof fast-moving droplets showed 100% counting accuracy and throughput of 500 dropletsper second (DPS) on Desktop PC, 40 DPS on Raspberry Pi-4, and 100 DPS on Nvidia JetsonNano; the latter outperforms existing similar studies.Second, the thesis proposes a new no reference image quality assessment (NR-IQA)hybrid model comprising a modified MobileNet model followed by a transformer block,specifically developed for microfluidic droplet IQA. Results show that the proposed hybridmodel yields competitive performance metrics (Spearman rank-order correlation coeffi-cient: 0.73; Pearson linear correlation coefficient: 0.75), and inference time on a Rasp-berry PI-5 of 110 ms (9 frames per second).Third, the thesis presents a new customized YoloV4-tiny model for rapid inference onresource-limited platforms. This model enables rapid inference while maintaining highclassification accuracy for categorizing droplets as empty, containing a single cell, or con-taining multiple cells. The results show an inference time of 13 ms per classification andmean Average precision at intersection over union (mAP@0.5) of 99.95% on a RaspberryPi-5. Additional training and deployment of a YoloV5s model showed the potential foreven faster processing through specialized hardware acceleration at the cost of reducedperformance (5.34 ms, mAP@0.5: 55.09% on the MaixCam board).The results of this PhD thesis shows that through careful system design and modeloptimization, robust performance in microfluidic droplets based IFC can be achieved onplatforms with limited computational resources, which paves the way for portable appli-cations in the field.
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Kokkuvõte
Tilkade tuvastamine mikrofluidikas, nende klassifitseerimi-
ne ja kvaliteedi hindamine sardsetes voolutsütomeetria süs-
teemides
Kujutise fikseerimise voolutsütomeetria (Imaging flow cytometry: IFC) on efektiivsel mo-nitoorimisel põhinev võimekas tehnoloogia kasutamiseks immunoloogias, vähiuuringu-tes, ja rakubioloogias. Käesolev uuring on fokusseeritud tilkade täpseks detekteerimiseksja klassifitseerimiseks kasutades masinõpet koos osalise süvaõppega suure võimekusegaarvutuslikes lahendustes. Valdkonnas on täheldatav aina kasvav huvi mobiilsete (kaasas-kantavate) realisatsioonide arendamiseks hooldussõlmede loomise näol, mis on omakor-da käivitanud suurema vajaduse realiseerida IFC süsteeme sardsetele platvormidele. Siis-ki, realiseerides tilkade klassifitseerimise lahendused piiratud vahenditega keskkondadespõrkutakse mitmetele võtmetähtsusega väljakutsetele, nagu piiratud arvutuslik võimsusning mälumaht, energiatarbe efektiivsuse nõuded, raskused saada hägustuseta kujutisidünaamilistes mikrofluidika keskkondades, ning vajadus lihtsate kujutise kvaliteedi hin-damise mehhanismide järele. Loetletud piirangud mõjutavad realisatsioonide koostamistja täpsust, mis on oluline takistus saavutamaks kiireid liideseid vastuvõetava täpsusega.Käesolev doktortöö panustabki mainitud väljakutsetele lahenduste otsimisele läbi allpoolkäsitletud kolme temaatika.Esiteks. Doktortöö tutvustab uudset ja lihtsat torujuhtmes olevat tilkade kujutist saa-maks hea kvaliteediga hägustuseta mikrofluidika tilkade kujutist kasutamata täiendavatriistvara võimaldamaks mobiilset (kaasaskantavat) rakendust. Väljapakutud algoritm de-tekteerib, loendab ning fikseerib üksikute tilkade kujutised terviklikust videovoost lahen-dades ka liikumisest tingitud hägustumise ning tilkade duplitseerimisest tekkinud olukor-di. Kiiresti liikuvate tilkade videote eksperimentaalne hindamine näitas 100% hindamisetäpsust 500 tilka sekundis (Droplet per second: DPS) olevat läbilaskevõimet personaalar-vuti puhul, 40 DPS Raspberry Pi-4 puhul ning 100 DPS Nvidia Jetson Nano puhul; viimaneületab teadaolevaid teisi sarnaste uuringute tulemusi.Teiseks. Dissertatsioonis tutvustatakse uut kujutise kvaliteeti mittemõjutavat kvalitee-di hindamise hübriidset rakendust (No Reference-ImageQuality Assessment: NR-IQA),mispõhinebmodifitseeritudMobileNetmudelil, millele järgneb spetsiaalselt mikrofluidika til-kade (IQA) tarbeks konstrueeritud muundurplokk. Saadud tulemused näitavad, et hübrii-ne mudel pakub võrreldavat võimekuse meetrikat (Spearman korreltsioonikordaja: 0.73,Pearsoni lineaarne korrelatsioonikordaja: 0.75 ning liidese aeg Raspberry Pi-5: 110ms (9kaadrit sekundis),Kolmandaks. Dissertatsioonis pakutakse välja uus YoloV4 lihtne sobitatud mudel pii-ratud ressurssidega plavortmidele kiirete liideste tarbeks. Mudel võimaldab kiireid liide-seid säilitades klassifitseerimise täpsuse tilkade kategoriseerimises, nagu tilka ei ole (tü-hi), sisaldab ühte tilka, või sisaldab mitut tilka. Tulemused näitavad liidese viidet 13msklassifikaatori kohta keskmistatud täpsusega ristumiskohal (mAP@0.5) 99.95% kasutadesRaspberry Pi-5 lahendust. Koos täiendava treeninguga näitas YoloV5 mudeli rakendus po-tentsiaali veelgi kiiremaks protsessi toimumiseks kui kasutati spetsialiseeritud riistvaralistkiirendit vähendatud võimekuse juures (5.34 ms, mAP@0.5: 55.09%, MaixCam plaat).Doktoridissertatsioonis saavutatud tulemused näitavad, et läbi hoolsa süsteemi disainija mudeli optimeerimise on võimalik saavutada IFC-l põhinev suur jõudlikus mikrofluidi-ka tilkade määratlemisel limiteeritud arvutusliku võimekusega platvormidel, mis sillutabteed valdkondlikele kaasaskantavatele rakendustele.
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ABSTRACT Good quality of single droplet image acquisition in imaging flow cytometry (IFC) is crucial for
a wide range of biological analyses. Recently, there have been significant advances in droplet microfluidic
data analysis; however, acquiring blur-free single object images is still a great challenge because of the
tradeoff between high flow rate and hardware setup complexity and cost. State-of-the-art hardware setups for
blur-free single image acquisition are often complex, cumbersome, and not portable, limiting their suitability
for point-of-care diagnostics. Moreover, motion blur and duplicate droplet image acquisition can occur
with flow rate variation. To address these issues, this paper proposes a lightweight imaging pipeline for
acquiring blur-free single droplet images for portable applications; this pipeline is capable of acquiring every
single droplet image. While most of the existing literature focuses on complex hardware setups, utilizing
high frame rate cameras that are not cost effective and complex optical solutions for droplet focusing, our
pipeline utilizes minimum hardware and a lightweight algorithm for detecting, counting, and acquiring single
object images from the video stream. The proposed pipeline was evaluated experimentally using videos of
fast-moving droplets in which the input fluid flow rate was as high as 67.7 µL/min. The proposed pipeline
achieves 100% counting accuracy on the tested videos and 2 ms, 25 ms and 10 ms processing time for each
droplet on a desktop PC, single-board computer Raspberry Pi-4, and Nvidia Jetson Nano, respectively. This
yields a maximum of 500, 40, and 100 blur free detected droplets per second (DPS), respectively. The Jetson
Nano implementation, achieving 100 DPS with processing time of 10 ms, is faster than existing similar
studies and fast enough for the target application. The results suggest that the proposed lightweight pipeline
is suitable for efficient single object image acquisition in IFC on an embedded portable platform.

INDEX TERMS Droplet, image acquisition, imaging flow cytometry, microfluidic, single-board computer.

I. INTRODUCTION
Imaging Flow Cytometry (IFC) is a combination of optical
image acquisition, often involving microscopy, and flow
cytometry; IFC is a key enabling technology in the drug

The associate editor coordinating the review of this manuscript and

approving it for publication was Mahmoud Al Ahmad .

discovery [1], [2] and medical diagnosis fields [3], [4]. IFC
enables diverse morphology analyses, which are performed
on a single-object image using a fully automated or par-
tially automated system in laboratory or point of care (POC)
devices [5]. Hence, a high-quality single-object image is
indispensable for the accurate analysis of the specific object,
as well as for machine learning/deep learning training [6], [7].
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The analytical results are used in several biomedical applica-
tions [8], such as early disease detection and circulating tumor
cell detection [9], [10].
However, the process of acquiring a blur-free single-object

image is challenging in high throughput IFC, especially if
the camera settings are not synchronized with the flow of the
object. For example, motion blur can happen if the object flow
is too fast relative to the camera exposure time, and noisy
images can be captured if the camera exposure time is too
long [11], [12].
Some existing studies have focused on developing a ded-

icated optical system for acquiring single-object images at a
high throughput and speed which makes the whole system
bulky and expensive [13], [14]. Other examples such as the
commercial IFC system ‘‘ImageStream’’ [15] as well as some
other IFC systems, achieve cell focusing by using a precise
pump to control the fluid flow rate and a velocity detection
subsystem to control the time-delay integration readout [1].
Parallelized microchannels are also used to decrease the flow
speed for a specific throughput and to obtain a single bright
field object image [16], [17].
Moreover, the optical time-stretch imaging method, which

consists of a complex optical setup, enables single-image
acquisition and exploits spatial and temporal dispersion
[18], [19]. In [20], the particle flow, controlled for fixed speed
and motion, is frozen by the ultrafast shutter speed of the
camera to obtain blur-free images. In [21], an optomechanical
virtual motion freezing fluorescence imaging (VIFFI)
method was developed for high throughput (>10,000 cells/s)
imaging. However, it has a complex hardware setup that
consists of an excitation beam scanner, a speed-controlled
polygon scanner, and a series of timing control circuits in
order to increase the exposure time of the image sensor.
The integration of these additional hardware systems for

controlling the flow increases the complexity and decreases
the cost efficiency. Image reconstruction can be applied with-
out integrating additional hardware, yet this requires blur
identification and data preprocessing [22].
Other studies focused on applying machine learning or

deep learning algorithms to acquire and then analyse single-
droplet images. A demonstration of TensorFlow feasibility
in classifying red blood is presented in [23]. AI assisted
pathogen detection with 99.8% classification accuracy at the
edge device was proposed in [24].
It should be noted that most of the research work focuses

on detection accuracy but overlooks the trade-off between
speed and hardware requirements. Although a portable flow
cytometer that uses deep learning to detect Giardia lamblia
cysts in water samples is reported, its data processing mod-
ule still ran on a desktop PC [25]. Moreover, these are
post-experimental processes and are challenging to apply
in a single-board computer (SBC) platform in real time
applications since data acquisition and storing large number
of images for further morphology analysis are limited by
memory capacity.

The closest work to ours is deemed to be the portable and
computer vision-based detection platform reported in [26]
which can automatically classify the results from saved data
without the need of professionals. A Raspberry Pi-4 SBC has
been used for computing and a control module is used for
controlling the data processing. However, the software code
complexity, detection per second and processing time are not
reported nor discussed in the paper.
To sum up, the number of research papers directly compa-

rable with our work are limited; the closest ones and their key
features are summarized in Table 1 (in addition, comparative
results are provided in Table 3, see Section III).

TABLE 1. State-of-the-art for blur free image acquisition and portable IFC
vs. our work. complexity, portability, and cost are rated from low/no to
high/yes (I.E. + to + + +).

To summarize, existing IFC systems are for laboratory
grade applications and exhibit high complexity and high cost
in order to perform droplet detection. Moreover, the captured
blur-free images are transferred to desktop PCs for analysis,
which is not suitable for portable devices. The development
of a lightweight and reliable pipeline remains a crucial open
issue for reducing the software code complexity so that it can
run on an embedded platform. To bridge this gap, we built
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a cost-effective pipeline which can acquire blur-free images
and count each droplet automatically on a portable platform,
without a laboratory environment.

A. CONTRIBUTION
The main goal of this work is to acquire blur-free single
droplet images without any camera synchronization to handle
the complexity and computational cost challenge [27], [28].
Existing systems rely on complex hardware setups com-

prising high frame rate cameras that are not cost effective and
complex optical solutions for droplet focusing. In contrast,
we present a pipeline for acquiring single-droplet images
that utilizes minimum hardware and a lightweight algorithm
for detecting and acquiring single object images from video
stream. In addition to single-image acquisition, our pipeline
can count the total number of generated droplets. The pro-
posed pipeline adopts color-based detection and a Euclidian
distance tracker for droplet tracking in real time.
Consequently, our pipeline can be deployed on different

platforms ranging from high-performance device (desktop
PC) to hardware-accelerated device (Nvidia Jetson Nano) and
to resource-constrained device (RPI4) for acquiring blur free
single object image and counting the total number of objects.
Experiments using video of fast-moving droplets (the input
fluid flow rate was as high as 67.7 µL/min) show that the
proposed pipeline achieves 2 ms, 25 ms and 10 ms processing
time for each droplet on Desktop PC, Raspberry Pi-4 and
Nvidia Jetson Nano, respectively. This yields a maximum
of 500 DPS on a desktop PC and 100 DPS on a resource-
constrained platform, which is fast enough to be utilized for
high volume sample analysis where droplet generation rate
lies to 100 to 500 Hz in IFC [29]. As counting and acqui-
sition of single droplet image are both accomplished using
lightweight detection and tracking algorithm, it is insensi-
tive to camera synchronization. As multiple droplets can be
detected simultaneously, the overall setup does not require
an additional subsystem such as velocity detector to capture
images of droplets under high flow rate. We also conducted
experiments using external reference data (see Section III-C)
to validate the proposed pipeline.
This proposed pipeline can automatically acquire blur-free

single droplet image and subsequent droplet counting on
resource constrained embedded platform at a rate of 100DPS.
Therefore, we believe that the pipeline presents a promising
solution for future POC diagnostics, more specifically in
object classification in droplets, e.g. for antimicrobial sus-
ceptibility testing, where the significantly higher frequency
droplet-based assays could significantly contribute to sepsis
prevention. At present, droplet-based imaging flow cytometry
platforms primarily rely on high-end, high-power instru-
mentation (e.g. GPUs), which limits embedded or portable
applications and scalability due to high associated component
costs.
The rest of this paper is organized as follows: Section II

presents the experimental setup including the materials used,

the proposed detection and tracking method and its complex-
ity analysis, and the process to acquire blur-free single droplet
image acquisition along with counting. Section III presents
the experimental results, and their analysis and Section IV
provides a comparison against the closest related works and
discussion thereof. Finally, Section V summarizes the key
findings and limitations of this work and outlines possible
future work.

II. MATERIALS AND METHODS
A. DROPLET GENERATION VIDEOS
The proposed pipeline has been tested firstly with simulated
two-phase flow videos and secondly with real-world exper-
imental fluorescent videos. Before explaining how these
simulated and real-word videos are obtained, we first briefly
introduce the physical system; the microfluidic droplets
are generated inside a polydimethylsiloxane (PDMS) chip
(schematic shown in Figure 1(a)). The microfluidic chip
design is based on the real-life microfluidic chip [30] used in
previous experiments. The chip contains water and oil inlets,
a gas spring connector (denoted air inlet in Figure 1(a)),
a flow-focusing junction with a width of 90 µm and a
height of 100 µm, and an outlet. The oil inlets are equipped
with filters that capture any particles that may be present in
mineral oil (Sigma Aldrich 330779) in order to prevent the
microchannels from becoming clogged.

FIGURE 1. Droplet generation. (a) Schematic of the PDMS chip (not
drawn to scale). (b) Experimental setup showing all (water, oil, air) inlets,
the droplet outlet, the filter, and the excitation laser light. The power
supply for driving the laser, the computer for controlling the syringe
pump, and the Basler Ace camera are not visible here.

Firstly, the simulated videos are obtained from a two-phase
flow simulation model (implemented in COMSOL Multi-
physics version 5.6 in our previous work [30]), where water
and oil flows are maintained at 10 µL/min and 67.7 µL/min,
respectively, to generate droplets. The flow rate of oil is
6.77 times greater than that of water; this helps to keep
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the droplets separated (relatively large distances between
droplets make it easier for the simulation to avoid ‘‘jetting’’ in
the channel). The liquid phases in COMSOL (see Fig. 3(A))
are displayed as red and blue. The central color, green, indi-
cates the region where the relative concentration of water
is 50%.
Secondly, for the experimental video, deionized water

mixed with 10 µg/ml fluorescein isothiocyanate- dextran
(FITC) and oil through corresponding inlets are used in the
fabricated PDMS chip channel. The mixture and oil are
injected through the chip inlet via a 3 mL syringe. The flow
rates of the water and oil fluid are maintained by using a
syringe pump (SpinSplit Netpump, SpinSplit LLC, Budapest)
and air inlet has not been used in our experiment. As shown in
Figure 1(b), a 488 nm laser light (Sharp GH04850B2G with
focusing optics from AliExpress) is used as the excitation
light source; it is located right after the junction where the
droplets from [31].
In the experiments, the droplet flow through a PDMS

chip is captured by a Basler Ace camera at 1000 frames per
second (fps).

B. DROPLET DETECTION AND TRACKING
To implement the imaging pipeline, custom code utilizing
color-based detection and a Euclidean distance tracker
algorithm are combined. The pipeline was developed in
Python 3.8 using OpenCV 4.5.5.
The acquired imaging results were exported automatically

in suitable formats (e.g.,.tiff,. png,.gif,.jpeg, and.bmp), and
they could be used for further data analysis involving, for
example, classification, or morphology analysis. The pipeline
is also able to simultaneously count the total number of
droplets during the time of detection.
Figure 2 shows the three main steps of the pipeline:

(1) video streaming; (2) processing; and (3) result acquisition.
The pipeline begins by acquiring the video input in real time
and then processes it to obtain single-droplet images. This
processing step can be divided into two main parts: detection
and tracking. During tracking, the pipeline can also count
the total number of detected droplets. Finally, the results are

FIGURE 2. Block diagram of the single-image acquisition process flow,
consisting of (1) video streaming, which occurs at 1000 fps;
(2) processing, which involves detecting droplets based on their color and
tracks; and (3) result acquisition, which involves acquiring a single image
and counting the number of droplets using the tracking result without
any duplication.

saved. What follows presents the details of the detection and
tracking methods implemented in our pipeline.
We conducted experiments with both the color-based

detection and Background Subtraction Mixture of
Gaussians-2 (BS-MOG2) methods. The color-based detec-
tion method is more efficient than BS-MOG2 algorithm
because it does not fail if there is intensity variation in the
experiments [32], [33]. Indeed, BS-MOG2 requires history
and threshold input values, which in our case were selected
to be 100 and 50, respectively, for the best optimization of
the results. This history value defines how many last frames
would affect the background model. BS-MOG2 creates a
binary mask, where 0 represents the background and 1 repre-
sents the foreground, which works well for simulated video
but fails in an experimental environment [34]. On the other
hand, in our experiments, color-based detection works well
for both environments. Mask was created by identifying the
high and low range of the object color using HSV (Hue
Saturation Value) range. To exclude the noise in both algo-
rithms, the contours of the moving objects on the mask were
passed through a threshold value (100 pixels), see Figure 5.
Any objects above the threshold value were delimited by
a bounding box. Once the object was detected inside the
bounding box, each center position of the bounding rectangle
was inserted in a single array.
Next, all the positions were fed to the tracker to update

the unique ID for each droplet; a Euclidean distance tracker
algorithm has been used to track each droplet. When a new
droplet enters into region of interest-1 (ROI-1), the pipeline
checks the central distance between consecutive droplets.
An object generally follows a trajectory made up of points
that are very close to each other. The closer the previous point
is to the object, the greater the probability that the previous
position belongs to it; in this case the tracker considers a
droplet having a small distance (< 10 pixels) as the same
object instead of new object. Therefore, it does not change the
unique ID for this specific droplet. The algorithm calculates
the Euclidean distance as follows [35]:

D = min(
√(

aj − ai
)2

+
(
bj − bi

)2) (1)

where D is the Euclidean distance of the previous tracks and
the current tracks, a is the x- coordinate of the track box,
b is the y-coordinate of the track box, j represents all the
prediction boxes in current frame, and i represents all the
prediction boxes in the previous frames.
The main purpose of tracking is to ensure precise droplet

counting by preventing duplicate counting of droplets and
to perform single-image acquisition at the same time. The
tracking yields every single-droplet image without any dupli-
cation and counts the total number of droplets. The process
of tracking a droplet consists of assigning it a unique ID
that it retains until it leaves ROI-1. The algorithm performed
well near the droplet generation area, where the single flow
of droplets does not become occluded. However, after a
short while, when the droplets reach the end of the channel,
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they become occluded and lose their unique IDs. To solve
this issue, and to save images as well as count the number
of droplets, another region, ROI-2 (shown in Figure. 3), has
been selected.

FIGURE 3. Detailed video processing diagram showing the full frame,
ROI-1, mask, and ROI-2. (A) COMSOL-simulated 2-phase flow video and
(B) experimental fluorescence video captured by the Basler Ace camera at
1000 fps. For both cases, full frame shows the droplet generation inside
the chip channel; ROI-1 represents only the specific small portion of the
channel where the droplet flow can be observed; mask shows the object
in white and the background in black (the droplet is flowing from left to
right); and ROI-2 represents the small initial portion of the channel from
the left side (purple region) used to obtain true counting.

C. IMAGING PIPELINE’S PSEUDO CODE AND
COMPLEXITY ANALYSIS
This section illustrates the imaging pipeline’s pseudo code
and its time and space complexity analysis.

D. TIME AND SPACE COMPLEXITY ANALYSIS
The time complexity of the pipeline depends on the dominant
factors (video processing loop, masking, contour detection,
contour filtering, and object tracking) contributing to the
overall running time.
The primary loop iterates over each frame (denoted by n)

of the video. The time complexity associated with each pixel
in the frame can be approximated, with the big O notation,
as O (m × p) where mand p, are the frame dimensions. The
time complexity for contour filtering depends on the number
of contours and expressed as O (c× f) where c is the number
of contours and f represents the time complexity associated
with the operation within the contouring filter.O (t× g) is the
time complexity for tracking where t is the number of tracked
object and g represents the time complexity associated with
the operations within the object tracking loop. Hence, the
overall time complexity can be expresses as O (n× (m× p)+
c × f + t× g).
The space complexity for each frame (input data) is con-

stant as it is processed one at a time, and the total space
complexity for handling video frames is negligible. The
Euclidean distance tracker maintains a dictionary to store
the center positions of tracked droplets and an integer to
keep track of droplet IDs. If s is the number of tracked
droplets, then the space complexity of the tracker is O(s).
As the counting area polygon has a constant number of

Pseudo Code for Proposed Pipeline
Data: Video frame
Result: Acquire single droplet image and count
1. tracker = EuclideanDistTracker()//
Initialize Euclidean distance tracker
2. create_directory(‘data’) // Create a directory named ‘data’
for saving droplet images
3. object_count = set() // Initialize droplet count set
4. Process frames in a loop
while True:
frame = read_frame(cap) // Read a frame from the video
Hsv_img = convert_to_hsv(frame) // Convert the frame to
HSV
mask_green = create_green_mask(Hsv_img, Low_Green,
High_Green) // Create mask using color thresholding
contours = find_contours(mask_green) // Find contours in
the mask
detections = detect_objects(contours) // Detect droplets
based on contour area
boxes_ids = tracker.update(detections, 1) // Update droplet
tracking using the Euclidean distance tracker
5. Process each detected and tracked object
for box_id in boxes_ids:
x, y, w, h, obj_id = box_id
draw_rectangle(frame, x, y, w, h) // Draw bounding box
draw_text(frame, str(obj_id), x, y) // Text on the frame
result= point_in_polygon(roi_polygon, (x, y)) // Check if the
droplet is inside the defined counting area
if result:
object_count.add(obj_id) // Update droplet_count based on
the object ID
save_droplet_image(frame, obj_id) // Save image of the
detected droplet
total_count, objects_in_second = calcu-
late_counts(object_count, fps_count) // Calculate total
droplet count and droplets per second
display_counts(frame, total_count) // Display the droplet
count on the frame
7. Check for user input to exit the loop
key = wait_for_key()
if key == 27:
break
8. Cleanup and release the video capture object
release_video_capture(cap) // Release the video capture
object
destroy_all_windows() // Destroy all open windows
End of Algorithm

vertices the space complexity is O (1). Moreover, if the total
number of unique droplets detected is denoted by q, the space
complexity is O(q). A dictionary is needed to store images of
detected droplets, so the space complexity depends on the
number of detected objects O(q). Various variables used for
masking, contour detections, and bounding boxes have space
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complexity which is proportional to the size of the data, and
these are temporary, hence do not contribute significantly
to overall space complexity. Therefore, the overall space
complexity is dominated by the Euclidean distance tracker i.e.
O(s) and the sets used for counting objects i.e. O(q). Finally,
the overall space complexity can be expressed as O(s+q+1).
Memory usage in Figure 4 shows that it does not

exhibit any significant spikes or drops throughout the over-
all processing. It takes approximately 95 Mebibytes (MiB)
maximum.

FIGURE 4. Memory consumption as a function of time. The horizontal
axis shows the time of overall processing for whole video and the vertical
axis shows memory consumption trend in Mebibytes.

The time complexity of the closest related paper [25]
depends on the dominant factors (Background difference
method, Gaussian filtering, Binarization, Opening and
Expansion processing). For their case, let’s assume b is the
number of pixels, so time complexity would be O (b) for
background difference. If v is the size of gaussian kernel,
time complexity would be for gaussian filtering would be
O (b×v2). The time complexity for binarization depends on
the number of pixels in each image, hence O(b). If h is the
number of pixels in the structural element time complexity
for opening and expansion process would be 2×O (b × h).
The overall time complexity would be O (b)+ O (b×v2) + O
(b)+ 2×O (b× h)which simplifies toO (b× (1+ v2+2× h)).
The memory required for storing the difference image,

filtered image, binarized image, opening operation and
expansion processing is proportional to the size of each
frame, resultingO (b)where b is the total number of pixels in
each frame. Table 2 shows the comparison of computational
complexity of the proposed work and the closest related
paper. The complexities are not provided in earlier works
and hence are derived based on materials available in their
paper.
In our proposed method, the dominant terms are n,

mand p, while the second and third terms are constants and
multiplied by fand g, respectively. On the other hand, the
time complexity of the method in [26] involves the product of
four variables whichmakes it more computationally complex,
while its space complexity is lower.

TABLE 2. Comparison of computational complexity with closest related
paper.

E. SINGLE-DROPLET IMAGE ACQUISITION AND
COUNTING
In this process, a single-droplet image is acquired by auto-
matically cropping each detected droplet from the bounding
box. The location of one corner (instead of all four corners) of
the bounding box is stored in a dictionary to reduce the com-
plexity of the computation, and the object image is cropped
when the particle is exactly inside of a specific ROI-2 (shown
in Figure 5).

FIGURE 5. Three different conditions for accurate counting (Top: COMSOL
simulated two-phase flow video, bottom: experimental fluorescence
video): (i) if the green bounding box is outside ROI-2, the operation
returns -1; (ii) if the bounding box is exactly on the boundary of ROI-2,
it returns 0; and (iii) if the bounding box is inside ROI-2, it returns +1,
which is the right condition to store the location.

The geometric operation has been conducted for three
different conditions: (i) if the bounding box is outside ROI-2,
the operation returns -1; (ii) if the bounding box is exactly on
the boundary of ROI-2, it returns 0; and (iii) if the bounding
box is inside ROI-2, it returns +1.
The location is stored only if the operation returns +1;

otherwise, the algorithm does not take any action. The
algorithm checks whether a box with the same unique ID
has already been stored or not. If the box has already been
stored, the algorithm will not store it again, thus preventing
duplication. Although the main contribution of this algorithm
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is to acquire a blur-free single-droplet image from a fast flow,
the counting of droplets is also performed in near real time.
This entire process does not require any additional hardware
to acquire single-droplet images or to perform counting.

F. OVERVIEW OF THE COMPUTING PLATFORMS
We have implemented our pipeline on three different plat-
forms, ranging from high-performance device (desktop PC)
to hardware-accelerated device (Nvidia Jetson Nano) and to
resource-constrained device (RPI4 Model B).

1. Desktop PC with an Intel i5-10210U processor
(4 cores, 8 threads) running at 1.6 GHz and with 16 GB
RAM. The OS is Windows 10.

2. Raspberry Pi 4, based on quad-core ARM Cortex-A72
processor clocked at 1.5GHz. It has 4 GB of RAM and
is used in headless mode.

3. The JetsonNano is also a compact device (NVIDIA Jet-
son NANO Developer Kit); it has a 128-core Maxwell
GPU and a quad-core ARM A57 CPU1.434 GB of
LPDDR4 [36].

We first tested the droplet image acquisition and droplet
counting on the Windows-based PC and then on the two
embedded platforms.

III. RESULTS
To validate the proposed pipeline, we performed experiments
using A) 2-phase simulated video, and B) experimental fluo-
rescent droplet generation video (see Section II-A) The flow
rate is 100 µl/min, and the camera frame rate is 1000 fps.
The fluid flow is of high throughput, which can easily create
motion blur when images are captured using a camera. Image
quality degradation does not take place if the flow rate is low,
but it can occur for a high throughput. The proposed pipeline
can handle moving droplet videos to obtain images of good
quality.

A. DROPLET DETECTION AND TRACKING
Contour area selection from the mask resulted in successful
droplet detection. White pixel values greater than 100 were
considered above the threshold value for accurate droplet
area detection. Values below the threshold were considered
as noise and were not included in further processing.

B. SINGLE-DROPLET IMAGE ACQUISITION AND
COUNTING
Every detected droplet was tracked using its unique ID
and counted. The total droplet count increases whenever
a new object enters ROI-2. A 0.05 s video that contains
18 droplets was used for the experiment, and in each experi-
ment 18 images were properly recorded. These numbers were
validated throughmanual counting by three human observers.
In addition, we observed that the processing time of our
pipeline in two platforms for fast-moving droplet detection,
counting and single-image capture.
The main goal of our proposed pipeline is capturing a

single-droplet image from the near real-time fluid flow.

FIGURE 6. Manual thresholding if the contour area is greater than 100.
Left: green contour for CFD (COMSOL) simulated video; right: red contour
for experimental fluorescence video boundary. An area meeting the
threshold criterion is considered to be an object, resulting in precise
droplet detection.

The pipeline is suitable for capturing images of moving
objects, not for capturing images of static objects. Since it can
detect, count, and save each droplet successfully, it is suitable
for any other similar single streaming IFC application.
The execution times for a single-droplet handling for

the two different types of videos (simulated and experi-
mental) using the two different algorithms (color-based and
BS-MOG2) on the three platforms (desktop PC, RPI4, and
Jetson Nano) are shown in Figure 7.

FIGURE 7. Comparison of single-frame processing time, where the
horizontal axis represents the platforms, and the vertical axis represents
the single-frame processing time in milliseconds(ms). The color
corresponds to the algorithm and video type used. The color-based
detection algorithm takes 10 ms, 90 ms, and 30 ms on the three different
platforms, respectively, while the background subtraction algorithm takes
30 ms, 170 ms, and 70 ms for the simulated video. Experimental video
yields the best result using color-based detection algorithm, which is
2 ms, 25 ms, and 10 ms on the desktop PC, Raspberry Pi 4, and Jetson
Nano, respectively.

The color-based detection algorithm yields the minimum
processing time for the experimental video on every platform;
it takes 2 ms, 25 ms, and 10 ms on the desktop PC, Raspberry
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Pi 4, and Jetson Nano, respectively. The same algorithm
takes 3 to 5 times more time for the simulated video than it
does for the experimental video (10 ms, 90 ms, and 30 ms,
respectively).
Note that Figure 7 does not show results for BS-MOG2

on the experimental data; despite being adaptive and robust,
the BS-MOG2 algorithm does not work on the experimental
video. The reason is that BS-MOG2 is sensitive to Gaus-
sian distribution of pixel and illumination variation. In this
specific microfluidic droplet applications, the background
is complex and dynamic because of the liquid flows and
interactions. The single-droplet processing times with the
BS-MOG2 algorithm on the simulated video are 30 ms,
170 ms, and 70 ms, for the Windows desktop PC, Raspberry
Pi 4, and Jetson Nano, respectively.
Next, Table 3 shows theDPS and corresponding processing

time for the two different algorithms on the two types of
videos in three different platforms. As expected, due to its
higher computational power, the desktop PC achieves the
highest (500) DPS, with the color-based detection algorithm
applied to the simulated video. However, it is also noticed
that 100 DPS (10 ms to acquire one droplet image) can be
obtained for the same algorithm and video with the Jetson
Nano, which is considered as high throughput for the target
applications.

TABLE 3. Comparison of DPS on the three different platforms.

C. TEST WITH EXTERNAL REFERENCE DATA
The pipeline was also tested with external reference
brightfield microscopy video obtained with a similar chip
design [37]. The microfluidic channel width was 50µm; the
flow rates were controlled using neMESYS 290N syringe

pumps (Cetoni) and gas-tight syringes (Hamilton) connected
to PTFE tubing, and the generation of droplet was monitored
using a high-speed Mini UX-100 camera (Photron). Single
object image acquisition and counting works well using our
proposed pipeline on this external reference data. Figure 8
illustrates the single droplet image acquisition in brightfield
microscopy.

FIGURE 8. Single droplet image acquisition in brightfield microscopy (Left
to right: video streaming, processing, and result). Masking (white
boundary), contouring (yellow boundary) and tracking (green rectangle)
shows only for one droplet from the video. Multiple saved droplet images
are shown in result.

For automatic single droplet image acquisition and count-
ing, the high and low range of the object color using HSV
range needed to identify once to create mask. Then contour
area selection from themask was set with a threshold of 3000.
This implies that white pixel values exceeding 3000 were
taken into account the precise droplet area detection. Pixel
values below this threshold were considered as noise and
excluded from subsequent processing.
Each detected droplet was tracked using its unique ID and

counted. The execution times for a single-droplet handling
for brightfield microscopy image acquisition were not signif-
icantly different than that for the two-phase CFD simulation
and fluorometry images as the overall process went through
same steps.

IV. COMPARISON AND DISCUSSION
To summarize, previous similar (i.e. closest related, but not
directly comparable) studies for acquiring blur free images,
detecting, and counting methodologies are either complex
and not developed for being deployed into portable devices
([21], [37], [24]), or meant for other types of applications
([24]), or they do not provide all performance details [25]).
In contrast, our proposed solution is able to acquire blur-free
images, detect and count accurately each droplet automati-
cally, making it suitable for portable platform.
These closest related works are summarized in Table 4 and

further discussed.
Blur-free droplet image acquisition, detection, and count-

ing the total number of droplets in an embedded platform
has emerged as essential research towards POC technology.
As indicated previously, the closest related works shown in
Table 4 are not directly comparable, but for reference their
platform suitability, processing time, and accuracy metrics
were looked into. Detection and counting of microfluidic
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TABLE 4. Most-closely related results vs. our work.

droplets is obtained in [38] by utilizing YoloV5 which is fast
enough to meet the requirement of imaging flow cytometry.
However, this method has been optimized (processing time:
33 ms) for powerful GPU to meet the requirements of their
specific application. A sophisticated hardware setup has been
developed in [21] which can handle more than 10,000 cells/s
throughput and acquire blur free images of cells (processing
time no reported in their paper). However, the setup is for
laboratory grade imaging flow cytometer. A deep learning
based miniaturized imaging flow cytometer is developed
for waterborne parasite detection which takes approximately
34 ms for autofocusing, color reconstruction and detection.
Similar research was conducted targeting an embedded plat-
form [26] by utilizing OpenCV for blood cell detection
and classification but have not provided their processing
time.
Contrary to existing systems that rely on additional hard-

ware setup and complex techniques for blur-free image
acquisition, object detection and counting which are often
costly and not suitable for portable devices, our proposed
pipeline is optimized for portability. It utilizes minimal hard-
ware and lightweight color-based detection and Euclidian
distance tracker for droplet tracking in real time algorithm
for detecting, counting, and acquiring single object images
from video stream. It requires approximately three times less
processing time than the most closely related existing stud-
ies [25], [38], making it well suited for embedded platform.
Memory complexity analysis of the proposed pipeline indi-
cates a memory usage of 95 MiB, with most of it dedicated
for storing the unique identification number for each droplet.
The characteristics of the proposed work eliminate the need
for complex and expensive hardware, thereby democratizing
access to droplet microfluidic IFC.

V. CONCLUSION
Single-droplet image acquisition is important for extract-
ing valuable information about a given particle. Because of
the high throughput and fast flow of IFC, researchers have
focused on developing hardware systems to capture blur-free
single images. The pipeline proposed in this study enables
near real-time image acquisition without the integration of
any additional hardware components; video streaming is
performed at 1000 fps in this paper.
The pipeline, which consists of a color-based detection

algorithm, is capable of acquiring high quality single droplet
image and counting the total number of droplets from a
near real-time, single-line high throughput droplet flow. The
pipeline’s output can be fed into any other algorithm for
further analysis; it can be used to perform tasks such as
classification, segmentation, ormorphology analysis. Droplet
detection is challenging when the droplets have a high veloc-
ity and occlusions happen after some period, but the proposed
pipeline is reliable enough to solve these issues.
The complete process is automated, and it can detect and

count droplets, as well as acquire blur free single-droplet
image in near real time. Identification of low and high color
ranges of the object to create mask as well as setting manual
threshold is used only once in initial phase. Despite the
constraint of limited data, the proposed pipeline was tested
using external data for validation. The pipeline was tested on
a desktop PC and two embedded platforms, and the process-
ing times of two different object detection algorithms were
compared. The achievable droplet detection per second value
is 100 DPS on the Jetson Nano SBC. The processing time on
desktop PC is approximately five times faster; hence, it yields
500 DPS. For future work, an extension to this work would be
to adapt auto-thresholding and the deployment of the pipeline
in other embedded platforms to assess and compare their
performances. Moreover, real time-analysis, exploration of
hardware and software optimizations for possibly improving
the performance and/or efficiency of the implementation is a
future research direction and extension of the proposed work.
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Abstract—Microfluidic droplet classification is an essential 

research step in imaging flow cytometry. Although deep 

learning algorithms have proven effective for detecting and 

classifying microfluidic droplets in benchtop setups, their 

implementation in portable devices presents a significant 

challenge. The computational complexity of deep learning 

needed to meet the speed and accuracy requirements of imaging 

flow cytometer often exceed the capabilities of portable 

resource-constrained devices, making it difficult to transition 

from benchtop setups to field-deployable devices. To address 

this challenge, we present a tuned YoloV4-tiny model mapped 

onto a Raspberry Pi-5 single board computer. The neural 

network is trained on 878 images from our own dataset 

consisting of 975 images from two videos recorded on our 

microfluidic experimental setup. The performance is measured 

in terms of inference time and mean average precision. Our 

implementation is able to classify three different types of 

droplets within 13 ms while maintaining an accuracy rate of 

more than 98% accuracy.  

Keywords—Droplet, droplet classification, neural networks, 

resource constrained platform, single board computer 

I. INTRODUCTION

Microfluidic droplet classification can bring phenomenal 
insight to biomedical research and related applications [1], [2]. 
Recent advances in deep learning have paved the way for real 
time automated, reliable, and accurate object classification. 
For example, convolutional neural networks (CNNs), a class 
of deep learning models, have led to advancements 
specifically for object detection and classification in 
applications ranging from biomedical imaging [3], [4] to 
autonomous driving [5]. These models have the potential to 
automate and advance the droplet classification stage in 
imaging flow cytometry (IFC) since they are capable of 
learning complex features and patterns from large datasets. 
However, existing methods for droplet classification are 
developed for benchtop (lab grade) applications which use e.g. 
powerful Graphics Processing Unit (GPU). 

In the study [6], researchers developed a CNN-based 
algorithm named Weakly Supervised Cell Counting Network 
(WSCNet) to classify cell-encapsulated droplets. The 
proposed method significantly improves on traditional image 
classification accuracy (reaching more than 89%) and exhibits 
robustness under different lighting conditions; yet it relies on 
a desktop computer for operation. Another research effort 
aims to enhance the accuracy and efficiency of detecting 

microfluidic droplet content in liquid biopsy workflows 
through CNN [7]. The automatic classification system based 
on CNN achieves 96% accuracy in classifying droplets. 

Transfer learning with deep CNNs  is used for classifying 
cellular morphological changes achieving high accuracy 
between  95% and 97% [8]. This approach reduces the need 
for extensive dataset collection and labeling, which is a 
significant bottleneck in developing deep learning models for 
specific microfluidic applications. An optimized image 
activated cell sorter based on deep learning model under the 
TensorRT29 framework was deployed on NVIDIA GeForce 
GTX 1080 TI GPU [9]. The system is specifically tailored to 
classify and sort polystyrene beads and cells in real time. 

Although there have been significant advancements in the 
microfluidic object classification field, there remains a gap in 
the literature regarding the optimization of models for 
implementing them on portable, resource-constrained devices. 
Most of the existing research prioritize achieving high 
classification accuracy at the expense of high computational 
complexity, rendering these approaches largely unsuitable for 
portable systems. 

Our study addresses this gap by optimizing a deep 
learning-based droplet classification system for portable 
devices; our results show the feasibility of classification 
model on resource-constrained devices. We demonstrate that 
our deep learning-based classifier can achieve high accuracy 
and speed, enabling analysis of microfluidic droplets 
containing cells. Furthermore, we tested our system using a 
new, unseen testing dataset, highlighting its robustness. By 
implementing deep learning techniques into the resource 
constrained platform, we aim to facilitate resource-efficient 
droplet classification, paving the way for advancements in 
portable microfluidic applications.  

The main steps and contributions of this research are listed 
as follows.  

1) We have generated a new dataset of 975 microfluidic
droplets images. The dataset is created from two videos 
recorded on our microfluidic experimental setup.  

2) We have developed a droplet classification method
(building upon YoloV4-tiny model) with high accuracy and 
inference speed, yet lightweight for resource-constrained 
implementation. High accuracy is achieved via data-
augmentation and high inference speed is achieved by 



reducing the number of filters in the convolutional layers by -
20% and via batch processing (6 images per batch).  

3) We have implemented and deployed our proposed 
method on two resource-constrained devices, i.e. single board 
computers (SBC), i.e., first on Raspberry Pi-4 and second on 
Raspberry Pi-5 (achieving high accuracy (98%) and inference 
speed (13 ms)), which shows the feasibility of our proposed 
solution on resource-constrained devices.  

The rest of this paper is structured as follows: Section II 
provides an overview of the materials and method, including 
the implementation of the model onto the resource-
constrained devices. Section III presents the results, including 
the performance comparative analysis. Finally, Section IV 
concludes the paper and outlines some potential future 
directions for research in this area. 

II. MATERIALS AND METHOD 

A. Dataset 

Training data acquisition is a significant bottleneck in 
developing microfluidic object detection and classification 
due to the lack of data availability. The microfluidic 
experimental video stream is recorded using a camera placed 
directly above the microfluidic chip where droplets are formed 
at a T-junction of two channels. Two different experimental 
videos with different conditions were used to extract the 
images (example images are shown in Fig. 1) for model 
training. Each image contains one or two microfluidic 
droplets. Observing the droplet activity, images are extracted 
from the videos at 15 frames per second (fps) instead of the 
default 1 fps and saved in the JPG format. 

 

 

Fig. 1. Picture of droplets flowing inside the microfluidic channel. Top: an 
empty droplet (left) and droplet containing a single cell (right). Bottom: a 

droplet containing multiple cells. 

CNN performance can deteriorate if the amount of dataset is 
not diverse enough. To achieve higher performance (accuracy 
and robustness), we have applied a data 

augmentation technique to  increase the number of different 
images and reduce the over-fitting problem. In the data 
augmentation method, the number of different images is 
increased by changing the contrast from 0.4 to 1.6, applying 
gaussian blur from 0.3 to 0.9 and from 1.1 to 2.5, as well as 
applying vertical and horizontal rotation. Different contrast 
and noise were applied to create a model robust in varying 
experimental conditions. This yielded a total of 975 images, 
from which 878 images were used for training and validation, 
and 97 images were used for testing.  

B. Image Annotation 

Image annotation consists in identifying and noting down 
the location of all objects of interest (in this case droplets). We 
used 878 images (including augmented images) as the training 
dataset and approximately 10% of these (87) images were 
used as validation dataset. To annotate all the images based on 
a rectangle bounding box, we used the “makesense.ai” online 
tool and manually labelled all the images. YoloV4-tiny 
bounding box annotation format is [x,y,w,h], where (x,y) is 
the centroid, w is the width, and h is the height of the bounding 
box.  

C. CNN and Implementation 

Given the needs formulated by a bioanalytical expert, we 
decided to classify the images into three classes: (i) empty 
droplet, (ii) droplet with a single cell, and (iii) droplet with 
multiple cells. Only droplets which are fully visible in an 
image are considered for classification. We took CNN model 
YoloV4-tiny as a basis for our method. Then we tuned it by 
reducing the number of filters in the convolutional layers to 
improve the inference speed without significant reduction of 
accuracy. Compressed filters could reduce the model size, 
hence improving inference speed.  

We trained the model using the ‘Darknet’ framework in 
Google Colaboratory Pro (T4 GPU was configured with 
Python 3.10.12, CUDA12.2, cuDNN 8.9.6, OpenCV 4.8.0). 
The trained model takes an image as input and estimates a 
confidence score for each detected droplet within the image. 
The performance was measured by calculating the accuracy, 
mean average precision and loss in validation dataset. The loss 
for the trained model for 6000 iterations is shown in Fig. 2; 
the values do not measure the model’s actual performance yet. 
The best performance was obtained at 6000 iterations, where 
the loss is 0.09. 

For training, we set the final learning rate to be 0.00261, 
decay 0.0005, momentum 0.9, batch size 64, subdivisions of 
8, max batches 6000, according to default configuration, and 
the filters are reduced by 20% in all convolutional layers. The 
tuned value of 20% was found empirically, as a trade-off 
between complexity and accuracy. This reduced the weight 
file size by -36.16% (from 22.4 MB to 14.3 MB). After 
training completion, the model was deployed on two SBCs, 
i.e. Raspberry Pi-4 and Raspberry Pi-5. Inference time 
measured in RPI-5 was reduced by -35% (from 20 ms to 13 
ms). The results are obtained using 6 batches of images instead 
of a single image. We have tested the inference speed for 1 to 
16 batches of images. It was observed that the processing time 
was improved until 6 batches of images, but not for larger 
batches. Then all the values are averaged, and the inference 
time is calculated for a single input. 



Fig. 2. YoloV4-tiny with compressed filters training results up to 6000 

iterations, where the average loss reaches 0.09. 

III. IMPLEMENTATION RESULTS

In this section, we present the results of our proposed deep 
learning-based microfluidic droplet classification system, 
specifically designed for portable device implementation. Our 
evaluation focuses on three main aspects: classification 
accuracy, processing speed, and resource utilization on 
portable, resource-constrained hardware. 

A. Droplet Classification

Our study assessed droplet classification performance
with 416x416 pixel input size and non-maximum-suppression 
rate at 0.7 test datasets. Fig. 3 shows examples of droplet 
detection results on original images from our test dataset.  

Fig. 3. Examples of microfluidic droplet classification results after 6000 

training iterations, where the prediction probability is above 99%. 

B. Model Performance

Performance metrics are shown in Table I and calculated
using Equations 1 and 2, where TP is true positives, FP is false 
positives, and FN is false negatives. 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (1) 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 

TABLE I.  CLASSIFICATION PERFORMANCE METRICS (TEST DATASET = 97 

IMAGES) 

Metric Performance value 

TP 112 

FP 6 

FN 0 

Precision 0.95 

Recall 1 

mAP@0.50 99.95 % 

The high precision (0.95) and recall (1) indicate that the 
model is highly reliable and effective at correctly identifying 
different droplet types with minimal false classification. The 
mAP@0.50 is the mean average precision, where AP is 
calculated using an intersection over union (IoU) threshold of 
0.5. IoU indicates the overlap of the predicted and the ground 
truth bounding boxes. The high mean of average precision 
(mAP) at 99.95% highlights our model's robustness. 

Our portable implementation was tested both on 
Raspberry Pi-4 and Raspberry Pi-5 SBCs (both with 8 Gb 
RAM and running on a 64-bit operating system). One of the 
key requirements for real-time applications is the ability to 
process images at high speed. To evaluate the processing 
speed, we executed tests for the model using corresponding 
test dataset on targeted devices. By running the trained model, 
we observed that the processing time is 20 times faster (13 ms) 
with the Raspberry Pi-5 than with the Raspberry Pi-4 (265 
ms).  

On Raspberry Pi-5, our system achieved a classification 
inference time of 13 ms, which yields 76 fps. This rate was 
obtained using a batch of 6 images and is sufficient for 
practical applications. 

 Resource utilization was a critical aspect of our evaluation, 
given the constraints of portable devices. We monitored CPU 
and memory usage during the classification tasks to ensure the 
system’s efficiency. The results are presented in Table II. As 
can be seen in the table, the average CPU usage and memory 
usage were 70% and 60%, respectively. These numbers 
indicate that the proposed method is sufficiently lightweight 
and suitable for portable application as CPU and memory 
usage are within the operational limits. 

TABLE II.   RESOURCE UTILIZATION ON RASPBERRY PI-5 

Resource Average Usage 

CPU Usage 70% 

Memory Usage 60% 



C. Comparison with similar studies

In this section, we compare our results with the closest-related 

existing research, as shown in Table III. Note that i) existing 

works do not target the same applications as our, and ii) most 

existing studies’ implementation are on powerful desktop PCs 

and/or GPUs.  

TABLE III.  CLASSIFICATION PERFORMANCE METRICS  

Refe-

rence 

Method Platform Object mAP 

(%) 

Process

ing 

time 

[10] YoloV5 Intel Core 
i7-12650H 

Drople
t 

99.3@
0.5 

74.3 ms 

[11] Mask-

RCNN 

Nvidia 

RTX 2080 

Ti GPU 

Cells 

73      - 

[12] 

CNN 

NVIDIA 

Tesla K80 

GPU 

Cells 95.7 

2.2ms 

[13] CNN - Cells 93~99  - 

[14] CNN Nvidia 

Tesla K40c 

GPU 

Cells 99  - 

This 
study 

Tuned 
YoloV4-

tiny 

Raspberry 
Pi-5 

Drople
t  

99.95
@0.5 

13 ms 

Although a direct comparison is not possible, some insights can 

be derived from the table. In particular, it can be noted that our 

tuned implementation with YoloV4-tiny on Raspberry Pi-5 

achieves better processing speed (13 ms) than that of [10] with 

YoloV5 on an Intel Core i7 (74.3 ms for single class), while 

mAP accuracy values are also comparable (99.95%@0.5 vs. 

99.3%@0.5). High-end GPUs like the Nvidia Tesla K80 [12] 

and Nvidia Tesla K40c GPU in [14] can achieve faster 

processing speed, and higher mAP, but they are developed for 

different, non-portable applications. Overall, the results in 

Table III shows that the tuned YoloV4-tiny on a Raspberry Pi-

5 has significant accuracy and reliability on a resource-

constrained platform, making it suitable for field-deployable 

devices. 

IV. CONCLUSION

In this paper, we presented microfluidic image-based 

droplet classification implemented on a resource constrained 

platform using tuned YoloV4-tiny model. Data augmentation 

results in high accuracy and robustness; optimizing the model 

by reducing the number of filters in the convolutional layers 

by -20% and applying batch processing (6 images per batch) 

yields high processing speed. 878 images from our own 

droplet dataset consisting of 975 images were used to train the 

model. The solution demonstrates the capability to classify the 

droplets within 13 ms with higher accuracy of more than 98% 

when deployed on the Raspberry Pi-5 SBC.  

For the sake of completeness, we note the following:  

1) As mentioned in Section III, we also tested the model on a 

Raspberry Pi-4 SBC. However, the inference time was much

higher (265 ms) while the other performance indicators were

not degraded. However, the Raspberry Pi-5 has notable higher

power requirements (5V, 5A) compared to Raspberry Pi-4 (5V,

3A). If power (e.g. heat constraints) and/or energy (e.g. battery-

powered) are stringent application constraints, one might trade-

off the higher speed of Raspberry Pi-5 for the lower 

consumption of the Raspberry Pi-4. 

2) We also converted the model to TensorFlow and

subsequently to TensorFlow Lite (TFLite). However, the

resulting inference time for a single image was more than 1 s.

This indicates that the proposed model maintains high

accuracy yet the performance in terms of inference speed is

limited to TFLite framework and Raspberry Pi-4.
In future work, the processing time could be further 

reduced by applying optimization techniques such as pruning 
and quantization to achieve real-time or near-real time 
classification speeds; the trade-off between this speed gain, 
power consumption and the resulting decrease in accuracy 
should be assessed carefully. 
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Microfluidic droplet classification offers remarkable potential for biomedical research 
and applications [1,2]. In parallel, recent progress in machine learning (ML) and deep 
learning has enabled (near) real­time, automated, reliable, and precise object 
classification. In particular, convolutional neural networks (CNNs), a subset of deep 
learning models, have led to advances in object detection and classification in various 
fields, including biomedical imaging [3,4]. Given their ability to extract complex 
features and patterns from image datasets, CNN models show promise in automating 
and enhancing the droplet classification phase in imaging flow cytometry (IFC). 

Nevertheless, current ML­based droplet classification methods are predominantly 
designed for benchtop (laboratory­grade) applications, typically relying on high­
performance graphics processing units (GPUs). Implementing ML­based droplet 
classification on embedded/edge devices remains challenging due to: (i) resource 
con straints (limited computational power, memory, and energy compared to labo ­
ratory­grade systems), (ii) the need to customize, adapt, and optimize large models 
and complex algorithms to run efficiently on resource­constrained devices, (iii) re ­
quirements for possible (near) real­time processing and speed vs accuracy trade­off 
on low­power devices; and (iv) the potential availability and exploitation of spe ­
cialized hardware, such as low­power tensor processing units (TPUs) and neural 
processing units (NPUs). This paper is an extended version of [5], providing ad ­
ditional references, more details about model customization and deployment, as well 
as additional deployment comparisons. 

In [6], researchers developed a CNN­based algorithm called the weakly 
supervised cell counting network (WSCNet) to classify cell­encapsulated droplets. 
The proposed method significantly improved the accuracy of traditional image 

© 2025 Authors. This is an open  
access article distributed under the  
terms and conditions of the Creative  
Commons Attribution (CC BY) license  
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Lightweight CNN-based microfluidic 
droplet classification for portable 
imaging flow cytometry 
Fariha Afrin, Yannick Le Moullec, Tamas Pardy and 
Toomas Rang
Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology 
(TalTech), Ehitajate tee 5, 19086 Tallinn, Estonia 

ABSTRACT 
Classifying microfluidic droplets is an essential step in imaging flow cytometry. While deep 
learning algorithms can detect and classify such droplets in benchtop laboratory settings, their 
deployment on portable devices remains challenging because the computational requirements 
often exceed the capabilities of compact, resource-limited devices. This hinders the transition 
from stationary lab setups to field-deployable instruments. To tackle this issue, we introduce 
a customized YoloV4-tiny model deployed on a Raspberry Pi-5 (RPi5) single-board computer. 
Our neural network is trained using 878 images from a custom dataset of 975 images, derived 
from two videos captured with real-life microfluidic experimental setup. We evaluate per -
formance based on inference time and mean average precision. Our system successfully 
classifies three distinct droplet types (no cell, one cell, multiple cells) within 13 ms, achieving 
a 99.95% mean average precision at an intersection over union threshold of 0.5 (mAP@0.5). 
We also compare the classification performance metrics of our customized YoloV4-tiny model 
against seven other combinations of machine learning models and platforms, including a recent 
low-cost, highly compact edge device with tensor processing unit capabilities, specifically, 
the MaixCam board with LicheeRV Nano module (SOPHGO SG2002) running a YoloV5-s model. 
Compared to this proposed customized YoloV4-tiny on the RPi5, the YoloV5-s on MaixCam 
achieves a significantly shorter classification time (5.34 ms) owing to its onboard tensor pro -
cessing unit but suffers from a lower mAP@0.5 of 55.09% due to quantization. Our work shows 
that carefully designed systems can achieve a balance between speed and accuracy, enabling 
robust performance even on resource-limited devices and paving the way for microfluidic 
droplet classification in portable imaging flow cytometry. 

Introduction
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classification (approx. 89%) and exhibited robustness under 
different light ing conditions; however, WSCNet relied on a 
desktop com puter for operation. 

Another research effort aimed to improve the accuracy 
and efficiency of detecting microfluidic droplet contents in 
liquid biopsy workflows using CNN [7]. This CNN­based 
auto matic classification system achieved 96% precision in 
droplet classification but was not designed for resource­con ­
strained platforms. 

Transfer learning with deep CNNs has been used to clas ­
sify cellular morphological changes, achieving high accuracy 
between 95% and 97% [8]. Although this approach reduces 
the need for extensive dataset collection and labeling, which 
is a significant bottleneck in the development of deep learning 
models for specific microfluidic applications, it is not suitable 
for resource­constrained platforms. 

In [9], researchers developed an optimized image­ac ti ­
vated cell sorter based on a deep learning model specifically 
tailored to classify and sort polystyrene beads and cells in real 
time. However, it was deployed using the TensorRT29 frame ­
work on an NVIDIA GeForce GTX 1080 TI GPU. 

The authors of [10] developed a ML­based computer vi ­
sion solution for real­time detection of droplets and bubbles. 
Their approach used the Yolov5 framework with custom pre­ 
and post­processing techniques, trained on a dataset of 5115 
images. Their results demonstrated real­time speed and high 
accuracy in detecting and differentiating between droplets and 
unwanted bubbles, but the method required a relatively high­
end PC. 

In [11], researchers explored the application of computer 
vision and deep learning techniques to automate the analysis 
of yeast cell replicative lifespans. They compared Yolo and 
Mask R­CNN in terms of their efficacy in detecting and ana ­
lyzing yeast cells from microfluidic images. They found that 
Yolo demonstrated superior sensitivity in cell detection, while 
Mask R­CNN provided more detailed information on cell 
sizes. However, their work was implemented on a desktop 
GPU (RTX 2080 Ti). 

The authors of [12] developed a deep learning pipeline for 
high­throughput, label­free cell classification, using CNNs to 
process raw measurement signals and enabling low­latency 
inference suitable for real­time cell sorting applications. 
While their method demonstrated over 95% accuracy in label­
free classification of specific types of white blood cells and 
epithelial cancer cells, their system was deployed on a desk ­
top GPU (Tesla K80). 

In [13], researchers proposed a label­free chemical IFC 
that combines pulse pair­resolved wavelength­switchable 
Stokes laser, multicolor stimulated Raman scattering (SRS) 
microscopy, and a 3D acoustic focusing microfluidic chip, 
supported by deep learning algorithms. They achieved a 
throughput of approximately 140 cells/s; however, they did 
not indicate the platform used (we assume that it was a high­
end PC). 

The research presented in [14] applied CNNs for process ­
ing large­scale datasets of label­free cell images for high­
throughput cell classification. The authors compared CNN 
performance against k­nearest neighbors (kNN) and support 

vector machine (SVM) methods. Their CNN­based approach 
yielded over 99% accuracy in identifying multiple cell types 
based on label­free bright­field images. However, they used 
a desktop GPU (Tesla K40c). 

The work presented in [15] introduced a rapid and 
label­free antimicrobial susceptibility testing method for co ­
listin, combining deep learning with droplet microfluidics. 
The DropDeepL AST method used a deep learning­powered 
approach for sensitive detection of bacterial growth in drop ­
lets, achieving 100% categorical agreement with the ref erence 
broth microdilution method for colistin susceptibility profiles. 
However, the paper did not specify the type of platform on 
which the model was trained or deployed; we assume that it 
was not a resource­constrained platform. 

A deep learning­augmented T­junction droplet generation 
system was presented in [16]. The study used finite element 
analysis to simulate droplet production and its dynamics, 
followed by ML algorithms to estimate droplet characteristics 
based on input parameters. This approach enabled preselect ­
ing designs with comparable microfluidic configurations 
within the studied range. Nevertheless, the specific platform 
used for training and deploying the model was not disclosed; 
however, our assumption is that it was not a resource­con ­
strained platform. 

Finally, [17] developed a droplet­based microfluidic plat ­
form to detect peptides that are self­secreted by yeast. They 
used ML­based image processing techniques to analyze flu o ­
rescence emitted by single yeast cells in droplets, yielding 
high­throughput analysis and characterization of agonistic 
peptides. However, the paper did not specify the training or 
deployment platform; we also assume it was not a resource­
constrained platform. 

Despite the notable progress in microfluidic droplet object 
analysis, a research gap remains in the scientific literature re ­
lated to model optimization for portable IFC devices. Many re ­
search efforts have focused on maximizing classification ac ­
curacy, often at the cost of increased computational de mands, 
making them impractical for portable platforms. Our research 
contributes to bridging this gap by refining a deep learning­
based droplet classification system for use in port able de vices, 
demonstrating its viability even with resource limitations. 

To address this issue, we have built a portable droplet 
clas sification system that leverages the YoloV4­tiny model. 
This model was chosen for its balance between efficiency and 
accuracy; YoloV4 remains well suited for embedded systems 
due to its compact architecture, which allows for rapid in ­
ference without compromising detection capabilities. We spe ­
cifically selected YoloV4­tiny because it offers a signifi cant 
reduction in computational requirements compared to its full­
size counterpart, making it ideal for deployment on re source­
constrained devices such as the Raspberry Pi­5 (RPi5) [18]. 
Furthermore, we identified the need to customize this model 
for our specific use case. Customization is necessary to en ­
hance the model’s performance in classifying droplets within 
our unique microfluidic setup. By fine­tuning the model on 
our custom dataset of microfluidic droplets, we ensure that it 
can accurately distinguish between different droplet types 
(no cell, one cell, multiple cells). This customization process 
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allows us to optimize the model’s architecture and para ­
meters, resulting in improved accuracy and faster inference 
times specifically for our droplet classification task. This also 
aligns with prior work on optimizing ML models for energy­
efficient applications, where ML has been used in low­power 
applications [19]; in a similar vein, our approach explores the 
feasibility of deploying deep learning models on resource­
limited embedded systems by balancing accuracy, inference 
speed, and computational complexity. 

We evaluate performance in terms of inference time and 
mean average precision. On the RPi5, our system successfully 
classifies three distinct droplet types (no cell, one cell, mul ­
tiple cells) in 13 ms, while maintaining over 98% accuracy. 
We compare the classification performance metrics of our 
customized YoloV4­tiny model against seven other models/ 
platforms, including a recent, low­cost and highly compact 
edge device with TPU capabilities. The main steps and con ­
tributions of this research are as follows: 
● We generate a new custom dataset of 975 microfluidic

droplets images. The dataset is created from two videos 
recorded in microfluidic experimental setup. 

● We introduce a droplet classification method (based on
the YoloV4­tiny model) that offers high accuracy and in ­
ference speed, while remaining lightweight for resource­
constrained implementation. High accuracy is achieved 
through data augmentation, and high inference speed is 
achieved by reducing the number of filters in the con ­
volutional layers by 20% and applying batch processing 
(six images per batch). 

● Our neural network is trained using 878 images extracted 
from the custom dataset of 975 images. We first imple ­
ment and deploy our proposed approach on two resource­
constrained single­board computers (SBCs): initially on
a Raspberry Pi­4B (RPi4) with a BCM2711 chip and
8 GB RAM, and then on an RPi5 with a BCM2712 SoC
and 8 GB RAM, achieving high accuracy (98%) and fast 
inference (13 ms). We then compare our results with those
obtained on other platforms, including the compact and 

low­cost MaixCam board [20] with an SG2002 SoC 
featuring a TPU1 and 256 MB RAM. 
We describe our customized model, built on deep learning 

principles, and how it attains both high accuracy and rapid 
performance, allowing for effective analysis of microfluidic 
droplets containing cells. Furthermore, we evaluate our sys ­
tem using a new and previously unexamined test dataset, 
highlighting its robustness. By integrating deep learning 
methods into a resource­limited platform, our work supports 
the development of resource­efficient droplet classification, 
thereby advancing the field of portable microfluidic tech ­
nology. 

The remainder of this paper is organized as follows. 
Section 2 describes the materials and method used in this 
work, particularly focusing on model implementation for 
resource­constrained devices. Section 3 presents the results, 
including a comparative performance analysis. Section 4 con ­
cludes the paper and suggests potential future research. 

2. Materials and method 
2.1. Dataset 
The acquisition of training data is a major bottleneck in 
advancing microfluidic object detection and classification due 
to the scarcity of available datasets. In our work, a camera 
positioned directly above the microfluidic chip records the 
experimental video stream, capturing droplets formed at the 
T­junction of two channels. To extract images for model 
training, we used two distinct experimental videos [21] re ­
corded under varying conditions (illustrative still images 
extracted from these videos are presented in Fig. 1). The 
images were retrieved by capturing video frames at a rate of 
15 frames per second (fps), rather than the standard 1 fps, and 
were stored in JPG format. Each image contains either one 
or two microfluidic droplets, and each droplet may contain 
either no cell, a single cell, or multiple cells. 

Next, to detect and classify such droplets in images, we 
consider an ML­based approach based on CNNs. However, 

1  Similar to an NPU for low­precision operations (INT8) used in edge AI inference.

Fig. 1.  Images of droplets flowing inside the microfluidic channel. Original resolutions are 1024 × 416 pixels for (a) and 560 × 512 pixels 
for (b); both are resized to 416 × 416 pixels during the training phase of the proposed customized YoloV4-tiny model.

An empty droplet (right) and a droplet containing multiple cells (left) A droplet containing two cells (right) 
and a droplet under formation (left) 

(a) (b)
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while CNNs are powerful tools for image classification, their 
performance can be negatively impacted by a lack of diversity 
in the training dataset. Without sufficient variety, the model 
may struggle to generalize well to new, unseen data. This may 
lead to overfitting, where the model performs well on training 
data but poorly on new examples. To address this issue, the 
two above­mentioned video recordings offer some diversity 
by capturing variations in illumination, contrast, motion blur, 
and object positioning, thereby helping to reduce overfitting. 

However, to further combat the risk of overfitting, we im ­
plemented a data augmentation strategy to synthetically ex ­
pand the size and diversity of the training dataset by creating 
modified versions of existing images. 

We applied the following augmentation techniques: 
● Contrast modification: the image contrast was adjusted 

within a range of 0.4 to 1.6, simulating variations in light ­
ing conditions and image quality that may occur in real­
world scenarios.

● Gaussian blur: two ranges of Gaussian blur were applied: 
0.3 to 0.9 and 1.1 to 2.5. This technique mimics different 
levels of focus or image clarity, helping the model become 
more robust to variations in image sharpness. 

● Vertical and horizontal rotations: these transformations 
enable the model to recognize objects regardless of their 
orientation within the image. 
The augmentation process significantly expanded the da ­

taset to a total of 975 images. This expanded dataset was then 
split into two parts, i.e., training and validation set, and testing 
set, as follows: 
● Training and validation set: 878 images (approx. 90% of 

the total 975 images), with 791 images (approx. 90% of 
the 878 images) used for training and 87 images (approx. 
10% of the 878 images) for validation2. This validation set 
plays a vital role in assessing the model’s generalization 
capabilities and helps prevent overfitting during the train ­
ing process.

● Testing set: 97 images (approx. 10% of the total 975 
images).
This split ensures a substantial amount of diverse data for 

training and validation while reserving a separate set for final 
testing to evaluate the model’s performance on unseen data. 

2.2. Image annotation 
The process of image annotation is a crucial step in preparing 
datasets for object detection tasks, such as identifying drop ­
lets in IFC systems. This procedure requires recognizing and 
precisely marking the locations of all target objects within 
each image. 

To conduct the annotation, we leveraged the Make 
Sense AI tool [22], which provides an intuitive interface for 
manual labeling and allows for meticulous, high­precision 
annotation of each image. We opted for rectangular bounding 
boxes as our annotation method, because they effectively 
capture the spatial extent of droplets within the images. 
The annotation process consisted of the following steps: 
● Uploading images to the makesense.ai platform; 
● Carefully examining each image for droplets; 

● Drawing rectangular bounding boxes around each iden ti ­
fied droplet; 

● Verifying the accuracy of annotations through multiple 
reviews;

● Exporting the annotation data in the required format (.txt 
files).
The annotation format we adopted aligns with the YoloV4­

tiny architecture requirements, using the [x, y, w, h] con ven ­
tion. In this format, (x, y) represents the center point of the 
bounding box, providing the focal point of the detected ob ­
ject; w denotes the width of the bounding box, capturing the 
horizontal extent of the droplet; and h stands for the height 
of the bounding box, representing the vertical extent of the 
droplet. 

2.3. Proposed customized CNN model and 
  deployment 

In response to the requirements set forth by a bioanalytical 
specialist, we categorized the droplets into three groups: 
(i) empty droplets, (ii) droplets containing a single cell, and 
(iii) droplets containing multiple cells. Only droplets that are 
entirely visible in an image are factored into the classification 
process.

Our approach leverages the YoloV4­tiny model as a foun ­
dation. We implemented a refinement process to optimize the 
model for our specific use case of microfluidic droplet detec ­
tion, with a focus on inference speed without significantly 
compromising accuracy, as outlined in what follows. 

The original YoloV4­tiny architecture consists of 21 con ­
volutional layers, organized into a series of cross­stage partial 
network (CSPSNet) blocks. A key modification in our cus ­
tomization process involved a careful reduction in the number 
of filters in these convolutional layers, as shown in Fig. 2. 
Through a series of ablation studies, we empirically deter ­
mined that a 20% reduction in filter count provides a suitable 
trade­off between model complexity and accuracy, as ex ­
plained below. Each cross­stage partial (CSP) module con ­
sists of a convolutional layer followed by batch normalization 
and the Leaky­RELU activation function, collectively re ­
ferred to as CL. The module also features skip connections, 
which help achieve an optimal balance between detection ef ­
ficiency and accuracy. Three CSP modules in the backbone 
progressively extract the image features. For the detection 
head, two heads are used for detecting larger and smaller 
objects. The detection section consists of one CL block and a 
convolutional layer, followed by the detection layer. The 
feature maps are upsampled and combined with residual 
connections from the same feature map resolution for the 
detection head at the second scale. The first scale, with a 
feature map size of 13 × 13, is used for larger objects, while 
the second scale, with a feature map size of 26 × 26, targets 
smaller objects. 

To ensure that the accuracy remained within acceptable 
bounds, we used an iterative process of filter reduction and 
performance evaluation. Through a series of ablation studies, 
we empirically tested different filter reduction levels (10%, 
20%, and 30%). We used a validation set to monitor the 

2 A 10% validation split is commonly used for microfluidic applications with relatively small datasets, such as in [4], which used 786 images. 
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model’s performance after each round of filter reduction, 
ensuring that any accuracy drop remained minimal. Based on 
previous studies and our experimental results, a 20% filter 
reduction typically results in a 1–5% decrease in mean aver ­
age precision (mAP), while batch processing may in troduce 
an additional 0.5–2% loss due to batch normalization effects. 
In our case, empirical evaluation showed that the accuracy 
drop remained within this expected range, making the trade­
off acceptable for our specific application. The 20% filter 
reduction resulted in a significant 36.16% decrease in the 
weight file size, from 22.4 MB to 14.3 MB. 

In practice, this filter reduction strategy serves four pur ­
poses, listed below. 

First, by reducing the number of filters, we significantly 
decrease the total number of parameters in the model. This 
compression result in a smaller model size, which is crucial 
for deployment on resource­constrained edge devices used in 
portable microfluidic systems. 

Second, fewer filters result in fewer computations during 
the forward pass of the network. This directly translates to 
faster inference times, which are critical for real­time droplet 
detection and classification in flow cytometry applications. 

Third, reducing the model’s complexity through filter 
reduction can help mitigate overfitting, especially when work   ­
ing with limited datasets, which are common in special ­
ized scientific applications, such as microfluidic droplet 
analysis. 

Fourth, the reduced model size requires less memory dur ­
ing both training and inference, making it more suitable for 
deployment on devices with limited RAM. 

Then, we fine­tuned the hyperparameters to optimize the 
performance of our customized YoloV4­tiny model. After 
extensive experimentation, we settled on a final learning rate 
of 0.00261, which was determined through a cyclical learning 
rate test to find an optimal balance between convergence 
speed and stability. This learning rate was coupled with a 

weight decay rate of 0.0005 to prevent overfitting and im ­
prove generalization. 

Finally, we set a momentum of 0.9 in the stochastic gra ­
dient descent optimizer, which helped accelerate convergence 
and mitigate oscillations during training. The size of the batch 
of images was set to 64 to balance memory constraints and 
the need for stable gradient estimates. This batch size was 
further divided into eight subdivisions and the training pro ­
cess was configured to run for a maximum of 6000 batches, 
following the default settings recommended for YoloV4­tiny. 

For training, we used the Darknet framework [23] on 
Google Colaboratory Pro, with a T4 GPU configured with a 
soft ware environment including Python 3.10.12, CUDA 12.2, 
cuDNN 8.9.6, and OpenCV 4.8.0. The trained model pro ­
cesses each input image to assign a confidence score to each 
detected droplet. We assessed performance by evaluating ac ­
curacy and mean average precision on the validation dataset. 
As depicted in Fig. 3, the model achieved optimal per form ­
ance at 6000 iterations, reaching a training loss value of 0.09. 

3. Deployment results 
This section first outlines the outcomes of our proposed 
system for classifying microfluidic droplets, designed par ­
ticularly for integration into portable devices. Our analysis 
em phasizes three primary aspects: classification accuracy, 
inference processing time, and resource consumption on a 
resource­constrained device. The section then presents a com ­
parison with similar studies. 

3.1. Droplet classification performance evaluation 
We evaluated the performance of droplet classification using 
an input size of 416 × 416 pixels and a non­maximum­
suppression threshold set to 0.7 for our test datasets. Figure 4 
illustrates examples of droplet detection outcomes on images 
from our test dataset. 

Fig. 2.  Proposed customized YoloV4-tiny architecture. The network accepts a three-channel input (ch = 3), and its backbone comprises a 
series of convolutional layers (CL) and cross-stage partial (CSP) blocks combined with MaxPooling. Skip connections and upsampling (Up) 
are used for multi-scale feature fusion via concatenation. The number of filters is indicated by f, and the final stage includes two 
detection heads. Abbreviations: Conv – convolutional, BN – batch normalization. 

f = 410 f = 205 f = 410

f = 205f = 102

f = 51f = 26416 × 416 
 Ch = 3

13 × 13 

26 × 26 
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3.2. Custom model performance 
Table 1 presents the performance metrics of our customized 
YoloV4­tiny model, which are derived using Eqs (1) and (2). 
In these equations, TP represents true positives, FP signifies 
false positives, and FN stands for false negatives: 

Precision = TP/(TP + FP), 

Recall = TP/(TP + FN). 

The model demonstrates substantial reliability and ef ­
fectiveness in accurately distinguishing various droplet types, 
as shown by its high precision of 0.95 and perfect recall of 1, 
resulting in minimal misclassification. The mAP at an intersec ­
tion over union (IoU) threshold of 0.5, denoted as mAP@0.5, 
is a reflection of the accuracy, where IoU measures the over ­

lap between predicted and actual bounding boxes. The ro ­
bustness of the model is significant, with a notable mAP of 
99.95%. 

Our implementation was evaluated on both RPi4 and 
RPi5 SBCs, each equipped with 8 GB of RAM and running 
on a 64­bit operating system. High­speed image processing 
is crucial for real­time applications. To assess processing ef ­
ficiency, we conducted tests with the model using the ap ­
propriate test dataset on the specified devices. The test results 
showed that the processing duration on the RPi5 was 20 times 
faster (13 ms) compared to RPi4 (265 ms).3 On the RPi5, the 
model achieved a classification inference time of 13 ms, 
equat ing to 76 fps; this speed, obtained with a six­image batch, 
suffices for practical applications. Given these superior results 
with the RPi5, the RPi4 was not considered for further analysis. 

As noted above, these results were obtained using batches 
of six images rather than a single image. We evaluated in ­
ference speed across batch sizes ranging from 1 to 16 images 
and observed that processing time improved up to a batch size 
of six, beyond which no further improvements were noted. 
Subsequently, all results were averaged, and inference time 
was calculated for a single input image. 

Beside inference processing time, resource utilization was 
an important part of our assessment due to the limitations of 
portable devices. We tracked CPU and memory consumption 
during classification tasks to guarantee the system’s perform ­
ance efficiency. As shown in Table 2, the mean CPU usage 

3 We also transformed our customized model into TensorFlow and then TensorFlow Lite (TFLite) to try to reduce the inference processing time. However, 
the inference processing time for a single image exceeded 1 s on RPi4.

Fig. 3.  Left: overview of the training loss function for YoloV4-tiny with compressed filters, trained for up to 6000 iterations, at which point 
the average loss reaches 0.09; right: zoomed-in view showing the convergence of the training loss function. 

Fig. 4.  Examples of microfluidic droplet classification results after 6000 training iterations, with prediction probability above 99%.  

Microfluidic droplet with a single cell, with 
prediction probability above 99%

Empty microfluidic droplet cell, with prediction 
probability above 99%

(a) (b)

   Metric      Performance value (%) 
  TP 112 
  FP     6 
  FN 0 
  Precision   0.95 
  Recall    1 

mAP@0.5        99.95 

Table 1. Classification performance metrics of the proposed 
customized YoloV4-tiny model (test dataset = 97 images of 
droplets, each containing zero, one, or multiple cells) 
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and memory consumption on the RPi5 were 70% and 60%, 
respectively. These values suggest that the proposed approach 
is adequately lightweight, making it applicable for portable 
use, since CPU and memory consumption remain within 
practical limits. 

3.3. Comparison with similar studies 
In this section, we juxtapose the classification performance 
metrics of our optimized YoloV4­tiny model results against 
seven other models/platforms. It should be noted that direct 
one­to­one comparisons are not feasible because (i) previous 
works do not focus on the same applications as ours, and 
(ii) many of these studies were implemented on high­per ­
formance desktop PCs and/or GPUs. Nevertheless, such a
comparison helps get a better understanding of the trade­offs
between accuracy and inference processing time. 

To balance inference processing time and accuracy, we 
leveraged model optimizations, hardware­aware deployment 
strategies, and empirical comparisons. Notably, we deployed 
our customized YoloV4­tiny on an RPi5, and also retrained 
YoloV5­s using our dataset for deployment on the MaixCam 
board. This additional training and deployment were con ­
ducted as part of this work and are briefly described below, 
prior to presenting the overall comparison table. 

3.4. Training and deployment of the YoloV5-s model  
 onto the MaixCam board 

The MaixCam board [20] is a prime example of a recent (July 
2024), low­cost (approx. 34 EUR), and highly compact 
(22.86 × 35.56 mm; see Fig. 5) edge device with an em bed ­
ded neural processing unit. The MaixCam board is based on 
the LicheeRV Nano module [24], built around a SOPHGO 
SG2002 system on chip (Soc) [25]; it features a primary 
700 MHz RISC­V C906 core and a secondary (boot­selec t ­
able) 1 GHz RISC­V C906 core or 1 GHz ARM A53 core, 
along with 256 MB of on­chip RAM. Notably, the SG2002 
features a TPU capable of up to 1 tera operations per second 
(TOPS) @INT8, which should help reduce the inference 
processing time. 

We used the same dataset described earlier in the paper. 
We converted the labeled dataset from a Darknet­compatible 
format (.jpg and .txt files) to a VOC­compatible format (.jpg 
and .xml), and uploaded the data to the MaixHub environ ­
ment [26] for training the model and generating a format 
compatible with the SG2002 chip on the MaixHub board 
(.mud and .cvi files). 

We also experimented with several hyperparameters, such 
as batch size and learning rate. The best validation accuracy 
results that we obtained empirically were with a batch size of 
four and a learning rate of 0.0001, which yielded a validation 
accuracy of 0.966 at epoch #120. 

3.5. Contrasting combinations of ML models and their  
        deployments 
As mentioned earlier, a direct comparison of the different 
combinations of ML models and their deployments on var ­
ious hardware targets is not feasible; however, some insights 
can be derived from Table 3. 

Firstly, when compared to desktop deployments, it can be 
clearly seen that our customized YoloV4­tiny model deployed 
on the RPi5 delivers a smaller inference processing time of 
13 ms, compared to the 74.3 ms reported in [10] for single­class 
detection using YoloV5 on an Intel Core i7, along with com ­
parable mAP accuracy values (99.95%@0.5 vs 99.3%@0.5, 
respectively). It is also worth noting that studies using high­
end PCs or GPUs ([12–14]) achieved both high mAP and 
low processing times (where such metrics were reported); 
however, the GPUs used – such as the NVIDIA Tesla K80 in 
[12] and the Nvidia Tesla K40c in [14] – are dual­slot PCIe
cards (267 mm × 111 mm), with a computational power of 
ap proximately 8.74 TFLOPS@FP32 / 2.91 TFLOPS@FP64
and 4.29 TFLOPS@FP32 / 1.43 TFLOPS@FP64, respec tively. 
These boards have power requirements of up to 375 W and 
245 W, respectively. Such specifications clearly position these
solutions for non­portable applications due to the physical 
size and power requirements of their processing units. 

Fig. 5. Boards used in this work. Clockwise from the top: RPi4 SBC 
(used only up to Section 3.2 in this paper), RPi5 SBC with 
heatsink/fan, and MaixCam edge devices (top side with SG2002 
SoC, bottom side with WiFi chip), along with a metric ruler. As can 
be seen, the MaixCam is a highly compact board owing to its 
minimal connectivity options (USB and WiFi), yet featuring a SoC 
with a 1 TOPS@INT8 TPU. 

  Resource Average usage 
CPU usage 70% 
Memory usage 60% 

Table 2. Resource utilization of the proposed customized YoloV4-
tiny model on RPi5



In contrast, the RPi5 measures only 85.6 mm × 56.5 mm and 
has a power requirement of up to 25 W only, providing approx ­
imately up to 12 GFLOPS@FP32/CPU, 20 GFLOPS@FP32/ 
GPU, and 750 MFLOPS@FP64/CPU. (Note: The RPi4’s Cortex­
A72 CPU lacks efficient FP64 acceleration and native GPU 
ac celeration, so Yolo is executed as FP32/CPU.) The MaixCam 
features even more compact specifications: 22.86 × 35.56 mm 
in size, up to 2.5 W power consumption, approximately 2.8–4 
GFLOPS@FP32, 250 MFLOPS@FP64, and 1 TOPS@INT8/ 
TPU (Yolo is accelerated on this TPU). 

Secondly, when comparing the resource­constrained de ­
ployments, it can be seen that the MaixCam running the 
YoloV5­s model achieves a smaller inference processing 
time (5.34 ms) than the customized YoloV4­tiny on the RPi5 
(13 ms); however, this comes at the cost of a much lower 
mAP of 55.09%. This lower score stems from the more ag ­
gressive quantization required to map the model onto the 
INT8 TPU of the SG2002 SoC on the MaixCam board. 

We also trained and deployed the YoloV5­s model for the 
RPi5; while it achieved a mAP@0.5 of 92.10%, the clas ­
sification time was high at 208.5 ms, indicating that this 
combination is not favorable. 

Due to a yet unsolved issue with the toolchain, we were 
unable to convert our customized YoloV4­tiny model for 
the MaixCam. Instead, we provide estimated performance 
numbers, as explained below. Using the YoloV5­s results, we 
can derive an approximate performance scaling factor be ­
tween the MaixCam and RPi5 platforms: 
● Speedup factor (MaixCam vs RPi5 for YoloV5­s): 208.5 

ms (RPi5) / 5.34 ms (MaixCam) ≈ 39.1×. This reflects 
that the MaixCam’s TPU accelerates inference sig nifi ­
cantly compared to the RPi5’s CPU­based inference. 

● Accuracy drop (YoloV5­s on MaixCam vs. RPi5): from 
92.10@0.5 to 55.09@0.5 ≈ 40.2%. This reflects that the 
MaixCam’s TPU has precision limitations due to lower­
bit computation, i.e., only INT8 (MaixCam) instead of 
FP32 (RPi5). 

● Since YoloV4­tiny is structurally similar to YoloV5­s, we 
assume the same performance ratio applies. Using the 
39.1× speedup factor yields 13 ms / 39.1 ≈ 0.33 ms. This 
suggests that the MaixCam TPU could theoretically 
process our customized YoloV4­tiny model in under 1 ms; 
however, real­world constraints (e.g., memory access, 
TPU overhead) would likely increase inference time to 
around 1–2 ms. On the other hand, we expect the mAP as 

99.95 × (100 – 40.2) ≈ 59.8%; i.e., running our cus ­
tomized YoloV4­tiny model on the MaixCam TPU might 
reduce accuracy to around 60%, which is not favorable 
despite the small processing time. 
Besides the above accuracy and processing time per ­

formance results, it should also be noted that the RPi5 is an 
SBC with power requirements of up to 25 W (5 V, 5 A). This 
is not necessarily a major concern; for example, our portable 
setup [27] uses the RPi as a common platform, as this allows 
implementing additional functionalities on a single board. 
On the other hand, for applications where power and/or 
energy requirements are more stringent, a board such as 
the MaixCam – with an approximately 10× lower power 
requirement of 2.5 W (5 V, 500 mA) – would be more 
suitable, if the cost of lower accuracy is acceptable. 

To sum up, the above results illustrate that our customized 
YoloV4­tiny on the RPi5 offers a good trade­off among the 
different tested combinations, offering significant accuracy 
with competitive processing time on a resource­limited plat ­
form, which makes it suitable for portable IFC devices. 

4. Conclusion 
This work demonstrated the feasibility of effective droplet 
classification in IFC on a resource­constrained device using 
a customized YoloV4­tiny model. A new dataset of droplet 
images was created from videos recorded on our existing set ­
up, with improved accuracy and robustness achieved through 
data augmentation. The model’s inference processing time 
was reduced by cutting the convolutional layer filters by 20% 
and using batches of six images. Our proposed system can 
accurately classify droplets in 13 ms, achieving an accuracy 
surpassing 99% when running on an RPi5 SBC. Additional 
experiments with YoloV5­s on the compact MaixCam board, 
featuring an SG2002 SoC with a TPU, illustrated how a sig ­
nificantly smaller classification time (5.34 ms) must be traded 
off for accuracy (mAP@0.5) due to quantization. 

Future work could focus on decreasing inference pro ­
cessing time on resource­constrained platforms by applying 
more sophisticated pruning and quantization techniques, 
aiming for real­time or near­real­time classification while 
preserving accuracy. Moreover, we could explore other Yolo 
versions; while larger models (e.g., YoloV4, YoloV5­m/l/x) 
might offer higher accuracy, they would increase com puta ­
tional load, limiting real­time feasibility. Conversely, YoloV7­
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[12] CNN NVIDIA Tesla K80 GPU Cells 95.7 2.2 ms 
[13] CNN High-end PC (assumed) Cells 93–99 Not reported in the paper 
[14] CNN Nvidia Tesla K40c GPU Cells 99 Not reported in the paper 
[11] Mask-RCNN Nvidia RTX 2080 Ti GPU Cells 73 Not reported in the paper 
[10] YoloV5 Intel Core i7-12650H Droplet 99.3@0.5 74.3 ms 
This work Customized YoloV4-tiny RPi5 Droplet 99.95@0.5 13 ms 
This work YoloV5-s RPi5 Droplet 92.10@0.5 208.5 ms 
This work YoloV5-s MaixCam Droplet 55.09@0.5 5.34 ms 

 

  Table 3. Combinations of machine learning models and their deployments 
 
 
         Reference                        Model                                 Platform                      Object         mAP, %       Average inference processing  
                                                                                                                                                                                   time per image 



tiny and YoloV8­nano may enhance accuracy while remain ­
ing efficient for edge deployment, though their optimization 
for our target hardware requires further investigation.  

While we experimented with three different platforms, it 
should be noted that the landscape of edge AI hardware is 
rapidly evolving. For example, the recent Hailo­8 HAT for 
the RPi5 promises up to 26 TOPS (INT8). These devel opments 
offer promising avenues for further decreasing processing 
time while balancing accuracy; however, it is also essential 
to consider the maturity of these new solutions. Their in ­
tegration (including the necessary software tools) into spe ­
cialized scientific applications, such as IFC devices, will 
require additional careful evaluation and testing. We will 
investigate these issues in our future work. 
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Konvolutsioonilistel närvivõrkudel (CNN) põhinev mikrofluidsete tilkade 
klassifitseerimine portatiivsetes voolutsütomeetrites 

Fariha Afrin, Yannick Le Moullec, Tamas Pardy ja Toomas Rang 

Tilkade klassifitseerimine on oluline aspekt pilditöötlust sisaldavate voolutsütomeetrite arendamisel. 
Süvaõppe algoritmid on võimelised avastama ja klassifitseerima tilku suuremõõtmelistes laboriseadmetes, 
kuid sarnase tehnoloogia rakendamine portatiivsetes seadmetes kujutab endast suurt väljakutset, kuna 
nende arvutusvõimsus ei vasta kompaktsete seadmete arvutusvõimekusele. See on oluline takistus ülemi-
nekul statsionaarsetelt laboriseadmetelt välioludes kasutatavatele portatiivsetele lahendustele. Takistuse 
ületamiseks tutvustame artiklis kohandatud YoloV4-tiny mudelit, mida on rakendatud Raspberry Pi-5 (RPi5) 
platvormil. 

Närvivõrgupõhist lahendust treeniti 878 erineva kujutise abil, mis pärinesid 975 kujutisega kohandatud 
andmehulgast. See andmehulk koguti meie loodud reaalse eksperimentaalse mikrofluidikaseadmega. Tulemusi 
hindasime interferentsiaja ja keskmise täpsuse (mAP – mean average precision) alusel. Loodud lahendus 
suutis edukalt klassifitseerida kolme selgelt eristatavat olukorda (tilk puudub, üks tilk, mitu tilka) 13 ms jook-
sul, saavutades keskmise täpsuse 99,95% lävendiga 0.5 (mAP@0,5). Samuti võrdlesime kohandatud YoloV4-
tiny mudelit seitsme masinõppemudeli (ML) ja platvormi kombinatsiooniga, sealhulgas uusima, kompaktse ja 
soodsa tensoritöötlusega tippseadmega (MaixCam plaat koos LicheeRV Nano mooduli / SOPHGO SG2002-ga), 
mis kasutab YoloV5 algoritmi. YOLOv4-tiny RPi5 lahendust võrdlesime YOLOv5-s mudeli ja MaixCam plat-
vormi kombinatsiooniga. Tänu lisatud tensoritöötluse algoritmile lühenes klassifitseerimise aeg 5,34 ms-ni, 
saavutades keskmise täpsuse 55,09% juhtudest lävendiga 0,5 (mAP@0,5). Täpsuse protsentuaalne vähene-
mine on tingitud kvantimisest. Uuring näitab, et süsteemi täpse disainimise abil on võimalik saavutada tasa-
kaal täpsuse ja kiiruse vahel, võimaldades mikrofluidsete tilkade usaldusväärset klassifitseerimist ka piiratud 
arvutusvõimekusega portatiivsetes voolutsütomeetrites. 



Appendix 4

IVR. Jõemaa, F. Afrin, N. Gyimah, K. Ashraf, K. Pärnamets, T. Pardy, "Cogni-Flow: Integrated Modular System For Automated Droplet Microfluidic Bio-analysis", EUROSENSORS XXXVI, 01-04 September 2024, Debrecen, Hun-gary

99





CogniFlow: Integrated Modular System For Automated 
Droplet Microfluidic Bioanalysis

Rauno Jõemaa1, Fariha Afrin1, Nafisat Gyimah1, Kanwal Ashraf1, Kaiser Pärnamets1, Lucas Giese2,
Mathieu Rocancourt2, Tamás Pardy1

1 Tallinn University of Technology, 5 Ehitajate tee, 19086 Tallinn, Estonia,
2 ENSEA, 6 Av. Du Ponceau, 95000 Cergy, France

tamas.pardy@taltech.ee

Summary: Droplet microfluidics uses discrete, chemically isolated droplets to multiplex reactions in 
bioanalysis. Droplets also allow process control exceeding traditional means, as well as continuous 
flow microfluidics. Here we present the concept of CogniFlow, an integrated, modular droplet microflu-
idic instrumentation platform, which automates complete droplet generation, imaging and detection 
workflows. The platform is demonstrated in cell encapsulation and detection. It is our hope that Cogni-
Flow can significantly lower the entry barrier to instrumenting existing droplet bioanalytical workflows. 
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Introduction
Droplets allow excellent process control by 
chemically isolating pico- to nanoliter range re-
action volumes (like tiny test tubes), allowing se-
lection of samples from a pool of millions of non-
specific targets, which would be nearly impossi-
ble with conventional tools (e.g. well-plate sta-
tions) [1], [2]. This has opened the way to novel 
applications in microfluidic bioanalysis and bio-
technology [3]. However, biology teams desiring 
to automate their droplet-based workflows today 
primarily load functions onto highly complex mi-
crofluidic chips, and/or use combinations of gen-
eral-purpose off-the-shelf instruments, resulting 
in highly complex, expensive systems, which are 
difficult to scale and replicate, take significant 
time to build and are not energy-efficient  [4], [5].
In this poster, we propose a technology platform 
that can address these challenges and reduce 
development time and cost associated with in-
strumenting droplet bioanalytical and biotechnol-
ogy applications. In our previous paper we pre-
sented the droplet generation module of the plat-
form [6]. In this poster, we present the integrated 
system, including droplet imaging and detection. 

Novelty
CogniFlow offers the following novelties:

Transferability: modules are compact and port-
able, can be swapped, but the system has its 
standards. System can be reconfigured (e.g. dif-
ferent filters, lenses and light sources, camera 
vs. photodiode etc.), but workflows are easily 
replicated between labs. 

Scalability: Low cost (<1k€-2k€/module, using
3D printed parts, low-cost electronics and optics)
and standardization ensure easy replication of 
results in different labs, as well as scaling up 
throughput. Despite the low cost, performance of 
thus-far demonstrated components has been on 
par with comparable systems [6].

Efficiency: modules have power consumption 
~10-20W, enabling battery operation. Wireless 
communication via ECAL [7] further reduces de-
vice footprint and increases portability. Optimiza-
tions to flow control reduce reagent waste.

Total automation: CogniFlow has 3 main mod-
ules: 1. Droplet generation/encapsulation [6], 2. 
Droplet imaging and 3. Embedded object classi-
fication algorithm. These cover a complete drop-
let-based imaging or light intensity analysis 
workflow.

Demonstrations in literature meeting the majority 
of the aforementioned criteria are rare [1], [2].

System modules and results
Droplet generation [6]: the first demonstrated 
module of the platform generated droplets in 50-
200 um range with 5-10% coefficient of variability
at up to 1kdps (1000 droplets per second). We 
controlled pressure drop and droplet size in a pi-
ezoelectric pumping setup with rapid and precise 
controller response, but a simple and inexpen-
sive setup. On the poster, we mention this mod-
ule for the sake of completeness. 

Droplet imaging: the second module of the sys-
tem presented here for the first time is based on 
an affordable optical setup using a Basler 
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acA640-750uc and a cheap 20x magnification 
lens to achieve ~750 dps imaging rate [8]. The 
integrated system (Fig. 1) is built on the same 
framework as the first module, by swapping in-
ternal components. The footprint is 22 x 33 x 40 
cm. Imaging system output with encapsulated
cells is shown in Fig. 2.

Object detection (Fig. 3): a droplet segmenta-
tion and object classification algorithm based on 
YOLOv4 and TinyYOLOv4 is presented, which is 
capable of detecting single cells in droplets with 
85% accuracy on an image stream of droplets in 
flow provided by our academic partners. The al-
gorithm can run on an NVIDIA® Jetson Nano™ 
AI accelerator. The AI accelerator board fits on 
top of the electronics stack of the second module 
(Fig 1. left), and while it will double system power 
consumption, the total will still be well below 
what PD3.0+ compliant power bank can provide. 

Between the two hardware and the one software 
module presented here, the following solutions 
are in common: both hardware modules rely on 
a Raspberry Pi 4 for control and communication. 
Wireless communication is implemented via 
ECAL, as presented in [6], however, for experi-
ments, a wired Ethernet connection is also pos-
sible. Power electronics is the same between 
module 1 and 2, as is the mechanical frame, 
which consists of 3D printed parts and commonly 
used metal fasteners.  

Figure 1: Integrated droplet imaging module of the 
CogniFlow platform. The mechanical frame and enclo-
sure (not shown here) are shared between all platform 
modules, optics and electronics stages are changed 
according to the purpose.   

Figure 2: Droplets imaged with the droplet imaging 
module of CogniFlow using an affordable optical 
setup. Highlighted objects are algae cells encapsu-
lated. Reagents used for droplet generation are de-
scribed in [6].  

Figure 3: Object detection algorithm demonstration. 
Reference video of droplets with microbeads and cells 
encapsulated was kindly provided by University of 
Warsaw to test the algorithm on an independent da-
taset. 
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Abstract—In imaging flow cytometry (IFC), image quality
obtained from the camera is generally assessed subjectively,
which is not suitable for automated processes. Automated image
quality assessment (IQA) is essential for consistent and precise
data analysis and interpretation in IFC, directly impacting the
reliable classification of microparticles inside droplets. However,
despite its importance, no dedicated research has been carried out
to check the suitability of different techniques towards objective
IQA. This work investigates the performance of no reference-IQA
(NR-IQA) techniques within the context of a portable lab on a
chip microfluidic droplet IFC device. While NR-IQA is suitable
for scenarios lacking reference images, inferring image quality
solely from images of various quality remains challenging. To
resolve this, we first generate good and poor quality microfluidic
droplet images and then compare the results obtained from
selected NR-IQA approaches. Second, we propose a hybrid model
comprising of a modified MobileNet followed by a transformer
block specifically developed for microfluidic droplet IQA. Results
show that this hybrid model yields competitive performance
metrics, i.e. Spearman rank-order correlation coefficient (SRCC)
and Pearson linear correlation coefficient (PLCC) of 0.73 and
0.75, respectively. The achievable inference time on a Raspberry
PI-5 (RPI-5) is 110 ms, translating to 9 frames per second (FPS).
Our work aims to provide valuable insight and guidance for
researchers and practitioners in selecting appropriate techniques
for ensuring reliable droplet IQA in portable IFC.

Index Terms—Convolutional Neural Network, Image Quality
Assessment, Imaging Flow Cytometry, RPI-5, Transformer

I. INTRODUCTION

IFC has emerged as a powerful tool for analyzing cellu-
lar characteristics and functions at the single-cell level. IFC
combines the high-throughput capabilities of traditional flow
cytometry with the imaging capabilities of microscopy [1].
Numerous studies have shown that the detection and classifica-
tion of droplets using machine learning (ML) or deep learning
(DL) algorithms achieve high accuracies [2]. However, most
existing models are trained and evaluated using only good
quality images, typically assessed by human experts. In real-
world IFC environments, image quality varies due to different

lighting conditions and fluid flows. This can result in issues
such as blurriness and inconsistent contrast, potentially leading
to false positive results [3] and reduced model reliability. Since
the accuracy of IFC-based analysis and interpretation depends
significantly on the quality of the acquired images [1], it is
therefore essential to perform automated IQA to filter out poor-
quality images at the initial stage, ensuring that only good-
quality images are used in subsequent analytical steps in the
imaging pipeline.

Automatic IQA can be performed using objective IQA
methods, which are categorized into full-reference (FR-IQA),
reduced-reference (RR-IQA), and no-reference (NR-IQA) ap-
proaches [4]. Among these, NR-IQA is particularly advanta-
geous in practical applications, as it evaluates image quality
without requiring a pristine reference image. This makes NR-
IQA especially suitable for scenarios where reference images
are not available, such as in real-time imaging systems and
high-throughput analysis.

Recent research is increasingly focused on developing con-
volutional neural network (CNN)-based models for NR-IQA
[4], due to their ability to learn complex features directly
from image data. However, existing research primarily fo-
cuses on image restoration and measuring the quality of de-
blurred images. Therefore, a significant research gap remains
regarding the applicability of CNN-based models for IFC and
their deployment on portable platforms. Addressing this gap
can potentially increase the accuracy and efficiency of IFC
analysis in real-world, portable settings, highlighting the need
for further advancements in automation and portability.

For example, in [5], the authors used a U-net based network
for image restoration, addressing the challenges associated
with high flow speed and reduced exposure time. The quality
of the restored images was assessed using blind/referenceless
image spatial quality evaluator (BRISQUE), naturalness image
quality evaluator (NIQE) and perception-based image quality
evaluator (PIQE) metric. However, the results of these objec-
tive IQA methods are not fully correlated with human percep-979-8-3315-0878-4/25/$31.00 © 2025 IEEE



tual scores and their corresponding prediction distributions,
highlighting the need for improved IQA techniques.

In [6], the researchers developed a deep learning based
classifier and de-blurring system for red blood cell analysis. To
evaluate the image quality, they used peak signal-to-noise ratio
(PSNR) and structural index similarity (SSIM) to estimate blur
and structural similarity. However, these IQA metrics require
pristine reference images, which may not always be available
in real-world imaging scenarios.

In [7], a tenengrad gradient function was used for the
quantitative assessment of de-blurred images. This gradient-
based method evaluates image sharpness by analyzing the
difference in edges, making it particularly well-suited for
fluorescence images, where the edge differences are strong.
However, it is less suitable for low-gradient images because
of insufficient contrast and inherent blurriness, which can lead
to inaccurate sharpness measurements.

Recent studies indicate that hybrid architectures that com-
bine complementary designs can boost model performance by
leveraging the unique strengths of each sub-architecture. For
example, in [8], a hybrid model comprising a CNN with a
vision transformer was used for medical image classification,
resulting in improved accuracy and generalization. Building
on this concept, we propose a novel hybrid model for auto-
mated droplet IQA, specifically designed for implementation
on embedded platforms. Our model predicts quality scores
based on blurriness and contrast, ensuring a strong correlation
with human perceptual scores. Unlike traditional approaches
that focus solely on mean opinion score (MOS) and standard
deviation (STD), our model also considers the distribution
of the scores. By capturing the variability in IQA, our ap-
proach provides a more comprehensive and robust evaluation
framework, making it well-suited for portable applications
in IFC. While IQA processes can be resource-intensive and
time-consuming due to manual data labeling, our selection of
the sub-architectures for the hybrid model and optimization
strategies can significantly reduce computational costs, human
resource requirements, and processing time.

II. PROPOSED METHOD

The presentation of the proposed hybrid architecture and re-
sulting model for droplet IQA is divided into four subsections:
A) model architecture, B) loss function, C) dataset preparation,
D) implementation setup, and E) evaluation metrics.

A. Model Architecture

Our model selection prioritized architectures with low com-
putational parameters to ensure suitability for embedded plat-
forms while maintaining strong performance. Three different
CNN-based lightweight models (MobileNet, EfficientNet, and
NasNet) were selected for training and evaluation on our
dataset. Among them, MobileNet achieved the best perfor-
mance but required further improvements and fine-tuning.
The proposed quality predictor model architecture consists of
two key components, i.e. i) a modified MobileNet (inspired
from Neural Image Assessment (NIMA) [9]) serving as the

base feature extractor, followed by ii) a transformer block for
global feature learning. The architecture is illustrated in Fig. 1,
showing both the convolutional and transformer-based layers.

Fig. 1: Proposed architecture for predicting the quality of
microfluidic droplet images.

To preserve the pre-trained features, the initial layers of the
MobileNet are frozen, while the last layers were fine-tuned for
improved learning. The model was initialized with ImageNet
weights to accelerate convergence, particularly beneficial for
limited datasets. The feature maps produced by MobileNet are
then passed through a Global Average Pooling (GAP) layer
to convert the output into a vector, making it suitable for
input to the transformer block. The transformer block consists
of a multi-head self-attention mechanism with four attention
heads, and a feed-forward network with 512 units followed by
dropout for regularization. To reduce the model complexity,
the embedding dimension of the transformer block is set to
256. Subsequent to the transformer block, a dense layer with
128 units and Gaussian Error Linear Unit (GELU) activation
further refines the features, and another dropout layer is added
to prevent overfitting. The final output layer is a softmax-
activated dense layer with 10 neurons, which corresponds
the number of classes and produces the model’s classification
predictions. The model is regularized using L2 regularization
and dropout to ensure generalization and avoid overfitting.
This hybrid model is specifically designed for deployment on
embedded, resource-constrained platforms to enable assessing
the microfluidic droplet image quality on portable devices.

The proposed model predicts the distribution of ratings for
a given image, and the mean is defined as µ:

µ =
N∑

i=1

pi · i (1)

where N is the total number of classes, pi is the probability of
the quality score falling into class i, and i is the class index.

The standard deviation of the score is computed as σ:

σ =

√√√√
N∑

i=1

pi · (i− µ)2 (2)



where µ is the mean score computed above, and (i − µ)2

represents the squared deviation from the mean.

B. Loss Function

We use the Earth Mover’s Distance (EMD) [10] training loss
function; it measures the dissimilarity between two probability
distributions by quantifying the minimum effort required to
transform one distribution into the other. The EMD is defined
as the root-mean-square of the differences between the cumu-
lative distribution functions (CDFs) of the two distributions.

Given the ground truth probability mass function p =
[p1, p2, . . . , pN ] and the estimated probability mass function
p̂ = [p̂1, p̂2, . . . , p̂N ] over the ordered classes {1, 2, . . . , N},
the EMD between p and p̂ is computed as:

EMD(p, p̂) =

(
1

N

N∑

k=1

|CDFp(k)− CDFp̂(k)|2
) 1

2

(3)

where:
• CDFp(k) and CDFp̂(k) are the cumulative distribution

functions of p and p̂ at point k, respectively.
• The CDF at each point k is the cumulative sum of the

distribution values up to and including k, i.e., CDFp(k) =∑k
i=1 pi and similarly for p̂.

• The absolute difference between the CDFs at each point
k is squared, summed over all k, and averaged over the
total number of points N .

• Finally, the square root of this average is taken to obtain
the EMD.

C. Dataset Preparation

It is to be noted that the existing IQA models are mostly
trained and evaluated on publicly available datasets, for ex-
ample TID2013 [11] or KADID-10k [12] databases; however,
these differ significantly from microfluidic images. Therefore,
in our work we used microfluidic droplet dataset1 as well
as approximately 1.9% data from Roboflow2; the dataset
preparation involved several steps, i.e. collecting microfluidic
droplet images and then categorizing them into ten distinct
quality classes. The quality scale ranges from 1, representing
the worst quality, to 10, representing the highest quality. A t-
distributed Stochastic Neighbor Embedding (t-SNE) algorithm
was used to visualize the class vote distributions for 917
images, depicted in Fig. 2. As shown in the figure, each image
is associated with vote counts corresponding to the 10 different
classes and each class is separable by distinct clusters with
different colors and marker shapes.

Few data points are located farther from their respective
clusters, which is due to the spread of vote distribution to the
nearest classes.

1The authors thank Assistant Prof. Tomasz Kaminski, University of Warsaw,
Poland, for providing us with data based on their microfluidic droplet setup
[13]

2Available:https://universe.roboflow.com/le-qgwow/droplets-
avvwz.[Accessed: Dec. 19, 2024]

Fig. 2: t-SNE visualization of the latent representations of
different classes.

To represent real-world conditions, three types of distortions
were introduced: motion blur, gaussian blur, and contrast
variation. Motion blur represents the blur due to droplet
motion, Gaussian blur represents the uniform blur, and contrast
variation emulates varying lighting conditions. Due to the
limited availability of naturally distorted images, synthetic
distortion techniques were applied to augment the dataset,
ensuring sufficient variability for training the model.

Four independent human annotators labeled the images; they
were provided with clear visual instructions representing the
ten distinct categories of image quality. However, it was ob-
served that with only four annotators, the resulting distribution
of the voting lacked sufficient granularity to accurately reflect
majority opinions on image quality. To achieve a robust and
reliable distribution, it is recommended that the number of
annotators be significantly higher than the number of classes.

Each distortion type was considered equally significant in
the IQA. A maximization equation was applied to derive the
final quality scores from three different distortions, ensuring
a balanced evaluation across all distortion types. To expand
the dataset and improve labeling efficiency, data augmentation
and generation techniques were applied using the “Roboflow”
online platform3. This strategy not only increased the dataset’s
volume but also introduced variability, enhancing the model’s
robustness. After augmentation, ambiguous and duplicate im-
ages were manually reviewed and removed, and any inaccurate
labels were corrected to maintain the integrity of the dataset.

Finally, the dataset was split into training and validation
sets with a 90:10 ratio, resulting in 917 training images and
101 validation images. This split ensures that the model has a
sufficient amount of data for training while retaining a repre-
sentative validation set to effectively assess its performance.

D. Implementation Setup

For implementation, we used TensorFlow with Keras ver-
sion 2.10.0 on an Intel 12th Gen Core i9-12900K processor
(3.2 GHz, 16 cores). After training, the model was converted

3https://roboflow.com/



to TensorFlow Lite, i.e. a TensorFlow version optimized for
mobile and embedded/edge devices to ensure compatibility
and efficient performance on the RPI-5 single board computer.

E. Evaluation Metrics

For performance evaluation, we computed two widely used
metrics: SRCC and PLCC. PLCC measures the linear cor-
relation coefficient between the ground truth scores and the
predicted scores, while SRCC measures the rank correlation
between the ground truth scores and the predicted scores. Both
SRCC and PLCC values range from 0 to 1; the closer the
result is to 1, the better the prediction performance. We also
computed EMD which measures the closeness of the ground
truth and predicted rating distribution; the closer the value to
0, the better the performance. During training, the fine-tuned
learning rate was 10−5, and the batch size was set to 32.

III. RESULTS

We compare the proposed model with the modified version
of MobileNet (inspired from NIMA) that has been fine-tuned
specifically for the IQA application. The fine-tuning process
began with the NIMA MobileNet, and we gradually adjusted
the parameters to optimize its performance.

Fig. 3: Training and validation loss graph of modified Mo-
bileNet for predicting the quality of microfluidic droplet
image.

As can be seen in in Fig. 3, the modified MobileNet initially
exhibited challenges in generalization, as indicated by the gap
between the training and validation loss curves. Efforts to
mitigate this issue through hyper-parameter tuning, leveraging
transfer learning, as well as adding dropout regularization, did
not yield a significant reduction in the generalization gap.

To address this, we hybridized the architecture by integrat-
ing a lightweight transformer block, which effectively mini-
mized the gap. As a result, our proposed model performance
improved, achieving an approximate 60% reduction (estimated
at epoch 210) in the training-validation loss gap.

Indeed, Fig. 4 depicts that the validation loss follows the
training loss and the loss remains almost unchanged after
110 epochs. This suggests that the training process converges
around 110 epochs.

Fig. 4: Training and validation loss graph of proposed model
for predicting the quality of microfluidic droplet image.

We then compare the complexity and performance of our
model with several state-of-the-art works [14]- [18]. However,
it is important to note that direct one-to-one comparisons are
not entirely feasible because these works were trained on dif-
ferent types of images from publicly available datasets and are
implemented on high-performance desktop PCs and/or GPUs.
Nevertheless, this comparison provides valuable insights into
the potential of our model in relation to existing methods. The
results are presented in Table I and are discussed below.

TABLE I: Comparison of Model Complexity and Performance
with State-of-the-Art IQA Models Based on SRCC, PLCC,
and EMD

Model/Method Parameters
(in millions
(M))

SRCC PLCC EMD

BRISQUE [14] - 0.66 0.68 -
TTL-IQA [15] - 0.86 0.84 -
AlexNet [16] 60 0.61 0.67 -
TReS [17] 152.45 0.88 0.86 -
HyperIQA [18] 27.37 0.86 0.84 -
Proposed 4.05 0.73 0.75 0.11

BRISQUE [14] is a NR-IQA method whose SRCC and
PLCC values are 0.66 and 0.68 respectively (depicted in Table
I), estimated using the KADID10K [12] database. Table I
also shows that TTL-IQA [15], AlexNet [16] , TReS [17]
and HyperIQA [18] exhibit varying degrees of performance
in TID2013 [11]; the most notable model, TReS [17], demon-
strates superior performance with the highest SRCC and PLCC
scores of 0.88 and 0.86, respectively, though it requires a
substantial 152.45M parameters. In contrast, our proposed
method, while achieving more moderate SRCC (0.73) and
PLCC (0.75) scores, operates with significantly fewer parame-
ters at just 4.05M, suggesting better computational efficiency.
The other methods (TTL-IQA, AlexNet, and HyperNet) show
varying degrees of performance, with SRCC values ranging
from 0.61 to 0.86 and PLCC values from 0.67 to 0.84.
Our proposed method is the only one to report an EMD
score (0.11), potentially indicating considerable performance.
Although an absolute direct comparison is not possible, the



(a) (b)

Fig. 5: (a): Test image 1 (example of a poor image quality), and (b): Class prediction distribution of the image (MOS ± STD
= 2.384 ± 1.460).

(a) (b)

Fig. 6: (a): Test image 2 (example of a good image quality), and (b): Class prediction distribution of the image (MOS ± STD
= 8.881 ± 1.095).

above suggests a trade-off between model complexity (pa-
rameters) and performance metrics, with the proposed method
potentially offering a competitive result despite not achieving
the highest accuracy scores.

Fig. 5 depicts the performance of the proposed model for a
poor image quality (Fig. 5(a)) and corresponding prediction
distribution (Fig. 5(b)) across the ten distinct classes. The
horizontal axis denotes the class labels (ranging from 1 to 10),
while the vertical axis indicates the corresponding probabilities
assigned by the proposed model. Class 2 exhibits the highest
probability, followed by class 1 and class 3, suggesting the
model is most confident in classifying the image as lower
categories. As expected, the decreasing probability values for
the remaining classes (4 to 10) indicate lower confidence.

On the contrary, Fig. 6 depicts the performance of the
proposed model for a good quality of image (Fig. 6(a) and
corresponding prediction distribution (Fig. 6(b)) across the ten
distinct classes. The horizontal axis denotes the class labels
(ranging from 1 to 10), while the vertical axis indicates the

corresponding probabilities assigned by the proposed model.
As expected, the low probability values for the initial classes
(1 to 7) indicate lower confidence. On the other hand, class 9
exhibits the highest probability, followed by class 8 and class
10, suggesting the model is most confident in classifying the
image as higher categories, as expected.

Finally, we assess the memory consumption of the pro-
posed model when deployed on the RPI-5 using batch size
1 and image resolution 224 × 224, as depicted in Fig. 7.
Out of the total memory usage of 56.39 MB, the modified
MobileNet consumes 91% due to feature maps and the storage
of activation functions across various layers. The transformer
block is the second largest memory consumer, utilizing 8.26%
of the 56.39 MB for global feature mapping. The remaining
dense, GAP layers collectively consumes less than 1% of
the 56.39 MB. The achievable inference time on the RPI-5
is 110 ms, translating to 9 frames per second (FPS). This
deployment result with the RPI-5 demonstrates the suitability



Fig. 7: Memory consumption of the proposed model for an
input resolution 224 × 224 with a batch size 1.

of the proposed model for portable, resource constrained
devices. The model could potentially be deployed on even
smaller devices such as the MaixCam embedded board (1 GHz
ARM A53 core and 256 MB on-chip RAM).

IV. CONCLUSION

In this work, three different CNN-based models (MobileNet,
EfficientNet, NasNet) suitable for embedded platforms were
tested. Transfer learning was used during the model training
because of the limited dataset. Among the three different mod-
els, MobileNet demonstrated best performance. To mitigate
the encountered overfitting issue, dropout regularization was
applied but did not improve the results. We then hybridized the
model by integrating a transformer block to enable the model
to learn the global features and reduce the generalization
issue. Additionally, early stopping was used to reduce the
computational costs.

The version based solely on the modified MobileNet had a
significant loss gap of 0.06, which indicates that the model
has generalization issue. On the other hand, the proposed
hybrid model (modified MobileNet and Transformer block)
stabilizes much more rapidly at around 110 epochs. The
spearman rank correlation coefficient is larger than 70%,
indicating satisfactory performance. Inference time on RPI-
5 is 110ms. These results pave the way for further research,
which could involve further optimization of the model and
architecture for better inference time, as well as the collection
of more data to enhance the model’s robustness. Furthermore,
automated IQA could provide real-time feedback on image
quality immediately after acquisition, enabling discarding of
poor-quality images or adjustments to camera parameters to
ensure high-quality of images.
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