
Tallinn 2016

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

IDK70LT

Aleksei Kulitškov 132555IAPM

INVESTIGATING EFFECTS OF APPLYING

DIFFERENT HEURISTIC COLORING

TECHNIQUES ON MODERN MAXIMUM

CLIQUE ALGORITHMS

Master’s thesis

Supervisor: Deniss Kumlander

 PhD

Senior Researcher

Tallinn 2016

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

IDK70LT

Aleksei Kulitškov 132555IAPM

HEURISTILISE VÄRVIMISE ERINEVATE

TEHNIKATE RAKENDAMISE MÕJU

KAASAEGSETELE SUURIMA KLIKI

LEIDMISE ALGORITMIDELE

Magistritöö

Juhendaja: Deniss Kumlander

 PhD

Vanem teadur

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references to

the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Aleksei Kulitškov

09.05.2016

4

Abstract

Developers face many different problems every day. Some of them are not so

complex, but the majority of them demand a lot of time in order to find the best solution.

Consequently, a lot of researches have been conducted in this area, especially, in the field

of graph theory. Why graph theory is so significant? The answer is simple: it can be applied

to many different areas, such as technology, mathematics and science.

Well-known graph theory problems are graph coloring and finding the maximum

clique in an undirected graph, or shortly - MCP. And these problems are closely related.

Vertex coloring is usually considered an initial step before the start of finding maximum

clique of a graph. The maximum clique problem is considered to be of NP-hard complexity,

which means that there is no algorithm found that could solve this kind of problem in a

polynomial time. This problem is of high importance since it could be encountered in a

wide range of applications, for example, in computer or social network analysis. Therefore,

it is crucial to develop a new or improve the currently known algorithm, which is meant to

solve such kind of a problem.

This thesis starts from describing basic concepts of graph theory and its problems to

introduce the main topic. After that, 17 coloring algorithms are introduced, described and

tested against random and DIMACS instances of graphs and those, which showed the best

results, are taken for further research. Then we move to algorithms that solve the problem

of maximal clique. Almost all of them depend on the coloring of the vertices, which is

made in the process of execution. In this work, we are going to investigate the effects of

applying different types of coloring algorithms on modern maximum clique algorithms.

The algorithms, which were chosen as the main objects of research, were initially invented

in Tallinn University of Technology and are called VColorU and VRecolor-BT-u. At first,

we perform an extensive experimental evaluation of these algorithms together with selected

variants of coloring algorithms. In order to receive appropriate results, we conducted tests

on random and DIMACS graph instances. Furthermore, to see if there was any influence

5

depending on number of vertices of the graph, random tests were run with graphs having

different densities. The results of our study show the time used by the algorithms to

determine the maximal clique, the number of colors used in the process of vertex coloring

and number of branches analyzed by maximum clique algorithm after vertex coloring.

It could be clearly seen from the results that some of the coloring algorithms helped

to improve the VColorU and VRecolor-BT-u algorithms on graphs with certain densities.

There are also some promising ideas brought up at the end of our work that might become a

good start for future researches.

This thesis is written in English and is 126 pages long, including 4 chapters, 80

figures and 29 tables.

6

Annotatsioon

Heuristilise Värvimise Erinevate Tehnikate Rakendamise Mõju

Kaasaegsetele Suurima Kliki Leidmise Algoritmidele

Tarkvaraarendajad puutuvad igapäevaselt kokku paljude probleemidega. Mõned

neist pole eriti keerulised, kuid enamuste probleemide parima lahenduse leidmiseks kulub

palju aega. Sellest tulenevalt on selles valdkonnas tehtud palju teaduslikke uuringuid, eriti

graafiteooria vallas. Miks on graafiteooria nii oluline? Vastus on lihtne: seda saab kasutada

paljudes erinevates valdkondades nagu näiteks tehnoloogia, matemaatika ning

loodusteadused.

Teada tuntud graafiteooria probleemid on graafi värvimine ja maksimaalse arvu

klikkide leidmine mittesuunalikus graafikus (inglise keeles lühidalt: MCP). Ja need

probleemid on tugevalt omavahel seotud. Kõrgeima tipu esmast värvimist peetakse

esimeseks sammuks enne, kui asutakse leidma graafi maksimaalsete klikkide arvu.

Maksimaalsete klikkide probleemi peetakse keerukaks „NP-hard“ tasemel, mis tähendab sel

puudub polünoomilise (piiratud) aja jooksul lahendamisega hakkama saav algoritm. See

probleem on suure tähtsusega, sest võib ilmneda paljudes olukordades, näiteks arvuti- ja

sotsiaalvõrgustike analüüsis. Seepärast on oluline arendada välja uus algoritm või muuta

vana paremaks, mis on mõeldud seda tüüpi probleemide lahendamiseks.

See väitekiri algab peateema sissejuhatuseks graafiteooria põhikontseptsioonide ja

selle probleemide kirjeldamisega. Peale seda tutvustatakse, kirjeldatakse ja testitakse

juhuslike ja DIMACS tüüpi graafidega 17 värvimise algoritmi ja need, mis annavad

parimaid tulemusi võetakse täiendava uurimise alla. Siis liigume edasi maksimaalsete

klikkide arvu algoritmide juurde. Peaaegu kõik need sõltuvad tippude värvimisest, mis

tehakse ära protsessi täitmise käigus. Selles töös uurime graafide erinevat tüüpi

värvimisalgoritmide mõju tänapäevastele maksimaalse klikkide arvu algoritmidele.

7

Algoritmid, mis valiti selle uurimistöö peamisteks objektideks, töötati esmalt välja Tallinna

Tehnikaülikoolis ning nende nimed on „VColorU“ ja „VRecolor-BT-u“. Alguses viime läbi

nende algoritmide ulatusliku katsehindamise koos valitud värvimise algoritmide

variantidega. Selleks, et saada sobiv arv tulemusi, viisime katsetusi läbi juhuslikel ja

DIMACS graafidel. Peale selle, et testida, kas eksisteerib graafide tippude arvust sõltuv

mõju, viidi läbi juhuslikke katseid erineva tihedusega graafidega. Meie uurimistöö

tulemused näitavad maksimaalsete klikkide arvu leidmisele kulunud aega, kõrgeima tipu

värvimise protsessis kasutatud värvide arvu ja maksimaalsete klikkide arvu algoritmi poolt

analüüsitud harude arvu peale tipu värvimist.

Tulemustest on selgelt näha, et mõned värvimisalgoritmid aitasid parandada

„VColorU“ ja „VRecolor-BT-u“ algoritme teatud tihedusega graafide puhul. Meie töö

lõpus on samuti toodud ära mõned lubavad ideed, mis võivad osutuda tulevaste uuringute

headeks lähtekohtadeks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 126 leheküljel, 4 peatükki,

80 joonist, 29 tabelit.

8

List of abbreviations and terms

MCP Maximum Clique Problem

DIMACS The Center for Discrete Mathematics and Theoretical Computer Science

MCP Maximal Clique problem

IS Independent Set

MIS Maximal Independent Set

GCP Graph Coloring Problem

LDO Largest Degree Ordering

IDO Incidence Degree Ordering

LF Largest-First

SL Smallest-Last

JP Jones and Plassmann

PLF Parallel Largest-First

PSL Parallel Smallest-Last

9

Table of Contents

Abstract ... 4

Annotatsioon ... 6

List of abbreviations and terms ... 8

Table of Contents .. 9

Table of Figures ... 11

List of Tables .. 15

1. Introduction .. 16

1.1. Background of the Study ... 16

1.2. Basic Definitions ... 17

1.3. Graph problems ... 24

1.4. Research Goals .. 25

1.5. Outline of the Study .. 27

2. Coloring Algorithms ... 28

2.1. Overview ... 28

2.2. Sequential algorithms .. 30

2.2.1. Greedy ... 30

2.2.2. Largest-First .. 31

2.2.3. Largest-First V2 .. 31

2.2.4. Largest-First V3 .. 34

2.2.5. DSatur ... 35

2.2.6. DSatur V2 .. 36

2.2.7. Incidence degree ordering (IDO) .. 37

2.2.8. MinMax ... 38

2.3. Mixed/combined algorithms ... 39

2.3.1. IDO-LDO .. 39

2.3.2. IDO-LDO-Random ... 40

2.3.3. LDO-IDO .. 41

10

2.3.4. DSatur-LDO .. 42

2.3.5. DSatur-IDO-LDO .. 42

2.4. Parallel algorithms... 42

2.4.1. Jones and Plassmann algorithm ... 42

2.4.2. Jones and Plassmann V2 ... 43

2.4.3. Parallel Largest-First ... 45

2.4.4. Parallel Smallest-Last .. 45

2.4.5. Non-Parallel Implementations ... 47

2.5. Tests and results .. 47

2.5.1. Randomly generated graphs .. 48

2.5.2. DIMACS graphs .. 61

2.5.3. Overall conclusion ... 83

3. Maximum Clique Algorithms ... 84

3.1. Overview ... 84

3.2. VColor-u ... 84

3.3. VRecolor-BT-u.. 85

3.4. Tests and results .. 86

3.4.1. Randomly generated graphs .. 86

3.4.2. DIMACS graphs .. 91

4. Conclusion ... 102

4.1. Summary ... 102

4.2. Future studies .. 103

Resümee .. 105

References ... 108

Appendix 1 – Coloring algorithms: Randomly Generated Graphs Test Results 110

Sequential algorithms .. 110

Combined algorithms .. 115

Parallel algorithms .. 120

Appendix 2 – Maximum Clique algorithms: DIMACS Graphs Test Results 125

11

Table of Figures

Figure 1. Graph. .. 17

Figure 2. Adjacent and nonadjacent vertices... 18

Figure 3. Vertex degree. .. 19

Figure 4. Complement graph. .. 20

Figure 5. Subgraph. ... 21

Figure 6. Induced subgraph. .. 21

Figure 7. Complete subgraph. ... 22

Figure 8. Clique and IS. .. 25

Figure 9. Greedy pseudo-code. ... 30

Figure 10. Largest-First pseudo-code. ... 31

Figure 11. Largest-First V2 pseudo-code. ... 32

Figure 12. Graph to color. ... 32

Figure 13. LF: iteration one... 33

Figure 14. LF: iteration two. ... 33

Figure 15. Largest-First V3 pseudo-code. ... 34

Figure 16. DSatur pseudo-code. .. 35

Figure 17. DSatur V2 pseudo-code. .. 36

Figure 18. IDO pseudo-code. .. 37

Figure 19. MinMax pseudo-code. ... 39

Figure 20. IDO-LDO pseudo-code. ... 40

Figure 21. LDO-IDO pseudo-code. ... 41

Figure 22. JP pseudo-code. ... 43

Figure 23. JP V2 pseudo-code. .. 44

Figure 24. Parallel SL - weighting phase. ... 46

Figure 25. Parallel SL weighting phase pseudo-code. .. 46

Figure 26. Parallel SL - coloring phase. .. 47

Figure 27. Random graph's generation function. .. 50

Figure 28. Randomly generated graphs tests' results compared in used colors. Sequential algorithms,

density 10%. .. 51

Figure 29. Randomly generated graphs tests' results compared in used colors. Sequential algorithms,

density 40%. .. 52

Figure 30. Randomly generated graphs tests' results compared in used colors. Sequential algorithms,

density 50%. .. 52

Figure 31. Randomly generated graphs tests' results compared in used colors. Sequential algorithms,

density 90%. .. 53

12

Figure 32. Randomly generated graphs tests' results compared in used colors. Combined algorithms,

density 10%. .. 54

Figure 33. Randomly generated graphs tests' results compared in used colors. Combined algorithms,

density 30%. .. 55

Figure 34. Randomly generated graphs tests' results compared in used colors. Combined algorithms,

density 50%. .. 55

Figure 35. Randomly generated graphs tests' results compared in used colors. Combined algorithms,

density 80%. .. 56

Figure 36. Randomly generated graphs tests' results compared in used colors. Combined algorithms,

density 90%. .. 56

Figure 37. Randomly generated graphs tests' results compared in used colors. Parallel algorithms,

density 10%. .. 58

Figure 38. Randomly generated graphs tests' results compared in used colors. Parallel algorithms,

density 50%. .. 58

Figure 39. Randomly generated graphs tests' results compared in used colors. Parallel algorithms,

density 80%. .. 59

Figure 40. Randomly generated graphs tests' results compared in used colors. Parallel algorithms,

density 90%. .. 59

Figure 41. DIMACS graphs tests' results compared in number of used colors. Sequential algorithms

- part 1. .. 67

Figure 42. DIMACS graphs tests' results compared in number of used colors. Sequential algorithms

- part 2. .. 67

Figure 43. DIMACS graphs tests' results compared in time (ms). Sequential algorithms - part 1. .. 68

Figure 44. DIMACS graphs tests' results compared in time (ms). Sequential algorithms - part 2. .. 68

Figure 45. DIMACS graphs tests' results compared in number of used colors. Combined algorithms

- part 1. .. 74

Figure 46. DIMACS graphs tests' results compared in number of used colors. Combined algorithms

- part 2. .. 74

Figure 47. DIMACS graphs tests' results compared in time (ms). Combined algorithms - part 1. ... 75

Figure 48. DIMACS graphs tests' results compared in time (ms). Combined algorithms - part 2. ... 75

Figure 49. DIMACS graphs tests' results compared in number of used colors. Parallel algorithms -

part 1.. 81

Figure 50. DIMACS graphs tests' results compared in number of used colors. Parallel algorithms -

part 2.. 81

Figure 51. DIMACS graphs tests' results compared in time (ms). Parallel algorithms - part 1. 82

Figure 52. DIMACS graphs tests' results compared in time (ms). Parallel algorithms - part 2. 82

Figure 53. Coloring choice based on density [16]... 86

Figure 54. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms,

density 10%. .. 110

Figure 55. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms,

density 20%. .. 111

Figure 56. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms,

density 30%. .. 111

13

Figure 57. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms,

density 40%. .. 112

Figure 58. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms,

density 50%. .. 112

Figure 59. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms,

density 60%. .. 113

Figure 60. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms,

density 70%. .. 113

Figure 61. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms,

density 80%. .. 114

Figure 62. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms,

density 90%. .. 114

Figure 63. Randomly generated graphs tests' results compared in time (ms). Combined algorithms,

density 10%. .. 115

Figure 64. Randomly generated graphs tests' results compared in time (ms). Combined algorithms,

density 20%. .. 116

Figure 65. Randomly generated graphs tests' results compared in time (ms). Combined algorithms,

density 30%. .. 116

Figure 66. Randomly generated graphs tests' results compared in time (ms). Combined algorithms,

density 40%. .. 117

Figure 67. Randomly generated graphs tests' results compared in time (ms). Combined algorithms,

density 50%. .. 117

Figure 68. Randomly generated graphs tests' results compared in time (ms). Combined algorithms,

density 60%. .. 118

Figure 69. Randomly generated graphs tests' results compared in time (ms). Combined algorithms,

density 70%. .. 118

Figure 70. Randomly generated graphs tests' results compared in time (ms). Combined algorithms,

density 80%. .. 119

Figure 71. Randomly generated graphs tests' results compared in time (ms). Combined algorithms,

density 90%. .. 119

Figure 72. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms,

density 10%. .. 120

Figure 73. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms,

density 20%. .. 121

Figure 74. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms,

density 30%. .. 121

Figure 75. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms,

density 40%. .. 122

Figure 76. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms,

density 50%. .. 122

Figure 77. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms,

density 60%. .. 123

14

Figure 78. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms,

density 70%. .. 123

Figure 79. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms,

density 80%. .. 124

Figure 80. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms,

density 90%. .. 124

15

List of Tables

Table 1. Results of the Dimacs tests of the sequential algorithms, showing the number of maximum

cliques – part 1. ... 63

Table 2. Results of the Dimacs tests of the sequential algorithms, showing the number of maximum

cliques - part 2 ... 64

Table 3. Sequential algorithms' successes. .. 65

Table 4. Results of the Dimacs tests of the sequential algorithms, showing time - part 1. 65

Table 5. Results of the Dimacs tests of the sequential algorithms, showing time - part 2. 66

Table 6. Results of the Dimacs tests of the combined algorithms, showing the number of maximum

cliques - part 1. .. 70

Table 7. Results of the Dimacs tests of the combined algorithms, showing the number of maximum

cliques - part 2. .. 71

Table 8. Combined algorithms' successes. .. 72

Table 9. Results of the Dimacs tests of the combined algorithms, showing time - part 1. 72

Table 10. Results of the Dimacs tests of the combined algorithms, showing time - part 2. 73

Table 11. Results of the Dimacs tests of the parallel algorithms, showing the number of maximum

cliques - part 1. .. 77

Table 12. Results of the Dimacs tests of the parallel algorithms, showing the number of maximum

cliques - part 2. .. 78

Table 13. Parallel algorithms' successes. .. 79

Table 14. Results of the Dimacs tests of the parallel algorithms, showing time - part 1. 79

Table 15. Results of the Dimacs tests of the parallel algorithms, showing time - part 2. 80

Table 16. Random graphs test results. VColor-u, time consumption ratio - part 1. 88

Table 17. Random graphs test results. VColor-u, time consumption ratio - part 2. 89

Table 18. Random graphs test results. VRecolor-BT-u, time consumption ratio - part 1. 91

Table 19. Random graphs test results. VRecolor-BT-u, time consumption ratio - part 2. 91

Table 20. DIMACS graphs test results. VColor-u, time consumption (ms) - part 1. 94

Table 21. DIMACS graphs test results. VColor-u, time consumption (ms) - part 2. 95

Table 22. DIMACS graphs test results. VColor-u, number of branches - part 1. 96

Table 23. DIMACS graphs test results. VColor-u, number of branches - part 2. 97

Table 24. DIMACS graphs test results. VRecolor-BT-u, time consumption (ms) - part 1. 98

Table 25. DIMACS graphs test results. VRecolor-BT-u, time consumption (ms) - part 2. 99

Table 26. DIMACS graphs test results. VRecolor-BT-u, number of branches - part 1. 100

Table 27. DIMACS graphs test results. VRecolor-BT-u, number of branches - part 2. 101

Table 28. DIMACS graphs test results. Number of color classes - part 1. 125

Table 29. DIMACS graphs test results. Number of color classes - part 2. 126

16

1. Introduction

1.1. Background of the Study

The area of this study is graph theory – a rapidly developing branch of

mathematics, which studies graphs. It could be found in practice in many other fields such

as sociology, chemistry and even statistical physics. However, it has a great significance in

computer science. It is a perfect tool for analyzing data and could be applied to different

scientific problems. Although, we can say that this area is relatively old (it is said that graph

theory may take its beginning in the long 1736 when Leonhard Euler published his paper

about Seven Bridges of Königsberg problem [1]), it is rapidly developing since the middle

of 20th century until now. There are still a lot of different actual problems in this area and,

therefore, a lot of space for researches.

But how is it possible to solve different problems with the help of graph theory?

What is that in general? Well, if you have a very complicated task and do not know how to

find a solution, then maybe it is possible to represent the whole problem as a graph. But

firstly it is necessary to introduce the concept of a “graph”. We consider a graph a set of

points and lines, which connect some of the points. In other words, it is a set of objects that

are connected in some way. Specifically, it consists of 2 sets: a set of points, which are

called vertices, and a set of lines, or edges, which represent relationships between the

connected vertices. It is a mathematical model, which is a simplified version of the real

world. So, some real life situations could be converted into graphs. For example, let us take

the well-known social networking service “Facebook”. Almost everyone uses it and has

some people added to the Friends’ list. It is possible to simplify this situation and represent

it as a graph. For example, suppose that all the people registered on Facebook are the

vertices of our new graph. Then, the relationships between them, or should we say edges,

represent the fact that the people connected are friends. Very easy. This way by removing

all the unnecessary details and making a simple mathematical model, which conveys the

17

main idea of the situation, it is possible to solve many different complex problems, which

we face in the real world. Therefore, it is very important to make researches in the graph

theory field, to try to improve the currently achieved results or to invent something new,

which could help to find solutions to graph problems or be revolutionary and beneficial to

the graph theory in common.

1.2. Basic Definitions

In order to proceed, it is necessary to define some terms, which are going to be used

further in this work.

Definition 1: Undirected graph

Let G=(V, E) be an undirected graph. Then, V is a finite set of elements called

vertices and E is a finite set of unordered pairs of vertices, called edges [2]. It is easier to

see it on an illustration below (Figure 1).

Figure 1. Graph.

18

Definition 2: Order

The cardinality of a set of vertices, or just the number of its elements, is called the

order of a graph and is denoted as n=|V|.

Definition 3: Size

The cardinality of a set of edges, or just the number of its edges, is called the size of

a graph and is denoted as m=|E| [2].

Definition 4: Adjacency

If vi and vj are vertices that belong to one and the same graph and there is a

relationship between them, which ends up being an edge, then these vertices are adjacent.

In the mathematical equivalence it can written like this: 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 and {𝑣𝑖 , 𝑣𝑗} ∈ 𝐸.

Furthermore, we can say that if 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 and {𝑣𝑖 , 𝑣𝑗} ∉ 𝐸, then these vertices are

nonadjacent (Figure 2).

Figure 2. Adjacent and nonadjacent vertices.

19

Definition 5: Vertex degree

The degree of vertex v in graph G is the number of edges incident to it [2]. Or, in

other words, it is the number of this vertex’s neighbors, which are connected to it (Figure

3). The maximum degree of a vertex in a graph is the number of edges of a vertex with the

maximum neighbors. The minimum degree of a vertex in a graph is the number of edges of

a vertex, which has the least neighbors. Usually, the degree of a vertex is denoted as deg(v).

Figure 3. Vertex degree.

Definition 6: Density

Density is the ratio of the edges in graph G to the number of vertices of the graph. It

is defined as g(G). We can define its formula through the previously defined terms

(definitions 1.2, 1.3), so that it looks as follows:

𝑔(𝐺) =
2 ∗ 𝑚

𝑛 ∗ (𝑛 − 1)

20

Definition 7: Complement graph

A graph is considered to be complement (Figure 4) if it has the same vertices as

graph G and any two vertices in this graph are adjacent only if the same vertices are

nonadjacent in the original graph. So, it is possible to say that this is an inversed variant of

graph G. Or mathematically it would be 𝑉(�̅�) = 𝑉(𝐺) 𝑎𝑛𝑑 �̅� = {𝑒 ∈ 𝐸 ̅, 𝑒 ∉ E} .

Figure 4. Complement graph.

Definition 8: Simple graph

A simple graph is considered to be an undirected graph with finite sets of vertices

and edges, which has no loops or multiple edges. We needed to introduce this term because

further in this work we are going to use simple graphs for our experiments.

Definition 9: Subgraph

A subgraph 𝐺′ = (𝑉′, 𝐸′) is considered to be a subset of the vertices of graph G

with the corresponding edges. But not all possible edges may be included (Figure 5). This

means that if vertices vi and vj are adjacent in graph G, then it may happen that on a

subgraph of graph G they won’t have an edge between them. 𝑉′ ⊆ 𝑉, 𝐸′ ⊆ 𝐸.

21

Figure 5. Subgraph.

Definition 10: Vertex-induced subgraph

An induced subgraph 𝐺′ = (𝑉′, 𝐸′) is considered to be a subset of the vertices of

graph G with all their corresponding edges (Figure 6). 𝐺[𝑉′] = (𝑉′ ⊆ 𝑉, 𝐸′ =

{ (𝑣𝑖, 𝑣𝑗) |𝑖 ≠ 𝑗, (𝑣𝑖, 𝑣𝑗) ∈ 𝐸, 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉′}).

Figure 6. Induced subgraph.

22

Definition 11: Complete subgraph

A complete subgraph 𝐺′ = (𝑉′, 𝐸′) is considered to be a subset of the vertices of

graph G with all their corresponding edges, where each pair of vertices is connected by an

edge (Figure 7). We should remember this important term because we are going to need it

later on.

Figure 7. Complete subgraph.

Definition 12: Clique, maximal clique, clique number

Clique is a complete subgraph of graph G. The clique 𝑉′ in graph G is called

maximal if there does not exist any other 𝑉′′, such that 𝑉′ ⊂ 𝑉′′. The size of the largest

maximum clique in graph G is called the clique number. [2]

Definition 13: Independent set

An independent set (IS) of a graph G is any subset of vertices 𝑉′ ⊆ 𝑉, where

vertices are not pairwise adjacent. So, it is not hard to conclude that for any clique in graph

G, there is an independent set in a complement graph 𝐺′ and vice versa.

23

Definition 14: Vertex coloring

The assignment of colors to vertices of a graph according to algorithm’s

construction. If we have an undirected graph 𝐺 = (𝑉, 𝐸), then the process of colors

assignment must follow the rules below:

 (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸, 𝑖 ≠ 𝑗

 𝑐(𝑣𝑖) ≠ 𝑐(𝑣𝑗), 𝑖 ≠ 𝑗

Generally, it means that no adjacent vertex must have the same color, the colors of

adjacent vertices must be different.

This is the main tool that we are going to use in our work.

Definition 15: Color class

A color class is known to be a subset of vertices that belong to a certain color. In

other words, all the similarly colored vertices belong to one color class.

Definition 16: Chromatic number

A chromatic number of a graph G is considered to be the smallest number of colors

needed to make a proper coloring of graph G [3]. Or we should say that it is the smallest

number k for which there exists a k-coloring of graph G [2]. It is usually denoted by χ(𝐺).

Definition 17: Heuristic algorithm

An algorithm is considered to be heuristic if it finds an approximate solution to the

problem in acceptable time. There are many complex problems that need to be solved. But

sometimes algorithms take too much time in order to find the best available solution. Why

should we wait so long if we could just find a solution, which is acceptable, but may not be

the best one there is? That is the main principle of the heuristic algorithm. It gives a

considerable solution in a relatively short amount of time.

24

Definition 18: Tie

Situation when vertices have the same saturation degree.

1.3. Graph problems

As it was mentioned before, there is a lot of space for researches in the field of

graph theory. Many problems stay acute even nowadays waiting for someone to find a

better solution. In this work, we are going to run into several important problems:

maximum clique, maximum independent set and coloring problem.

Let’s start with the maximum clique problem, or shortly MCP. The main problem

is to find the maximal possible clique, or should we say maximal complete subgraph, of a

graph. This means that every two vertices must be pairwise adjacent, joined by an edge

(Figure 7). The problem is classified as NP-hard (there are a lot of good books, which have

detailed information about complexity, for example “Computer and intractability. A guide

to the theory of NP-completeness” by Garey M.R. and Johnson D.S.), the solutions of

which is very hard to find by means of conventional methods. Many algorithms and its

modifications have been produced to find the maximum clique. The most famous among

them are the algorithm that was introduced by Carraghan and Pardalos in 1990 and the one,

made by Östergård in 2002 [3]. Due to their popularity and performance, these algorithms

became a base for other modifications made specifically to improve the quality and

decrease the time spent on finding the maximum clique. The problem of finding the

maximum clique has many applications in practice. For example, it could be used in data

analyses, for designing error-correction codes and even for computer vision. That is why

we can assume this a very important problem and finding a better algorithm would

contribute a lot into the current situation.

Another similar problem is the finding of maximal independent set (MIS). It

means that we need to find a subset of vertices that are pairwise nonadjacent or, in other

words, none of the vertex in this set must be connected to other vertices of that set (as

stated by definition 13). The IS is called maximal only if there are no vertices that could be

added to the current maximal independent set without ruining its structure. As this problem

25

is closely connected with maximal clique problem, MIS problem is considered to be of NP-

hard complexity as well. Also, as stated above, MCP and MIS problems are related in such

a way that if we have a clique in a graph, then this clique will be an independent set in the

complement graph and vice versa (Figure 8).

Figure 8. Clique and IS.

And the last problem that will be encountered in our study is graph coloring

problem, or GCP. The main idea is to find the least possible number of colors for coloring

a particular graph. It means that any two vertices that have a relationship must be colored

differently (definition 14). GCP is considered to be a NP-complete problem. It has a lot in

common with MIS problem, because all the vertices that share the same color, or are in one

color class, can be called an independent set. There are many algorithms made in this field.

Also heuristics have been widely used for this problem, for example, a well-known iterative

Greedy, made by Welsh and Powell [4], or DSatur algorithm, which was developed by

Brelaz. We will talk about them more precisely in Chapter 2.

1.4. Research Goals

Now that all the definitions and basic concepts are described, we can move on to

revealing the actual goal of our study.

26

There have been developed quite a lot effective algorithms for the MCP problem.

We have already mentioned some of them in the previous subchapters. But the algorithms

we are going to take are closely connected to the Tallinn University of Technology. The

first one is called VColor-u and was developed in 2005 by Deniss Kumlander. The second

algorithm is new, developed only in 2015, and is called VRecolor-BT-u. Its author is

Aleksandr Porošin. We are going to describe both of them later in Chapter 3, but for now it

is necessary to mention that these algorithms work perfectly not on all types of graphs.

According to the results, conducted by Deniss Kumlander in his work, VColor-u works

effectively on graphs with densities more than 60% [3]. From the results of Aleksandr

Porošin’s master’s thesis, is was found that VRecolor-BT-u algorithm performs well on low

to mid densities. Both algorithms use the coloring heuristics under the hood, which is called

Largest-First. Largest-First coloring algorithm is a sequential heuristic algorithm, which is

very fast and provides a decent result in terms of number of colors. However, there are

many algorithms that surpass it in the number of colors and sometimes even in time. The

question arises immediately: would the change of coloring algorithm help to improve the

MCP algorithm itself? That is what we are going to find out in our study. First, we are

going to compare different coloring algorithms between themselves according to their

results in time and number of colors. Next we will modify the maximum clique algorithms

to make them interchangeable in terms of coloring algorithms, so that it would be easy to

change the coloring algorithm. And, finally, we are going to conduct our own tests using

the DIMACS and random graphs with different densities to see if there are any

performance improvements.

As the topic of this thesis is quite extensive, the following goals were determined

for our research:

1. Investigate known heuristic coloring algorithms.

2. Define the most efficient coloring algorithms in terms of found color classes.

3. Study the influence of heuristic coloring algorithms on modern maximum clique

algorithms (VColor-u, VRecolor-BT-u).

4. Compare performance of maximum clique algorithms with different coloring

algorithms and determine if there are any improvements.

27

1.5. Outline of the Study

Our document is divided into five chapters.

Chapter 1 is mainly a theoretical part of the work. It makes a brief review of the

background of our study, describes the main definitions and basic concepts used in this

work. As well as that, it reveals the goal of our research and describes briefly the main

methods used to achieve it.

Chapter 2 introduces different coloring algorithms, which are going to be used later

in the project, their history, different variations and comparison. This allows us to

understand how these algorithms should help to improve the maximum clique algorithm.

In order to work with a certain algorithm, it is necessary to know the details about it.

So, Chapter 3 explains the reasons of choosing maximum clique algorithms for our

research, briefly describes them, the coloring that they use and their basics. Furthermore, it

is told about the improvement of the maximum clique algorithms. All the details about how

the algorithms were modified, which coloring algorithms were used and the results of this

work are described in this block.

And, finally, in Chapter 4 it is possible to find the summary of the work and

possible future improvements. All the conclusions could be found in this chapter.

28

2. Coloring Algorithms

2.1. Overview

There are a lot of applications that use a large number of different parameters. Let

us say we have a network, where are dozens of nodes. Each node communicates with the

nodes that are in the neighborhood and are reachable to it. Imagine that every such

communication costs time and money. Sometimes it is necessary to find nodes that are

connected to each other not directly, but via an intermediate node. It is possible to model

this network as a graph, which has nodes as vertices and its communication links as their

edges. Now that we have the graph, we can turn to the help of a coloring algorithm to solve

such kind of a problem.

The graph coloring problem is a well-known problem. Its goal is to assign labels to

vertices in such a way that no adjacent vertices share the same color. The number of colors

used in the process must be as low as possible, thus making the GCP’s primary task to

minimize this number. These kinds of problem are widely spread and could be found in

many computing applications. A striking example of the area, where this problem arises

very frequently, is timetabling and scheduling because of the many conflict situations that

may occur in the process of allocation of resources. In the first chapter we mentioned that

GCP problem is of NP-hard complexity, making it very hard to solve. So, resorting to a

heuristic approach seems to be very reasonable. It may not have the best performance but

can provide one with a solution in a relatively short amount of time.

Many algorithms have been developed to solve the graph coloring problem

heuristically. But Greedy remains to be the basic algorithm to assign colors in a graph. It

provides a relatively good solution in a small amount of time. The order, in which the

algorithm colors the vertices, plays a major role in the process and heavily affects the

quality of the coloring. Therefore, there are many algorithms, which employ different

ordering heuristics to determine the order before coloring the vertices. These algorithms are

29

mostly based on Greedy but use additional vertex ordering to achieve better performance.

As a rule, they surpass Greedy in the number of colors used, producing better results but

taking more time to complete. The most popular ordering heuristics are:

a. First-Fit ordering - the most primitive ordering existing. Assigns each vertex a

lowest possible color. This technique is the fastest amount ordering heuristics.

b. Degree base ordering – uses a certain criteria to order the vertices and then

chooses the correct one to color. Uses a lot more time compared to First-Fit

ordering, but produces much better results in terms of the number of used colors.

There are many different degree ordering heuristics, but he most popular among

them are:

 Random: colors the vertices of a graph in random order or according to

random degree function, i.e. random unique numbers given to every vertex;

 Largest-First: colors the vertices of a graph in order of decreasing degree,

i.e. it takes into account the number of neighbors of each vertex;

 Smallest-Last: repeatedly assigns weights to the vertices of a graph with the

smallest degree, and removes them from the graph, then colors the vertices

according to their weights in decreasing order [5];

 Incidence: sequentially colors the vertices of a graph according to the

highest number of colored neighbors;

 Saturation: iteratively colors the vertices of a graph by the largest number

of distinctly colored neighbors;

 Mixed/Combined: uses a combination of known ordering heuristics. For

example, saturation degree ordering combined with largest first ordering,

which is used only to solve situations, when there is a tie, i.e. saturation

degree of some vertices is the same.

Sequential algorithms tend to do a lot of tasks that could have been executed

simultaneously. That is why many popular algorithms have their parallel versions. In a

parallel application, graph coloring is performed in order to partition tasks into subtasks. It

means that a certain work that is associated with ordering of vertices or their coloring could

30

be done concurrently. This way it is possible to get a good balance in performance of a

coloring algorithm.

Further in this work we are going to describe popular sequential and parallel

algorithms, their implementations and results. All of the algorithms have been implemented

using C# language.

2.2. Sequential algorithms

2.2.1. Greedy

The original Greedy algorithm was introduced by Welsh and Powell in 1967 [4]. It

iterates over the vertices in a graph and assigns each vertex a smallest possible color, which

is not assigned to any adjacent vertex, i.e. no neighbor must share the same color. As was

mentioned before, it is possible to say that vertices, which are colored by one color, belong

to the same color class. If it is impossible to place the vertex into the current color class,

then a new color is created. The algorithm can be represented in pseudo-code as follows

(Figure 9):

 1 Let 𝐺 = (𝑉, 𝐸)

2 For 𝑖 ≔ 1 to 𝑖 ∶= Number of vertices:

3 𝑐𝑗 = min 𝐶 , where 𝐶 = { 1, 2, 3, … , 𝑚 }

4 Try to color 𝑣𝑖 with 𝑐𝑗

5 If no color was found:

6 Create new color class 𝑚 ∶= 𝑚 + 1

7 Color 𝑣𝑖 with 𝑐𝑚

Figure 9. Greedy pseudo-code.

This heuristics is very simple and efficient in terms of time. However, the number

of used colors may be not as low as desirable. So, the quality of this algorithm stays

relatively low. There could always be found such initial orderings that will dramatically

31

improve the quality. Nevertheless, Greedy remains to be the basic algorithm because of its

speed of execution.

2.2.2. Largest-First

Welsh and Powell also suggested an ordering for the greedy algorithm called largest

first. It is based on vertices’ degrees. The algorithm orders the vertices according to the

number of neighbors that each of them has and then starts with the greedy coloring. The

pseudo-code can be seen at Figure 10.

 1 Let 𝐺 = (𝑉, 𝐸)

2 Order vertices bydeg(𝑣) descending

3 For 𝑖 ≔ 1 to 𝑖 ∶= Number of vertices:

4 𝑐𝑗 = min 𝐶 , where 𝐶 = { 1, 2, 3, … , 𝑚 }

5 Try to color 𝑣𝑖 with 𝑐𝑗

6 If no color was found:

7 Create new color class 𝑚 ∶= 𝑚 + 1

8 Color 𝑣𝑖 with 𝑐𝑚

Figure 10. Largest-First pseudo-code.

The basic idea of this algorithm is to take care of the vertices with the largest

number of neighbors as early as possible because they may contain the highest possible

number of conflicts. It works approximately 10-20% better than the Greedy algorithm in

terms of the number of colors, whereas the time of completion is almost the same.

2.2.3. Largest-First V2

This is a slightly modified version of Largest-First algorithm. In this algorithm more

than one vertex could be colored in each iteration, i.e. after coloring the vertex with the

largest number of neighbors, the algorithm also assigns the same color to all the vertices,

which follow the rules of coloring - no adjacent vertices must share the same color, and,

32

finally, it removes these vertices from the graph. It is described briefly in the following

pseudo-code (Figure 11):

 1 Let 𝐺 = (𝑉, 𝐸)

2 Order vertices by deg(𝑣) descending

3 𝑈 = 𝑉

4 𝐶 = { }

5 While 𝑈 ≠ ∅:

6 Add new color (𝑐𝑗) to 𝐶

7 Take the first vertex u from U

8 Color u with 𝑐𝑗

9 Try to color as many vertices as possible with 𝑐𝑗

 10 Remove the colored vertices from 𝑈

Figure 11. Largest-First V2 pseudo-code.

To show how the algorithm colors the graph, let us go through every step of it. Let

us imagine that we have a graph with six vertices as on Figure 12.

Figure 12. Graph to color.

At first, we have to order the vertices by decreasing degree. The outcome would be

as follows: B (3), C (3), E (2), F (2), A (1), D (1). If the algorithm finds a tie, then it just

33

takes the first vertex in the list (different functions can be used to determine the winner, for

example, random numbers). After ordering, the algorithms takes the vertex B and colors it,

let’s say, in red. Then, it tries to color as many vertices as possible in the same color

(Figure 13).

Figure 13. LF: iteration one.

So, after the first iteration we have the following situation: B, E and D are colored

red and removed from the list. The remaining ones are C (3), F (2), A (1). When it comes to

the second iteration, the LF takes the next color like green and colors the vertex C. After it

colors the remaining ones, as they are nonadjacent (Figure 14).

Figure 14. LF: iteration two.

34

This is the whole process. In this example it is possible to use only 2 colors to color

the whole graph.

As can be seen from Figure 11, the structure of the code and the steps needed for the

coloring are a little bit different than in the first variation. Although, the algorithm’s

performance is the same in terms of the number of used colors if compared with the first

edition. The time is also almost the same, sometimes even better, however, on the whole

the difference is insignificant.

2.2.4. Largest-First V3

Based on the second version we made a third edition of the Largest-First algorithm.

The main idea of the algorithm is the same as in V2, however, this time there will be a

reordering of vertices in each iteration, meaning that if the vertex is removed from the

graph, then its neighbor’s degree is decreased. The pseudo-code can be found below

(Figure 15).

1 Let 𝐺 = (𝑉, 𝐸)

2 𝑈 = 𝑉

3 𝐶 = { }

4 While 𝑈 ≠ ∅:

5 Order vertices by 𝑑𝑒𝑔(𝑢) descending

6 Add new color (𝑐𝑗) to 𝐶

7 Take the first vertex u from U

8 Color u with 𝑐𝑗

9 Try to color as many vertices as possible with 𝑐𝑗

 10 For each neighbor of colored vertices:

 11 Decrease its degree

 12 Remove the colored vertices from 𝑈

Figure 15. Largest-First V3 pseudo-code.

35

Surprisingly, this version of Largest-First gives the best results among them,

although, it takes a little bit longer for it to finish the coloring of a graph.

2.2.5. DSatur

This heuristic algorithm was developed by Daniel Brelaz in 1979 [6]. The core idea

of it is to order the vertices by their saturation degrees. This means that reordering happens

in each iteration. The algorithm orders the vertices by decreasing saturation degree, i.e. the

largest number of distinct colors used by neighbors. If a tie occurs, then the vertex is chosen

by the largest number of uncolored neighbors. By assigning colors to a vertex with the

largest number of distinctly colored neighbors, DSatur minimizes the possibility of setting

an incorrect color [3]. Here is the pseudo-code of the algorithm (Figure 16):

1 Let 𝐺 = (𝑉, 𝐸)

2 𝑈 = 𝑉

3 While 𝑈 ≠ ∅:

4 Order vertices by decreasing saturation degree 𝑑𝑒𝑔(𝑢)

5 If a tie, then order by descending number of colored neighbors

6 Take the first vertex u from U

7 Find the minimum color 𝑐𝑗 not used in its neighborhood

8 Color u with 𝑐𝑗

 9 For each neighbor of u:

 10 Increase its saturation degree if color is not in the neighborhood

 11 Decrease the number of uncolored neighbors

 12 Remove the colored vertex from 𝑈

Figure 16. DSatur pseudo-code.

The algorithm works a lot better than the Greedy algorithm, approximately 27-30%.

The number of colors used is indeed a lot smaller than if using Greedy, however, it comes

at a cost of time, which 3-4 times slower. Anyway, if DSatur is going to be used only as a

36

coloring algorithm in a bigger algorithms than the time it uses is insignificant if compared

to the time of the whole algorithm.

2.2.6. DSatur V2

There is another interesting version of DSatur that is worth mentioning [7]. This

edition of the algorithms uses a little bit different concept. At first, it finds a largest clique

of graph and assigns each a distinct color. Then, it just removes the newly colored vertices

from the graph. After this procedure, the algorithm executes as the previous DSatur. It

would be easier to see it on Figure 17.

1 Let 𝐺 = (𝑉, 𝐸)

2 𝑈 = 𝑉

3 Find the largest clique 𝑈∗ of 𝑈

4 Assign each vertex from 𝑈∗ a possibly low distinct color

5 𝑈 = 𝑈 \ 𝑈∗

6 While 𝑈 ≠ ∅:

7 Order vertices by decreasing saturation degree 𝑑𝑒𝑔(𝑢)

8 If a tie, then order by descending number of colored neighbors

9 Take the first vertex u from U

 10 Find the minimum color 𝑐𝑗 not used in its neighborhood

 11 Color u with 𝑐𝑗

 12 For each neighbor of u:

 13 Increase its saturation degree if color is not in the neighborhood

 14 Decrease the number of uncolored neighbors

 15 Remove the colored vertex from 𝑈

Figure 17. DSatur V2 pseudo-code.

In order to find the largest clique and not spend a lot of time, we have chosen to use

the Greedy algorithm. But wait, you would not agree with me, stating that this algorithm is

for coloring. Yes, that is correct. However, it is possible to find the clique by inverting the

graph and finding the color class with the largest number of vertices inside. This is the case.

37

The greedy algorithm takes a complement graph, finds the largest independent set and

colors it with a distinct color. Then, removes these vertices from the graph and starts

working as the first version of DSatur. Although, the performance stays the same in terms

of number of colors used and time.

2.2.7. Incidence degree ordering (IDO)

This ordering was firstly introduced by Daniel Brelaz [6] and was modified by

Coleman and More in their work [8]. In one word, it is a modification of the DSatur

algorithm. The main principle of this heuristic is to order vertices by decreasing number of

the vertices’ colored neighbors. If a tie occurs, it can be decided, which vertex is going to

be chosen, by the usage of random numbers. The coloring itself is done by the Greedy

algorithm. The pseudo-code is on Figure 18.

 1 Let 𝐺 = (𝑉, 𝐸)

2 𝑈 = 𝑉

3 While 𝑈 ≠ ∅:

4 Order vertices by decreasing number of colored neighbors

5 If a tie, then order by descending random number

6 Take the first vertex u from U

7 Find the minimum color 𝑐𝑗 not used in its neighborhood

8 Color u with 𝑐𝑗

 9 For each neighbor of u:

 10 Increase its degree

 11 Remove the colored vertex from 𝑈

Figure 18. IDO pseudo-code.

The performance of this algorithm is almost the same as with Largest-First,

however, the time consumption is about 2 times more compared to the Largest-First. But it

is faster than the DSatur algorithm, although, the number of colors is larger.

38

2.2.8. MinMax

The MinMax algorithm was introduced by Hilal Almara’Beh and Amjad Suleiman

in their work in 2012 [9]. The main function of this algorithm is to find the maximum

independent set, but it could be used for coloring purposes as well because independent sets

are color classes.

The algorithm starts by finding the vertex with minimum degree. If a tie exists, then

it takes the vertex with the lowest original number, colors it, places into the independent set

list and then removes it and its neighbors from the local graph. The same procedure is

repeated until there are no vertices to choose from. Then it removes the newly colored

vertices from the main graph and starts over but this time taking the vertex with maximum

degree. The algorithm alternates the ordering in each iteration. This can be seen from the

pseudo-code on Figure 19.

39

1 Let 𝐺 = (𝑉, 𝐸)

2 𝑈 = 𝑉

3 𝑢𝑠𝑒𝑀𝑎𝑥 = 𝑓𝑎𝑙𝑠𝑒

4 𝑐 = 1

5 While 𝑈 ≠ ∅:

6 𝑙𝑜𝑐𝑎𝑙𝐺𝑟𝑎𝑝ℎ = 𝑈

7 While 𝑙𝑜𝑐𝑎𝑙𝐺𝑟𝑎𝑝ℎ ≠ ∅:

8 If useMax:

9 Find vertex with max degree

 10 Else:

 11 Find vertex with min degree

 12 Color the vertex with 𝑐

 13 Remove this vertex and its neighbors from localGraph

 14 𝑐 = 𝑐 + 1

 15 𝑢𝑠𝑒𝑀𝑎𝑥 = ! 𝑢𝑠𝑒𝑀𝑎𝑥

 16 Remove the colored vertices from 𝑈

Figure 19. MinMax pseudo-code.

The MinMax algorithm works almost as the Greedy algorithm in terms of the

number of colors used, but works 2.5 times longer. The results are not so good, compared

to DSatur or even the largest first degree ordering. Nevertheless, the unique option of this

algorithm is to gather as many vertices as possible in one color class and it may help us

further.

2.3. Mixed/combined algorithms

2.3.1. IDO-LDO

This algorithm is a combination of incidence degree ordering and largest-first

ordering heuristics. As a primary heuristics we use IDO. If a tie occurs, then it will be

decided, which vertex is going to be taken, by the largest number of neighbors. So,

40

basically, it is the same IDO algorithm but with the add-in of LDO. This can be clearly seen

on the Figure 20.

 1 Let G = (V, E)

2 𝑈 = 𝑉

3 While 𝑈 ≠ ∅:

4 Order vertices by decreasing number of colored neighbors

5 Then order by decreasing number of neighbors

6 If a tie, then order by descending random number

7 Take the first vertex 𝑢𝑖 from U

8 Find the minimum color 𝑐𝑗 not used in its neighborhood

9 Color 𝑢𝑖 with 𝑐𝑗

 10 For each neighbor of 𝑢𝑖:

 11 Increase the number of colored neighbors

 12 Decrease the number of neighbors

 13 Remove the colored vertex from 𝑈

Figure 20. IDO-LDO pseudo-code.

This algorithm works slightly better than the original Largest-First in terms of the

number of colors used, however, it takes longer to execute than the Largest-First.

2.3.2. IDO-LDO-Random

IDO-LDO-Random algorithm is another modified IDO algorithm. This time the

random numbers’ function was added to decide in a situation of a tie. At first, the algorithm

orders the vertices by the largest number of colored neighbors, then by the largest number

of neighbors and then, if there are two or more vertices with the exact same details, the one

with the largest random number is chosen. There is no need to include the pseudo-code for

this particular algorithm because it is absolutely the same as the previous one with the

exception that random numbers have been added.

41

In most cases the performance of this algorithm is better than of Largest-First, IDO

or IDO-LDO. But the speed of its execution is slower. Nevertheless, it was worth

mentioning this kind of algorithm as well.

2.3.3. LDO-IDO

This modification was introduced by Dr. Hussein Al-Omari and Khair Eddin Sabri

in their work in 2006 [10]. The basic heuristic for this algorithm is the Largest-First. If a tie

occurs, then the IDO heuristic decides, which vertex to take. On the whole, this is almost

the same algorithm as the Largest-First V3 with an IDO function inside, in one word, the

first ordering is being done by the largest number of neighbors and then by the largest

number of colored neighbors. The pseudo-code could be found on Figure 21.

 1 Let 𝐺 = (𝑉, 𝐸)

2 𝑈 = 𝑉

3 𝐶 = { }

4 While 𝑈 ≠ ∅:

5 Order vertices by deg(𝑢𝑖) descending

6 Then if a tie, order by the number of colored neighbors decreasing

7 Add new color (𝑐𝑗) to 𝐶

8 Take the first vertex u from U

9 Color u with 𝑐𝑗

 10 Try to color as many vertices as possible with 𝑐𝑗

 11 For each neighbor of colored vertices:

 12 Decrease its degree

 13 Increase the number of colored neighbors

 14 Remove the colored vertices from 𝑈

Figure 21. LDO-IDO pseudo-code.

42

This algorithm works more efficiently than the Greedy algorithm in terms of the

quality and slightly better than the Largest-First and Largest-First V2. However, it uses

much more time to accomplish its goal.

2.3.4. DSatur-LDO

This modification of the DSatur algorithm was also introduced by Dr. Hussein Al-

Omari and Khair Eddin Sabri in their work in 2006 [10]. The algorithm works as DSatur

but if a tie occurs, then Largest-First algorithm steps into the action to solve the conflict.

According to the results, this heuristic works a little better than the original DSatur

within the same amount of time.

2.3.5. DSatur-IDO-LDO

In this algorithm ties are resolved by Incidence Degree Ordering at first, then the

remaining ties are resolved by the Largest Degree Ordering [11].

On the whole, this algorithm outperforms the DSatur and DSatur-LDO heuristic

regardless the fact that it uses a little bit more time to complete. It is quite an effective

modification to use further in our work.

2.4. Parallel algorithms

2.4.1. Jones and Plassmann algorithm

The algorithm was firstly proposed by Jones and Plassmann in their work in 1993

[12]. The algorithm is based on the Lubys parallel algorithm [13]. The core idea was to

construct a unique set of weights at the beginning that would be used throughout the

algorithm itself. For example, random numbers. Any conflict of the same random numbers

is solved by the vertex number. Each iteration the JP algorithm finds the independent set of

a graph, i.e. all the vertices, which weight is higher than the weight of the neighboring

vertices, and then assigns colors to these vertices using the Greedy algorithm. Every action

is done in parallel. The pseudo-code can be seen on Figure 22.

43

1 Let 𝐺 = (𝑉, 𝐸)

2 𝑈 = 𝑉

3 While 𝑈 ≠ ∅:

4 For each 𝑢 ∈ 𝑈 do in parallel:

5 find a set of vertices 𝐼, such that ∀𝑣 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑈: 𝑤(𝑢) > 𝑤(𝑣)

6 For each 𝑖 ∈ 𝐼 do in parallel:

7 color 𝑖 with minimum color

8 Remove 𝐼 from 𝑈

Figure 22. JP pseudo-code.

The JP algorithm can be called Parallel Greedy. It gives almost the same results in

terms of used colors but does a lot of subtasks simultaneously. The differences can occur

only because of the random numbers, because they are assigned randomly to every vertex.

In our work we used random numbers as well, but decided to use the unique ones,

so that there would not be two vertices with the same random number.

2.4.2. Jones and Plassmann V2

Another version of JP algorithm was introduced by William Hasenplaugh, Tim

Kaler, Tao B. Schardl and Charles E. Leiserson in their work in 2014 [5]. The idea behind

the modification was to use recursion. The algorithm orders the vertices in the order of

function 𝑝, which generates random numbers. It starts by partitioning the neighbors of each

vertex into predecessors (the vertices with larger priorities) and successors (the vertices

with lower priorities) [5]. If there are no vertices in predecessors, then the algorithm begins

coloring. It has a helper function named JpColor, which uses recursion to color the vertices.

The color is chosen by collecting all the colors from the predecessors and choosing the

smallest possible (this is being done in the GetColor helper function). When the vertex with

the empty predecessors list is colored, the algorithm searches for changes in this vertex

successors list for vertices with counter equals to zero (it means that all of the predecessors

have been colored) and starts coloring them. All this is done in parallel subtasks. It is

possible to see all the operations from the pseudo-code on Figure 23.

44

 JP(𝑮):

1 Let 𝐺 = (𝑉, 𝐸, 𝑝)

2 For each 𝑣 ∈ 𝑉 do in parallel:

3 find a set of predecessors, where 𝑝(𝑢) > 𝑝(𝑣)

4 find a set of successors, where 𝑝(𝑢) < 𝑝(𝑣)

5 𝑣. 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = |𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠|

6 For each 𝑣 ∈ 𝑉 do in parallel:

7 if list of predecessors = ∅

8 JpColor(𝑣)

JpColor(𝒗):

1 𝑣. 𝑐𝑜𝑙𝑜𝑟 = 𝐺𝑒𝑡𝐶𝑜𝑙𝑜𝑟(𝑣)

2 For each 𝑢 ∈ 𝑣. 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 do in parallel:

3 if 𝑢. 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 == 0:

4 JpColor(𝑢)

GetColor(𝒗):

1 𝐶 = { 1, 2, 3, … , 𝑣. 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 + 1}

2 for each 𝑢 ∈ 𝑣. 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 do in parallel:

3 𝐶 = 𝐶 − 𝑢. 𝑐𝑜𝑙𝑜𝑟

4 find the minimum color of 𝐶 and return it

Figure 23. JP V2 pseudo-code.

Unfortunately, no big differences were found in the performance of this algorithm

neither by authors nor during our research. The time and quality is the same as with the

original JP algorithm.

As with the original JP algorithm, in our work we decided to use the unique random

numbers, so that there would not be two vertices with the same random number.

45

2.4.3. Parallel Largest-First

As a base algorithm for Parallel Largest-First is used JP algorithm, but as the

heuristic – Largest-First. The main difference is that instead of weights system, used in JP,

here they are replaced by finding the largest degree of each vertex. However, random

numbers are not removed. They help to solve situations, when two vertices have the same

number of neighbors.

As expected, it works better than the original JP in terms of quality. However, the

number of colors in the output is compared to this number of the original Largest-First

algorithm.

As with the original JP and JP V2 algorithms, in our work we used the unique

random numbers to exclude the chance that two vertices have the same random number.

2.4.4. Parallel Smallest-Last

The Smallest-Last heuristics was firstly introduced by Matula in his work in 1972

[14]. He tried to improve the Largest-First algorithm by a completely different approach.

The SL heuristic’s system of weights is more sophisticated and complex. The algorithm

uses two phases [15]:

1. Weighting phase

2. Coloring phase

The weighting phase begins by finding vertices that correspond to the current

smallest degree in the graph. These vertices are assigned the current weight and removed

from the graph. The degree of all the neighbors of deleted vertices are decreased. All these

steps are repeated until every vertex receives its weight. In our work if a tie occurs, then it

is decided which vertex to take by random numbers. They are given to every vertex during

the first phase (Figure 24). In the following pseudo-code it is possible to view the

weighting phase (Figure 25).

46

Figure 24. Parallel SL - weighting phase.

1 Let G = (V, E)

2 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑊𝑒𝑖𝑔ℎ𝑡 = 1

3 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑔𝑟𝑒𝑒 = 1

4 𝑈 = 𝑉

5 While ∃ 𝐼 = { 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑢 ∈ 𝑈 𝑤𝑖𝑡ℎ deg(𝑢) ≤ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑔𝑟𝑒𝑒 } do in parallel:

6 For each 𝑖 ∈ 𝐼 do in parallel:

7 𝑤𝑒𝑖𝑔ℎ𝑡(𝑖) = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑊𝑒𝑖𝑔ℎ𝑡

8 Remove 𝑖 from 𝑈

9 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑊𝑒𝑖𝑔ℎ𝑡 + 1

 10 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑔𝑟𝑒𝑒 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑔𝑟𝑒𝑒 + 1

Figure 25. Parallel SL weighting phase pseudo-code.

After the weighting phase goes the coloring phase. The vertices get colored by their

weight in decreasing order. So, the vertices with weight 2 are colored at first, then the

vertices with weight 1 (Figure 26).

47

Figure 26. Parallel SL - coloring phase.

The algorithm was supposed to be better than the largest first ordering heuristics

and it does in practice. The number of used colors is smaller than if using the parallel

largest-first, though the time taken is a little longer.

As with the original JP and JP V2 algorithms, in our work we used the unique

random numbers to exclude the chance that two vertices have the same random number.

2.4.5. Non-Parallel Implementations

In theory, parallel implementations should perform better, however, this is the place

where our chosen language’s peculiarities could bring in unexpected and undesired

changes. The main idea is to compare the behavior of parallel and non-parallel

implementations of the same algorithm in practice to exclude the possibilities of incorrect

results. These algorithms include:

 Greedy From Parallel – non-parallel copy of Jones and Plassmann algorithm;

 Greedy V2 From Parallel – non-parallel copy of Jones and Plassmann V2 algorithm;

 Largest-First From Parallel – non-parallel copy of Parallel Largest-First algorithm;

 Smallest-Last From Parallel – non-parallel copy of Parallel Smallest-Last.

2.5. Tests and results

In this chapter we are going to conduct tests to determine the most acceptable

coloring algorithms that will be used further in our research. In order to choose the best

algorithms it is necessary to agree on parameters that are going to be compared. In our case

48

they are number of used colors, time in milliseconds and density of the graph. As our

main test subject we have chosen the Greedy algorithm. The reason of this choice is pretty

obvious: this algorithm is used in most of the modern maximum clique algorithms because

its execution time is very low.

Tests are divided into two groups: random graphs and DIMACS graphs tests. The

first part of the chapter describes the former tests results and the second one shows the

analysis of the latter tests results.

Tests on randomly generated graphs give a general overview of the algorithms’

performance. Test cases are divided by graphs density, starting from 10% and ending with

90%. Results are given in charts and grouped by coloring algorithm’s type (sequential,

combined or parallel). The computational results of tests are rough and they give us only an

initial overview of coloring algorithms’ performance.

DIMACS graphs come from a special package of graphs used in the Second

DIMACS Implementation Challenge, which provides different types of graphs to make

tests on. They all have their own structure according to the specific problem they try to

solve. Results are given in numeric values as well as in the view of graphs and grouped by

coloring algorithm’s type (sequential, combined or parallel).

All algorithms were implemented using C# language in Visual Studio 2013

Professional (.NET Framework 4.5). System characteristics:

 Processor: Intel Core 2 Quad Q9550 2.83GHz

 RAM memory: 8GB

 Operating System: Windows 7 professional 64-bit

2.5.1. Randomly generated graphs

2.5.1.1. Overview

First of all, we are going to research the randomly generated graphs. As stated

above, it will give us a picture of the algorithms, their performance and consumed time.

49

For each density starting from 10% and up to 90% a new random graph was

generated and tested with all the algorithms that we had.

Due to quite large number of graphs, which show algorithms’ execution time, for

readability purpose it was decided to place them in Appendix 1 – Coloring algorithms:

Randomly Generated Graphs Test Results.

2.5.1.2. Random graphs’ generation function

Before we start analyzing the results of randomly generated graphs, it is necessary

to specify the way these graphs were made. The generation function that was used to

achieve this goal can be found on Figure 27.

The randomness of graphs had been achieved by using .NET native Random class.

The graph itself is an object, which contains the adjacency matrix inside the Values array

and number of edges in Edges property. The algorithm generates random vertices x and y in

range from 1 to the specified number of vertices and connects them together by simply

putting Boolean “true” value into the 2-dimensional array.

The parameters used by this method are:

 “nodes” parameter - the number of vertices of a graph;

 “density” parameter - the specified density of a graph.

50

 public static Graph GenerateGraph(int nodes, double density)
 {
 if (density < 0 || density > 1)
 throw new Exception("0 <= density <= 1");
 int numberOfEdges = Convert.ToInt32(Math.Round(nodes * (nodes - 1) * den-
sity / 2, 0));

 var graph = new Graph
 {
 Values = new bool[nodes, nodes],
 Edges = numberOfEdges
 };

 var random = new Random();
 Thread.Sleep(40);
 var random2 = new Random();

 int x, y;
 for (int i = 0; i < numberOfEdges; i++)
 {
 do
 {
 x = random.Next(0, nodes);
 y = random2.Next(0, nodes);
 } while (x == y || graph.Values[x, y]);
 graph.Values[x, y] = true;
 graph.Values[y, x] = true;
 }

 return graph;

 }

Figure 27. Random graph's generation function.

51

2.5.1.3. Sequential algorithms

As can be seen from the charts, every algorithm performs better than the Greedy

algorithm in terms of number of used colors almost on every density.

Figure 28. Randomly generated graphs tests' results compared in used colors. Sequential algorithms,

density 10%.

However, for example, on 40% density IDO and MinMax algorithms’ performance

is similar to that of the Greedy algorithm (Figure 29). Also it is worth mentioning that in

some particular cases Largest-First and Largest-First V2 algorithms used the same number

of colors as the Greedy algorithm, while taking more time to achieve this goal (Figure 29,

number of vertices – 560; Figure 30, number of vertices - 380).

40

45

50

55

60

65

70

75

80

2000 2150 2300 2450 2600 2750 2900 3050 3200 3350 3500

N
u

m
b

e
r

o
f

u
se

d
 c

o
lo

rs

Number of vertices

10%

Greedy

LargestFirst

LargestFirstV2

LargestFirstV3

DSatur

DSaturV2

Ido

MinMax

52

Figure 29. Randomly generated graphs tests' results compared in used colors. Sequential algorithms,

density 40%.

Figure 30. Randomly generated graphs tests' results compared in used colors. Sequential algorithms,

density 50%.

40

45

50

55

60

65

70

400 420 440 460 480 500 520 540 560 580 600

N
u

m
b

e
r

o
f

u
se

d
 c

o
lo

rs

Number of vertices

40%

Greedy

LargestFirst

LargestFirstV2

LargestFirstV3

DSatur

DSaturV2

Ido

MinMax

45

47

49

51

53

55

57

59

61

63

65

350 360 370 380 390 400 410 420 430 440 450

N
u

m
b

e
r

o
f

u
se

d
 c

o
lo

rs

Number of vertices

50%

Greedy

LargestFirst

LargestFirstV2

LargestFirstV3

DSatur

DSaturV2

Ido

MinMax

53

Figure 31. Randomly generated graphs tests' results compared in used colors. Sequential algorithms,

density 90%.

The best results in terms of used colors among all the sequential algorithms

produced DSatur, DSatur V2 and Largest-First V3. Their performance is much better

compared to the Greedy algorithm, however, it comes with a cost of taking more time to

complete (results of consumed time can be seen in Appendix 1 – Coloring algorithms:

Randomly Generated Graphs Test Results: Sequential algorithms). This behavior can be

explained by the fact that graph’s vertices undergo a heavy sorting in the process of

algorithm’s execution unlike the situation with the Greedy algorithm.

It is also possible to see the dependency of DSatur and DSatur V2 execution time

from density. The higher the density, the less the time it took for these algorithms to

complete: from almost 18 seconds on 10% density to 60 milliseconds at 90% density.

Furthermore, in the beginning it takes slightly more time for DSatur V2 to complete its

execution compared to DSatur, however, when density reaches 70% the situation changes

and DSatur V2 begins to outperform its sibling.

40

45

50

55

60

65

70

110 114 118 122 126 130 134 138 142 146 150

N
u

m
b

e
r

o
f

u
se

d
 c

o
lo

rs

Number of vertices

90%

Greedy

LargestFirst

LargestFirstV2

LargestFirstV3

DSatur

DSaturV2

Ido

MinMax

54

2.5.1.4. Combined algorithms

At first sight, it seems that the results of combined algorithms are very similar to the

sequential ones. There are also three leading algorithms, which this time are: DSatur-LDO,

DSatur-IDO-LDO and LDO-IDO. Their results in terms of used colors are much better than

the Greedy one. However, it is possible to find a dependency. The higher the density is, the

more similar performance of algorithms could be found. From 10% to 70% density we can

see clear division between these three algorithms and the rest. However, at 80% density and

higher (Figure 35, Figure 36) the difference begins to vanish, although the lead in the

number of used colors remains.

Figure 32. Randomly generated graphs tests' results compared in used colors. Combined algorithms,

density 10%.

Furthermore, it is possible to clearly see a very strange behavior of IDO-LDO-

Random algorithm at Figure 34 and Figure 35 – it used more colors than the Greedy

algorithm in some cases. Does it mean that we have a mistake in our algorithm? This

behavior might be caused by the fact that random numbers are used during execution of

IDO-LDO-Random algorithm and should be investigated by a separate research.

40

45

50

55

60

65

70

75

80

2000 2150 2300 2450 2600 2750 2900 3050 3200 3350 3500

N
u

m
b

e
r

o
f

u
se

d
 c

o
lo

rs

Number of vertices

10%

Greedy

IdoLdo

IdoLdoRandom

LdoIdo

DSaturLdo

DSaturIdoLdo

55

Figure 33. Randomly generated graphs tests' results compared in used colors. Combined algorithms,

density 30%.

Figure 34. Randomly generated graphs tests' results compared in used colors. Combined algorithms,

density 50%.

45

50

55

60

65

70

700 720 740 760 780 800 820 840 860 880 900

N
u

m
b

e
r

o
f

u
se

d
 c

o
lo

rs

Number of vertices

30%

Greedy

IdoLdo

IdoLdoRandom

LdoIdo

DSaturLdo

DSaturIdoLdo

45

50

55

60

65

70

350 360 370 380 390 400 410 420 430 440 450

N
u

m
b

e
r

o
f

u
se

d
 c

o
lo

rs

Number of vertices

50%

Greedy

IdoLdo

IdoLdoRandom

LdoIdo

DSaturLdo

DSaturIdoLdo

56

Figure 35. Randomly generated graphs tests' results compared in used colors. Combined algorithms,

density 80%.

Figure 36. Randomly generated graphs tests' results compared in used colors. Combined algorithms,

density 90%.

40

45

50

55

60

65

70

150 155 160 165 170 175 180 185 190 195 200

N
u

m
b

e
r

o
f

u
se

d
 c

o
lo

rs

Number of vertices

80%

Greedy

IdoLdo

IdoLdoRandom

LdoIdo

DSaturLdo

DSaturIdoLdo

40

45

50

55

60

65

70

110 114 118 122 126 130 134 138 142 146 150

N
u

m
b

e
r

o
f

u
se

d
 c

o
lo

rs

Number of vertices

90%

Greedy

IdoLdo

IdoLdoRandom

LdoIdo

DSaturLdo

DSaturIdoLdo

57

When it comes to consumed time, then LDO-IDO clearly wins among these three

(results of consumed time can be seen in Appendix 1 – Coloring algorithms: Randomly

Generated Graphs Test Results: Combined algorithms), although it is bigger than the same

of the Greedy one. As mentioned before, this behavior could be explained by the fact that

graph’s vertices undergo a heavy sorting in the process of algorithm’s execution unlike the

situation with the Greedy algorithm. The tendency towards taking less time as density rises

is pointed out for DSatur based algorithms as well. And the fact that DSatur-IDO-LDO

takes more time than DSatur-LDO could be explained by extra Incidence Degree Ordering

that takes place during algorithm’s execution.

2.5.1.5. Parallel algorithms

It can be seen from the charts that Parallel Largest-First prevails almost in every

situation. Along with Parallel Largest-First it is necessary to mention the Parallel Smallest-

Last algorithm, however, it shows promising results only at higher densities (80-90%)

using almost the same amount of colors and at 90% density even outperforming Parallel

Largest-First algorithm. Parallel Jones and Plassmann and its second version perform very

similar to the Greedy algorithm, using less or more colors compared to Greedy.

58

Figure 37. Randomly generated graphs tests' results compared in used colors. Parallel algorithms,

density 10%.

Figure 38. Randomly generated graphs tests' results compared in used colors. Parallel algorithms,

density 50%.

45

50

55

60

65

70

75

80

2000 2150 2300 2450 2600 2750 2900 3050 3200 3350 3500

N
u

m
b

e
r

o
f

u
se

d
 c

o
lo

rs

Number of vertices

10%

Greedy

ParallelJp

ParallelJpV2

ParallelLargestFirst

ParallelSmallestLast

GreedyFromParallel

GreedyV2FromParallel

LargestFirstFromParallel

SmallestLastFromParallel

45

47

49

51

53

55

57

59

61

63

65

350 360 370 380 390 400 410 420 430 440 450

N
u

m
b

e
r

o
f

u
se

d
 c

o
lo

rs

Number of vertices

50%

Greedy

ParallelJp

ParallelJpV2

ParallelLargestFirst

ParallelSmallestLast

GreedyFromParallel

GreedyV2FromParallel

LargestFirstFromParallel

SmallestLastFromParallel

59

Figure 39. Randomly generated graphs tests' results compared in used colors. Parallel algorithms,

density 80%.

Figure 40. Randomly generated graphs tests' results compared in used colors. Parallel algorithms,

density 90%.

40

45

50

55

60

65

70

150 155 160 165 170 175 180 185 190 195 200

N
u

m
b

e
r

o
f

u
se

d
 c

o
lo

rs

Number of vertices

80%

Greedy

ParallelJp

ParallelJpV2

ParallelLargestFirst

ParallelSmallestLast

GreedyFromParallel

GreedyV2FromParallel

LargestFirstFromParallel

SmallestLastFromParallel

40

45

50

55

60

65

70

110 114 118 122 126 130 134 138 142 146 150

N
u

m
b

e
r

o
f

u
se

d
 c

o
lo

rs

Number of vertices

90%

Greedy

ParallelJp

ParallelJpV2

ParallelLargestFirst

ParallelSmallestLast

GreedyFromParallel

GreedyV2FromParallel

LargestFirstFromParallel

SmallestLastFromParallel

60

In terms of time used to complete the task, Parallel Smallest-Last demonstrates the

worst results (results of consumed time can be seen in Appendix 1 – Coloring algorithms:

Randomly Generated Graphs Test Results: Parallel algorithms). This behavior is

understandable, as Parallel Smallest-Last uses more sophisticated weights system in its

process. The performance of Parallel Largest-First is not far away from Parallel Smallest-

Last algorithm. The only thing that should be noted is the fact that on 30%, 50% and 80%

density Parallel Largest-First algorithm’s execution time is very similar to Parallel JP

despite the fact that it uses largest first ordering. However, it could be explained by the fact

that largest first ordering that is used in Parallel Largest-First algorithm does not consume

much more time than the weight system in JP algorithm and might be very effective on

those densities.

In theory, parallel algorithms’ performance in terms of time should be better,

however, in practice our implementations show completely opposite results. It seems that

these particular implementations in .NET do not achieve such figures due to the thread

management that is happening under the hood of parallel methods. It is possible to draw to

such a conclusion after looking at performance of algorithms that are not parallel

representations of our algorithms. They take less time than their parallel siblings do.

2.5.1.6. Conclusion

Overall, the majority of algorithms proved to be promising enough to use them in

maximum clique algorithms. But we should mention the ones that showed the better results

among others in their group in terms of number of used colors. And these algorithms are:

 Among sequential: DSatur, DSatur V2 and Largest-First V3;

 Among combined: DSatur-LDO, DSatur-IDO-LDO and LDO-IDO;

 Among parallel: Parallel Largest-First and Parallel Smallest-Last.

Needless to say that these acquired algorithms have the best chances to be used

further in our research, however, the decision will be based on the DIMACS tests’ results,

as they will show our algorithms’ performance with graphs that were specially created to

test algorithms for this specific problem.

61

2.5.2. DIMACS graphs

2.5.2.1. Overview

In this subchapter the same algorithms are analyzed on DIMACS graphs, which are

used to test how algorithms are able to solve specified actual problem. As mentioned

before, these graphs come from a special package of graphs used in the Second DIMACS

Implementation Challenge.

Results are going to be represented in tables and charts. There are going to be three

tables and two charts.

The first table shows the number of used colors and consists of five main fields:

 # - id of DIMACS graph;

 Graph name – the name of DIMACS graph;

 Edge density – density of DIMACS graph’s edges in percentage;

 Min. color number – number of used colors, provided in DIMACS graph. It is the

minimum number of colors that can be used.

The second table demonstrates the number of times that one’s algorithm was better

than the others or used the minimum number of colors. It uses the results of the previous

table (fields painted in gray color).

The third table provides information about time consumption of an algorithm in

milliseconds and consists of two fields:

 # - id of DIMACS graph;

 Graph name – the name of DIMACS graph.

According to results, we are going to decrease the number of coloring algorithms

that we are going to use further in our research and choose only those, which will show

better results.

62

The charts are going to show the same information as the first and the third tables

but graphically. Charts that show us time consumption of coloring algorithms are provided

for indicative purposes. On some DIMACS tests it is almost impossible to see time bars

because it is almost or equals to zero.

2.5.2.2. DIMACS graphs usage

Before moving on to explaining the received results, it is necessary to show how the

DIMACS graphs are being used.

First, the application takes the text files, which contain DIMACS graph’s edges in

x, y format, as well as graph’s size and number of edges. Then, an appropriate 2-

dimensional array is created after parsing the size and the number of edges and edges are

added to the graph’s Values array in a similar way that was used for random graphs.

2.5.2.3. Sequential algorithms

As can be seen from Table 3, every algorithm showed better results than the Greedy

algorithm. However, the MinMax algorithm disappointed us with its results, which seem to

be only slightly better than those of the Greedy one. But among all the sequential

algorithms, there were some, which produced very impressive results and these are: DSatur,

DSatur V2 and Largest-First V3. DIMACS tests confirmed the randomly generated graphs

tests’ results. DSatur V2 was very close to succeed in all DIMACS tests and showed very

good performance, although it was the slowest among all in most cases being on par with

the first version of DSatur (Table 4 and Table 5). Largest-First V2 demonstrated that it can

compete with DSatur algorithm and, although, the number of succeeded attempts is less, it

is the absolute leader in terms of consumed time among the three best algorithms.

63

Graph name
Edge

density
Vertices Min. color nr Greedy LF LF2 LF3 DSatur DSatur2 IDO MinMax

1 1-FullIns_3.col 23% 30 4 8 4 4 4 4 4 5 4

2 1-Insertions_4.col 11% 67 5 5 5 5 5 5 5 5 5

3 2-FullIns_3.col 15% 52 5 10 5 5 5 5 5 5 6

4 2-Insertions_3.col 11% 37 4 4 4 4 4 4 4 4 4

5 3-Insertions_3.col 7% 56 4 4 4 4 4 4 4 4 4

6 anna.col 10% 138 11 12 11 11 11 11 11 11 12

7 ash331GPIA.col 2% 662 4 10 10 10 6 6 6 8 6

8 david.col 22% 87 11 12 11 11 11 11 11 11 12

9 DSJC125.1.col 10% 125 5 8 7 7 7 6 6 7 8

10 DSJR500.1.col 3% 500 12 15 13 13 13 14 14 14 15

11 fpsol2.i.1.col 10% 496 65 65 65 65 65 65 65 65 65

12 fpsol2.i.2.col 9% 451 30 30 30 30 30 30 30 30 31

13 fpsol2.i.3.col 10% 425 30 30 30 30 30 30 30 30 31

14 games120.col 18% 120 9 9 9 9 9 9 9 9 9

15 homer.col 2% 561 13 15 13 13 13 13 13 13 13

16 huck.col 22% 74 11 11 11 11 11 11 11 11 11

17 inithx.i.1.col 5% 864 54 54 54 54 54 54 54 54 54

18 inithx.i.2.col 7% 645 31 31 31 31 31 31 31 31 31

19 inithx.i.3.col 7% 621 31 31 31 31 31 31 31 31 31

20 jean.col 16% 80 10 10 10 10 10 10 10 10 11

21 le450_25a.col 8% 450 25 28 26 26 25 25 25 26 28

22 le450_25b.col 8% 450 25 27 25 25 25 25 25 25 29

23 miles1000.col 79% 128 42 44 43 43 42 42 42 44 45

24 miles1500.col 100% 128 73 76 73 73 73 73 73 73 74

25 miles250.col 10% 128 8 9 8 8 8 8 8 8 9

26 miles500.col 29% 128 20 22 20 20 20 20 20 20 21

27 miles750.col 52% 128 31 34 32 32 32 31 31 31 33

28 mug88_1.col 4% 88 4 4 4 4 4 4 4 4 4

 - best result

Table 1. Results of the Dimacs tests of the sequential algorithms, showing the number of maximum cliques – part 1.

64

Graph name Edge density Vertices Min. color nr Greedy LF LF2 LF3 DSatur DSatur2 IDO MinMax

29 mug88_25.col 4% 88 4 4 4 4 4 4 4 4 4

30 mulsol.i.1.col 20% 197 49 49 49 49 49 49 49 49 49

31 mulsol.i.2.col 22% 188 31 31 31 31 31 31 31 31 31

32 mulsol.i.3.col 23% 184 31 31 31 31 31 31 31 31 31

33 mulsol.i.4.col 23% 185 31 31 31 31 31 31 31 31 31

34 mulsol.i.5.col 23% 186 31 31 31 31 31 31 31 31 31

35 myciel3.col 36% 11 4 4 4 4 4 4 4 4 4

36 myciel4.col 28% 23 5 5 5 5 5 5 5 5 5

37 myciel5.col 22% 47 6 6 6 6 6 6 6 6 6

38 queen5_5.col 100% 25 5 8 7 7 7 5 5 6 8

39 queen6_6.col 92% 36 7 11 9 9 8 9 9 9 9

40 queen7_7.col 81% 49 7 10 12 12 11 10 9 13 11

41 queen8_12.col 60% 96 12 15 15 15 14 14 13 16 15

42 queen8_8.col 72% 64 9 13 13 13 12 13 11 12 12

43 queen9_9.col 65% 81 10 16 15 15 13 12 13 14 14

44 r1000.1.col 3% 1000 20 26 23 23 23 20 21 22 25

45 r125.1.col 3% 125 5 5 5 5 5 5 5 5 6

46 r125.1c.col 97% 125 46 51 47 47 47 46 46 49 53

47 r125.5.col 50% 125 36 44 39 39 40 38 37 37 45

48 r250.1.col 3% 250 8 9 8 8 8 8 8 8 9

49 r250.1c.col 97% 250 64 76 68 68 66 65 65 69 70

50 school1.col 26% 385 14 42 32 32 32 20 14 16 36

51 will199GPIA.col 3% 701 7 11 10 10 10 7 7 9 10

52 zeroin.i.1.col 19% 211 49 49 49 49 49 49 49 49 49

53 zeroin.i.2.col 16% 211 30 30 30 30 30 30 30 30 30

54 zeroin.i.3.col 17% 206 30 30 30 30 30 30 30 30 30

55 moonMoser.col 53% 9 3 3 3 3 3 3 3 3 3

56 mycielski.col 18% 11 2 4 4 4 4 4 4 4 4

 - best result

Table 2. Results of the Dimacs tests of the sequential algorithms, showing the number of maximum cliques - part 2

65

Algorithm # of successes

Greedy 28

Largest-First 39

Largest-First V2 39

Largest-First V3 43

DSatur 49

DSatur V2 52

IDO 39

MinMax 29

Table 3. Sequential algorithms' successes.

Graph name
Time (ms)

Greedy LF LF2 LF3 DSatur DSatur2 IDO MinMax

1 1-FullIns_3.col 0 1 9 3 3 2 2 10

2 1-Insertions_4.col 0 0 0 0 0 0 0 0

3 2-FullIns_3.col 0 0 0 0 0 0 0 0

4 2-Insertions_3.col 0 0 0 0 0 0 0 0

5 3-Insertions_3.col 0 0 0 0 0 0 0 0

6 anna.col 0 0 0 0 3 3 3 2

7 ash331GPIA.col 1 9 9 11 90 92 86 45

8 david.col 0 0 0 0 1 1 7 1

9 DSJC125.1.col 0 0 0 0 3 3 2 1

10 DSJR500.1.col 0 5 5 7 52 50 54 27

11 fpsol2.i.1.col 0 5 6 12 60 52 49 53

12 fpsol2.i.2.col 0 3 4 8 46 54 38 36

13 fpsol2.i.3.col 0 3 4 8 42 51 34 31

14 games120.col 0 0 0 0 2 2 2 3

15 homer.col 1 6 6 8 58 58 61 49

16 huck.col 0 0 0 0 1 0 0 0

17 inithx.i.1.col 1 14 16 28 160 154 161 141

18 inithx.i.2.col 1 7 9 15 99 118 82 66

19 inithx.i.3.col 1 7 9 15 96 110 77 62

20 jean.col 0 0 0 0 1 1 1 1

21 le450_25a.col 0 5 7 8 66 44 52 29

22 le450_25b.col 0 5 6 11 71 44 47 40

23 miles1000.col 0 0 1 2 6 8 3 7

24 miles1500.col 0 0 0 4 11 9 4 20

25 miles250.col 0 0 0 2 4 3 3 2

26 miles500.col 0 0 0 1 3 4 4 2

27 miles750.col 0 0 0 2 4 5 3 4

28 mug88_1.col 0 0 0 0 1 1 1 1

Table 4. Results of the Dimacs tests of the sequential algorithms, showing time - part 1.

66

Graph name
Time (ms)

Greedy LF LF2 LF3 DSatur DSatur2 IDO MinMax

29 mug88_25.col 0 0 0 0 1 1 1 1

30 mulsol.i.1.col 0 1 2 4 15 11 10 14

31 mulsol.i.2.col 0 1 1 4 13 11 9 10

32 mulsol.i.3.col 0 1 1 4 13 13 6 11

33 mulsol.i.4.col 0 0 1 4 9 8 6 10

34 mulsol.i.5.col 0 1 1 4 13 9 8 10

35 myciel3.col 0 0 0 0 0 0 0 0

36 myciel4.col 0 0 0 0 0 0 0 0

37 myciel5.col 0 0 0 0 0 0 0 0

38 queen5_5.col 0 0 0 0 0 0 0 0

39 queen6_6.col 0 0 0 0 0 0 0 0

40 queen7_7.col 0 0 0 0 1 0 0 0

41 queen8_12.col 0 0 0 1 2 3 1 2

42 queen8_8.col 0 0 0 0 1 1 1 1

43 queen9_9.col 0 0 0 0 2 2 1 2

44 r1000.1.col 0 19 29 40 265 323 248 117

45 r125.1.col 0 0 0 0 2 3 3 2

46 r125.1c.col 0 0 1 4 32 32 5 24

47 r125.5.col 0 0 1 5 8 10 3 11

48 r250.1.col 0 1 2 2 18 25 15 10

49 r250.1c.col 0 2 5 15 231 229 23 101

50 school1.col 0 3 11 14 134 136 38 63

51 will199GPIA.col 2 9 14 18 113 163 104 48

52 zeroin.i.1.col 0 1 1 4 26 9 11 16

53 zeroin.i.2.col 0 1 3 2 15 13 12 22

54 zeroin.i.3.col 0 3 1 3 14 12 10 11

55 moonMoser.col 0 0 0 0 0 0 0 0

56 mycielski.col 0 0 0 0 0 0 0 0

Table 5. Results of the Dimacs tests of the sequential algorithms, showing time - part 2.

67

Figure 41. DIMACS graphs tests' results compared in number of used colors. Sequential algorithms - part 1.

Figure 42. DIMACS graphs tests' results compared in number of used colors. Sequential algorithms - part 2.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

N
u

m
b

e
r

o
f

u
se

d
 c

o
lo

rs

Id of DIMACS graph

Colors

Greedy

LargestFirst

LargestFirstV2

LargestFirstV3

DSatur

DSaturV2

Ido

MinMax

0

10

20

30

40

50

60

70

80

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

N
u

m
b

e
r

o
f

co
lo

rs
 u

se
d

Id of DIMACS graph

Colors

Greedy

LargestFirst

LargestFirstV2

LargestFirstV3

DSatur

DSaturV2

Ido

MinMax

68

Figure 43. DIMACS graphs tests' results compared in time (ms). Sequential algorithms - part 1.

Figure 44. DIMACS graphs tests' results compared in time (ms). Sequential algorithms - part 2.

0

50

100

150

200

250

300

350

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

Ti
m

e
 (

m
s)

Id of DIMACS graph

Time

Greedy

LargestFirst

LargestFirstV2

LargestFirstV3

DSatur

DSaturV2

Ido

MinMax

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Ti
m

e
 (

m
s)

Id of DIMACS graph

Time

Greedy

LargestFirst

LargestFirstV2

LargestFirstV3

DSatur

DSaturV2

Ido

MinMax

69

2.5.2.4. Combined algorithms

As can be seen from Table 8, the story continues and every algorithm showed better

results than the Greedy algorithm. And they seem to be very promising. Among all the

combined algorithms DSatur based algorithms demonstrated the best performance even out

beating the DSatur V2. DIMACS tests confirmed the randomly generated graphs tests’

results: DSatur-IDO-LDO, DSatur-LDO and LDO-IDO are the best among combined

algorithms. However, if we compare the consumed time, then DSatur-IDO-LDO would be

the worst, taking too much time to complete (Table 9 and Table 10). LDO-IDO

demonstrated the better time compared to DSatur based algorithms, however, the number of

succeeded attempts is considerably smaller.

70

Graph name Edge density Vertices
Min. color

number
Greedy

LDO-

IDO

IDO-

LDO

LDO-IDO-

Random

DSatur-

LDO

DSatur-

IDO-LDO

1 1-FullIns_3.col 23% 30 4 8 4 4 4 4 4

2 1-Insertions_4.col 11% 67 5 5 5 5 5 5 5

3 2-FullIns_3.col 15% 52 5 10 5 5 5 5 5

4 2-Insertions_3.col 11% 37 4 4 4 4 4 4 4

5 3-Insertions_3.col 7% 56 4 4 4 4 4 4 4

6 anna.col 10% 138 11 12 11 11 11 11 11

7 ash331GPIA.col 2% 662 4 10 6 8 8 6 6

8 david.col 22% 87 11 12 11 11 11 11 11

9 DSJC125.1.col 10% 125 5 8 7 7 7 6 6

10 DSJR500.1.col 3% 500 12 15 13 13 13 13 12

11 fpsol2.i.1.col 10% 496 65 65 65 65 65 65 65

12 fpsol2.i.2.col 9% 451 30 30 30 30 30 30 30

13 fpsol2.i.3.col 10% 425 30 30 30 30 30 30 30

14 games120.col 18% 120 9 9 9 9 9 9 9

15 homer.col 2% 561 13 15 13 13 13 13 13

16 huck.col 22% 74 11 11 11 11 11 11 11

17 inithx.i.1.col 5% 864 54 54 54 54 54 54 54

18 inithx.i.2.col 7% 645 31 31 31 31 31 31 31

19 inithx.i.3.col 7% 621 31 31 31 31 31 31 31

20 jean.col 16% 80 10 10 10 10 10 10 10

21 le450_25a.col 8% 450 25 28 25 25 25 25 25

22 le450_25b.col 8% 450 25 27 25 25 25 25 25

23 miles1000.col 79% 128 42 44 42 43 43 42 42

24 miles1500.col 100% 128 73 76 73 73 73 73 73

25 miles250.col 10% 128 8 9 8 8 8 8 8

26 miles500.col 29% 128 20 22 20 20 20 20 20

27 miles750.col 52% 128 31 34 32 31 31 31 31

28 mug88_1.col 4% 88 4 4 4 4 4 4 4

 - best result

Table 6. Results of the Dimacs tests of the combined algorithms, showing the number of maximum cliques - part 1.

71

Graph name
Edge

density
Vertices

Min. color

number
Greedy

LDO-

IDO

IDO-

LDO

LDO-IDO-

Random

DSatur-

LDO

DSatur-

IDO-LDO

29 mug88_25.col 4% 88 4 4 4 4 4 4 4

30 mulsol.i.1.col 20% 197 49 49 49 49 49 49 49

31 mulsol.i.2.col 22% 188 31 31 31 31 31 31 31

32 mulsol.i.3.col 23% 184 31 31 31 31 31 31 31

33 mulsol.i.4.col 23% 185 31 31 31 31 31 31 31

34 mulsol.i.5.col 23% 186 31 31 31 31 31 31 31

35 myciel3.col 36% 11 4 4 4 4 4 4 4

36 myciel4.col 28% 23 5 5 5 5 5 5 5

37 myciel5.col 22% 47 6 6 6 7 6 6 6

38 queen5_5.col 100% 25 5 8 7 7 7 5 5

39 queen6_6.col 92% 36 7 11 8 10 10 9 10

40 queen7_7.col 81% 49 7 10 10 12 14 11 10

41 queen8_12.col 60% 96 12 15 15 15 16 14 14

42 queen8_8.col 72% 64 9 13 12 15 14 12 11

43 queen9_9.col 65% 81 10 16 14 15 16 13 14

44 r1000.1.col 3% 1000 20 26 23 20 20 20 20

45 r125.1.col 3% 125 5 5 5 5 5 5 5

46 r125.1c.col 97% 125 46 51 47 48 47 46 46

47 r125.5.col 50% 125 36 44 38 39 39 38 38

48 r250.1.col 3% 250 8 9 8 8 8 8 8

49 r250.1c.col 97% 250 64 76 66 67 67 65 65

50 school1.col 26% 385 14 42 32 26 26 17 15

51 will199GPIA.col 3% 701 7 11 10 8 8 7 7

52 zeroin.i.1.col 19% 211 49 49 49 49 49 49 49

53 zeroin.i.2.col 16% 211 30 30 30 30 30 30 30

54 zeroin.i.3.col 17% 206 30 30 30 30 30 30 30

55 moonMoser.col 53% 9 3 3 3 3 3 3 3

56 mycielski.col 18% 11 2 4 4 4 4 4 4

 - best result

Table 7. Results of the Dimacs tests of the combined algorithms, showing the number of maximum cliques - part 2.

72

Algorithm # of successes

Greedy 29

LDO-IDO 44

IDO-LDO 40

IDO-LDO-Random 41

DSatur-LDO 51

DSatur-IDO-LDO 54

Table 8. Combined algorithms' successes.

Graph name

Time (ms)

Greedy LDO-

IDO

IDO-

LDO

LDO-IDO-

Random

DSatur-

LDO

DSatur-

IDO-LDO

1 1-FullIns_3.col 0 8 2 2 2 2

2 1-Insertions_4.col 0 0 0 0 0 1

3 2-FullIns_3.col 0 0 0 0 0 0

4 2-Insertions_3.col 0 0 0 0 0 0

5 3-Insertions_3.col 0 0 0 0 0 0

6 anna.col 0 0 3 6 3 4

7 ash331GPIA.col 1 11 83 108 90 121

8 david.col 0 0 1 1 1 1

9 DSJC125.1.col 0 0 2 3 3 3

10 DSJR500.1.col 0 7 50 62 51 69

11 fpsol2.i.1.col 0 11 45 64 60 73

12 fpsol2.i.2.col 0 8 37 46 44 55

13 fpsol2.i.3.col 0 8 34 40 42 50

14 games120.col 0 0 2 3 2 3

15 homer.col 1 9 58 82 59 77

16 huck.col 0 0 0 1 1 1

17 inithx.i.1.col 1 27 142 198 162 203

18 inithx.i.2.col 1 16 79 100 94 120

19 inithx.i.3.col 1 15 78 96 92 118

20 jean.col 0 0 1 1 1 1

21 le450_25a.col 0 12 53 43 53 78

22 le450_25b.col 0 9 54 61 66 56

23 miles1000.col 0 2 4 5 9 11

24 miles1500.col 0 4 3 7 16 16

25 miles250.col 0 0 5 3 2 5

26 miles500.col 0 1 4 5 5 4

27 miles750.col 0 2 4 5 6 7

28 mug88_1.col 0 0 1 1 1 2

Table 9. Results of the Dimacs tests of the combined algorithms, showing time - part 1.

73

Graph name

Time (ms)

Greedy LDO-

IDO

IDO-

LDO

LDO-IDO-

Random

DSatur-

LDO

DSatur-

IDO-LDO

29 mug88_25.col 0 0 1 1 1 2

30 mulsol.i.1.col 0 3 10 11 12 13

31 mulsol.i.2.col 0 4 9 11 14 11

32 mulsol.i.3.col 0 2 9 7 13 11

33 mulsol.i.4.col 0 4 9 12 13 15

34 mulsol.i.5.col 0 4 6 11 14 17

35 myciel3.col 0 0 0 0 0 0

36 myciel4.col 0 0 0 0 0 0

37 myciel5.col 0 0 0 0 0 0

38 queen5_5.col 0 0 0 0 0 0

39 queen6_6.col 0 0 0 0 0 0

40 queen7_7.col 0 0 0 0 1 0

41 queen8_12.col 0 1 2 3 3 4

42 queen8_8.col 0 0 1 1 1 1

43 queen9_9.col 0 0 1 1 1 3

44 r1000.1.col 0 28 239 361 289 304

45 r125.1.col 0 0 3 4 3 3

46 r125.1c.col 0 3 4 7 31 23

47 r125.5.col 0 2 4 5 13 11

48 r250.1.col 0 2 24 22 16 16

49 r250.1c.col 0 17 25 22 199 200

50 school1.col 0 9 41 45 137 117

51 will199GPIA.col 2 17 114 173 122 193

52 zeroin.i.1.col 0 8 7 15 11 19

53 zeroin.i.2.col 0 6 20 9 10 12

54 zeroin.i.3.col 0 2 10 13 14 18

55 moonMoser.col 0 0 0 0 0 0

56 mycielski.col 0 0 0 0 0 0

Table 10. Results of the Dimacs tests of the combined algorithms, showing time - part 2.

74

Figure 45. DIMACS graphs tests' results compared in number of used colors. Combined algorithms - part 1.

Figure 46. DIMACS graphs tests' results compared in number of used colors. Combined algorithms - part 2.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

N
u

m
b

e
r

o
f

u
se

d
 c

o
lo

rs

Id of DIMACS graph

Colors

Greedy

DSaturLdo

DSaturIdoLdo

IdoLdo

IdoLdoRandom

LdoIdo

0

10

20

30

40

50

60

70

80

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

N
u

m
b

e
r

o
f

u
se

d
 c

o
lo

rs

Id of DIMACS graph

Colors

Greedy

DSaturLdo

DSaturIdoLdo

IdoLdo

IdoLdoRandom

LdoIdo

75

Figure 47. DIMACS graphs tests' results compared in time (ms). Combined algorithms - part 1.

Figure 48. DIMACS graphs tests' results compared in time (ms). Combined algorithms - part 2.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Ti
m

e
 (

m
s)

Id of DIMACS graph

Time

Greedy

DSaturLdo

DSaturIdoLdo

IdoLdo

IdoLdoRandom

LdoIdo

0

50

100

150

200

250

300

350

400

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

Ti
m

e
 (

m
s)

Id of DIMACS graph

Time

Greedy

DSaturLdo

DSaturIdoLdo

IdoLdo

IdoLdoRandom

LdoIdo

76

2.5.2.5. Parallel algorithms

As can be seen from Table 13, every algorithm showed better results than the

Greedy algorithm, however, this time JP and JP2 demonstrated almost the same results as

the Greedy one. Why is that? The answer is simple: JP and JP2 are parallel representatives

of Greedy algorithm. On the other hand, Parallel Largest-First and Parallel Smallest-Last

proved to be the best among parallel algorithms, showing good results. It is possible to say

that DIMACS tests confirmed the randomly generated graphs tests’ results. However, if we

compare the consumed time, then Parallel Largest-First and Parallel Smallest-Last would

be the last among them (Table 14 and Table 15). JP2 seems to take much less time, then

other parallel algorithms.

77

Graph name
Edge

density
Vertices

Min. color

number
Greedy JP JP2 PLF PSL

1 1-FullIns_3.col 23% 30 4 8 4 4 4 4

2
1-

Insertions_4.col
11% 67 5 5 6 6 5 5

3 2-FullIns_3.col 15% 52 5 10 5 5 5 5

4
2-

Insertions_3.col
11% 37 4 4 4 4 4 4

5
3-

Insertions_3.col
7% 56 4 4 4 4 4 4

6 anna.col 10% 138 11 12 11 11 11 11

7 ash331GPIA.col 2% 662 4 10 6 6 8 7

8 david.col 22% 87 11 12 11 12 11 11

9 DSJC125.1.col 10% 125 5 8 8 8 6 7

10 DSJR500.1.col 3% 500 12 15 15 15 13 13

11 fpsol2.i.1.col 10% 496 65 65 65 65 65 65

12 fpsol2.i.2.col 9% 451 30 30 31 31 30 30

13 fpsol2.i.3.col 10% 425 30 30 31 31 30 30

14 games120.col 18% 120 9 9 10 9 9 9

15 homer.col 2% 561 13 15 14 15 13 13

16 huck.col 22% 74 11 11 11 11 11 11

17 inithx.i.1.col 5% 864 54 54 54 54 54 54

18 inithx.i.2.col 7% 645 31 31 31 32 31 31

19 inithx.i.3.col 7% 621 31 31 31 31 31 31

20 jean.col 16% 80 10 10 10 10 10 10

21 le450_25a.col 8% 450 25 28 28 28 25 25

22 le450_25b.col 8% 450 25 27 28 28 25 25

23 miles1000.col 79% 128 42 44 44 44 43 42

24 miles1500.col 100% 128 73 76 74 73 73 73

25 miles250.col 10% 128 8 9 9 10 8 8

26 miles500.col 29% 128 20 22 21 21 20 20

27 miles750.col 52% 128 31 34 33 35 32 31

28 mug88_1.col 4% 88 4 4 4 4 4 4

 - best result

Table 11. Results of the Dimacs tests of the parallel algorithms, showing the number of maximum cliques -

part 1.

78

Graph name
Edge

density
Vertices

Min.

color

number

Greedy JP JP2 PLF PSL

29 mug88_25.col 4% 88 4 4 4 4 4 4

30 mulsol.i.1.col 20% 197 49 49 49 49 49 49

31 mulsol.i.2.col 22% 188 31 31 31 31 31 31

32 mulsol.i.3.col 23% 184 31 31 31 31 31 31

33 mulsol.i.4.col 23% 185 31 31 31 31 31 31

34 mulsol.i.5.col 23% 186 31 31 31 31 31 31

35 myciel3.col 36% 11 4 4 4 4 4 4

36 myciel4.col 28% 23 5 5 5 5 5 5

37 myciel5.col 22% 47 6 6 7 6 6 6

38 queen5_5.col 100% 25 5 8 7 8 8 6

39 queen6_6.col 92% 36 7 11 9 10 10 11

40 queen7_7.col 81% 49 7 10 11 11 13 11

41 queen8_12.col 60% 96 12 15 14 15 17 17

42 queen8_8.col 72% 64 9 13 12 12 14 13

43 queen9_9.col 65% 81 10 16 14 14 16 15

44 r1000.1.col 3% 1000 20 26 24 24 22 22

45 r125.1.col 3% 125 5 5 6 7 5 5

46 r125.1c.col 97% 125 46 51 53 50 47 49

47 r125.5.col 50% 125 36 44 43 43 39 40

48 r250.1.col 3% 250 8 9 9 9 8 8

49 r250.1c.col 97% 250 64 76 76 73 68 71

50 school1.col 26% 385 14 42 41 41 32 31

51 will199GPIA.col 3% 701 7 11 11 11 10 9

52 zeroin.i.1.col 19% 211 49 49 50 49 49 49

53 zeroin.i.2.col 16% 211 30 30 31 30 30 30

54 zeroin.i.3.col 17% 206 30 30 31 31 30 30

55 moonMoser.col 53% 9 3 3 3 3 3 3

56 mycielski.col 18% 11 2 4 4 4 4 4

 - best result

Table 12. Results of the Dimacs tests of the parallel algorithms, showing the number of maximum cliques -

part 2.

79

Algorithm # of successes

Greedy 27

JP 28

JP2 29

Parallel Largest-First 44

Parallel Smallest-Last 46

Table 13. Parallel algorithms' successes.

Graph name
Time (ms)

Greedy JP JP2 PLF PSL

1 1-FullIns_3.col 0 32 10 5 14

2 1-Insertions_4.col 0 4 0 4 6

3 2-FullIns_3.col 0 4 3 5 8

4 2-Insertions_3.col 0 2 2 2 5

5 3-Insertions_3.col 0 4 0 3 7

6 anna.col 0 14 1 8 18

7 ash331GPIA.col 1 33 21 45 66

8 david.col 0 6 1 7 14

9 DSJC125.1.col 0 23 2 10 30

10 DSJR500.1.col 0 27 10 34 61

11 fpsol2.i.1.col 0 49 22 45 76

12 fpsol2.i.2.col 0 57 20 49 68

13 fpsol2.i.3.col 0 59 13 32 56

14 games120.col 0 12 1 11 18

15 homer.col 1 30 11 29 74

16 huck.col 0 6 0 5 15

17 inithx.i.1.col 1 85 39 71 120

18 inithx.i.2.col 1 77 29 47 75

19 inithx.i.3.col 1 58 25 44 73

20 jean.col 0 6 1 8 16

21 le450_25a.col 0 64 17 64 91

22 le450_25b.col 0 65 18 69 92

23 miles1000.col 0 22 4 23 42

24 miles1500.col 0 41 6 32 58

25 miles250.col 0 11 1 12 21

26 miles500.col 0 15 3 20 34

27 miles750.col 0 22 4 24 38

28 mug88_1.col 0 5 0 3 7

Table 14. Results of the Dimacs tests of the parallel algorithms, showing time - part 1.

80

Graph name
Time (ms)

Greedy JP JP2 PLF PSL

29 mug88_25.col 0 4 0 3 22

30 mulsol.i.1.col 0 34 13 45 58

31 mulsol.i.2.col 0 46 7 23 52

32 mulsol.i.3.col 0 41 10 26 71

33 mulsol.i.4.col 0 37 8 20 58

34 mulsol.i.5.col 0 41 7 20 46

35 myciel3.col 0 2 0 1 5

36 myciel4.col 0 4 0 3 6

37 myciel5.col 0 7 0 5 9

38 queen5_5.col 0 4 0 4 6

39 queen6_6.col 0 5 0 8 8

40 queen7_7.col 0 8 2 8 20

41 queen8_12.col 0 16 2 16 20

42 queen8_8.col 0 11 3 10 13

43 queen9_9.col 0 13 3 14 17

44 r1000.1.col 0 111 46 139 270

45 r125.1.col 0 5 2 19 27

46 r125.1c.col 0 39 25 55 62

47 r125.5.col 0 37 12 46 49

48 r250.1.col 0 19 8 31 40

49 r250.1c.col 0 150 70 133 158

50 school1.col 0 122 32 115 209

51 will199GPIA.col 2 62 32 88 150

52 zeroin.i.1.col 0 39 7 38 60

53 zeroin.i.2.col 0 36 17 42 65

54 zeroin.i.3.col 0 42 6 39 67

55 moonMoser.col 0 1 0 1 3

56 mycielski.col 0 2 0 2 4

Table 15. Results of the Dimacs tests of the parallel algorithms, showing time - part 2.

81

Figure 49. DIMACS graphs tests' results compared in number of used colors. Parallel algorithms - part 1.

Figure 50. DIMACS graphs tests' results compared in number of used colors. Parallel algorithms - part 2.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

N
u

m
b

e
r

o
f

u
se

d
 c

o
lo

rs

Id of DIMACS graph

Colors

Greedy

ParallelJp

ParallelJpV2

ParallelLargestFirst

ParallelSmallestLast

0

10

20

30

40

50

60

70

80

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

N
u

m
b

e
r

o
f

u
se

d
 c

o
lo

rs

Id of DIMACS graph

Colors

Greedy

ParallelJp

ParallelJpV2

ParallelLargestFirst

ParallelSmallestLast

82

Figure 51. DIMACS graphs tests' results compared in time (ms). Parallel algorithms - part 1.

Figure 52. DIMACS graphs tests' results compared in time (ms). Parallel algorithms - part 2.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Ti
m

e
 (

m
s)

Id of DIMACS graph

Time

Greedy

ParallelJp

ParallelJpV2

ParallelLargestFirst

ParallelSmallestLast

0

50

100

150

200

250

300

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

Ti
m

e
 (

m
s)

Id of DIMACS graph

Time

Greedy

ParallelJp

ParallelJpV2

ParallelLargestFirst

ParallelSmallestLast

83

2.5.2.6. Conclusion

Overall, almost all of the algorithms showed the same results as in the randomly

generated graphs tests. DIMACS tests proved that we can use those algorithms further in

our research without any doubt.

2.5.3. Overall conclusion

Randomly generated graphs and DIMACS tests showed us the performance of all of

the coloring algorithms that we had. According to the results, further in our research we are

going to use the following coloring algorithms:

 sequential: DSatur, DSatur V2 and Largest-First V3;

 combined: DSatur-LDO, DSatur-IDO-LDO and LDO-IDO;

 parallel: Parallel Largest-First and Parallel Smallest-Last.

84

3. Maximum Clique Algorithms

3.1. Overview

The main problem of MCP problem is to find the maximal possible clique of a

graph. There are many effective algorithms made specially to solve this problem. We have

already mentioned some of them in the previous chapters. Modern algorithms heavily

depend on heuristics and, in particular, on vertex coloring. Unfortunately, as coloring

problem is classified as NP-complete, it is not possible to use exact algorithms to find color

classes. In general, the majority of modern algorithms carry out preliminary work with the

help of coloring algorithms. They help to gather and analyze additional information before

the main algorithm steps into action.

It was chosen to research relatively new algorithms for our work: VColor-u and

VRecolor-BT-u, which both were developed in Tallinn University of Technology. This

decision was made mainly because of their novelty, great performance and convenient

construction: these algorithms were not researched thoroughly as they are relatively new

and they allow us to interchange coloring algorithms without heavily changing their

structure.

In this chapter we are going to introduce VColor-u and VRecolor-BT-u algorithms,

describe them and conduct tests with different coloring algorithms on random and

DIMACS graphs. Our main goal is to research if different coloring algorithms could

improve overall maximum clique algorithms’ performance.

3.2. VColor-u

VColor-u algorithm was first introduced in 2005 in “Some Practical Algorithms to

Solve The Maximum Clique Problem” thesis [3] by Deniss Kumlander. The algorithm’s

abbreviation can be deciphered as “Vertex Color unweighted”. The main idea of this

85

algorithm was to demonstrate efficiency of using independent sets without any additional

speeding techniques to solve maximum clique problem.

We are not going to explain the algorithm itself as it is not in the scope of our

project (detailed description could be found in Deniss Kumlander’s work). However, it is

necessary to describe the role of coloring algorithms in VColor-u algorithm. The heuristic

that is used in in this case is of Greedy manner – Largest-First. It is used only once in the

process of execution, in the beginning, to determine all the color classes one by one until all

vertices are colored. And only after the color classes have been received, the main part of

the algorithm steps into action.

Therefore, it is necessary to exclude Largest-First algorithm and use other

algorithms, which were determined in Chapter 2, in its place.

3.3. VRecolor-BT-u

VRecolor-BT-u algorithm was first introduced in 2015 in “Reversed Search

Maximum Clique Algorithm Based On Recoloring” thesis [3] by Aleksandr Porošin. The

algorithm’s abbreviation can be deciphered as “Vertex Recolor Backtracking unweighted”.

The main idea is the same as in VColor-u algorithm: effective use of independent sets to

solve maximum clique problem. But this time it tries to combine reversed search by color

classes and in-depth coloring.

 Yet again we are not going to explain the algorithm itself as it is not in the scope of

our project (detailed description could be found in Aleksandr Porošin’s work). What is

necessary to do is to explain how vertex coloring happens under the hood. This time it is

very complex and, besides initial coloring, implements in-depth coloring i.e. recoloring on

each depth. When depth is high, vertex recoloring helps to gain the most accurate data

about independent sets on current level. Furthermore, there are two coloring algorithms

used in VRecolor-BT-u: one with swaps and one without them. In order to choose, which

one should be used in the process of execution, a special constant was introduced. This

constant refers to graph’s density and equals to 0.35 when referring to initial coloring and

86

0.55 in case of in-depth coloring. The following diagram briefly describes how the choices

of coloring are made (Figure 53).

 density < 0.35 0.35 ≤ density < 0.55 0.55 ≤ density density > 0.55

initial

coloring

in-depth

coloring

 coloring with swaps

 coloring without swaps

Figure 53. Coloring choice based on density [16].

As can be seen from the diagram, coloring without swaps is used in initial coloring

when density is more or equals to 0.35 and in in-depth coloring – when density is more

than 0.55. The heuristic being used is of Greedy manner. However, the initial coloring uses

largest-first ordering, so the algorithm is Largest-First.

In our work, we consider researching initial coloring without swaps because of the

fact that it is used only once before the main algorithm starts to work. Applying time-

consuming coloring algorithms to the in-depth coloring will result in significant increase of

algorithm’s time. Therefore, these considerations led us to limit ourselves with testing only

initial coloring of the algorithm as it applies only once in the beginning. The less color

classes the initial coloring finds, the less iterations VRecolor-BT-u algorithm will perform

in its main routine.

3.4. Tests and results

3.4.1. Randomly generated graphs

3.4.1.1. Overview

First of all, we are going to research the randomly generated graphs. It will give us

the picture of algorithms’ performance and show us dependencies on one or another

coloring algorithm.

87

For every coloring algorithm that we determined in Chapter 2 of our research, we

created a copy of our selected maximum clique algorithms (VColor-u and VRecolor-BT-u),

adjusting the code in a way that we could apply our chosen coloring algorithms.

For algorithms, based on VColor-u, a new random graph was generated for each

density starting from 10% and ending with 90%. Concerning VRecolor-BT-u, the starting

density was 40%, as it was decided to place our coloring algorithms only into “initial

coloring” phase, where the constant, referring to graph’s density, is 0.35. For every density

ten tests were conducted and average time calculated in milliseconds.

The information is represented in a table. Note that the density parameter is shown

at first since the number of vertices, which goes second, heavily depends on the first one.

The number of vertices is chosen so, that the time spent on finding the maximum clique for

a corresponding density does not exceed the limit of one hour. The table shows algorithm’s

time consumption. Every column demonstrates the ratio of original maximum clique

algorithm’s taken time in milliseconds divided by time in milliseconds of modified

maximum clique algorithm. Column names tell us the coloring algorithm used in

corresponding maximum clique algorithm.

Random graphs’ generation function is the same as in subchapter 2.5.1.2. System

characteristics remain the same as in subchapter 2.5.

3.4.1.2. Results of VColor-u Based Algorithms

Table 16 and Table 17 demonstrate VColor-u based algorithms’ time consumption

ratio on finding maximal clique. Value greater than 1.00 means that VColor-u with

corresponding coloring algorithm is faster than original VColor-u (with Largest-First

coloring algorithm). If value equals to 1.00, then VColor-u with corresponding coloring

algorithm works the same as original VColor-u algorithm in terms of time. And, finally, if

value is smaller than 1.00, then original VColor-u algorithm’s time consumption is smaller

compared to modified VColor-u.

The first interesting thing that must be noted is the fact that when density is 10%

using no orderings makes sense as it makes the algorithm faster. VColor-u with Greedy

88

coloring algorithm prevails on density 10%. However, only on that density. The higher the

density, the worse the performance of Greedy algorithm becomes.

When using Largest-First V3 coloring algorithm, time consumption goes down

from density 10% to 30% but then becomes higher and never outperforms the original

Largest-First algorithm. It is possible to say the same about LDO-IDO coloring algorithm.

It should be noted that all algorithms, which used DSatur based coloring algorithms,

performed the same way, reaching its peak on density 50%, where time consumption is

comparable to the original algorithm with Largest-First, and then starting to increase the

overall time of the maximum clique algorithm.

Edge density Vertices Greedy Largest-First V3 DSatur DSatur V2 DSatur-LDO

0.1 2000 1.05 0.85 0.21 0.20 0.21

0.2 1300 0.95 0.93 0.52 0.52 0.53

0.3 860 0.91 0.93 0.80 0.80 0.79

0.4 600 0.82 0.91 0.88 0.88 0.87

0.5 400 0.81 0.90 0.99 0.98 0.94

0.6 300 0.70 0.89 0.96 0.90 0.91

0.7 200 0.48 0.72 0.87 0.81 0.81

0.8 150 0.31 0.57 0.79 0.69 0.75

0.9 100 0.05 0.34 0.68 0.58 0.65

Table 16. Random graphs test results. VColor-u, time consumption ratio - part 1.

89

Edge density Vertices
DSatur-

IDO-LDO
LDO-IDO

Parallel

Largest-First

Parallel

Smallest-Last

0.1 2000 0.20 0.90 0.66 0.53

0.2 1300 0.52 0.93 0.86 0.80

0.3 860 0.80 0.95 0.93 0.86

0.4 600 0.88 0.94 0.94 0.87

0.5 400 0.95 0.93 1.02 0.90

0.6 300 0.91 0.92 1.06 0.82

0.7 200 0.84 0.72 1.07 0.64

0.8 150 0.72 0.60 1.09 0.42

0.9 100 0.64 0.52 1.18 0.13

Table 17. Random graphs test results. VColor-u, time consumption ratio - part 2.

When looking at Table 17 it can be easily seen that VColor-u algorithm, which uses

Parallel Largest-First coloring algorithm under the hood, performs better than the original

VColor-u algorithm starting from density 50% despite the fact that its implementation in

C# is quite poor as was proved in Chapter 2. We could suppose that algorithm with Parallel

Smallest-Last must behave the same way, however, the results show us completely

opposite figures: starting from density 50% the efficiency of VColor-u with Parallel

Smallest-Last as coloring algorithm decreases drastically. This behavior should be

investigated in future researches.

3.4.1.3. Results of VRecolor-BT-u Based Algorithms

Table 18 and Table 19 demonstrate VRecolor-BT-u based algorithms’ time

consumption ratio on finding maximal clique. Value greater than 1.00 means that

VRecolor-BT-u with corresponding coloring algorithm is faster than original VRecolor-

BT-u (with Largest-First coloring algorithm). If value equals to 1.00, then VRecolor-BT-u

with corresponding coloring algorithm works the same as original VRecolor-BT-u

algorithm in terms of time. And, finally, if value is smaller than 1.00, then original

90

VRecolor-BT-u algorithm’s time consumption is smaller compared to modified VRecolor-

BT-u.

The first interesting thing that must be noted is the fact that when density is 40%,

then using Greedy coloring algorithm is very efficient as it makes the algorithm to spend

less time for orderings. However, VRecolor-BT-u with Greedy coloring algorithm performs

great only on 40% density. The higher the density, the worse the performance of Greedy

algorithm becomes.

It should be noted that all algorithms, which used DSatur based coloring algorithms,

performed almost the same way, reaching its peak on density 60% and then starting to

increase the overall time of the maximum clique algorithm. However, this time the overall

performance is not comparable to the original algorithm with Largest-First ordering and

time consumption is considerably higher.

We have seen that the behavior of VRecolor-BT-u algorithm with Greedy and

DSatur colorings reminds us of the VColor-u with the corresponding coloring algorithms in

use. We can assume that it goes the same for other coloring algorithms but this does not

represent the real situation. We can clearly see that VRecolor-BT-u algorithm with Largest-

First V3 coloring algorithm spends less time to complete on densities starting from 40%

and ending with 70%. This is most likely achieved by reordering of vertices which occurs

in every iteration of Largest-First V3 coloring algorithm. The LDO-IDO coloring

algorithm’s results also decrease the overall time consumption of VRecolor-BT-u algorithm

on densities 40%-60% as can be seen from Table 19.

91

Edge density Vertices Greedy Largest-First V3 DSatur DSatur V2 DSatur-LDO

0.4 600 1.05 1.00 0.68 0.65 0.65

0.5 400 0.82 1.03 0.71 0.67 0.67

0.6 300 0.82 1.04 0.74 0.71 0.71

0.7 200 0.73 1.06 0.68 0.63 0.65

0.8 150 0.44 0.94 0.62 0.56 0.59

0.9 100 0.10 0.59 0.36 0.36 0.48

Table 18. Random graphs test results. VRecolor-BT-u, time consumption ratio - part 1.

Edge density Vertices
DSatur-

IDO-LDO
LDO-IDO

Parallel

Largest-First

Parallel

Smallest-Last

0.4 600 0.71 1.15 0.88 0.87

0.5 400 0.74 1.07 0.98 0.90

0.6 300 0.76 1.04 1.01 0.91

0.7 200 0.72 0.92 1.13 0.88

0.8 150 0.68 0.88 0.88 0.80

0.9 100 0.66 0.77 0.80 0.58

Table 19. Random graphs test results. VRecolor-BT-u, time consumption ratio - part 2.

When looking at parallel coloring algorithms, then it is necessary to point out that

Parallel Largest-First coloring algorithm’s usage consumes less time on 60%-70% densities

while performance of Parallel Smallest-Last does not come up to expectations.

3.4.2. DIMACS graphs

3.4.2.1. Overview

In this subchapter the same algorithms are analyzed on DIMACS graphs, which are

used to test how algorithms are able to solve specified actual problem. As mentioned

before, these graphs come from a special package of graphs used in the Second DIMACS

Implementation Challenge.

92

Results are going to be represented in three tables. The first one will provide

information about time consumption of an algorithm in milliseconds and besides time has

three more fields:

 Graph – the name of DIMACS graph;

 Size – number of edges;

 Density – the density of the algorithm.

The second tables introduces a new important characteristic, which is the number of

analyzed branches. This parameter shows how many branches each algorithm analyzes.

The less the number of analyzed branches is, the faster the algorithm is. This table looks

absolutely the same as the previous one. And, finally, the third table shows distribution of

color classes used by coloring algorithms. The representation is the same as in the first

table. As number of classes stays the same for VColor-u and VRecolor-BT-u algorithms,

we decided to move this table to Appendix 2 – Maximum Clique algorithms: DIMACS

Graphs Test Results.

The DIMACS graphs are chosen so, that the time spent on finding the maximal

clique does not exceed one hour. When it comes to testing algorithms, based on VColor-u,

we use all DIMACS graph instances. However, only those among them, which have

density more than 35% are going to be selected for algorithms, based on VRecolor-BT-u

because it was decided to place our coloring algorithms only into “initial coloring” phase,

where the constant, referring to graph’s density, is 0.35.

3.4.2.2. Results of VColor-u Based Algorithms

In this subchapter the same coloring algorithms are used inside VColor-u algorithm

and tested on DIMACS graph instances because each of them showed the best results

separately.

As can be seen from Table 20 and Table 21, VColor-u algorithm, which uses

Greedy algorithm under the hood, demonstrates very impressive results on lower densities.

However, it is possible to notice that in some cases it shows better results even on higher

densities, for example, on 64%, 76% and 90+% densities. At first, this behavior might seem

93

strange but it can be simply explained – we just have to look at the number of found color

classes in Table 28 as well as number of analyzed branches in Table 22. The number of

used colors along with number of analyzed branches are the same, so the difference in time

could be explained by the fact that Greedy algorithm does not make any orderings, so it

works faster in this case.

When comparing original VColor-u algorithm with its siblings that include Largest-

First V3, LDO-IDO and DSatur based coloring algorithms, we can see that in some cases

they work considerably faster on middle densities. This could be connected to the fact that

during the coloring phase they use lower amount of colors. A question immediately arises:

DSatur based coloring algorithms produce better results in terms of used colors almost on

every graph, so why the time consumption is lower only in some particular cases? The

reason of this phenomenon might lie in the order of vertices in color classes as it affects the

number of analyzed branches. It can be found from our results that when these coloring

algorithms use less color classes but the time is still quite poor, then the number of

analyzed branches is drastically higher. Furthermore, these coloring algorithms take more

time than the Largest-First coloring algorithm.

Concerning parallel coloring algorithms, using Parallel Largest-First gives

advantages on higher densities, from 50% to 90+%. However, we wanted to receive more

effective results. Parallel Smallest-Last in this case proved to be non-effective. However,

we should bear in mind that parallel coloring algorithms might be hostages of particular

language implementation (which in our case is C#).

94

Graph Size Density

Time (ms)

Largest-

First
Greedy

Largest-

First V3
DSatur

DSatur

V2

c-fat500-1.clq 500 0,36 9 3 21 58 60

c-fat500-2.clq 500 0,07 5 1 11 59 60

c-fat500-5.clq 500 0,19 6 1 17 98 92

c-fat500-10.clq 500 0,37 7 2 31 218 202

hamming10-2.clq 1024 0,99 40 23 335 10181 10419

hamming6-2.clq 64 0,9 0 0 1 3 2

hamming6-4.clq 64 0,35 0 0 0 1 1

hamming8-2.clq 256 0,97 7 2 22 181 170

hamming8-4.clq 256 0,64 5838 5616 5845 537 539

johnson16-2-4.clq 120 0,76 477 454 479 985 987

johnson8-2-4.clq 28 0,56 0 0 0 0 0

johnson8-4-4.clq 70 0,77 5 2 6 4 4

keller4.clq 171 0,65 506 949 1228 575 625

MANN_a27.clq 378 0,99 158062 302396 307324 307343 307322

MANN_a9.clq 45 0,93 0 390 6 7 7

p_hat300-1.clq 300 0,24 26 38 31 66 67

p_hat300-2.clq 300 0,49 1239 61336 1077 2705 2010

p_hat300-3.clq 300 0,74 317662 327279 317654 327281 327290

p_hat500-1.clq 500 0,25 286 423 288 464 455

p_hat500-2.clq 500 0,5 191068 317653 197190 308580 308638

p_hat700-1.clq 700 0,25 1312 2155 1347 1891 1943

p_hat1000-1.clq 1000 0,25 6529 10232 6825 8165 8293

san1000.clq 1000 0,5 14900 500027 540008 233091 245001

san200_0.7_1.clq 200 0,7 562509 500010 6416 226 253

san200_0.7_2.clq 200 0,7 28 7555 153 87 75

san200_0.9_1.clq 200 0,9 11716 456531 437523 7205 8432

san400_0.5_1.clq 400 0,5 584 866 25754 1149 1805

 - lower time than original

 - time equals to that of the original

Table 20. DIMACS graphs test results. VColor-u, time consumption (ms) - part 1.

95

Graph Size Density

Time (ms)

DSatur-

LDO

DSatur-

IDO-LDO

LDO-

IDO

Parallel

Largest-

First

Parallel

Smallest-

Last

c-fat500-1.clq 500 0,36 58 68 13 62 63

c-fat500-2.clq 500 0,07 58 73 10 61 87

c-fat500-5.clq 500 0,19 98 111 19 452 153

c-fat500-10.clq 500 0,37 212 228 30 154 179

hamming10-2.clq 1024 0,99 10080 10327 357 32 152

hamming6-2.clq 64 0,9 2 3 1 38 17

hamming6-4.clq 64 0,35 1 1 0 8 7

hamming8-2.clq 256 0,97 163 248 15 5 172

hamming8-4.clq 256 0,64 741 137 5710 791 1302

johnson16-2-4.clq 120 0,76 420 343 462 338 735

johnson8-2-4.clq 28 0,56 0 0 0 4 5

johnson8-4-4.clq 70 0,77 4 3 3 14 15

keller4.clq 171 0,65 430 410 1235 621 854

MANN_a27.clq 378 0,99 300314 299996 302396 154543 145413

MANN_a9.clq 45 0,93 3 3 6 22 14

p_hat300-1.clq 300 0,24 67 72 31 117 127

p_hat300-2.clq 300 0,49 1514 1618 1150 1161 3004

p_hat300-3.clq 300 0,74 327279 327322 317655 317643 348388

p_hat500-1.clq 500 0,25 456 462 291 410 427

p_hat500-2.clq 500 0,5 290510 308598 166844 247311 327281

p_hat700-1.clq 700 0,25 1890 1965 1318 1523 1623

p_hat1000-1.clq 1000 0,25 8063 8478 6898 6652 7744

san1000.clq 1000 0,5 110824 165541 450011 17743 15235

san200_0.7_1.clq 200 0,7 17981 258 529422 562511 573120

san200_0.7_2.clq 200 0,7 90 111 76 52 116

san200_0.9_1.clq 200 0,9 7045 7550 1183 44045 600012

san400_0.5_1.clq 400 0,5 34048 1142 25563 1589 784

 - lower time than original

 - time equals to that of the original

Table 21. DIMACS graphs test results. VColor-u, time consumption (ms) - part 2.

96

Graph Size Density

Number of analyzed branches

Largest-

First
Greedy

Largest-

First V3
DSatur DSatur V2

c-fat500-1.clq 500 0,36 14 14 14 14 14

c-fat500-2.clq 500 0,07 26 26 26 26 26

c-fat500-5.clq 500 0,19 64 64 64 64 64

c-fat500-10.clq 500 0,37 126 126 126 126 126

hamming10-2.clq 1024 0,99 512 512 512 512 512

hamming6-2.clq 64 0,9 32 32 32 32 32

hamming6-4.clq 64 0,35 426 426 426 340 340

hamming8-2.clq 256 0,97 128 128 128 128 128

hamming8-4.clq 256 0,64 2774392 2774392 2774392 165371 165371

johnson16-2-4.clq 120 0,76 489355 489355 489355 887871 887871

johnson8-2-4.clq 28 0,56 59 59 59 38 38

johnson8-4-4.clq 70 0,77 1196 1196 1171 364 364

keller4.clq 171 0,65 380922 745205 963672 382900 435550

MANN_a27.clq 378 0,99 8865948 273084144 43415359 50771824 50550310

MANN_a9.clq 45 0,93 303 478865 4156 5224 5224

p_hat300-1.clq 300 0,24 22355 38343 23068 25493 25170

p_hat300-2.clq 300 0,49 479046 29198380 394533 1147410 761014

p_hat300-3.clq 300 0,74 114123307 183826843 102086891 114729337 121480359

p_hat500-1.clq 500 0,25 252869 430099 261465 286782 268503

p_hat500-2.clq 500 0,5 57408633 156141644 59493075 91438502 105138526

p_hat700-1.clq 700 0,25 936779 1429594 977854 1091677 1039907

p_hat1000-1.clq 1000 0,25 5999391 10550831 65566251 6803864 6961846

san1000.clq 1000 0,5 1083046 300335950 62146686 20660950 21693998

san200_0.7_1.clq 200 0,7 821900625 338978198 1448106 47180 48251

san200_0.7_2.clq 200 0,7 10564 2832008 35546 9445 3502

san200_0.9_1.clq 200 0,9 4272475 290245174 87074934 110768683 1244520

san400_0.5_1.clq 400 0,5 108891 205972 8623043 289927 487406

Table 22. DIMACS graphs test results. VColor-u, number of branches - part 1.

97

Graph Size Density

Number of analyzed branches

DSatur-

LDO

DSatur-

IDO-LDO
LDO-IDO

Parallel

Largest-

First

Parallel

Smallest-

Last

c-fat500-1.clq 500 0,36 14 14 14 159 720715

c-fat500-2.clq 500 0,07 26 26 26 385 720715

c-fat500-5.clq 500 0,19 64 64 64 72182 720715

c-fat500-10.clq 500 0,37 126 126 126 126 720715

hamming10-2.clq 1024 0,99 512 512 512 512 512

hamming6-2.clq 64 0,9 32 32 32 389 2768

hamming6-4.clq 64 0,35 307 352 426 352 306

hamming8-2.clq 256 0,97 128 128 128 128 128

hamming8-4.clq 256 0,64 252410 215 5774392 328584 547822

johnson16-2-4.clq 120 0,76 401470 353522 489355 353527 734819

johnson8-2-4.clq 28 0,56 38 37 59 59 38

johnson8-4-4.clq 70 0,77 554 18 1171 1927 556

keller4.clq 171 0,65 278088 277698 961304 436896 575538

MANN_a27.clq 378 0,99 16577654 17043773 35077916 8152230 8262697

MANN_a9.clq 45 0,93 2171 2171 4093 315 317

p_hat300-1.clq 300 0,24 25193 26001 23352 22251 25194

p_hat300-2.clq 300 0,49 553779 630453 411228 376051 1158296

p_hat300-3.clq 300 0,74 113663179 109084862 108658872 105538037 165318529

p_hat500-1.clq 500 0,25 272261 278488 254312 252289 282831

p_hat500-2.clq 500 0,5 87977525 101058410 48253356 77150568 129851667

p_hat700-1.clq 700 0,25 986604 1104598 893465 957306 1037665

p_hat1000-1.clq 1000 0,25 6626485 7107052 6539346 6139185 7099445

san1000.clq 1000 0,5 40504278 53019726 6969681 1324140 1024140

san200_0.7_1.clq 200 0,7 10344610 87844 566446071 926906250 1323242125

san200_0.7_2.clq 200 0,7 9596 18488 23459 3810 1622

san200_0.9_1.clq 200 0,9 11060105 1241313 995610 27560687 360822143

san400_0.5_1.clq 400 0,5 22985290 267929 4783553 720715 177720

Table 23. DIMACS graphs test results. VColor-u, number of branches - part 2.

98

3.4.2.3. Results of VRecolor-BT-u Based Algorithms

In this subchapter the same coloring algorithms are used inside VRecolor-BT-u

algorithm and tested on DIMACS graph instances because each of them showed the

best results separately.

Graph Size Density

Time (ms)

Largest-

First
Greedy

Largest-

First V3
DSatur

DSatur

V2

c-fat500-10.clq 500 0,37 222 213 384 428 411

hamming6-2.clq 64 0,9 3 4 4 5 5

hamming6-4.clq 64 0,35 0 0 0 1 1

hamming8-2.clq 256 0,97 471 459 446 611 626

hamming8-4.clq 256 0,64 20 21 30 417 419

hamming10-2.clq 1024 0,99 118039 118853 120835 133855 134101

johnson16-2-4.clq 120 0,76 1043 1065 1043 882 916

johnson8-2-4.clq 28 0,56 0 0 0 0 0

johnson8-4-4.clq 70 0,77 1 1 3 5 5

keller4.clq 171 0,65 118 239 267 224 208

MANN_a27.clq 378 0,99 18719 3436364 1467961 28119 27574

MANN_a9.clq 45 0,93 1 15 5 3 4

p_hat300-2.clq 300 0,49 449 1285 440 646 897

p_hat300-3.clq 300 0,74 40402 1309090 26419 61057 132641

p_hat500-2.clq 500 0,5 12876 143463 19195 31308 27358

san1000.clq 1000 0,5 1436 30581 1104 17172 24113

san200_0.7_1.clq 200 0,7 3091 49 34 123 76

san200_0.7_2.clq 200 0,7 11 847 26 77 137

san200_0.9_1.clq 200 0,9 83 410 129 144 41642

san400_0.5_1.clq 400 0,5 40 518 80 499 524

 - lower time than original

 - time equals to that of the original

Table 24. DIMACS graphs test results. VRecolor-BT-u, time consumption (ms) - part 1.

As can be seen from Table 24, VRecolor-BT-u algorithm, which uses Greedy

algorithm under the hood, shows better results on density 40-50%. However, it is possible

to notice that in some cases it shows better results on higher densities as well, for example,

on 70% and 90+% densities. This behavior can be simply explained by the number of

99

found color classes (Table 28) as well as number of analyzed branches (Table 26). The

number of used colors along with number of analyzed branches are the same, so the

algorithm just works faster as it does not use any orderings.

When comparing original VRecolor-BT-u algorithm with its siblings that include

DSatur based coloring algorithms, we can see that in some cases on densities 50-80% they

work considerably faster. As stated above, this could be connected to the fact that during

the coloring phase they use lower amount of colors and therefore maximum clique

algorithm creates less branches (Table 26 and Table 27).

Graph Size Density

Time (ms)

DSatur-

LDO

DSatur-

IDO-

LDO

LDO-IDO

Parallel

Largest

-First

Parallel

Smalles

t-Last

c-fat500-10.clq 500 0,37 427 449 381 240 134

hamming6-2.clq 64 0,9 6 6 4 5 6

hamming6-4.clq 64 0,35 1 1 0 0 1

hamming8-2.clq 256 0,97 607 607 478 447 519

hamming8-4.clq 256 0,64 329 299 24 401 300

hamming10-2.clq 1024 0,99 134294 134033 118279 79611 422894

johnson16-2-4.clq 120 0,76 820 697 1013 657 644

johnson8-2-4.clq 28 0,56 0 0 0 0 13

johnson8-4-4.clq 70 0,77 6 6 2 2 43

keller4.clq 171 0,65 169 166 284 151 281

MANN_a27.clq 378 0,99 27539 27988 1467961 28790 29072

MANN_a9.clq 45 0,93 2 2 12 8 11

p_hat300-2.clq 300 0,49 675 724 500 548 894

p_hat300-3.clq 300 0,74 59058 42935 27934 27859 303207

p_hat500-2.clq 500 0,5 32792 35487 17517 11173 28584

san1000.clq 1000 0,5 12110 14437 630 2233 2668

san200_0.7_1.clq 200 0,7 97 85 35 537 115

san200_0.7_2.clq 200 0,7 73 76 24 36 68

san200_0.9_1.clq 200 0,9 130 135 170 1107 100

san400_0.5_1.clq 400 0,5 459 467 35 88 92

 - lower time than original

 - time equals to that of the original

Table 25. DIMACS graphs test results. VRecolor-BT-u, time consumption (ms) - part 2.

100

It should be noted that VRecolor-BT-u algorithms, using Largest-First V3 and

LDO-IDO colorings, demonstrated results similar to those, which we received on random

graphs. These algorithms performed better on densities starting from 40% and ending with

76%.

Graph Size Density

Number of analyzed branches

Largest-

First
Greedy

Largest-

First V3
DSatur DSatur V2

c-fat500-10.clq 500 0,37 8001 8001 8001 8001 8001

hamming6-2.clq 64 0,9 528 528 528 529 529

hamming6-4.clq 64 0,35 70 70 70 70 70

hamming8-2.clq 256 0,97 8256 8256 8256 8360 8360

hamming8-4.clq 256 0,64 788 788 788 10438 10438

hamming10-2.clq 1024 0,99 131328 131328 131328 132757 132757

johnson16-2-4.clq 120 0,76 323070 323070 323070 243098 243098

johnson8-2-4.clq 28 0,56 44 44 44 32 32

johnson8-4-4.clq 70 0,77 252 252 288 344 344

keller4.clq 171 0,65 11236 20973 27319 14579 12986

MANN_a27.clq 378 0,99 55389 35324182 24192455 61454 61454

MANN_a9.clq 45 0,93 189 1880 1006 510 510

p_hat300-2.clq 300 0,49 24826 97437 26289 32004 57527

p_hat300-3.clq 300 0,74 664515 21599985 683863 1202866 2973543

p_hat500-2.clq 500 0,5 584983 9828984 912033 1260838 1109719

san1000.clq 1000 0,5 13356 462145 11043 78374 182995

san200_0.7_1.clq 200 0,7 547738 3326 1492 9323 1186

san200_0.7_2.clq 200 0,7 398 44161 1105 794 3227

san200_0.9_1.clq 200 0,9 3350 9303 3535 2817 4876475

san400_0.5_1.clq 400 0,5 1241 25773 2519 3069 3924

Table 26. DIMACS graphs test results. VRecolor-BT-u, number of branches - part 1.

101

Graph Size Density

Number of analyzed branches

DSatur-

LDO

DSatur-

IDO-LDO
LDO-IDO

Parallel

Largest-

First

Parallel

Smallest-

Last

c-fat500-10.clq 500 0,37 8001 8001 8001 4966 2230

hamming6-2.clq 64 0,9 529 529 528 572 248

hamming6-4.clq 64 0,35 70 70 70 70 70

hamming8-2.clq 256 0,97 8360 8360 8256 7248 8773

hamming8-4.clq 256 0,64 7082 5814 788 15786 13156

hamming10-2.clq 1024 0,99 132757 132757 131328 86553 688566

johnson16-2-4.clq 120 0,76 243690 218422 323070 218422 218422

johnson8-2-4.clq 28 0,56 32 31 44 32 31

johnson8-4-4.clq 70 0,77 335 351 288 262 221

keller4.clq 171 0,65 11281 10739 28920 13646 18629

MANN_a27.clq 378 0,99 61438 61491 24472404 74943 74690

MANN_a9.clq 45 0,93 201 201 1176 189 184

p_hat300-2.clq 300 0,49 34257 35163 29558 24116 55365

p_hat300-3.clq 300 0,74 1058004 868682 746081 658401 11195415

p_hat500-2.clq 500 0,5 1326476 1403129 808703 457809 1233472

san1000.clq 1000 0,5 12124 55128 9001 19332 17620

san200_0.7_1.clq 200 0,7 4532 2458 1596 60262 1846

san200_0.7_2.clq 200 0,7 443 512 1089 391 320

san200_0.9_1.clq 200 0,9 2570 2561 4837 27582 3071

san400_0.5_1.clq 400 0,5 1229 1113 781 1350 1942

Table 27. DIMACS graphs test results. VRecolor-BT-u, number of branches - part 2.

Concerning parallel coloring algorithms, using Parallel Largest-First gives the upper

hand on densities from 50% to 90+% and its results are quite good. This cannot be said

about Parallel Smallest-Last, which showed similar results to those, which we receive while

testing VColor-u based algorithms. However, we should remember about implementation

difficulties, connected with language specifics.

102

4. Conclusion

4.1. Summary

The main topic of our study was to investigate effect of applying coloring

algorithms on modern maximum clique algorithms. The problem of coloring a graph with

the minimum number of colors is NP-complete task. Therefore, we had to use heuristic

algorithms for that purpose. A heuristic algorithm does not guarantee the best result,

however, its result is close enough to the best one and the algorithm is faster than the exact

one. Vertex coloring is a subroutine, which is included into the maximum clique algorithm,

so this step affects the overall performance of the algorithm. The idea behind this was the

fact that the closer the number of color classes to the size of the maximum clique, the

quicker the maximum clique will be found thanks to more effective pruning. As we know,

even a small increase in the size of the maximum clique can result in extra days of work.

Therefore, even a small improvement would significantly save working time.

In this resume, we are going to summarize all the work done to reach the goals

stated in subchapter 1.4. The majority of them are successfully completed in the scope of

current work.

Chapter 2 describes graph coloring problem along with introducing different types

of coloring algorithms, their history and specifics. Overall, 17 coloring algorithms were

described. Some of these coloring algorithms were variations of themselves, however, they

proved their chance for existence with tests results. We found out that almost every

coloring algorithm, which uses some sort of ordering/reordering would perform better than

the Greedy algorithm in terms of number of color classes. However, because of that they

would spend much more time to complete. Furthermore, within our research we found out

that in theory parallel coloring algorithms should be faster than their sequential variations.

In practice, there are too many factors that affect their performance. And the most

important one is without doubt the language, chosen for their implementation. In our case,

the implementation of parallel functions in C# language spends more time on creating

threads and subroutines executed inside are trivial in terms of time consumption.

103

In Chapter 3 we introduced maximum clique algorithms that we tried to improve

with explanations why such a choice was made. It was decided to take into consideration

modern maximum clique algorithms, such as VColor-u and VRecolor-BT-u. Every

algorithm was briefly described, modified, compared and tested against random and

DIMACS graph instances. Generated tests allow to obtain comparative data that can be

represented in a table and demonstrate time consumption of maximum clique algorithms

with different coloring algorithms used. On the other hand, DIMACS benchmark instances

allow to test the algorithms on problems that are very close to real life as they are

constructed based on real tasks. Moreover, in addition to time consumption there are results

showing us the number of classes used by one or another coloring algorithm and number of

analyzed branches of maximum clique algorithms, which help us to explain that or another

behavior of algorithms. We proved that Largest-First V3, DSatur, DSatur V2, DSatur-LDO,

DSatur-IDO-LDO, Parallel Largest-First in certain cases could decrease the time of the

maximum clique algorithms, as well as the number of created branches. Furthermore, we

saw that on lower densities it is possible to use Greedy coloring algorithm to decrease the

overall algorithm’s time. Although, we could not find a specific pattern, the results are

quite promising and could be used in further researches.

4.2. Future studies

During our research some interesting questions were left behind the scope of our

work. In this subchapter we are going to introduce some ideas which could be used in

future studies to improve results of our research.

First of all, it is necessary to investigate the influence of vertex ordering in color

classes found by coloring algorithms as it heavily affects the main routine of maximum

clique algorithms. However, it could be specific for every maximum clique algorithm but

worth researching.

Secondly, in our research we have tested parallel algorithms’ approach, using

Parallel Largest-First and Smallest-Last algorithms. Further studies require extending this

approach by constructing parallel algorithms from other coloring algorithms that showed

104

good results. And there are at least two candidates for this: DSatur and LDO-IDO. This

may lead to decreasing the overall time taken to color the graph with minimum number of

colors.

Thirdly, it is possible to try to construct a new coloring algorithm, which is similar

to Largest-First or Greedy but is faster and simpler than they are. The aim of this algorithm

would be to reduce the execution time of the coloring algorithm.

And finally, there were some strange behaviors of algorithms found in the result of

our research that could become an inception point for future studies.

105

Resümee

Kokkuvõte

Meie uurimistöö peamine teema on uurida värvimisalgoritmide rakendamise mõju

tänapäevastele maksimaalsete klikkide algoritmidele. Graafide minimaalse värvide arvuga

värvimise probleem on „NP-complete“ keerukuse tasemega. Seetõttu tuli kasutada

heuristilisi algoritme. Heuristiline algoritm ei taga parimat tulemust, kuid see on parimale

tulemusele piisavalt lähedal, ning selle kiirus on suurem kui täpse algoritmi oma. Tipu

värvimine on alamrutiin, mis on hõlmatud maksimaalsete klikkide algoritmi, järelikult

mõjutab see samm üldist algoritmi jõudlust. Selle taga on mõte, et mida lähemal on värvide

klasside arv maksimaalse kliki suurusele, seda kiiremini leitakse tänu tõhusamale

kärpimisele maksimaalne klikk. Nagu me teame, isegi väike maksimaalse kliki suuruse

kasv võib tähendada mitut lisa töö päeva. Seetõttu hoiab isegi väike edenemine kokku

märkimisväärselt töö aega.

Selles resümees võtame kokku kogu tehtud töö, et jõuda alapeatükis 1.4. toodud

eesmärkideni. Suurem osa neist õnnestus edukalt selle töö käigus täita.

Peatükk 2 kirjeldab graafi värvimise probleemi koos erinevat tüüpi värvimise

algoritmide tutvustamise, nende ajaloo ja üksikasjadega. Kokku kirjeldatakse 17 värvimise

algoritmi. Mõned neist algoritmidest on iseenda variatsioonid, kuid nad on enda olemasolu

vajalikkust katsete tulemusel tõestanud. Me avastasime, et peaaegu iga värvimise algoritm,

mis kasutab mõnda järjestamist või ümberjärjestamist, toimib värvide klasside arvu mõttes

paremini kui „Greedy“ algoritm. Kuid selle tõttu kulub nende lõpetamiseks palju rohkem

aega. Peale selle avastasime selles uurimistöös, et teoreetiliselt peaksid paralleelse

värvimise algoritmid olema kiiremad kui nende järjestikused variatsioonid. Praktikas on

aga nende jõudlust mõjutavad tegureid liiga palju. Ja kahtluseta on kõige olulisem neist

rakenduse keel. Meie näite puhul kulutas C# keelne paralleelsete funktsioonide rakendus

106

rohkem aega iseseisvate protsesside (inglise keeles: „thread“) tekitamisele ja alamrutiinide

sisemine käitamine on ajakulu mõttes tühine.

Peatükis 3 tutvustasime maksimaalsete klikkide algoritme, mida me üritasime

parendada, koos nende valiku kasuks osutumise selgitustega. Otsustati võrdlusse võtta

tänapäevased maksimaalsete klikkide algoritmid nagu „VColorU“ ja „VRecolor-BT-u“. Iga

algoritmi tutvustati põgusalt, muudeti ja võrreldi ja testiti juhuslike ja DIMACS graafidega.

Loodud testid lubavad saada võrreldavaid andmeid, mida saab esitada tabelina ja näidata

maksimaalsete klikkide algoritmide ajakulu erinevate kasutatud värvimise algoritmidega.

Teiselt poolt, DIMACS jõudlustestid lubavad katsetada algoritme probleemidega, mis on

väga lähedal reaalse elu probleemidele, sest nad on koostatud tegelike ülesannete baasil.

Lisaks ajakulule näitavad tulemused meile ühe või mitme värvimise algoritmi poolt

kasutatud klasside arvu ning analüüsitud harude arvu maksimaalsete klikkide algoritmide

poolt, mis aitavad meil seletada seda või teist algoritmi käitumist. Me tõestasime, et

„Largest-First V3”, “DSatur, DSatur V2”, “DSatur-LDO”, “DSatur-IDO-LDO” ja mõnes

olukorras “Parallel Largest-First” võivad vähendada maksimaalsete klikkide algoritmide

ajakulu ning loodud harude arvu. Lisaks sellele nägime, et madalama tiheduse puhul on

võimalik kasutada kogu algoritmi aja vähendamiseks „Greedy“ värvimise algoritmi. Kuigi

me ei suutnud tuvastada täpset mustrit, olid tulemused päris lootustandvad ja neid saab

kasutada tulevastes uurimistöödes.

Edasised uurimistööd

Mõned kerkinud huvitavad küsimused jäid väljapoole meie uurimistöö raame.

Selles alapeatükis tutvustame mõnda nendest ideedest, mida võib kasutada edasistes

uurimistöödes, et meie uurimistöö tulemusi parandada.

Kõigepealt on vaja uurida tippude järjestamise mõju värvimise algoritmide poolt

leitud värvimisklassidele, sest need mõjutavad tugevalt maksimaalsete klikkide algoritmi

pearutiini. Kuid see võib olla iga maksimaalsete klikkide algoritmi puhul erinev, aga see on

väärt edasist uurimist.

107

Teiseks me katsetasime oma uurimistöös paralleelsete algoritmide lähenemist,

kasutades “Parallel Largest-First” ja “Smallest-Last” algoritme. Edasised uuringud

nõuavad selle lähenemise laiendamist koostades paralleelseid algoritme teistest värvimise

algoritmidest, mis näitasid häid tulemusi. Ja selleks on vähemalt kaks kandidaati: „DSatur”

ja “LDO-IDO”. See võib viia kogu graafi minimaalse arvu värvidega värvimiseks kuluva

aja vähenemisele.

Kolmandaks on võimalik üritada luua uut värvimise algoritmi, mis on sarnane

„Largest-First” või “Greedy” algoritmidele, kuid on kiirem ja lihtsam kui need. Selle

algoritmi eesmärk oleks vähendada värvimise algoritmi käitamise aega.

Ja lõpuks leiti meie uurimistöö tulemusel mõned algoritmide imelikud käitumised,

mis võivad saada uute uurimistööde lähtekohaks.

108

References

[1] Norman L. Biggs, E. Keith Lloyd, Robin J. WIlson, Graph Theory 1736-1936, New York:

Oxford University Press, 1976.

[2] M. Kubale, Graph Colorings, 2004.

[3] D. Kumlander, Some Practical Algorithms to Solve The Maximum Clique Problem, Tallinn,

2005.

[4] D. J. A. Welsh and M. B. Powell, «An upper bound for the chromatic number of a graph and

its application to timetabling problems,» The Computer Journal, 1967.

[5] William Hasenplaugh, Tim Kaler, Tao B. Schardl, Charles E. Leiserson, «Ordering Heuristics

for Parallel Graph Coloring,» 2014.

[6] D. Brelaz, «New Methods to Color the Vertices of a Graph,» Communications of the ACM,

1979.

[7] Paul S. Andrews, Jon Timmis, Nick D.L.Owens, Uwe Aickelin, Emma Hart, Andrew Hone,

Andy M. Tyrrell, Artificial Immune Systems, York, UK, 2009.

[8] T. F. Coleman and J. J. More, «Estimation of sparse Jacobian matrices and graph coloring

problems,» SIAM Journal on Numerical Analysis, 1983.

[9] Hilal Almara’Beh and Amjad Suleiman , «Heuristic Algorithm for Graph Coloring Based On

Maximum Independent Set,» Journal of Applied Computer Science & Mathematics, т. 6, №

13, 2012.

[10] Hussein Al-Omari, Khair Eddin Sabri, «New Graph Coloring Algorithms,» American Journal

of Mathematics and Statistics, 2006.

[11] Soma Saha, Gyan Baboo, Rajeev Kumar , «An Efficient EA with Multipoint Guided Crossover

for Bi-objective Graph Coloring Problem,» в Contemporary Computing, 2011.

[12] M. T. Jones and P. E. Plassmann, «A parallel graph coloring heuristic.,» SIAM Journal on

Scientific Computing, 1993.

[13] L. M., «A simple parallel algorithm for the maximal independent set problem,» SIAM Journal

109

on Computing, т. 4, № 97, pp. 1053-1063, 1986.

[14] D.W.Matula, G.Marble and J.D.Isaacson, Graph Coloring Algorithms, New York: Academic

Press, 1972.

[15] J. R. Allwright , R. Bordawekar , P. D. Coddington , K. Dincer , C. L. Martin, «A Comparison

of Parallel Graph Coloring Algorithms,» Technical Report Tech. Rep. SCCS-666, 1995.

[16] A. Porošin, «Reversed search maximum clique algorithm based on recoloring» 2015.

110

Appendix 1 – Coloring algorithms: Randomly Generated Graphs Test

Results

Sequential algorithms

Figure 54. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms,

density 10%.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2000 2150 2300 2450 2600 2750 2900 3050 3200 3350 3500

Ti
m

e
 (

m
s)

Number of vertices

10%

Greedy

LargestFirst

LargestFirstV2

LargestFirstV3

DSatur

DSaturV2

Ido

MinMax

111

Figure 55. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms,

density 20%.

Figure 56. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms,

density 30%.

0

500

1000

1500

2000

2500

1000 1030 1060 1090 1120 1150 1180 1210 1240 1270 1300

Ti
m

e
 (

m
s)

Number of vertices

20%

Greedy

LargestFirst

LargestFirstV2

LargestFirstV3

DSatur

DSaturV2

Ido

MinMax

0

200

400

600

800

1000

1200

1400

700 720 740 760 780 800 820 840 860 880 900

Ti
m

e
 (

m
s)

Number of vertices

30%

Greedy

LargestFirst

LargestFirstV2

LargestFirstV3

DSatur

DSaturV2

Ido

MinMax

112

Figure 57. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms,

density 40%.

Figure 58. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms,

density 50%.

0

100

200

300

400

500

600

700

400 420 440 460 480 500 520 540 560 580 600

Ti
m

e
 (

m
s)

Number of vertices

40%

Greedy

LargestFirst

LargestFirstV2

LargestFirstV3

DSatur

DSaturV2

Ido

MinMax

0

50

100

150

200

250

300

350

400

350 360 370 380 390 400 410 420 430 440 450

Ti
m

e
 (

m
s)

Number of vertices

50%

Greedy

LargestFirst

LargestFirstV2

LargestFirstV3

DSatur

DSaturV2

Ido

MinMax

113

Figure 59. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms,

density 60%.

Figure 60. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms,

density 70%.

0

20

40

60

80

100

120

140

160

250 255 260 265 270 275 280 285 290 295 300

Ti
m

e
 (

m
s)

Number of vertices

60%

Greedy

LargestFirst

LargestFirstV2

LargestFirstV3

DSatur

DSaturV2

Ido

MinMax

0

20

40

60

80

100

120

180 186 192 198 204 210 216 222 228 234 240

Ti
m

e
 (

m
s)

Number of vertices

70%

Greedy

LargestFirst

LargestFirstV2

LargestFirstV3

DSatur

DSaturV2

Ido

MinMax

114

Figure 61. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms,

density 80%.

Figure 62. Randomly generated graphs tests' results compared in time (ms). Sequential algorithms,

density 90%.

0

10

20

30

40

50

60

70

150 155 160 165 170 175 180 185 190 195 200

Ti
m

e
 (

m
s)

Number of vertices

80%

Greedy

LargestFirst

LargestFirstV2

LargestFirstV3

DSatur

DSaturV2

Ido

MinMax

0

5

10

15

20

25

30

35

110 114 118 122 126 130 134 138 142 146 150

Ti
m

e
 (

m
s)

Number of vertices

90%

Greedy

LargestFirst

LargestFirstV2

LargestFirstV3

DSatur

DSaturV2

Ido

MinMax

115

Combined algorithms

Figure 63. Randomly generated graphs tests' results compared in time (ms). Combined algorithms,

density 10%.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2000 2150 2300 2450 2600 2750 2900 3050 3200 3350 3500

Ti
m

e
 (

m
s)

Number of vertices

10%

Greedy

IdoLdo

IdoLdoRandom

LdoIdo

DSaturLdo

DSaturIdoLdo

116

Figure 64. Randomly generated graphs tests' results compared in time (ms). Combined algorithms,

density 20%.

Figure 65. Randomly generated graphs tests' results compared in time (ms). Combined algorithms,

density 30%.

0

500

1000

1500

2000

2500

1000 1030 1060 1090 1120 1150 1180 1210 1240 1270 1300

Ti
m

e
 (

m
s)

Number of vertices

20%

Greedy

IdoLdo

IdoLdoRandom

LdoIdo

DSaturLdo

DSaturIdoLdo

0

200

400

600

800

1000

1200

1400

1600

700 720 740 760 780 800 820 840 860 880 900

Ti
m

e
 (

m
s)

Number of vertices

30%

Greedy

IdoLdo

IdoLdoRandom

LdoIdo

DSaturLdo

DSaturIdoLdo

117

Figure 66. Randomly generated graphs tests' results compared in time (ms). Combined

algorithms, density 40%.

Figure 67. Randomly generated graphs tests' results compared in time (ms). Combined algorithms,

density 50%.

0

100

200

300

400

500

600

700

400 420 440 460 480 500 520 540 560 580 600

Ti
m

e
 (

m
s)

Number of vertices

40%

Greedy

IdoLdo

IdoLdoRandom

LdoIdo

DSaturLdo

DSaturIdoLdo

0

50

100

150

200

250

300

350

400

350 360 370 380 390 400 410 420 430 440 450

Ti
m

e
 (

m
s)

Number of vertices

50%

Greedy

IdoLdo

IdoLdoRandom

LdoIdo

DSaturLdo

DSaturIdoLdo

118

Figure 68. Randomly generated graphs tests' results compared in time (ms). Combined algorithms,

density 60%.

Figure 69. Randomly generated graphs tests' results compared in time (ms). Combined algorithms,

density 70%.

0

20

40

60

80

100

120

140

160

250 255 260 265 270 275 280 285 290 295 300

Ti
m

e
 (

m
s)

Number of vertices

60%

Greedy

IdoLdo

IdoLdoRandom

LdoIdo

DSaturLdo

DSaturIdoLdo

0

10

20

30

40

50

60

70

80

90

100

180 186 192 198 204 210 216 222 228 234 240

Ti
m

e
 (

m
s)

Number of vertices

70%

Greedy

IdoLdo

IdoLdoRandom

LdoIdo

DSaturLdo

DSaturIdoLdo

119

Figure 70. Randomly generated graphs tests' results compared in time (ms). Combined algorithms,

density 80%.

Figure 71. Randomly generated graphs tests' results compared in time (ms). Combined algorithms,

density 90%.

0

10

20

30

40

50

60

70

150 155 160 165 170 175 180 185 190 195 200

Ti
m

e
 (

m
s)

Number of vertices

80%

Greedy

IdoLdo

IdoLdoRandom

LdoIdo

DSaturLdo

DSaturIdoLdo

0

5

10

15

20

25

30

35

40

110 114 118 122 126 130 134 138 142 146 150

Ti
m

e
 (

m
s)

Number of vertices

90%

Greedy

IdoLdo

IdoLdoRandom

LdoIdo

DSaturLdo

DSaturIdoLdo

120

Parallel algorithms

Figure 72. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms,

density 10%.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2000 2150 2300 2450 2600 2750 2900 3050 3200 3350 3500

Ti
m

e
 (

m
s)

Number of vertices

10%

Greedy

ParallelJp

ParallelJpV2

ParallelLargestFirst

ParallelSmallestLast

GreedyFromParallel

GreedyV2FromParallel

LargestFirstFromParallel

SmallestLastFromParallel

121

Figure 73. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms,

density 20%.

Figure 74. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms,

density 30%.

0

100

200

300

400

500

600

1000 1030 1060 1090 1120 1150 1180 1210 1240 1270 1300

Ti
m

e
 (

m
s)

Number of vertices

20%

Greedy

ParallelJp

ParallelJpV2

ParallelLargestFirst

ParallelSmallestLast

GreedyFromParallel

GreedyV2FromParallel

LargestFirstFromParallel

SmallestLastFromParallel

0

50

100

150

200

250

300

350

400

700 720 740 760 780 800 820 840 860 880 900

Ti
m

e
 (

m
s)

Number of vertices

30%

Greedy

ParallelJp

ParallelJpV2

ParallelLargestFirst

ParallelSmallestLast

GreedyFromParallel

GreedyV2FromParallel

LargestFirstFromParallel

SmallestLastFromParallel

122

Figure 75. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms,

density 40%.

Figure 76. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms,

density 50%.

0

50

100

150

200

250

400 420 440 460 480 500 520 540 560 580 600

Ti
m

e
 (

m
s)

Number of vertices

40%

Greedy

ParallelJp

ParallelJpV2

ParallelLargestFirst

ParallelSmallestLast

GreedyFromParallel

GreedyV2FromParallel

LargestFirstFromParallel

SmallestLastFromParallel

0

20

40

60

80

100

120

140

160

180

200

350 360 370 380 390 400 410 420 430 440 450

Ti
m

e
 (

m
s)

Number of vertices

50%

Greedy

ParallelJp

ParallelJpV2

ParallelLargestFirst

ParallelSmallestLast

GreedyFromParallel

GreedyV2FromParallel

LargestFirstFromParallel

SmallestLastFromParallel

123

Figure 77. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms,

density 60%.

Figure 78. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms,

density 70%.

0

20

40

60

80

100

120

250 255 260 265 270 275 280 285 290 295 300

Ti
m

e
 (

m
s)

Number of vertices

60%

Greedy

ParallelJp

ParallelJpV2

ParallelLargestFirst

ParallelSmallestLast

GreedyFromParallel

GreedyV2FromParallel

LargestFirstFromParallel

SmallestLastFromParallel

0

20

40

60

80

100

120

140

180 186 192 198 204 210 216 222 228 234 240

Ti
m

e
 (

m
s)

Number of vertices

70%

Greedy

ParallelJp

ParallelJpV2

ParallelLargestFirst

ParallelSmallestLast

GreedyFromParallel

GreedyV2FromParallel

LargestFirstFromParallel

SmallestLastFromParallel

124

Figure 79. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms,

density 80%.

Figure 80. Randomly generated graphs tests' results compared in time (ms). Parallel algorithms,

density 90%.

0

10

20

30

40

50

60

70

80

150 155 160 165 170 175 180 185 190 195 200

Ti
m

e
 (

m
s)

Number of vertices

80%

Greedy

ParallelJp

ParallelJpV2

ParallelLargestFirst

ParallelSmallestLast

GreedyFromParallel

GreedyV2FromParallel

LargestFirstFromParallel

SmallestLastFromParallel

0

10

20

30

40

50

60

110 114 118 122 126 130 134 138 142 146 150

Ti
m

e
 (

m
s)

Number of vertices

90%

Greedy

ParallelJp

ParallelJpV2

ParallelLargestFirst

ParallelSmallestLast

GreedyFromParallel

GreedyV2FromParallel

LargestFirstFromParallel

SmallestLastFromParallel

125

Appendix 2 – Maximum Clique algorithms: DIMACS Graphs

Test Results

Graph Size Density

Number of color classes

Largest-

First
Greedy

Largest-

First V3
DSatur

DSatur

V2

c-fat500-1.clq 500 0,36 14 14 14 14 14

c-fat500-2.clq 500 0,07 26 26 26 26 26

c-fat500-5.clq 500 0,19 64 64 64 64 64

c-fat500-10.clq 500 0,37 126 126 126 126 126

hamming10-2.clq 1024 0,99 512 512 512 512 512

hamming6-2.clq 64 0,9 32 32 32 32 32

hamming6-4.clq 64 0,35 8 8 8 8 8

hamming8-2.clq 256 0,97 128 128 128 128 128

hamming8-4.clq 256 0,64 32 32 32 24 24

johnson16-2-4.clq 120 0,76 14 14 14 17 17

johnson8-2-4.clq 28 0,56 6 6 6 6 6

johnson8-4-4.clq 70 0,77 20 20 20 17 17

keller4.clq 171 0,65 37 38 39 25 23

MANN_a27.clq 378 0,99 144 135 141 136 136

MANN_a9.clq 45 0,93 21 18 19 19 19

p_hat300-1.clq 300 0,24 22 29 23 21 21

p_hat300-2.clq 300 0,49 46 56 43 41 43

p_hat300-3.clq 300 0,74 73 85 71 69 70

p_hat500-1.clq 500 0,25 36 45 33 32 30

p_hat500-2.clq 500 0,5 68 87 68 65 65

p_hat700-1.clq 700 0,25 43 53 41 40 40

p_hat1000-1.clq 1000 0,25 56 69 55 53 53

san1000.clq 1000 0,5 15 47 29 25 26

san200_0.7_1.clq 200 0,7 44 49 43 38 38

san200_0.7_2.clq 200 0,7 18 35 24 23 20

san200_0.9_1.clq 200 0,9 75 92 78 75 76

san400_0.5_1.clq 400 0,5 13 29 23 19 19

Table 28. DIMACS graphs test results. Number of color classes - part 1.

126

Graph Size Density

Number of color classes

DSatur-

LDO

DSatur-

IDO-LDO

LDO-

IDO

Parallel

Largest-

First

Parallel

Smallest-

Last

c-fat500-1.clq 500 0,36 14 14 14 18 17

c-fat500-2.clq 500 0,07 26 26 26 31 31

c-fat500-5.clq 500 0,19 64 64 64 74 74

c-fat500-10.clq 500 0,37 126 126 126 126 126

hamming10-2.clq 1024 0,99 512 512 512 541 547

hamming6-2.clq 64 0,9 32 32 32 34 35

hamming6-4.clq 64 0,35 7 7 8 9 11

hamming8-2.clq 256 0,97 128 128 128 139 134

hamming8-4.clq 256 0,64 24 16 32 31 29

johnson16-2-4.clq 120 0,76 14 14 14 15 18

johnson8-2-4.clq 28 0,56 6 6 6 6 6

johnson8-4-4.clq 70 0,77 17 14 20 22 22

keller4.clq 171 0,65 24 25 39 26 22

MANN_a27.clq 378 0,99 140 140 142 144 144

MANN_a9.clq 45 0,93 19 19 20 21 21

p_hat300-1.clq 300 0,24 22 22 22 24 24

p_hat300-2.clq 300 0,49 42 42 44 44 45

p_hat300-3.clq 300 0,74 69 70 69 73 77

p_hat500-1.clq 500 0,25 32 32 34 34 35

p_hat500-2.clq 500 0,5 66 66 68 69 70

p_hat700-1.clq 700 0,25 40 41 41 44 45

p_hat1000-1.clq 1000 0,25 52 52 54 57 58

san1000.clq 1000 0,5 24 26 28 15 15

san200_0.7_1.clq 200 0,7 42 35 43 38 48

san200_0.7_2.clq 200 0,7 23 23 22 18 18

san200_0.9_1.clq 200 0,9 73 70 77 77 86

san400_0.5_1.clq 400 0,5 21 20 22 13 13

Table 29. DIMACS graphs test results. Number of color classes - part 2.

