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PREFACE 

 

Harvesting robots for real-time applications are the propitious future of the agricultural 

industry. Even so, there are still many hurdles to overcome in developing a fully 

functioning robotic harvesting system. One of the most crucial aspects of these problems 

is vision. In real-world applications, traditional vision approaches often have flaws in 

terms of precision, accuracy, and performance. Detecting fruits in natural environments 

is difficult due to occlusion between leaves and fruits, clustering, and shadowing. The 

proposed method using the YOLO state-of-the-art object detection method is suitable 

to overcome this challenge. The task includes the detection of Matured and immature 

apples in color images acquired by a camera using the YOLO detection algorithm. This 

thesis is provided by the Department of Electrical and Power Engineering and 

Mechatronics of Tallinn University of Technology. I'm grateful for the opportunity to work 

on such a fascinating field as object detection with deep learning. 

Here, the author would like to express his deepest gratitude to the supervisor Märt 

Juurma, Junior researcher Institute Of Electrical Power Engineering and Mechatronics 

who proposed this thesis and helped me find answers to all of my questions and deal 

with the problems that arose. I accomplished the mission under his guidance and 

learned a great deal of new information. 

Finally, I would like to thank, Prof. Mart Tamre for the proper guidelines in writing the 

thesis and help to access the lab at a crucial time. Special thanks to the mechatronics 

department for the assistance. 

 

Keywords: Machine vision, Deep learning, Object detection, YOLO, Darknet, Google 

colab, LabeIimg. 
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1. INTRODUCTION  

 
1.1 Overview 

 
Agriculture is both a major industry and the backbone of the economy. Factors such as 

climate change, population growth, and food security issues have propelled the sector 

to pursue more creative ways of preserving and improving crop yields. Consequently, AI  

is gradually evolving as part of the technical evolution of the industry [1]. The vast 

verities of data collecting devices help the agriculture for the high-tech revolution 

especially in the part of precision farming. The internet of things era leads a way to 

connect everything in our lives can be linked to a wi-fi connection and the same applies 

to agriculture and farming. Machine learning is possible for any of the machines, even 

fertilizer application can be trained to apply only for the required plants, for example, A 

robot that can constantly pluck berries has appeal, saving farmers product and money. 

 

Future farming has become more sophisticated. Digitized crop cultivation, robots, and 

drones will play an important part in farming in the future. The agriculture industry has 

many problems, including the decreasing number of farmworkers and the increasing 

cost of fruit harvesting. AI is getting traction in the agricultural industry and is steadily 

being merged into robotics developed in this sector. To perform important agricultural 

tasks such as harvesting crops at a higher level and quicker speed than human workers, 

industries are designing and programming autonomous robots. In an initiative to further 

address challenges in the labor market, technology is also emerging. From 2014 to 

2024, the industry is expected to witness a 6 percent reduction in agricultural workers 

[2]. 

Robots are also of interest to growers of fruit and vegetables that are currently picked 

by hand, which would be a lot faster and cheaper if they were automated. Currently, 

there aren’t enough workers to continuously pick every apple (or any fruits or 

vegetables) that every plant produces. Especially in this kind of pandemic situation. The 

present ranchers face loads of difficulties: a maturing labor force, a lack of ease of work, 

ecological perils, and environmental change, to give some examples [3]. Furthermore, 

for each issue, there is by all accounts a robot or automated gadget in progress to fix 

it. It gives them [farmers] the authorization to be inventive, the capacity to be 

innovative with their gear. It enables the ranchers to reclaim responsibility for 

innovation.
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1.2 Problem statement 

 
Harvesting activity is a tedious and work-concentrated cycle in the creation of foods 

grown from the ground, which is likewise a significant piece of the entire agricultural 

creation measure. The absence of agrarian work may cause the disappointment of 

convenient harvesting, hence making colossal misfortunes in rural creation. The design 

of apple trees has developed throughout the long term, and it's currently regular to 

develop them on lattices like y tomatoes or cucumbers. Current apple trees are 

additionally more modest, got from dwarf varietals that yield more per section of land 

and produce an organic product all the more rapidly after being planted. These green 

jumps have permitted ranchers to twofold their apple yields. They have likewise made 

the work of picking simpler for people and now, for robots. Apple harvesting could be a 

suitable task for a robot system. This however requires a new approach to how the trees 

are grown, placed and which robotics designs would work with that. Currently, there are 

not many robotic systems that can safely harvest apples. Some systems bump the tree 

and pick the apples from the ground or employ a canvas cone that wraps around the tree 

stem for gathering the apples. This however is not very desirable, because the apples 

will receive falling damage and their value is reduced. 

 

 

1.3 Objectives of the research 

 
The objective of this thesis is to develop an apple detection and localization system for 

an apple harvesting robot. As further presented in the thesis, the main objectives of this 

work are: 

 

I. Research on the current methods and technologies and find out the latest techniques 

to detect the apples, analyze the design for a harvesting mechanism. 

II. A highly fast and accurate method must be used herein to detect the position of 

fruit. 

III. Develop an algorithm to Predict the apple whether it’s ripe or not. 

IV. Test the algorithm over images, videos, and real-time scenarios. 

V. Verify that the objective is met. 

 

The improvement of the control strategy increases the operating efficiency of the robot. 

Developing an apple-picking robot’s vision system has been an interesting and exciting 

challenge combining multiple domains of expertise such as machine learning, robotics, 

and mechanical engineering. Through this prospect, the author can implement his 
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knowledge that he acquired during this course. Apple harvesting could be a suitable task 

for a robot system. This however requires a new approach to how the trees are grown, 

placed and which robotics designs would work with that. An assortment of models has 

been created. Nonetheless, the current apple reaping robot model is as yet in the trial 

research stage because of its low productivity. This mechanism can be applied even if it 

is a near species of apple, moreover one learns again with the target fruit, harvesting 

fruits, such as pears is highly possible. The fast, precise recognition and localization of the 

target fruit can overcome the bottleneck of low efficiency of visual system operation. 

Chapter 1 provides an introduction to the thesis followed by the motivation and 

objectives of the study. The objectives are further detailed in the body of the report. 

Chapter 2 contains an analysis of previous studies conducted related to the objectives 

of the thesis referring to the published data. the section further discusses the 

justification of the scope of the thesis. 

Chapter 3 consists of the methodology of the thesis where it describes the proposed 

solution, selection of the hardware and software that will be used in the project. 

Furthermore, it provides details on three conceptual approaches to the solution and 

selection of the most suitable approach. 

Chapter 4 comprises a detailed explanation of how the selected approach is developed. 

This includes the process flow chart, the model development methods used, training and 

testing 

Chapter 5 provides the details on the limitation of the projects, justifications of the 

project, suggestions for further developments, and a summary of the project. 
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2. LITERATURE REVIEW AND BACKGROUND 

 
This chapter describes the existing solutions and research done on the topic. The existing 

literature will be further reviewed in this section, describing the previous approaches 

that are closely related to the intent of this study and will use the principles to identify a 

possible solution for the harvesting system. 

 

The problem will be described and discussed in this section. The agriculture industry has 

many problems, the labor shortage has been accompanied by higher wages. Ranchers 

have additionally been battered by trade wars, which have made fares droop, and they 

face dangers from weather patterns attached to environmental change. Robots could 

help convey a portion of the heaviness of these issues. The improvement of the control 

strategy increases the operating efficiency of the robot. The advent of autonomous 

system architectures allows us to develop a completely new range of agricultural 

equipment based on small smart machines that can do the right thing, in the right place, 

at the right time in the right way                   [4]. 

 

Apple harvesting could be a suitable task for a robot system. This however requires a 

new approach to how the trees are grown, placed and which robotics designs would 

work with that. The development of an automated fruit harvesting robot is a viable 

solution to these problems. The automated harvesting consists of two stages; 

 

 

I. Image acquisition using sensor and detection and localization of fruit using 

computer vision. 

 

II. Detect the position of the fruit and harvest the fruit using manipulators and end-

effector. 
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2.1 Computer vision and detection 
 

The first step is to acquire the images of the fruit from the tree. Then the information 

regarding whether the apple is ripe or not the number of apples and its position is 

acquired from a vision system. Then the data about the position is sent to the 

manipulator for harvesting the fruit from a tree. A machine vision system for fruit 

detection and localization involves various steps of data collection and processing as 

discussed below. 

One of the essential undertakings inside a machine vision framework is image 

acquisition. Based on machine vision various researchers have studied for the detection 

and localization of fruits. In the Gongal et al. review [5]. In these approaches, color, 

spectral, or thermal cameras have been commonly used. In addition to geometric and 

texture information, color cameras provide opportunities for basic color-based fruit 

segmentation with images acquired. The spectral camera provides spectral information, 

along with spatial object information. Spectral imaging, even if the fruit and background 

color are identical, has the potential to detect fruit. Thermal cameras capture the object's 

temperature signature, based on the temperature contrast between the fruit and the 

background, thermal imaging has been used to detect fruit. The precision of this method 

was limited by the fruit size and direct exposure to sunlight. 

For the classification of fruits, Bulanon et al. used luminance and RGB color difference in 

different lighting conditions [6]. Apple detection was carried out and an accuracy of 88.0 

percent was achieved under controlled lighting conditions based on the red color 

difference between the items. The author accepted that the precision of the detection of 

fruit depends on the lighting conditions during photography and that high accuracy of 

the detection of apples can be obtained under controlled lighting conditions. Zhou et al. 

(2012) used color features in both RGB and HSI space for apple detection [7]. The 

distinction between red, green, and blue shading channels was utilized as an action to 

section red and green apples from the background. The methods [6] [7] takes the color 

difference between the fruits and leaves is very small and easy to be changed by 

illuminations. Thanks to the special hue, the identification of red fruits is comparatively 

simpler by machine vision, so needs to concentrate on other aspects except color. As a 

measure for segmenting red and green apples from the backdrop, the differentiation 

between RGB shading channels was utilized. Besides, to section red apples, a threshold 

value in the saturation channel was also used. 
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The quality of images that later impact the performance of algorithms for fruit detection 

is impacted by the color saturation inconsistency. Similarly, monochrome cameras lack 

color information, while spectral cameras either require considerable time to run in real-

time or have a narrow operational range during the day [5]. Each of those sensors, on 

the other hand, has its strengths. Monochrome cameras are less sensitive than color 

cameras to lighting changes, whereas color cameras have color detail, which is one of 

the most used fruit detection features. In various spectrum ranges, the spectral camera 

can have information and can also detect fruit independently of its color [5]. 

Linker et al. [8] Many features have been introduced to improve the accuracy of fruit 

detection methods. Different image recognition methods may also be carried out for 

fruit identification using a color camera. Researchers have planned vision frameworks to 

secure pictures at dusk [8] and evening [9] to limit the impacts of direct daylight and 

variable lighting conditions. 

A supporting over-the-row device that could address possible problems with image 

acquisition under field conditions was developed and manufactured [10]. This supporting 

stage has artificial lights that work with uniform picture openness with semi-controlled 

lighting. The accuracy of fruit detection using such a technique has been shown to have 

equal accuracy in broad daylight and nighttime. Besides, it will also protect natural 

elements, such as small wind and precipitation sprints. 

Zhang used a color camera with a ring flash for capturing the images at night time, 

examining the characteristics of green apples and near-color backgrounds, a classifier 

was intended to accomplish a green background dependent on the shading attributes. 

 

 
2.2 Segmentation and Feature Extraction 
 

Segmentation is also considered in computer vision systems as a significant cause of 

error  [11]. It is a sensitive stage prone to image quality, particularly variation in the 

intensity of incidents over the image that can change the segmentation aspects 

dramatically. The use of the color difference between fruits and the unwelcome sense is 

an obvious and practiced approach often addressed in this study [11] [5]. These 

attempts are primarily successful in detecting fruits of varying colors relative to the 

background. 

Artificial Neural Network was used by Kurtulmus et al. [12] for apple classification. By 

extracting the features from peach canopy images and constituting distinct image 

scanning techniques, color, shape, and texture information was used. Computer vision 

algorithms were created using color images taken from a natural canopy to detect 
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and count immature peach fruits under natural illumination conditions. Linker et al. [8] 

and Cohen et al. [13] used KNN clustering for apple classification. Qiang et al. [14] In 

this research, a machine vision system was built to accomplish these tasks, consisting of 

a color CCD camera and a computer. Photos of citrus trees in sunny and gloomy 

conditions were captured. The red, green, and blue values of objects in these images are 

drastically altered due to varying levels of lightness and location randomness of fruits 

and branches. 

Deep Learning for image segmentation and objection recognition is the newest beginning 

of- of-the-art of machine vision. Deep learning for image segmentation based on the 

Convolutional Neural Network (CNN), such as Fully Connected CNN [15]. Recurrent 

Neural Networks (CRF-RNN) [16] Positive results in pixel classification have been 

demonstrated by Conditional Random Fields. These strategies make a progression of 

attributes that make them a solid visual system and give end-to-end learning abilities. 

The primary advantage of these organizations is the capacity to tweak the pre-prepared 

network parameters to adjust to custom testing tests. computer vision applications in 

farming may profit altogether from such techniques for segmentation. 

Fruit identification and localization are other important steps after segmentation in the 

vision process. This step involves finding the spatial orientation as well as the three-

dimensional location of each fruit in the photographs and canopies. For the detection of 

fruits, shape features specific to fruits are also used in segmented images. 

Single Shot MultiBox Detector (SSD) [17] was used by Yuki et al. for the detecting and 

To categorize the fruit's two-dimensional (2D) position. One of the general object 

recognition techniques used by the SSD is Convolution Neural Network (CNN). The SSD 

will comprehensively judge from color and type. A three-dimensional (3D) location 

needs to be acquired to submit a command to the robot arm. A stereo camera is used to 

measure the 3D location of the fruit observed by the SSD. 

 

2.3 Conclusion for the literature review 
 

• Despite this, these techniques are difficult to use in varying light conditions because 

color information cannot be obtained quickly enough. To address challenges 

including clustering and variable light conditions, Multiple features such as color, 

shape, texture, and reflection can be used to detect and locate fruit. 

• Without adequate thinning and pruning of planner tree canopies, such as tall spindle 

trees in vertical trellis or v-trellis architectures, the task of fruit identification remains 

difficult. 
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• Although cutting-edge research continues to detect fruit in its natural state, Artificial 

Intelligence (AI) for object detection continues to improve and become more 

effective. 

• With practical methods, the vision system's harvesting efficiency could be improved. 

An iterative approach to imaging and harvesting the most visible fruits may be one 

such technique. This method is independent of the apple identification process and 

may be used to minimize canopy complexity strategically. 

• The visibility of occluded and clustered fruit would increase with subsequent imaging 

and harvesting cycles, making total fruit detection more accurate [18]. A simple 

solution has already demonstrated that fruit identification accuracy of 98 percent 

can be achieved using this method. 

• There is currently much less domestic and international literature on night 

photographs for agriculture. However, thanks to the contributions of several 

academics, some progress has been achieved. 

• In terms of construction, and only minor change has been made. of a commercially 

viable apple harvesting system using robotic technology. Commercial performance 

has been limited due to the extremely unstructured and complicated canopy 

architectures, unpredictable outdoor environments, size and form inconsistency, and 

fragile existence of fruit. 

2.4 Objectives of the thesis 

• Gathering a deep understanding of the equipment’s needs to be used in this 

project. 

• Choose the most advanced method for identification and harvesting. 

• Create an algorithm for the identification and localization of apple using a 

camera. 

• Create and train the image dataset and use it as an input for a neural network 

that is similar to a CNN and predicts the classes and detects the object. 

• Improve the accuracy of the method of apple detection and make the harvesting 

time up to 5sec. 

• Develop and improve its harvesting ability. 
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3. METHODOLOGY 
 

The emphasis of this chapter will be on a thorough overview of how the desired solution 

will be implemented. The outline of the suggested solution will be explained in the first 

part of the chapter. 

The hardware and the software platforms that were chosen, also the communication 

parameters that were used in the project will be explained in the next chapters.   

The final section will conclude with a comparison of the effectiveness of the alternative 

methods that were evaluated before the desired method was chosen. 

 

 

3.1. Object detection 

Object Detection is the problem of locating and classifying objects in an image. which is 

a computer vision technique that allows a software device to detect, locate, and track an 

object in an image or video. Object detection distinguishes itself by identifying the type 

of object (person, car, mobile, etc.) and its location-specific coordinates in the picture. A 

bounding box is drawn around the item to indicate its position. It’s more than just a 

classification, in a classification process there is only one object in each image, and these 

can predict only one label. But in object detection, each image may contain multiple 

objects. Hence the model classifies objects and identifies their location. 

Object detection is sometimes also known as object recognition, localization there are 

multiple phases. it is good to differentiate detection versus recognition versus 

localization. Localization of an object means finding out the area in the image where the 

object lies, localizing the object inside the image, or finding out its bounding box coming 

up with the boundary of the object. Detection sometimes is referred to as finding out 

whether there exists a particular object in the image or not. so, for example, this 

particular object that exists in this image so is called detection the object is detected. 

Then object recognition or sometimes called classification means to find out the category 

of that object what is the identity of that object. 

When in computer vision literature in image processing literature when people talk about 

object detection one way or the other and in most of the cases, they're actually referring 

to all these three phases in which the object is detected it is recognized or classified, 

and also it is localized. Although the three problems are complicated when they come 

up in combination when normally people talk about object detection in most of the cases 

referring to the three phases and detect the object whether there is an object in the 

image or not if there is an object in the image what is the object and where the object 
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is in the image all these three faces sometimes is referred to as object detection 

although a better way is to represent detection as well as localization as well as 

recognition so maybe differentiating the terms differently might be great.  

When it comes to object election, really means mostly detection recognition and 

localization and it turns out this problem. In this kind of three combinations is not easy 

it's hard when it comes to real images because one image can contain a lot of objects 

the objects may be overlapping may be occluded by the other maybe only parts of the 

objects are visible the objects may appear in different sizes different rotations in 

anywhere in the images. There are a lot of challenges in finding out all the available 

objects in the image when the objects have a lot of variations and there is background 

clutter as well. 

Object identification can be done using one of two methods: 

I. Algorithms based on classification (Two-shot detection) 

II. Algorithms based on regression (Single-shot detection) 

 

 

Figure 3. 1 object detector [19] 

 

Input: This is where to input image { images, patches,… } 

Backbone: This is the network that takes the image as input and extracts the function 

map {VGG 16 CSPResNeXt50, CSPDarknet53, and EfficientNet B3…..}  

Neck: The Neck and head are sub-sets of the backbone, that help to improve function 

discriminability and robustness using FPN, PANet, Bi-FPN, and other techniques. 

Head: which is in care of the prediction This can be done with a one-stage detector like 

Yolo or SSD for dense prediction, or a two-stage detector like Sparse Prediction. 
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Dense prediction :{RPN, YOLO, SSD, RetinaNet, FCOS,…..} 

Sparse Prediction: {Faster R-CNN, R-FCN,…} 

3.1.1 Naive Approach  

 

Convolutional Nets as great as they are at classification also help at detection. Taking 

an existing convolutional net and repurpose it as an object detector, consider any 

existing classifier and use it for the detection of a particular image. It was trained on 

core images amongst many other classes. For example, figure 3.2   contains two objects 

and also assumes that have a set of predefined classes. here class 1 refers to a dog and 

class 2 refers to a person and provided a large image. So, the process to find out whether 

this particular batch is a particular object under these objects. Consider the model has 

a lot of training data in which it has a lot of same batches size images and have some 

classifier that is trained on these fixed-sized images a lot of these and assume using 

some feature extractor may be HOG or LBP or several feature extractors. Extract the 

features and each image will be represented by a vector of numbers and then predict a 

label for that location, by feed the images into a classifier model. classifier classifiers 

that particular image is of what kind of category either it’s a dog or person or none of 

these. once the object category or the class is found then localization is can be carried 

out.  

 

Figure 3. 2 object detection pipeline [20] 

 
This image is larger than have to search for the same batch everywhere in the particular 

image sometimes known as the sliding window. Scan the image with a sliding window 

classifier over every single bunch of squares of that image right so it can classify every 

single region as defined, Get a lot of different classifications from there. 
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Figure 3. 3 sliding window [21] 

 

Then only keep the ones that the classifier is the most certain about and use that to 

bend draw a bounding box around the image but this is a very computationally 

expensive approach. This method is slow since it tests several windows that are empty. 

It is not suitable for real-time applications. That is not a positive approach. A better 

solution is needed and there must be a more reliable way of doing it correctly. The 

Region-based Convolutional Neural Net (R-CNN) is an improved version that 

strategically selects regions to run through the CNN that are likely to contain an entity. 

3.1.2 Algorithms based on classification (Two-shot detection) 

Algorithms based on classification or form of detection with two shots, This process is 

divided into two stages, as the name implies. The first step is the region proposal, 

followed by the classification of certain regions and refining of the position prediction in 

the second stage. First, we use the picture to choose regions of interest (ROIs). Then, 

using convolutional neural networks, identify those regions. 
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Figure 3. 4 R-CNN algorithm [22] 

 

R-CNN creates bounding boxes, region proposals, using a process called selective 

search. At a high level, the selective search process looks at an image through a series 

of windows of different sizes. These are just randomly size placed windows and for each 

size, it tries to group adjacent pixels by texture color or intensity to identify objects. 

Given some input image but the first step is to generate a set of region proposals 

bounding boxes for however want by some threshold. Once it’s done, run those images 

in the bounding boxes through a pre-trained CNN to compute the features for that 

bounding box and then finally a support vector machine (SVM) that classified to see 

what the object the image in the box. run the box to a linear regression model to output 

tighter coordinates for the box once the object has been classified. 
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Algorithm Features  Prediction 

time  

Limitations  

CNN Divides the image into 

several regions, which are 

then classified into 

different classes. 

----- To predict accurately, a 

large number of regions are 

needed, resulting in a long 

computation period. 

R-CNN To produce regions, it 

employs selective search. 

From each image, about 

2000 regions are 

extracted. 

40-50 

seconds 

Since each region is passed 

to the CNN separately, there 

is a long computation 

period. It also makes 

predictions using three 

different models. 

Fast R-CNN The CNN receives each 

image only once, and 

feature maps are 

extracted. On these 

maps, selective search is 

used to produce 

predictions. All three R-

CNN models are 

combined in this feature. 

2 seconds Since selective search is 

slow, computation time 

remains high. 

Faster R-

CNN 

The area proposal 

network (RPN) replaces 

the selective search 

process, making the 

algorithm much faster. 

0.2 

seconds 

Object proposal takes time, 

and since several systems 

are operating one by one, 

each system's output is 

influenced by the previous 

system's performance. 

Table 3. 1comparison of RCNN models 

This proved to be an effective approach for object detection. The most effective by 

repurposing a convolutional network for object detection by using this selective search 

algorithm to create bounding boxes, beforehand and then feeding all those boxes to a 

CNN to compute a list of features and then, computing class values from them. For R-

CNN there have been lots of improvements like Fast R-CNN, Faster R-CNN, and Mask R-

CNN. Due to the various steps involved in the process, R-CNN becomes very slow. 
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3.1.3 Algorithms based on regression (Single-shot detection) 

While two-shot detection models perform better, single-shot detection is in the sweet 

spot of performance and speed/resources, making it more suitable for tasks such as 

detecting objects in live feed or object tracking where prediction speed is more 

important. This can predict classes and bounding boxes for the image in one run of the 

algorithm rather than choosing a region of interest (ROIs) from the image. YOLO (You 

only look once) is an example of this type of algorithm. Single-shot detection is used to 

identify the apple and PointNet to process the point clouds implemented in Hanwen 

et.al’s [23] apple harvesting robot. 

As previously mentioned, YOLO stands for "You Just Look Once," and it is a single shot 

detection algorithm developed by Joseph Redmon in May 2016. Although the algorithm's 

name accurately describes the algorithm since it predicts classes and bounding boxes 

for the entire image in a single run. As compared to other single-shot detectors at the 

time, YOLO outperformed them in terms of speed and accuracy. It is not the most 

accurate algorithm for object detection, but it more than makes up for it with its 

impressive pace, making it a great combination of speed and accuracy. Rather than 

making predictions on multiple regions of an image, YOLO sends the entire image to a 

CNN, which predicts labels, bounding boxes, and confidence probabilities for entities in 

the image, as seen in the diagram below. 

 

 

 Figure 3. 5 YOLO algorithm basic structure [20] 

 

YOLO is a state-of-the-art object detection algorithm that is incredibly fast and 

accurate. Yolo is the best approach because it outperformed CNN and all its variants. 

Yolo takes a completely different approach. YOLO achieved state-of-the-art mAP(mean 

Average Precision) at the time of first publication (2016) as compared to networks like 

R-CNN and FRCNN . There are some speed and accuracy improvements in the newer 

edition. As of January 2021, there is a total of 5 versions of YOLO. 
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1. YOLOv1 [24] 

2. YOLOv2 and YOLO9000  [25] 

3. YOLOv3 [26]  

4. YOLOv4: Optimal Speed and Accuracy of Object Detection [19] 

 

3.1.4 YOLOv4 

 

In 2016 the first version of yolo was invented by Joseph Redmond. in 2017 they came 

up with yolo version 2, Where they improved the speed which supports the rate of 67 

frames per second. so, this algorithm detects the objects at a very fast rate. In 2018 

YOLOv3 was created and again Joseph and Ali were the pioneers in this incremental 

improvement. so the captain improving the original Yolo framework till version 3 and 

then at some point Joseph Redmond stops working on it because of some concern. From 

there in 2020 the YOLO v4 was created by Alexey Bochkovskiy, he created a fork of 

his GitHub repository and he created this separate branch of this version for algorithm 

now nowadays there is Yolo v5 e as well but there is some controversy going on with it. 

 

In this project, YOLOv4 will be chosen to build the model and use pre-trained weights 

to detect boundaries in an image. The original model was trained on the COCO dataset, 

which contains 1.5 million objects of 80. According to the authors, YOLOv4 aimed to 

develop a fast object detector for production systems that was also optimized for parallel 

computations. It needed to be lightning-fast, accurate, and produce compelling object 

detection results. From figure 3.6 it is clear that YOLOv4 can reach 43.5% AP on COCO 

and the speed can reach 65 FPS.  

What changed in YOLOv4: 

• Bag-of-Freebies - Specific changes to the training method that increases 

accuracy while not affect inference speed (e.g., data augmentation, class 

imbalance, cost feature, soft labeling, and so on); 

• Bag-Of-Specials- is a network improvement that has a minor impact on 

inference time but a good return performance in terms of results. Increased 

receptive field, attention, feature integration like skip-connections, and post-

processing like non-maximum suppression are all examples of these 

enhancements. 
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Figure 3. 6  YOLOv4 results on MS COCO Object detection [19] 

 

In terms of both speed and precision, it outperforms the fastest and most reliable 

detectors. With comparable efficiency, YOLOv4 is twice as fast as EfficientDet. 

YoloV4 is a significant upgrade over YoloV3. The introduction of new architecture 

in the Backbone, as well as changes in the Neck, have increased the mAP (mean 

Average Precision) by 10% and the number of FPS (frames per second) by 12%. 

Furthermore, training this neural network on a single GPU has become simpler.  

Object detectors' backbone networks are usually pre-trained using ImageNet 

classification every object detector starts with an image and extracts features using a 

convolutional neural network backbone. Multiple bounding boxes must be constructed 

around images for object detection, as well as classification, therefore the feature layers 

of the convolutional backbone must be blended and held up in the sight of one another. 

The neck is where the backbone feature layers come together.  

In feature extraction, YOLOv4 uses the CSP connections with the Darknet-53 below as 

the backbone. 
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Figure 3. 7  darknet 53 architecture [27] 

 

Even while ResNet-based designs have greater classification performance, the 

CSPDarknet53 model has higher accuracy in object detection. However, using Mish and 

other techniques, the classification accuracy of CSPDarknet53 can be enhanced. 

 

The final architecture is like; 

• Backbone – CSPDarknet 53 

• Neck – SPP + PANet 

• Head – YOLOv3  



31 
 

YOLOv4 employing a new data augmentation technique and an improved object 

detection network architecture. To make their YOLOv4 design suitable for efficient 

training and detection, the authors used and merged the following new features: 

• Weighted-Residual-Connections (WRC) 

• Cross-Stage-Partial-Connections (CSP), A new backbone that can enhance the 

learning capability of CNN 

• Cross mini-Batch Normalization (CmBN), represents a CBN modified version 

which assumes a batch contains four mini-batches 

• Self-adversarial training (SAT), represents a new data augmentation technique 

that operates in 2 forward-backward stages 

• Mish-activation, A novel self-regularized non-monotonic neural activation 

function 

• Mosaic data augmentation, represents a new data augmentation method that 

mixes 4 training images instead of a single image 

• DropBlock regularization, a better regularization method for CNN 

• CIoU loss achieves better convergence speed and accuracy on the BBox 

regression problem. 

 

 
Figure 3. 8  Network structure [28] 
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For the detection of fruits such as oranges, apples, and mangoes. Wan et.al [29] made 

a comparison with standard Faster R-CNN and YOLOv3. . On the same dataset, the 

modification proposed in this paper uncovers about 90% of the fruits, which is 3–4% 

better than the normal Faster R-CNN and on equal ground with YOLOv3. However, 

YOLOv3 had a 40-millisecond average recognition time, compared to 58 milliseconds for 

the updated Faster R-CNN network and 240 milliseconds for the normal Faster R-CNN 

network. Wenkang et.al [30] used the combination of the Canopy algorithm and the K-

Means++ algorithm with YOLOv4 for the detection of citrus fruit in a natural 

environment. 

 

YOLOv4 has the following advantages over its older version, YOLOv3; 

I. Propose an efficient and powerful target detection model. It allows everyone 

to use 1080 Ti or 2080 Ti GPU to train ultra-fast and accurate target 

detectors. 

II. During detector testing, the effect of state-of-the-art "Bag-of-Freebies" and 

"Bag-of-Specials" object detection methods has been validated.  

 

III. State-of-the-art methods such as CBN (Cross-iteration batch normalization), 

PAN (Path aggregation network), and others have been improved to make 

them more effective and appropriate for single GPU training. 

 

 

 

 

 
Figure 3. 9  Darknet GitHub repository [31] 



33 
 

Figure 3.6 shows the official website of YOLO GitHub has been updated by AlexyAB 

and officially added YOLOv4's papers and code links. which is the original 

repository by Joseph Redmond and he stopped the development of Yolo after 

version 3 so then AlexyAB forked his repository and he builds this yolo version 

4.  In short, with YOLOv4, we are using a better object detection network architecture 

and new data augmentation. techniques. 

 

 

3.2 Hardware Platform 
 
This hardware section gives a detailed overview of the devices used in this project. The 

important hardware used in the project for capturing images and testing the model is 

Intel® RealSense™ Depth camera D415 and Logitech HD C615 Webcam. The 

specifications of the devices are discussed below. 

 

3.2.1 Experimental Platform 

 

The apple vision system model implemented and tested on computer with the following 

specification. 

 
 

Technical 

requirements 

Specifications 

processor Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz   2.90 GHz 

Installed RAM 16.0 GB (15.7 GB usable) 

System type 64-bit operating system, x64-based processor 

Display adaptors Intel(R) UHD Graphics 630 CPU 

GPU Name TU104 

GPU NVIDIA GeForce RTX 2080 SUPER 8GB 

Windows 

specification 

Windows 10 

Table 3. 2 Hardware specification 
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GPU Stream 

processors 

Texture 

units 

Tensor 

cores 

RT 

cores 

Boost 

clock 

Video 

memory 

Memory 

speed 

Power 

connections 

NVIDIA 

GeForce 

RTX 

2080 

SUPER 

3072 192 384 48 1815 

MHz 

8GB 

DDR6 

15.5 

Gbps 

1 x 8-pin; 1 

x 6-pin 

Table 3. 3 GPU specification 

The following prerequisite needed to compile darknet YOLOv4 in a machine with OpenCV 

and GPU acceleration. 

• Anaconda with Python 3.8 

• Visual studio 2019 community version  

• CUDA v10.1 

• CuDNN v7.6.5 

• OpenCV  v 4.5.2 

• Cmake 3.20.0 

• Pycharm community edition 2021.1.1 

 

3.2.2 Intel® RealSense™ Depth camera D415 
 

The vision system required a high-resolution RGB camera to capture good-quality 

images. The camera should provide almost every detail of the object. The Intel® 

RealSense™ D415 has a standard field of view well suited for high accuracy applications 

such as 3D scanning. The D415 is an excellent alternative when precision is critical to 

the solution. The D415 has a narrow field of view that provides better resolution depth 

per degree. The D415 is ideal for facial recognition, 3D scanning, and volumetric 

capturing thanks to its embedded RGB sensor. 

 

 

 



35 
 

 

 
Figure 3. 10 Intel RealSense D415 camera and sensor details [32] 

This camera puts an Intel module and vision processor into a small form factor ideal for 

the development of a vision system. It has features like Lightweight, powerful, and 

low-cost, it pairs with customizable software suitable to access. Figure 3.5 shows the 

actual view of the camera. It is compact with dimensions of 99mm x 20mm x 23mm. 

The bottom image shows the included hardware camera modules. The camera can be 

connected to the PC using a USB 3.0 connection and the camera has a USB Type C 

interface. 

 

 

 

Devi

ce 

Use 

enviro

nment 
 

Ideal 

range 

 

RGB 

sensor 

technolog

y 
 

RGB 

frame 

resolutio

n 
 

RGB sensor 

 FOV 

 (H × V × D) 
 

RGB  

frame 

rate 
 

RGB 

sensor 

resolution 
 

Intel 

Real

Sens

e 

D41

5 

Indoor

/ 

Outdoo

r 

 

0.5 m  

to 3 m 

 

Rolling 

Shutter, 

1.4μm× 

1.4μm  

pixel size 

 

1920 × 

1080 

 

64° × 41° × 77

° (±3°) 

 

30 fps 

 

2 MP 

 

 

Table 3. 4Intel RealSense D415 camera specification 

 

3.2.3 Logitech HD Webcam C615 
 
Logitech C615 Webcam is used to test the trained model capture images and test the 

image to detect the object classification. For harvesting robots, the best operational 

distance between the camera and apple canopy trees in the field was 0.4–1.0 m. C165 

provides fast autofocus that stays razor-sharp even if the object is moving also, 

equipped with HD light correction. Specifications of the webcam as follows. 
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Figure 3. 11 logitech C615 HD webcam 

 
Camera type Sensor 

resolution 

Frame 

resolution 

Frame rate Connectivity 

webcam 8 Megapixel 1920 x 1080 HD 30 fps USB 2.0 

 

Table 3. 5 DELL XPS 13 9360 Webcam specification 

 

 

3.3. Software Platform 
 

This section gives a detailed overview of the required software to use in this project 

3.3.1 Intel® RealSense™ Software Development Kit 2.0 

 

The Intel® RealSense™ Software Development Kit 2.0 (SDK 2.0), is a cross-platform 

operating system independent software that connects the PC with the camera. 
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 Figure 3. 12 RealSense SDK2.0 interface 

 

RealSense SDK2.0 also known as librealsense, is a cross-platform and open-source 

software development kit from Intel. Ubuntu* 16.04 and Windows® 10 are both 

sponsored by the SDK. The SDK includes tools, code, samples, and wrappers for a 

variety of languages for extracting data from Intel® RealSenseTM Depth cameras. The 

D415, D435, and SR300 cameras are supported by Intel® RealSenseTM SDK 2.0. 

3.3.2 Darknet 
 

Darknet is an open-source neural network framework written in C and CUDA. It is fast, 

easy to install, and supports CPU and GPU computation. Darknet is a Deep learning 

library created by the author of the YOLO paper, and the original implementation (made 

by the author of the paper) is provided. Darknet is primarily used for Object Detection, 

and its design and functionality vary from those of other deep learning systems. It 

outperforms many other NN architectures and approaches, such as Faster RCNN and 

others. YOLO is a specialized platform for darknet architecture, and they are at the top 

of their game in terms of speed and accuracy. YOLO can run on a CPU, but it runs 500 

times faster on a GPU because it uses CUDA and cuDNN.  

This deep learning framework is written in C, but once the network has been trained, 

Darknet is no longer needed for inference. Darknet formats are natively supported by 

OpenCV, so both model and qualified weights can be used anywhere OpenCV is installed, 
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including from Python. 

 

On the plus side, this network comes with some standard documentation on how to train 

your own data set and run inference on your own data. Other common frameworks are 

often so heavily "optimized" for training and validation against various existing data sets 

that breaking out of this golden cage and building a functional product becomes 

shockingly difficult. Since the trained model is distributed, it is easy if you just move it  

 

3.3.3. Google Colab Notebook 

 

Google Colab is a free Google service that allows running Python scripts and machine 

learning libraries on Google's strong hardware. Google colab has been used for the 

computational process in this project. Colab is a GPU-based Python Jupyter notebook 

and it is free to use, but can be upgraded to a Pro account by payment. 

 

Because it’s free to use, it also has some minor issues as follows; 

 

• When attempting to connect to GPU runtime, an error message appears stating that it 

is unable to connect. This is attributable to a high volume of users attempting to use 

the service. Google, on the other hand, intends to add more GPU machines. 

 

• The usable RAM is 13GB, and the disk space is 64GB which is much too fine to be giving 

away for free. However, in the case of object detection, computer vision, and machine 

learning, could run into memory warnings with broad models. 

 

• The runtime simply dies from time to time. There may be a variety of reasons for this. 

 

• It is online, with the drawback that can only use it for 12 hours in a row before being 

disconnected and our files being erased. we can restart it, though we have to start again 

from the beginning. 

 

• Overall, if we want to train a big model, we can run into memory and space constraints. 

We will fix the 12-hour issue and file loss problem by linking Google Colab to Google 

Drive, ensuring that we don't delete data as a result of a disconnect. 
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3.3.4 LabelImg 
 

Images with bounding boxes must be labeled in order to train a YOLO model. It can take 

some time to label these datasets. LabelImg is a free, open-source application for 

labeling images graphically. It's written in Python and has a graphical user interface 

built with QT. It's a simple and cost-free method of labeling. For this project downloaded 

the latest version of this software (App_vesrion: 1.8.0) because they used to keep on 

adding up functionality with this tool. The most difficult aspect of this procedure is 

making annotations. Both input images must be annotated with four coordinates 

indicating the position of an object's bounding box and its label. 

 

 

 

Figure 3. 13  LabelImg graphical user interface 

 

This software contains multiple tabs on the left-hand side that can open a file from open 

command also can open up a complete directory.  On the downside, see that there is a 

small button where it is possible to change the labeling types. There are three or four 

types over here for TensorFlow, Yolo, PyTorch likewise. 

 

The following should be considered before the annotation process. 

• Create a bounding box over the entire image do not skip any part of it. This way the 

model can easily understand the object. 

• Occlusion is a major issue in this project. If an object is occluded then try to label 
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them entirely.  Keep the objects inside the frame. 

• The file name should be the same after annotation.  

• Make sure that the file and annotation file has same name.  

 

3.3.5 Visual studio 2019 
 

Visual Studio 2019 is a development environment by Microsoft™ and it was used in the 

project to program to build the darknet. Visual studio used to include the OpenCV and 

change the project directories. 

 

3.3.6 Pycharm 2021.1.1 
 

PyCharm is a Python Integrated Development Environment (IDE) that includes a variety 

of key tools for Python developers that is unified to create a platform for web and data 

science development. It was used to deploy the darknet weight file to test the model. 

. 
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4. DEVELOPMENT OF OBJECT DETECTION MODEL 

 

This chapter will discuss in detail how object detection works in YOLO and how the model 

was developed. The first section of the chapter will provide the proposed solution for 

this project. 

In the second section, how the YOLO algorithm works on single and multiple object 

detection. Give a detailed overview of intersection over union (IoU), Non-Max 

Suppression, anchor box, and mean average precision.  

The third section will explain a concise flowchart that will include an outline of the 

framework. It's essential to provide a thorough description of the structure that was 

developed. 

The fourth section will provide step-by-step information regarding training the YOLO on 

a custom dataset model. Image dataset preparation will be explained such as image 

acquisition, labeling, and annotation. setups google colaboratory notebook, importing 

files and enabling GPU so on. 

In fifth and sixth sections explain the testing of the model in different methods. Testing 

should be over images captured by intel realSence camera and webcam, videos over 

real-time by the image capturing and live to stream. 
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4.1. Proposed Solution 

Many deep learning models have been trained in recent years to detect various fruits on 

trees, including apples. However, the latest ‘harvesting robot prototypes' computer 

vision systems based on these models operate too slowly. The previous versions had 

many issues like do not detect apples with overlapping, green apples on a green 

background, occultation, and all. To solve this problem the author proposed to use the 

YOLO v4 algorithm, which is deployed in Darknet with a custom trained image dataset. 

In this project, the author trains the Yolo “you only look once” version 4 object detector 

using Google Collab (Google's free cloud service for AI developers). The images of apples 

from different environments and lighting were used to train the model. The detector 

trained to check whether the apple is ripe or not. Once the training is finished the detector 

can run over images, videos, and live streaming. Since the detector needs to capture the 

image for processing.  

The desired solution for object detection is described in the process flow pipeline figure 

4.2 given below.  In this project detection algorithm was based on color. Setting the 

color threshold makes it possible to determine which object belongs to which class. The 

image dataset contains 3 classes. 

1.Ripe apple 

2.Raw apple 

3.Green apple 

 

 
figure 4. 1 Basic object detection structure [20] 

 
 
After labelling the dataset build the model using the darknet. Using transfer learning 

method to combine both configuration file and pre-trained convolutional weights to our 
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model. These object detection algorithms might be pre-trained or can be trained from 

scratch. In most use cases, for this project author use pre-trained weights from pre-

trained models and then fine-tune them as per the requirements and different use cases. 

Then bring the image as input, pass it through a neural network that is similar to a CNN, 

and train the custom model, it will take a while. Once the training process is finished, 

test the model using different approaches such as testing over image and video files than 

with image capture using camera and live streaming. In the output, there is a vector of 

bounding boxes and class predictions. Simply put an image as input, run it through a 

CNN-style neural network, and get a vector of bounding boxes and class predictions as 

output. 

 

4.2 YOLO framework function 
 

Object detection is handled differently in the YOLO system (You Only Look Once). It 

predicts the bounding box coordinates and class probabilities for these boxes using the 

entire image as a single case. Since only one pass through a CNN is needed, YOLO is 

much faster than region-based algorithms. The CNN forecasts the labels, bounding 

boxes, and trust probabilities for the image's artifacts. 

 

 

 

 

 

 

 

figure 4. 2 YOLO framework 

 

 

So then the steps of the algorithm as follows; 

YOLO first takes an input image, the framework then divides the image into cells with 

an S x S Grid. 

Label 

Confidence 

probability 

Bounding box 
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figure 4. 3 step 1 (S = 3) 

 

 

In figure 4.3 each little box is a cell and S=3 so, divide the image into 3 x 3=9 cells 

here. Each cell is responsible for predicting the number of bounding boxes. The here is 

that S was a small number 3 but in practice use a larger number. It could be 13 x 13 or 

19 x 19 there is no fixed rule that it has to be 3x3.  That can predict way more objects 

in the image. 

 

 

 

figure 4. 4 Step 2 (B=2) 
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Consider figure 4.4, where each cell predicts B bounding boxes. In this case B = 2. So, 

each cell here is filled with two boxes. And what means each cell is responsible for 

predicting two bounding boxes is that the center of the bounding box also within the cell 

and that cell should predict that bounding box. As shown in the picture, here is a new 

box around the apple. Sometimes these bounding boxes will extend beyond the cell and 

that’s perfectly fine. As long as the center falls in the bounding box, that bounding box 

of the center the bounding box falls in the cell, that cell can predict the bounding box. 

That is a cell is responsible for detecting an object if the object's bounding box falls 

within the cell. In the figure, each cell has two red dots. 

 

There is a lot of different bounding boxes in figure 4.4 that do not contain anything. 

there should have to set some confidence threshold, anything below the confidence 

interval is just gets removed and return when the boxes of the confidence interval as 

well. In below figure 4.5 shows, all these boxes are gone, and a box that has a higher 

confidence interval should go there, would be returned. And the rest of these will go 

somewhere else. The confidence probability of all other bounding boxes is less than the 

threshold, so they are suppressed. 

 

 

figure 4. 5 steps 3: Return bounding box with a higher threshold value 
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4.2.1 Encoding of Bounding Boxes 

In object localization not only telling which class the object belongs but also telling the 

bounding box or the position of an object within the image. Consider figure 4.5, Consider 

a simple example in which there are 3x3 cells (S=3), each cell predicts 1 bounding box 

(B=1), and the objects are either ripe or green apples with class number 1 and 2 

respectively. The CNN predicts a vector y for each cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In figure 4.5, there is only one class ripe apple. So, the vector Y predicted by CNN will 

be as follows. 

 

 

 

 

                                               Y =  

 

 

 

 

 

 

Here Bx, By, Bw, and Bh values are given as an example. 

Pc=1, probability of any class is 1 because there is one object 

Pc 

Bx 

By 

Bh 

Bw 

C1 

C2 

1 

50 

70 

60 

70 

1 

0 

(Bx, By) 

Bh 

Bw 

Y = 

Probability the bounding box 

contains an object 

Probability the cell contains 

an object that belongs to 

class 1 (or 2) given the cell 

contains an object 

Width (height) of bounding 

box as a percent of the cell's 

width or (height) 

Coordinates of the bounding 

box's center 
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C1=1, because the object belongs to class ripe apple 

C2 = 0, because there is no object from class green apple  

When there is no object in the image Pc will be zero and the rest of the values do not 

matter. 

When to train a neural network, classify the object as well as the bounding box of each 

of these images since it’s a supervised learning problem these need to give the bounding 

boxes. The neural network only understands numbers, they have to convert this into 

this kind of vector. A vector of size 7 for each corresponding image. The image is X-

train and Y-train will be a vector of size 7. In general, there might be thousands of such 

images. A neural network can be trained in a way that when an input image is a feed to 

the network (figure 4.2), it will tell the particular vector and now this vector is telling 

that this is a ripe apple because C1=1 also gives the bounding box. 

 

Multiple objects:  The above method works only for a single object. For multiple 

objects, there could be an N number of objects in an object, it is hard to determine the 

dimension of the neural network output. If there 10 objects then have 10x7 vectors 

mean 70 size vector. That will not an efficient way. In Figure 4.6, there are two bounding 

boxes that the image has. 

 

 

     

                

figure 4. 6 Encoding for multiple bounding boxes 

 

In the center cell, there are two objects but the center point (red dot) of the green apple 
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lies in a different cell. So, the green apple belongs to that cell.  

 

The bounding rectangle that can go out of the grid cell, it is fine that’s why Bh>1 and 

Bw>1. 

 

Here the volume will be 3x3x7, For an image have 3x3 total grid cell 9 cells each cell is 

a vector of size 7. 

 

The CNN will predict a y for each cell, so the size of the output tensor (multidimensional 

"matrix") should be: 

 

 

figure 4. 7 output feature map 

 

size of the output tensor is calculated by 

 

 

 S×S×(5B+C) (4.1) 

 

where s=3, number of cells in an image 

 

         B=1, number of bounding boxes each cell can predict 

         C=2, number of classes 

 

Size of output tensor = 3 x 3 x (1 x5+2)  

 

                               =3 x 3 x 7   tensor 

 

 

Now time to form the training dataset. The training data set will have so many such 
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images. Each image has a bounding box and based on that bounding box ends up with 

a target vector y. for each cell there will be one vector. So, there will be 9 such vectors 

for training images. The next step is to train the neural network. 

 

 

 

 

 

 

 

Bh 
Bh 

Bh 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After trained it, it can do prediction. When trying to test the algorithm, It can produce 

9 such vectors, which will show the bounding box for each of the objects. Therefore, it 

is called YOLO, you only look once because there is no repetition. It is not like repeat 

the process nine times. The output will be like the feature map illustrated in figure 4.8. 

 

 

Multiple objects in a single grid cell: There could be another issue is what if a single 

cell contains the center of multiple objects, predict multiple bounding boxes per cell 

(B>1). This is often the case happens. This brings to the idea of anchor boxes. Consider 

the following image, which has been separated into a 3 x 3 grid: 
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Bh 
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16 such vectors 
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figure 4. 8 centers of two objects in one grid 

  

Here in this case figure 4.9 the raw apple and the ripe apple both are in the middle grid 

cell.  Both objects' midpoints are in the same grid in the example above. Now use the 

vector to represent the grid cell. but the vector can represent only one class.  

 

 

 

 

 

 

 

 

 

 

 

The above boxes show the anchor boxes of both objects. to represent two class values 

for ripe apple and raw apple so, instead of having 7 dimension vector power here have 

a vector of size 14 as per the vector below, simply augment y. 

 

 

 

 

 

Anchor box 1 
Anchor box 2 
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This is said to have has 2 anchor boxes and this can have more than two anchor boxes. 

if there are three objects which have the same center there have been three anger 

boxes even have five boxes. but if the grid cells are small enough then in real life it's 

hard to have many objects belonging to one grid cell. Objects are allocated to anchor 

boxes depending on the shape of the bounding boxes and the shape of the anchor box. 

Instead of 3 X 3 X 7 (using a 3 X 3 grid and two classes), the production would be 3 X 

3 X 14. (since using 2 anchors). 

 

4.2.2 Intersection over Union and Non-Max Suppression: 

 

There could be few issues with this approach first issue is the algorithm might detect 

multiple bounding rectangles for a given object it is possible. For one object the 

algorithm can detect multiple bounding boxes as shown in the picture below. 
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figure 4. 9 multiple bounding boxes 

 
 

 
Consider figure 4.9, the red and green apples having multiple bounding boxes with a 

different confidence score. By visual observation, it is clear that the bounding box with 

the highest confidence score is the most accurate one. And the algorithm will also 

throughout the probability, Pc will predict the value. Other boxes have less probability. 

Maybe consider all the probabilities for a person's class and take the max, but this cannot 

be the right way. If we just take max and if there is another person, so neural networks 

don’t know where the person is, it can not take max. This is where the concept of 

Intersection over Union comes into play. It computes the intersection of the actual 

bounding box and the predicted bounding box over their union. 

Here, there are different bounding boxes with different probabilities, to decide it is a 

good prediction or not is a difficult task. So IoU, or Intersection over Union, will calculate 

the area of the intersection over a union of these two boxes. That area will be; 

 

 

Upper left and lower right coordinates of a box: (x1, y1, x2, y2) 

Coordinates of the intersection of two boxes: (xi1, yi1, xi2, yi2) 

Where; 

xi1 = maximum of the x1 coordinates of the two boxes 

yi1 = maximum of the y1 coordinates of the two boxes 

xi2 = minimum of the x2 coordinates of the two boxes 

yi2 = minimum of the y2 coordinates of the two boxes 

To calculate the area of a rectangle (or a box) we can multiply its height (y2 – y1) by 

its width (x2 – x1) 

 

The area of intersection can be calculated by 
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(xi2 - xi1) X (yi2 - yi1) (4.2) 

 

 

Area of union calculated by 

 

(area of box 1 + area of box 2) – Area of intersection (4.3) 

 

                          

 

                    IoU = 
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
 

  

 

 

 

 

 

Find division of these two and if the objects are overlapping intersection value will be 

more. 

If it is the values more than 0.6 or 0.7, these rectangles are overlapping. 

If there completely overlapping the value will be 1.  

If they are not overlapping at all there will be 0. 

 

In figure 4.9, find that these two yellow boxes are overlapping because their IoU greater 

than 0.65. so, then discard those rectangles. Discarded all the rectangles which had IoU 

greater than 0.65 and carry the rectangle which has class priority as Max. then do the 

same thing for green apple, find that 0.95 is the Max probability, and found all other 

rectangles in this image. Again, there will be more apples here and there will be 

rectangles for those also. So the neural network will try to find overlap. In case if there 

is another green apple here and the system will not find overlap it will not discard that 

rectangle. But this rectangle you find it to be overlapping and since 0.95 is Max .75 is 

less than discarding this and will get final bounding boxes. this technique is also called 

Non-max suppression so after the neural network has been detected all the objects then 

apply Non-max suppression and will get these unique bounding boxes 

  

Intuitively, the higher the threshold, the more accurate the predictions become. Non-

Max Suppression is another strategy that can greatly increase YOLO's performance. 
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Non-maximum Suppression (NMS) intends to cure the problem of multiple detections of 

the same image. One of the most common issues with object detection algorithms is 

that they may detect an object several times rather than only once. Here (fig 4.9,) The 

apples are recognized several times. This is cleaned up using the Non-Max Suppression 

technique, which results in just one detection per item. When the IoU between two 

boxes with the same label is above a certain threshold, non-max suppression solves 

multiple counting by eliminating the box with the lower confidence probability. 

 

The following are the steps to implementing non-max suppression: 

 

1. Identify the box with the highest confidence. 

2. Calculate the overlap with all other boxes and eliminate all boxes that overlap it 

greater than a certain threshold (IoU threshold). 

 

3. Repeat steps 1–3 until there are no more boxes with a lower score than the one 

selected. 

 

 

Precision: it is the ratio of true positives (TP) to the total number of predicted positives 

(total predictions). The formula is given in this format. 

 

precision =  
TP

TP + FP
 

(4.4) 

 

Where; 

 

          TP- True positives 

          FP – False positives 

 

 

Recall: The ratio of true positives (correct predictions) to the overall number of ground 

truth positives is known as recall (total number of object). The formula is as follows: 

 

Recall =  
TP

TP + FN
 

 

(4.5) 

 

 
Where; 
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         TP- True positives  

         FN – False negative  

 

F1 Score: The F1-score is a metric for how accurate a model is on a given dataset. The 

F1 score represents a good balance of precision and recall. 

 

F1 =  2 x 
(Precision x Recall)

(Precision + Recall)
 

 

 

 

4.2.3 Average Precision and Mean Average Precision:  
 
Calculating mAP (mean average precision) scores to test qualified models, which is a 

common metric for evaluating the accuracy of object detectors such as Faster R-CNN, 

SSD, Yolo, and so on. The average precision value is computed with recall values ranging 

from 0 to 1. The field under the precision-recall curve is a simple definition for the 

Average Precision. Precision and recall are combined in AP. It accepts a value between 

0 and 1. (higher is better). Users need both precision and recall to be equal to 1 to get 

AP = 1. The mean of the AP estimated for all classes is the mAP. The mAP calculates a 

score by comparing the ground-truth bounding box to the observed box. The higher the 

score, the better the model's detection accuracy. 

 

4.3 Object detection pipeline 

 
The following object detection pipeline gives the detailed workflow of the object 

detection model to be developed. There are three major parts in developing the model. 

1. Prepare image dataset 

2. Build and train models 

3. Model validation and testing 

 

 

 

 

 

(4.6) 
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figure 4. 10 Object detection pipeline 
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4.4 Training YOLOv4 Apple Detector with Darknet in 
the Cloud GPU enabled 

 
In this project, the author trains the Yolo “you only look once” version 4 object detector 

using Google Colab. The images of apples from different environments and lighting were 

used to train the model. Paula red and Gala apples are mainly used for testing the model. 

The detector trained to check whether the apple is ripe or not. Once the training is 

finished the detector can run over images, videos, and live streaming.  

 

4.4.1 Dataset construction 
 

The factors like illumination variation, occlusion, and overlap make the apple detection 

significantly difficult. To improve the accuracy dataset created by under different 

environments as follows: 

• Single object with no occlusion 

• Multiple objects with occlusion 

• Clusters of apples 

• Illumination variation 

• Shading conditions 

• Multiple objects with or without occlusion 

 

 

4.4.2 Annotation of images with labelImg tool 

 

To use Darknet to train YOLOv4 with the author's custom dataset, first, need to convert 

it to Darknet YOLO format. Here need to train a Custom object detection algorithm with 

help of a custom data set. So first step is to download images using an extension from 

Google. Then label all those images with the help of labelImg tool. For the project need 

to download 3 types of classes ripe apple, a raw apple, and a green apple. A good thing 

about these extensions is that it provides a filter for width and height of the images. 

 

Annotations are the hardest part of this process. It is important to annotate all input 

images with four coordinates representing the location of the bounding box of an object 

and its label.  
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figure 4. 11 labelling images using labelImg 

 

After completing annotation there should be one classes.txt and one .txt file in the same 

name of the image file in the directory shown in the image 4.12.  

 

 

figure 4. 12 YOLO label file 

 

There are five values in the YOLO label file. The first value is the class index id, as defined 

in the classest.txt file. The index begins at zero (zero). The 0 value indicates that this is 

the very first class. Figure 4.12 shows that it is 1 since it is the second class, “Ripe Apple.” 

The object coordinates, as well as the height and width of the bounding box, are the 

remaining four values in the register. 
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figure 4. 13 classes file 

 

Figure 4.13 shows the classes.txt file that contains the number of classes used in the 

project. 

 

4.4.3 Setting up Google Colab as a cloud VM with free GPU 

 

For computing, the author going to use Google Colab. The process required to enable 

GPU acceleration within our Colab notebook so that our YOLOv4 system will be able to 

process detections over 100 times faster than CPU. the important things that will need 

to train YOLOv4 are the following: 

• GPU with specific GPU drivers installed 

• OpenCV 

• cuDNN configured on top of GPU drivers 

It's simple to prototype and run the benchmark framework since Google Colab comes 

preconfigured with GPU, OpenCV, and CUDNN Cuda libraries. 

Once Completed the labeling of the images now is the time to upload this complete data 

set into Google Drive. The author will be utilizing Google Drive as external storage for 

the Google colab. So, create a zip file based on the images have labeled then create a 

new folder named YOLOv4 model training inside Google Drive. Next, create another 

folder named ‘training’ inside the YOLOv4 folder. This is where the trained weights will 

save (this path is mentioned in the obj.data file which will be upload later). Go to google 

colab and start a new notebook in the name of YOLOv4_Apple_Detector. Then set up 

the google colab author need to enable the GPU. Once connected the colab then changes 

run-time type to GPU. 



60 
 

 

figure 4. 14 Notebook settings 

To check if NVIDIA GPU is enabled as follows; 

 

figure 4. 15 Received GPU 

From figure 4.15, this time from colab received the NVIDIA Tesla T4 GPU which is quite 

fast for our training. Next is to munt google drive to google colab and navigate to 

/mydrive/yolov4 folder. 
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Here the author used the ‘!ls’ shell command to check how many directories are there 

in the folder and the %cd command to move within the directory.  

 

4.4.4 Configuring files for training in the cloud 
  

In this project, object detection utilizes darknet in the background. Once the notebook 

and drive settings are finished then need to clone the darknet GitHub repo into the 

yolov4 folder in the drive.  

 

  

 

 

 

 

This is going to clone the complete repository on the router address to the specified 

folder inside the drive. The next step is to create and upload the following files which 

need for training the apple detector. 

 

a) Labeled Custom Dataset 

b) Custom cfg file 

c) obj.data and obj.names files 

d) process.py file (to make the files train.txt and test.txt for training) 

 

# mount drive 

%cd .. 

from google.colab import drive 

drive.mount('/content/gdrive') 

 

# this creates a symbolic link so that now the path /content/gdrive/My\ Drive/ 

is equal to /mydrive 

!ln -s /content/gdrive/My\ Drive/ /mydrive 

 

# list the contents of /mydrive 

!ls /mydrive 

 

#Navigate to /mydrive/yolov4 

%cd /mydrive/yolov4 

 

 

!git clone https://github.com/AlexeyAB/darknet 
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a) labeled custom dataset: Create the 'obj.zip'  zip file, which contains both the 

input image ".jpg" files and their corresponding YOLO format labeled ".txt" files, 

from the obj folder. Upload the zip file to Google Drive's yolov4 folder. 

b) Custom cfg file: Configuring the training for YOLOv4 for a custom dataset is a 

tricky process. First of all download the “yolov4-custom.cfg” file from darknet/cfg 

directory, make the following changes, and upload it to the yolov4 folder inside 

the drive. 

 

  

figure 4. 16 custom cfg file 

             

• change line batch to batch=64, the batch size is the number of images per 

iteration 

• change line subdivisions to subdivisions=16, subdivisions are the number 

of pieces of a batch is broken into for GPU memory. 

• change line max_batches to 6000 (classes*2000 but not less than number 

of training images and not less than 6000) 

https://github.com/roboflow-ai/darknet/blob/master/cfg/yolov4.cfg
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• Set line steps to 80% and 90% of max batches respectively, i.e steps = 

5800, 6200  

• Change the network size to width=416 and height=416 (or any multiple 

of 32). These can be any multiple of 32, with 416 being the most common. 

Increasing the value to a higher number, such as 608, will sometimes 

increase performance, but it can slow down the training. 

• change line classes=80 to classes = 3 number of objects in each of 3 [yolo]-

layers 

• change [filters=255] to filters = 24  

filters= (classes + 5) x3 (4.6) 

filters= (3+5) x 3 = 24 filters 

In the 3 [convolutional] before each [yolo] layer, keep in mind that it only has 

to be the last [convolutional] before each of the [yolo] layers. In this case, 

changed the classes 3 in the three YOLO layers and filters 24  in the three 

convolutional layers before the YOLO layers. 

c) obj.data and obj.names files: 

Create an obj. data file and fill it in like the figure 4.17. it contains the number 

of classes, a path to the test and train files, a path to object name file which has 

all the class names in it also contain the backup path where all the weights of 

the model are saved throughout the training process. Create a backup folder in 

google drive and put its correct path in this file. 

 

figure 4. 17 obj. data file 

 

Also, need to create a new file within a code or text editor called obj. names that 

have one class name per line in the same order as in the classes.txt from the 

dataset generation step. 
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figure 4. 18 obj. names file   

 

Then upload both obj.data and obj.names file to the drive  

 

d) Process.py file: 

 The py script generates the files train.txt and test.txt, with train.txt containing 

paths to 90% of the images and test.txt containing paths to 10% of the images. 

 

4.4.5 Build darknet 

In this step make some changes in the make file in the darknet folder. There are multiple 

options like GPU, CUDNN, OpenCV, and so on. This project requires utilizing some of the 

parameters. So in the properties, we have to make the following changes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# change makefile to have GPU and OPENCV enabled 

# also set CUDNN, CUDNN_HALF and LIBSO to 1 

 

%cd darknet/ 

!sed -i 's/OPENCV=0/OPENCV=1/' Makefile 

!sed -i 's/GPU=0/GPU=1/' Makefile 

!sed -i 's/CUDNN=0/CUDNN=1/' Makefile 

!sed -i 's/CUDNN_HALF=0/CUDNN_HALF=1/' Makefile 

!sed -i 's/LIBSO=0/LIBSO=1/' Makefile 

 

# set GPU=1 and CUDNN=1 to speedup on GPU 

# set CUDNN_HALF=1 to further speedup 3 x times (Mixed 

precision on Tensor Cores) GPU: Volta, Xavier, Turing and higher 

# set AVX=1 and OPENMP=1 to speedup on CPU (if error occurs then set AVX=0) 

# set ZED_CAMERA=1 to enable ZED SDK 3.0 and above 

# set ZED_CAMERA_v2_8=1 to enable ZED SDK 2.X 
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Enable CUDNN, CUDNN_HALF, and LIBSO. LIBSO  going to allow us to get access to 

darknet using Python so that's key. Colab occasionally shifts dependencies around, at 

the time of authorship this makefile works for building darknet on colab. The further 

step is to run the make command this is going to build all the binaries files and get  

darknet properly running so that can access the darknet.py file and run its Python 

functions to have the yolov4 detection's run. 

 

 

 

 

 

 

The building process will not be interrupted once it gets interrupted there should be a 

chance to change the directory. 

 

Following that, copy all of the files from the yolov4 folder to the darknet directory. 

/mydrive/yolov4/darknet is the new working directory. 

 

Except for the labels folder within the data folder, which is necessary for writing label 

names on the detection boxes, clean the data and cfg files. The directory contains an 

excessive number of unnecessary files. It will be easier to navigate if it is cleaned. 

 

So just delete all other files from the data folder and clean up the cfg folder; the custom 

config file is already in the yolov4 folder on Google Drive. 

 

 

 

 
 
 
 
 
There are several steps to copy every file as follows; 

 

a) Unzip the obj.zip dataset and its contents so that they are now 

in /darknet/data/ folder. 

 

 

 

# build darknet   

!make 

 
 

# Clean the data and cfg folders first except the labels folder in data which is requ

ired 

 

%cd data/ 

!find -maxdepth 1 -type f -exec rm -rf {} \; 

%cd .. 

 

%rm -rf cfg/ 

%mkdir cfg 

 

!unzip /mydrive/yolov4/obj.zip -d data/ 
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b) Copy the yolov4-custom.cfg file so that it is now in /daknet/cfg/ folder. 

 

 
 
 
 
           

           After copying, verified the file location by !ls command. 

 

c) Copy the obj.names and obj.data files from the google drive so that they are now 

in /darknet/data folder. Then check the directory using shell command. 

 

d) The last step is to copy the process.py file to the current darknet directory. 

  

 

4.5 Training custom detector 

 

4.5.1 Generating train.txt and test.txt files 

In order to create the train.txt and test.txt files, it requires to run the command to run 

process.py. This will create train.txt and test.txt files inside the darknet/data folder. 

Also, it is good way to check the directory whether the file is inside the folder or not by 

using a shell command. List the contents of the data folder to check if the train.txt & test.txt 

files have been created. 

 

 
 

 
 
 

The above process.py creates the two files train.txt and test.txt. where train.txt has 

path to 90% of the images and test.txt has 10% of the images. In this case two hundred 

images for train.txt and 22 images for test.txt. 

 

 

 

 

!cp /mydrive/yolov4/yolov4-custom.cfg cfg 

 

# verify if your custom file is in cfg folder 

!ls cfg/ 

 

# run process.py (this creates the train.txt and test.txt files in our darknet/data

 folder ) 

!python process.py 
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4.5.2 download the pre-trained yolov4 weights 

 

For next step is to download the pre-trained weights. Here author need to take an 

approach called transfer learning. Download a model which is pre trained for some sort 

of classes and the author try to optimize on top of that model with the custom image 

data set used in this project. For this project using pre-trained YOLOv4 weights which 

have been trained up to 137 convolutional layers. Run the following command to 

download the YOLOv4 pre-trained weights file from the repository. 

 

 

 

 

 

The neural network has three sorts of yolo layers. In here supposed to change the last 

few of layers of the transfer learn model to configure it for the custom dataset. That’s 

why in the configuration file changed the last 3 yolo layers and preceding conv layers 

(includes classes and filters) to this three yolo layers. YOLOv4 has been trained already 

on the coco dataset which has 80 classes that it can predict. Grab these pretrained 

weights so that can run YOLOv4 on these pretrained classes and get detections. So, this 

model which is pre trained for some sort of classes now change this model for this 

project’s purposes.  Utilize this model and then transfer learning model to train on top 

of the classes that are created in this project. This step downloads the weights for the 

convolutional layers of the YOLOv4 network. By using these weights, it helps author’s 

custom object detector to be way more accurate and not have to train as long.  

 

4.5.3 Training the model 
 

Now it is ready to start training the custom model yolov4 apple detector over the classes 

that specified. This training could take several hours depending on iterations chose in 

the configuration file. As per the custom configuration file it has 6000 iterations. train 

the model until the average loss does not show any significant change for a while. 

 

 

 

 

# Download the yolov4 pre-trained weights file 

!wget https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_

optimal/yolov4.conv.137 

 

# train our custom detector!  

!./darknet detector train data/obj.data cfg/yolov4-custom.cfg yolov4.conv.137 -

dont_show -map 
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Considering the above command giving path to the detector detector and then the train, 

if it is for testing the model then have to write test over here. Then giving the relative 

path to the obj.data file. Then call the edited cfg file, also putting down the pre-trained 

weights. In the command ‘-dont_show’ flag stops chart from popping up since Colab 

Notebook can't open images on the spot, ‘-map flag’ overlays mean average precision 

on chart to see the accuracy of the model,the map flag added for the  validation dataset. 

Sometimes, the runtime just dies intermittently. the only disadvantage, colab GPU can 

use it for 12 hours in a row, after that it will be disconnected. As it takes 6000 iterations 

to finish the training. The mAP parameter gives the mean average precision.. There are 

several interruptions during training. So saving the trained weights are more important. 

After each 100 iterations, the weights are stored as yolov4-custom last. Weights in the 

yolov4/training folder inside the google drive (The backup route in the “obj.data” file.). 

From the last trained weights can resume the training from where the process left. 

 

 

4.5.4 Check performance from training chart 
 

The performance can be verified either by  chart or by checking the mean average 

precision.. So the first method is to verify the performance by analyzing the graph. 

Before that specify the helper function ‘imShow’. For that need to import some of the 

basic libraries cv2, matplotlib. Read the image using cv2 by giving path. Matplotlib to 

show the image within the notebook. Instead of using OpenCV to plot images, choosing 

Matplotlib because it's a little more difficult to visualize in a notebook. Matplotlib utilizes 

RGB channels while cv2 utilizes BGR format to read the image. Next to define the height 

and width of the image and RGB channel (which is 3). So the image has width, height 

and channel but yolo net takes the image in different format. So it required to convert 

the image in different format by the cubic interpolation method.  The helper function can 

provide the resulting color image with a desired shape. 
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figure 4. 19 performance graph (average loss vs iterations) 

 

Figure 4.19 shows a chart of average loss vs. iterations. For the custom detector model 

to be accurate, it should aim for a loss under 2. During the training the loss value went 

up quickly going down and after a number of iterations its going to steady off. And every 

1000 iterations it plot mAP value it went up quickly and then it starts to be recede and 

it matches up with the loss and the accuracy increase that much loss is barely going 

down. This is because of overfitting. The training should not be stopped unless the 

certain to overfit. The spot where the early stopping point where will not be getting 

better model for the training. 
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4.5.5 Check the mAP (Mean average precision) 

 

The performance can be verified by checking the mean average precision of each saved 

weight file that obtained from the training. The weights files are saved after each 

thousand iterations. In total there are 6000 iterations. Also have the best weights file 

inside backup folder. The higher the mAP the better it is for object detection. If the final 

weight file has overfitted then it is important to run these mAP commands to see if one 

of the previously saved weights is a more accurate model for the custom defined classes. 

Run the following command to check the mAP for each and every saved weights. 

 

 

 

 

 

 

The results for each weight are given below in table 4.1. 

 

 

 

 

 

 

 

 

 

 

##WE can check the mAP for all the saved weights to see which gives the best res-

ults ( yolov4-custom_best.weights here is the saved weight change 

the number like 4000, 5000 or 6000 snd so on ) 

 

!./darknet detector map data/obj.data cfg/yolov4-

custom.cfg /mydrive/yolov4/training/yolov4-custom_1000.weights -points 0 

 



71 
 

Custom 

weights 

Avg 

IoU(%) 

mAP (%) Green 

apple, Ap 

(%) 

Ripe  

apple, Ap 

(%) 

Raw 

apple, Ap 

(%) 

1000 64.19 88.89 75.45 93.22 98 

2000 78.76 99.93 100 100 99.8 

3000 79.36 96.62 90.07 100 99.8 

4000 85.34 96.43 92.68 100 100 

5000 83.96 100 100 100 100 

6000 89.10 100 100 100 100 

Best weights 63.24 85.81 84.83 86.98 85.62 

Table 4. 1 performance results 

 

 

Custom 

weights 

Threshold 

value 

Precision 

(%) 

Recall (%) F1 

score(%) 

1000 0.25 85 93 89 

2000 0.25 98 100 99 

3000 0.25 95 100 98 

4000 0.25 98 100 99 

5000 0.25 97 100 98 

6000 0.25 98 100 99 

Best weights 0.25 78 81 80 

 

Table 4. 2 Model performance evaluation with a 0.25 dataset at a resolution of 416 x 416 pixels 

 

Since around 4000 area the getting overfit, the average loss was not going down. 
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4.6 Testing custom detector 

Once the training finished, next step is to test the model. Before committing testing 

there should have to make some changes in the custom configuration file. For training 

the batch and subdivisions are changed to 64 and 16 respectively. In testing both 

parameters should be 1. This can be done either manually or by a command. 

• change line batch to batch=1 

• change line subdivisions to subdivisions=1 

 

4.6.1 Run apple detector on image 
 

For testing the model build and install OpenCV from source code using visual studio and 

cmake. By installing CMake can configure generate binary source code. Then installed 

visual studio to build source code. Building and installing OpenCV from source and 

verifying it works.  

Next step is to darknet build for YOLO version 4. Downloaded the darknet repository to 

the PC. Form program files NVIDIA GPU computing copy cuDNN.64_7.dll and openv 

build.dll files to the darknet build folder. Then modify 2 files (Yolo_CP_DLL .VCX, 

Yolo_CPP_DLL.VCX) inside the darknet target folder change it to the version of CUDA. 

Here the author using CUDA 10.1. once it finished open the build file using visual studio 

and change properties enable OpenCV path to the visual studio and change the 

directories as per the requirement in the properties, Then build darknet. 

To run object  detection on yolov4 need to download the weight files that trained before. 

The weight files copied to the darknet folder. Everything set for detection. 

For testing images from open image dataset and free stock photos. By using the 

following command tried to run the custom detector on image. The thresh flag sets the 

minimum accuracy required for object detection. In here for testing the custom detector 

sets the threshold value to 0.3. 

Then run the command below; 

 

 



73 
 

 

 

 

 

 

 

 

 

 

 

 

The following are the different test results: 

 

 

 

 

 
figure 4. 20 Test result 1:multiple objects with or without occlusion 

 

# run your custom detector with this command 

!./darknet detector test data/obj.data cfg/yolov4custom.cfg /mydrive/yolov4/traini

ng/yolov4-custom_best.weights /mydrive/yolov4/test_images/img4.jpg -

thresh 0.3 

imShow('predictions.jpg') 
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From the figure its shows the prediction completed within 100.75 milli-seconds. the 

image contains multiple object with or without occlusion. 

 

 

 
figure 4. 21 Test result 2: illumination variation 

Figure 4.21 consist of an image with high illumination and a shading condition. The 

prediction completed within 32.73 milliseconds. Each and every classes were detected 

successfully with the confidence score. 

 

One of the major issues that is faced in apple detection is occultation. So the test image 

3 is fed to the model for testing. Then the result shows in figure 4.22, most of the apples 

were detected with high accuracy even some of them are covered by leaves even though 

they were detected accurately.  
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figure 4. 22 Test result 3: clusters of apples 
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From test result 3 figure 4.21 has given the idea that YOLO apple detector can identify 

each apples individually from a group of apples. That would be very beneficial in real 

time detection. From the results it is clear that the yolo apple detector can run detection 

over a collection of apples in a apple tree more precisely. 

 

  

 

 
figure 4. 23 Test result 4: clusters of apple 

 

 

In figure 4.22 number of apples are detected according to their classes. The predictions 

finished within 32.88 milli-seconds.  
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4.6.2 Run apple detector over realSence camera and webcam -

images  

 

The Logitech C615 is connected to the computer to capture the image in different angles 

and lighting conditions and the test results are as follows; 

 

 

 

figure 4. 24 webcam captured image with high saturation 

 

 

figure 4. 25webcam captured image under shading condition 
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The images captured from realsence color camera are tested and verified the accuracy.  

 

 

 

 
figure 4. 26 Tested on realsence image 

 

The RGB image tested using apple detector and the above figure 4.26 shows the apples 

detected with confidence score 57% and 100% for both apples within the class ripe 

apple. 

 

To access the webcam, use code from Google Colab's Code Snippets, which has a 

number of helpful code functions for completing different tasks. For the purpose of this 

thesis, use the Camera Capture code snippet, which runs JavaScript code to use 

computer’s webcam. The code snippet will take a webcam frame, which we will then use 

to detect objects using custom YOLOv4 model (given in the appendix).  The code snippet 

provided by Google Colab for camera capture except for the last two lines which run the 

detector on the saved image that used in the previous command in the above section 

4.6.1. 



79 
 

In the webcam part, a couple helper functions run this cell here is just converting the 

images from JavaScript objects into open CV and vice versa. because to actually utilized 

the webcam within Google colab workstation.  running the yoloV4 on webcam images, 

have this take photos function that is just taken from the code snippets of camera 

capture here and customized. so this is the base code for this function right here in 

camera capture that just utilizes JavaScript code so implements JavaScript code in order 

to access the local machines webcam. 

Once the JavaScript image is captured, then running the detections using dark net helper 

function that ran up above and then looping through the labels confidences and 

bounding boxes of each detection within detection and then drawing it on to the image 

itself and then just saving the image. 
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figure 4. 27 Test run over web cam image 

  

 

In the figure 4.23 consists of image and test results. Here 3 apples are detected such 

as two ripe apples with confidence score 100% and 98% respectively. Also detected one 

raw apple with 100% confidence score. 

 

4.6.3 Run apple detector over video file 
 

The process is same as that of section 4.6.1, upload the captured video file to the drive. 

After that run the following command ( The threshold flag sets the minimum accuracy 

required for object detection ). 

 

 

 

 

 

 

 

 

 

 

This will give an output that will saved to the google drive.  This used to check the 

accuracy and speed of detection. 

# run your custom detector on a video with this command. This saves the output 

video with the detections in the output path 

 

!./darknet detector demo data/obj.data cfg/yolov4-

custom.cfg /mydrive/yolov4/training/yolov4-custom_best.weights -

dont_show /mydrive/yolov4/test_videos/test_vid1.mp4 -i 0 -

out_filename /mydrive/yolov4/test_videos/result_vid1.mp4 -thresh 0.5 
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figure 4. 28 Detection output 

Figure 4.28 gives the detection over a video . The average frame rate obtained from the 

result was 52.0.fps that was a better frame rate for the apple detector model.  

 

4.6.4 Run apple detector over a live stream 
 

 

The method used was, open up a video stream add the input so constantly running a 

video stream running custom yolov4 for detections on each frame of the video because, 

yolov4 runs in milliseconds. So it will be possible. Then write custom bounding box of 

yolov4 onto a blank RGB  image as an overlay. All the image has is the bounding boxes 

nothing else and then overlay that back onto the video stream and then it results in a 

real time yolov4 object detection. it's technically one frame behind because you're 

getting the detections on one frame and applying the overlay of those detections onto 

the next frame. 

 

Darknet have a darknet.py file with several commands and functions within this python 

file. So for this test utilizing this in order to do the yolov4 detection. There's dark net 

helper function that just passes in the image the width and the height of the image.  it 

is going to go ahead and run the detect image command from the darknet.py file on the 

image and get those detections. so it does all of the preprocessing of the image rescaling 

it and then gets a ratio for the bounding boxes and actually does the detections and 

then returns them. 

 

in order to do the detection, run video stream, which is a JavaScript code, and run the 

helper function. open the video stream, and then do the detections on each frame so 

while true it's going to keep on looping through those detections and saving it into this 
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blank array. the ‘bbox_array’ this is the transparent overlay. Then saving the rectangle 

bounding box and the text of the class onto the blank overlay and then it is just going 

to write it bbox update the overlay each frame then gets passed into the video frame. 

There is a little delay because of the one frame behind. In actual case it is negligible. 

Video frames are fed as input to yolov4. 

 
figure 4. 29 Process flow of live stream detection 

 

With YoloV4, was able to achieve 25 FPS using GPU, with better precision that can be 

enhanced further. And, using the CPU, it was able to achieve a frame rate of roughly 7 

frames per second. here used a 416 pixel image size. it is possible to increase the frame 

rate by lowering the image size by a factor of 32. 

 

4.6.4 Exporting weights and deployement 
 
 
The model weight files can be used for inference over new scenarios and images. To do 

so,  point the model at the dataset’s test set, and point the detection script to the custom 

weights. The trained apple detector weight files are currently in the darknet format and 

this can be easily converted into other framework such as pytorch, Tensorflow, 

Tensorflow Lite, TensorRT. For the easiness of conversion, the apple detector model is 

converted to ONNX format. ONNX Runtime is a cross-platform inference and training 

machine-learning accelerator. ONNX is a model representation that allows to smoothly 

go from one environment to the next. 

  

Live 
stream

Result

Yolov4 
detections

camera
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5 SUMMARY 

The development of an apple detection and localization method using the YOLOv4 object 

detection model was detailed in this thesis. The proposed solution for detecting the 

apples to check whether it is ripe or not, using YOLO algorithm was trained and validated 

on RGB images. Custom datasets gathered from a complex environment helps overcome 

the limitations of deep learning. The data augmentation methods introduced in the 

YOLOv4 such as bag of freebies, Mish activation are reduce missed detections and 

inaccuracies and make the model more intelligent. 

Three classes such as ripe apple, raw apple, and green apple were created. To test the 

developed model by using a realSence camera and C615 webcam has applied yolo for 

object detection and localization in an image. The algorithm divides the image into 

regions and predicts bounding boxes and probabilities for each region using a single 

neural network applied to the entire image. The estimated probabilities are used to 

weight these bounding boxes. following non-max suppression, which ensures that the 

object detection algorithm identifies each object only once. After those outputs the 

object with its bounding box and confidence score. 

Although the time took to training the model was greater than expected. The saved 

weights are utilized for testing. The performance of the model was verified by checking 

the mean average precision of each weight file. The mAP for the yolov4-

custom_6000.weight file is 100% and the average IoU is 89.10%. class prediction for 

green, ripe and raw apple are 100%. The average loss after 6000 iterations was 0.130, 

which’s good for this model to identify the fruit. . The mAP for the yolov4-

custom_best.weight file is 85.81% and the average IoU is 63.24%. The probabilities of 

each class obtained from the best weights are 84.83%, 86.98%, and 85.62% for green 

apple, ripe apple, and raw apple respectively. From the experimental results it is clear 

that the apple detector model outperformed all the other traditional detection models 

with respect to the average precision. YOLO based apple detector achieved 0.98, 1, 0.99 

on precision, recall and F1 score on apple detection. 

Test results showed that the proposed method could accurately identify the object 

extremely faster than previous methods. The average time required for prediction was 

estimated at 32 milli-seconds on a Tesla T4  48 milli-seconds on RTX 2080 super. The 

major challenges of object detection addressed at the beginning of the work like 

overlapping, clustering, and occlusions were resolved. 
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5.1 Limitations  
 

The google colab GPU is free but sometimes it shows errors like connection errors, the 

runtime just fails to work from time to time. Only accessible for 12 hours in a row. 

Somehow this might be influencing the training, it may cause intermittent breaks while 

training. It takes hours to finish the process.  

Generating the image dataset is a tedious task. There are hundreds of verities of apples 

out there. Each of them has different criteria for predicting whether they are ripe or not. 

So it needs to create a dataset separately for each one for better accuracy. This work 

only considered the Paula red, Gala specious, and green apples. This will hopefully work 

for red,  lady Sugarbee, and Granny Smith as well. 

Check the apple detector outdoor is not possible right now. Because in Estonia, apple 

harvesting has done in August. An indoor test has been done to validate the model. 

The varying lighting conditions are a concern here. The algorithm has some limitations 

to the higher exposure. The configuration has the exposure, saturation, and hue 

parameters. In some cases, a higher exposed image gives false detections. This may 

create shadows over the fruits. 

 

5.2 Future work 
 

The detector developed in the thesis has been tested in laboratory indoor conditions. 

The next step is to test the practical application. Then verify the precision of the model.  

There is some other deep learning framework implement YOLO such as TensorFlow and 

PyTorch. This framework requires dependencies to implement yolo. The same detector 

model can be built in this framework to check the possible outcomes. 

The developed model mainly focused on day-time harvesting purposes. A suitable night 

vision can be integrated into the detector for all-weather conditions. The lighting system 

and illumination factor should be considered. 

The further step will be merging the vision and manipulation part altogether to evaluate 

the accuracy of harvesting. Export the object coordinates to the manipulator and lead 

the end effector to harvest the fruit. Combine the whole harvesting time for the model. 

On a single farm, 10-15 breeds of apple will be there. Every one of them has different 

criteria to predict ripeness. Each data can be collected and train the model according to 
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the custom data and use the weights for detection and improve the vision algorithm in 

terms of accuracy and speed. Instance segmentation and grasping estimation process  

have to be considered in the future work for further development of the project. 

Same model data can be used for training the model using YOLOv4-Tiny, which is the 

smaller version of YOLOv4. But, emphasize model speed and and a smaller model size 

for inference even on a smaller hardware like Jetson nano and RasPi. 
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5 KOKKUVÕTE 

Käesolevas lõputöös kirjeldati üksikasjalikult õunte tuvastamise ja lokaliseerimise 

meetodi väljatöötamist, kasutades YOLOv4 objektide tuvastamise mudelit. Väljapakutud 

lahendus õunte tuvastamiseks, et kontrollida, kas need on küpsed või mitte, kasutades 

YOLO algoritmi, treeniti ja valideeriti RGB-piltidel. Komplekssest keskkonnast kogutud 

kohandatud andmekogumid aitavad ületada süvaõppe piiranguid. YOLOv4-s kasutusele 

võetud andmete suurendamise meetodid, nagu bag of freebies, Mish'i aktiveerimine, 

vähendavad vahelejäänud tuvastusi ja ebatäpsusi ning muudavad mudeli 

intelligentsemaks. 

Loodi kolm klassi, nagu küps õun, toores õun ja roheline õun. Testida väljatöötatud 

mudelit, kasutades realSence'i kaamerat ja C615 veebikaamerat on rakendanud yolo 

objekti tuvastamiseks ja lokaliseerimiseks pildil. Algoritm jagab pildi piirkondadeks ja 

ennustab iga piirkonna jaoks piiritlevad kastid ja tõenäosused, kasutades kogu pildi 

suhtes rakendatud ühte neuronivõrku. Hinnangulisi tõenäosusi kasutatakse nende 

piiritlevate kastide kaalumiseks. järgides mitte-maksimumtasakaalu, mis tagab, et 

objekti tuvastamise algoritm tuvastab iga objekti ainult üks kord. Pärast seda 

väljastatakse objekt koos selle piiritletud kasti ja usaldusskooriga. 

Kuigi mudeli treenimiseks kulunud aeg oli oodatust suurem. Salvestatud kaalusid 

kasutatakse testimiseks. Mudeli toimivust kontrolliti iga kaalufaili keskmise täpsuse 

kontrollimisega. Yolov4-custom_6000.weight faili mAP on 100% ja keskmine IoU on 

89,10%. rohelise, küpse ja toore õuna klassiprognoos on 100%. Keskmine kaotus pärast 

6000 iteratsiooni oli 0,130, mis on hea selle mudeli jaoks puuvilja tuvastamiseks. . mAP 

faili yolov4-custom_best.weight jaoks on 85,81% ja keskmine IoU on 63,24%. Parimate 

kaalude põhjal saadud iga klassi tõenäosused on vastavalt 84,83%, 86,98% ja 85,62% 

rohelise õuna, küpse õuna ja toore õuna puhul. Katsetulemustest selgub, et õuna 

tuvastamise mudel on keskmise täpsuse poolest parem kui kõik teised traditsioonilised 

tuvastamismudelid. YOLO-l põhinev õunadetektor saavutas õunte tuvastamisel täpsuse, 

tagasikutsumise ja F1-skoori 0,98, 1, 0,99. 

Katsetulemused näitasid, et kavandatud meetod suudab objekti väga täpselt tuvastada 

äärmiselt kiiremini kui varasemad meetodid. Prognoosimiseks kuluvaks keskmiseks 

ajaks hinnati 32 milli sekundit Tesla T4-l 48 milli sekundit RTX 2080 superil. Töö alguses 

käsitletud peamised objektide tuvastamise probleemid, nagu kattuvus, klasterdamine 

ja oklusioonid, said lahendatud. 
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5.1 Piirangud  

Google Colab GPU on tasuta, kuid mõnikord näitab see vigu, nagu näiteks ühendusvead, 

aeg-ajalt lihtsalt ei tööta. Kättesaadav ainult 12 tundi järjest. Kuidagi võib see mõjutada 

treeningut, see võib põhjustada treeningu ajal aeg-ajalt katkestusi. Protsessi lõpetamine 

võtab tunde.  

Pildi andmestiku genereerimine on tüütu ülesanne. Seal on sadu erinevaid õunu. Igaühel 

neist on erinevad kriteeriumid, et ennustada, kas nad on küpsed või mitte. Seega tuleb 

parema täpsuse saavutamiseks luua iga õuna jaoks eraldi andmekogum. Käesolevas 

töös vaadeldi ainult Paula punaseid, Gala erilisi ja rohelisi õunu. Loodetavasti töötab see 

ka Red Delicious, Pink Lady Sugarbee ja Granny Smithi puhul. 

Kontrollida õunade detektor väljas ei ole praegu võimalik. Sest Eestis on õunakoristus 

tehtud augustis. Mudeli valideerimiseks on tehtud siseruumides test. 

Siinkohal on probleemiks erinevad valgustingimused. Algoritmil on mõned piirangud 

suurema valgustuse suhtes. Konfiguratsioonil on ekspositsiooni-, küllastus- ja värvitooni 

parameetrid. Mõnel juhul annab kõrgema valgustusega pilt valedetektorid. See võib 

tekitada varjud puuviljade kohale. 

 

5.2 Tulevased tööd 

Töös välja töötatud detektorit on katsetatud laboratooriumi sisetingimustes. Järgmise 

sammuna on vaja katsetada praktilist rakendust. Seejärel kontrollida mudeli täpsust.  

On mõned teised süvaõppe raamistikud, mis rakendavad YOLO-d, nagu TensorFlow ja 

PyTorch. See raamistik nõuab Yolo rakendamiseks sõltuvusi. Sama detektorimudelit 

saab ehitada selles raamistikus, et kontrollida võimalikke tulemusi. 

Välja töötatud mudel keskendus peamiselt päevase saagikoristuse eesmärkidele. Sobiva 

öise nägemise saab integreerida detektorisse kõikvõimalike ilmastikutingimuste jaoks. 

Arvesse tuleks võtta valgustussüsteemi ja valgustustegurit. 

Edasine samm on nägemise ja manipuleerimise osa ühendamine kokku, et hinnata korje 

täpsust. Objekti koordinaatide eksportimine manipulaatorisse ja lõpptoimija juhtimine 

vilja koristamiseks. Ühendage kogu koristusaeg mudeli jaoks. 

Ühes põllumajandusettevõttes on 10-15 õunasorti. Igaühel neist on erinevad 

kriteeriumid küpsuse prognoosimiseks. Iga andmeid saab koguda ja treenida mudelit 

vastavalt kohandatud andmetele ning kasutada kaalusid tuvastamiseks ja parandada 
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nägemisalgoritmi täpsuse ja kiiruse osas. Projekti edasiseks arendamiseks tuleb 

tulevases töös kaaluda instantside segmenteerimist ja haaramise hindamisprotsessi. 

Sama mudeli andmeid saab kasutada mudeli treenimiseks, kasutades YOLOv4-Tiny, mis 

on YOLOv4 väiksem versioon. Kuid rõhutada mudeli kiirust ja ja väiksemat mudeli 

suurust järelduste tegemiseks isegi väiksemal riistvaral, nagu Jetson nano ja RasPi. 
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APPENDICES 

 
The Codes used in the project data files test results everything available in the 

following github repository 

 

https://github.com/jesil94/apple-harvesting-robot-vision-system 
 


