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Abstract 

Developers face many different problems every day. Some of them are not so 

complex, but the majority of them demand a lot of time in order to find the best solution. 

Consequently, a lot of researches have been conducted in this area, especially, in the field 

of graph theory. Why graph theory is so significant? The answer is simple: it can be applied 

to many different areas, such as technology, mathematics and science.  

Well-known graph theory problems are graph coloring and finding the maximum 

clique in an undirected graph, or shortly - MCP. And these problems are closely related. 

Vertex coloring is usually considered an initial step before the start of finding maximum 

clique of a graph. The maximum clique problem is considered to be of NP-hard complexity, 

which means that there is no algorithm found that could solve this kind of problem in a 

polynomial time. This problem is of high importance since it could be encountered in a 

wide range of applications, for example, in computer or social network analysis. Therefore, 

it is crucial to develop a new or improve the currently known algorithm, which is meant to 

solve such kind of a problem. 

This thesis starts from describing basic concepts of graph theory and its problems to 

introduce the main topic. After that, 17 coloring algorithms are introduced, described and 

tested against random and DIMACS instances of graphs and those, which showed the best 

results, are taken for further research. Then we move to algorithms that solve the problem 

of maximal clique. Almost all of them depend on the coloring of the vertices, which is 

made in the process of execution. In this work, we are going to investigate the effects of 

applying different types of coloring algorithms on modern maximum clique algorithms. 

The algorithms, which were chosen as the main objects of research, were initially invented 

in Tallinn University of Technology and are called VColorU and VRecolor-BT-u. At first, 

we perform an extensive experimental evaluation of these algorithms together with selected 

variants of coloring algorithms. In order to receive appropriate results, we conducted tests 

on random and DIMACS graph instances. Furthermore, to see if there was any influence 
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depending on number of vertices of the graph, random tests were run with graphs having 

different densities. The results of our study show the time used by the algorithms to 

determine the maximal clique, the number of colors used in the process of vertex coloring 

and number of branches analyzed by maximum clique algorithm after vertex coloring. 

It could be clearly seen from the results that some of the coloring algorithms helped 

to improve the VColorU and VRecolor-BT-u algorithms on graphs with certain densities. 

There are also some promising ideas brought up at the end of our work that might become a 

good start for future researches. 

This thesis is written in English and is 126 pages long, including 4 chapters, 80 

figures and 29 tables. 
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Annotatsioon 

Heuristilise Värvimise Erinevate Tehnikate Rakendamise Mõju 

Kaasaegsetele Suurima Kliki Leidmise Algoritmidele 

Tarkvaraarendajad puutuvad igapäevaselt kokku paljude probleemidega. Mõned 

neist pole eriti keerulised, kuid enamuste probleemide parima lahenduse leidmiseks kulub 

palju aega. Sellest tulenevalt on selles valdkonnas tehtud palju teaduslikke uuringuid, eriti 

graafiteooria vallas. Miks on graafiteooria nii oluline? Vastus on lihtne: seda saab kasutada 

paljudes erinevates valdkondades nagu näiteks tehnoloogia, matemaatika ning 

loodusteadused.  

Teada tuntud graafiteooria probleemid on graafi värvimine ja maksimaalse arvu 

klikkide leidmine mittesuunalikus graafikus (inglise keeles lühidalt: MCP). Ja need 

probleemid on tugevalt omavahel seotud. Kõrgeima tipu esmast värvimist peetakse 

esimeseks sammuks enne, kui asutakse leidma graafi maksimaalsete klikkide arvu. 

Maksimaalsete klikkide probleemi peetakse keerukaks „NP-hard“ tasemel, mis tähendab sel 

puudub polünoomilise (piiratud) aja jooksul lahendamisega hakkama saav algoritm. See 

probleem on suure tähtsusega, sest võib ilmneda paljudes olukordades, näiteks arvuti- ja 

sotsiaalvõrgustike analüüsis. Seepärast on oluline arendada välja uus algoritm või muuta 

vana paremaks, mis on mõeldud seda tüüpi probleemide lahendamiseks.  

See väitekiri algab peateema sissejuhatuseks graafiteooria põhikontseptsioonide ja 

selle probleemide kirjeldamisega. Peale seda tutvustatakse, kirjeldatakse ja testitakse 

juhuslike ja DIMACS tüüpi graafidega 17 värvimise algoritmi ja need, mis annavad 

parimaid tulemusi võetakse täiendava uurimise alla. Siis liigume edasi maksimaalsete 

klikkide arvu algoritmide juurde. Peaaegu kõik need sõltuvad tippude värvimisest, mis 

tehakse ära protsessi täitmise käigus. Selles töös uurime graafide erinevat tüüpi 

värvimisalgoritmide mõju tänapäevastele maksimaalse klikkide arvu algoritmidele. 
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Algoritmid, mis valiti selle uurimistöö peamisteks objektideks, töötati esmalt välja Tallinna 

Tehnikaülikoolis ning nende nimed on „VColorU“ ja „VRecolor-BT-u“. Alguses viime läbi 

nende algoritmide ulatusliku katsehindamise koos valitud värvimise algoritmide 

variantidega. Selleks, et saada sobiv arv tulemusi, viisime katsetusi läbi juhuslikel ja 

DIMACS graafidel. Peale selle, et testida, kas eksisteerib graafide tippude arvust sõltuv 

mõju, viidi läbi juhuslikke katseid erineva tihedusega graafidega. Meie uurimistöö 

tulemused näitavad maksimaalsete klikkide arvu leidmisele kulunud aega, kõrgeima tipu 

värvimise protsessis kasutatud värvide arvu ja maksimaalsete klikkide arvu algoritmi poolt 

analüüsitud harude arvu peale tipu värvimist.  

Tulemustest on selgelt näha, et mõned värvimisalgoritmid aitasid parandada 

„VColorU“ ja „VRecolor-BT-u“ algoritme teatud tihedusega graafide puhul. Meie töö 

lõpus on samuti toodud ära mõned lubavad ideed, mis võivad osutuda tulevaste uuringute 

headeks lähtekohtadeks. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 126 leheküljel, 4 peatükki, 

80 joonist, 29 tabelit. 
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1. Introduction 

1.1. Background of the Study 

The area of this study is graph theory – a rapidly developing branch of 

mathematics, which studies graphs. It could be found in practice in many other fields such 

as sociology, chemistry and even statistical physics. However, it has a great significance in 

computer science. It is a perfect tool for analyzing data and could be applied to different 

scientific problems. Although, we can say that this area is relatively old (it is said that graph 

theory may take its beginning in the long 1736 when Leonhard Euler published his paper 

about Seven Bridges of Königsberg problem [1]), it is rapidly developing since the middle 

of 20th century until now. There are still a lot of different actual problems in this area and, 

therefore, a lot of space for researches. 

But how is it possible to solve different problems with the help of graph theory? 

What is that in general? Well, if you have a very complicated task and do not know how to 

find a solution, then maybe it is possible to represent the whole problem as a graph. But 

firstly it is necessary to introduce the concept of a “graph”.  We consider a graph a set of 

points and lines, which connect some of the points. In other words, it is a set of objects that 

are connected in some way. Specifically, it consists of 2 sets: a set of points, which are 

called vertices, and a set of lines, or edges, which represent relationships between the 

connected vertices. It is a mathematical model, which is a simplified version of the real 

world. So, some real life situations could be converted into graphs. For example, let us take 

the well-known social networking service “Facebook”. Almost everyone uses it and has 

some people added to the Friends’ list. It is possible to simplify this situation and represent 

it as a graph. For example, suppose that all the people registered on Facebook are the 

vertices of our new graph. Then, the relationships between them, or should we say edges, 

represent the fact that the people connected are friends. Very easy. This way by removing 

all the unnecessary details and making a simple mathematical model, which conveys the 
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main idea of the situation, it is possible to solve many different complex problems, which 

we face in the real world. Therefore, it is very important to make researches in the graph 

theory field, to try to improve the currently achieved results or to invent something new, 

which could help to find solutions to graph problems or be revolutionary and beneficial to 

the graph theory in common. 

1.2. Basic Definitions 

In order to proceed, it is necessary to define some terms, which are going to be used 

further in this work. 

Definition 1: Undirected graph 

Let G=(V, E) be an undirected graph. Then, V is a finite set of elements called 

vertices and E is a finite set of unordered pairs of vertices, called edges [2]. It is easier to 

see it on an illustration below (Figure 1). 

 

Figure 1. Graph. 
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Definition 2: Order 

The cardinality of a set of vertices, or just the number of its elements, is called the 

order of a graph and is denoted as n=|V|. 

Definition 3: Size 

The cardinality of a set of edges, or just the number of its edges, is called the size of 

a graph and is denoted as m=|E| [2]. 

Definition 4: Adjacency 

If vi and vj are vertices that belong to one and the same graph and there is a 

relationship between them, which ends up being an edge, then these vertices are adjacent. 

In the mathematical equivalence it can written like this: 𝑣𝑖 , 𝑣𝑗  ∈  𝑉 and {𝑣𝑖 , 𝑣𝑗}  ∈  𝐸.  

Furthermore, we can say that if 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 and {𝑣𝑖 , 𝑣𝑗}  ∉  𝐸, then these vertices are 

nonadjacent (Figure 2). 

 

Figure 2. Adjacent and nonadjacent vertices. 
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Definition 5: Vertex degree 

The degree of vertex v in graph G is the number of edges incident to it [2]. Or, in 

other words, it is the number of this vertex’s neighbors, which are connected to it (Figure 

3). The maximum degree of a vertex in a graph is the number of edges of a vertex with the 

maximum neighbors. The minimum degree of a vertex in a graph is the number of edges of 

a vertex, which has the least neighbors. Usually, the degree of a vertex is denoted as deg(v). 

 

Figure 3. Vertex degree. 

Definition 6: Density 

Density is the ratio of the edges in graph G to the number of vertices of the graph. It 

is defined as g(G). We can define its formula through the previously defined terms 

(definitions 1.2, 1.3), so that it looks as follows: 

𝑔(𝐺) =
2 ∗ 𝑚

𝑛 ∗ (𝑛 − 1)
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Definition 7: Complement graph 

A graph is considered to be complement (Figure 4) if it has the same vertices as 

graph G and any two vertices in this graph are adjacent only if the same vertices are 

nonadjacent in the original graph. So, it is possible to say that this is an inversed variant of 

graph G. Or mathematically it would be 𝑉(�̅�) = 𝑉(𝐺) 𝑎𝑛𝑑 �̅� = {𝑒 ∈   𝐸 ̅, 𝑒 ∉  E} . 

 

Figure 4. Complement graph. 

Definition 8: Simple graph 

A simple graph is considered to be an undirected graph with finite sets of vertices 

and edges, which has no loops or multiple edges. We needed to introduce this term because 

further in this work we are going to use simple graphs for our experiments. 

Definition 9: Subgraph 

A subgraph 𝐺′ = (𝑉′, 𝐸′) is considered to be a subset of the vertices of graph G 

with the corresponding edges. But not all possible edges may be included (Figure 5). This 

means that if vertices vi and vj are adjacent in graph G, then it may happen that on a 

subgraph of graph G they won’t have an edge between them.  𝑉′ ⊆ 𝑉, 𝐸′ ⊆ 𝐸. 
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Figure 5. Subgraph. 

Definition 10: Vertex-induced subgraph 

An induced subgraph 𝐺′ = (𝑉′, 𝐸′)  is considered to be a subset of the vertices of 

graph G with all their corresponding edges (Figure 6).   𝐺[𝑉′] = (𝑉′ ⊆  𝑉, 𝐸′ =

{ (𝑣𝑖, 𝑣𝑗) |𝑖 ≠ 𝑗, (𝑣𝑖, 𝑣𝑗)  ∈ 𝐸, 𝑣𝑖 , 𝑣𝑗  ∈  𝑉′}). 

 

Figure 6. Induced subgraph. 
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Definition 11: Complete subgraph 

A complete subgraph 𝐺′ = (𝑉′, 𝐸′)  is considered to be a subset of the vertices of 

graph G with all their corresponding edges, where each pair of vertices is connected by an 

edge (Figure 7). We should remember this important term because we are going to need it 

later on. 

 

Figure 7. Complete subgraph. 

Definition 12: Clique, maximal clique, clique number 

Clique is a complete subgraph of graph G. The clique 𝑉′ in graph G is called 

maximal if there does not exist any other 𝑉′′, such that 𝑉′ ⊂  𝑉′′. The size of the largest 

maximum clique in graph G is called the clique number. [2] 

Definition 13: Independent set 

An independent set (IS) of a graph G is any subset of vertices 𝑉′ ⊆   𝑉, where 

vertices are not pairwise adjacent. So, it is not hard to conclude that for any clique in graph 

G, there is an independent set in a complement graph 𝐺′ and vice versa. 
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Definition 14: Vertex coloring 

The assignment of colors to vertices of a graph according to algorithm’s 

construction. If we have an undirected graph 𝐺 = (𝑉, 𝐸), then the process of colors 

assignment must follow the rules below: 

 (𝑣𝑖 , 𝑣𝑗) ∈  𝐸, 𝑖 ≠  𝑗 

 𝑐(𝑣𝑖) ≠  𝑐(𝑣𝑗), 𝑖 ≠ 𝑗 

Generally, it means that no adjacent vertex must have the same color, the colors of 

adjacent vertices must be different. 

This is the main tool that we are going to use in our work. 

Definition 15: Color class 

A color class is known to be a subset of vertices that belong to a certain color. In 

other words, all the similarly colored vertices belong to one color class.      

Definition 16: Chromatic number 

A chromatic number of a graph G is considered to be the smallest number of colors 

needed to make a proper coloring of graph G [3]. Or we should say that it is the smallest 

number k for which there exists a k-coloring of graph G [2]. It is usually denoted by χ(𝐺). 

Definition 17: Heuristic algorithm 

An algorithm is considered to be heuristic if it finds an approximate solution to the 

problem in acceptable time. There are many complex problems that need to be solved. But 

sometimes algorithms take too much time in order to find the best available solution. Why 

should we wait so long if we could just find a solution, which is acceptable, but may not be 

the best one there is? That is the main principle of the heuristic algorithm. It gives a 

considerable solution in a relatively short amount of time. 
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Definition 18: Tie 

Situation when vertices have the same saturation degree. 

1.3. Graph problems 

As it was mentioned before, there is a lot of space for researches in the field of 

graph theory. Many problems stay acute even nowadays waiting for someone to find a 

better solution. In this work, we are going to run into several important problems: 

maximum clique, maximum independent set and coloring problem. 

Let’s start with the maximum clique problem, or shortly MCP. The main problem 

is to find the maximal possible clique, or should we say maximal complete subgraph, of a 

graph. This means that every two vertices must be pairwise adjacent, joined by an edge 

(Figure 7). The problem is classified as NP-hard (there are a lot of good books, which have 

detailed information about complexity, for example “Computer and intractability. A guide 

to the theory of NP-completeness” by Garey M.R. and Johnson D.S.), the solutions of 

which is very hard to find by means of conventional methods. Many algorithms and its 

modifications have been produced to find the maximum clique. The most famous among 

them are the algorithm that was introduced by Carraghan and Pardalos in 1990 and the one, 

made by Östergård in 2002 [3]. Due to their popularity and performance, these algorithms 

became a base for other modifications made specifically to improve the quality and 

decrease the time spent on finding the maximum clique. The problem of finding the 

maximum clique has many applications in practice. For example, it could be used in data 

analyses, for designing error-correction codes and even for computer vision. That is why 

we can assume this a very important problem and finding a better algorithm would 

contribute a lot into the current situation. 

Another similar problem is the finding of maximal independent set (MIS). It 

means that we need to find a subset of vertices that are pairwise nonadjacent or, in other 

words, none of the vertex in this set must be connected to other vertices of that set (as 

stated by definition 13). The IS is called maximal only if there are no vertices that could be 

added to the current maximal independent set without ruining its structure. As this problem 
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is closely connected with maximal clique problem, MIS problem is considered to be of NP-

hard complexity as well. Also, as stated above, MCP and MIS problems are related in such 

a way that if we have a clique in a graph, then this clique will be an independent set in the 

complement graph and vice versa (Figure 8). 

 

Figure 8. Clique and IS.  

And the last problem that will be encountered in our study is graph coloring 

problem, or GCP. The main idea is to find the least possible number of colors for coloring 

a particular graph. It means that any two vertices that have a relationship must be colored 

differently (definition 14). GCP is considered to be a NP-complete problem. It has a lot in 

common with MIS problem, because all the vertices that share the same color, or are in one 

color class, can be called an independent set. There are many algorithms made in this field. 

Also heuristics have been widely used for this problem, for example, a well-known iterative 

Greedy, made by Welsh and Powell [4], or DSatur algorithm, which was developed by 

Brelaz. We will talk about them more precisely in Chapter 2. 

1.4. Research Goals 

Now that all the definitions and basic concepts are described, we can move on to 

revealing the actual goal of our study. 
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There have been developed quite a lot effective algorithms for the MCP problem. 

We have already mentioned some of them in the previous subchapters. But the algorithms 

we are going to take are closely connected to the Tallinn University of Technology. The 

first one is called VColor-u and was developed in 2005 by Deniss Kumlander. The second 

algorithm is new, developed only in 2015, and is called VRecolor-BT-u. Its author is 

Aleksandr Porošin. We are going to describe both of them later in Chapter 3, but for now it 

is necessary to mention that these algorithms work perfectly not on all types of graphs. 

According to the results, conducted by Deniss Kumlander in his work, VColor-u works 

effectively on graphs with densities more than 60% [3]. From the results of Aleksandr 

Porošin’s master’s thesis, is was found that VRecolor-BT-u algorithm performs well on low 

to mid densities. Both algorithms use the coloring heuristics under the hood, which is called 

Largest-First. Largest-First coloring algorithm is a sequential heuristic algorithm, which is 

very fast and provides a decent result in terms of number of colors. However, there are 

many algorithms that surpass it in the number of colors and sometimes even in time. The 

question arises immediately: would the change of coloring algorithm help to improve the 

MCP algorithm itself? That is what we are going to find out in our study. First, we are 

going to compare different coloring algorithms between themselves according to their 

results in time and number of colors. Next we will modify the maximum clique algorithms 

to make them interchangeable in terms of coloring algorithms, so that it would be easy to 

change the coloring algorithm. And, finally, we are going to conduct our own tests using 

the DIMACS and random graphs with different densities to see if there are any 

performance improvements. 

As the topic of this thesis is quite extensive, the following goals were determined 

for our research: 

1. Investigate known heuristic coloring algorithms. 

2. Define the most efficient coloring algorithms in terms of found color classes. 

3. Study the influence of heuristic coloring algorithms on modern maximum clique 

algorithms (VColor-u, VRecolor-BT-u). 

4. Compare performance of maximum clique algorithms with different coloring 

algorithms and determine if there are any improvements. 
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1.5. Outline of the Study 

Our document is divided into five chapters.  

Chapter 1 is mainly a theoretical part of the work. It makes a brief review of the 

background of our study, describes the main definitions and basic concepts used in this 

work. As well as that, it reveals the goal of our research and describes briefly the main 

methods used to achieve it. 

Chapter 2 introduces different coloring algorithms, which are going to be used later 

in the project, their history, different variations and comparison. This allows us to 

understand how these algorithms should help to improve the maximum clique algorithm. 

In order to work with a certain algorithm, it is necessary to know the details about it. 

So, Chapter 3 explains the reasons of choosing maximum clique algorithms for our 

research, briefly describes them, the coloring that they use and their basics. Furthermore, it 

is told about the improvement of the maximum clique algorithms. All the details about how 

the algorithms were modified, which coloring algorithms were used and the results of this 

work are described in this block. 

And, finally, in Chapter 4 it is possible to find the summary of the work and 

possible future improvements. All the conclusions could be found in this chapter.
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2. Coloring Algorithms 

2.1. Overview 

There are a lot of applications that use a large number of different parameters. Let 

us say we have a network, where are dozens of nodes. Each node communicates with the 

nodes that are in the neighborhood and are reachable to it. Imagine that every such 

communication costs time and money. Sometimes it is necessary to find nodes that are 

connected to each other not directly, but via an intermediate node. It is possible to model 

this network as a graph, which has nodes as vertices and its communication links as their 

edges. Now that we have the graph, we can turn to the help of a coloring algorithm to solve 

such kind of a problem. 

The graph coloring problem is a well-known problem. Its goal is to assign labels to 

vertices in such a way that no adjacent vertices share the same color. The number of colors 

used in the process must be as low as possible, thus making the GCP’s primary task to 

minimize this number. These kinds of problem are widely spread and could be found in 

many computing applications. A striking example of the area, where this problem arises 

very frequently, is timetabling and scheduling because of the many conflict situations that 

may occur in the process of allocation of resources. In the first chapter we mentioned that 

GCP problem is of NP-hard complexity, making it very hard to solve. So, resorting to a 

heuristic approach seems to be very reasonable. It may not have the best performance but 

can provide one with a solution in a relatively short amount of time.  

Many algorithms have been developed to solve the graph coloring problem 

heuristically. But Greedy remains to be the basic algorithm to assign colors in a graph. It 

provides a relatively good solution in a small amount of time. The order, in which the 

algorithm colors the vertices, plays a major role in the process and heavily affects the 

quality of the coloring. Therefore, there are many algorithms, which employ different 

ordering heuristics to determine the order before coloring the vertices. These algorithms are 
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mostly based on Greedy but use additional vertex ordering to achieve better performance. 

As a rule, they surpass Greedy in the number of colors used, producing better results but 

taking more time to complete. The most popular ordering heuristics are: 

a. First-Fit ordering - the most primitive ordering existing. Assigns each vertex a 

lowest possible color. This technique is the fastest amount ordering heuristics. 

b. Degree base ordering – uses a certain criteria to order the vertices and then 

chooses the correct one to color. Uses a lot more time compared to First-Fit 

ordering, but produces much better results in terms of the number of used colors. 

There are many different degree ordering heuristics, but he most popular among 

them are: 

 Random: colors the vertices of a graph in random order or according to 

random degree function, i.e. random unique numbers given to every vertex; 

 Largest-First: colors the vertices of a graph in order of decreasing degree, 

i.e. it takes into account the number of neighbors of each vertex; 

 Smallest-Last: repeatedly assigns weights to the vertices of a graph with the 

smallest degree,  and removes them from the graph, then colors the vertices 

according to their weights in decreasing order [5]; 

 Incidence:  sequentially colors the vertices of a graph according to the 

highest number of colored neighbors; 

 Saturation: iteratively colors the vertices of a graph by the largest number 

of distinctly colored neighbors; 

 Mixed/Combined: uses a combination of known ordering heuristics. For 

example, saturation degree ordering combined with largest first ordering, 

which is used only to solve situations, when there is a tie, i.e. saturation 

degree of some vertices is the same. 

Sequential algorithms tend to do a lot of tasks that could have been executed 

simultaneously. That is why many popular algorithms have their parallel versions. In a 

parallel application, graph coloring is performed in order to partition tasks into subtasks. It 

means that a certain work that is associated with ordering of vertices or their coloring could 
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be done concurrently. This way it is possible to get a good balance in performance of a 

coloring algorithm. 

Further in this work we are going to describe popular sequential and parallel 

algorithms, their implementations and results. All of the algorithms have been implemented 

using C# language. 

2.2. Sequential algorithms 

2.2.1. Greedy 

The original Greedy algorithm was introduced by Welsh and Powell in 1967 [4]. It 

iterates over the vertices in a graph and assigns each vertex a smallest possible color, which 

is not assigned to any adjacent vertex, i.e. no neighbor must share the same color. As was 

mentioned before, it is possible to say that vertices, which are colored by one color, belong 

to the same color class. If it is impossible to place the vertex into the current color class, 

then a new color is created. The algorithm can be represented in pseudo-code as follows 

(Figure 9): 

 1  Let 𝐺 = (𝑉, 𝐸) 

2  For 𝑖 ≔ 1 to 𝑖 ∶= Number of vertices:  

3   𝑐𝑗 = min 𝐶 , where 𝐶 = { 1, 2, 3, … , 𝑚 } 

4   Try to color 𝑣𝑖  with 𝑐𝑗  

5   If no color was found: 

6    Create new color class 𝑚 ∶= 𝑚 + 1 

7    Color 𝑣𝑖  with 𝑐𝑚  

 

 

Figure 9. Greedy pseudo-code. 

This heuristics is very simple and efficient in terms of time. However, the number 

of used colors may be not as low as desirable. So, the quality of this algorithm stays 

relatively low. There could always be found such initial orderings that will dramatically 
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improve the quality. Nevertheless, Greedy remains to be the basic algorithm because of its 

speed of execution. 

2.2.2. Largest-First 

Welsh and Powell also suggested an ordering for the greedy algorithm called largest 

first. It is based on vertices’ degrees. The algorithm orders the vertices according to the 

number of neighbors that each of them has and then starts with the greedy coloring. The 

pseudo-code can be seen at Figure 10. 

 1  Let 𝐺 = (𝑉, 𝐸) 

2  Order vertices bydeg⁡(𝑣) descending 

3  For 𝑖 ≔ 1 to 𝑖 ∶= Number of vertices:  

4   𝑐𝑗 = min 𝐶 , where 𝐶 = { 1, 2, 3, … , 𝑚 } 

5   Try to color 𝑣𝑖  with 𝑐𝑗  

6   If no color was found: 

7    Create new color class 𝑚 ∶= 𝑚 + 1 

8    Color 𝑣𝑖  with 𝑐𝑚  

  

Figure 10. Largest-First pseudo-code. 

The basic idea of this algorithm is to take care of the vertices with the largest 

number of neighbors as early as possible because they may contain the highest possible 

number of conflicts. It works approximately 10-20% better than the Greedy algorithm in 

terms of the number of colors, whereas the time of completion is almost the same. 

2.2.3. Largest-First V2 

This is a slightly modified version of Largest-First algorithm. In this algorithm more 

than one vertex could be colored in each iteration, i.e. after coloring the vertex with the 

largest number of neighbors, the algorithm also assigns the same color to all the vertices, 

which follow the rules of coloring - no adjacent vertices must share the same color, and, 
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finally, it removes these vertices from the graph. It is described briefly in the following 

pseudo-code (Figure 11): 

 1  Let 𝐺 = (𝑉, 𝐸) 

2  Order vertices by deg⁡(𝑣) descending 

3  𝑈 = 𝑉 

4  𝐶 = {  } 

5  While  𝑈 ≠ ∅:  

6   Add new color (𝑐𝑗 ) to 𝐶 

7   Take the first vertex u from U 

8   Color u with 𝑐𝑗  

9   Try to color as many vertices as possible with 𝑐𝑗  

    10   Remove the colored vertices from 𝑈 

 

Figure 11. Largest-First V2 pseudo-code. 

To show how the algorithm colors the graph, let us go through every step of it. Let 

us imagine that we have a graph with six vertices as on Figure 12.  

 

Figure 12. Graph to color. 

At first, we have to order the vertices by decreasing degree. The outcome would be 

as follows: B (3), C (3), E (2), F (2), A (1), D (1). If the algorithm finds a tie, then it just 
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takes the first vertex in the list (different functions can be used to determine the winner, for 

example, random numbers). After ordering, the algorithms takes the vertex B and colors it, 

let’s say, in red. Then, it tries to color as many vertices as possible in the same color 

(Figure 13). 

 

Figure 13. LF: iteration one. 

So, after the first iteration we have the following situation: B, E and D are colored 

red and removed from the list. The remaining ones are C (3), F (2), A (1). When it comes to 

the second iteration, the LF takes the next color like green and colors the vertex C. After it 

colors the remaining ones, as they are nonadjacent (Figure 14). 

 

Figure 14. LF: iteration two. 
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This is the whole process. In this example it is possible to use only 2 colors to color 

the whole graph.  

As can be seen from Figure 11, the structure of the code and the steps needed for the 

coloring are a little bit different than in the first variation. Although, the algorithm’s 

performance is the same in terms of the number of used colors if compared with the first 

edition. The time is also almost the same, sometimes even better, however, on the whole 

the difference is insignificant. 

2.2.4. Largest-First V3 

Based on the second version we made a third edition of the Largest-First algorithm. 

The main idea of the algorithm is the same as in V2, however, this time there will be a 

reordering of vertices in each iteration, meaning that if the vertex is removed from the 

graph, then its neighbor’s degree is decreased. The pseudo-code can be found below 

(Figure 15). 

 
1  Let 𝐺 = (𝑉, 𝐸)  

2  𝑈 = 𝑉 

3  𝐶 = {  } 

4  While 𝑈 ≠ ∅:  

5   Order vertices by 𝑑𝑒𝑔⁡(𝑢) descending 

6   Add new color (𝑐𝑗 ) to 𝐶 

7   Take the first vertex u from U 

8   Color u with 𝑐𝑗  

9   Try to color as many vertices as possible with 𝑐𝑗  

    10   For each neighbor of colored vertices: 

    11    Decrease its degree 

    12   Remove the colored vertices from 𝑈 

 

Figure 15. Largest-First V3 pseudo-code. 
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Surprisingly, this version of Largest-First gives the best results among them, 

although, it takes a little bit longer for it to finish the coloring of a graph.  

2.2.5. DSatur 

This heuristic algorithm was developed by Daniel Brelaz in 1979 [6]. The core idea 

of it is to order the vertices by their saturation degrees. This means that reordering happens 

in each iteration. The algorithm orders the vertices by decreasing saturation degree, i.e. the 

largest number of distinct colors used by neighbors. If a tie occurs, then the vertex is chosen 

by the largest number of uncolored neighbors. By assigning colors to a vertex with the 

largest number of distinctly colored neighbors, DSatur minimizes the possibility of setting 

an incorrect color [3]. Here is the pseudo-code of the algorithm (Figure 16): 

 

1  Let 𝐺 = (𝑉, 𝐸) 

2  𝑈 = 𝑉 

3  While  𝑈 ≠  ∅:  

4   Order vertices by decreasing saturation degree 𝑑𝑒𝑔(𝑢) 

5   If a tie, then order by descending number of colored neighbors 

6   Take the first vertex u from U 

7   Find the minimum color 𝑐𝑗  not used in its neighborhood 

8   Color u with 𝑐𝑗  

      9   For each neighbor of u: 

    10    Increase its saturation degree if color is not in the neighborhood 

    11    Decrease the number of uncolored neighbors 

    12   Remove the colored vertex from 𝑈 

 

Figure 16. DSatur pseudo-code. 

The algorithm works a lot better than the Greedy algorithm, approximately 27-30%. 

The number of colors used is indeed a lot smaller than if using Greedy, however, it comes 

at a cost of time, which 3-4 times slower. Anyway, if DSatur is going to be used only as a 
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coloring algorithm in a bigger algorithms than the time it uses is insignificant if compared 

to the time of the whole algorithm. 

2.2.6. DSatur V2 

There is another interesting version of DSatur that is worth mentioning [7]. This 

edition of the algorithms uses a little bit different concept. At first, it finds a largest clique 

of graph and assigns each a distinct color. Then, it just removes the newly colored vertices 

from the graph. After this procedure, the algorithm executes as the previous DSatur. It 

would be easier to see it on Figure 17. 

 

1  Let 𝐺 = (𝑉, 𝐸) 

2  𝑈 = 𝑉 

3  Find the largest clique  𝑈∗ of 𝑈 

4  Assign each vertex from 𝑈∗ a possibly low distinct color 

5  𝑈 = 𝑈  \  𝑈∗ 

6  While  𝑈 ≠  ∅:  

7   Order vertices by decreasing saturation degree 𝑑𝑒𝑔(𝑢) 

8   If a tie, then order by descending number of colored neighbors 

9   Take the first vertex u from U 

    10   Find the minimum color 𝑐𝑗  not used in its neighborhood 

    11   Color u with 𝑐𝑗  

    12   For each neighbor of u: 

    13    Increase its saturation degree if color is not in the neighborhood 

    14    Decrease the number of uncolored neighbors 

    15   Remove the colored vertex from 𝑈 

 

Figure 17. DSatur V2 pseudo-code. 

In order to find the largest clique and not spend a lot of time, we have chosen to use 

the Greedy algorithm. But wait, you would not agree with me, stating that this algorithm is 

for coloring. Yes, that is correct. However, it is possible to find the clique by inverting the 

graph and finding the color class with the largest number of vertices inside. This is the case. 
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The greedy algorithm takes a complement graph, finds the largest independent set and 

colors it with a distinct color. Then, removes these vertices from the graph and starts 

working as the first version of DSatur. Although, the performance stays the same in terms 

of number of colors used and time. 

2.2.7. Incidence degree ordering (IDO) 

This ordering was firstly introduced by Daniel Brelaz [6] and was modified by 

Coleman and More in their work [8]. In one word, it is a modification of the DSatur 

algorithm. The main principle of this heuristic is to order vertices by decreasing number of 

the vertices’ colored neighbors. If a tie occurs, it can be decided, which vertex is going to 

be chosen, by the usage of random numbers. The coloring itself is done by the Greedy 

algorithm. The pseudo-code is on Figure 18. 

 1  Let 𝐺 = (𝑉, 𝐸) 

2  𝑈 = 𝑉 

3  While  𝑈 ≠  ∅:  

4   Order vertices by decreasing number of colored neighbors 

5   If a tie, then order by descending random number 

6   Take the first vertex u from U 

7   Find the minimum color 𝑐𝑗  not used in its neighborhood 

8   Color u with 𝑐𝑗  

      9   For each neighbor of u: 

    10    Increase its degree 

    11   Remove the colored vertex from 𝑈 

 

Figure 18. IDO pseudo-code. 

The performance of this algorithm is almost the same as with Largest-First, 

however, the time consumption is about 2 times more compared to the Largest-First. But it 

is faster than the DSatur algorithm, although, the number of colors is larger. 
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2.2.8. MinMax 

The MinMax algorithm was introduced by Hilal Almara’Beh and Amjad Suleiman 

in their work in 2012 [9]. The main function of this algorithm is to find the maximum 

independent set, but it could be used for coloring purposes as well because independent sets 

are color classes. 

The algorithm starts by finding the vertex with minimum degree. If a tie exists, then 

it takes the vertex with the lowest original number, colors it, places into the independent set 

list and then removes it and its neighbors from the local graph. The same procedure is 

repeated until there are no vertices to choose from. Then it removes the newly colored 

vertices from the main graph and starts over but this time taking the vertex with maximum 

degree. The algorithm alternates the ordering in each iteration. This can be seen from the 

pseudo-code on Figure 19. 
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1  Let 𝐺 = (𝑉, 𝐸) 

2  𝑈 = 𝑉 

3  𝑢𝑠𝑒𝑀𝑎𝑥 = 𝑓𝑎𝑙𝑠𝑒 

4  𝑐 = 1 

5  While  𝑈 ≠  ∅:  

6   𝑙𝑜𝑐𝑎𝑙𝐺𝑟𝑎𝑝ℎ =  𝑈 

7   While 𝑙𝑜𝑐𝑎𝑙𝐺𝑟𝑎𝑝ℎ ≠  ∅: 

8    If useMax: 

9     Find vertex with max degree 

    10    Else: 

    11     Find vertex with min degree 

    12    Color the vertex with 𝑐 

    13    Remove this vertex and its neighbors from localGraph 

    14   𝑐 = 𝑐 + 1 

    15   𝑢𝑠𝑒𝑀𝑎𝑥 = ! 𝑢𝑠𝑒𝑀𝑎𝑥 

    16   Remove the colored vertices from 𝑈 

 

Figure 19. MinMax pseudo-code. 

The MinMax algorithm works almost as the Greedy algorithm in terms of the 

number of colors used, but works 2.5 times longer. The results are not so good, compared 

to DSatur or even the largest first degree ordering. Nevertheless, the unique option of this 

algorithm is to gather as many vertices as possible in one color class and it may help us 

further. 

2.3. Mixed/combined algorithms 

2.3.1. IDO-LDO 

This algorithm is a combination of incidence degree ordering and largest-first 

ordering heuristics. As a primary heuristics we use IDO. If a tie occurs, then it will be 

decided, which vertex is going to be taken, by the largest number of neighbors. So, 
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basically, it is the same IDO algorithm but with the add-in of LDO. This can be clearly seen 

on the Figure 20. 

 1  Let G = (V, E) 

2  𝑈 = 𝑉 

3  While  𝑈 ≠  ∅:  

4   Order vertices by decreasing number of colored neighbors 

5   Then order by decreasing number of neighbors 

6   If a tie, then order by descending random number 

7   Take the first vertex 𝑢𝑖  from U 

8   Find the minimum color 𝑐𝑗  not used in its neighborhood 

9   Color  𝑢𝑖  with 𝑐𝑗  

    10   For each neighbor of 𝑢𝑖: 

    11    Increase the number of colored neighbors 

    12    Decrease the number of neighbors 

    13   Remove the colored vertex from 𝑈 

 

Figure 20. IDO-LDO pseudo-code. 

This algorithm works slightly better than the original Largest-First in terms of the 

number of colors used, however, it takes longer to execute than the Largest-First. 

2.3.2. IDO-LDO-Random 

IDO-LDO-Random algorithm is another modified IDO algorithm. This time the 

random numbers’ function was added to decide in a situation of a tie. At first, the algorithm 

orders the vertices by the largest number of colored neighbors, then by the largest number 

of neighbors and then, if there are two or more vertices with the exact same details, the one 

with the largest random number is chosen. There is no need to include the pseudo-code for 

this particular algorithm because it is absolutely the same as the previous one with the 

exception that random numbers have been added. 
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In most cases the performance of this algorithm is better than of Largest-First, IDO 

or IDO-LDO. But the speed of its execution is slower. Nevertheless, it was worth 

mentioning this kind of algorithm as well. 

2.3.3. LDO-IDO 

This modification was introduced by Dr. Hussein Al-Omari and Khair Eddin Sabri 

in their work in 2006 [10]. The basic heuristic for this algorithm is the Largest-First. If a tie 

occurs, then the IDO heuristic decides, which vertex to take. On the whole, this is almost 

the same algorithm as the Largest-First V3 with an IDO function inside, in one word, the 

first ordering is being done by the largest number of neighbors and then by the largest 

number of colored neighbors. The pseudo-code could be found on Figure 21. 

 1  Let 𝐺 = (𝑉, 𝐸)  

2  𝑈 = 𝑉 

3  𝐶 = {  } 

4  While  𝑈 ≠ ∅:  

5   Order vertices by deg⁡(𝑢𝑖) descending 

6   Then if a tie, order by the number of colored neighbors decreasing 

7   Add new color (𝑐𝑗 ) to 𝐶 

8   Take the first vertex u from U 

9   Color u with 𝑐𝑗  

    10   Try to color as many vertices as possible with 𝑐𝑗  

    11   For each neighbor of colored vertices: 

    12    Decrease its degree 

    13    Increase the number of colored neighbors 

    14   Remove the colored vertices from 𝑈 

 

Figure 21. LDO-IDO pseudo-code. 
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This algorithm works more efficiently than the Greedy algorithm in terms of the 

quality and slightly better than the Largest-First and Largest-First V2. However, it uses 

much more time to accomplish its goal. 

2.3.4. DSatur-LDO 

This modification of the DSatur algorithm was also introduced by Dr. Hussein Al-

Omari and Khair Eddin Sabri in their work in 2006 [10]. The algorithm works as DSatur 

but if a tie occurs, then Largest-First algorithm steps into the action to solve the conflict. 

According to the results, this heuristic works a little better than the original DSatur 

within the same amount of time. 

2.3.5. DSatur-IDO-LDO 

In this algorithm ties are resolved by Incidence Degree Ordering at first, then the 

remaining ties are resolved by the Largest Degree Ordering [11]. 

On the whole, this algorithm outperforms the DSatur and DSatur-LDO heuristic 

regardless the fact that it uses a little bit more time to complete. It is quite an effective 

modification to use further in our work. 

2.4. Parallel algorithms 

2.4.1. Jones and Plassmann algorithm 

The algorithm was firstly proposed by Jones and Plassmann in their work in 1993 

[12]. The algorithm is based on the Lubys parallel algorithm [13]. The core idea was to 

construct a unique set of weights at the beginning that would be used throughout the 

algorithm itself. For example, random numbers. Any conflict of the same random numbers 

is solved by the vertex number. Each iteration the JP algorithm finds the independent set of 

a graph, i.e. all the vertices, which weight is higher than the weight of the neighboring 

vertices, and then assigns colors to these vertices using the Greedy algorithm. Every action 

is done in parallel. The pseudo-code can be seen on Figure 22. 
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1  Let 𝐺 = (𝑉, 𝐸)  

2  𝑈 = 𝑉 

3  While  𝑈 ≠ ∅:  

4   For each 𝑢 ∈ 𝑈 do in parallel: 

5    find a set of vertices 𝐼, such that ∀𝑣 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑈: 𝑤(𝑢) > 𝑤(𝑣) 

6    For each 𝑖 ∈ 𝐼 do in parallel: 

7     color 𝑖 with minimum color 

8   Remove 𝐼 from 𝑈 

 

Figure 22. JP pseudo-code. 

The JP algorithm can be called Parallel Greedy. It gives almost the same results in 

terms of used colors but does a lot of subtasks simultaneously. The differences can occur 

only because of the random numbers, because they are assigned randomly to every vertex. 

In our work we used random numbers as well, but decided to use the unique ones, 

so that there would not be two vertices with the same random number. 

2.4.2. Jones and Plassmann V2 

Another version of JP algorithm was introduced by William Hasenplaugh, Tim 

Kaler, Tao B. Schardl and Charles E. Leiserson in their work in 2014 [5]. The idea behind 

the modification was to use recursion. The algorithm orders the vertices in the order of 

function 𝑝, which generates random numbers. It starts by partitioning the neighbors of each 

vertex into predecessors (the vertices with larger priorities) and successors (the vertices 

with lower priorities) [5]. If there are no vertices in predecessors, then the algorithm begins 

coloring. It has a helper function named JpColor, which uses recursion to color the vertices. 

The color is chosen by collecting all the colors from the predecessors and choosing the 

smallest possible (this is being done in the GetColor helper function). When the vertex with 

the empty predecessors list is colored, the algorithm searches for changes in this vertex 

successors list for vertices with counter equals to zero (it means that all of the predecessors 

have been colored) and starts coloring them. All this is done in parallel subtasks. It is 

possible to see all the operations from the pseudo-code on Figure 23. 
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 JP(𝑮): 

1  Let 𝐺 = (𝑉, 𝐸, 𝑝)  

2  For each 𝑣 ∈  𝑉 do in parallel: 

3   find a set of predecessors, where 𝑝(𝑢) > 𝑝(𝑣)  

4   find a set of successors, where 𝑝(𝑢) < 𝑝(𝑣) 

5   𝑣. 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = |𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠| 

6  For each 𝑣 ∈ 𝑉 do in parallel: 

7   if list of predecessors =  ∅ 

8    JpColor(𝑣) 

 

JpColor(𝒗): 

1  𝑣. 𝑐𝑜𝑙𝑜𝑟 = 𝐺𝑒𝑡𝐶𝑜𝑙𝑜𝑟(𝑣) 

2  For each 𝑢 ∈  𝑣. 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 do in parallel: 

3   if 𝑢. 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 == 0: 

4    JpColor(𝑢) 

 

GetColor(𝒗): 

1  𝐶 = { 1, 2, 3, … ,  𝑣. 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 + 1} 

2  for each 𝑢 ∈   𝑣. 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 do in parallel: 

3   𝐶 = 𝐶 − 𝑢. 𝑐𝑜𝑙𝑜𝑟 

4  find the minimum color of 𝐶 and return it 

 
 

Figure 23. JP V2 pseudo-code. 

Unfortunately, no big differences were found in the performance of this algorithm 

neither by authors nor during our research. The time and quality is the same as with the 

original JP algorithm. 

As with the original JP algorithm, in our work we decided to use the unique random 

numbers, so that there would not be two vertices with the same random number. 
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2.4.3. Parallel Largest-First 

As a base algorithm for Parallel Largest-First is used JP algorithm, but as the 

heuristic – Largest-First. The main difference is that instead of weights system, used in JP, 

here they are replaced by finding the largest degree of each vertex. However, random 

numbers are not removed. They help to solve situations, when two vertices have the same 

number of neighbors. 

As expected, it works better than the original JP in terms of quality. However, the 

number of colors in the output is compared to this number of the original Largest-First 

algorithm. 

As with the original JP and JP V2 algorithms, in our work we used the unique 

random numbers to exclude the chance that two vertices have the same random number. 

2.4.4. Parallel Smallest-Last 

The Smallest-Last heuristics was firstly introduced by Matula in his work in 1972 

[14]. He tried to improve the Largest-First algorithm by a completely different approach. 

The SL heuristic’s system of weights is more sophisticated and complex. The algorithm 

uses two phases [15]: 

1. Weighting phase 

2. Coloring phase 

The weighting phase begins by finding vertices that correspond to the current 

smallest degree in the graph. These vertices are assigned the current weight and removed 

from the graph. The degree of all the neighbors of deleted vertices are decreased. All these 

steps are repeated until every vertex receives its weight. In our work if a tie occurs, then it 

is decided which vertex to take by random numbers. They are given to every vertex during 

the first phase (Figure 24). In the following pseudo-code it is possible to view the 

weighting phase (Figure 25). 
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Figure 24. Parallel SL - weighting phase. 

 

1  Let G = (V, E)  

2  𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑊𝑒𝑖𝑔ℎ𝑡 = 1 

3  𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑔𝑟𝑒𝑒 = 1 

4  𝑈 = 𝑉  

5  While ∃ 𝐼 = { 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑢 ∈ 𝑈 𝑤𝑖𝑡ℎ deg(𝑢) ≤ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑔𝑟𝑒𝑒 } do in parallel: 

6   For each 𝑖 ∈ 𝐼 do in parallel: 

7    𝑤𝑒𝑖𝑔ℎ𝑡(𝑖) = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑊𝑒𝑖𝑔ℎ𝑡 

8    Remove 𝑖 from 𝑈 

9   𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑊𝑒𝑖𝑔ℎ𝑡 + 1 

    10   𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑔𝑟𝑒𝑒 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑔𝑟𝑒𝑒 + 1 

  

Figure 25. Parallel SL weighting phase pseudo-code. 

After the weighting phase goes the coloring phase. The vertices get colored by their 

weight in decreasing order. So, the vertices with weight 2 are colored at first, then the 

vertices with weight 1 (Figure 26).  
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Figure 26. Parallel SL - coloring phase. 

The algorithm was supposed to be better than the largest first ordering heuristics 

and it does in practice. The number of used colors is smaller than if using the parallel 

largest-first, though the time taken is a little longer. 

As with the original JP and JP V2 algorithms, in our work we used the unique 

random numbers to exclude the chance that two vertices have the same random number. 

2.4.5. Non-Parallel Implementations 

In theory, parallel implementations should perform better, however, this is the place 

where our chosen language’s peculiarities could bring in unexpected and undesired 

changes. The main idea is to compare the behavior of parallel and non-parallel 

implementations of the same algorithm in practice to exclude the possibilities of incorrect 

results. These algorithms include: 

 Greedy From Parallel – non-parallel copy of Jones and Plassmann algorithm; 

 Greedy V2 From Parallel – non-parallel copy of Jones and Plassmann V2 algorithm; 

 Largest-First From Parallel – non-parallel copy of Parallel Largest-First algorithm; 

 Smallest-Last From Parallel – non-parallel copy of Parallel Smallest-Last. 

2.5. Tests and results 

In this chapter we are going to conduct tests to determine the most acceptable 

coloring algorithms that will be used further in our research. In order to choose the best 

algorithms it is necessary to agree on parameters that are going to be compared. In our case 
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they are number of used colors, time in milliseconds and density of the graph. As our 

main test subject we have chosen the Greedy algorithm. The reason of this choice is pretty 

obvious: this algorithm is used in most of the modern maximum clique algorithms because 

its execution time is very low. 

Tests are divided into two groups: random graphs and DIMACS graphs tests. The 

first part of the chapter describes the former tests results and the second one shows the 

analysis of the latter tests results.  

Tests on randomly generated graphs give a general overview of the algorithms’ 

performance. Test cases are divided by graphs density, starting from 10% and ending with 

90%. Results are given in charts and grouped by coloring algorithm’s type (sequential, 

combined or parallel). The computational results of tests are rough and they give us only an 

initial overview of coloring algorithms’ performance. 

DIMACS graphs come from a special package of graphs used in the Second 

DIMACS Implementation Challenge, which provides different types of graphs to make 

tests on. They all have their own structure according to the specific problem they try to 

solve. Results are given in numeric values as well as in the view of graphs and grouped by 

coloring algorithm’s type (sequential, combined or parallel). 

All algorithms were implemented using C# language in Visual Studio 2013 

Professional (.NET Framework 4.5). System characteristics: 

 Processor: Intel Core 2 Quad Q9550 2.83GHz 

 RAM memory: 8GB 

 Operating System: Windows 7 professional 64-bit 

2.5.1. Randomly generated graphs 

2.5.1.1. Overview 

First of all, we are going to research the randomly generated graphs. As stated 

above, it will give us a picture of the algorithms, their performance and consumed time.  
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For each density starting from 10% and up to 90% a new random graph was 

generated and tested with all the algorithms that we had. 

Due to quite large number of graphs, which show algorithms’ execution time, for 

readability purpose it was decided to place them in Appendix 1 – Coloring algorithms: 

Randomly Generated Graphs Test Results. 

2.5.1.2. Random graphs’ generation function 

Before we start analyzing the results of randomly generated graphs, it is necessary 

to specify the way these graphs were made. The generation function that was used to 

achieve this goal can be found on Figure 27.  

The randomness of graphs had been achieved by using .NET native Random class. 

The graph itself is an object, which contains the adjacency matrix inside the Values array 

and number of edges in Edges property. The algorithm generates random vertices x and y in 

range from 1 to the specified number of vertices and connects them together by simply 

putting Boolean “true” value into the 2-dimensional array.  

The parameters used by this method are: 

 “nodes” parameter - the number of vertices of a graph; 

  “density” parameter - the specified density of a graph. 
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        public static Graph GenerateGraph(int nodes, double density) 
        { 
            if (density < 0 || density > 1) 
                throw new Exception("0 <= density <= 1"); 
            int numberOfEdges = Convert.ToInt32(Math.Round(nodes * (nodes - 1) * den-
sity / 2, 0)); 
 
            var graph = new Graph 
            { 
                Values = new bool[nodes, nodes], 
                Edges = numberOfEdges 
            }; 
 
            var random = new Random(); 
            Thread.Sleep(40); 
            var random2 = new Random(); 
 
            int x, y; 
            for (int i = 0; i < numberOfEdges; i++) 
            { 
                do 
                { 
                    x = random.Next(0, nodes); 
                    y = random2.Next(0, nodes); 
                } while (x == y || graph.Values[x, y]); 
                graph.Values[x, y] = true; 
                graph.Values[y, x] = true; 
            } 
 
            return graph; 

        } 

 

Figure 27. Random graph's generation function. 
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2.5.1.3. Sequential algorithms 

As can be seen from the charts, every algorithm performs better than the Greedy 

algorithm in terms of number of used colors almost on every density.  

 

Figure 28. Randomly generated graphs tests' results compared in used colors. Sequential algorithms, 

density 10%. 

However, for example, on 40% density IDO and MinMax algorithms’ performance 

is similar to that of the Greedy algorithm (Figure 29). Also it is worth mentioning that in 

some particular cases Largest-First and Largest-First V2 algorithms used the same number 

of colors as the Greedy algorithm, while taking more time to achieve this goal (Figure 29, 

number of vertices – 560; Figure 30, number of vertices - 380). 
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Figure 29. Randomly generated graphs tests' results compared in used colors. Sequential algorithms, 

density 40%. 

 

Figure 30. Randomly generated graphs tests' results compared in used colors. Sequential algorithms, 

density 50%. 
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Figure 31. Randomly generated graphs tests' results compared in used colors. Sequential algorithms, 

density 90%. 

The best results in terms of used colors among all the sequential algorithms 

produced DSatur, DSatur V2 and Largest-First V3. Their performance is much better 

compared to the Greedy algorithm, however, it comes with a cost of taking more time to 

complete (results of consumed time can be seen in Appendix 1 – Coloring algorithms: 

Randomly Generated Graphs Test Results: Sequential algorithms). This behavior can be 

explained by the fact that graph’s vertices undergo a heavy sorting in the process of 

algorithm’s execution unlike the situation with the Greedy algorithm.  

It is also possible to see the dependency of DSatur and DSatur V2 execution time 

from density. The higher the density, the less the time it took for these algorithms to 

complete: from almost 18 seconds on 10% density to 60 milliseconds at 90% density. 

Furthermore, in the beginning it takes slightly more time for DSatur V2 to complete its 

execution compared to DSatur, however, when density reaches 70% the situation changes 

and DSatur V2 begins to outperform its sibling. 
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2.5.1.4. Combined algorithms 

At first sight, it seems that the results of combined algorithms are very similar to the 

sequential ones. There are also three leading algorithms, which this time are: DSatur-LDO, 

DSatur-IDO-LDO and LDO-IDO. Their results in terms of used colors are much better than 

the Greedy one. However, it is possible to find a dependency. The higher the density is, the 

more similar performance of algorithms could be found. From 10% to 70% density we can 

see clear division between these three algorithms and the rest. However, at 80% density and 

higher (Figure 35, Figure 36) the difference begins to vanish, although the lead in the 

number of used colors remains.  

 

Figure 32. Randomly generated graphs tests' results compared in used colors. Combined algorithms, 

density 10%. 

Furthermore, it is possible to clearly see a very strange behavior of IDO-LDO-

Random algorithm at Figure 34 and Figure 35 – it used more colors than the Greedy 

algorithm in some cases. Does it mean that we have a mistake in our algorithm? This 

behavior might be caused by the fact that random numbers are used during execution of 

IDO-LDO-Random algorithm and should be investigated by a separate research. 
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Figure 33. Randomly generated graphs tests' results compared in used colors. Combined algorithms, 

density 30%. 

 

Figure 34. Randomly generated graphs tests' results compared in used colors. Combined algorithms, 

density 50%. 
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Figure 35. Randomly generated graphs tests' results compared in used colors. Combined algorithms, 

density 80%. 

 

Figure 36. Randomly generated graphs tests' results compared in used colors. Combined algorithms, 

density 90%. 
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When it comes to consumed time, then LDO-IDO clearly wins among these three 

(results of consumed time can be seen in Appendix 1 – Coloring algorithms: Randomly 

Generated Graphs Test Results: Combined algorithms), although it is bigger than the same 

of the Greedy one. As mentioned before, this behavior could be explained by the fact that 

graph’s vertices undergo a heavy sorting in the process of algorithm’s execution unlike the 

situation with the Greedy algorithm. The tendency towards taking less time as density rises 

is pointed out for DSatur based algorithms as well. And the fact that DSatur-IDO-LDO 

takes more time than DSatur-LDO could be explained by extra Incidence Degree Ordering 

that takes place during algorithm’s execution. 

2.5.1.5. Parallel algorithms 

It can be seen from the charts that Parallel Largest-First prevails almost in every 

situation. Along with Parallel Largest-First it is necessary to mention the Parallel Smallest-

Last algorithm, however, it shows promising results only at higher densities (80-90%) 

using almost the same amount of colors and at 90% density even outperforming Parallel 

Largest-First algorithm. Parallel Jones and Plassmann and its second version perform very 

similar to the Greedy algorithm, using less or more colors compared to Greedy. 
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Figure 37. Randomly generated graphs tests' results compared in used colors. Parallel algorithms, 

density 10%. 

 

Figure 38. Randomly generated graphs tests' results compared in used colors. Parallel algorithms, 

density 50%. 
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Figure 39. Randomly generated graphs tests' results compared in used colors. Parallel algorithms, 

density 80%. 

 

Figure 40. Randomly generated graphs tests' results compared in used colors. Parallel algorithms, 

density 90%. 
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In terms of time used to complete the task, Parallel Smallest-Last demonstrates the 

worst results (results of consumed time can be seen in Appendix 1 – Coloring algorithms: 

Randomly Generated Graphs Test Results: Parallel algorithms). This behavior is 

understandable, as Parallel Smallest-Last uses more sophisticated weights system in its 

process. The performance of Parallel Largest-First is not far away from Parallel Smallest-

Last algorithm. The only thing that should be noted is the fact that on 30%, 50% and 80% 

density Parallel Largest-First algorithm’s execution time is very similar to Parallel JP 

despite the fact that it uses largest first ordering. However, it could be explained by the fact 

that largest first ordering that is used in Parallel Largest-First algorithm does not consume 

much more time than the weight system in JP algorithm and might be very effective on 

those densities.  

In theory, parallel algorithms’ performance in terms of time should be better, 

however, in practice our implementations show completely opposite results. It seems that 

these particular implementations in .NET do not achieve such figures due to the thread 

management that is happening under the hood of parallel methods. It is possible to draw to 

such a conclusion after looking at performance of algorithms that are not parallel 

representations of our algorithms. They take less time than their parallel siblings do. 

2.5.1.6. Conclusion 

Overall, the majority of algorithms proved to be promising enough to use them in 

maximum clique algorithms. But we should mention the ones that showed the better results 

among others in their group in terms of number of used colors. And these algorithms are: 

 Among sequential: DSatur, DSatur V2 and Largest-First V3; 

 Among combined: DSatur-LDO, DSatur-IDO-LDO and LDO-IDO; 

 Among parallel: Parallel Largest-First and Parallel Smallest-Last. 

Needless to say that these acquired algorithms have the best chances to be used 

further in our research, however, the decision will be based on the DIMACS tests’ results, 

as they will show our algorithms’ performance with graphs that were specially created to 

test algorithms for this specific problem.  
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2.5.2. DIMACS graphs 

2.5.2.1. Overview 

In this subchapter the same algorithms are analyzed on DIMACS graphs, which are 

used to test how algorithms are able to solve specified actual problem. As mentioned 

before, these graphs come from a special package of graphs used in the Second DIMACS 

Implementation Challenge. 

Results are going to be represented in tables and charts. There are going to be three 

tables and two charts.  

The first table shows the number of used colors and consists of five main fields:  

 # - id of DIMACS graph; 

 Graph name – the name of DIMACS graph; 

 Edge density – density of DIMACS graph’s edges in percentage; 

 Min. color number – number of used colors, provided in DIMACS graph. It is the 

minimum number of colors that can be used. 

The second table demonstrates the number of times that one’s algorithm was better 

than the others or used the minimum number of colors. It uses the results of the previous 

table (fields painted in gray color). 

The third table provides information about time consumption of an algorithm in 

milliseconds and consists of two fields: 

 # - id of DIMACS graph; 

 Graph name – the name of DIMACS graph. 

According to results, we are going to decrease the number of coloring algorithms 

that we are going to use further in our research and choose only those, which will show 

better results. 
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The charts are going to show the same information as the first and the third tables 

but graphically. Charts that show us time consumption of coloring algorithms are provided 

for indicative purposes. On some DIMACS tests it is almost impossible to see time bars 

because it is almost or equals to zero. 

2.5.2.2. DIMACS graphs usage 

Before moving on to explaining the received results, it is necessary to show how the 

DIMACS graphs are being used.  

First, the application takes the text files, which contain DIMACS graph’s edges in 

x, y format, as well as graph’s size and number of edges. Then, an appropriate 2-

dimensional array is created after parsing the size and the number of edges and edges are 

added to the graph’s Values array in a similar way that was used for random graphs. 

2.5.2.3. Sequential algorithms 

As can be seen from Table 3, every algorithm showed better results than the Greedy 

algorithm. However, the MinMax algorithm disappointed us with its results, which seem to 

be only slightly better than those of the Greedy one. But among all the sequential 

algorithms, there were some, which produced very impressive results and these are: DSatur, 

DSatur V2 and Largest-First V3. DIMACS tests confirmed the randomly generated graphs 

tests’ results. DSatur V2 was very close to succeed in all DIMACS tests and showed very 

good performance, although it was the slowest among all in most cases being on par with 

the first version of DSatur (Table 4 and Table 5). Largest-First V2 demonstrated that it can 

compete with DSatur algorithm and, although, the number of succeeded attempts is less, it 

is the absolute leader in terms of consumed time among the three best algorithms. 
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# Graph name 
Edge 

density 
Vertices Min. color nr Greedy LF LF2 LF3 DSatur DSatur2 IDO MinMax 

1 1-FullIns_3.col 23% 30 4 8 4 4 4 4 4 5 4 

2 1-Insertions_4.col 11% 67 5 5 5 5 5 5 5 5 5 

3 2-FullIns_3.col 15% 52 5 10 5 5 5 5 5 5 6 

4 2-Insertions_3.col 11% 37 4 4 4 4 4 4 4 4 4 

5 3-Insertions_3.col 7% 56 4 4 4 4 4 4 4 4 4 

6 anna.col 10% 138 11 12 11 11 11 11 11 11 12 

7 ash331GPIA.col 2% 662 4 10 10 10 6 6 6 8 6 

8 david.col 22% 87 11 12 11 11 11 11 11 11 12 

9 DSJC125.1.col 10% 125 5 8 7 7 7 6 6 7 8 

10 DSJR500.1.col 3% 500 12 15 13 13 13 14 14 14 15 

11 fpsol2.i.1.col 10% 496 65 65 65 65 65 65 65 65 65 

12 fpsol2.i.2.col 9% 451 30 30 30 30 30 30 30 30 31 

13 fpsol2.i.3.col 10% 425 30 30 30 30 30 30 30 30 31 

14 games120.col 18% 120 9 9 9 9 9 9 9 9 9 

15 homer.col 2% 561 13 15 13 13 13 13 13 13 13 

16 huck.col 22% 74 11 11 11 11 11 11 11 11 11 

17 inithx.i.1.col 5% 864 54 54 54 54 54 54 54 54 54 

18 inithx.i.2.col 7% 645 31 31 31 31 31 31 31 31 31 

19 inithx.i.3.col 7% 621 31 31 31 31 31 31 31 31 31 

20 jean.col 16% 80 10 10 10 10 10 10 10 10 11 

21 le450_25a.col 8% 450 25 28 26 26 25 25 25 26 28 

22 le450_25b.col 8% 450 25 27 25 25 25 25 25 25 29 

23 miles1000.col 79% 128 42 44 43 43 42 42 42 44 45 

24 miles1500.col 100% 128 73 76 73 73 73 73 73 73 74 

25 miles250.col 10% 128 8 9 8 8 8 8 8 8 9 

26 miles500.col 29% 128 20 22 20 20 20 20 20 20 21 

27 miles750.col 52% 128 31 34 32 32 32 31 31 31 33 

28 mug88_1.col 4% 88 4 4 4 4 4 4 4 4 4 

             

            - best result 

Table 1. Results of the Dimacs tests of the sequential algorithms, showing the number of maximum cliques – part 1. 
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# Graph name Edge density Vertices Min. color nr Greedy LF LF2 LF3 DSatur DSatur2 IDO MinMax 

29 mug88_25.col 4% 88 4 4 4 4 4 4 4 4 4 

30 mulsol.i.1.col 20% 197 49 49 49 49 49 49 49 49 49 

31 mulsol.i.2.col 22% 188 31 31 31 31 31 31 31 31 31 

32 mulsol.i.3.col 23% 184 31 31 31 31 31 31 31 31 31 

33 mulsol.i.4.col 23% 185 31 31 31 31 31 31 31 31 31 

34 mulsol.i.5.col 23% 186 31 31 31 31 31 31 31 31 31 

35 myciel3.col 36% 11 4 4 4 4 4 4 4 4 4 

36 myciel4.col 28% 23 5 5 5 5 5 5 5 5 5 

37 myciel5.col 22% 47 6 6 6 6 6 6 6 6 6 

38 queen5_5.col 100% 25 5 8 7 7 7 5 5 6 8 

39 queen6_6.col 92% 36 7 11 9 9 8 9 9 9 9 

40 queen7_7.col 81% 49 7 10 12 12 11 10 9 13 11 

41 queen8_12.col 60% 96 12 15 15 15 14 14 13 16 15 

42 queen8_8.col 72% 64 9 13 13 13 12 13 11 12 12 

43 queen9_9.col 65% 81 10 16 15 15 13 12 13 14 14 

44 r1000.1.col 3% 1000 20 26 23 23 23 20 21 22 25 

45 r125.1.col 3% 125 5 5 5 5 5 5 5 5 6 

46 r125.1c.col 97% 125 46 51 47 47 47 46 46 49 53 

47 r125.5.col 50% 125 36 44 39 39 40 38 37 37 45 

48 r250.1.col 3% 250 8 9 8 8 8 8 8 8 9 

49 r250.1c.col 97% 250 64 76 68 68 66 65 65 69 70 

50 school1.col 26% 385 14 42 32 32 32 20 14 16 36 

51 will199GPIA.col 3% 701 7 11 10 10 10 7 7 9 10 

52 zeroin.i.1.col 19% 211 49 49 49 49 49 49 49 49 49 

53 zeroin.i.2.col 16% 211 30 30 30 30 30 30 30 30 30 

54 zeroin.i.3.col 17% 206 30 30 30 30 30 30 30 30 30 

55 moonMoser.col 53% 9 3 3 3 3 3 3 3 3 3 

56 mycielski.col 18% 11 2 4 4 4 4 4 4 4 4 

             

            - best result 

Table 2. Results of the Dimacs tests of the sequential algorithms, showing the number of maximum cliques - part 2
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Algorithm # of successes 

Greedy 28 

Largest-First 39 

Largest-First V2 39 

Largest-First V3 43 

DSatur 49 

DSatur V2 52 

IDO 39 

MinMax 29 

Table 3. Sequential algorithms' successes. 

# Graph name 
Time (ms) 

Greedy LF LF2 LF3 DSatur DSatur2 IDO MinMax 

1 1-FullIns_3.col 0 1 9 3 3 2 2 10 

2 1-Insertions_4.col 0 0 0 0 0 0 0 0 

3 2-FullIns_3.col 0 0 0 0 0 0 0 0 

4 2-Insertions_3.col 0 0 0 0 0 0 0 0 

5 3-Insertions_3.col 0 0 0 0 0 0 0 0 

6 anna.col 0 0 0 0 3 3 3 2 

7 ash331GPIA.col 1 9 9 11 90 92 86 45 

8 david.col 0 0 0 0 1 1 7 1 

9 DSJC125.1.col 0 0 0 0 3 3 2 1 

10 DSJR500.1.col 0 5 5 7 52 50 54 27 

11 fpsol2.i.1.col 0 5 6 12 60 52 49 53 

12 fpsol2.i.2.col 0 3 4 8 46 54 38 36 

13 fpsol2.i.3.col 0 3 4 8 42 51 34 31 

14 games120.col 0 0 0 0 2 2 2 3 

15 homer.col 1 6 6 8 58 58 61 49 

16 huck.col 0 0 0 0 1 0 0 0 

17 inithx.i.1.col 1 14 16 28 160 154 161 141 

18 inithx.i.2.col 1 7 9 15 99 118 82 66 

19 inithx.i.3.col 1 7 9 15 96 110 77 62 

20 jean.col 0 0 0 0 1 1 1 1 

21 le450_25a.col 0 5 7 8 66 44 52 29 

22 le450_25b.col 0 5 6 11 71 44 47 40 

23 miles1000.col 0 0 1 2 6 8 3 7 

24 miles1500.col 0 0 0 4 11 9 4 20 

25 miles250.col 0 0 0 2 4 3 3 2 

26 miles500.col 0 0 0 1 3 4 4 2 

27 miles750.col 0 0 0 2 4 5 3 4 

28 mug88_1.col 0 0 0 0 1 1 1 1 

Table 4. Results of the Dimacs tests of the sequential algorithms, showing time - part 1.
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# Graph name 
Time (ms) 

Greedy LF LF2 LF3 DSatur DSatur2 IDO MinMax 

29 mug88_25.col 0 0 0 0 1 1 1 1 

30 mulsol.i.1.col 0 1 2 4 15 11 10 14 

31 mulsol.i.2.col 0 1 1 4 13 11 9 10 

32 mulsol.i.3.col 0 1 1 4 13 13 6 11 

33 mulsol.i.4.col 0 0 1 4 9 8 6 10 

34 mulsol.i.5.col 0 1 1 4 13 9 8 10 

35 myciel3.col 0 0 0 0 0 0 0 0 

36 myciel4.col 0 0 0 0 0 0 0 0 

37 myciel5.col 0 0 0 0 0 0 0 0 

38 queen5_5.col 0 0 0 0 0 0 0 0 

39 queen6_6.col 0 0 0 0 0 0 0 0 

40 queen7_7.col 0 0 0 0 1 0 0 0 

41 queen8_12.col 0 0 0 1 2 3 1 2 

42 queen8_8.col 0 0 0 0 1 1 1 1 

43 queen9_9.col 0 0 0 0 2 2 1 2 

44 r1000.1.col 0 19 29 40 265 323 248 117 

45 r125.1.col 0 0 0 0 2 3 3 2 

46 r125.1c.col 0 0 1 4 32 32 5 24 

47 r125.5.col 0 0 1 5 8 10 3 11 

48 r250.1.col 0 1 2 2 18 25 15 10 

49 r250.1c.col 0 2 5 15 231 229 23 101 

50 school1.col 0 3 11 14 134 136 38 63 

51 will199GPIA.col 2 9 14 18 113 163 104 48 

52 zeroin.i.1.col 0 1 1 4 26 9 11 16 

53 zeroin.i.2.col 0 1 3 2 15 13 12 22 

54 zeroin.i.3.col 0 3 1 3 14 12 10 11 

55 moonMoser.col 0 0 0 0 0 0 0 0 

56 mycielski.col 0 0 0 0 0 0 0 0 

Table 5. Results of the Dimacs tests of the sequential algorithms, showing time - part 2. 
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Figure 41. DIMACS graphs tests' results compared in number of used colors. Sequential algorithms - part 1. 

 

Figure 42. DIMACS graphs tests' results compared in number of used colors. Sequential algorithms - part 2. 
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Figure 43. DIMACS graphs tests' results compared in time (ms). Sequential algorithms - part 1. 

 

Figure 44. DIMACS graphs tests' results compared in time (ms). Sequential algorithms - part 2.
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2.5.2.4. Combined algorithms 

As can be seen from Table 8, the story continues and every algorithm showed better 

results than the Greedy algorithm. And they seem to be very promising. Among all the 

combined algorithms DSatur based algorithms demonstrated the best performance even out 

beating the DSatur V2. DIMACS tests confirmed the randomly generated graphs tests’ 

results: DSatur-IDO-LDO, DSatur-LDO and LDO-IDO are the best among combined 

algorithms. However, if we compare the consumed time, then DSatur-IDO-LDO would be 

the worst, taking too much time to complete (Table 9 and Table 10). LDO-IDO 

demonstrated the better time compared to DSatur based algorithms, however, the number of 

succeeded attempts is considerably smaller. 
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# Graph name Edge density Vertices 
Min. color 

number 
Greedy 

LDO-

IDO 

IDO-

LDO 

LDO-IDO-

Random 

DSatur-

LDO 

DSatur-

IDO-LDO 

1 1-FullIns_3.col 23% 30 4 8 4 4 4 4 4 

2 1-Insertions_4.col 11% 67 5 5 5 5 5 5 5 

3 2-FullIns_3.col 15% 52 5 10 5 5 5 5 5 

4 2-Insertions_3.col 11% 37 4 4 4 4 4 4 4 

5 3-Insertions_3.col 7% 56 4 4 4 4 4 4 4 

6 anna.col 10% 138 11 12 11 11 11 11 11 

7 ash331GPIA.col 2% 662 4 10 6 8 8 6 6 

8 david.col 22% 87 11 12 11 11 11 11 11 

9 DSJC125.1.col 10% 125 5 8 7 7 7 6 6 

10 DSJR500.1.col 3% 500 12 15 13 13 13 13 12 

11 fpsol2.i.1.col 10% 496 65 65 65 65 65 65 65 

12 fpsol2.i.2.col 9% 451 30 30 30 30 30 30 30 

13 fpsol2.i.3.col 10% 425 30 30 30 30 30 30 30 

14 games120.col 18% 120 9 9 9 9 9 9 9 

15 homer.col 2% 561 13 15 13 13 13 13 13 

16 huck.col 22% 74 11 11 11 11 11 11 11 

17 inithx.i.1.col 5% 864 54 54 54 54 54 54 54 

18 inithx.i.2.col 7% 645 31 31 31 31 31 31 31 

19 inithx.i.3.col 7% 621 31 31 31 31 31 31 31 

20 jean.col 16% 80 10 10 10 10 10 10 10 

21 le450_25a.col 8% 450 25 28 25 25 25 25 25 

22 le450_25b.col 8% 450 25 27 25 25 25 25 25 

23 miles1000.col 79% 128 42 44 42 43 43 42 42 

24 miles1500.col 100% 128 73 76 73 73 73 73 73 

25 miles250.col 10% 128 8 9 8 8 8 8 8 

26 miles500.col 29% 128 20 22 20 20 20 20 20 

27 miles750.col 52% 128 31 34 32 31 31 31 31 

28 mug88_1.col 4% 88 4 4 4 4 4 4 4 

           

          - best result 

Table 6. Results of the Dimacs tests of the combined algorithms, showing the number of maximum cliques - part 1.  
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# Graph name 
Edge 

density 
Vertices 

Min. color 

number 
Greedy 

LDO-

IDO 

IDO-

LDO 

LDO-IDO-

Random 

DSatur-

LDO 

DSatur-

IDO-LDO 

29 mug88_25.col 4% 88 4 4 4 4 4 4 4 

30 mulsol.i.1.col 20% 197 49 49 49 49 49 49 49 

31 mulsol.i.2.col 22% 188 31 31 31 31 31 31 31 

32 mulsol.i.3.col 23% 184 31 31 31 31 31 31 31 

33 mulsol.i.4.col 23% 185 31 31 31 31 31 31 31 

34 mulsol.i.5.col 23% 186 31 31 31 31 31 31 31 

35 myciel3.col 36% 11 4 4 4 4 4 4 4 

36 myciel4.col 28% 23 5 5 5 5 5 5 5 

37 myciel5.col 22% 47 6 6 6 7 6 6 6 

38 queen5_5.col 100% 25 5 8 7 7 7 5 5 

39 queen6_6.col 92% 36 7 11 8 10 10 9 10 

40 queen7_7.col 81% 49 7 10 10 12 14 11 10 

41 queen8_12.col 60% 96 12 15 15 15 16 14 14 

42 queen8_8.col 72% 64 9 13 12 15 14 12 11 

43 queen9_9.col 65% 81 10 16 14 15 16 13 14 

44 r1000.1.col 3% 1000 20 26 23 20 20 20 20 

45 r125.1.col 3% 125 5 5 5 5 5 5 5 

46 r125.1c.col 97% 125 46 51 47 48 47 46 46 

47 r125.5.col 50% 125 36 44 38 39 39 38 38 

48 r250.1.col 3% 250 8 9 8 8 8 8 8 

49 r250.1c.col 97% 250 64 76 66 67 67 65 65 

50 school1.col 26% 385 14 42 32 26 26 17 15 

51 will199GPIA.col 3% 701 7 11 10 8 8 7 7 

52 zeroin.i.1.col 19% 211 49 49 49 49 49 49 49 

53 zeroin.i.2.col 16% 211 30 30 30 30 30 30 30 

54 zeroin.i.3.col 17% 206 30 30 30 30 30 30 30 

55 moonMoser.col 53% 9 3 3 3 3 3 3 3 

56 mycielski.col 18% 11 2 4 4 4 4 4 4 

           

          - best result 

Table 7. Results of the Dimacs tests of the combined algorithms, showing the number of maximum cliques - part 2. 
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Algorithm # of successes 

Greedy 29 

LDO-IDO 44 

IDO-LDO 40 

IDO-LDO-Random 41 

DSatur-LDO 51 

DSatur-IDO-LDO 54 

Table 8. Combined algorithms' successes. 

# Graph name 

Time (ms) 

Greedy LDO-

IDO 

IDO-

LDO 

LDO-IDO-

Random 

DSatur-

LDO 

DSatur-

IDO-LDO 

1 1-FullIns_3.col 0 8 2 2 2 2 

2 1-Insertions_4.col 0 0 0 0 0 1 

3 2-FullIns_3.col 0 0 0 0 0 0 

4 2-Insertions_3.col 0 0 0 0 0 0 

5 3-Insertions_3.col 0 0 0 0 0 0 

6 anna.col 0 0 3 6 3 4 

7 ash331GPIA.col 1 11 83 108 90 121 

8 david.col 0 0 1 1 1 1 

9 DSJC125.1.col 0 0 2 3 3 3 

10 DSJR500.1.col 0 7 50 62 51 69 

11 fpsol2.i.1.col 0 11 45 64 60 73 

12 fpsol2.i.2.col 0 8 37 46 44 55 

13 fpsol2.i.3.col 0 8 34 40 42 50 

14 games120.col 0 0 2 3 2 3 

15 homer.col 1 9 58 82 59 77 

16 huck.col 0 0 0 1 1 1 

17 inithx.i.1.col 1 27 142 198 162 203 

18 inithx.i.2.col 1 16 79 100 94 120 

19 inithx.i.3.col 1 15 78 96 92 118 

20 jean.col 0 0 1 1 1 1 

21 le450_25a.col 0 12 53 43 53 78 

22 le450_25b.col 0 9 54 61 66 56 

23 miles1000.col 0 2 4 5 9 11 

24 miles1500.col 0 4 3 7 16 16 

25 miles250.col 0 0 5 3 2 5 

26 miles500.col 0 1 4 5 5 4 

27 miles750.col 0 2 4 5 6 7 

28 mug88_1.col 0 0 1 1 1 2 

Table 9. Results of the Dimacs tests of the combined algorithms, showing time - part 1.
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# Graph name 

Time (ms) 

Greedy LDO-

IDO 

IDO-

LDO 

LDO-IDO-

Random 

DSatur-

LDO 

DSatur-

IDO-LDO 

29 mug88_25.col 0 0 1 1 1 2 

30 mulsol.i.1.col 0 3 10 11 12 13 

31 mulsol.i.2.col 0 4 9 11 14 11 

32 mulsol.i.3.col 0 2 9 7 13 11 

33 mulsol.i.4.col 0 4 9 12 13 15 

34 mulsol.i.5.col 0 4 6 11 14 17 

35 myciel3.col 0 0 0 0 0 0 

36 myciel4.col 0 0 0 0 0 0 

37 myciel5.col 0 0 0 0 0 0 

38 queen5_5.col 0 0 0 0 0 0 

39 queen6_6.col 0 0 0 0 0 0 

40 queen7_7.col 0 0 0 0 1 0 

41 queen8_12.col 0 1 2 3 3 4 

42 queen8_8.col 0 0 1 1 1 1 

43 queen9_9.col 0 0 1 1 1 3 

44 r1000.1.col 0 28 239 361 289 304 

45 r125.1.col 0 0 3 4 3 3 

46 r125.1c.col 0 3 4 7 31 23 

47 r125.5.col 0 2 4 5 13 11 

48 r250.1.col 0 2 24 22 16 16 

49 r250.1c.col 0 17 25 22 199 200 

50 school1.col 0 9 41 45 137 117 

51 will199GPIA.col 2 17 114 173 122 193 

52 zeroin.i.1.col 0 8 7 15 11 19 

53 zeroin.i.2.col 0 6 20 9 10 12 

54 zeroin.i.3.col 0 2 10 13 14 18 

55 moonMoser.col 0 0 0 0 0 0 

56 mycielski.col 0 0 0 0 0 0 

Table 10. Results of the Dimacs tests of the combined algorithms, showing time - part 2. 
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Figure 45. DIMACS graphs tests' results compared in number of used colors. Combined algorithms - part 1. 

 

Figure 46. DIMACS graphs tests' results compared in number of used colors. Combined algorithms - part 2. 
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Figure 47. DIMACS graphs tests' results compared in time (ms). Combined algorithms - part 1. 

 

Figure 48. DIMACS graphs tests' results compared in time (ms). Combined algorithms - part 2.
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2.5.2.5. Parallel algorithms 

As can be seen from Table 13, every algorithm showed better results than the 

Greedy algorithm, however, this time JP and JP2 demonstrated almost the same results as 

the Greedy one. Why is that? The answer is simple: JP and JP2 are parallel representatives 

of Greedy algorithm. On the other hand, Parallel Largest-First and Parallel Smallest-Last 

proved to be the best among parallel algorithms, showing good results. It is possible to say 

that DIMACS tests confirmed the randomly generated graphs tests’ results. However, if we 

compare the consumed time, then Parallel Largest-First and Parallel Smallest-Last would 

be the last among them (Table 14 and Table 15). JP2 seems to take much less time, then 

other parallel algorithms. 
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# Graph name 
Edge 

density 
Vertices 

Min. color 

number 
Greedy JP JP2 PLF PSL 

1 1-FullIns_3.col 23% 30 4 8 4 4 4 4 

2 
1-

Insertions_4.col 
11% 67 5 5 6 6 5 5 

3 2-FullIns_3.col 15% 52 5 10 5 5 5 5 

4 
2-

Insertions_3.col 
11% 37 4 4 4 4 4 4 

5 
3-

Insertions_3.col 
7% 56 4 4 4 4 4 4 

6 anna.col 10% 138 11 12 11 11 11 11 

7 ash331GPIA.col 2% 662 4 10 6 6 8 7 

8 david.col 22% 87 11 12 11 12 11 11 

9 DSJC125.1.col 10% 125 5 8 8 8 6 7 

10 DSJR500.1.col 3% 500 12 15 15 15 13 13 

11 fpsol2.i.1.col 10% 496 65 65 65 65 65 65 

12 fpsol2.i.2.col 9% 451 30 30 31 31 30 30 

13 fpsol2.i.3.col 10% 425 30 30 31 31 30 30 

14 games120.col 18% 120 9 9 10 9 9 9 

15 homer.col 2% 561 13 15 14 15 13  13 

16 huck.col 22% 74 11 11 11 11 11 11 

17 inithx.i.1.col 5% 864 54 54 54 54 54 54 

18 inithx.i.2.col 7% 645 31 31 31 32 31 31 

19 inithx.i.3.col 7% 621 31 31 31 31 31 31 

20 jean.col 16% 80 10 10 10 10 10 10 

21 le450_25a.col 8% 450 25 28 28 28 25 25 

22 le450_25b.col 8% 450 25 27 28 28 25 25 

23 miles1000.col 79% 128 42 44 44 44 43 42 

24 miles1500.col 100% 128 73 76 74 73 73 73 

25 miles250.col 10% 128 8 9 9 10 8 8 

26 miles500.col 29% 128 20 22 21 21 20 20 

27 miles750.col 52% 128 31 34 33 35 32 31 

28 mug88_1.col 4% 88 4 4 4 4 4 4 

          

         - best result 

Table 11. Results of the Dimacs tests of the parallel algorithms, showing the number of maximum cliques - 

part 1.  
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# Graph name 
Edge 

density 
Vertices 

Min. 

color 

number 

Greedy JP JP2 PLF PSL 

29 mug88_25.col 4% 88 4 4 4 4 4 4 

30 mulsol.i.1.col 20% 197 49 49 49 49 49 49 

31 mulsol.i.2.col 22% 188 31 31 31 31 31 31 

32 mulsol.i.3.col 23% 184 31 31 31 31 31 31 

33 mulsol.i.4.col 23% 185 31 31 31 31 31 31 

34 mulsol.i.5.col 23% 186 31 31 31 31 31 31 

35 myciel3.col 36% 11 4 4 4 4 4 4 

36 myciel4.col 28% 23 5 5 5 5 5 5 

37 myciel5.col 22% 47 6 6 7 6 6 6 

38 queen5_5.col 100% 25 5 8 7 8 8 6 

39 queen6_6.col 92% 36 7 11 9 10 10 11 

40 queen7_7.col 81% 49 7 10 11 11 13 11 

41 queen8_12.col 60% 96 12 15 14 15 17 17 

42 queen8_8.col 72% 64 9 13 12 12 14 13 

43 queen9_9.col 65% 81 10 16 14 14 16 15 

44 r1000.1.col 3% 1000 20 26 24 24 22 22 

45 r125.1.col 3% 125 5 5 6 7 5 5 

46 r125.1c.col 97% 125 46 51 53 50 47 49 

47 r125.5.col 50% 125 36 44 43 43 39 40 

48 r250.1.col 3% 250 8 9 9 9 8 8 

49 r250.1c.col 97% 250 64 76 76 73 68 71 

50 school1.col 26% 385 14 42 41 41 32 31 

51 will199GPIA.col 3% 701 7 11 11 11 10 9 

52 zeroin.i.1.col 19% 211 49 49 50 49 49 49 

53 zeroin.i.2.col 16% 211 30 30 31 30 30 30 

54 zeroin.i.3.col 17% 206 30 30 31 31 30 30 

55 moonMoser.col 53% 9 3 3 3 3 3 3 

56 mycielski.col 18% 11 2 4 4 4 4 4 

          

         - best result 

Table 12. Results of the Dimacs tests of the parallel algorithms, showing the number of maximum cliques - 

part 2. 
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Algorithm # of successes 

Greedy 27 

JP 28 

JP2 29 

Parallel Largest-First 44 

Parallel Smallest-Last 46 

Table 13. Parallel algorithms' successes. 

 

# Graph name 
Time (ms) 

Greedy JP JP2 PLF PSL 

1 1-FullIns_3.col 0 32 10 5 14 

2 1-Insertions_4.col 0 4 0 4 6 

3 2-FullIns_3.col 0 4 3 5 8 

4 2-Insertions_3.col 0 2 2 2 5 

5 3-Insertions_3.col 0 4 0 3 7 

6 anna.col 0 14 1 8 18 

7 ash331GPIA.col 1 33 21 45 66 

8 david.col 0 6 1 7 14 

9 DSJC125.1.col 0 23 2 10 30 

10 DSJR500.1.col 0 27 10 34 61 

11 fpsol2.i.1.col 0 49 22 45 76 

12 fpsol2.i.2.col 0 57 20 49 68 

13 fpsol2.i.3.col 0 59 13 32 56 

14 games120.col 0 12 1 11 18 

15 homer.col 1 30 11 29 74 

16 huck.col 0 6 0 5 15 

17 inithx.i.1.col 1 85 39 71 120 

18 inithx.i.2.col 1 77 29 47 75 

19 inithx.i.3.col 1 58 25 44 73 

20 jean.col 0 6 1 8 16 

21 le450_25a.col 0 64 17 64 91 

22 le450_25b.col 0 65 18 69 92 

23 miles1000.col 0 22 4 23 42 

24 miles1500.col 0 41 6 32 58 

25 miles250.col 0 11 1 12 21 

26 miles500.col 0 15 3 20 34 

27 miles750.col 0 22 4 24 38 

28 mug88_1.col 0 5 0 3 7 

Table 14. Results of the Dimacs tests of the parallel algorithms, showing time - part 1. 
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# Graph name 
Time (ms) 

Greedy JP JP2 PLF PSL 

29 mug88_25.col 0 4 0 3 22 

30 mulsol.i.1.col 0 34 13 45 58 

31 mulsol.i.2.col 0 46 7 23 52 

32 mulsol.i.3.col 0 41 10 26 71 

33 mulsol.i.4.col 0 37 8 20  58 

34 mulsol.i.5.col 0 41 7 20 46 

35 myciel3.col 0 2 0 1 5 

36 myciel4.col 0 4 0 3 6 

37 myciel5.col 0 7 0 5 9 

38 queen5_5.col 0 4 0 4 6 

39 queen6_6.col 0 5 0 8 8 

40 queen7_7.col 0 8 2 8 20 

41 queen8_12.col 0 16 2 16 20 

42 queen8_8.col 0 11 3 10 13 

43 queen9_9.col 0 13 3 14 17 

44 r1000.1.col 0 111 46 139 270 

45 r125.1.col 0 5 2 19 27 

46 r125.1c.col 0 39 25 55 62 

47 r125.5.col 0 37 12 46 49 

48 r250.1.col 0 19 8 31 40 

49 r250.1c.col 0 150 70 133 158 

50 school1.col 0 122 32 115 209 

51 will199GPIA.col 2 62 32 88 150 

52 zeroin.i.1.col 0 39 7 38 60 

53 zeroin.i.2.col 0 36 17 42 65 

54 zeroin.i.3.col 0 42 6 39 67 

55 moonMoser.col 0 1 0 1 3 

56 mycielski.col 0 2 0 2 4 

Table 15. Results of the Dimacs tests of the parallel algorithms, showing time - part 2. 
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Figure 49. DIMACS graphs tests' results compared in number of used colors. Parallel algorithms - part 1. 

 

Figure 50. DIMACS graphs tests' results compared in number of used colors. Parallel algorithms - part 2. 
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Figure 51. DIMACS graphs tests' results compared in time (ms). Parallel algorithms - part 1. 

 

Figure 52. DIMACS graphs tests' results compared in time (ms). Parallel algorithms - part 2.
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2.5.2.6. Conclusion 

Overall, almost all of the algorithms showed the same results as in the randomly 

generated graphs tests. DIMACS tests proved that we can use those algorithms further in 

our research without any doubt. 

2.5.3. Overall conclusion 

Randomly generated graphs and DIMACS tests showed us the performance of all of 

the coloring algorithms that we had. According to the results, further in our research we are 

going to use the following coloring algorithms: 

 sequential: DSatur, DSatur V2 and Largest-First V3; 

 combined: DSatur-LDO, DSatur-IDO-LDO and LDO-IDO; 

 parallel: Parallel Largest-First and Parallel Smallest-Last.



84 
 

3. Maximum Clique Algorithms 

3.1. Overview 

The main problem of MCP problem is to find the maximal possible clique of a 

graph. There are many effective algorithms made specially to solve this problem. We have 

already mentioned some of them in the previous chapters. Modern algorithms heavily 

depend on heuristics and, in particular, on vertex coloring. Unfortunately, as coloring 

problem is classified as NP-complete, it is not possible to use exact algorithms to find color 

classes. In general, the majority of modern algorithms carry out preliminary work with the 

help of coloring algorithms. They help to gather and analyze additional information before 

the main algorithm steps into action.  

It was chosen to research relatively new algorithms for our work: VColor-u and 

VRecolor-BT-u, which both were developed in Tallinn University of Technology. This 

decision was made mainly because of their novelty, great performance and convenient 

construction: these algorithms were not researched thoroughly as they are relatively new 

and they allow us to interchange coloring algorithms without heavily changing their 

structure. 

In this chapter we are going to introduce VColor-u and VRecolor-BT-u algorithms, 

describe them and conduct tests with different coloring algorithms on random and 

DIMACS graphs. Our main goal is to research if different coloring algorithms could 

improve overall maximum clique algorithms’ performance. 

3.2. VColor-u 

VColor-u algorithm was first introduced in 2005 in “Some Practical Algorithms to 

Solve The Maximum Clique Problem” thesis [3] by Deniss Kumlander. The algorithm’s 

abbreviation can be deciphered as “Vertex Color unweighted”. The main idea of this 
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algorithm was to demonstrate efficiency of using independent sets without any additional 

speeding techniques to solve maximum clique problem.  

We are not going to explain the algorithm itself as it is not in the scope of our 

project (detailed description could be found in Deniss Kumlander’s work). However, it is 

necessary to describe the role of coloring algorithms in VColor-u algorithm. The heuristic 

that is used in in this case is of Greedy manner – Largest-First. It is used only once in the 

process of execution, in the beginning, to determine all the color classes one by one until all 

vertices are colored. And only after the color classes have been received, the main part of 

the algorithm steps into action. 

Therefore, it is necessary to exclude Largest-First algorithm and use other 

algorithms, which were determined in Chapter 2, in its place. 

3.3. VRecolor-BT-u 

VRecolor-BT-u algorithm was first introduced in 2015 in “Reversed Search 

Maximum Clique Algorithm Based On Recoloring” thesis [3] by Aleksandr Porošin. The 

algorithm’s abbreviation can be deciphered as “Vertex Recolor Backtracking unweighted”. 

The main idea is the same as in VColor-u algorithm: effective use of independent sets to 

solve maximum clique problem. But this time it tries to combine reversed search by color 

classes and in-depth coloring. 

 Yet again we are not going to explain the algorithm itself as it is not in the scope of 

our project (detailed description could be found in Aleksandr Porošin’s work). What is 

necessary to do is to explain how vertex coloring happens under the hood. This time it is 

very complex and, besides initial coloring, implements in-depth coloring i.e. recoloring on 

each depth. When depth is high, vertex recoloring helps to gain the most accurate data 

about independent sets on current level. Furthermore, there are two coloring algorithms 

used in VRecolor-BT-u: one with swaps and one without them. In order to choose, which 

one should be used in the process of execution, a special constant was introduced. This 

constant refers to graph’s density and equals to 0.35 when referring to initial coloring and 
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0.55 in case of in-depth coloring. The following diagram briefly describes how the choices 

of coloring are made (Figure 53). 

  density < 0.35 0.35 ≤ density < 0.55 0.55 ≤ density density > 0.55 

initial 

coloring 
       

in-depth 

coloring 
       

     

 

   

  coloring with swaps  

   

  coloring without swaps  

Figure 53. Coloring choice based on density [16]. 

As can be seen from the diagram, coloring without swaps is used in initial coloring 

when density is more or equals to 0.35 and in in-depth coloring – when density is more 

than 0.55. The heuristic being used is of Greedy manner. However, the initial coloring uses 

largest-first ordering, so the algorithm is Largest-First. 

In our work, we consider researching initial coloring without swaps because of the 

fact that it is used only once before the main algorithm starts to work. Applying time-

consuming coloring algorithms to the in-depth coloring will result in significant increase of 

algorithm’s time. Therefore, these considerations led us to limit ourselves with testing only 

initial coloring of the algorithm as it applies only once in the beginning. The less color 

classes the initial coloring finds, the less iterations VRecolor-BT-u algorithm will perform 

in its main routine. 

3.4. Tests and results 

3.4.1. Randomly generated graphs 

3.4.1.1. Overview 

First of all, we are going to research the randomly generated graphs. It will give us 

the picture of algorithms’ performance and show us dependencies on one or another 

coloring algorithm.  
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For every coloring algorithm that we determined in Chapter 2 of our research, we 

created a copy of our selected maximum clique algorithms (VColor-u and VRecolor-BT-u), 

adjusting the code in a way that we could apply our chosen coloring algorithms. 

For algorithms, based on VColor-u, a new random graph was generated for each 

density starting from 10% and ending with 90%. Concerning VRecolor-BT-u, the starting 

density was 40%, as it was decided to place our coloring algorithms only into “initial 

coloring” phase, where the constant, referring to graph’s density, is 0.35. For every density 

ten tests were conducted and average time calculated in milliseconds. 

The information is represented in a table. Note that the density parameter is shown 

at first since the number of vertices, which goes second, heavily depends on the first one. 

The number of vertices is chosen so, that the time spent on finding the maximum clique for 

a corresponding density does not exceed the limit of one hour. The table shows algorithm’s 

time consumption. Every column demonstrates the ratio of original maximum clique 

algorithm’s taken time in milliseconds divided by time in milliseconds of modified 

maximum clique algorithm. Column names tell us the coloring algorithm used in 

corresponding maximum clique algorithm. 

Random graphs’ generation function is the same as in subchapter 2.5.1.2. System 

characteristics remain the same as in subchapter 2.5. 

3.4.1.2. Results of VColor-u Based Algorithms 

Table 16 and Table 17 demonstrate VColor-u based algorithms’ time consumption 

ratio on finding maximal clique. Value greater than 1.00 means that VColor-u with 

corresponding coloring algorithm is faster than original VColor-u (with Largest-First 

coloring algorithm). If value equals to 1.00, then VColor-u with corresponding coloring 

algorithm works the same as original VColor-u algorithm in terms of time. And, finally, if 

value is smaller than 1.00, then original VColor-u algorithm’s time consumption is smaller 

compared to modified VColor-u. 

The first interesting thing that must be noted is the fact that when density is 10% 

using no orderings makes sense as it makes the algorithm faster. VColor-u with Greedy 
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coloring algorithm prevails on density 10%. However, only on that density. The higher the 

density, the worse the performance of Greedy algorithm becomes. 

When using Largest-First V3 coloring algorithm, time consumption goes down 

from density 10% to 30% but then becomes higher and never outperforms the original 

Largest-First algorithm. It is possible to say the same about LDO-IDO coloring algorithm. 

It should be noted that all algorithms, which used DSatur based coloring algorithms, 

performed the same way, reaching its peak on density 50%, where time consumption is 

comparable to the original algorithm with Largest-First, and then starting to increase the 

overall time of the maximum clique algorithm. 

Edge density Vertices Greedy Largest-First V3 DSatur DSatur V2 DSatur-LDO 

0.1 2000 1.05 0.85 0.21 0.20 0.21 

0.2 1300 0.95 0.93 0.52 0.52 0.53 

0.3 860 0.91 0.93 0.80 0.80 0.79 

0.4 600 0.82 0.91 0.88 0.88 0.87 

0.5 400 0.81 0.90 0.99 0.98 0.94 

0.6 300 0.70 0.89 0.96 0.90 0.91 

0.7 200 0.48 0.72 0.87 0.81 0.81 

0.8 150 0.31 0.57 0.79 0.69 0.75 

0.9 100 0.05 0.34 0.68 0.58 0.65 

Table 16. Random graphs test results. VColor-u, time consumption ratio - part 1. 
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Edge density Vertices 
DSatur-

IDO-LDO 
LDO-IDO 

Parallel 

Largest-First 

Parallel 

Smallest-Last 

0.1 2000 0.20 0.90 0.66 0.53 

0.2 1300 0.52 0.93 0.86 0.80 

0.3 860 0.80 0.95 0.93 0.86 

0.4 600 0.88 0.94 0.94 0.87 

0.5 400 0.95 0.93 1.02 0.90 

0.6 300 0.91 0.92 1.06 0.82 

0.7 200 0.84 0.72 1.07 0.64 

0.8 150 0.72 0.60 1.09 0.42 

0.9 100 0.64 0.52 1.18 0.13 

Table 17. Random graphs test results. VColor-u, time consumption ratio - part 2. 

When looking at Table 17 it can be easily seen that VColor-u algorithm, which uses 

Parallel Largest-First coloring algorithm under the hood, performs better than the original 

VColor-u algorithm starting from density 50% despite the fact that its implementation in 

C# is quite poor as was proved in Chapter 2. We could suppose that algorithm with Parallel 

Smallest-Last must behave the same way, however, the results show us completely 

opposite figures: starting from density 50% the efficiency of VColor-u with Parallel 

Smallest-Last as coloring algorithm decreases drastically. This behavior should be 

investigated in future researches. 

3.4.1.3. Results of VRecolor-BT-u Based Algorithms 

Table 18 and Table 19 demonstrate VRecolor-BT-u based algorithms’ time 

consumption ratio on finding maximal clique. Value greater than 1.00 means that 

VRecolor-BT-u with corresponding coloring algorithm is faster than original VRecolor-

BT-u (with Largest-First coloring algorithm). If value equals to 1.00, then VRecolor-BT-u 

with corresponding coloring algorithm works the same as original VRecolor-BT-u 

algorithm in terms of time. And, finally, if value is smaller than 1.00, then original 
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VRecolor-BT-u algorithm’s time consumption is smaller compared to modified VRecolor-

BT-u. 

The first interesting thing that must be noted is the fact that when density is 40%, 

then using Greedy coloring algorithm is very efficient as it makes the algorithm to spend 

less time for orderings. However, VRecolor-BT-u with Greedy coloring algorithm performs 

great only on 40% density. The higher the density, the worse the performance of Greedy 

algorithm becomes. 

It should be noted that all algorithms, which used DSatur based coloring algorithms, 

performed almost the same way, reaching its peak on density 60% and then starting to 

increase the overall time of the maximum clique algorithm. However, this time the overall 

performance is not comparable to the original algorithm with Largest-First ordering and 

time consumption is considerably higher. 

We have seen that the behavior of VRecolor-BT-u algorithm with Greedy and 

DSatur colorings reminds us of the VColor-u with the corresponding coloring algorithms in 

use. We can assume that it goes the same for other coloring algorithms but this does not 

represent the real situation. We can clearly see that VRecolor-BT-u algorithm with Largest-

First V3 coloring algorithm spends less time to complete on densities starting from 40% 

and ending with 70%. This is most likely achieved by reordering of vertices which occurs 

in every iteration of Largest-First V3 coloring algorithm. The LDO-IDO coloring 

algorithm’s results also decrease the overall time consumption of VRecolor-BT-u algorithm 

on densities 40%-60% as can be seen from Table 19. 
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Edge density Vertices Greedy Largest-First V3 DSatur DSatur V2 DSatur-LDO 

0.4 600 1.05 1.00 0.68 0.65 0.65 

0.5 400 0.82 1.03 0.71 0.67 0.67 

0.6 300 0.82 1.04 0.74 0.71 0.71 

0.7 200 0.73 1.06 0.68 0.63 0.65 

0.8 150 0.44 0.94 0.62 0.56 0.59 

0.9 100 0.10 0.59 0.36 0.36 0.48 

Table 18. Random graphs test results. VRecolor-BT-u, time consumption ratio - part 1. 

Edge density Vertices 
DSatur-

IDO-LDO 
LDO-IDO 

Parallel 

Largest-First 

Parallel 

Smallest-Last 

0.4 600 0.71 1.15 0.88 0.87 

0.5 400 0.74 1.07 0.98 0.90 

0.6 300 0.76 1.04 1.01 0.91 

0.7 200 0.72 0.92 1.13 0.88 

0.8 150 0.68 0.88 0.88 0.80 

0.9 100 0.66 0.77 0.80 0.58 

Table 19. Random graphs test results. VRecolor-BT-u, time consumption ratio - part 2. 

When looking at parallel coloring algorithms, then it is necessary to point out that 

Parallel Largest-First coloring algorithm’s usage consumes less time on 60%-70% densities 

while performance of Parallel Smallest-Last does not come up to expectations. 

3.4.2. DIMACS graphs 

3.4.2.1. Overview 

In this subchapter the same algorithms are analyzed on DIMACS graphs, which are 

used to test how algorithms are able to solve specified actual problem. As mentioned 

before, these graphs come from a special package of graphs used in the Second DIMACS 

Implementation Challenge. 
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Results are going to be represented in three tables. The first one will provide 

information about time consumption of an algorithm in milliseconds and besides time has 

three more fields: 

 Graph – the name of DIMACS graph; 

 Size – number of edges; 

 Density – the density of the algorithm. 

The second tables introduces a new important characteristic, which is the number of 

analyzed branches. This parameter shows how many branches each algorithm analyzes. 

The less the number of analyzed branches is, the faster the algorithm is. This table looks 

absolutely the same as the previous one. And, finally, the third table shows distribution of 

color classes used by coloring algorithms. The representation is the same as in the first 

table. As number of classes stays the same for VColor-u and VRecolor-BT-u algorithms, 

we decided to move this table to Appendix 2 – Maximum Clique algorithms: DIMACS 

Graphs Test Results. 

The DIMACS graphs are chosen so, that the time spent on finding the maximal 

clique does not exceed one hour. When it comes to testing algorithms, based on VColor-u, 

we use all DIMACS graph instances. However, only those among them, which have 

density more than 35% are going to be selected for algorithms, based on VRecolor-BT-u 

because it was decided to place our coloring algorithms only into “initial coloring” phase, 

where the constant, referring to graph’s density, is 0.35.   

3.4.2.2. Results of VColor-u Based Algorithms 

In this subchapter the same coloring algorithms are used inside VColor-u algorithm 

and tested on DIMACS graph instances because each of them showed the best results 

separately.  

As can be seen from Table 20 and Table 21, VColor-u algorithm, which uses 

Greedy algorithm under the hood, demonstrates very impressive results on lower densities. 

However, it is possible to notice that in some cases it shows better results even on higher 

densities, for example, on 64%, 76% and 90+% densities. At first, this behavior might seem 
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strange but it can be simply explained – we just have to look at the number of found color 

classes in Table 28 as well as number of analyzed branches in Table 22. The number of 

used colors along with number of analyzed branches are the same, so the difference in time 

could be explained by the fact that Greedy algorithm does not make any orderings, so it 

works faster in this case. 

When comparing original VColor-u algorithm with its siblings that include Largest-

First V3, LDO-IDO and DSatur based coloring algorithms, we can see that in some cases 

they work considerably faster on middle densities. This could be connected to the fact that 

during the coloring phase they use lower amount of colors. A question immediately arises: 

DSatur based coloring algorithms produce better results in terms of used colors almost on 

every graph, so why the time consumption is lower only in some particular cases? The 

reason of this phenomenon might lie in the order of vertices in color classes as it affects the 

number of analyzed branches. It can be found from our results that when these coloring 

algorithms use less color classes but the time is still quite poor, then the number of 

analyzed branches is drastically higher. Furthermore, these coloring algorithms take more 

time than the Largest-First coloring algorithm. 

Concerning parallel coloring algorithms, using Parallel Largest-First gives 

advantages on higher densities, from 50% to 90+%. However, we wanted to receive more 

effective results. Parallel Smallest-Last in this case proved to be non-effective. However, 

we should bear in mind that parallel coloring algorithms might be hostages of particular 

language implementation (which in our case is C#). 
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Graph Size Density 

Time (ms) 

Largest-

First 
Greedy 

Largest-

First V3 
DSatur 

DSatur 

V2 

c-fat500-1.clq 500 0,36 9 3 21 58 60 

c-fat500-2.clq 500 0,07 5 1 11 59 60 

c-fat500-5.clq 500 0,19 6 1 17 98 92 

c-fat500-10.clq 500 0,37 7 2 31 218 202 

hamming10-2.clq 1024 0,99 40 23 335 10181 10419 

hamming6-2.clq 64 0,9 0 0 1 3 2 

hamming6-4.clq 64 0,35 0 0 0 1 1 

hamming8-2.clq 256 0,97 7 2 22 181 170 

hamming8-4.clq 256 0,64 5838 5616 5845 537 539 

johnson16-2-4.clq 120 0,76 477 454 479 985 987 

johnson8-2-4.clq 28 0,56 0 0 0 0 0 

johnson8-4-4.clq 70 0,77 5 2 6 4 4 

keller4.clq 171 0,65 506 949 1228 575 625 

MANN_a27.clq 378 0,99 158062 302396 307324 307343 307322 

MANN_a9.clq 45 0,93 0 390 6 7 7 

p_hat300-1.clq 300 0,24 26 38 31 66 67 

p_hat300-2.clq 300 0,49 1239 61336 1077 2705 2010 

p_hat300-3.clq 300 0,74 317662 327279 317654 327281 327290 

p_hat500-1.clq 500 0,25 286 423 288 464 455 

p_hat500-2.clq 500 0,5 191068 317653 197190 308580 308638 

p_hat700-1.clq 700 0,25 1312 2155 1347 1891 1943 

p_hat1000-1.clq 1000 0,25 6529 10232 6825 8165 8293 

san1000.clq 1000 0,5 14900 500027 540008 233091 245001 

san200_0.7_1.clq 200 0,7 562509 500010 6416 226 253 

san200_0.7_2.clq 200 0,7 28 7555 153 87 75 

san200_0.9_1.clq 200 0,9 11716 456531 437523 7205 8432 

san400_0.5_1.clq 400 0,5 584 866 25754 1149 1805 

        

     - lower time than original 

     - time equals to that of the original 

Table 20. DIMACS graphs test results. VColor-u, time consumption (ms) - part 1. 
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Graph Size Density 

Time (ms) 

DSatur-

LDO 

DSatur-

IDO-LDO 

LDO-

IDO 

Parallel 

Largest-

First 

Parallel 

Smallest-

Last 

c-fat500-1.clq 500 0,36 58 68 13 62 63 

c-fat500-2.clq 500 0,07 58 73 10 61 87 

c-fat500-5.clq 500 0,19 98 111 19 452 153 

c-fat500-10.clq 500 0,37 212 228 30 154 179 

hamming10-2.clq 1024 0,99 10080 10327 357 32 152 

hamming6-2.clq 64 0,9 2 3 1 38 17 

hamming6-4.clq 64 0,35 1 1 0 8 7 

hamming8-2.clq 256 0,97 163 248 15 5 172 

hamming8-4.clq 256 0,64 741 137 5710 791 1302 

johnson16-2-4.clq 120 0,76 420 343 462 338 735 

johnson8-2-4.clq 28 0,56 0 0 0 4 5 

johnson8-4-4.clq 70 0,77 4 3 3 14 15 

keller4.clq 171 0,65 430 410 1235 621 854 

MANN_a27.clq 378 0,99 300314 299996 302396 154543 145413 

MANN_a9.clq 45 0,93 3 3 6 22 14 

p_hat300-1.clq 300 0,24 67 72 31 117 127 

p_hat300-2.clq 300 0,49 1514 1618 1150 1161 3004 

p_hat300-3.clq 300 0,74 327279 327322 317655 317643 348388 

p_hat500-1.clq 500 0,25 456 462 291 410 427 

p_hat500-2.clq 500 0,5 290510 308598 166844 247311 327281 

p_hat700-1.clq 700 0,25 1890 1965 1318 1523 1623 

p_hat1000-1.clq 1000 0,25 8063 8478 6898 6652 7744 

san1000.clq 1000 0,5 110824 165541 450011 17743 15235 

san200_0.7_1.clq 200 0,7 17981 258 529422 562511 573120 

san200_0.7_2.clq 200 0,7 90 111 76 52 116 

san200_0.9_1.clq 200 0,9 7045 7550 1183 44045 600012 

san400_0.5_1.clq 400 0,5 34048 1142 25563 1589 784 

        

     - lower time than original 

     - time equals to that of the original 

Table 21. DIMACS graphs test results. VColor-u, time consumption (ms) - part 2. 
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Graph Size Density 

Number of analyzed branches 

Largest-

First 
Greedy 

Largest-

First V3 
DSatur DSatur V2 

c-fat500-1.clq 500 0,36 14 14 14 14 14 

c-fat500-2.clq 500 0,07 26 26 26 26 26 

c-fat500-5.clq 500 0,19 64 64 64 64 64 

c-fat500-10.clq 500 0,37 126 126 126 126 126 

hamming10-2.clq 1024 0,99 512 512 512 512 512 

hamming6-2.clq 64 0,9 32 32 32 32 32 

hamming6-4.clq 64 0,35 426 426 426 340 340 

hamming8-2.clq 256 0,97 128 128 128 128 128 

hamming8-4.clq 256 0,64 2774392 2774392 2774392 165371 165371 

johnson16-2-4.clq 120 0,76 489355 489355 489355 887871 887871 

johnson8-2-4.clq 28 0,56 59 59 59 38 38 

johnson8-4-4.clq 70 0,77 1196 1196 1171 364 364 

keller4.clq 171 0,65 380922 745205 963672 382900 435550 

MANN_a27.clq 378 0,99 8865948 273084144 43415359 50771824 50550310 

MANN_a9.clq 45 0,93 303 478865 4156 5224 5224 

p_hat300-1.clq 300 0,24 22355 38343 23068 25493 25170 

p_hat300-2.clq 300 0,49 479046 29198380 394533 1147410 761014 

p_hat300-3.clq 300 0,74 114123307 183826843 102086891 114729337 121480359 

p_hat500-1.clq 500 0,25 252869 430099 261465 286782 268503 

p_hat500-2.clq 500 0,5 57408633 156141644 59493075 91438502 105138526 

p_hat700-1.clq 700 0,25 936779 1429594 977854 1091677 1039907 

p_hat1000-1.clq 1000 0,25 5999391 10550831 65566251 6803864 6961846 

san1000.clq 1000 0,5 1083046 300335950 62146686 20660950 21693998 

san200_0.7_1.clq 200 0,7 821900625 338978198 1448106 47180 48251 

san200_0.7_2.clq 200 0,7 10564 2832008 35546 9445 3502 

san200_0.9_1.clq 200 0,9 4272475 290245174 87074934 110768683 1244520 

san400_0.5_1.clq 400 0,5 108891 205972 8623043 289927 487406 

Table 22. DIMACS graphs test results. VColor-u, number of branches - part 1. 
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Graph Size Density 

Number of analyzed branches 

DSatur-

LDO 

DSatur-

IDO-LDO 
LDO-IDO 

Parallel 

Largest-

First 

Parallel 

Smallest-

Last 

c-fat500-1.clq 500 0,36 14 14 14 159 720715 

c-fat500-2.clq 500 0,07 26 26 26 385 720715 

c-fat500-5.clq 500 0,19 64 64 64 72182 720715 

c-fat500-10.clq 500 0,37 126 126 126 126 720715 

hamming10-2.clq 1024 0,99 512 512 512 512 512 

hamming6-2.clq 64 0,9 32 32 32 389 2768 

hamming6-4.clq 64 0,35 307 352 426 352 306 

hamming8-2.clq 256 0,97 128 128 128 128 128 

hamming8-4.clq 256 0,64 252410 215 5774392 328584 547822 

johnson16-2-4.clq 120 0,76 401470 353522 489355 353527 734819 

johnson8-2-4.clq 28 0,56 38 37 59 59 38 

johnson8-4-4.clq 70 0,77 554 18 1171 1927 556 

keller4.clq 171 0,65 278088 277698 961304 436896 575538 

MANN_a27.clq 378 0,99 16577654 17043773 35077916 8152230 8262697 

MANN_a9.clq 45 0,93 2171 2171 4093 315 317 

p_hat300-1.clq 300 0,24 25193 26001 23352 22251 25194 

p_hat300-2.clq 300 0,49 553779 630453 411228 376051 1158296 

p_hat300-3.clq 300 0,74 113663179 109084862 108658872 105538037 165318529 

p_hat500-1.clq 500 0,25 272261 278488 254312 252289 282831 

p_hat500-2.clq 500 0,5 87977525 101058410 48253356 77150568 129851667 

p_hat700-1.clq 700 0,25 986604 1104598 893465 957306 1037665 

p_hat1000-1.clq 1000 0,25 6626485 7107052 6539346 6139185 7099445 

san1000.clq 1000 0,5 40504278 53019726 6969681 1324140 1024140 

san200_0.7_1.clq 200 0,7 10344610 87844 566446071 926906250 1323242125 

san200_0.7_2.clq 200 0,7 9596 18488 23459 3810 1622 

san200_0.9_1.clq 200 0,9 11060105 1241313 995610 27560687 360822143 

san400_0.5_1.clq 400 0,5 22985290 267929 4783553 720715 177720 

Table 23. DIMACS graphs test results. VColor-u, number of branches - part 2. 
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3.4.2.3. Results of VRecolor-BT-u Based Algorithms 

In this subchapter the same coloring algorithms are used inside VRecolor-BT-u 

algorithm and tested on DIMACS graph instances because each of them showed the 

best results separately.  

Graph Size Density 

Time (ms)  

Largest-

First 
Greedy 

Largest-

First V3 
DSatur 

DSatur 

V2 

c-fat500-10.clq 500 0,37 222 213 384 428 411 

hamming6-2.clq 64 0,9 3 4 4 5 5 

hamming6-4.clq 64 0,35 0 0 0 1 1 

hamming8-2.clq 256 0,97 471 459 446 611 626 

hamming8-4.clq 256 0,64 20 21 30 417 419 

hamming10-2.clq 1024 0,99 118039 118853 120835 133855 134101 

johnson16-2-4.clq 120 0,76 1043 1065 1043 882 916 

johnson8-2-4.clq 28 0,56 0 0 0 0 0 

johnson8-4-4.clq 70 0,77 1 1 3 5 5 

keller4.clq 171 0,65 118 239 267 224 208 

MANN_a27.clq 378 0,99 18719 3436364 1467961 28119 27574 

MANN_a9.clq 45 0,93 1 15 5 3 4 

p_hat300-2.clq 300 0,49 449 1285 440 646 897 

p_hat300-3.clq 300 0,74 40402 1309090 26419 61057 132641 

p_hat500-2.clq 500 0,5 12876 143463 19195 31308 27358 

san1000.clq 1000 0,5 1436 30581 1104 17172 24113 

san200_0.7_1.clq 200 0,7 3091 49 34 123 76 

san200_0.7_2.clq 200 0,7 11 847 26 77 137 

san200_0.9_1.clq 200 0,9 83 410 129 144 41642 

san400_0.5_1.clq 400 0,5 40 518 80 499 524 

        

     - lower time than original 

     - time equals to that of the original 

Table 24. DIMACS graphs test results. VRecolor-BT-u, time consumption (ms) - part 1. 

As can be seen from Table 24, VRecolor-BT-u algorithm, which uses Greedy 

algorithm under the hood, shows better results on density 40-50%. However, it is possible 

to notice that in some cases it shows better results on higher densities as well, for example, 

on 70% and 90+% densities. This behavior can be simply explained by the number of 
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found color classes (Table 28) as well as number of analyzed branches (Table 26). The 

number of used colors along with number of analyzed branches are the same, so the 

algorithm just works faster as it does not use any orderings. 

When comparing original VRecolor-BT-u algorithm with its siblings that include 

DSatur based coloring algorithms, we can see that in some cases on densities 50-80% they 

work considerably faster. As stated above, this could be connected to the fact that during 

the coloring phase they use lower amount of colors and therefore maximum clique 

algorithm creates less branches (Table 26 and Table 27). 

Graph Size Density 

Time (ms)  

DSatur-

LDO 

DSatur-

IDO-

LDO 

LDO-IDO 

Parallel 

Largest

-First 

Parallel 

Smalles

t-Last 

c-fat500-10.clq 500 0,37 427 449 381 240 134 

hamming6-2.clq 64 0,9 6 6 4 5 6 

hamming6-4.clq 64 0,35 1 1 0 0 1 

hamming8-2.clq 256 0,97 607 607 478 447 519 

hamming8-4.clq 256 0,64 329 299 24 401 300 

hamming10-2.clq 1024 0,99 134294 134033 118279 79611 422894 

johnson16-2-4.clq 120 0,76 820 697 1013 657 644 

johnson8-2-4.clq 28 0,56 0 0 0 0 13 

johnson8-4-4.clq 70 0,77 6 6 2 2 43 

keller4.clq 171 0,65 169 166 284 151 281 

MANN_a27.clq 378 0,99 27539 27988 1467961 28790 29072 

MANN_a9.clq 45 0,93 2 2 12 8 11 

p_hat300-2.clq 300 0,49 675 724 500 548 894 

p_hat300-3.clq 300 0,74 59058 42935 27934 27859 303207 

p_hat500-2.clq 500 0,5 32792 35487 17517 11173 28584 

san1000.clq 1000 0,5 12110 14437 630 2233 2668 

san200_0.7_1.clq 200 0,7 97 85 35 537 115 

san200_0.7_2.clq 200 0,7 73 76 24 36 68 

san200_0.9_1.clq 200 0,9 130 135 170 1107 100 

san400_0.5_1.clq 400 0,5 459 467 35 88 92 

        

     - lower time than original 

     - time equals to that of the original 

Table 25. DIMACS graphs test results. VRecolor-BT-u, time consumption (ms) - part 2. 
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It should be noted that VRecolor-BT-u algorithms, using Largest-First V3 and 

LDO-IDO colorings, demonstrated results similar to those, which we received on random 

graphs. These algorithms performed better on densities starting from 40% and ending with 

76%. 

Graph Size Density 

Number of analyzed branches 

Largest-

First 
Greedy 

Largest-

First V3 
DSatur DSatur V2 

c-fat500-10.clq 500 0,37 8001 8001 8001 8001 8001 

hamming6-2.clq 64 0,9 528 528 528 529 529 

hamming6-4.clq 64 0,35 70 70 70 70 70 

hamming8-2.clq 256 0,97 8256 8256 8256 8360 8360 

hamming8-4.clq 256 0,64 788 788 788 10438 10438 

hamming10-2.clq 1024 0,99 131328 131328 131328 132757 132757 

johnson16-2-4.clq 120 0,76 323070 323070 323070 243098 243098 

johnson8-2-4.clq 28 0,56 44 44 44 32 32 

johnson8-4-4.clq 70 0,77 252 252 288 344 344 

keller4.clq 171 0,65 11236 20973 27319 14579 12986 

MANN_a27.clq 378 0,99 55389 35324182 24192455 61454 61454 

MANN_a9.clq 45 0,93 189 1880 1006 510 510 

p_hat300-2.clq 300 0,49 24826 97437 26289 32004 57527 

p_hat300-3.clq 300 0,74 664515 21599985 683863 1202866 2973543 

p_hat500-2.clq 500 0,5 584983 9828984 912033 1260838 1109719 

san1000.clq 1000 0,5 13356 462145 11043 78374 182995 

san200_0.7_1.clq 200 0,7 547738 3326 1492 9323 1186 

san200_0.7_2.clq 200 0,7 398 44161 1105 794 3227 

san200_0.9_1.clq 200 0,9 3350 9303 3535 2817 4876475 

san400_0.5_1.clq 400 0,5 1241 25773 2519 3069 3924 

Table 26. DIMACS graphs test results. VRecolor-BT-u, number of branches - part 1. 
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Graph Size Density 

Number of analyzed branches 

DSatur-

LDO 

DSatur-

IDO-LDO 
LDO-IDO 

Parallel 

Largest-

First 

Parallel 

Smallest-

Last 

c-fat500-10.clq 500 0,37 8001 8001 8001 4966 2230 

hamming6-2.clq 64 0,9 529 529 528 572 248 

hamming6-4.clq 64 0,35 70 70 70 70 70 

hamming8-2.clq 256 0,97 8360 8360 8256 7248 8773 

hamming8-4.clq 256 0,64 7082 5814 788 15786 13156 

hamming10-2.clq 1024 0,99 132757 132757 131328 86553 688566 

johnson16-2-4.clq 120 0,76 243690 218422 323070 218422 218422 

johnson8-2-4.clq 28 0,56 32 31 44 32 31 

johnson8-4-4.clq 70 0,77 335 351 288 262 221 

keller4.clq 171 0,65 11281 10739 28920 13646 18629 

MANN_a27.clq 378 0,99 61438 61491 24472404 74943 74690 

MANN_a9.clq 45 0,93 201 201 1176 189 184 

p_hat300-2.clq 300 0,49 34257 35163 29558 24116 55365 

p_hat300-3.clq 300 0,74 1058004 868682 746081 658401 11195415 

p_hat500-2.clq 500 0,5 1326476 1403129 808703 457809 1233472 

san1000.clq 1000 0,5 12124 55128 9001 19332 17620 

san200_0.7_1.clq 200 0,7 4532 2458 1596 60262 1846 

san200_0.7_2.clq 200 0,7 443 512 1089 391 320 

san200_0.9_1.clq 200 0,9 2570 2561 4837 27582 3071 

san400_0.5_1.clq 400 0,5 1229 1113 781 1350 1942 

Table 27. DIMACS graphs test results. VRecolor-BT-u, number of branches - part 2. 

Concerning parallel coloring algorithms, using Parallel Largest-First gives the upper 

hand on densities from 50% to 90+% and its results are quite good. This cannot be said 

about Parallel Smallest-Last, which showed similar results to those, which we receive while 

testing VColor-u based algorithms. However, we should remember about implementation 

difficulties, connected with language specifics. 
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4. Conclusion 

4.1. Summary 

The main topic of our study was to investigate effect of applying coloring 

algorithms on modern maximum clique algorithms. The problem of coloring a graph with 

the minimum number of colors is NP-complete task. Therefore, we had to use heuristic 

algorithms for that purpose. A heuristic algorithm does not guarantee the best result, 

however, its result is close enough to the best one and the algorithm is faster than the exact 

one. Vertex coloring is a subroutine, which is included into the maximum clique algorithm, 

so this step affects the overall performance of the algorithm. The idea behind this was the 

fact that the closer the number of color classes to the size of the maximum clique, the 

quicker the maximum clique will be found thanks to more effective pruning. As we know, 

even a small increase in the size of the maximum clique can result in extra days of work. 

Therefore, even a small improvement would significantly save working time.  

In this resume, we are going to summarize all the work done to reach the goals 

stated in subchapter 1.4. The majority of them are successfully completed in the scope of 

current work. 

Chapter 2 describes graph coloring problem along with introducing different types 

of coloring algorithms, their history and specifics. Overall, 17 coloring algorithms were 

described. Some of these coloring algorithms were variations of themselves, however, they 

proved their chance for existence with tests results. We found out that almost every 

coloring algorithm, which uses some sort of ordering/reordering would perform better than 

the Greedy algorithm in terms of number of color classes. However, because of that they 

would spend much more time to complete. Furthermore, within our research we found out 

that in theory parallel coloring algorithms should be faster than their sequential variations. 

In practice, there are too many factors that affect their performance. And the most 

important one is without doubt the language, chosen for their implementation. In our case, 

the implementation of parallel functions in C# language spends more time on creating 

threads and subroutines executed inside are trivial in terms of time consumption. 
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In Chapter 3 we introduced maximum clique algorithms that we tried to improve 

with explanations why such a choice was made. It was decided to take into consideration 

modern maximum clique algorithms, such as VColor-u and VRecolor-BT-u. Every 

algorithm was briefly described, modified, compared and tested against random and 

DIMACS graph instances. Generated tests allow to obtain comparative data that can be 

represented in a table and demonstrate time consumption of maximum clique algorithms 

with different coloring algorithms used. On the other hand, DIMACS benchmark instances 

allow to test the algorithms on problems that are very close to real life as they are 

constructed based on real tasks. Moreover, in addition to time consumption there are results 

showing us the number of classes used by one or another coloring algorithm and number of 

analyzed branches of maximum clique algorithms, which help us to explain that or another 

behavior of algorithms. We proved that Largest-First V3, DSatur, DSatur V2, DSatur-LDO, 

DSatur-IDO-LDO, Parallel Largest-First in certain cases could decrease the time of the 

maximum clique algorithms, as well as the number of created branches. Furthermore, we 

saw that on lower densities it is possible to use Greedy coloring algorithm to decrease the 

overall algorithm’s time. Although, we could not find a specific pattern, the results are 

quite promising and could be used in further researches. 

4.2. Future studies 

During our research some interesting questions were left behind the scope of our 

work. In this subchapter we are going to introduce some ideas which could be used in 

future studies to improve results of our research. 

First of all, it is necessary to investigate the influence of vertex ordering in color 

classes found by coloring algorithms as it heavily affects the main routine of maximum 

clique algorithms. However, it could be specific for every maximum clique algorithm but 

worth researching. 

Secondly, in our research we have tested parallel algorithms’ approach, using 

Parallel Largest-First and Smallest-Last algorithms. Further studies require extending this 

approach by constructing parallel algorithms from other coloring algorithms that showed 



104 
 

good results. And there are at least two candidates for this: DSatur and LDO-IDO. This 

may lead to decreasing the overall time taken to color the graph with minimum number of 

colors. 

Thirdly, it is possible to try to construct a new coloring algorithm, which is similar 

to Largest-First or Greedy but is faster and simpler than they are. The aim of this algorithm 

would be to reduce the execution time of the coloring algorithm. 

And finally, there were some strange behaviors of algorithms found in the result of 

our research that could become an inception point for future studies. 
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Resümee 

Kokkuvõte 

Meie uurimistöö peamine teema on uurida värvimisalgoritmide rakendamise mõju 

tänapäevastele maksimaalsete klikkide algoritmidele. Graafide minimaalse värvide arvuga 

värvimise probleem on „NP-complete“ keerukuse tasemega. Seetõttu tuli kasutada 

heuristilisi algoritme. Heuristiline algoritm ei taga parimat tulemust, kuid see on parimale 

tulemusele piisavalt lähedal, ning selle kiirus on suurem kui täpse algoritmi oma. Tipu 

värvimine on alamrutiin, mis on hõlmatud maksimaalsete klikkide algoritmi, järelikult 

mõjutab see samm üldist algoritmi jõudlust. Selle taga on mõte, et mida lähemal on värvide 

klasside arv maksimaalse kliki suurusele, seda kiiremini leitakse tänu tõhusamale 

kärpimisele maksimaalne klikk. Nagu me teame, isegi väike maksimaalse kliki suuruse 

kasv võib tähendada mitut lisa töö päeva. Seetõttu hoiab isegi väike edenemine kokku 

märkimisväärselt töö aega.  

Selles resümees võtame kokku kogu tehtud töö, et jõuda alapeatükis 1.4. toodud 

eesmärkideni. Suurem osa neist õnnestus edukalt selle töö käigus täita. 

Peatükk 2 kirjeldab graafi värvimise probleemi koos erinevat tüüpi värvimise 

algoritmide tutvustamise, nende ajaloo ja üksikasjadega. Kokku kirjeldatakse 17 värvimise 

algoritmi. Mõned neist algoritmidest on iseenda variatsioonid, kuid nad on enda olemasolu 

vajalikkust katsete tulemusel tõestanud. Me avastasime, et peaaegu iga värvimise algoritm, 

mis kasutab mõnda järjestamist või ümberjärjestamist, toimib värvide klasside arvu mõttes 

paremini kui „Greedy“ algoritm. Kuid selle tõttu kulub nende lõpetamiseks palju rohkem 

aega. Peale selle avastasime selles uurimistöös, et teoreetiliselt peaksid paralleelse 

värvimise algoritmid olema kiiremad kui nende järjestikused variatsioonid. Praktikas on 

aga nende jõudlust mõjutavad tegureid liiga palju. Ja kahtluseta on kõige olulisem neist 

rakenduse keel. Meie näite puhul kulutas C# keelne paralleelsete funktsioonide rakendus 
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rohkem aega iseseisvate protsesside (inglise keeles: „thread“) tekitamisele ja alamrutiinide 

sisemine käitamine on ajakulu mõttes tühine.  

Peatükis 3 tutvustasime maksimaalsete klikkide algoritme, mida me üritasime 

parendada, koos nende valiku kasuks osutumise selgitustega. Otsustati võrdlusse võtta 

tänapäevased maksimaalsete klikkide algoritmid nagu „VColorU“ ja „VRecolor-BT-u“. Iga 

algoritmi tutvustati põgusalt, muudeti ja võrreldi ja testiti juhuslike ja DIMACS graafidega. 

Loodud testid lubavad saada võrreldavaid andmeid, mida saab esitada tabelina ja näidata 

maksimaalsete klikkide algoritmide ajakulu erinevate kasutatud värvimise algoritmidega. 

Teiselt poolt, DIMACS jõudlustestid lubavad katsetada algoritme probleemidega, mis on 

väga lähedal reaalse elu probleemidele, sest nad on koostatud tegelike ülesannete baasil. 

Lisaks ajakulule näitavad tulemused meile ühe või mitme värvimise algoritmi poolt 

kasutatud klasside arvu ning analüüsitud harude arvu maksimaalsete klikkide algoritmide 

poolt, mis aitavad meil seletada seda või teist algoritmi käitumist. Me tõestasime, et 

„Largest-First V3”, “DSatur, DSatur V2”, “DSatur-LDO”, “DSatur-IDO-LDO” ja mõnes 

olukorras “Parallel Largest-First” võivad vähendada maksimaalsete klikkide algoritmide 

ajakulu ning loodud harude arvu. Lisaks sellele nägime, et madalama tiheduse puhul on 

võimalik kasutada kogu algoritmi aja vähendamiseks „Greedy“ värvimise algoritmi. Kuigi 

me ei suutnud tuvastada täpset mustrit, olid tulemused päris lootustandvad ja neid saab 

kasutada tulevastes uurimistöödes.  

Edasised uurimistööd 

Mõned kerkinud huvitavad küsimused jäid väljapoole meie uurimistöö raame. 

Selles alapeatükis tutvustame mõnda nendest ideedest, mida võib kasutada edasistes 

uurimistöödes, et meie uurimistöö tulemusi parandada.  

Kõigepealt on vaja uurida tippude järjestamise mõju värvimise algoritmide poolt 

leitud värvimisklassidele, sest need mõjutavad tugevalt maksimaalsete klikkide algoritmi 

pearutiini. Kuid see võib olla iga maksimaalsete klikkide algoritmi puhul erinev, aga see on 

väärt edasist uurimist.  
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Teiseks me katsetasime oma uurimistöös paralleelsete algoritmide lähenemist, 

kasutades “Parallel Largest-First” ja  “Smallest-Last” algoritme. Edasised uuringud 

nõuavad selle lähenemise laiendamist koostades paralleelseid algoritme teistest värvimise 

algoritmidest, mis näitasid häid tulemusi. Ja selleks on vähemalt kaks kandidaati: „DSatur” 

ja “LDO-IDO”. See võib viia kogu graafi minimaalse arvu värvidega värvimiseks kuluva 

aja vähenemisele.  

Kolmandaks on võimalik üritada luua uut värvimise algoritmi, mis on sarnane 

„Largest-First” või  “Greedy” algoritmidele, kuid on kiirem ja lihtsam kui need. Selle 

algoritmi eesmärk oleks vähendada värvimise algoritmi käitamise aega.  

Ja lõpuks leiti meie uurimistöö tulemusel mõned algoritmide imelikud käitumised, 

mis võivad saada uute uurimistööde lähtekohaks.  



108 
 

References 

[1]  Norman L. Biggs, E. Keith Lloyd, Robin J. WIlson, Graph Theory 1736-1936, New York: 

Oxford University Press, 1976.  

[2]  M. Kubale, Graph Colorings, 2004.  

[3]  D. Kumlander, Some Practical Algorithms to Solve The Maximum Clique Problem, Tallinn, 

2005.  

[4]  D. J. A. Welsh and M. B. Powell, «An upper bound for the chromatic number of a graph and 

its application to timetabling problems,» The Computer Journal, 1967.  

[5]  William Hasenplaugh, Tim Kaler, Tao B. Schardl, Charles E. Leiserson, «Ordering Heuristics 

for Parallel Graph Coloring,» 2014.  

[6]  D. Brelaz, «New Methods to Color the Vertices of a Graph,» Communications of the ACM, 

1979.  

[7]  Paul S. Andrews, Jon Timmis, Nick D.L.Owens, Uwe Aickelin, Emma Hart, Andrew Hone, 

Andy M. Tyrrell, Artificial Immune Systems, York, UK, 2009.  

[8]  T. F. Coleman and J. J. More, «Estimation of sparse Jacobian matrices and graph coloring 

problems,» SIAM Journal on Numerical Analysis, 1983.  

[9]  Hilal Almara’Beh and Amjad Suleiman , «Heuristic Algorithm for Graph Coloring Based On 

Maximum Independent Set,» Journal of Applied Computer Science & Mathematics, т. 6, № 

13, 2012.  

[10]  Hussein Al-Omari, Khair Eddin Sabri, «New Graph Coloring Algorithms,» American Journal 

of Mathematics and Statistics, 2006.  

[11]  Soma Saha, Gyan Baboo, Rajeev Kumar , «An Efficient EA with Multipoint Guided Crossover 

for Bi-objective Graph Coloring Problem,» в Contemporary Computing, 2011.  

[12]  M. T. Jones and P. E. Plassmann, «A parallel graph coloring heuristic.,» SIAM Journal on 

Scientific Computing, 1993.  

[13]  L. M., «A simple parallel algorithm for the maximal independent set problem,» SIAM Journal 



109 
 

on Computing, т. 4, № 97, pp. 1053-1063, 1986.  

[14]  D.W.Matula, G.Marble and J.D.Isaacson, Graph Coloring Algorithms, New York: Academic 

Press, 1972.  

[15]  J. R. Allwright , R. Bordawekar , P. D. Coddington , K. Dincer , C. L. Martin, «A Comparison 

of Parallel Graph Coloring Algorithms,» Technical Report Tech. Rep. SCCS-666, 1995.  

[16]  A. Porošin, «Reversed search maximum clique algorithm based on recoloring» 2015.  

 

 



110 
 

Appendix 1 – Coloring algorithms: Randomly Generated Graphs Test 

Results 

Sequential algorithms 

 

Figure 54. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms, 

density 10%. 
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Figure 55. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms, 

density 20%. 

 

Figure 56. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms, 

density 30%. 
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Figure 57. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms, 

density 40%. 

 

Figure 58. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms, 

density 50%. 
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Figure 59. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms, 

density 60%. 

 

Figure 60. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms, 

density 70%. 
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Figure 61. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms, 

density 80%. 

 

Figure 62. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms, 

density 90%. 
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Combined algorithms 

 

Figure 63. Randomly generated graphs tests' results compared in time (ms). Combined algorithms, 

density 10%. 
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Figure 64. Randomly generated graphs tests' results compared in time (ms). Combined algorithms, 

density 20%. 

 

Figure 65. Randomly generated graphs tests' results compared in time (ms). Combined algorithms, 

density 30%. 
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Figure 66. Randomly generated graphs tests' results compared in time (ms). Combined 

algorithms, density 40%. 

 

Figure 67. Randomly generated graphs tests' results compared in time (ms). Combined algorithms, 

density 50%. 
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Figure 68. Randomly generated graphs tests' results compared in time (ms). Combined algorithms, 

density 60%. 

 

Figure 69. Randomly generated graphs tests' results compared in time (ms). Combined algorithms, 

density 70%. 
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Figure 70. Randomly generated graphs tests' results compared in time (ms). Combined algorithms, 

density 80%. 

 

Figure 71. Randomly generated graphs tests' results compared in time (ms). Combined algorithms, 

density 90%. 
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Parallel algorithms 

 

Figure 72. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms, 

density 10%. 
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Figure 73. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms, 

density 20%. 

 

Figure 74. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms, 

density 30%. 
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Figure 75. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms, 

density 40%. 

 

Figure 76. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms, 

density 50%. 

0

50

100

150

200

250

400 420 440 460 480 500 520 540 560 580 600

Ti
m

e
 (

m
s)

Number of vertices

40%

Greedy

ParallelJp

ParallelJpV2

ParallelLargestFirst

ParallelSmallestLast

GreedyFromParallel

GreedyV2FromParallel

LargestFirstFromParallel

SmallestLastFromParallel

0

20

40

60

80

100

120

140

160

180

200

350 360 370 380 390 400 410 420 430 440 450

Ti
m

e
 (

m
s)

Number of vertices

50%

Greedy

ParallelJp

ParallelJpV2

ParallelLargestFirst

ParallelSmallestLast

GreedyFromParallel

GreedyV2FromParallel

LargestFirstFromParallel

SmallestLastFromParallel



123 
 

 

Figure 77. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms, 

density 60%. 

 

Figure 78. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms, 

density 70%. 
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Figure 79. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms, 

density 80%. 

 

Figure 80. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms, 

density 90%. 
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Appendix 2 – Maximum Clique algorithms: DIMACS Graphs 

Test Results 

Graph Size Density 

Number of color classes 

Largest-

First 
Greedy 

Largest-

First V3 
DSatur 

DSatur 

V2 

c-fat500-1.clq 500 0,36 14 14 14 14 14 

c-fat500-2.clq 500 0,07 26 26 26 26 26 

c-fat500-5.clq 500 0,19 64 64 64 64 64 

c-fat500-10.clq 500 0,37 126 126 126 126 126 

hamming10-2.clq 1024 0,99 512 512 512 512 512 

hamming6-2.clq 64 0,9 32 32 32 32 32 

hamming6-4.clq 64 0,35 8 8 8 8 8 

hamming8-2.clq 256 0,97 128 128 128 128 128 

hamming8-4.clq 256 0,64 32 32 32 24 24 

johnson16-2-4.clq 120 0,76 14 14 14 17 17 

johnson8-2-4.clq 28 0,56 6 6 6 6 6 

johnson8-4-4.clq 70 0,77 20 20 20 17 17 

keller4.clq 171 0,65 37 38 39 25 23 

MANN_a27.clq 378 0,99 144 135 141 136 136 

MANN_a9.clq 45 0,93 21 18 19 19 19 

p_hat300-1.clq 300 0,24 22 29 23 21 21 

p_hat300-2.clq 300 0,49 46 56 43 41 43 

p_hat300-3.clq 300 0,74 73 85 71 69 70 

p_hat500-1.clq 500 0,25 36 45 33 32 30 

p_hat500-2.clq 500 0,5 68 87 68 65 65 

p_hat700-1.clq 700 0,25 43 53 41 40 40 

p_hat1000-1.clq 1000 0,25 56 69 55 53 53 

san1000.clq 1000 0,5 15 47 29 25 26 

san200_0.7_1.clq 200 0,7 44 49 43 38 38 

san200_0.7_2.clq 200 0,7 18 35 24 23 20 

san200_0.9_1.clq 200 0,9 75 92 78 75 76 

san400_0.5_1.clq 400 0,5 13 29 23 19 19 

Table 28. DIMACS graphs test results. Number of color classes - part 1. 
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Graph Size Density 

Number of color classes 

DSatur-

LDO 

DSatur-

IDO-LDO 

LDO-

IDO 

Parallel 

Largest-

First 

Parallel 

Smallest-

Last 

c-fat500-1.clq 500 0,36 14 14 14 18 17 

c-fat500-2.clq 500 0,07 26 26 26 31 31 

c-fat500-5.clq 500 0,19 64 64 64 74 74 

c-fat500-10.clq 500 0,37 126 126 126 126 126 

hamming10-2.clq 1024 0,99 512 512 512 541 547 

hamming6-2.clq 64 0,9 32 32 32 34 35 

hamming6-4.clq 64 0,35 7 7 8 9 11 

hamming8-2.clq 256 0,97 128 128 128 139 134 

hamming8-4.clq 256 0,64 24 16 32 31 29 

johnson16-2-4.clq 120 0,76 14 14 14 15 18 

johnson8-2-4.clq 28 0,56 6 6 6 6 6 

johnson8-4-4.clq 70 0,77 17 14 20 22 22 

keller4.clq 171 0,65 24 25 39 26 22 

MANN_a27.clq 378 0,99 140 140 142 144 144 

MANN_a9.clq 45 0,93 19 19 20 21 21 

p_hat300-1.clq 300 0,24 22 22 22 24 24 

p_hat300-2.clq 300 0,49 42 42 44 44 45 

p_hat300-3.clq 300 0,74 69 70 69 73 77 

p_hat500-1.clq 500 0,25 32 32 34 34 35 

p_hat500-2.clq 500 0,5 66 66 68 69 70 

p_hat700-1.clq 700 0,25 40 41 41 44 45 

p_hat1000-1.clq 1000 0,25 52 52 54 57 58 

san1000.clq 1000 0,5 24 26 28 15 15 

san200_0.7_1.clq 200 0,7 42 35 43 38 48 

san200_0.7_2.clq 200 0,7 23 23 22 18 18 

san200_0.9_1.clq 200 0,9 73 70 77 77 86 

san400_0.5_1.clq 400 0,5 21 20 22 13 13 

Table 29. DIMACS graphs test results. Number of color classes - part 2. 

 

 

 

 


