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Abstract

MongoDB is a modern NoSQL, document-oriented database. Its schema-less nature

has many advantages as well as disadvantages. In this thesis, we propose solutions

to the problem related to the efficient discovery of the fields to be indexed. The

process is based on the initial query set and is shown to equate the extraction of a

minimum transversal of a hypergraph. The problems are solved by considering the

impact on the environment. The impact on the environment is assessed using the

benchmarks, which monitor the overall efficiency throughout the queries. Besides,

the implemented algorithm of index field set discovery employs known practices

and knowledge from non-relational databases for better performance and efficiency.

The solutions are the building blocks for various applications including production

environments, data warehouses, and large scale systems.
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Annotatsioon

MongoDB on kaasaegne NoSQL, dokumentidele orienteeritud andmebaas. Mon-

goDB skeemideta andmestruktuuril on palju eeliseid ja puudusi. Selles lõputöös

pakume välja lahendused tõhusamaks indekseeritavate väljade tuvastamiseks. Toim-

ing põhineb esialgsel päringukogumil ja võrdub minimaalse hüpergraafi läbimisega.

Probleemide lahendamisel võetakse arvesse mõju keskkonnale. Keskkonnamõju hin-

natakse võrdlusaluste abil, mis jälgivad päringute üldist tõhusust. Lisaks, rak-

endatud indeksväljade komplekti tuvastamise algoritm kasutab mitte-relatsioonilistest

andmebaasidest teadaolevaid meetodeid ja teadmisi, et saavutada parem jõudlus

ja efektiivsus. Lahendused on ehituskivid erinevate rakenduste, sealhulgas toot-

miskeskkondade, andmeladude ja suuremahulistele süsteemidele.
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List of abbreviations and terms

SQL Structured Query Language

RAM Random-access memory

CPU Central Processing Unit

DS Disjunctive Support

MT Minimal Transversal

CM Current Minimum

OS Operating System
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1. Introduction

MongoDB (www.mongodb.com) is a document-oriented database, which is at the

top of the charts of non-relational databases. The increasing trend of using MEAN

(MongoDB Express Angular NginX) Stack for modern applications, made MongoDB

a leading NoSQL solution. NPM registry (npmjs.com) shows this trend quite clearly.

As of October 2019, MongoDB driver for NodeJS has hit 1.2M downloads per week.

There has been a lot of early adaptations of the technology itself. The biggest

challenge for the early adopters was a transition from Structured Query Languages

to NoSQL.

MongoDB has become very appealing for new technology lovers. However, many

of them anticipated the results of using schema-less design after years of experience

in SQL. In Bonnet et al. (2011), the authors talk about the weaknesses of the

MongoDB database, one of them is familiarity with already well-developed SQL

database solutions. The database has no schemas, there is a freedom to create any

document structure as long as it represents a valid BSON document. Getting started

with MongoDB might seem a very easy task, but as time passes and the complexity

of database increases, flaws of unstructured documents show off their weaknesses.

It is becoming easier and easier to add more fields since documents do not follow

schema. An increased amount of fields can be hard to maintain and one more thing

that is hard to maintain is performance. Querying using different fields can yield

different execution times. Thus, having many fields and many different combinations

of fields in queries, it’s not easy to optimize all of them while maintaining the overall

performance.

So one of the biggest problems, caused by the complexity of the schema-less

design, we cover in this thesis, is the difficulty to choose the right set of fields to

index. This is based on our current test database usage, but it is generalized for

different databases. We thoroughly discuss these issues later in this chapter.

1.1 Research

This is a case study, dealing with problems of MongoDB with datasets mimicking

the real-world scenarios. We will be using a quantitative approach During the re-

search, we will try out mainstream tools and record the results of exploration. We

10



will concentrate on the details that are beneficial for the study and propose im-

provements over the number of different cases and implementations. We will deal

with finding ways to improve different aspects such as performance, runtime, energy

consumption.

We answer the following questions:

RQ1. How to improve the efficiency of MongoDB by taking energy con-

sumption into consideration?

RQ2. How to decrease the complexity of indexing while optimizing the

query execution?

1.2 Non-relational and NoSQL

The last decade was very active in the adaptation of different technologies. One of

the biggest trends in Databases is Non-relational Databases. Non-relational is the

type of database that does not use tables and has storage strategy best fitted for its

purpose. Examples of non-relational structures can be an entry that contains only

keys and values, or values representing a combination of multiple key-value pairs.

But what is NoSQL? NoSQL - database type, that does not rely mainly on SQL

language and has its own syntax. We might meet the same database management

system mentioned as Non-relational and NoSQL in different sources. Actually, those

two can be the same. The database might be NoSQL and support structured query

language, although this does not mean that the core works the same way as RDBMS

(Relational database).

1.3 SQL vs NoSQL, which one is better?

SQL databases have been around for a long time. They are stable, have a schema,

data can be retrieved, and mixed from different tables easily (Joins). However, Big

data tends to have different needs from the databases. Lately, large applications

have been adapting NoSQL solutions. The main reason is data inconsistency. In

some cases, you need to store and fetch data, no matter what, even if it contains

extra unnecessary fields and data structures (for the specific jobs). Literature Jung

et al. (2015) suggests, that flexibility and scalability are the key features that make

NoSQL (specifically MongoDB in this case) appealing alternative to well-established

SQL.

So, anyway, should we abandon RDBMS and choose NoSQL? There is no ne-

cessity to fully switch to it. Those two different types of databases can be used
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together as well ((Ongo and Kusuma, 2018)). However, in Chickerur et al. (2015),

authors underscore the fact that in some scenarios, such as big data applications,

NoSQL databases can work better than some implementations of SQL databases.

By and large, We do not have to switch anywhere as long as current technology

choices fulfill the application requirements.

1.4 Schemaless Design

Since MongoDB does not have schemas, it is very flexible in terms of entry struc-

ture. However, everything comes with a cost. Having no schema can easily become

a time-waster. For example, it is hard to find what fields/keys are used in the col-

lection. There has been research carried out for schema discovery (Vokorokos et al.

(2017)) and validation (Prabagaren (2014)). The first research is dedicated to find-

ing the schema details and improve the state of the art with new tools. However, in

Prabagaren (2014), the authors chose a different approach, relying on the fact that if

we need validation, then we should have rules (similar to the schema) in place. This

option does not cover the case, when the database is already deployed and populated

with data, however, it makes sure that data will have the desired structure in the

future. Our research is oriented to the first case because we examine databases with

complex collections.

1.5 Energy Efficiency

The energy consumption has become a topic that shifts the industry from energy-

hogging infrastructures to more environment-friendly solutions. In Song et al.

(2019), the authors mention that reducing energy consumption leads to less per-

formance. However, they also claimed that this is not true in every case. There are

different ways to achieve better energy efficiency. They suggest, that we can divide

those methods into two categories, hardware optimization, and Software optimiza-

tion. Former is dedicated to dynamically switching hardware components based on

usage (e.g. Turn on and off the machine or its components when underutilized)

(Orgerie et al. (2014), Rossi et al. (2017)). The latter can be used in monoliths,

single machine setups Zeng et al. (2005), although it is quite popular in distributed

systems as well Kansal and Chana (2016). Since we try to improve the overall query

execution efficiency, we are dedicated to the software optimization method.
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1.6 Hypergraphs

Definition 1.6.1. Hypergraph (Trabelsi et al., 2019)

Let the couple H = (χ, ξ) where χ = {x1, x2, x3, . . . , xn} is finite set and ξ =

{e1, e2, . . . , em} is finite family of χ. H is a hypergraph such that :

∪mi=1ei = χ | ∀i ∈ {1, . . . ,m}, ei 6= ∅ (1.1)

The elements x1, x2, . . . , xn are called vertices or nodes, whereas the sets e1, e2, . . . , em

are the hyperedges of the hypergraph.

Figure 1.1 illustrates a hypergraph H = (χ, ξ) of order 8 and size 15 such that

χ = {1, 2, 3, 4, 5, 6, 7, 8} and ξ = {{1, 2}, {2, 3, 7}, {3, 4, 5}, {4, 6}, {6, 7, 8}, {7}}

Figure 1.1: Example of a hypergraph

A hypergraph H = (χ, ξ) can be represented by an incidence matrix which rows

represent the vertices and columns represent the hyperedges of H in order that:

IMH[ei, xj] =

{
= 1 if xj ∈ ei
= 0 otherwise.

(1.2)

Figure 1.2 depicts the matrix incidence of the hypergraph given by Figure 1.1.



x1 x2 x3 x4 x5 x6 x7 x8
e1 1 1 0 0 0 0 0 0
e2 0 1 1 0 0 0 1 0
e3 0 0 1 1 1 0 0 0
e4 0 0 0 1 0 1 0 0
e5 0 0 0 0 0 1 1 1
e6 0 0 0 0 0 0 1 0


Figure 1.2: Incidence matrix of the hypergraph given by Figure 1.1
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Definition 1.6.2. Transversal (Trabelsi et al., 2019)

Let H = (χ, ξ) be a hypergraph. A set T ⊂ χ is a transversal of H if it meets every

hyperedge, which is described by the following expression:

∀i ∈ {1, 2, . . . ,m}, T ∩ ei 6= ∅ (1.3)

Extracting hypergraph minimal transversals has been shown to have myriad of ap-

plications in computer science, e.g., database theory, logic, and AI, to cite but a few

Jelassi et al. (2015).

Definition 1.6.3. Minimal transversal (Trabelsi et al., 2019)

A transversal T is minimal if it doesn’t exist T ′
a subset of T where T ′

is a transver-

sal.

MH denotes in the sequel the set of minimal transversals defined onH. From the

hypergraph, given in Figure 1.1, the following set of minimal transversals is drawn:

MH = {{1, 4, 7}, {7, 4, 2}, {7, 6, 3, 1}, {7, 6, 3, 2}, {7, 6, 5, 1}, {7, 6, 5, 2}}. The mini-

mal cardinality of transversal is denoted by τ(H) of the hypergraph H:

τ(H) = {min|T |,∀T ∈ MH} (1.4)

Therefore, the smallest minimal transversal of the hypergraph H shown in figure 1.1

includes, in terms of cardinality, three vertices, i.e. τ(H) = 3.

The minimal traversal can be defined by the concept of an essential itemset that

could be extracted from an extraction context. In the following, let us start by

highlighting the close connection between the latter and a hypergraph.

Definition 1.6.4. Extraction context (Trabelsi et al., 2019)

We can formally represent a database as an extraction context K = (O, I,R).

It is a triplet where O and O are respectively finite sets of objects(transactions)

and attributes(items) and R is a binary(incidence) relation between O and I (i.e

R ⊆ O×I). Taking as an example the hypergraph of Figure 1.1, the corresponding

extraction context is shown in Table 1.1.

Definition 1.6.5. Disjunctive support of an itemset. Trabelsi et al. (2019)

The disjunctive support of an itemset X is the number of transactions that contain

at least one of the items of X.

Supp(∨X) = |{o ∈ O|(∃i ∈ I, (o, i) ∈ R)}| (1.5)

An essential itemsets is characterized by a disjunctive support and is defined as

follows.
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x1 x2 x3 x4 x5 x6 x7 x8
e1 × ×
e2 × ×
e3 × × ×
e4 × ×
e5 × × ×
e6 ×

Table 1.1: Extraction context of the hypergraph depicted in Figure 1.1

Definition 1.6.6. Essential itemset (Casali et al., 2005)

Let H = (χ, ξ) be a hypergraph and X ⊆ χ. X is said to be an essential set of

vertices if and only if:

Supp(∨X) > max{Supp(∨X r {x})|x ∈ X} (1.6)

It is important to remind that the essential itemsets extracted from a hypergraph

satisfy the order property of essential itemsets. If I is an essential itemset, then ∀
I1 ⊂ I, I1 is also an essential itemset. Thus, the notion of minimal transversal can

be redefined through the support of a set of vertices and the notion of the essential

itemset (Jelassi et al., 2014; Ghabry et al., 2018), according to proposition 1.6.1.

Proposition 1.6.1. Minimal Transversal (Trabelsi et al., 2019)

A subset of vertices X ⊆ χ is a minimal transversal of the hypergraph H, if X is

essential and if its disjunctive support is equal to the number of hyperedges of H,

i.e., X is an essential set such that Supp(∨X) = |ξ|.

In our case, hypergraphs play a huge role in the optimal index set generation

algorithm, because the algorithm will be based on hypergraph theory. We can

assume that the edge is a query executed by the user, and the node is the field used

in a query. As a result, we get a query set in the form of a hypergraph structure.

15



2. Related Work

2.1 Schema Discovery

In Vokorokos et al. (2017), work is dedicated to gain performance improvements

over existing solutions. However, as we know, lots of resources are spent during

schema analysis. So, our research is oriented to reduce resource utilization during

the discovery of schema-based on the needs of the application. For example, if

we work on enterprise applications, we need a schema to be relevant to the latest

changes, but in the case of a data warehouse, every document is important. We can

use this information to optimize the process of schema discovery.

2.2 Creating Indexes

Creating an index is not a problem in MongoDB. It supports different types of

indexing strategies. Although, there is a problem regarding the size and amount of

indexes. In Kanoje et al. (2015) authors list indexing capabilities as a disadvantage

because indexes take a lot of RAM and can cause serious performance issues. At the

same time, in Mahajan and Zong (2017), research shows that index is beneficial for

both, performance and energy efficiency. We aim to create indexes based on usage

patterns found in queries executed on the given database. After that, extracting

fields used in queries and present it as a hypergraph.

At this stage, edges are queries, and nodes represent fields accordingly, in a

hypergraph. Then, we proceed with minimal transversals finding (Berge (1984)).

2.3 Optimization

Obviously, the algorithms have to be optimal, because the data we process can go

beyond multiple gigabytes, thus we need to use the right strategy to develop algo-

rithms discussed in sections 2.1 and 2.2. In Vokorokos et al. (2017) the authors de-

scribe the differences between available methods of Mongodb data processing. They

try to overcome performance problems with the use of the aggregation framework,

MapReduce framework, and local algorithms. They narrowed down the options to
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local algorithms and aggregation framework because results given by MapReduce

were too slow to keep for implementation.

We are going to use the same approach and use the local algorithms. Besides, we

will cover ”find” queries and different operands that are being used during query-

ing/filtering the data. Although we will not cover aggregations, since some of the

pipeline stages get quite complicated and need manual optimization, or can be im-

possible to optimize using indexes1.

2.4 Measuring Energy Efficiency

In Song et al. (2019), the authors consider different factors for measuring such as

CPU utilization, idle time, RAM, disk, network. Measurements are then converted

in the same units to make them easy to cooperate, called Resource Quantity. The

latter is “a measurement of the number of computing resources allocated to a task

or consumed by a task. Quantity of both allocated and consumed resources is time

relevant.”

On the other hand, In Mahajan and Zong (2017), the authors propose three

metrics: Speedup, Powerup, and Greenup.

Speedup =Tφ/To

Greenup =Eφ/Eo

Powerup=Po/Pφ

Tφ is the execution of query before optimization, while To is the execution time

of optimized one. Same way, Eφ the energy consumption before optimization and

Eo after. Also, “Powerup is defined as the ratio of the average power consumed by

the optimized query over the average power consumed by the un-optimized query“.

They are using given metrics to evaluate the impact of optimizations on perfor-

mance, power, and energy efficiency. They Have highlighted 4 different cases:

• Speedup > 1, Powerup < 1, and Greenup > 1 (Case 1): Optimized version

performs better while consumes less power. We do not lose the performance,

which is the best case we can achieve.

• Speedup > 1, Powerup = 1, and Greenup > 1 (Case 2): The power con-

sumption stays the same as before. The optimization takes care of reducing

execution time itself.

1Aggregation Pipeline - MongoDB Manual: Pipeline Operators and Indexes https://docs.

mongodb.com/manual/core/aggregation-pipeline/#pipeline-operators-and-indexes - ac-
cessed 25-April-2020
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• Speedup > 1, Powerup > 1, and Greenup > 1 (Case 3): The optimized version

has significantly higher performance while it consumes more power. However,

the increased energy consumption comes with higher benefits and we still save

energy.

• Speedup < 1, Powerup < 1, and Greenup > 1 (Case 4): The performance is

reduced, but the power consumption is significantly lower. The result is less

performance, but higher efficiency which contributes to energy usage reduction.

They have great results in Covered queries2. A covered query is using the full

potential of an index. Since it contains all the fields requested by the query, we are

able to avoid scanning the documents.

Figure 2.1: Results of covered queries presented in Mahajan and Zong (2017)

From Figure 2.1, we see that accessing just index, results in great performance

and energy efficiency boost. However, covered queries are very specific, since not all

the queries can be optimized this far because in many cases, access to the collection

is necessary.

We aim to get better results by optimizing the resources. Since Software opti-

mization can be challenging, there is still room for improvement. Our tests will not

include idle, allocated resource utilization as in Song et al. (2019), but the approach

will consider overall utilization during execution. We are going to test the effective-

ness of suggested indexing by running a query set and compare mean measurements

with and without indexes. We will run queries a couple of times to get a more

precise result and exclude the possibilities of external interference in the form of

either energy consumption, or unexpected resource utilization by the system during

testing.

2Query Optimization - MongoDB Manual: Covered queries https://docs.mongodb.com/

manual/core/query-optimization/#covered-query - accessed 30-April-2020
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3. Automated indexing - Algorithm

3.1 Input Format

1 {

2 "_id": 1192,

3 "name": "John",

4 "age": 37,

5 "additionalInfo": {

6 "hobby": "Collecting coins"

7 }

8 }

Listing 3.1: MongoDB document example

1 db.collection.find({

2 age:37,

3 additionalInfo: { hobby: "Collecting coins" }

4 })

Listing 3.2: MongoDB query example

The part we concentrate on is the parameter of the ”find” method. The given

parameter is the special type of document, called query filter document. The given

document has fields ”age” and ”additionalInfo”. At this point, we are concentrated

on fields, since fields are the entities that are being indexed. If we look at ”addition-

alInfo”, it has a value which is a subdocument. Subdocuments are the documents

that are nested into another document as a value. The subdocument has another

attribute ”hobby”.

We might think that we have three different fields, but since ”hobby” is under

”additionalInfo”, MongoDB will look for ”additionalInfo.hobby”.

As a result, we get three fields, but in reality, we have only two comparisons,

because the last two fields point to the value inside the nested document. Worth

noticing that mognoDB allows the given query to be written like this:
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1 db.collection.find({

2 age:37,

3 "additionalInfo.hobby": "Collecting coins"

4 })

Listing 3.3: MongoDB query example

We see, that in listing 3.3 there is a dot between ”additionalInfo” and ”hobby”,

it is called dot notation. Usage goes like this:

<embedded document name>.<embedded document field>

Also, when using a dot for joining two attributes, we are required to use double

quotes around it.

So for example1, we ended up with two fields that have to match during find

operation: ”age” and ”additionalInfo.hobby”.

1 db.collection.find({

2 name: "John",

3 age:{ $gt :35 }

4 })

Listing 3.4: MongoDB query example 2

The example in listing 3.4 introduces ”query operators”. Query operators help

us to specify query conditions. In this case, age has a subdocument as a value, that

has field ”$gt”. ”$gt” is an operation that matches every element that is greater

than its value (in this case 35). So, instead of looking for a specific value, we match

the range with a given condition. Despite that, we don’t index query operators, since

they are special entities and don’t represent the part of the actual document(s) that

has to be fetched.

As a result, in example2 (Listing 3.4) we are looking for two fields: ”name” and

”age”. This approach gives us a way of extracting a set of fields from the query.

Every query is represented by a set of fields. The list of query representations is the

first stage input for our algorithm.

The second stage consists of given steps:

1. Extract the fields from all the query representations

2. Create a list of unique elements from step 1

3. Enumerate list of unique elements
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4. Match number of enumeration with the corresponding field in the list of query

representations

The result of stage 2 is our final input for the algorithm that is looking for

minimal transversals.

3.2 Theoretical aspects of minimal transversal

Let’s assume that we already have the result of stage 2 from input parsing, such

that each field is already represented with a unique number

Our example input will look like this:

1 2

2 3 7

3 4 5

4 6

6 7 8

7

In this example, we have 6 queries and 8 fields. each row is a representation of

the query, and each number represents the field.

Another assumption is, that we know how many unique fields we have, otherwise

first we have to identify all the fields used in queries, and then proceed further.

The first step will be representing the input in form of a hypergraph, but instead

of chaining them and creating a graph structure, we represent our hypergraph in

form of the table consisting of 1 and 0, where a row represents a query, a column

represents a field.

1 1 0 0 0 0 0 0

0 1 1 0 0 0 1 0

0 0 1 1 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 0

So, we have value for every combination of tuples like<field, query> on a crossing

of the corresponding field, and query. In our hypergraph, the field is a node, the

query is an edge.

Let’s explore the example further and explain the first row of a matrix: 1 1 0 0

0 0 0 0 The first two numbers are ”ones” and describe the presence of 1 and 2 nodes

in the given edge (the query representation). The rest of the numbers are ”zeros”

and correspond to the absence of the field that corresponds to the given column.
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At this point, we already have the necessary information to start computing

minimal transversals.

3.2.1 Calculating Disjunctive support of individual nodes

Disjunctive support is the number of edges being covered by the element. The

disjunctive support in our case can also be represented by the sum of elements of

the corresponding column in our two-dimensional array. However, this condition

changes as we go further. Because of that, let’s say that we have the list of fields

and we need to calculate disjunctive support of given fields. The disjunctive support

can be represented as the number of edges that are being covered by at least one of

the nodes in the given list.

So generalizing calculation of list of items to a single item can be done by repre-

senting node as a list of a single element.

Let’s call the list of such nodes the ”item”.

So as an example, we can represent the table of an item and its disjunctive

support:

1 1

2 2

3 2

4 2

5 1

6 2

7 3

8 1

We should point out, that in the case when disjunctive support of single item

equals the number of queries, it is minimal transversal. We should keep it in the

list of minimal transversals, ignore it in upcoming operations, and continue with

remaining items. In our case, we do not ignore any of the items, since none of them

have disjunctive support of 6.

3.2.2 Calculating a maximal clique

Now we have to find the items such that a combination of their nodes does not

represent space where minimal transversal can be found. Let’s call it a maximal

clique. For more clarity, we start building a maximal clique with item 1. As we know,

at this stage item consists of only one node, so we don’t address nodes individually

for now. Item 1 has DS (disjunctive support) of 1. 1 is less than 6 (amount of
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queries that should be covered by combination). Adding 2, DS = 2 since 1 and 2,

at least one of them appears in 2 queries, max-clique becomes 1,2.

Add 3 -> Max clique {1,2,3}, DS = 3;

Add 4 -> Max clique {1,2,3,4}, DS = 4;

Add 5 -> Max clique {1,2,3,4,5}, DS = 4;

After adding 5, DS has not changed, because 5 is covered by third query, which was

also covered previously by 3 and 4.

Add 6 -> Max clique {1,2,3,4,5,6}, DS = 5;\\

Add 7 -> Max clique {1,2,3,4,5,6,7}, DS = 6;\\

At this point, we reached 6, which is the maximum amount for DS, meaning that

a given set of items can not be max-clique because it contains subset that leads us

to minimal transversal. So we remove 7 and keep it in the leaders’ list. A leader

is an item that can be extended by further exploring items that are a superset of a

given item.

Next, we add 8 to max clique and DS equal to 5, max clique = {1, 2, 3, 4, 5, 6, 8},
leaders = {7}. Calculating the maximal clique has come to the end. We can notice

that we won’t be able to find any subset of max clique such that combining them

will give us minimal transversal(s).

3.2.3 Build helper table for each leader

The helper table is a two-dimensional array. It consists of N+1 rows, where N is the

number of elements in a leader. In our case, we have only one leader, which is 7,

and our helper table will have 2 rows. The first row contains all the query numbers,

which do not contain 7. The second row contains all those query numbers, where 7

is included. Building the helper table for item 7 will go like this:

Build array, consisting of two empty arrays.

1 [

2 [],

3 []

4 ]

Take query number 1. As we see, 7th column has 0, we append 1 in first row.

1 [

2 [0],

3 []

4 ]

Query No 2 - 7th column is 1, we append 2 in the second row.
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1 [

2 [0],

3 [1]

4 ]

... Query No 6 - 7th column - 1, append 2 in second row.

Final result:

1 [

2 [1,3,4],

3 [2,5,6]

4 ]

We can see clearly, that we do not encounter 7 in 1,3,4 queries and we encounter

7 in 2,5,6. We finished building the table.

3.2.4 Exploring the leaders

Next iteration is initialized for every leader separately.

Our list of leaders consists of only one item - 7, so we continue with this item.

We need to somehow proceed with expanding our item with more nodes. The

method we will use, we call Stick and Compute. This means we create a new item by

combining elements from two items from the previous stage. We already know the

elements of the previous stage, both leaders and max-clique items. We create a new

list with leaders from the leaders’ list that has an index greater than the leader we

are exploring currently and items from max-clique. We call this array ”neighbors”.

Our list of neighbors, in this case, is the same as max-clique from the previous stage,

because we have only one leader at this moment.

neighbors = { 1, 2, 3, 4, 5, 6, 8 }

We stick current leader with each item from neighbors. As a result, we get new

items with different set of elements:

{ 71, 72, 73, 74, 75, 76, 78 }

We should notice, that 71 is shorthand for the item that contains 7 and 1 to-

gether. So, we write a set of [7,1] as an item named 71 (separator free form) for

clarity. Taking the first item from a newly created list of items - 71. Calculating

disjunctive support. We see that DS is 4.

It has two direct parent items - 7 and 1. Their disjunctive support is 3 and 1

respectively. We keep item since DS of 71 is larger than its both parents’ DS sepa-

rately (Definition 1.6.6). Same for 72, 73, 74, 75, 76.
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Now let’s see item 78. DS for this item is 3. DS(78) = DS(7) = 3 and we remove

it from future operations, since ”essentiality condition” is violated, which translates

into the fact, that disjunctive support of item should be higher than its parents’

(This does not spread on single node items since they are starting points).

Also, worth noting that none of the items above have DS of 6, thus, we do not

have minimal transversals during this iteration.

We are left with the given items (DS next to them):

71 4

72 4

73 4

74 5

75 4

76 4

We continue again with creating maximal clique, resulting with:

max clique = { 71, 72, 73, 75 }
leaders = { 74, 76 }

The reason is the following: if we extract the set of nodes from all the items in

the max clique, we get 1,2,3,5,7. DS of this set is lower than 6 and we won’t be able

to construct minimal transversal from it.

Before going to the next iteration, we have to check whether the item is fulfilling

the minimality test.

3.2.5 Minimality Test

An item is minimal if every node in item fulfills the following condition: there is at

least 1 query in query set which contains only this node from the given item. This

rule is the control for such item, that might have indirect parent, that has the same

disjunctive support as this element. We will discuss such cases separately.

We have created a helper table for leaders during the first iteration. We assume,

that we have access to the leader’s helper table (the leader for which this iteration

was initialized).

Helper table looks like this:

0 1, 3, 4

1 2, 5, 6

Now, by introducing a new node in the item, we have to check this node against

this table:
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For every query from 0 index array, we test that node is included in the query.

It is required that at least one of the queries from 0 index array contains the node.

Let’s check queries from the array with index 0 against node 4:

query 1: does not contain

query 3: contains

We stop checking here since we found at least one query that contains the item.

For every query from the array with an index greater than 1, we test that node

is not included in the query. In this case, the requirement is, that at least one of

the queries from such an i-th array does not contain a node.

Check of the queries from an array on index 1 against node 4:

query 2: does not contain

We stop checking.

As we see, we might not have to check every query, since we stop testing as soon

as we fulfill the condition for at least 1 query.

We proved that the element fulfills the minimality test.

Since the element is minimal, we can proceed to the next iteration with 74, but

first, we need to update the helper table.

Update helper table

The process is very similar to Minimality Check, except, we extend helper table

to consider those elements that are being covered only by second node in item (node

4):

0: 1,3,4

1: 2,5,6

2:

At the beginning of the update, array with index 2 does not contain any element.

Let’s start with the array from helper with index 1. We have to only keep the

queries, which does not contain node 4:

query 2: does not contain, we keep

query 5: does not contain, we keep

query 6: does not contain, we keep it as well
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So far, no changes in this array. Intermediate result of helper table is as follows:

0: 1,3,4

1: 2,5,6

2:

Now let’s have a look at an array with index 0. This is a special case since this

array contains those queries, that previously contained none of the nodes from the

item. Every time we add a new node in the item, this array should be reduced in

size (since every new leader covers more queries than its parent). So in our case,

the queries that contain node 4, are removed from this array and being appended

in newly added array in helper table with index 2:

1: does not contain, we keep,

3: contains, we move to a new array

4: contains, we move to a new array

Final result of the updated helper table (for item 74):

0: 1,3,4

1: 2,5,6

2: 3,4

For the next iteration (3-rd level), we have leader 74. The neighbors: 76, 71,

72, 73, 75. Here, 76 is the leader with greater index than 74 (from the previous

iteration), and the rest of the items are from the maximum clique.

The ”sticking” of the items beforehand was trivial, we were getting to items and

joining nodes into one item. We should notice, that if two items contain the same

node, we count it once in the result item since we have a set of elements. So 74 and

76 after sticking will become 746.

We can also formulate this operation differently: when we stick two items to

each other, we know that the parent for both of the items is the same, so the nodes

that differentiate both from each other, is the last added node in each item. In this

case, those are 4 and 6. So We can say that ”sticking” operation is the same as

joining current leader nodes (74) with last added node of the neighbor (6).

Generated items by sticking 74 and neighbors:

{746, 741, 742, 743, 745}

Disjunctive support for New items:
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746 5

741 6

742 6

743 5

745 5

We can already see that 741 and 742 have Disjunctive support of 6. This means

those two items can be minimal transversals. This is crucial because the item might

have DS of 6, but it might not pass minimality check.

Checking minimality of 741

This is the first time we encountered a candidate of the minimal transversal.

If an item is a minimal transversal, it means that we do not have any queries left

without coverage by at least one node. Simply speaking, we should not have any

elements in the array on 0 index of helper table, that is not covered by node 1:

Query 1: contains node 1.

The rest of the arrays in helper table should contain at least one query that is

not covered by node 1:

Checking array with index 1 (queries - 2, 5, 6):

Query 2: does not contain node 1

We skip the rest

Checking array with index 2 (queries - 3, 4):

Query 3: does not contain node 1

Skipping the rest

Since all the queries are covered in the helper table, we can push 741 in the

minimal transversal list. The same goes for 742, since covers all the queries in the

array with index 0. In addition, at least one query from other arrays where node 2

does not cover the query. We push it to minimal transversals as well.

We are left with { 746, 743, 745 } items. Checking the direct parents of each of

them, we will discover, that DS of 745 is equal to DS of 74, so we ignore it.

Now we have to generate maximal clique out of items { 746, 743 }.
We do regular building of maximal clique, getting max clique = 746, 743 with

DS of 5. We end building the max clique without any leaders, meaning that we end

exploring the branch.

We go back to third level on next iteration where we stopped last time. We

generate helper table for 76:

28



0: 1,3

1: 2,6

2: 4

Now we have leader 76 and neighbors 71, 72, 73, 75. This case is very important,

since we had another leader as well, 74, but its index in the list of leaders is not

greater than 76. For more clarification, 74 is already used with all the listed elements

to form new items, so considering it again will cause duplication of items with the

same set of nodes in it, that is the reason why we skipped it this time.

For example, let’s assume that we included 74 in neighbors as well. We will

get 764 after sticking, which is duplicate to item 746 from previous iterations, and

proceeding further with it, will cause exploring the same searching space again.

Back to current iteration, we generate new items by sticking 76 and each item

from neighbors and calculate their disjunctive support:

761 5

762 5

763 5

765 5

None of them has DS of 6. Also, all the combinations have DS more than its

direct parents’. We switch straight to generating max clique:

max clique = { 761, 762 }

leaders = { 763, 765 }

Continue with 763.

We generate helper table for 763 by extending item 76 with node 3:

0: 1

1: 6

2: 4

3: 3

Next iteration goes to level 4. We have 763 with neighbors { 765, 761, 762 }
We generate new items with corresponding Disjunctive support:

7635 5

7631 6

7632 6
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We see two elements having DS of 6: 7631 and 7632.

We check both with minimality test:

7631 - with helper table of 763 test node 1 - test shows it is passing minimality

test. We push 7631 to minimal transversal list. 7632 - with helper table of 763 we

test node 2 - item passes minimality test. We push 7632 to minimal transversal list.

We can start building max clique, but we have only one item left - 7635, we add

it to the max clique and we do not have leaders to proceed further. We stop this

branch here.

Lastly, We have to proceed with 765 We generate helper table for current item

765 by extending item 76 with node 5:

0: 1

1: 2,6

2: 4

3: 3

Generated items: { 7651 7652 }
Both of them have DS greater than 6, and they are minimal. So we push them

in the minimal transversal list.

Our final result looks like this:

minimal transversals = { 741, 742, 7631, 7632, 7651, 7652 }

Sorting minimal transversals:

At this stage, we have the output from the algorithm.

The algorithm gives us an unordered list of items. We should define requirements

to choose the best possible minimal transversal.

First of all, having more indexes does not necessarily translate into better per-

formance. In MongoDB, having more than one query gives us possible more two or

more query execution strategies.

The worst-case scenario is COLLSCAN - traversing (scanning) collection doc-

uments, item by item. Fetching required documents might cause scanning all the

items.

Our goal is to minimize those queries that access all the documents directly.

Having an index, we can benefit a lot. An index is a representation of B-trees,

that makes it possible to find the necessary element in time complexity ofO(log2(n)).

this means that we can drastically reduce execution time and the number of disk

access required to select a subset of documents.

There is one difference. Having an index on multiple fields does not mean that

query will use all the possible optimizations at the same time. As usual, each index

is a separate strategy. The system is looking for the best approach and using the
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chosen strategy. When we speak about optimization that should benefit the overall

performance, we should know the side effects of using too many indexes. So for

most of the cases, having just one index can hugely benefit efficiency. Having too

many and the query execution might start to slow down again because of the various

reasons including (but not limited to):

• Lack of memory

• Lack of storage

Lack of memory

In MongoDB official manual1, they recommend, that if we need to have fast pro-

cessing, we should ensure, that index can fit in memory. Memory is being freed up

every time we need more memory for processing or keeping other indexes. If there

is no enough memory, we have high utilization of storage, which is not a good sign,

since performance can degrade very fast if additional operations (such as reading

from slow storage) are needed to search in index.

Lack of storage

In addition, based on the information given by official documentation of MongoDB
2, Creating index means having a duplicate of given information at two different

places. The first place is the document itself, second - the index. When it comes

to point where you have a significant amount of documents (number goes in tens of

millions), the last thing you want to have is using up the storage. More documents

mean more spaces needed and since index should include values from the field, even

more space is needed in total.

Considering the above reasons, we go for the least amount of indexes to be

needed, thus we have to pick the minimal transversals with the minimal amount of

indexes.

Example:

minimal transversals = { 741, 742, 7631, 7632, 7651, 7652 }

Our set contains items with different amount of nodes. First, we have to sort

them by the length ascendingly. We see, that this is already done for our set, so we

continue by picking the shortest items: 741 and 742.

If we have only one short item, we finish searching, otherwise, we have to pick

the most promising in terms of efficiency. The number of executed queries become

very important to factor while choosing the best one.

1Web page https://docs.mongodb.com/manual/tutorial/ensure-indexes-fit-ram/ - ac-
cessed 24-April-2020

2Web page https://docs.mongodb.com/manual/indexes/ - accessed 24-April-2020
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Speaking of efficiency, we have queries that are being run for the average amount

of times per time unit. Let’s define a time unit to be a month. Each query has a

different amount of executions month by month. Let’s say that we have an average

number of executions per month. This information will help us to find the best

option out of multiple cases.

Extending the initial input of queries with the number of executions:

query # number of executions query fields

1 22019 1,2

2 1801 2,3,7

3 29 3,4,5

4 331 4,6

5 12 6,7,8

6 812 7

Now we have to somehow consider execution time to land on the best combination

of fields to be indexed. We could just sum the number of executions for the covered

queries. The problem is that every minimal transversal is covering all the queries in

the list. So, Having this considered, we can still factor without ending up with the

same sums for every option.

Start by summing up the number of executions for each of the fields from the

node. For example - 741:

7 -> 812+12+1801 = 2625

4 -> 331+29 = 360

1 -> 22019

Next, we sum up the results of each field: 22019+2625+360 = 25004. Let’s call

it a score of the minimal transversal.

We do the same for 742:

7 -> 812+12+1801 = 2625

4 -> 331+29 = 360

2 -> 22019 + 1801 = 23820

Sum: 2625+360+23820 = 26805

We see, that 742 has a higher score than 741. So, our final choice is 742.

We might have questions about why we have decided to count the frequency of

each query in the same calculation multiple times. For example, 1801 is repeated in

node 7 and node 2 when we calculate the score of 742. The reason is still the pos-

sible expansion of strategy choices when we are executing the query. This matters,

because we get the chance of landing on better efficiency during query execution.
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And since we still create the same amount of indexes, despite the size of the index,

the more queries each index can cover, the higher the execution strategy options.

So, the metric for determining the best possible option looks like this:

if the number of elements with the smallest MT is 1 -> smallest MT

else -> element where Sum of (

the sum of query count of queries covered by

each item in MT items

) is the highest.

3.3 Optimize Iterations

In the previous section, we generate a list of minimal transversals, but in reality, we

do not use all of them, since we only need the smallest items from the result set.

This means, that our algorithm is not very efficient for our requirements. To fix this

issue, we can extend our implementation by introducing the ”current minimum”.

Proposition 3.3.1. Current Minimum

The current minimum is the size of the smallest item in a set of minimal transversals

during the current iteration of the algorithm.

At the beginning of the algorithm, the current minimum is equal to the number

of nodes in the hypergraph. in our case, it is equal to 8. Every time we find an item

that is minimal transversal, we update the current minimum with its size. If we

limit the exploration and stop when we reach the current minimum, eventually, we

reduce the number of required iterations to find the smallest minimal transversals.

Let us bring the example from the previous section. During iteration of 74, after

we push 741 in the minimal transversal list, we set the current minimum (CM) to

3, because item 741 consists of 3 nodes. Next comes 742 and we again, set CM

to 3. During this iteration, we do not build max clique, since CM is 3 and we

already covered all the generated items of size 3 from the branch of item 74. We

stop exploring this branch.

After this, we go to the iteration, where the leader is 76. The generated items

are 761, 762, 763, and 765. Since none of the items have disjunctive support of 6, we

do not have an item that can be minimal transversal. We know that CM equals 3,

thus we do not continue building max clique since we do not have to explore items

with 4 nodes.

As a result, the largest items we explored are equal to 3 and our list of mini-

mal transversals consists of items with a size of less than 3 accordingly. Different

scenarios might have different results, but the moment we find the smaller minimal
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transversal than the current minimum, we update the current minimum, meaning

that our search space is reducing even further. In our example, we found only two

minimal transversals and the number of iterations is reduced by 2.

In the next chapter, we will continue with the implementation of the algorithm

with and without the current minimum.
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4. Implementation

In the last chapter, we have introduced the algorithm of finding an optimal subset

of fields for indexing based on the provided query set and frequency of execution

for each of them. In this chapter, we go through the implementation and details

associated with it. We will go through some optimizations and refactoring.

4.1 Implementation of MT algorithm

First of all, we start by initializing the algorithm itself.

1 const transversals = [];

2 const currentMinimum;

3

4 function execute(data , minimum) {

5 const uniques = extractUniqueValues(data);

6 currentMinimum = uniques.length;

7 const table = createBooleanTable(data , unique);

8 initializeRoots(table , unique , minimum);

9 return transversals;

10 }

Listing 4.1: Initialization of Searching Minimal Transversals

First, we initialize global, empty array for transversals (this is a final array, which

is filled by minimal transversals we find, so wherever we see variable transversals, we

use this array) and declare a variable for keeping track of current minimum. Then

we declare our starting point, the function ”execute”. Input for our algorithm is

the data in the form of a two-dimensional array and the toggle ”minimum”. if the

minimum is true, we search for current minimums, otherwise, we use the normal

version. Each subarray is an edge, each element in subarray is a node. Next, we

need to get a list of nodes, function ”extractUniqueValues” is used for that. When

we get a list of nodes, the current minimum will be set to the length of the given

list. Also, we need a boolean table, two-dimensional representation of input data

where each row represents query, each column - node. The crossing of row/column

is true if given query contains the corresponding node (for this, we use function

”createBooleanTable”). The last step is initializing root nodes (first level leaders),

where we start building items consisting of 1 element. ”initializeRoots” is a void
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function, where most of our processing will happen. Finally, we return the product

of execution - minimal transversals.

We continue with function ”extractUniqueValues”.

1 function extractUniqueValues(data) {

2 const uniques = new Set();

3 for (let i = 0; i < data.length; i++) {

4 for (let j = 0; j < data[i]. length; j++) {

5 uniques.add(data[i][j]);

6 }

7 }

8 return sorted ([... uniques ]); // [... uniqes] is conversion of

set "uniques" into array.

9 }

Listing 4.2: Extracting list of nodes

We define set, then we go through every node in every edge (query) to find

elements and add to ”uniques”. The last part is returning the list of sorted unique

nodes. The time complexity of this function in the worst-case scenario is O(N ∗M)

where N is the number of edges, M is the average number of nodes containing each

node. It is also worth considering, that adding element in the set is not ”free”

operation, but it depends on the size of the set itself and the number of collisions.

Amortized complexity is around O(1) and that’s why we ignore it. Also, using

Array instead of the set would have caused increasing time complexity, since the

complexity of search in the array has a linear complexity.

1 function createBooleanTable(data , uniques) {

2 const result = [[]];

3 for (let i = 0; i < data.length; i++) {

4 const temp = [false ];

5 for (let j = 0; j < uniques.length; j++) {

6 temp.push(false);

7 }

8 for (let j = 0; j < data[i]. length; j++) {

9 temp[data[i][j]] = true;

10 }

11 result.push(temp);

12 }

13 return result;

14 }

Listing 4.3: Creating boolean table

We start building a boolean table by creating an array with an empty array as

an element. The empty sub-array is given for enumeration (This way the first edge
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is on index 1, second has index 2, etc.). We start building the temporary table for

each query (here we start with non-empty array as well, to keep counting from 1).

Every temporary table has the same length, so the first nested loop is creating an

array with all elements set to false, then we toggle booleans on those indexes which

equals to node numbers encountered in the current edge.

The last function from initialization is ”initializeRoots”.

1 function initializeRoots(table , uniques , minimum) {

2 let neighbors = [];

3 let leads = [];

4

5 for (let i = 0; i < uniques.length; i++) {

6 // step 1

7 let ds = disjunctionSupport(table ,[ uniques[i]]);

8 if(ds === table.length - 1) {

9 transversals.push([ uniques[i]]);

10 currentMinimum = 1;

11 continue;

12 }

13 // step 2

14 neighbors.push(uniques[i]);

15 ds = disjunctionSupport(table , neighbors);

16 if(ds === table.length -1) {

17 leads.push(neighbors.pop())

18 }

19 }

20

21 //Step 3

22 if (minimum && currentMinimum == 1) {

23 return;

24 }

25

26 // Step 4

27 for(let i=0; i < leads.length; i++) {

28 const lead = leads[i];

29 const leadDS = disjunctionSupport ([lead])

30 // array of every element starting from index i+1 in leads

31 const leadNeighbors = leads.slice(i+1);

32 // concatenation of neighbors and leadNeighbors

33 const passedNeighbors = [... leadNeighbors , ... neighbors ];

34 const supports = disjunctionSupports(passedNeighbors)

35 const helper = createHelper(table , lead);

36 nextIteration(table , passedNeighbors , helper ,[lead],

supports , leadDS , minimum);
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37 }

38 }

Listing 4.4: Initialize Roots

This function generates and initializes first level items. We have split into steps.

• Step 1 - we check disjunctive support for each item (we can assume that node

is already an item at this level), then we check if it is equal to the number

of queries, this item is minimal transversal, we set current minimum and we

keep the item.

• Step 2 - if the item was not minimal transversal, we push it in neighbors (this

is already part of generating max clique). Then we do separation of leaders

from neighbors.

• Step 3 - if we already found minimal transversals and we are looking for current

minimums, we stop the execution (since we already found all of them).

• Step 4 - we iterate through leaders. For each leader, we calculate parameters

for proceeding to the next iteration.

We encountered the function that calculates disjunction support.

1 function disjunctionSupport(table , elements) {

2 let ds = 0;

3 for (let i = 1; i < table.length; i++) {

4 for (let j = 0; j < elements.length; j++) {

5 if(table[i][ elements[j]]) {

6 ds ++;

7 break;

8 }

9 }

10 }

11 return ds;

12 }

Listing 4.5: Disjunction Support Of elements

The implementation is optimized for checking disjunctive support for a set of

nodes (same as item). In the worst-case scenario, calculating DS based on the table

has a time complexity of O(N ∗M) where N is the number of queries, M is the

number of nodes. Amortized best case scenario can be O(N ∗ log2(M)) because

as long as we have one encounter in the current edge from given nodes, we stop

checking the other nodes.
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1 function createHelper(table , field) {

2 const helper = [[], []];

3 for (let i = 1; i < table.length; i++) {

4 if (table[i][ field]) {

5 helper [1]. push(i);

6 } else {

7 helper [0]. push(i);

8 }

9 }

10 return helper;

11 }

Listing 4.6: Create Helper

Additionally, have a glance at creating the helper. As we know already, a helper

is a two-dimensional array, which represents the absence of nodes from the item

(0 index sub-array), or presence of encounter of one and only node from the item.

The algorithm for creating an initial helper is very simple. Time complexity - O(N)

where N is the number of edges.

The most important function, where most of the processing is happening, is

”nextIteration”.

1 /**

2 * @param {boolean [][]} table

3 * @param {number []} uniques - neighbors of current leader (item)

4 * @param {number [][]} helper

5 * @param {number []} currentFields - nodes of current leader (item)

6 * @param {number []} dss - disjunctive support of neighbors

7 * @param {*} currentDs - disjunctive support of current leader

8 * @param {boolean} minimum

9 */

10 function nextIteration(table , uniques , helper , currentFields , dss ,

currentDs , minimum) {

11 const newDss = [], leads = [], leadsDss = [];

12 const neighbors = [... currentFields ]; // Copy nodes from

current item

13 const neighborsDss = [];

14

15 // step 1

16 for (let i = 0; i < uniques.length; i++) {

17 const a = [... currentFields , uniques[i]];

18 newDss.push(disjunctionSupport(table , a));

19 }

20

21 //step 2

22 for (let i = uniques.length -1; i >= 0; i--) {
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23 if(newDss[i] === currentDs || newDss[i] === dss[i]){

24 uniques.splice(i,1);

25 newDss.splice(i,1);

26 continue;

27 }

28 if(newDss[i] === table.length - 1) {

29 const isMinimal = minimalityCheck(table , helper ,

uniques[i]);

30 if (isMinimal) {

31 transversals.push ([... currentFields , uniques[i]]);

32 currentMinimum = currentFields.length + 1;

33 }

34 // in this case , splice is used to remove element on

index i.

35 // array size is decreased accordingly during this

operation.

36 uniques.splice(i, 1);

37 newDss.splice(i, 1);

38 }

39 }

40 // step 3

41 if(minimum && currentFields.length + 2 > currentMinimum ) {

42 return;

43 }

44 // step 4

45 for (let i = 0; i < uniques.length; i++) {

46 neighbors.push(uniques[i]);

47 neighborsDss.push(newDss[i]);

48 let ds = disjunctionSupport(table , neighbors);

49 if(ds === table.length -1) {

50 // pop method removes last element and returns it.

51 leads.push(neighbors.pop());

52 leadsDss.push(neighborsDss.pop());

53 }

54 }

55

56 // step 5

57 for(let i = 0; i < leads.length; i++) {

58 const lead = leads[i];

59 const futureHelper = minimalityCheckWithExpansion(table ,

helper , lead);

60 // if empty array , not minimal.

61 if (futureHelper.length === 0) continue;

62 const futureFields = [... currentFields , lead];

63 const leadDs = leadsDss[i];

64 const newNeighbors = leads.slice(i+1);

65 const newNeighborsDss = leadsDss.slice(i+1);
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66 // Concatenate newNeighbors and elements from neighbors

coming after passed leader nodes

67 const passNeighbors = [... newNeighbors , ... neighbors.slice(

currentFields.length)];

68 // Concatenate disjunctive support of neighbors and

newNeighbors

69 const passDss = [... newNeighborsDss , ... neighborsDss ];

70 nextIteration(table , passNeighbors , futureHelper ,

futureFields , passDss , leadDs , minimum);

71 }

72 }

Listing 4.7: Process Next Iteration

We split this function into 4 steps:

• Step 1 - for each unique item in passed neighbors, stick item with the current

leader and calculate disjunctive support. Save the result in ”newDss”.

• Step 2 - check new items. Remove items that have the same disjunctive sup-

port as its direct parents. If an item has disjunctive support equal to the

query amount, we check on minimality. if it is minimal, we add to minimal

transversals, set the current minimum, and remove the item.

• Step 3 - if we are looking for current minimums and generated elements on

the next iteration is larger than the current minimum, we stop.

• Step 4 - generate max clique, separate leaders with corresponding disjunctive

supports.

• Step 5 - extend helpers to consider a new node in the item. Check on mini-

mality, if positive, initialize next iteration for the given leader.

Worth noticing, that we are not keeping the whole item in neighbors, neither in

leaders. We have only the latest added notes (last nodes) kept. This way, we save

resources on two different operations: when we stick and compute, we need only

the last element from neighbors. This is caused by the nature of iterations. Every

next iteration contains extended items based on the last iteration leader. Because

of that, every neighbor differs from the leader by the last node. this way, we cut the

cost of keeping duplicate information and initializing full items. we only need full

items for minimality check and for next iteration.

We introduce two new functions, ”minimalityCheck” and ”minimalityCheck-

WithExpansion”.
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1 function minimalityCheck(table , helper , current) {

2 let i;

3 // step 1

4 for (i = 0; i < helper [0]. length; i++) {

5 if (table[helper [0][i]][ current ]) {

6 break;

7 }

8 }

9 if (i === helper [0]. length) {

10 return false;

11 }

12 // step 2

13 for (i = 1; i < helper.length; i++) {

14 let j = 0;

15 for (; j < helper[i]. length; j++) {

16 if (! table[helper[i][j]][ current ]) {

17 break;

18 }

19 }

20 if (j === helper[i]. length) {

21 return false

22 }

23 }

24 return true;

25 }

Listing 4.8: Minimality Check

”minimalityCheck” is plain check, where we return boolean. True means that it

is minimal, otherwise it is false. Step 1 is checking those edges, which do not contain

any node from the leader item we are extending. During Step 2, we check the rest

of the edges from the helper table. As we discussed, every sub-array starting from

index 1, should contain at least 1 element that is not covered by the node that is

extending given item.

The worst time complexity of the function can be O(N) where N is the total amount

of edges currently presented in the helper table.

1 function minimalityCheckWithExpansion(table , helper , current) {

2 const result = [[]];

3

4 for (let i = 1; i < helper.length; i++) {

5 result.push ([]);

6 let j = 0;

7 for (; j < helper[i]. length; j++) {

8 if (! table[helper[i][j]][ current ]) {

9 result[i].push(helper[i][j]);
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10 }

11 }

12 if (result[i]. length === 0) {

13 return [];

14 }

15 }

16

17 result.push ([]);

18 for (let i = 0; i < helper [0]. length; i++) {

19 if (! table[helper [0][i]][ current ]) {

20 result [0]. push(helper [0][i]);

21 } else {

22 result[result.length - 1]. push(helper [0][i]);

23 }

24 }

25

26 return result;

27 }

Listing 4.9: Minimality Check and update helper at once

Compared to regular minimality check, implementation of ”minimalityCheck-

WithExpansion” has a couple of interesting features. First of all, it contains all the

logic from the minimality check, except it does not finish execution by returning

true or false. We are building the new helper table based on the previous one. We

check every query the same way we checked in the minimality check. If we see, that

minimality check is leading us to negative, we return an empty array. The empty

array is the sign that the minimality check did not finish with a positive result.

Otherwise, we continue building helper table.

The worst time complexity is still equal to O(N), but since we have to build the

helper table, we don’t stop checking sub-arrays on the first query that satisfies the

minimality check criteria. Instead, we have to traverse all the sub-arrays and build

a new table. That is the reason why we have two different functions. The standard

minimality check is very lightweight in terms of memory usage. On the other hand,

”minimalityCheckWithExpansion” is beneficial in terms of performance, since we

join two different functionalities: minimality check and building helper table.
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5. Execution and Benchmarks

5.1 Test Process

Our goal is to check the whole process. The steps are as follows:

• Generate test database

• Generate a set of test queries

• Execute queries on test database before applying the indexes [test 1]

• Execute an efficient index set suggestion algorithm with generated queries

• Apply suggested indexes to the database

• Execute queries on test database after applying indexes [test 2]

• Evaluate Test 1 and test 2 execution statistics and compare the final results

First of all, we need data to populate the collection in the database. It will be easy

to find a ready dataset, but since we need generalized data, it is becoming very hard

to find such data. On top of that, such data will need formatting and structuring to

match the MongoDB document structure. Another option is to generate new data

and perform tests on it. We choose the latter option.

1 function generateDocument () {

2 return {

3 index: faker.random.number (),

4 uuid: faker.random.uuid(),

5 isActive: Math.random () < 0.85,

6 pricePaid: faker.random.number (72),

7 discountAmountPercentage: faker.random.number ({min: 0, max:

85}),

8 picture: generatePicture (),

9 age: faker.random.number (80),

10 sectionColor: faker.commerce.color(),

11 username: faker.internet.userName (),

12 name: {
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13 first: faker.name.firstName (),

14 last: faker.name.lastName ()

15 },

16 company: {

17 name: faker.company.companyName(’’),

18 uuid: faker.random.uuid(),

19 },

20 email: faker.internet.email (),

21 phone: faker.phone.phoneNumber(’(###) ### -### -####’),

22 createdAt: faker.date.recent (3650) ,

23 seatNumbers: generateRandomNumberList ()

24 };

25 }

Listing 5.1: Document Generator Example

To generate data, we need to have a document structure. We notice that the

document in our example is quite complex since we have various types and struc-

tures. We utilize sub-documents, list (seatNumbers for example), strings, numbers.

We are using a utility called faker.js1, which helps us generate random data from

a given category. For example, faker.commerce.color is a function that generates

a random color. Worth noting, that we also include a universally unique identifier

(uuid) (Leach et al., 2005) as the field. The reason for adding uuid, is that the field

will have unique value, and the cardinality of the field will be very high. Indexing

high cardinality field results in better performance 2.

We populate collection using documents produced using a generator in Listing

5.1. The biggest benefit of a generator is the ability to produce different results

every time we execute it.

Next, we generate a set of queries. The first step is to generate proper field

names for queries while we have nested queries. For example, if we have ”name”

sub-document with fields ”first” and ”last”, we convert them into a dot-separated

format such as ”name.first” and ”name.last”. Then, we need sample value for each

field that we are searching for. Sample values are unique as well and we generate

them as well. Before we start creating queries, we need to create random subsets of

fields. We decide, that each query can have a minimum of two, up to 10 fields.

1faker.js - generate massive amounts of fake data in the browser and node.js - https://github.
com/marak/Faker.js/ - accessed 30-April-2020

2Why low cardinality indexes negatively impact performance - https://www.ibm.com/

developerworks/data/library/techarticle/dm-1309cardinal/index.html - accessed 30-
April-2020
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1 function generateQueryObjectFromSelectedFields(fields) {

2 const result = {};

3 for (field in fields) {

4 if(field.type === ’date’)

5 result[field.name] = generateDate ();

6 if(field.type === ’string ’)

7 result[field.name] = generateWord(field.name);

8 if(field.type === ’number ’)

9 result[field.name] = generateNumber ();

10 if(field.type === ’array’)

11 result[field.name] = generateNumber ();

12 if(field.type === ’boolean ’)

13 result[field.name] = generateBoolean ();

14 }

15 return result;

16 }

Listing 5.2: Generate query from selected fields

As we see, for every chosen field, we generate value that has the type of the

selected field. We insert generated value into an object with the given field name.

We will notice, that for array type, we generate number value, because we have only

one field in documents with array as a value, and the type of values in the array is

number.

1 function generateBoolean () {

2 // Math.random returns float value n where 0 <= n <= 1

3 return Math.random () < 0.85;

4 }

5 function generateDate () {

6 const date = faker.date.recent (3650);

7 return {$gte: date};

8 }

9 function generateWord(field) {

10 if(field === ’name.first ’){

11 return faker.name.firstName ()

12 }

13 if(field === ’name.last’){

14 return faker.name.lastName ()

15 }

16 let word = faker.random.word();

17 if(generateBoolean ()){

18 return word;

19 }

20 return {$regex: word};
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21 }

22 function generateNumber () {

23 const number = faker.random.number ({min:0, max :200});

24 if(generateBoolean ()) {

25 return number;

26 }

27 return {$gte: number };

28 }

Listing 5.3: Generate value for query field

Let us follow the functions provided in Listing 5.3 and describe the behavior of

each of them:

• generateBoolean - returns boolean with the possibility of 85 % that the result

will be ”true”

• generateDate - returns random date from the last 10 years. Worth noting that

we wrap value with range operator to filter dates created after given date.

• generateWord - this function differs from others since it takes field name into

consideration and generates the corresponding type of value (name or last

name). If it does not match selected field names, we generate a random word.

also, around 15 % of cases will utilize regular expression to find documents

that contain value as part of the text.

• generateNumber - returns non-negative number which is up to (inclusive) 200.

Also, 15 % of cases utilize range to filter values greater or equal to generated

value.

We see the usage of regular expressions for string type fields. This is intentional

since we need tests to be as close to real-world scenarios as possible. The regular

expressions have a big downside, it can not be optimized during query execution and

can become a serious performance issue. However, there are times when we have

no other choices and unfortunately such cases appear from time to time. There are

also other operations/operators that can harm the performance, but since we can

find many different combinations of such cases, we decided to keep only one of them

(regular expression). The final result will be the same nevertheless, all the cases will

harm performance to some degree.

After creating the queries, we run the first test. We run every query before

indexing the fields. Then we run our index suggestion algorithm and get recom-

mended fields for indexing. We build indexes for recommended fields. Now we have

optimized collection and we run the same queries again. Finally, we calculate the

average execution time before and after building indexes.
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5.2 Test Results

The tests were executed on the system described below:

OS: Windows 10 Pro version 1909

Processor: Intel Core i7-7500U (2.7GHz)

Core count: 2 cores (4 threads)

RAM: 12 GB

NodeJS Version: 13.11.0

MongoDB Server Version: 4.2

IDLE Power Usage: 2.5 W

We generated a database with 3 million documents. The described test process

in 5.1, is giving different results every time we execute the flow because queries

are generated during the execution. The results varied and were different for every

execution. We recorded different cases and selected average case that was also closer

to real-world scenarios.

We used the metrics described in section 2.4, the metrics that are used in Ma-

hajan and Zong (2017). The selected metrics are Speedup, Powerup, Greenup.

We also monitored load and energy consumption while tests were running. The

results are provided in table 5.1.

Table 5.1: Test execution results (Given average values).
Power Time Energy Speedup Powerup Greenup

Before 11.61 W 1859.7 ms 21.59 J
11.77 0.96 12.2

After 11.2 W 158.05 ms 1.77 J

From the results, we can see, that overall execution time has been reduced 11.77

times. The most important metric is Greenup since our primary goal was energy

efficiency. After optimization, energy efficiency (Greenup) increased 12.2 times.

In addition, we recorded the execution time of each query, which is provided in

Figure 5.1. The latter shows even more insights of the execution process. We see

the spikes on multiple occasions. This is caused by the usage of regular expressions.

Two of these spikes are showing even slower execution times than the ones before

optimization.

For illustrative examples, we modified ”generateWord” function which is pre-

sented in listing 5.4.
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1 function generateWord(field) {

2 if(field === ’name.first’){

3 return faker.name.firstName ()

4 }

5 if(field === ’name.last’){

6 return faker.name.lastName ()

7 }

8 let word = faker.random.word();

9 return word;

10 }

Listing 5.4: function ”generateWord” (modified)

Figure 5.1: Comparison of individual query execution times

After the change provided in listing 5.4, we excluded the possibility of generating

a query that includes regular expression. This helped us to have close to the best-

case results. The results are proof that the correct set of indexes plays a huge role in

energy efficiency. The results have shown that after optimization, average execution

time went down to 2.82 ms compared to before optimization average of 1896.07

ms. This has affected energy efficiency drastically, achieving the Greenup score of

982.7 .

Both of the tests show the improvement in energy efficiency. However, our bench-

marks, no matter how close it is to real-world scenarios, can be completely different

in some cases. There is always the possibility that queries consist of operands that

can not be optimized by creating the indexes. If such cases are very high, the final

result might not be impressive. Also, different datasets will result in different ex-

ecution times. There are many other variables such as hardware, data size, query

count, number of fields in each query, document structure, etc. that can affect the

final results.
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On top of regular tests, we tested the algorithm for finding minimal transversals.

As we already know, the algorithm has two modes:

• Full - look for all the minimal transversals

• Current Minimum - reduces search space by utilizing the current minimum

(3.3.1).

Our test case input for checking the performance:

{ { 1, 2, 3 }, { 3, 4, 5 }, { 5, 6, 7 }, { 7, 8, 9 },

{ 9, 10, 11 }, { 11, 12, 13 }, { 13, 14, 15 }, { 15, 16, 17 },

{ 17, 18, 19 }, { 19, 20, 21 }, { 21, 22, 23 }, { 23, 24, 25 },

{ 25, 26, 27 }, { 27, 28, 29 }, { 29, 30, 31 }, { 31, 32, 33 },

{ 33, 34, 35 }, { 35, 36, 37 }, { 37, 38, 39 }, { 39, 40, 41 },

{ 41, 42, 43 }, { 43, 44, 45 } }

We compared the Power usage in watts and got very similar results for both

modes. However, we saw a huge boost in execution time.

Table 5.2: Algorithm execution result for test case (Given average values).

Power (W) Time (ms) Energy (J) Speedup Powerup Greenup
Full

11.18
4265 47.68

25.38 1 25.38
Curr. M 168 1.88

Based on table 5.2, we achieve both Greenup and Speedup equal to 25.38

when we go for mode ”Current Minimum”. We can call this result the real world

average scenario.

We want to see the importance of Current Minimum. We use the generated

input file from the Hypergraph Dualization Repository3 provided by Keisuke

Murakami and Takeaki Uno. The chosen dataset ”ac 50k” contains 32207 rows and

336 unique nodes. File size - 38.83 MB. We see this dataset as an interesting chal-

lenge since it can easily show the difference we get from using ”Current Minimum”

mode over the ”Full” mode.

3Hypergraph Dualization Repository - http://research.nii.ac.jp/~uno/dualization.

html - accessed 13-May-2020
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Table 5.3: Algorithm test results with large data (Given average values).

Power (W) Time (ms) Energy (J) Speedup Powerup Greenup
Full 11.23 580,132 6,514.9

1,611.48 1.004 1,605.76
Curr. M 11.27 360 4.06

The results from Table 5.3 shows how much we can benefit from producing only

what we need for the given task. In our case, results from both of them modes are

processed the same way, resulting in the same output, so we do not lose anything

by optimizing the output.

So, let us follow the process of extracting MT from the input to compute the

indexed fields set. First, with full mode, we have to collect all the MT-s and filter

the smallest ones. Thanks to the new mode ”Current Minimum”, we are able to

extract the smallest ones straight and speed up the discovery process by cutting down

the iterations of looking for the bigger MT-s. Thus, the added value of ”Current

Minimum” is reducing (or fully omitting) the iterations that do not lead to the

smallest MT-s.

Finally, to see the broader picture, we have conducted the tests using inputs

from different groups of datasets from the Hypergraph Dualization Repository. The

results (see table 5.5) are impressive, since ”Current Minimum” mode has potential

to show significant efficiency improvement (win1600.dat, lose800.dat, dualmatch-

ing28.dat) which, in our case, can be improved up to 15,250.2 times, averaging

935.94. Again, we notice, that the result may vary based on input, some inputs

might show little to no difference between two modes (matching44.dat, TH160.dat).

Worth noting, that table 5.5 does not contain Powerup and power metrics, since

power consumption stayed the same (11.47 W) throughout the testing process (con-

stant power usage does not affect Greenup score). However, all the metrics are

available in the summary table (see table 5.4).

Table 5.4: Algorithm test full execution summary (Given average values).

Power (W) Time (ms) Energy (J) Speedup Powerup Greenup
Full

11.47
68,171 7,819.2

3.08 1 3.08
Curr. M 22,123 2,537.4

Table 5.4 shows the average time that was taken to execute each test in Table

5.5. Based on this data, we see the overall Greenup score of 3.08 which denotes the

208% better efficiency of ”Current minimum” mode over the Full mode.
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Table 5.5: Algorithm test results extended (Given average values).

input Full (ms) Current Minimum (ms) Greenup
ac 70k.dat 26,932 71 379.32
ac 110k.dat 570 8 71.25
ac 150k.dat 43 3 14.33
bms2 200.dat 1,903 40 47.58
bms2 400.dat 122 19 6.42
bms2 800.dat 14 4 3.5
dualmatching20.dat 144 2 72
dualmatching24.dat 2,074 7 296.29
dualmatching28.dat 60,783 26 2,337.81
lose100.dat 146 3 48.67
lose400.dat 7,979 6 1,329.83
lose800.dat 49,202 11 4,472.91
matching20.dat 24 26 0.92
matching34.dat 582 606 0.96
matching44.dat 28,983 29,132 0.99
p95 8000.dat 8,527 1,788 4.77
p95 32000.dat 236,746 17,607 13.45
p98 8000.dat 1,625 224 7.25
p98 32000.dat 27,262 14,214 1.92
p98 128000.dat 382,589 70,741 5.41
p99 16000.dat 2,814 610 4.61
p99 64000.dat 37,738 15,722 2.4
p99 256000.dat 237,217 143,903 1.65
p9 4000.dat 1,6135 909 17.75
p9 8000.dat 68,141 2,152 31.66
SDFP16.dat 20 1 20
SDFP30.dat 46,779 12 3,898.25
SDTH42.dat 94 9 10.44
SDTH102.dat 14,362 30 478.73
SDTH162.dat 484,174 190 2,548.28
TH40.dat 102 93 1.1
TH160.dat 477,350 476,112 1
win100.dat 63 4 15.75
win800.dat 12,245 9 1,360.56
win1600.dat 152,502 10 15,250.2
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6. Conclusion

In this thesis, we thoroughly described and implemented the index suggestion al-

gorithm for MongoDB databases with two modes. The algorithm produced the

smallest set of fields that can be indexed. With suggested fields, we covered all

the queries provided by the user. Hypergraphs played a huge role in building the

algorithm, plus our optimizations led us to better, optimal, efficient execution. We

then developed a test process that helped us in evaluations of the results and pro-

vided execution statistics before and after building indexes. We ran our test process

multiple times, from the beginning till the end. We gathered results and presented

two important cases, best-case scenario, and results closest to a real-world scenario.

We also tested algorithm modes and compared the efficiency.

We can draw a number of interesting conclusions from the research. First of all,

using indexes matter a lot for energy efficiency. Performance and efficiency gains

may vary a lot, but our tests show that we can gain 12.2 times better efficiency

after applying suggested indexes to the database. Also, in some specific cases, this

number can go as high as 982.7 . The algorithm test has shown that choosing the

”Current Minimum” mode can result in up to 15250 times better efficiency (Greenup

score).
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Tran Khanh Dang, Josef Küng, Makoto Takizawa, and Son Ha Bui, editors, Future

Data and Security Engineering, pages 15–30, Cham, 2019. Springer International

Publishing. ISBN 978-3-030-35653-8.
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