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1 Introduction

1.1 Electrical Machines

Nowadays, electrical machines and drive systems are crucial across various applications
and industries, playing a significant role in enhancing efficiency and productivity. Given
their widespread use in diverse applications, ensuring proper maintenance is essential.
Electrical machines are indispensable elements of daily life, powering a wide range of
applications starting from small appliances like fans and refrigerators to large-scale
industrial machinery such as pumps, compressors, and turbines. Moreover, many
systems and devices, which are crucial for both industrial and residential applications,
heavily rely on electrical machines.

Their significance extends across various industrial sectors, including power
generation, transportation, manufacturing, automation, and more. This widespread
usage is attributed to their exceptional efficiency and reliability, making them
indispensable in numerous industrial branches and applications. These systems serve in
simplifying, securing, and enhancing convenience in daily life. Over the years, their
importance has further escalated, owing to their reliability, speed range, efficiency,
power density, and cost-effectiveness. Furthermore, electrical machines are indispensable
components of renewable energy resources, such as wind turbines.

Industrial motors are expected to possess specific characteristics to meet operational
demands effectively. These include low maintenance requirements, cost-effectiveness,
compact size, durability, variable speed control capability, and resilience to varying
operational conditions. Among them, the induction motor is the most prevalent machine
type in industrial settings today. Induction motors are well-suited to fulfill all these
requirements [1]. Three-phase induction motors, known for their high efficiency and
cost-effectiveness, are widely applied in domestic fields and industrial applications [2].

1.2 Faults in Electrical Machine

Despite their advantages, different damages in combination with environmental
conditions can impact induction machines during operation. It can significantly impact
induction motors’ effectiveness, maintenance, and longevity. Given the pivotal role of
these motors across various industrial sectors, such failures are undesired and must be
diligently prevented.

In general, stresses affecting the operation of electrical machines can be categorized
into four main groups, commonly referred to as thermal, electric, ambient, and mechanical
stresses [3]. These stresses often lead to the emergence of faults within the machine.
The distribution of these faults is primarily influenced by the motor’s parameters, including
machine type, size, and rated voltage. However, mechanical faults represent a significant
proportion of overall faults, manifesting in various forms such as eccentricity, broken rotor
bars, cracked end rings, damaged bearings, and more [4]. At the same time, bearing faults
are the most prevalent type of fault, accounting for around 40% of all machine failures [5].

Detecting and diagnosing bearing faults in induction motors is crucial due to their
prevalence and impact on motor performance. These faults can lead to severe operational
issues and compromise the motor’s lifespan. Bearings, crucial components of rotating
machinery, are susceptible to damage from various sources, including contamination,
corrosion, and improper lubrication. Contaminants such as dust and moisture can infiltrate
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the bearing, causing structural damage and corrosion, ultimately leading to premature
wear and failure.

Proper lubrication reduces friction, shields against corrosion, and prevents
contamination, which is essential for preventing bearing faults. However, improper
lubrication practices, such as insufficient or excessive grease application, can accelerate
bearing wear and shorten its service life. Material fatigue, resulting from continuous
loads that create cracks on the bearing’s surface, is another common cause of bearing
failure. Mechanical damages, such as manufacturing defects or misalignment, can
significantly impact bearing performance.

In addition to bearing faults, other types of motor failures can occur, including rotor
and stator faults. Rotor faults may involve broken rotor bars, end ring damage, or
eccentricity, leading to uneven air gaps between the rotor and stator and motor instability.
Stator faults, on the other hand, often stem from winding issues, such as short circuits or
insulation degradation, which can result from thermal, electrical, ambient, or mechanical
stresses. Monitoring and diagnosing these faults are essential for maintaining motor
reliability and performance.

1.3 Condition Monitoring

Preventing induction motor failures is crucial, given their pivotal role in various
industries. As presented in Figure 1, three main types of machine maintenance can be
classified: corrective, preventive, and predictive maintenance [6].

a b
) )
_::5 Failure ,::'\3
o occurrence 3
g g
3 3
= b
777777777777777777777777777777777777777777777777777777777777 Control Control
point point
Machine lifespan Machine lifespan

Repair
point

Expected failure
occurrence

Machine health

Machine lifespan

Figure 1. Maintenance types: a) corrective, b) preventive, and c) predictive maintenance. (previously
published in article V)

As presented in Figure 1a, corrective maintenance, also known as reactive maintenance,

involves repairing equipment after a failure has occurred [7]. This approach is suitable
for small and less critical workstations where unexpected failures do not result in
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significant economic or catastrophic consequences. On the other hand, as shown in
Figure 1b, preventive maintenance aims to prevent failures by regularly inspecting and
servicing the equipment according to a predetermined schedule [8]. While this approach
can extend the lifespan of machines, it provides limited information on the remaining
useful lifetime and lacks prognostic capabilities. Additionally, scheduled inspections
often require partial or total shutdowns of production processes, leading to inefficiencies
and increased operating costs. To mitigate these issues, manufacturers increasingly use
predictive maintenance, which relies on condition monitoring to anticipate failures based
on the equipment’s operational data [9]. This proactive approach helps reduce shutdown
costs, minimize downtime, and optimize resource utilization. The predictive strategy is
presented in Figure 1c.

Various parameters, such as current, vibration, temperature, and magnetic flux, need
to be continuously monitored to ensure electrical machines’ reliable and efficient
operation. Moreover, specific fault patterns in the signals can indicate impending failure.
Consequently, adopting condition-based monitoring becomes imperative for staying
informed and making well-informed decisions regarding machine maintenance.

1.4 Predictive Maintenance

The possibilities arising from Industry 4.0, particularly cloud computing and the Internet
of Things, result in more efficient diagnostics — predictive maintenance, thereby attracting
big data and numerical models of the systems. As illustrated in Figure 2, this concept
utilizes remote condition-based monitoring instead of scheduled maintenance routines,
consequently reducing the utilization of logistic, energy, human, and material resources
[10].

DATA TRANSFER

\ «—— LoeicTics  CONDITION
© I MONITORING

£ Sha

Figure 2. The concept of remote condition monitoring. (previously published in article VIl

Every energy system embodies a complex mechanism that needs monitoring of
numerous parameters, demanding substantial computational resources. Given the vast
amount of data involved, employing advanced diagnostic approaches based on artificial
intelligence is a reasonable choice. These intelligent algorithms will not only facilitate
fault detection but also enable the system to predict potential faults. The primary
challenge lies in the quantity and quality of training data. To ensure effective training,
it is crucial to thoroughly examine the nature of machine faults, including their causes
and impacts on global parameters.
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1.5 Aim, Hypotheses, and Research Questions

The thesis hypothesizes that integrating fault representation, experimental data, and
predictive models can significantly advance fault detection and prediction. This integrated
approach is suggested to improve accuracy and optimize resources in identifying and
forecasting potential faults within complex systems. Through these methodologies,
the thesis aims to demonstrate how leveraging models alongside empirical data and
machine learning algorithms can enhance fault detection capabilities and streamline
maintenance processes.

The research question of this thesis revolves around investigating fault patterns across
various fault types, focusing on developing comprehensive methods for fault detection,
segregation, and prediction. This study encompasses several key components:

1. Development of a sophisticated test bench for implementing faults in a controlled
environment.

2. Testing of faults to replicate real-world scenarios and gather data essential for
analysis and training.

3. Exploration of faults representations to provide a deeper understanding of their
characteristics and patterns.

4. Devising methods for effectively segregating different fault types to enhance the
accuracy of fault detection algorithms.

5. Investigation of the utilization of machine learning and fuzzy logic algorithms for
detecting, segregating, and predicting faults, thereby offering invaluable insights
into optimizing maintenance strategies and improving system reliability.

1.6 Contribution and Dissemination

During the doctoral studies, the author contributed to 49 publications. The findings of
this research have been disseminated through scientific publications, conferences,
symposiums, doctoral schools, and other presentations. The dissertation is based on 10
primary scientific publications, comprising 6 journal papers and 4 conference papers
presented at international conferences.

Scientific novelties:

1. Methodology for data collection using the test bench with faults inside the
induction motor under different operational conditions.

2. Methodology for manual implementation of bearing current faults to healthy
bearings for data collection.

3. A comparative analysis of the fault patterns under different operational
conditions based on input line current and frame vibration.

4. Improvement in the definition of the transition state and data generation for
effective fault prediction.

5. Improvement on signal spectrum-based fault predictive algorithm for electrical
machines.

6. Development of a combination of machine learning algorithm and fuzzy logic
for fault prediction.

7. Development of a neuro-fuzzy logic algorithm for fault prediction.
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Practical novelties:

1. Development of the monitoring system to assess induction motor performance
under different conditions, facilitating early fault detection.

2. Development of the test bench for inducing various bearing faults manually,
enabling efficient data collection for analysis.

3. Development of the methodology for analysis of fault patterns based on
current and vibration signals.

4. Validation of improved signal spectrum-based fault predictive algorithm for
electrical machines.

5. Implementation of the combination of machine learning algorithm and fuzzy
logic for fault prediction.

6. Implementation of the neuro-fuzzy logic algorithm for fault prediction.

1.7 Thesis Outline

The thesis is structured into six chapters, each addressing crucial aspects of fault
detection and prediction in electrical machines.

Chapter 2 delves into the main faults of electrical machines, categorizing induction
motor failures into three primary groups: stator, rotor, and bearing-related failures.
Motor parameters such as type, size, and rated voltage influence the distribution of these
faults. However, statistical analysis reveals that bearing faults account for most of the
failures.

In Chapter 3, the focus shifts to condition monitoring for electrical machines.
Understanding that fault occurrence is determined by various motor parameters;
the chapter emphasizes the importance of monitoring multiple parameters such as
vibration, current, temperature, magnetic flux, and torque to enhance machine reliability.
A comprehensive overview of the main faults and their corresponding signatures is
provided. Besides, this chapter delves into intelligent algorithms, underscoring their
significance in ensuring proper maintenance of electrical machines and drive systems
across different applications. The chapter emphasizes the critical role of diagnostic
methods in this context.

Chapter 4 tackles data analysis and preprocessing, crucial for effectively training
intelligent algorithms. It describes an experimental test bench setup, including
components such as the testing machine, loading machine, and acquisition system.
Various operational conditions and control environments are considered to gather
accurate data for training purposes.

Lastly, Chapter 5 focuses on classification and prediction techniques, including
machine learning and fuzzy logic approaches. This chapter explores methodologies for
leveraging collected data to classify and predict faults in electrical machines, aiming to
enhance fault detection capabilities and streamline maintenance processes.
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2 Faults in Electrical Machines

Induction motor failures are classified into three main groups: stator, rotor, and bearing-
related failures. The distribution of these faults is contingent upon motor parameters
such as type, size, and rated voltage. Low-voltage machines primarily experience bearing-
related faults, while high-voltage machines exhibit a higher portion of stator winding
faults [11]. The general fault distribution in induction machines is presented in Figure 3,
where, statistically, most of failures is related to bearing faults [12].

10%
12% l

41%

37%
m Bearing faults Stator faults m Eccentricity = Broken rotor bars

Figure 3. Distribution of faults in induction machines.

2.1 Bearing faults

Bearings are crucial parts of a rotating machine, yet they also account for the highest
proportion of different damages. The production of bearings must follow strict
standards. However, the actual lifespan of a bearing is often shorter than expected due
to various stresses during operation, like unexpected overload, not enough lubrication,
or incorrect installation [13]. Because electrical machines work in different conditions,
bearings can be susceptible to many issues and damage. The causes of these problems
are various environmental or manufacturing factors.

2.1.1 Contamination and Corrosion

When humid air enters the bearing, it compromises the lubricant properties at specific
points of heightened load on the rings. Bearings are susceptible to pollution from dust,
sand, and other abrasive particles, resulting in structural damage such as scratches and
cracks. These pollutants can create significant dents when rolling elements push the
debris into the rings.

Additionally, lubricants can become contaminated by water or other chemical
substances, leading to the onset of bearing corrosion. Corrosion is a process involving
the interaction between materials and the environment, resulting in material dissolution.
Proper lubrication is a crucial operational factor determining the durability of a bearing.
A well-chosen lubricant forms a thin oil layer, mitigating the impact of rolling elements
against bearing rings and cages. Figure 4 illustrates an example of bearing corrosion.
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Figure 4. An example of corroded bearing. (previously published in article 1)

Lubrication serves to prevent premature wear and corrosion in bearings. Improper
lubrication can manifest as either insufficient or excessive grease application. Insufficient
lubrication induces friction and promotes crack progression, while excessive greasing
may cause shaft slipping, leading to structural damage. Inappropriate bearing cage
selection is a primary cause of such damages, as it fails to prevent the entry of particles
into the bearing. To prevent these issues, corrosion-resistant lubricants can be
employed. Additionally, maintaining a clean mounting process and refraining from using
contaminated greases are vital preventive measures.

2.1.2 Lubricant Issues

Correct lubrication is a crucial operational aspect for bearings. The lubricant establishes
an essential oil layer between working surfaces, simultaneously cushioning the impact of
rolling elements on the rings and separator [14]. Lubrication is pivotal for ensuring the
longevity of the bearing. Grease plays a key role in reducing friction, shielding the bearing
from corrosion and wear, and preventing the entry of solid and liquid contaminants.
Changes in the lubricant’s condition can also indicate motor issues, with darkening
occurring due to electrical discharges, as shown in Figure 5.

Figure 5. Improper lubrication of bearing. (previously published in article 1)

Improper lubrication can manifest as either insufficient or excessive lubrication, both
of which inevitably lead to premature bearing wear and a shortened service life [15].
Insufficient lubrication may result from the use of low-viscosity grease or an insufficient
quantity of grease. Conversely, excessive lubrication can induce shaft slipping, leading to
crack formation and development.

Furthermore, the improper selection of lubricants contributes to bearing
contamination. Types of lubricants encompass plastic greases and various oil-based
greases. Each lubrication method possesses unique characteristics, necessitating the
selection of the method that best aligns with lubrication requirements. The choice of
lubricant depends on the operating conditions of the bearing, particularly the
temperature range, speed, and working environment. Bearings are mainly lubricated
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with plastic grease, which, in contrast to oils, offers prolonged efficacy at friction points,
thereby reducing economic costs. While oils excel in enhanced heat dissipation, they
come with the drawbacks of higher cost and the risk of leakage compared to plastic
grease.

2.1.3 Wear and Material Fatigue

Material fatigue typically arises from continuous loads that create cracks on the bearing’s
surface [16]. The application of external forces to the bearing rings weakens the material,
leading to cracking. With time, these cracks progress, rendering the bearing unsuitable
for continued use. The durability of a bearing is measured by the number of revolutions
it completes before the initial signs of material fatigue become evident on its rings and
rolling bodies. Figure 6 presents an example of bearing material fatigue.

Figure 6. An example of material fatigue on bearing ring. (previously published in article 1)

Continuous overloading, inadequate maintenance, and contaminated surfaces always
contribute to material fatigue. Development and progression of this phenomenon are
significantly influenced by the magnitude of the machine’s applied load and rotational
speed. Initially, microcracks appear in the subsurface, evolving over time to larger surface
cracks, resulting in a roughened bearing surface. This phase may be accompanied by
additional noise and vibration, coupled with an increase in the operating temperature of
the bearing. Regular inspections and proper lubrication are essential preventive measures
to reduce the risk of material fatigue in bearings.

2.1.4 Mechanical Damages

The majority of bearing faults stem from mechanical damage, which may result from
manufacturing defects or unforeseen conditions during motor operation. Typically, these
mechanical damages affect components such as inner and outer rings, cages, and rolling
elements.

These mechanical damages may also arise from incorrect manufacturing or mounting
processes, inadequate design, misalignment of bearing rings, or unequal proportions of
rolling elements. Before installing the bearing, it is essential to inspect for manufacturing
faults, including overall appearance, ease of rotation, and compliance with technical
documentation requirements. In the case of open-type bearings, checks are necessary
for contamination, corrosion, and the condition of the cage. For sealed-type bearings,
an additional check on cages is crucial to prevent potential damage.

2.1.5 Shaft Currents

The extensive utilization of variable-speed drives in various motor applications has
significantly heightened the impact of bearing currents [17]. Visually, damages caused by
bearing currents exhibit distinct characteristics compared to other mechanical defects.
It is crucial to visually inspect replaced bearings, especially if they have been changed
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during maintenance, and there are suspicions of shaft currents being present. The impact
of these currents on the bearing is influenced by various factors, including the type of
lubricant, rotational speed, applied current, operating duration, and the condition of the
material [18].

a)

Figure 7. Common damages caused by bearing currents: a) fluting, b) frosting, and c) pitting.
(previously published in article VI)

Typically, damages induced by current are only noticeable in advanced stages when
the bearing surface is already compromised. Faults resulting from bearing currents tend
to appear in areas with the thinnest lubrication due to heightened stress in those regions
[19]. This frequently leads to the formation of fluting on the bearing surface, as shown in
Figure 7a, where multiple lines become apparent across the bearing raceways. Such
damage is often associated with constant rotational speeds and low voltage. Another
category of bearing current-related faults, observed when a motor operates at variable
speeds, is known as frosting. Figure 7b illustrates the occurrence of frosting in practical
situations. When a motor operates at low speed and receives power from a high-voltage
source, a phenomenon of pitting can occur in the bearing. Pitting is typically observed in
motors designed for DC applications, such as railway motors. In these instances, small
craters appear on the bearing surface, as shown in Figure 7c.

In addition to the previously mentioned bearing current faults, another type of
damage known as dull-finish may occur. The primary distinction between dull-finish and
pitting lies in the size of the craters on the bearing surface. In the case of dull-finish, these
craters are significantly smaller, often requiring the use of a high-magnification microscope
for proper examination.

2.2 Rotor Faults

Additionally, rotor faults can develop during the machine’s operation. A prevalent form
of rotor damage involves broken rotor bars and end rings, typically stemming from
natural degradation leading to rotor wear. Thermal expansion can exacerbate this issue
by causing cracks in the rotor bars. The differential expansion rates of copper bars and
steel laminates, with copper expanding faster at higher temperatures, contribute to
these cracks.
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2.2.1 Eccentricity

Rotor damage induced by centrifugal force is often associated with eccentricity, defined
as an uneven air gap between the rotor and stator. The air gap is defective if it exceeds
10% of the nominal value [20]. Factors such as improper installation, missing bolts, shaft
misalignment, and rotor imbalance contribute to eccentricity. An example of rotor wear
is presented in Figure 8.

Figure 8. Rotor wear caused by centrifugal forces.

Motor eccentricity manifests in three main types: static, dynamic, and elliptical. Mixed
eccentricity can also occur when the centers of the rotor and stator, along with the axis
of rotation, are misaligned. In Figure 9, three main types of eccentricity are presented.

a)

Figure 9. Rotor eccentricities: a) healthy, b) static, c) and d) dynamic, e) elliptic eccentricities. [21]

Static eccentricity (SE) stands out as the most prevalent type of eccentricity in motors,
characterized by a fixed rotation axis of the rotor parallel to the stator axis over time.
Dynamic eccentricity (DE), on the other hand, involves a variation in air-gap length over
time. Elliptic eccentricity (EE) occurs when the center points of the stator and rotor align,
yet a non-uniform air gap persists due to the elliptical shape of the rotor and changes in
angles over time. The air-gap width for various eccentricities can be determined using
the following equations:
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where g — air gap, Rs — radius of the stator, R — rotor radius, d —deviation, 8 — initial
eccentricity angle, Ow — rotational center, Os — stator symmetry center, p — number of
poles [21].

2.2.2 Demagnetization of permanent magnets

Permanent magnets commonly fail due to demagnetization, which involves a partial or
complete loss of magnetization [22]. Overloading and thermal expansion, particularly in
machines operating at high temperatures without proper cooling, significantly elevate
the risk of demagnetization. Electrical stress, such as short circuits, is another
contributing factor. It is advisable to monitor magnet manufacturing for defects and signs
of corrosion to prevent demagnetization. Partial demagnetization that produces
additional harmonics in the stator currents can be found at the following frequencies:

k
fodem= Tt (1 t 5) (4)

where fpdem — faulty frequency, ff— fundamental frequency, k —integer, and p — number
of poles [23].

Demagnetization of permanent magnets is often attributed to machine overload and
thermal expansion [24]. Operating in high-temperature ranges without a proper cooling
system significantly elevates the risk of demagnetization. Electrical stresses, including
short circuits, are another factor that can impact magnet properties [25]. It is also
advisable to monitor magnets during manufacturing for defects and signs of corrosion.

2.3 Stator Faults

Issues with the stator typically stem from problems with the windings, which are not only
crucial but also highly sensitive in any motor. This percentage underscores the importance
of prioritizing the protection of the windings in motor design and operation. Before a
motor is commissioned, thorough checks are imperative to ensure that the windings are
undamaged, correctly connected, and adequately insulated.

2.3.1 Winding failures

Among the most prevalent winding failures is a short circuit, typically starting from
turn-to-turn short circuit [26]. Without prompt intervention, this issue can escalate into
phase-to-phase or even phase-to-ground short circuits. Detecting inter-turn faults in
their early stages is particularly challenging in the electrical machine industry. Even in the
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initial phase, an inter-turn short circuit can cause substantial damage, ultimately leading
to machine breakdown. Different modes of short circuit are shown in Figure 10.

TURN-TO-TURN

L1

OPEN CIRCUIT ———

L3

Figure 10. Common modes of short circuit in wye-connected stator.

The degradation of winding insulation can be attributed to various factors, with four
primary stresses, collectively known as TEAM stresses, significantly influencing the
degradation rate: thermal, electrical, ambient, and mechanical stresses [27].

e Thermal stresses: Among the most prevalent stresses affecting machines are
thermal stresses. Induction motors experience high starting currents, causing
the temperature to surpass threshold values and leading to a decline in the
insulation system.

e Electrical stresses: Insulation susceptibility arises from unstable supply voltage,
transient voltages, unstable grounding, and incorrect rated values of the
machine. Electric motors, especially those exposed to fast-switching inverters,
are vulnerable to these stresses.

e Ambient stresses: This encompasses environmental factors impacting the
motor, such as moisture, humidity, aggressive chemicals, dirt, and other
particles. Each element can affect the machine and its insulation system
differently, either individually or in conjunction with other stress types.

e Mechanical stresses: Various forces, including centrifugal and magnetic forces,
influence machine operation. While numerous studies focus on monitoring and
reducing these forces, limited research addresses quality control monitoring
during production and the damage incurred on electrical machines during
installation.

Special attention has been directed towards manufacturing faults, often overlooked
but with the potential to evolve during motor operation, resulting in undesirable
consequences. ldeally, machines should exhibit symmetry in all aspects, featuring
sinusoidally distributed windings on both the stator and rotor sides, a smooth and
consistent air gap, and uniformly distributed current in the stator and rotor windings to
mitigate skinning and proximity effects. These ideal characteristics aim to achieve
ripple-free speed and torque production without vibrations.
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However, practical machines face limitations that prevent the realization of these
ideals. Despite testing measurements falling within defined limits, visual inspections
frequently reveal various damages in the motors. An example of some manufacturing
damages is presented in Figure 11.

Figure 11. Manufacturing damages on induction motors: a) overheated winding insulation,
b) improper winding placement. (previously published in article Il)

Manufacturing faults, typically neglected during the design phase, tend to manifest
during machine exploitation. These asymmetries can lead to heightened vibrations,
causing friction among copper conductors and resulting in insulation damage.
Asymmetrical faults, such as winding faults, induce additional sideband harmonic
components at the fundamental frequency and can be defined by the following
frequencies:

fo=f,(1+2sk);k=1,2,3,.;kEN (5)
where fn —harmonic frequency, fs — supply frequency, s —slip [28].

Additionally, the thermal profile of the machine becomes uneven, giving rise to hot
spots at specific locations. Consequently, monitoring and predicting potential fault
occurrences can markedly mitigate the adverse impact of damage on motor maintenance.

2.4 Summary

The chapter provides a comprehensive overview of the classification and causes of
failures in induction motors, categorizing them into three main groups: stator, rotor, and
bearing-related failures. Bearing faults, being the most common, are attributed to
various factors such as contamination, lubrication issues, wear, and material fatigue.
Contamination and corrosion, inadequate lubrication, and improper lubrication selection
contribute significantly to bearing failures. Furthermore, material fatigue and mechanical
damages are prevalent issues affecting bearing longevity. Additionally, the text discusses
rotor faults, including broken rotor bars, end ring damage, and eccentricity, which can
result from thermal expansion and improper installation. Stator faults, primarily related
to winding issues such as short circuits and insulation degradation, are also highlighted,
with emphasis on the importance of detecting and addressing these faults early. To sum
up, to improve the machine’s reliability, it’s crucial to oversee numerous parameters.
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3 Condition Monitoring using Artificial Intelligence

3.1 Global Parameters’ Monitoring

As previously stated, the occurrence of faults is primarily determined by the motor’s
parameters, including machine type, size, rated voltage, and so forth. To enhance the
machine’s reliability, it is essential to monitor multiple parameters.

3.1.1 Vibration Monitoring

Vibrations within an electrical machine can originate from various sources, including
magnetic fields, fluid flow, imbalances, and particularly from rotating elements like
bearings, gearboxes, or rotors [29]. Currently, there is a diverse range of sensor types
available for measurement technology, such as piezoelectric [30], capacitive [31],
inductive [32], piezoresistive [33], and strain gauge [34] sensors.

Vibration analysis is a valuable tool for assessing the condition of electrical equipment
and is extensively employed for diagnostic purposes [35]. It involves tracking changes
through defined vibration signatures and identifying deviations within the system. These
deviations manifest in alterations to acceleration amplitude, frequency values, and
intensity. Detecting failures in a timely manner requires careful attention to specific
frequency components within the harmonic spectrum [36]. These components can be
identified in the frequency domain by performing Fourier transforms on the signals
coming from the machine.
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Figure 12. Fourier spectra of healthy and faulty bearings. (previously published in article V)
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As presented in Figure 12, in traditional diagnostic methodologies, vibration signals
from both healthy and faulty bearings are utilized to compare them and detect a faulty
pattern. The identification of specific frequencies on the FFT spectrum enables the
observation of frequency variations in harmonic amplitudes, especially within fundamental
components. This variation serves as a fault indicator.

3.1.2 Wear Monitoring

Wear condition monitoring in electrical machines plays a pivotal role in ensuring their
optimal performance and longevity [37]. As these machines operate over time, various
components, such as bearings and gears, are subjected to wear and tear. An example of
stator wear is shown in Figure 13. Monitoring the wear condition involves assessing
factors like vibration, temperature, and lubrication [38]. Vibration analysis helps detect
irregularities in rotating elements, while temperature monitoring identifies potential
overheating, which can accelerate wear.

Figure 13. Wear of stator.

The bearing is a crucial component of a rotating machine and is subject to various
loads and forces, leading to a decrease in the motor’s intended lifespan. In general, most
friction losses in rotating machines are attributed to bearings. Consequently, monitoring
the wear of bearings can greatly impact the proper functioning and overall reliability of
the machine. The most frequent causes of bearing wear are high friction loads and
insufficient lubrication. Bearing faults typically arise in areas where the lubricant coating
is at its thinnest.

Additionally, monitoring lubrication levels is crucial as insufficient lubrication can lead
to increased friction and wear [39]. By employing advanced sensing technologies and
data analysis techniques, engineers can gather valuable insights into the wear patterns
of critical components. Timely detection of wear allows for proactive maintenance,
reducing the risk of unexpected breakdowns and enhancing the overall reliability and
efficiency of electrical machines.
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3.1.3 Electrical and Electromagnetic Monitoring

Monitoring the magnetic flux has become a widely used and effective method for
detecting faults in electrical machines, given that many early failures result in a
detectable magnetic asymmetry [40]. Electromagnetic measurement serves as an
efficient means to monitor the electrical machine, either as an additional or alternative
tool to stator current monitoring. In essence, an electric machine generates
electromagnetic flux, and any minor imbalance in the magnetic or electric circuit is
reflected in some of the transmitted fluxes [41]. Numerous studies have explored the
monitoring of bearing damages [42], rotor faults [43], short circuits [44], and magnet
problems [45] through the analysis of stray magnetic flux.

In most rotating electrical machines, which are typically symmetrical, magnetic flux is
uniformly distributed. Any fault in the machine leads to an asymmetrical flux distribution,
resulting in more localized magnetic stresses. The flux density across the broken bar
increases, magnifying the peak induced current in subsequent rotor bars. This heightened
current, along with increased magnetic forces, renders the affected components
susceptible to faults, initiating a chain reaction. An example of flux distribution in the
case of healthy and faulty rotor bars is presented in Figure 14.

Figure 14. Flux distribution of healthy and faulty rotor bars in an induction motor. [46]

Crucially, the performance parameters of machines, such as torque, speed, voltage,
and currents, are influenced by flux distribution. Analyzing these performance parameters
enables the detection of any alterations in flux distribution due to a fault. These
characteristics render diagnostic algorithms non-invasive and open a wide array of signal
processing techniques for the condition monitoring of electrical machines.

3.1.4 Temperature Monitoring
Thermal monitoring is a crucial aspect of ensuring proper functionality. Elevated
temperatures can significantly reduce the lifespan of electrical machines, causing
damage to winding insulation, short circuits, accelerated aging of bearings, and
degradation of rotor permanent magnets [47]. Common factors contributing to
temperature increase include cooling system malfunctions and excessive currents
flowing through windings [48].

In general, temperature-based monitoring can be categorized into two approaches:
thermal image analysis and local spot measurement. An alternative method for thermal
monitoring in rotating machinery is thermal imaging, which is presented in Figure 15.
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Figure 15. Thermal image of working induction motor.

For local thermal measurement, resistance thermometer detectors and thermocouples
are commonly employed. However, using thermocouples or resistance temperature
detectors for local monitoring may have limitations in safety applications, primarily due
to the use of electrically conductive materials in the sensor structure [49]. Consequently,
they may not be positioned in the hottest spots.

Table 1. Signatures of main faults in electrical machines. (previously published in article V)

Winding short

lnd.mg.s or Rotor broken bars | Eccentricity |Bearing faults

Fault signatures circuit
52 53], [54 55

[50], [51] [52] [53], [54] [55]
Vibration O O o N
Current * * o N
Temperature @) O O .
Magnetic flux

* * *

changes O
Chemical ) . X
analysis O
Torque changes * * o .

% - the most preferable parameter for condition monitoring; O - parameter can be used
for condition monitoring; x- parameter cannot be used for condition monitoring.
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3.2 Artificial Intelligence in Condition Monitoring

Nowadays, electrical machines and drive systems are extensively used across various
applications and hold a significant role in industries. Given their diverse usage, ensuring
proper maintenance is crucial. For this reason, the clever choice of diagnostic method is
extremely important.

3.2.1 Machine Learning

A wide range of condition monitoring methods are available today to detect failures in
electrical equipment. Many literature resources on intelligent health monitoring refer to
machine learning. It is a field of study in computer science and artificial intelligence that
does not directly solve problems but learns from applying solutions to similar problems
[56]. Typical machine learning tasks include classification, regression, learning associations,
clustering, and other machine learning tasks like reinforcement learning, learning to
rank, and structure prediction [57]. Machine learning is closely related to data mining,
which can discover new data patterns in large datasets. The main difference is that
machine learning focuses on adaptive behavior and practical usage, while data mining
concentrates on processing extensive amounts of data and discovering unknown
patterns. Based on the dataset, known as training data, machine learning algorithms can
build a model to predict and make decisions. There are many types of those algorithms,
including supervised, unsupervised, semi-supervised, and reinforcement learning [58].
Figure 16 illustrates the most common methods used in machine learning.

MACHINE LEARNING

SUPERVISED LEARNING UNSUPERVISED LEARNING REINFORCEMENT LEARNING

Diagnostics, image processing, Segmentation, big data Real-time decisions, skill
forecasting, process optimization, visualization, face recognition, acquisition, Learning tasks, robot
prediction, risk assessment planning navigation, gaming, resourse
management.
! '
Basic paradigms Neural Networks

Decision Trees Fuzzy C-Means Control Theory Autoencoder Neural Networks
Discriminant Analysis Principal Component Game Theory Convolutional Neural Networks
Linear Regression Cluster Analysis Genetic Algorithms Probabilistic Neural Networks
Logistic Regression K-Means Multi-Agent Systems Recurrent Neural Networks
Naive Bayes Simulation-Based Optimization
Nearest Neighbor Statistics
Random Forest Swarm Intelligence
Similarity Learning Q-Learning

Support Vector Machines

Figure 16. Common algorithms of machine learning.[59]

The basic paradigms of machine learning comprise supervised and unsupervised
algorithms. Supervised machine learning, also referred to as “learning with a teacher,”
involves learning from examples where both a training set (situations) and a test set
(required solutions) are provided [60]. Obtaining these training sets poses challenges,
particularly in industry and laboratories. Due to scheduled maintenance in industries and
limited destructive testing in laboratories, acquiring enough faulty machines for training
purposes is restricted. Additionally, collecting data with multiple faults (composite faults)
in the same machine is non-trivial in both scenarios. At the same time, unsupervised
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machine learning, also known as “learning without a teacher,” involves discovering
patterns from unknown data [61]. Here, only training data is available, and the objective
is to cluster objects and/or reduce the volume of the given data. Some industrial systems
utilize semi-supervised algorithms to achieve more precise outcomes. In such cases,
some instances have both training and test sets, while others only have training data. In
contrast to basic methods, reinforcement machine learning focuses on recognizing
patterns in repetitive scenarios and generalizing from them [62]. The objective is to
minimize errors and enhance accuracy by analyzing information before each step.
Furthermore, the algorithm aims to maximize rewards (benefits) set in advance, such as
minimizing resource expenditure, achieving desired values, or reducing analysis time.
One widely used group of intelligent condition monitoring methods applicable to various
machine parameters is artificial neural networks. Neural networks can be supervised,
unsupervised, or reinforced. Many studies incorrectly categorize neural networks as
distinct from machine learning. However, neural networks and deep learning are directly
interconnected with computer science, artificial intelligence, and machine learning.

Supervised machine learning encompasses a wide range of functional algorithms
capable of mapping inputs to desired outputs. Figure 17 illustrates the general algorithm
of supervised learning.

INITIAL DATA RESULT
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Training set A D A A A
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Figure 17. Concept of supervised learning. (previously published in article Ill)

Typically, supervised learning is used in classification and regression tasks: classifiers
map inputs to predefined classes, whereas regression algorithms map inputs to a real-
value domain. In essence, classification predicts the input category, while regression
predicts a numerical value based on collected data. Supervised learning aims to identify
features from labeled examples, thereby allowing for the analysis of unlabeled examples
with potentially high accuracy. Essentially, the program establishes rules according to
which the data is processed and classified. For the condition monitoring and diagnostics
of electrical machines, decision trees [63] and support vector machines [64] are recognized
the most suitable supervised algorithms.

Decision Trees: A decision tree is a decision support tool widely utilized in data
analysis and statistics, with particular emphasis in artificial data mining. The objective of
a decision tree is to construct a model that predicts the value of a target variable based

28



on multiple inputs. The structure of a decision tree can be illustrated through branches
and leaves. Branches contain attributes upon which the function relies, while leaves hold
the values of the function. The remaining nodes encompass attributes that differentiate
decision cases. An example of the decision tree algorithm is illustrated in Figure 18.

Condition 1
Fulfilled?

Yes No

Decision 1 Condition 2

Fulfilled?

Yes No

Decision 2 Decision 3

Figure 18. Diagram of decision tree. (previously published in article Ill)

Among other decision models, decision trees are the simplest and require minimal
data to achieve success. Additionally, this algorithm can be combined with another
decision model as a hybrid approach to achieve more accurate outcomes. However,
these models are inherently unstable. A small amount of input data can lead to
substantial changes in the decision tree structure, resulting in inaccurate results.
Furthermore, regression algorithms may fail in the case of decision trees.

Support Vector Machines: Another widely used machine learning algorithm in
condition monitoring is the support vector machines. In classification tasks, support
vector machines are preferred as they can handle both linear and non-linear cases.
For linear classification, each dataset is represented as a vector in an n-dimensional
space, belonging to two classes. The algorithm’s focus is on separating these data points
to create a maximum gap between them. In non-linear classification, the kernel machine
operates similarly to linear algorithms but applies to different datasets. The process of
support vector machines is outlined in Figure 19.

O Class1
|

Class 2
——— Possible hyperplanes

=== Optimal hyperplane

Figure 19. Concept of support vector machines. (previously published in article Ill)
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Generally, support vector machines are an optimal tool when there is limited initial
information about datasets. Like decision trees, they require less computational power
to provide accurate results. However, processing particularly large datasets can be
time-consuming. Additionally, managing the kernel machine for non-linear processes can
pose a challenging task.

Unsupervised machine learning comprises algorithms capable of autonomously
learning to perform a given task without the intervention of a teacher. It is commonly
confronted with supervised learning, where the outcome is known, and the goal is to
uncover relationships between system responses. In unsupervised learning, shown in
Figure 20, the program endeavors to identify similarities between objects and categorize
them into groups if similar patterns are detected. These groups are referred to as clusters.
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Figure 20. Concept of unsupervised learning. (previously published in article I11)

In the diagnosis of electrical machines, principal component analysis is the most used
algorithm [65].

Principal Component Analysis: More frequently, datasets are so vast that interpreting
and discerning essential information becomes challenging. Principal component analysis
stands out as one of the most prevalent algorithms for reducing the dimensions of data
while retaining the least amount of information. Geometrically, principal component
analysis can be interpreted, as demonstrated in Figure 21. The algorithm of principal
component analysis unfolds as follows:

a) Points with specific coordinates are designated on the plane.

b) The direction of maximum data change is identified, and a new axis of principal
component analysis is drawn through the experimental points.

c) Experimental points are projected onto the axis of principal component analysis.

d) Itis assumed that all the points were initially projected on the axis of principal
component analysis, and any deviations from this axis can be regarded as noise.

One of its key advantages is the independence of its components, with no correlation
between them. This independence can notably expedite training time. However, these
independent values may become less interpretable. There is still some degree of
information loss, resulting in relatively less precise data analysis compared to the original
values.
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Figure 21. Support vectors and optimal hyperplane in non-linear classification: a) initial dataset,
b) optimal vector determination, c) projection of initial dataset on the vector, d) new data parameters
definition. (previously published in article Ill)

Reinforcement learning is a machine learning method in which the system (agent)
learns through interaction with an environment. The general algorithm of reinforcement
learning is depicted in Figure 22.
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Figure 22. Concept of reinforcement learning. (previously published in article Ill)

Unlike supervised algorithms, reinforcement learning does not require labeled data
pairs. Its primary focus is on striking a balance between navigating an unknown
environment and leveraging existing knowledge. The genetic algorithm stands out as the
most frequently used reinforcement algorithm in condition monitoring [66].
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Genetic Algorithm: This algorithm serves as a tool for solving optimization problems
and emulates natural selection mechanisms in the environment through random
selection modeling. A distinctive aspect of genetic algorithm is its reliance on the
“crossing” operator, inspired by its instrumental role in wildlife. In genetic algorithm,
the problem is typically formalized so that its solution can be encoded as a vector of genes
(genotype), with each gene possessing a certain value. In classical implementations,
the genotype is assumed to have a fixed length. However, there are variations of genetic
algorithm that are free from this limitation. The general diagram of genetic algorithm is
illustrated in Figure 23. The optimization process employing genetic algorithm is as
follows:

a) Ataskis defined, and numerous genotypes of the initial population are created.

b) This initial dataset is evaluated using the “fitness function,” which assesses how
effectively each genotype in the initial population addresses the task.

c) The best matches in the population are selected for the subsequent generations.

d) The top matches generate new solutions, and this process iterates until the task
is accomplished, yielding a resultant population.

b)

c) d)

Figure 23. Genetic algorithm diagram: a) creation of initial population, b) application of fitness
function, c) selection of the best coincidences, d) creation of resultant population. (previously
published in article Ill)

One of the primary advantages of genetic algorithm is its independence from specific
domain knowledge. The algorithm generates solutions through genetic operators, and
multiple suitable solutions can be obtained. However, genetic algorithm may encounter
degeneracy issues, where multiple chromosomes represent the same solution, leading
to repeated occurrences of similar chromosome shapes. In such cases, the optimal
solution is not guaranteed.

Neural Networks: Artificial neural networks have been proved as highly effective tools
for condition monitoring and predicting remaining useful life due to their adaptability,
nonlinearity, and ability to approximate functions [67]. One of the primary advantages
of neural networks is their capability to outperform nearly every other machine learning
algorithm. These algorithms are used to analyze and model processes of damage

32



propagation and predict further failures based on collected data. The main tasks tackled
by neural networks include classification, prediction, and recognition [68].

As shown in Figure 24, artificial neural networks are inspired by the biological nervous
system's ability to learn and correct errors, aiming to replicate the brain's low-level
structure. Neural networks are composed of machine learning algorithms that mimic the
human brain, consisting of interconnected signals known as neurons. Both biological and
artificial neurons comprise the cell body, dendrite (input), synapse (connection), and
axon (output). The simplest model of an artificial neural network typically includes three
layers of neurons: the input layer connected to a middle (hidden) layer, which is further
connected to the final (output) layer.

Cell Body

Dendrite

Synapse

Axon

Figure 24. Neuron structure.

To achieve artificial intelligence, a system with a similar architecture needs to be
constructed. The architecture of artificial neural networks is presented in Figure 15.
Solving problems using neural networks necessitates collecting training data, which
comprises observations with defined input and output variables. Neurons transmit
signals from the input layer to the output, receiving data from the external environment
(e.g., measuring systems, sensors), processing it, and transmitting signals through
synapses to the hidden layer. The hidden layer processes these signals and forwards
them to the output layer. Neurons act as computing units, receiving information,
performing simple calculations, and transferring them further.

Hidden layer

Input layer Output layer

Figure 25. Architecture of artificial neural network.
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Fast learning is one of the main advantages of neural networks over traditional
algorithms. Training involves determining the coefficients of connections between
neurons. Through training, neural networks can identify complex dependencies between
input and output data and generalize it. Successful training enables the network to return
correct results based on data absent in the training sample or incomplete or partially
distorted data. When a neural network comprises more than three layers, a phenomenon
known as deep learning or deep neural network arises. Deep learning, a subset of
machine learning techniques within neural networks, analyzes large-scale machinery
data, yielding more precise results. Overall, neural networks are considered a versatile
tool for solving a wide range of problems.

However, each method has its limitations. Firstly, achieving precise results and making
accurate predictions heavily depends on the quantity and quality of data —the challenge
lies in striking a balance between underfitting and overfitting. Another common
limitation for neural networks is the black box phenomenon. As previously mentioned,
deep learning effectively learns the hidden layers of the architecture, mapping inputs to
outputs. However, this process of approximating the function renders it difficult to gain
insights into the structure and understand the cause of errors.

3.2.2 Fuzzy Logic

Fuzzy logic is another algorithm that finds successful application in various control
systems of energy systems, closely resembling human perception processes and
cognition [69]. Both fuzzy logic and machine learning are sub-fields of artificial
intelligence. The primary distinction between fuzzy logic and traditional logic lies in their
representations: traditional logic is limited to true or false values (1 or 0), while fuzzy
logic can accommodate values ranging between 1 and 0 (including true, false, partially
true, etc.). The primary configuration of the fuzzy logic block is depicted in Figure 25.

IF...THEN...
I 3
Rule
base
Input Output
— Fuzzification [—> > Defuzzification —*
T Inference
engine
Linguistic variable A

Some type of
fuzzy implication

Figure 26. The structure of the fuzzy logic block. (previously published in article VIII)

It consists of fuzzification, where linguistic variables undergo transformation into fuzzy
sets using membership functions. Fuzzy linguistic variables are used to express qualities
across a specific spectrum. The rule base utilizes linguistic sentences to perform logic
operations within the fuzzy block. The inference engine executes fuzzy implications to
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arrive at solutions. Defuzzification then converts variables from fuzzy sets into tangible,
real values. The central component of the fuzzy logic block consists of fuzzy rules or
sentences, constructed in the form of IF-THEN rules:

IFxis A, THEN yis B (6)

Fuzzy logic offers distinct advantages in decision-making. Firstly, fuzzy logic employs
rule-based sentences, making them readable and accessible for process operators. These
rules can be constructed using everyday vocabulary, enabling operators to apply their
practical experience directly. Its interface with natural language sets it apart from other
methods, enhancing accessibility and user-friendliness. Furthermore, fuzzy logic allows
decision-makers to incorporate multiple inputs, leveraging the advantage of including
expert knowledge in the decision-making process. Operating as a nonlinear system,
the fuzzy logic block can handle multiple inputs and outputs, providing recommended
actions even in case of conflicts. However, there are several disadvantages. Fuzzy logic
decisions involve more tuning parameters than classical approaches, potentially increasing
complexity. Tracing data flow during execution can be challenging, complicating error
correction. Fuzzy logic lacks a straightforward equation and mathematical apparatus due
to its structure, making system analysis challenging and system stability assurance
complex.

3.3 Summary

Besides, this chapter highlights the critical role of proper maintenance for electrical
machines and drive systems due to their extensive usage across industries. It delves into
the importance of selecting appropriate diagnostic method. The text provides a
comprehensive overview of advanced diagnostic methodologies for ensuring the
reliability and optimal performance of electrical machines. Table 2 provides a concise
overview of the benefits and drawbacks of each diagnostic technique discussed above.

Table 2. Benefits and drawbacks of intelligent diagnostic techniques.

Diagnostic technique

Advantages

Disadvantages

Decision Trees

Small computational power,
simple structure, data pre-
processing is not needed,
easy interpretation

Prone to overfitting, not
suitable for regression tasks

Support Vector
Machines

High dimensionality,
operated with non-linear
processes, small
computational power, no
needed in data specification

No ability to filter
unnecessary information,
complicated managing of

kernel machine, overlapping
risk

Principal Component
Analysis

No overlapping, good
visualization

Possible loss of information,
reduced accuracy

Genetic Algorithm

Adaptive algorithm, rapid
processing, multiple
solutions

Can suffer from degeneracy,
overlapping risk, may require
significant computation
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Artificial Neural
Networks

Versatile, learns complex
dependencies, fast learning

Need of qualitative data,
black box phenomenon,
overtraining risk

Fuzzy Logic

Flexible algorithm, no
needed in specific hardware,
easily reprogramming

Requires tuning parameters,
inaccurate data lead to poor
results

This chapter discussed various monitoring techniques for ensuring the reliability of
electrical machines. Employing advanced sensing technologies and data analysis
techniques enables proactive maintenance, reducing the risk of unexpected breakdowns
and enhancing the efficiency of electrical machines. To ensure effective training of the
intelligent algorithm, it is crucial to thoroughly investigate the nature of machine faults,
their causes, and their impacts on global parameters. The primary challenge lies in the
quantity and quality of training data.
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4 Data Acquisition and Pre-Analysis

To gather qualitative and accurate data, an experimental test bench was constructed,
as presented in Figure 27. As shown, the setup comprises a testing machine, loading
machine, acquisition system (Dewetron). The tests were conducted at the rated speed.
The parameters of the testing motor are presented in Table 3.

Figure 27. Experimental test bench. (previously published in article VII)

Table 3. Parameters of testing and loading motor.

Parameter Value

Voltage, V Y 690 D 400 D 460
Frequency, Hz 50 50 60
Speed, r/min 1460 1460 1760
Power, kW 7.5 7.5 7.5
Current, A 8.8 15.3 12.9
Power factor 0.79 0.79 0.81

To ensure the accuracy of fault patterns for training purposes, various operational
conditions of the rotating machine were considered. Signals were extracted from
parameters such as current, voltage, torque, speed, and vibration to analyze the impact
of faults. Testing was conducted under different motor loads, ranging from 0% to 100%.
Additionally, data collection took place in diverse control environments, including
grid-fed, scalar control, and direct torque control systems.

In the industrial sector, electrical machines are expected to exhibit high efficiency,
manageable control, and cost-effectiveness. Consequently, three-phase induction
motors are the predominant choice [70]. There are primarily two algorithms for
controlling induction machines: scalar-based and vector-based. Scalar control adjusts the
motor's speed by varying stator voltages and frequency while maintaining a constant air
gap flux [71]. However, this method is most suitable for applications with static dynamics
and uniform loads. An alternative to conventional pulse width modulation (PWM) motors
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is direct torque control (DTC) [72]. DTC enables direct regulation of motor parameters
such as torque and flux, eliminating the need for additional hardware like modulators.
This technique is widely adopted in manufacturing due to its ability to meet industrial
requirements effectively.

For early fault detection, it is reasonable to consider small frequency components in
the spectrum. This can be achieved by taking Fourier transforms of the incoming signal.
For the ideal Fast Fourier Transform (FFT) with an infinite signal, the following equation
holds:

oo . N . f
(=Y Ce™= T Ce™ o =21 5 (7)
Co= 5o J0 fO0) e ™ dx, n = 0,21, 42, .. (8)

where f(x) is the signal under investigation, Cn is the complex Fourier, and fs is the
sampling frequency (100 kHz). Evaluating the entire signal is not necessary, as it cannot
save training time and simplify the training process. Instead, algorithm training will focus
on areas where the fault's impact is most significant.

4.1 Broken rotor bars

The current spectrum is essential in this analysis since damaged rotor bars initially affect
the current. Faults cause ripples in speed and torque on the frequency spectrum. Due to
the dispersed layout of the rotor and stator windings, the frequency spectrum of the
stator and rotor current contains several harmonics even under optimal supply and in
healthy motor cases. The stator current undergoes modification at specific frequencies
when a fault occurs. For this reason, emphasis was placed on analyzing the current
spectrum in detecting rotor faults. In this study, various conditions of rotor bars in
induction machines were examined, including both healthy and faulty states, with faults
ranging from one to three broken rotor bars. For current measurements, Fluke current
clamps were used. The rotor with three broken rotor bars is shown in Figure 28.

Figure 28. Rotor with three broken bars. [74]
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The harmonics of a broken rotor bar can be quantitatively represented using the
following equations in the frequency spectrum:

fBR = fs t ZkaS (9)

k
fon = [(;) (1-5) % s] f, (10)

wherek =1, 2, 3, ..., fsis the supply frequency, p is the number of pole pairs, and s is the
slip of the machine [73].

In Figure 29, the spectra of healthy and faulty rotor bars are presented, where 0BRB
means heathy rotor, 1BRB — one broken rotor bar, 2BRB — two broken rotor bars, and
3BRB — three broken rotor bars. The fault notably influences the range of 0 to 1000 Hz
most prominently. At the same time, the most significant range, particularly for
algorithm training, lies within 0 to 500 Hz. For the training, the most significant values
are 50 Hz, 250 Hz, and 350 Hz.

—0BRB 1BRB —2BRB —3BRB
T T

0 =100 200 300 400 500 600 700 800 900 1000
Frequency, Hz

Figure 29. Frequency current spectra of healthy and faulty rotor bars.

From the spectra, it is evident that the fault development has a considerable impact
on side harmonics. As the level of damage escalates, there is a corresponding rise in the
amplitude of the side harmonics. Consequently, the spectrum of a rotor with three
broken bars exhibits the highest side harmonics at the fundamental frequency. The
performance of current signals at the frequency of 50 Hz is presented in Table 4.

Table 4. Current signals at frequency 50 Hz in different fault states.

State Axis Value
Frequency (H 50
OBRB au y (H2)
Amplitude (p.u.) 1.513
Fre H 49.99
1BRB qu,ency( 2
Amplitude (p.u.) 1.496
2BRB Frequency (Hz) 49.99
Amplitude (p.u.) 1.297
3BRB Frequency (Hz) 49.99
Amplitude (p.u.) 1.425
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To ensure effective training, it is important to consider various conditions [75].
Comparison of spectra shows that grid-fed and scalar modes exhibit similar behavior,
as presented in Figure 30. The primary distinction becomes evident in the behavior of
side frequencies. However, the main observation centers on the frequency spectrum in
the case of DTC, where a significant shifting in frequency components becomes apparent.
Specifically, when a fault arises during operation under DTC, a discernible shift in the
fundamental component within the frequency domain is evident. This phenomenon
remains absent in both grid and scalar control modes.

B ——Grid fed — Scalar — DTC

L bl ‘ b I L 7
msM WWMWWWWWWMWWWWM

0 ;—‘ 100 200 500 900 1000
Frequency, Hz

Amplitude, p.u.

Figure 30. Frequency current spectra of rotor with three broken bars in different control modes.

The reason behind this phenomenon is that the net generated torque diminishes as
the number of broken bars increases. In contrast, within the DTC environment,
the controller endeavors to sustain a constant torque output by reducing the speed.
This reduction in speed is achieved by decreasing the frequency of the fundamental
component. In the case of different control modes, the performance of current signals
at the frequency of 50 Hz is presented in Table 5.

Table 5. Current signals at frequency 50 Hz in different control modes.

Control Axis Value
Grid Fed Frequ-ency (Hz) 49.99

Amplitude (p.u.) 1.425

Frequency (Hz) 50
Scalar control -

Amplitude (p.u.) 1.8

F H 51.12
DTC requ'ency( z)

Amplitude (p.u.) 1.71

For algorithm training, it is crucial to incorporate all operational conditions. This study
specifically addresses the impact of loads, which is essential for comprehensive analysis
[76].
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Figure 31. Frequency current spectra of rotor with three broken bars under different loads.

Load variations sometimes result in frequency shifts. Moreover, higher loads cause a
greater influence on side harmonics. Like previous instances, the fault demonstrates its
greatest impact within the frequency range of 0 to 500 Hz. All these aspects will be
considered during algorithm training. In the case of different loads, the performance of
current signals at the frequency of 50 Hz is presented in Table 6.

Table 6. Current signals at frequency 50 Hz under different loads.

Load Axis Value
0% Frequency (Hz) 50.02
Amplitude (p.u.) 0.77
25% Frequency (Hz) 50.03
Amplitude (p.u.) 0.7992
0% Frequency (Hz) 50.02
Amplitude (p.u.) 1.068
759 Frequency (Hz) 50.03
Amplitude (p.u.) 1.219
Frequency (Hz) 49.99
100% Amplitude (p.u.) 1.425

4.2 Bearing faults

This study investigated various mechanical damages of bearings, including damage to the
inner or outer raceway, as well as faults in the cage. Additionally, the study examined
damages caused by bearing currents. The vibration spectrum plays a pivotal role in the
analysis of damaged bearings. For the experiments, vibration measurements were
conducted using a triaxial accelerometer with a range of +/-100 g, positioned over the
shaft. Bearing damages can be mathematically described using the following equations,
which pertain to the natural frequencies of faulty bearings. Fault frequencies can be
defined for the outer ring (11), inner ring (12), rolling elements (13), and cage (14).

41



P (1 Ds ) 11
°’_2n -DccosB (11)

fir = %n(1+ I;—'ZcOSB) (12)
fp = 2Dch n <1 - (g—icos B)Z) (13)

where Nb — number of rolling elements, Db — diameter of rolling element (mm),
Dc — bearing pitch diameter (mm), B — contact angle (degrees), n — mechanical rotor
speed (Hz) [77].

4.2.1 Mechanical damages

As shown in Figure 32, the study focused on the most common mechanical bearing faults,
including faulty inner ring, faulty outer ring, and damaged cage. In this case, both healthy
and faulty bearings were installed and tested in the test motor.

a) b) c)

Figure 32. Mechanical bearing faults: a) fault in the outer ring, b) fault in the inner ring, and
¢) damaged cage. (previously published in article VIII)

Figure 33 presents a comparison of various mechanical faults on the vibration
spectrum, indicative of potential bearing issues. Noticeably, certain regions exhibit the
most significant impact of faults. It is reasonable to investigate how these damages affect
side harmonics. By comparing the fault patterns extracted from each signal with those
of a healthy signal, it becomes feasible to discern specific fault signatures.
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Figure 33. Frequency vibration spectra of damaged bearings.

These patterns will then be utilized for system training. The performance of signals at
the frequency of 100 Hz in the case of damaged bearings is presented in Table 7.

Table 7. Vibration signals at frequency of 100 Hz in different fault states.

State Axis Value
Frequency (Hz) 100
Inner raceway -
Amplitude (p.u.) 6.436e-05
Frequency (Hz) 100
Outer raceway -
Amplitude (p.u.) 5.795e-05
Frequency (Hz) 100
Damaged cage -
Amplitude (p.u.) 6.922e-05

——grid fed ——scalar —dtc
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Amplitude, p.u.
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Figure 34. Frequency vibration spectra of bearing with fault in inner raceway in different control
environments.
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As shown in Figure 34, various control environments of the motor were compared,
highlighting their influence on the vibration spectrum. It is crucial to take this into
account during system training, as evident from the distinct behaviors observed in the
signals. Particularly noteworthy is the substantial impact of DTC on side harmonics, as
indicated by the graph. The comparison of spectra for different control environments in
the case of a bearing fault in the inner raceways is presented in Table 8.

Table 8. Vibration signals at frequency of 100 Hz in different control environments.

Control Axis Value
F H 100
Grid Fed requ'ency( 2)
Amplitude (p.u.) 6.436e-05
Frequency (Hz) 100
Scalar control -
Amplitude (p.u.) 3.229e-05
Frequency (H 99.95
bTC qu y (Hz)
Amplitude (p.u.) 1.559e-05

Furthermore, the impact of the load on machine performance was investigated. Tests
were conducted across various load levels ranging from 0% to 100%. As illustrated in
Figure 35, slight frequency shifts were observed depending on the load level.

0% —25% 50% —75% —100%

Amplitude, p.u.

| [ | [
i} ! I I I I I ﬁ
100 200 300 400 500 600 700 800 900 1000
Frequency, Hz

10""0
Figure 35. Frequency vibration spectra of bearing with fault in inner raceway under different loads.

Additionally, notable differences inside harmonics were evident under different load
conditions. This disparity will also be taken into consideration for the implementation of
predictive maintenance strategies. In the case of different loads, the performance of
vibration signals at the frequency of 100 Hz is presented in Table 9.
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Table 9. Vibration signals at frequency of 100 Hz under different loads.

Load Axis Value

0% Frequency (Hz) 100
Amplitude (p.u.) 5.402e-05

25% Frequency (Hz) 100
Amplitude (p.u.) 5.004e-05

50% Frequency (Hz) 100
Amplitude (p.u.) 5.307e-05

5% Frequency (Hz) 99.96
Amplitude (p.u.) 6.442e-05

100% Frequency (Hz) 100
Amplitude (p.u.) 6.436e-05

4.2.2 Bearing currents

Currently, the most economical and straightforward approach to ensuring the optimal
performance of electrical machines involves employing frequency converter control. This
method has been widely embraced worldwide, leading to increased adoption of power
electronics. However, such solutions often result in shaft currents induced by the
frequency converter, presenting a growing challenge in modern industry. Despite the
longstanding recognition of bearing currents in electrical machines, which spans almost
a century, it remains a significant area of research [78]. Failures arising from bearing
currents cause substantial mechanical damage to electrical machines. In modern drive
systems, the utilization of converters contributes to a phenomenon where current flows
through the circuit comprising the bearings, the frame, and the machine shaft [79]. While
mitigation solutions are increasingly being implemented to address bearing currents,
it is important to acknowledge that they may inadvertently lead to reliability issues and
require additional maintenance [80].

Typically, damages caused by electrical currents only become apparent in later stages,
after the bearing surface has already been compromised. Faults resulting from these
currents tend to emerge in areas with the thinnest lubrication layer, which experience
heightened stress. Usually, as presented in Figure 36, these damages are classified into
three categories: fluting, frosting, and pitting.

a) b) c)

Figure 36. Common faults caused by bearing currents: a) fluting, b) frosting, c) pitting. (previously
published in article IX)
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One common manifestation is “fluting,” shown in Figure 36a, where multiple lines
form across the bearing raceways. Fluting is often associated with constant rotational
speeds and low voltage. Another type of fault, known as “frosting,” occurs when a motor
operates at variable speeds, as illustrated in Figure 36b. In situations where the motor
operates at low speeds with high-voltage power, “pitting” can arise in the bearing,
as seen in Figure 36c¢. Pitting is commonly observed in DC motors, such as those used in
railways, and manifests as craters on the bearing surface. Changes in the lubricant's
condition can also indicate motor issues, with darkening occurring due to bearing
currents. Sparking can lead to lubricant oxidation and darkening due to electrical
discharges, as observed during the experiments shown in Figure 37.

Figure 37. Lubricant darkening due to discharges.

An experimental test bench for fault implementation was meticulously constructed to
facilitate this investigation. Faults were induced in healthy bearings to obtain faulty
bearings for experimentation, as shown in Figure 38.

Figure 38. Experimental test bench for implementation of bearing current faults: 1) non-drive end
bearing, 2) drive end bearing, 3) belt, 4) servo drive, 5) power supply. (previously published in article Vi)

A diverse range of failures caused by bearing currents were successfully replicated
through experimentation. Each fault type including fluting, frosting, and pitting was
intentionally induced under controlled conditions. Table 10 provides an analysis of all
studied cases involving shaft current faults.
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Table 10 Faults implemented under different current levels and rotational speeds.

Conditions | Results
Drive end bearing
Speed, r/min Current, A Inner ring Outer ring Balls
100 10 Darkened race | Darkened race No changes
100 20 Slight fluting Darkened race Darkened balls
500 10 Fluting Darkened race Darkened balls
800 10 Fluting Dgrkened. race / Darkened balls
slight fluting
. I . . Darkened
800 20 Fluting/pitting | Slight fluting balls/pitting
Non-drive end bearing
Speed, r/min Currents, A | Innerring Outer ring Balls
100 10 Darkened race | Darkened race Slightly
darkened balls
Slightly
100 20 Darkened race Darkened balls
darkened race
500 10 Darkened race Dfa\rkened' race / Darkened balls
slight fluting
800 10 Slightly D.arkened_ race / Darkened balls
darkened race | slight fluting
. . Darkened
800 20 Frosting Frosting balls/frosting

As an example, the case of fluting is studied, which is presented in Figure 39.

Figure 39. Bearing with fluting used in experiments. (previously published in article VI)

The vibration spectra of healthy and faulty bearings with fluting shown in Figure 40.
Remarkably, the amplitude of the faulty bearing significantly exceeds that of the healthy
one. This difference arises because the damaged bearing encounters difficulties in
rotation due to surface damage.
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Figure 40. Frequency spectra of healthy bearing and bearing with fluting.

The fault exerts its most notable influence on the spectrum within the 0-500 Hz range,
affecting even harmonics, particularly at 100 and 300 Hz. In the 500-1000 Hz range, there
are no prominent harmonics except for the 700 Hz frequency, which warrants examination
for potential patterns during training. Frequencies beyond 1000 Hz do not significantly
impact the analysis. The spectra comparison of healthy bearing and bearing with fluting
is presented in Table 11.

Table 11. Vibration signals at frequency of 100 Hz in case of healthy bearing and bearing with fluting.

State Axis Value
Health Frequency (Hz) 100
ea
y Amplitude (p.u.) 0.0001902
Fluti Frequency (Hz) 100
utin
8 Amplitude (p.u.) 0.0005269

4.3 Summary

To mitigate severe consequences and economic losses in production, it is advisable to
implement strategies related to predictive maintenance. The provided information
outlines a comprehensive experimental study on detecting various faults in electrical
machines, focusing on both rotor bars and bearings. Acquiring the necessary training
datasets poses a significant challenge in implementing. Accurate forecasting requires
gathering a large quantity of high-quality datasets. Therefore, various faults were
intentionally induced in laboratory settings to facilitate this process. The study provides
valuable insights into fault detection methodologies for electrical machines, highlighting
the importance of considering operational conditions, control modes, and load variations
for effective training of intelligent algorithms aimed at predictive maintenance. Fault
patterns extracted from experimental data are utilized for system training purposes.
However, when it comes to analysing vibration spectra, visually discerning differences in
amplitudes can be challenging. To address this issue, artificial intelligence techniques
were employed to accurately identify and define these variations.
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5 Fault Classification and Prediction

Implementing trained models is a pivotal aspect of predictive maintenance and condition
monitoring. The accuracy of these models is primarily contingent upon the quality and
diversity of the training data employed. Therefore, it is imperative to utilize high-quality
data samples encompassing various scenarios and an optimal number of features to
achieve enhanced results.

The focus of this chapter is on predictive approaches, specifically targeting bearing
faults. Three distinct methodologies are presented. This study evaluates three approaches
to examine the accuracy of machine learning models and explore the potential
improvement by incorporating fuzzy logic alongside machine learning. The initial phase,
which involves the acquisition and pre-processing of the collected data to prepare it for
training, is described in Chapter 4. Data acquired via the acquisition system is initially in
the time domain, necessitating conversion into the frequency domain using the Fast
Fourier Transform (FFT).
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Figure 41. Selected frequency components for healthy and faulty bearings: a) healthy bearing,
b) bearing with the damaged outer raceway, c) bearing with the damaged inner raceway,
d) bearing with a damaged cage.

This approach prioritizes analyzing the vibration signatures of electrical machines and
the impact of faults on them. Given the broad spectrum of frequency components,
the primary objective is to pinpoint the most prominent ones and eliminate insignificant
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ones. By doing this, the resulting frequency components are reduced, facilitating the
identification of distinct features. In this instance, the frequency range was capped at
500 Hz, as beyond this threshold, the amplitudes of frequency components become
negligible and do not significantly contribute to the analysis.

Following this, the data undergoes further processing to evaluate the amplitude of
these frequency components under both healthy and faulty conditions. This step is
carried out across multiple samples collected from different induction machines to verify
that the identified components are universally applicable to this specific fault. To ensure
consistent results, all amplitudes are normalized to range between 0 and 1. Figure 41
illustrates an example of a frequency spectrum displaying both healthy and faulty
scenarios, presenting frequency components alongside their corresponding amplitudes.

After analyzing numerous samples, the variations in the amplitude of frequency
components for both healthy and faulty conditions are characterized. By conducting a
thorough analysis, the range of amplitudes for the significant frequency components that
indicate fault occurrence is established, as presented in Table 12.

Table 12. Frequency amplitude range for fault occurrence.

> Amplitudes

= —_

aé_ g Healthy Signal Inner Outer Damaged Cage
(0]

= Min Max Min Max Min Max Min Max
36.01 | 1.77e-07 | 8.66e-06 | 1.27e-07 | 6.31e-06 | 569e-06 | 1.27e-07 6'52& 5'238’
4211 | 45108 | 9.65e-06 | 2.85e-06 | 8.12e-05 | 1.34e-07 | 7.59e-06 1‘3?‘ > ‘ége‘
90.94 | 1.72e-07 | 7.68e-06 | 1.94e-07 | 7.36e-06 | 6.43e-08 | 1.94e-07 1'2(7)8’ 7';28’
151.97 | 1.34e-07 | 9.37e-06 | 8.19e-09 | 6.13e-06 | 1.63e-07 | 5.01e-06 1‘239‘ > ‘829‘
21301 | 7.84e-08 | 523e-06 | 6.71e-08 | 4.85e-06 | 4.82e-08 | 5.39e-06 1'3?‘?’ S'SZe’
30456 | 5.85e-08 | 146e-05 | 1.47e-07 | 1.04e-05 | 8.54e-08 | 5.71e-06 4‘(2);8‘ 1‘8;&
426.63 | 7.48¢-08 | 4.27e-06 | 6.28¢-08 | 4.23e-06 | 5.02e-08 | 3.45e-06 8'338’ 4'32&

After pinpointing the ranges for specific components, it is possible to create various
potential combinations of these transition layers. The transition layer represents the
condition of the electrical machine as it moves from a healthy state to a faulty one.
Figure 42 provides a visual representation of the distinctions between each stage. Every
conceivable combination of frequency component values within the identified range for
each fault is considered during the training of the machine learning model.
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Figure 42. lllustrative diagram of states.

To define the transition state, three scenarios are considered. In the first scenario, the
healthy and faulty cases share the same frequency component but differ in amplitudes.
Here, the transition region is defined between the maximum healthy and minimum faulty
amplitudes, with 10% added to each side. In the second scenario, the amplitudes of
healthy and faulty cases overlap. In this scenario, the transition region is defined
between the minimum faulty and maximum healthy amplitudes, again with 10% added
to each side. In the third scenario, the healthy frequency component is absent in the
faulty case. Therefore, the transition state is considered between the minimum and
maximum amplitudes, with 10% added in each direction. Additionally, 10% above zero
indicates a healthy component in case this component is present in other samples.

10% 10% 10%

MIN FAULTY MAX HEALTHY MAX FAULTY

MAX HEALTHY MIN FAULTY MIN FAULTY

10%

31V1S NOILISNVYL
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a) b) c)

Figure 43. Three scenarios of transition state: a) healthy and faulty components have different
amplitudes, b) healthy and faulty frequency components overlap, c) healthy component is not
presented in the faulty case.

Once the frequency components and their amplitude ranges for both healthy and
faulty cases are identified, the trend of amplitude change is documented. This
documentation aids in generating data and forming combinations necessary for training
machine learning models for fault prediction.
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5.1 Machine Learning Trained Model

The first method describes the training of the purely machine learning model. Artificial
neural networks stand out as the prevailing models for fault detection classification.
Typically, these models are trained using high processing power systems or cloud
systems to minimize training time. The general overview of the proposed method is
presented in Figure 44.

DATA ACQUISITION SIGNAL PROCESSING

ELECTRICAL
MACHINE

NOISE REMOVAL

VIBRATION SIGNAL PRE-
SIGNAL PROCESSING FAULT DETECTION

SELECTION OF MACHINE
FREQUENCY FAULT DETECTION LEARNING
COMPONENT TRAINING

ACQUISITION
SYSTEM

VALIDATION OF
SELECTED
COMPONENTS

COMBINATION OF SAMPLES FOR TRAINING
(DATA GENERATION)

Figure 44. Overview of the proposed method with trained machine learning model.

Following the preparation of the data samples, they are classified into seven distinct
states, encompassing healthy conditions, various faults, and the likelihood of these faults
occurring. The fault classification is detailed in Table 13. Once the data is appropriately
classified and labeled, it is primed for the training of machine learning models to predict
faults.

Table 13. Assigned classification.

State of Data Assigned Label
Healthy State 0
Chance for Inner Bearing Fault to occur
Chance for Outer Bearing Fault to occur
Chance for Damaged Cage Fault to occur
Inner Bearing Faulty State

Outer Bearing Faulty State

Damage Cage Fault State

O IWIN|F

Table 14 displays the various numbers of layers and neurons considered for the neural
network models.
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Table 14. Neural network models.

Machine Learning Model

Number of Neurons

Number of Layers

Trilayered Neural Network

Narrow Neural Network 32 1
Medium Neural Network 64,128 2
Wide Neural Network 128,128 2
Bilayered Neural Network 256, 128 2

128, 256, 128 3

Figure 45 illustrates a selection of accuracy validation results for the trained models.
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c)
Model 1.4 (Bilayered Neural Network)
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Figure 45. Machine learning results: a) Narrow Neural Network, b) Medium Neural Network,
c) Bilayered Neural Network.

The figure above demonstrates that the accuracy of detection varies depending on
the combination of states. A higher number of states typically results in a more complex
model, where the accuracy for later stages may decrease. The results for predictions in
case of vibration signals for different bearings states are shown in Table 15.

Table 15. Comparison results for vibration spectra.

Machine Learning Algorithm Accuracy (Validation)
Narrow Neural Network 93.90%
Medium Neural Network 96.10%
Wide Neural Network 96.30%
Bilayered Neural Network 92.80%
Trilayered Neural Network 90.20%

The table above illustrates that among the combinations involving three faults,
the Wide Neural Network model exhibits the highest accuracy. However, other neural
network trained models also demonstrate close accuracies. Conversely, for scenarios
involving two faults or a single fault, the accuracy surpasses that of the Wide Neural
Network model. This trend suggests that as the complexity of the model increases,
its accuracy tends to decrease. Besides, there exists a risk of over-training the model,
underscoring the importance of determining the optimal number of samples required
and fine-tuning the machine learning algorithm for optimal performance.
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5.2 Machine Learning Trained Model with Fuzzy Control System

For this approach, the same configuration for different neural network models,
as outlined in Table 14, is utilized. Each model is trained separately for every case, and
the one exhibiting the best average accuracy is chosen for integration with fuzzy logic.
While it’s possible to employ different trained models for fuzzy logic combination, this
study opts for using the same neural network trained model. The neural network models
are trained for various combinations to encompass all potential scenarios of error
detection. The fuzzy logic system functions as a control system, determining appropriate
actions based on results and delivering a final decision for incoming signals. Figure 46
provides a general overview of this methodology.

Inner raceway fault +
outer raceway fault

|
|
|
- |
: I | fault l
I nner raceway fault + |
Dut:rmev:avfaulﬁ | el outer raceway fault + [l
amaged cage | | damaged cage |
| |
- |
|
|
|

|

I L

I Damaged cage + inner

Damaged cage } raceway fault
| AP _————d e 4
r————— e L
[ { : l ]
| . 3 i Yes |
i Mixed fault? — Mixed fault? |
|

: No l No l |
| |
| Fault identified Fault identified :
U

Figure 46. Overview of proposed method with trained machine learning model and fuzzy control
system.

Table 16 presents different combinations of neural network cases considered for
training and integration within the fuzzy logic control system.

Table 16. Neural network and fuzzy logic combination cases.

Combination Type Combination

Case 1 Inner Raceway Fault

Case 2 Outer Raceway Fault
Case 3 Damage Cage Fault

Case 4 Inner and Outer raceway Fault
Case 5 Outer and Damaged Cage Fault
Case 6 Inner and Damaged Cage Fault
Case 7 All three faults

The results for the trained neural network model across different cases are depicted
in Figure 47.
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c)

Model 1.2 (Medium Neural Network)
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Figure 47. Machine learning results for different cases: a) Inner-Outer Combination, b) Inner-
Damage Combination, c) Outer-Damage Combination.

Table 17 displays the accuracy results of various neural network trained models for
each case, along with their average accuracy, providing a comprehensive understanding
of the outcomes.

Table 17. Neural network trained models.

Machine Learning Model Accuracy
Medium Neural Network Case 1 99.80%
Wide Neural Network Case 2 99.40%
Bilayered Neural Network Case 3 99.90%
Bilayered Neural Network Case 4 97.90%
Medium Neural Network Case 5 98.50%
Narrow Neural Network Case 6 99.30%
Wide Neural Network Case 7 96.30%

Once the neural network trained model is selected, a straightforward fuzzy logic
statement is devised for the incoming signal, integrating these trained models. This aids
in determining the scenario with the best detected or predicted state, achieving higher
accuracy than before. It’s worth noting that during the training of each case, particular
attention was paid to ensure that the conditions of each case were distinct from one
another, minimizing overlap during separate detection attempts, albeit there may be
some occurrences of false positives. Table 18 summarizes the results from neural
network trained model accuracies compared to the outcomes from the combination of
fuzzy logic with neural networks.
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Table 18. Validation accuracy results for algorithms.

Algorithm Accuracy
Neural Network 96.30%
Fully Logic and Neural Network Combination 100.00%

As it can be seen from the above results, combining different sets of neural network
trained model can increase the overall accuracy of fault detection as compared to the
training a single machine learning model for multiple faults. Although the execution time
increases a little and it needs training of more models, the end schematics are more
accurate and sustainable for longer period. This can help omit even a slight possibility of
missing a fault that might result in being fatal for the system.

5.3 Neuro-Fuzzy Trained Models

In this approach, the methodology involves comparing a standard neural network
algorithm with a fuzzy neural network algorithm. Here, a fuzzy logic layer is incorporated
between the neural networks to refine the results and increase accuracy. Figure 48
provides a general outline of the training algorithm. The training and testing procedures
are conducted using Python.

INPUT HIDDEN LAYERS HIDDEN LAYERS OUTPUT

O

™ -— —
—

|, L
>=
N
S
L.

Figure 48. General overview of the approach with neuro-fuzzy trained model.

The training process for machine learning algorithms follows a similar structure, with
the primary difference being the incorporation of the fuzzy layer as one of the hidden
layers in the algorithm. In the initial study, the neural network training consists of 5
hidden layers, in addition to one input and one output layer. The number of neurons in
each layer of the neural network is detailed in Table 19 for each case, enabling a
comprehensive comparison. Moreover, fine-tuning the algorithms through adjustments
in the number of neurons did not result in noticeably different outcomes. An early stop
function is integrated to monitor for overtraining and ensure the achievement of the
most optimized outcome for the trained algorithm.
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Table 19. Number of neurons per layer for both neural network and fuzzy-neuro network training.

Number of Neurons
Layers Neural Network Fuzzy-Neuro Network
Hidden layer 1 128 128
Hidden layer 2 256 256
Hidden layer 3 512 512 (fuzzy layer)
Hidden layer 4 256 256
Hidden layer 5 64 64

Below is presented the pseudo code for the algorithm’s implementation, outlining
each step including the hidden layers. In the second case, a fuzzy layer is utilized instead
of the conventional neural network layer. This approach provides additional flexibility for
weight adjustment of the neural network hidden layers and introduces a control layer in
between to enhance results.

1. Prepare the training dataset by filtering out noise from the collected data samples.

2. Partition the dataset into training and testing subsets, allocating 70% for training
and 30% for testing.

Construct the neural network model utilizing TensorFlow’s Keras API.

4. The model will consist of five hidden layers, each with varying numbers of neurons
and employing a sigmoid activation function.

5. Introduce a hidden layer designated as a fuzzy layer in the case of the fuzzy-neuro
algorithm.

6. Configure the output layer to contain a single neuron with a linear activation
function.

7. Compile the model employing the Adam optimizer and mean squared error loss
function.

8. Train the model on the training dataset, utilizing a batch size of 5 to 50 and
conducting training for a maximum of 350 epochs.

9. Generate predictions on the testing dataset using the trained model.

10. Assess the predicted accuracy by comparing the predicted labels with the actual
ones.

11. Visualize the results utilizing matplotlib, presenting two lines representing the
actual and predicted values, respectively.

Once the model is trained, blind validation is performed using the test data samples
that were initially separated during training. The validation accuracy is computed for
both the trained neural and fuzzy neural networks. In this instance, Figure 49 displays
the validation outcomes for both models.

59




a) Neural Network Predictions b) Fuzzy Neural Network Predictions
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Figure 49. Validation results from a) machine learning algorithm, and b) neuro-fuzzy machine
learning algorithm.

The results for the test data samples are shown in Table 20.

Table 20. Validation accuracy results for algorithms.

Algorithm Accuracy
Neural Network 94.34%
Fuzzy-Neuro Network 99.40%

As shown in Table 20, the fuzzy-neuro network trained model outperforms the
traditional neural network model for the same set of data samples. While this instance
represents a relatively straightforward case, the 5% difference in accuracy suggests that
the fuzzy-neuro network is poised to deliver superior accuracy for more complex
combinations, encompassing various types of faults within the same trained model.
Introducing multiple fuzzy logic layers into the combination can further refine weight
adjustments, potentially leading to even better results.

5.4 Summary

The implementation of trained models is crucial for predictive maintenance and
condition monitoring, with accuracy heavily reliant on high-quality and diverse training
data. This study focuses on predictive approaches, particularly targeting bearing faults,
evaluating three methodologies to examine the accuracy of machine learning models,
and exploring the potential improvement by incorporating fuzzy logic alongside machine
learning. Artificial neural networks are prominent for fault detection classification, but
over-training risks underscore the necessity of optimal sample sizes and algorithm
fine-tuning. Following data preparation, including conversion to the frequency domain
and subsequent processing to identify significant frequency components, neural network
models are trained for various fault combinations. Combining different sets of trained
models can enhance fault detection accuracy compared to a single model. The inclusion
of fuzzy logic further refines weight adjustments, potentially reducing false positives.
This comprehensive approach minimizes the possibility of missing critical faults, ensuring
system safety.
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6 Conclusion and Future Work

This chapter concludes the results of the work. Besides, there are suggestions related to
future work.

6.1 Conclusion

In the modern industrial landscape, electrical machines and drive systems play a pivotal
role, powering various applications across industries and ensuring enhanced efficiency
and productivity. From small household appliances to large-scale industrial machinery,
electrical machines are indispensable elements of daily life. Their significance spans
across sectors like power distribution, transportation, manufacturing, and automation,
owing to their exceptional efficiency and reliability.

Despite their advantages, all electrical machines are prone to various faults, including
bearing faults, rotor faults, and stator faults, which can significantly impact their
performance and lifespan. Detecting and diagnosing these faults are crucial for ensuring
operational reliability and preventing costly downtime. To address these challenges,
the implementation of predictive maintenance strategies is crucial. Predictive
maintenance, enabled by condition monitoring, allows for the prevention of failures
based on the operational data of electrical machines. This proactive approach helps
reduce shutdown costs, minimize downtime, and optimize resource utilization.

The main objective of this work was to develop the methodology for detection and
prediction of the potential faults in electrical machines. First and foremost, the main
faults of electrical machines, categorizing induction motor failures into primary groups,
were discussed. A comprehensive overview of the main faults and their corresponding
signatures was provided. It is important to monitor multiple parameters such as
vibration, current, temperature, magnetic flux, and torque to enhance machine
reliability. When it comes to data analysis, the role and choice of diagnostics method can
be critical. An overview of advanced diagnostic methodologies and discussion of the
benefits and drawbacks of each diagnostic technique were presented. However, success
in implementing these approaches hinges on the careful curation of training data and a
deep understanding of the underlying factors contributing to machine faults.

In the practical part of the study, data collection and pre-analysis, which is crucial for
effective training of intelligent algorithms, was presented. A detailed description of an
experimental test bench setup is provided, including components such as the testing
machine, loading machine, and acquisition system. Various operational conditions and
control environments are considered to gather accurate data for training purposes. Data
acquisition was conducted under controlled conditions. Parameters including current,
voltage, torque, speed, and vibration were meticulously monitored to capture the impact
of faults on machine performance. Tests were conducted under different motor loads,
ranging from 0% to 100%, and in diverse control environments including grid-fed, scalar
control, and direct torque control systems.

Another crucial aspect of the experimental study was the investigation of bearing
current faults. These faults, including fluting, frosting, and pitting, were induced under
controlled conditions. Vibration spectra of healthy and faulty bearings were compared
to identify significant differences, providing valuable insights into bearing fault detection
methodologies.

The implementation of trained models is pivotal in predictive maintenance and
condition monitoring, where accuracy is intricately linked to the quality and diversity of
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the training data. This study presented predictive approaches, specifically targeting
bearing faults, and has evaluated different methodologies to assess the accuracy of
machine learning models. Additionally, it explores the potential enhancement achieved
by integrating fuzzy logic alongside machine learning.

As a result, artificial neural networks emerge as the predominant models for fault
detection classification, leveraging high processing power systems or cloud systems to
expedite training. However, the risk of over-training necessitates the consideration of
optimal sample sizes and algorithm fine-tuning. Combining different sets of trained
models proves to be advantageous, as it enhances fault detection accuracy compared to
relying on a single model. Including fuzzy logic further refines weight adjustments,
potentially mitigating false positives and increasing overall accuracy.

After thorough investigation and analysis, the findings of this research unequivocally
support the main hypothesis proposed at the outset. It has been demonstrated that
integrating fault representation, experimental data, and predictive models can make
significant advancements in fault detection and prediction. Thus, this study substantiates
the validity of the main hypothesis and contributes to the body of knowledge in
diagnostics of electrical machines.

6.2 Future Work

In future work, a detailed comparative study between different fault detection and
prediction models is essential to comprehensively understand each approach’s strengths
and weaknesses. By systematically analyzing various models, including machine learning
algorithms and traditional methods, we can identify the most suitable techniques for
specific applications, considering factors such as accuracy, computational efficiency, and
ease of implementation.

Furthermore, neuro-fuzzy logic algorithms for fault detection and prediction need to
be improved and validated. Enhancing the performance and reliability of these algorithms
through validation processes will contribute to their wider adoption in real-world
applications. Developing a web-based application for user-friendly use to train model
results would enhance accessibility and usability for practitioners and end-users.
Providing an intuitive interface for data input, model training, and result visualization can
streamline the process of implementing fault detection and prediction systems in
industrial settings.

Another important aspect of future work involves adding complex scenarios for fault
detection and prediction in industrial environments in real time. Industrial systems often
operate under dynamic and unpredictable conditions, necessitating the development of
robust algorithms capable of effectively handling various fault scenarios.
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Abstract

Intelligent Condition Monitoring Methods for Electrical
Machines and Drive Systems

Nowadays, electrical machines and drive systems are indispensable and used in
numerous applications across industries. From household appliances to industrial
machinery, these machines are vital for enhancing efficiency and productivity in sectors
like power distribution, transportation, manufacturing, and more. However, despite their
significance, electrical machines are prone to various faults, including bearing faults,
rotor faults, and stator faults, all of which can significantly impact their performance and
longevity. Detecting and diagnosing these faults are critical for ensuring operational
reliability and minimizing costly downtime. To address these challenges, implementing
predictive maintenance strategies is paramount.

This study aimed to develop a methodology for detecting and predicting potential
faults in electrical machines. Initially, the main faults of electrical machines were
discussed, categorizing induction motor failures into primary groups, and providing an
overview of their corresponding signatures. Monitoring multiple parameters such as
vibration, current, temperature, magnetic flux, and torque is crucial for enhancing
machine reliability. Various advanced diagnostic methodologies were reviewed,
considering their benefits and drawbacks.

In the practical part of the study, emphasis was placed on data collection and
pre-analysis as crucial steps for effectively training intelligent algorithms. A detailed
description of an experimental test bench setup, including the testing machine, loading
machine, and acquisition system, was provided. Data acquisition was conducted under
controlled conditions, considering various operational conditions and control
environments to gather accurate data for training purposes. Additionally, bearing current
faults, including fluting, frosting, and pitting, were induced under controlled conditions,
and vibration spectra of healthy and faulty bearings were compared to identify significant
differences.

The study also explored predictive approaches targeting bearing faults and evaluated
different methodologies to assess the accuracy of machine learning models. Artificial
neural networks emerged as predominant models for fault detection and classification,
leveraging high processing power systems or cloud systems to expedite training.
The inclusion of fuzzy logic further refined weight adjustments, potentially reducing false
positives, and increasing overall accuracy.

In future work, a detailed comparative study among fault detection and prediction
models is vital for a comprehensive understanding of their strengths and weaknesses.
Additionally, improving and validating neuro-fuzzy logic algorithms for fault detection
and prediction is crucial for wider adoption in real-world applications. Developing a user-
friendly web-based application to train model results would enhance accessibility and
usability for practitioners and end-users, streamlining the implementation process in
industrial settings. Furthermore, future efforts should focus on incorporating complex
scenarios for fault detection and prediction in real-time industrial environments.
Industrial systems often face unpredictable conditions, necessitating the development
of robust algorithms capable of handling various fault scenarios effectively.
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Lihikokkuvote

Elektrimasinate ja ajamisiisteemide intelligentsed
seisundiseire meetodid

Tanapdeval kasutatakse elektrimasinaid ja ajamisiisteeme paljudes tddstusharudes.
Kodumasinatest to6stusmasinateni on need masinad tliolulised tohususe ja tootlikkuse
suurendamiseks sellistes sektorites nagu elektrijaotus, transport, tootmine ja teised.
Vaatamata nende olulisusele on elektrimasinad aga altid mitmesugustele riketele,
sealhulgas laagri-, rootori- ja staatoririkketele, mis k&ik vdivad oluliselt méjutada nende
efektiivsust ja talitlust. Nende rikete tuvastamine ja diagnoosimine on tddkindluse
tagamiseks ja kulukate seisakuaegade minimeerimiseks Ulioluline. Nende probleemide
lahendamiseks on darmiselt oluline rakendada ennustavaid hooldusstrateegiaid.

Antud uurimisto6 eesmark oli vdlja to6tada metoodika elektrimasinate vGimalike
rikete tuvastamiseks ja prognoosimiseks. Kdigepealt kasitleti elektrimasinate peamisi
rikkeid, kategoriseerides aslinkroonmootori rikked pohiriihmadesse ja andes llevaate
nende vastavatest signatuuridest. Mitme parameetri, nagu vibratsioon, vool,
temperatuur, magnetvoog ja poordemoment, jalgimine on masina téodkindluse
suurendamiseks dlioluline. Vaadati labi erinevad tdiustatud diagnostikameetodid, vottes
arvesse nende eeliseid ja puudusi.

Uuringu praktilises osas pandi réhku andmete kogumisele ja eelanaliiisile kui
olulistele sammudele intelligentsete algoritmide tdhusaks treenimiseks. Esitati
eksperimentaalse katsestendi seadistuse iiksikasjalik kirjeldus, sealhulgas testimismasin,
laadimismasin ja kogumissiisteem. Andmete kogumine viidi [abi kontrollitud tingimustes,
vOttes arvesse erinevaid tootingimusi ja juhtimiskeskkondi, et koguda treenimise
jaoks tdpseid andmeid. Lisaks indutseeriti kontrollitud tingimustes laagrivoolu
rikked ning oluliste erinevuste tuvastamiseks vorreldi tervete ja vigaste laagrite
vibratsioonispektreid.

Uuringus uuriti ka ennustavaid |ahenemisviise, mis on suunatud laagrite riketele, ja
hinnati  erinevaid  metoodikaid  masinGppemudelite  tdpsuse  hindamiseks.
Tehisndrvivorgud tdusid esile vigade tuvastamise ja klassifitseerimise valdavate
mudelitena, kasutades suure t66tlusvdimsusega sisteeme voi pilvesiisteeme, et
kiirendada treenimist. Hagusloogika kaasamine taiustas veelgi kaalu kohandamist,
vahendades potentsiaalselt valepositiivseid tulemusi ja suurendades Uldist tapsust.

Tulevases t60s on rikete tuvastamise ja prognoosimise mudelite vordlev uuring
tlioluline, et mdista nende tugevaid ja norku kilgi. Lisaks on tGrgete tuvastamise ja
ennustamise narvi-hdgusloogika algoritmide tdiustamine ja valideerimine tahtis laiemaks
kasutuselevdtuks reaalmaailmas. Mudelite tulemuste koolitamiseks kasutajasdbraliku
veebipdhise rakenduse viljatodtamine parandaks praktikute ja I8ppkasutajate
juurdepdasetavust ja kasutatavust, lihtsustades rakendusprotsessi toostuslikes
tingimustes. Lisaks peab keskenduma keerukate stsenaariumide kaasamisele rikete
tuvastamiseks ja prognoosimiseks reaalajas toodstuskeskkondades. Toostussiisteemid
seisavad sageli silmitsi ootamatu tingimustega, mist6ttu on vaja valja tootada tugevad
algoritmid, mis suudavad tdhusalt toime tulla erinevate rikete stsenaariumitega.
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Abstract: Electrical machines are to face different challenging factors during operation, such as
high unexpected or excessive loads, unusual properties of the working environment, or intense
fluctuations in rotation speed. Therefore, maintenance questions and predicting the accuracy of
an equipment’s condition have great importance. This study is based on the theory of vibration
reliability. This article introduces the most common faults of bearings in electrical machines and
discusses their diagnostic possibilities. Experimental setup, as well as studied bearing failures,
are described. The accuracy of conducted experiments is introduced.

Keywords: ball bearings; fault diagnosis; vibration measurement; condition monitoring; failure
detection; reliability

1. Introduction

Condition monitoring and failure prediction of the equipment are crucial due to their
wide usage in different applications. Considering options for servicing critical technical
systems, creating the possibility of periodic measurements for all machines seems inevitable.
However, proper assembly and careful maintenance of the equipment makes it possible
to reduce the number of scheduled checks of the devices, including measurement of the
vibration level up to two or three times a year. It is also related to security issues and
resource savings. Therefore, the creation of an effective condition monitoring system would
ensure the reliability of technical resources and the quality of service.

If the vibration frequency is not constant, fractional derivatives are used. These deriva-
tives demonstrate effectively use of vibration acceleration changes and vibration intensity.
The derivative order can be any actual number. The intensity of the vibration accelera-
tion change is estimated by the frequency spectrum of the vibration power [1]. During
the processing of signals, which inform on the level and balance of vibration, accuracy
becomes critical, and, therefore, the ISO 16063 series of standards are used [2]. In case of
the absence of a tachometer (conditions for performing repeated multiple measurements
and with a rapidly changing speed of rotation of the drive shaft), the diagnostic method is
described in [3].

Many studies in literature are related to the described problems. Authors in [4] present
an analysis of feature extraction methods in vibration-based condition monitoring for
low-speed slew bearing. In [5], authors introduce a study of fault diagnosis of a low-speed
bearing based on acoustic emission signal and multi-class relevance vector machine. In [6],
an optimization method was applied to diagnose rolling bearing malfunctions, such as
an optimization-based improved kernel novel method based on machine learning. At the
same time, reducing the dimension of output values makes sense when assessing signs of
machine part malfunctions, although it is difficult to determine the main influencing factors.
Impressive findings on the diagnostic analysis of acceleration signals from rolling element
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bearings are presented in [7]. Analyzing the envelope makes it possible to strongly estimate
masking signals from gear elements in non-stationary conditions. Authors in [8] apply the
basic calculations of the uncertainty of measurement results during vibration transmission,
but do not estimate the standard uncertainty. Attention is paid to the assessment accuracy
of the rolling bearings state in [9]. One of the approaches of real-time monitoring mode is
proposed, but it is not proven that all the requirements for the accuracy of the assessment are
met. The application of numerical modeling for applied studies of the state of mechanical
systems is presented in [10]. Good results were obtained in the interference suppression
mode. An assessment of the accuracy of monitoring the technical condition of objects is
given in [11]. The industry has experimentally confirmed that vibration sensors increase the
accuracy of measurements. The article [12] presents an interesting algorithm for predicting
the state of machining tools during the processing of parts. The mathematical modeling
problems are solved in [13] by constructing multifactorial mathematical models for turbine
units. The article presents modern methods for wear monitoring of turning tools and the
possibility of using the phase chronometer diagnostic method to assess tool wear [14].
Authors in [15] discuss challenges and perspectives of data-driven fault diagnosis for
traction systems in high-speed trains.

The reliability of equipment that operates in heavy conditions is based mainly on the
analysis of spontaneous emissions of oscillatory processes and on the study of damage
accumulation. The initial distribution of defects, operating conditions, and the mechanical
system’s interaction with the environment leads to accidental failures. It is necessary to
describe the behavior of a mechanical system with a high degree of accuracy. A dynamic
model of a closed electric drive with a measuring system configured for a monitoring mode
is considered as a mechanical system. The measuring system must meet the Certificate
in Investment Performance Measurement of Mutual Recognition Arrangement (CIPM
MRA) conditions. Thus, the measurement system must be intelligent and time-bound. The
Sl-based data exchange system standard introduced metrology into digital format. All data
are collected and processed according to this unit system.

This article is organized as follows. In Section 2, the most common faults of bearings in
electrical machines are introduced and their diagnostic possibilities are discussed. Section 3
presents experiments done in the framework of the given study describing the test bench
and studied bearing failures. In Section 4, the results of the conducted experiments are
presented and their accuracy is discussed.

2. Bearing Faults

According to statistics, 50% of all failures in electrical machines are referred to as me-
chanical faults causing additional noise and vibrations and leading to the total breakdown
of the device [16]. Bearings are the critical elements of a rotating machine. At the same time,
bearing faults carry the highest portion of mechanical damages. The manufacturing of
bearings is to be carried out under stringently defined requirements. However, the actual
lifespan of the bearing is much lower than it is supposed to be due to different forces
affecting it during operation, such as unexpected overload, insufficient lubrication, and
improper bearing installation [17]. As electrical machines operate in other conditions,
bearings can be prone to many faults and damages. The reasons for these failures are
different environmental or manufacturing factors.

2.1. Mechanical Damages

Most bearing faults are related to mechanical damages, which can occur due to manu-
facturing failures or unexpected conditions during motor operation. Usually, these mechan-
ical damages are referred to as inner and outer rings, cages, or rolling elements. An example
of a faulty bearing cage is shown in Figure 1.
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Figure 1. Damaged cage in rolling bearing.

These mechanical damages can also be caused by an incorrect manufacturing or
mounting process, improper design, misalignment of bearing rings, or unequal proportions
of rolling elements. Before placing the bearing, it is mandatory to check for manufacturing
faults: general appearance, rotational ease, and clearances of technical documentation re-
quirements. Usually, open-type approaches are to be checked for contamination, corrosion,
and cage condition. For sealed-type bearings, cages should also be checked to prevent
possible damages.

2.2. Material Fatigue

Material fatigue is usually caused by continuous loads that crack the bearing’s surface.
If external forces are applied to the bearing rings, the strength of the material decreases,
causing it to crack. Over time, cracking progresses, and, eventually, the bearing becomes
unsuitable for further exploitation. The bearing’s durability is measured by the number
of revolutions that the bearing makes before the first signs of material fatigue become
noticeable on rings and rolling bodies [18]. An example of bearing material fatigue is
shown in Figure 2.

Figure 2. Material fatigue of a rolling bearing.

Continuous overload, poorly maintained, and contaminated surfaces—all these factors
inevitably lead to material fatigue. This phenomenon, its time occurrence, and developing
process largely depend on the magnitude of the machine’s applicable load and rotational
speed. Initially, microcracks appear in the subsurface. By process development, the surface
of the bearing begins to crack on a larger surface and becomes rough. In this case, addi-
tional noise and vibration can be detected. In addition, the operating temperature of the
bearing increases. The bearing should be regularly checked and well lubricated to prevent
this failure.
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2.3. Ambient Contamination

When humid air enters the bearing, it tears lubricant properties at certain points
of an increased load on rings. In addition, lubricants can become polluted by water or
other chemical substances. As lubricant properties are deteriorated, bearing corrosion
appears. Corrosion is a process between material and environment that results in material
dissolution. Proper lubrication is one of the bearing operating conditions that determines
its durability. Rightly selected lubricant provides a thin oil layer, which helps to soften the
impact of rolling elements against bearing rings and cages.

Moreover, the lubricant prevents the bearing from premature wear and corrosion.
Improper lubrication can be referred to as an insufficiently as well as excessively greased
bearing. Insufficient lubrication causes friction and crack progression, while an overly
greased bearing results in the shaft slipping and leads to structural damage. An example of
bearing corrosion is shown in Figure 3.

Figure 3. Corroded surface of a rolling bearing.

Bearings can also be polluted by dust, sand, and other abrasive particles. This pollution
leads to structural damages of the bearing (e.g., scratches, cracks) and produces significant
dents when the rolling element rolls the shaving into the rings. The main reason for these
damages is the wrongly selected bearing cage, preventing such particles from entering the
bearing. As a preventative factor, corrosion-resistant lubricants can be used. Moreover, it is
vital to keep the mounting process clean and not to use contaminated greases.

2.4. Bearing Currents

Bearings are often affected by shaft currents. If current passes through the bearing,
damages will appear on the bearing surfaces. Usually, these failures occur in bearing areas,
where the lubricant layer is the thinnest due to the increased load at these points. The most
common damages caused by shaft currents are shown in Figure 4. Fluting usually occurs
with low voltage and constant rotational speed, where multiple lines occur across bearing
rings. At the same time, frosting occurs if the motor operates at varying speeds. Pitting is
usually caused by low speed and supplied high-voltage sources. Practically, dull-finish can
also be observed, which resembles pitting, but the size of the craters are much smaller.

Figure 4. Faults caused by shaft currents: (a) fluting, (b) frosting, and (c) pitting.
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The first indicator of a possible problem related to shaft currents is lubricant darkening,
which oxidizes during sparking caused by electrical discharges, as shown in Figure 5.

Figure 5. Darkened lubricant.

At the initial stages, these damages are not visible and cannot be detected without
disassembling the bearing and searching for microscopic deviations on the bearing rings
and rolling elements [19]. By fault development, the damage inflicted on the bearings due
to currents differs visually from other bearing damages. For this reason, it is crucial to
inspect changes in bearings in all cases during service if there is a reason to suspect the
presence of bearing or shaft currents, especially in those cases where bearings are used in
larger power class frequency converter-fed electrical machines.

3. Experiments

The dynamic model of the electric drive was studied in the torque control mode. Drive
composition: a three-phase asynchronous motor C71B-2 with cage rotor, rotary optical
encoder with IR-LED, precision ball bearings, grooved ball bearing 6004-2ZR, and belt drive
with eccentric belt pulley with a pretension V-belt. The test bench is presented in Figure 6.

Figure 6. Bearing testing.

The highest speed and the shorter interval between signals made it possible to obtain
more accurate metrological support for monitoring the technical condition of a ball radial
single-row rolling bearing. As shown in Figure 7, the accelerometer output signal’s root
mean square (RMS) value was measured. The frequency range and measurement uncer-
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tainty allow you to accurately evaluate the results of comparing different bearing fault
signature extractions.

Figure 7. Experimental test bench.

Before the experiment, the belt was pre-tensioned, thereby maintaining the speed of the
rotation of the shaft. In the experiment, a vibration stand with the following characteristics
was used: a non-linearity of +1%, measuring range of £490 m/s? or £50 g; broadband
resolution of 3434 um/ s2. Small transverse and angular vibrations of the vibration stand
table do not significantly affect the measurement results. The deviation of the acceleration
amplitude during the measurement process is not more than 0.05% of the displayed value.
The test unit’s electronic noise is below the maximum value of the output signal.

Deep groove ball bearings (type 6004 2RS) were used in these experiments. Healthy
bearings were studied as well as bearings with additional damages. As shown in Figure 8,
the following cases were studied: the healthy bearing, bearing with damaged inner ring,
bearing with damaged outer rings, bearing with broken cage, complex bearing damage
(damaged outer ring, inner ring, and cage), and bearing with material fatigue.

Figure 8. Studied bearings with different damages: (a) healthy bearing, (b) bearing with damaged
inner ring, (c) damaged outer ring, (d) damaged cage, (e) complex damage, and (f) material fatigue.
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4. Results

The data exchange should be carried out very quickly. Synchronization of the mea-
surement system was carried out programmatically. The created software was effectively
used to detect malfunctions in the drive parts at a low speed. A program was developed
for more accurate recording of shock loads at low shaft rotation frequencies that allow
recording shock loads in milliseconds. With such a sampling rate of vibration signals,
it is challenging to diagnose malfunctions in bearings in belt drives. The shaft rotation
frequency was 300 rpm in the experiment, thus the sampling frequency was 5 Hz. Low
frequency and accessing a digital voltmeter at every millisecond made it possible to assess
the condition of the bearing with great accuracy.

The algorithm is suitable for processing vibration spectra, which will allow continuous
instant monitoring in the future. To implement the theoretical foundations of diagnostics,
a custom program Lucia was created and written in C++ using the MFC (Microsoft Foun-
dation Classes) library for synchronous monitoring of the state of the drive. MATLAB
2021b without Toolbox application was used only for process visualization. Lucia is aligned
with MATLAB 2021b software. There are two options for synchronizing the measurement
system’s operation: the program makes a measurement request and reads data from the
port, setting the print-only mode.

In this way, you can change the data transfer rate and the intervals between data.
All parameters can be monitored, and the results of diagnostics of the condition of the drive
parts can be evaluated more accurately. The diagnosis of bearings with known malfunctions
was carried out. Further, diagnostics of similar bearings with unknown malfunctions were
carried out. The measurements are synchronized, as the timestamp of each measure is
displayed in milliseconds and ticks. Based on these data, it is possible to estimate the
interval between measurements and the data transfer rate. Theoretical values of data
transfer rates do not correspond to actual values due to the asynchronous data exchange
mode via COM port. The condition-monitoring scheme of using the custom Lucia program
is shown in Figure 9.

. USB
o—
- ![!
Signal from 200, (‘? @ #%  LUCIA program
o Se\mm Amplifier Multimeter Visualization
LO% N
. . ) Personal computer
Testbench LUCIA to MATLAB
‘ data transfer
Signal from Monitoring

different sensors

°o— @
—
600 &

LD DIDATICS

environment

Amplifier
Figure 9. Condition-monitoring scheme of using custom Lucia program.

An alternative approach to the metrological control of the technical condition of
rolling bearings is based on a single measurement information format. As an etalon, we use
a bearing with a known character of the damage. At the first stage, we establish the ratio
between the values of frequencies occurring due to damage in the etalon bearing depending
on the speed, considering the measurement uncertainties. At the second stage; we use
this information to establish the ratio necessary to assess the condition of a bearing with
an unknown nature of damage based on the readings of the measurement system.
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Conducting comparative measurements [20], the value of Fs, which is the response of
a malfunction of the etalon bearing, is compared with the value of F., which is the response
of a malfunction of a bearing with unknown damage. As a rule, during the implementation
of such measurements, the difference between these values A = F. — Fg is determined.
This difference is used to make corrections to the measurement result in the future. In this
case, the estimation of measurement uncertainty consists of estimating this difference’s
uncertainty A. The model equation in the case of comparing the results has the form:

A = (Fc+Ac) — (Fg + As+6g) )

where Fcthe value associated with the response of a bearing malfunction with unknown
damage; Fsthe value associated with the failure response of the etalon bearing; Agquantization
error of the measuring instrument at the first stage of measurements; 6snon-excluded
systematic error of the measuring instrument; Ac—error of quantization of the measuring
instrument at the second stage of measurements. The following uncertainties correspond
to the listed input values:

e u (Fs)—Uncertainty associated with the scattering of readings related to the etalon
bearing, and determined statistically when performing multiple measurements;

e u (Ag)—Uncertainty of quantization of the measuring instrument at the first stage
of measurements;

e  u (05)—The uncertainty of the measuring instrument obtained from the value of its
non-excluded systematic error;

e  u (Fc)—Uncertainty associated with the scattering of readings related to a bearing
with an unknown nature of the damage, and determined statistically when performing
multiple measurements;

e u (Ac)—Uncertainty of quantization of the measuring instrument at the second stage
of measurements.

As the quantization error of the measuring instrument is the same at the two stages of
measurement, it can be ignored. In this case, when processing the measurement results, it is
advisable to use the method of reduction [ISO/IEC]. Then, the total standard uncertainty
of comparative measurements will be determined by the expression:

u(A) = \/u(Fc — Fs)+u?(0s) @

where u (Fc — Fs)—is the uncertainty associated with the scattering of the difference in
readings at the first and second measurement stages statistically determined. The extended
uncertainty of comparative measurements will be equal to:

4
U = toos{(n—1) {%} bou(a) (3)

As mentioned, created software is coordinated with the MATLAB r2021b program.
The most common envelope analysis method in non-stationary conditions was carried
out for a bearing with an expected defect on the inner ring at a shaft rotation speed of
300 revolutions per minute. The envelope method was specifically used to demonstrate
monitoring effectiveness with the created Lucia software. By synchronizing the monitoring
process, it is possible, with an accuracy of less than 0.1%, to identify increasing failures in
the parts of the electric drive. The experimental process can be shown in the example of
the bearing with the damaged inner ring. The estimated frequencies arising from damage,
depending on the rotational speed for a roller bearing type 6006 at a given shaft rotation
speed, is 27.1 Hz. As the laboratory has an etalon (specifically designed according to
standards) bearing with damaged inner rings, this particular prototype with damage on
the inner ring was chosen to calculate the accuracy of diagnostics of the rolling bearing
condition. The inner ring failure response frequency at a shaft speed of 300 rpm is 27.1 Hz.
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The original raw data containing the failure responses in the inner ring of the studied
bearing can be visualized in the spectrum. This bearing has not been operated, and,
therefore, it has been selected as the initial working standard with a known failure pattern.
The raw data are presented in the time domain, as shown in Figure 10.

18 Raw Signal: Inner Race Fault
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Figure 10. Raw signal of broken inner ring in time domain.
The motor shaft speed is 300 rpm. At this frequency, it is difficult to detect failures
of the rolling bearing. In Figure 11, a visualization of the same original raw data in the

frequency domain is presented.
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Figure 11. Raw signal of the damaged inner ring in frequency domain.

Figure 12 presents the power spectrum of the unprocessed signal in the low-frequency
region. On an enlarged scale, it is possible to study the amplitude-frequency vibration
spectrum of the acceleration envelope in the rolling bearing with defects on the inner ring.
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Figure 12. Power spectrum of raw signal.

Time-frequency analysis of the raw signal does not accurately distribute the energy
over frequency intervals for any partitioning of the frequency domain. At the frequency
response, the modulation frequency can be observed at about 1/(0.055 — 0.0046) = 111 Hz.
It indicates that the bearing has a potential problem in the inner ring, as shown in Figure 13.
In the graph, the horizontal arrow shows the time interval in order to determine the
likelihood of detecting a potential damage in the inner ring of the bearing.
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Figure 13. Power spectrum of raw signal.

A similar method and vibration diagnostics with different signal transmission rates
and intervals between signals were carried out for the etalon bearing with known damage
on the inner ring and the bearing with expected damage on the inner ring. The information
transfer rate was correlated with the intervals between the signals and varied from five
measurements per second to 20 measurements per second. The intervals between the
signals ranged from 70 milliseconds to 400 milliseconds. The results are shown in Figure 14,
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where the spectrum of the acceleration envelope of a rolling bearing with defects in the
inner rings presents a failure response frequency at 27.0182 Hz.

Envelope Spectrum: Inner Race Fault Envelope Spectrum: Inner Race Fault
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Figure 14. Acceleration envelop of a rolling bearing with damaged inner ring: (a) etalon bearing and
(b) experimental bearing.

The accuracy of conducted experiments is presented in Table 1. According to the
calculations of the metrological characteristics of the measurement system, the error in
transmitting signal information over communication lines is +1 ms.

Table 1. Measurement uncertainty and comparison of diagnostic results of an etalon bearing and
experimental bearing with damaged inner ring.
Estimation of the Standard Number of Degrees Sensitivi The Contribution
Input Value & ty
P Input Value, Hz Uncertainty, Hz of Freedom Coefficient of Uncertainty
0.83 4 -1 —ua (Fs)
Fs 27.0182 1.4 0 -1 — up(Fs)
Fc 27.3437 0.83 4 1 u(Fe)
0 0 0.3125 I~ -1 — u(6s)
Output Value Evaluation of the Total Standard Effective Number of Coverage Extended
P Output Value Uncertainty Degrees of Freedom Coefficient Uncertainty
A 0.3255 1.8 4 t0.95 (V eff) -

Figure 15 presents the vibration spectra of a healthy bearing and the bearing with
the damaged inner ring. The speed of the motor shaft is presented at the frequency of
5 Hz, while the speed of the damaged V-belt measured at the bearing block for the small
belt pulley in the vertical direction is presented at the frequency of 47.5 Hz. The faulty
frequency of the bearing can be presented at the frequency of 23.5 & 5.7 Hz. Noise pulses
are identified here at the rotation frequency of 2 Hz in both cases. Comparing the frequency
spectrum of the healthy bearing to the faulty bearing, the amplitude of the faulty one is
significantly higher. The inner ring failure response frequency at a shaft speed of 300 rpm
is 27.1 Hz.

Figure 16 present vibration spectra of faulty bearings. In these cases, the speed of the
motor shaft is also presented at the frequency of 5 Hz, while the speed of the damaged V-
belt is measured at 47.5 Hz. Faulty frequencies of the bearing are presented at the frequency
of 23.5 + 5.7 Hz.
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Figure 15. Comparison of vibration spectra of (a) healthy bearing and (b) bearing with damaged

inner ring.
I |
TH R |
o, " f | A
et B LT
I/ | | 14 I .
Iy | 5
n, HUR i Bl iz e T e
M Fx;q“m;mg W o 12 13 e 180 0 2 s she;a“mcyles 00 10 1 100 10

(a) (b)

4, N g
:: 3
N 34
3,
tE i i
g2 £,
i
< 1,8
1:4- \B ::67 il T l
N i I
T N i |
o T AT | s 1H ‘M' 4 —
g I ks . o w T
: S R LT D : R,
0 a o s Sfreq;e“c;]-[zg 0 o 1 10 o 150 ° 0 2 w 4 s sFm‘;“EM;'Hze W0 1o 120 130 140 150

(c) (d)

Figure 16. Vibration spectra of faulty bearings: (a) damaged outer ring, (b) damaged cage, (c) complex
damage, and (d) material fatigue.
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The damage frequency of the outer ring is located at 23.5 Hz, which is the fundamental
frequency. A higher harmonic component is presented in the case of a damaged cage due
to the higher operating asymmetry. In the case of complex fault, harmonic features of the
damage are visible but also depend on the fault development stage. The bearing with
material fatigue demonstrates higher noise compared to the healthy bearing. The sidebands
at the distance of the cage rotation frequency of 2 Hz are visible.

5. Conclusions

The diagnostics of rolling bearings using the proposed method allows us to evaluate
the accuracy of the classification of bearing faults. This method is suitable not only for
the identification of single defects. The time-frequency method with an accurate data
transmission system will also identify multiple bearing failures. The experiments conducted
demonstrate that increasing the data transfer rate and reducing the interval between pulses
in a real situation increase the accuracy of diagnostics. The effectiveness of the proposed
diagnostic program is proven by the example of fault monitoring of both the etalon bearing
and the bearing with the expected malfunction on the inner ring, for experimental testing
of the program using bearings with multiple defects. This method will cover the entire
frequency range of vibration diagnostics, identify defects early, and track their appearance
in real-time. The results obtained have a high degree of reliability, at 95%. Thus, the high
accuracy of determining time intervals makes it possible to further improve this method’s
information capacity. Faulty patterns of the experimental bearing can be used for predictive
maintenance approaches, which will be considered for future work.
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Abstract—This paper presents a study of ten identical
induction motor. Due to the wide usage of induction machines
in different industries, the maintenance and reliability of such
devices is getting a great importance. The main failures of
induction motors are listed, as well as the reasons for these
failures have been pointed out. A special attention has been
paid to manufacturing faults, which usually are not taken into
consideration, but can evolve during the motor operation and
lead to undesirable consequences.
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testing, production control.

I.  INTRODUCTION

Three-phase induction motors are the most widely used
electrical machines type [1]. High efficiency and relatively
low cost make these motors attractive in a variety of
applications. Despite the given advantages, electrical and
mechanical faults in combination with environmental
conditions can influence the maintenance of the motor and
its lifespan. Due to the fact that induction motors play a key
role in the different fields of industry, these failures are
undesired and are to be avoided.

Induction motors faults can be classified into three main
groups: stator, rotor, and bearings related faults. The
distribution of these faults depends on the motor’s
parameters, such as machine type, size, rated voltage, etc. In
the case of low-voltage machines, there is a majority of
bearings related faults, while the high-voltage machines
receive a higher proportion of stator winding faults [2].
According to the statistics, 36% out of all the faults are
related to the stator winding failures [3]. The stator winding
faults usually develop from a turn-to-turn short circuit.
Without timely intervention, this fault can grow to phase-to-
phase or phase-to-ground short circuits. Due to the fact that
this inter-turn fault is hardly detectable in the early stages of
its development, this topic is largely challenging in the
electrical machine industry. Even in the initial stage, an
inter-turn short circuit can result in serious damage and lead
to the breakdown of the machine. Therefore, the monitoring
and prediction of possible fault appearance can significantly
reduce the negative effect of damage on motor maintenance

(41, [5]

Many studies have been conducted in the last decades
related to diagnostics methods of turn-to-turn short circuit
and their detecting possibilities. Thus, researchers in [6]
analyze the possible effects of an inter-turn short circuit on
the electromagnetic field of the induction machine. Authors
in [7] show, based on finite element method (FEM) analysis,
pulsation torque in the machine under turn-to-turn short
circuit condition. In [8], the authors propose a motor square
current signature analysis (MSCSA) to detect the inter-turn
fault in the induction machine.

This research has been supported by the Estonian Research Council under
grant PSG453 “Digital twin for propulsion drive of autonomous electric
vehicle”.
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Degradation of the winding insulation can be caused by
many factors. Generally, four main stresses can be
distinguished, which can affect the degradation rate of the
winding insulation, also known as TEAM stresses: thermal,
electrical, ambient, and mechanical stresses [9].

a) Thermal stresses: The most common stresses that
can affect the machine are the thermal stresses. Particularly,
in the case of induction motors, the starting current is high.
During the starting of the motor, the temperature can
exceed the threshold value and cause a decrease in the
insulation system.

b) Electrical stresses: Insulation can be affected by
unstable supply voltage, transient voltages, unstable
ground, incorrect rated values of the machine. Particularly,
electric motors can be affected by fast switching inverters.

¢) Ambient stresses: This is a combination of the
factors, which come from the environment surrounding the
motor [10], such as moisture, humidity, aggressive
chemicals, dirt, and other particles. Each of them can affect
the machine and its insulation system differently — directly
or in combination with other stress types.

d) Mechanical stresses: During the machine
operation, many forces influence it: centrifugal, magnetic,
etc. There are many studies related to the monitoring and
reduction of these forces. However, there are a few types of
research done about quality control monitoring in
production and damages inflicted on the electrical machine
during the motor installation.

This paper shows the study of newly manufactured
induction motors. The measurements were carried out and
the results are presented. However, despite the test results,
significant damages were found, which can lead to the
breakdown of the machine in the future.

II.  MEASUREMENTS

In the given research, ten identical three-phase induction
motors were tested. The technical data of the motors is given
in Table I.

TABLE 1. TECHNICAL DATA OF THE TESTED MOTORS

Parameters Value Unit
Connection Y D D
Frequency 50 50 60 Hz
Voltage 690 400 460 \Y%
Power 7.5 7.5 7.5 kW
Speed 1460 1460 1760 r/min
Current 8.8 15.3 129 A
Torque 49 49 40.6 Nm
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Firstly, the low frequency (120 Hz) inductance
measurement was carried out. Tests were performed with
digital LCR meter with an accuracy of 0.5, 0.7, and 1.2% to
resistance, capacitance, and inductance respectively. The
results are shown in Table II.

TABLE IL. INDUCTANCE MEASUREMENT
Value
Motor nr. Unit
U \4 w

Motor 1 57.14 66.66 76.50 mH
Motor 2 71.39 75.01 54.44 mH
Motor 3 62.93 78.35 60.87 mH
Motor 4 59.14 78.68 60.23 mH
Motor 5 64.69 60.41 82.63 mH
Motor 6 65.68 76.99 59.49 mH
Motor 7 59.74 75.84 62.58 mH
Motor 8 62.67 66.14 82.02 mH
Motor 9 58.69 70.76 84.74 mH
Motor 10 77.95 69.84 55.38 mH

Additionally, resistance measurement was performed
the. Resistance was measured with a digital multimeter,
which has 0.003% DC voltage accuracy and 0.005%
resistance accuracy. The resistance results are shown in
Table III. Inductance and resistance measurements have not
identified any deviation in parameters and all the values
meet the defined limits.

TABLE III. RESISTANCE MEASUREMENT
Value
Motor nr. Unit
U \4 w
Motor 1 1.77 1.70 1.74 Q
Motor 2 1.72 1.67 1.67 Q
Motor 3 1.67 1.69 1.71 Q
Motor 4 1.67 1.70 1.89 Q
Motor 5 1.67 1.67 1.66 Q
Motor 6 1.67 1.69 1.69 Q
Motor 7 1.68 1.70 2.19 Q
Motor 8 1.70 1.68 1.66 Q
Motor 9 1.69 1.70 1.68 Q
Motor 10 1.71 1.66 1.68 Q

In addition, the insulation resistance measurement of
stator windings was carried out. These results also have met
the limits.

III.  VISUAL INSPECTION

Even though the measurement results are within the
defined limits, the visual inspection indicates a variety of
damages in the motors. Due to the fact tested motors were
non-used, thus, described in given chapter damages were
inflicted to the motors are caused manufacturing factors in
production. Manufacturing faults are not usually taken into
account during the design process and they tend to occur
during the exploitation of the machines [11].

a) Motor 1: In the case of Motor 1, after a visual
inspection, insulation damages on the winding of the motor
were found, as shown in Fig. 1.

Fig. 1. Insulation damage in Motor 1.

b) Motor 2: 1dentically to the previous example, the
visual inspection of Motor 2 revealed winding insulation
damages, which are shown in Fig. 2. In addition, an
improper placement of winding wire was found.

Fig. 2. Insulation damage and improper winding placement in Motor 2.

¢) Motor 3: In the case of Motor 3, as shown in
Fig. 3, it is possible to detect the overheating tracks of the
winding insulation.

]
!
i

\

Fig. 3. Overheated winding insulation in Motor 3.
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Similarly, to previous examples, improper placement of
the winding wire was also found, as shown in Fig. 4.

Fig. 4. Improper winding placement in Motor 3.

d) Motor 4: The visual inspection of Motor 4 has
revealed the fault of stator lamination. As shown in Fig. 5,
the lamination stacks of the stator are curved.

\

Fig. 5. The curvature of the lamination stacks in Motor 4.

e) Motor 5: Improper wire concentration as shown in
Fig. 6 was found in case of Motor 5.

Fig. 6. Wire concatenation in the motor’s winding in Motor 5.

f) Motor 6: In the case of Motor 6, winding
insulation damages were detected, as shown in Fig. 7.

Fig. 7. Insulation damage in Motor 6.

g) Motor 7: Visual inspection of Motor 7 indicated
an improper placement of winding wire, shown in
Figs. 8 and 9.

i

Fig. 8. Improper winding placement in Motor 7.

Fig. 9. Improper winding placement in Motor 7.
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h) Motor 8: As shown in Fig. 10, the winding of
Motor 8 was bruised. Moreover, the improper winding
placement was also detected, shown in Fig. 11.

Fig. 11. Improper winding placement in Motor 8.

IV. DISCUSSION

The ideal machines should be symmetrical in all aspects.
Their windings should be sinusoidally distributed in the
stator and on the rotor side. They should have a smooth and
constant air gap [12]. The current in the stator and rotor
windings should be uniformly distributed to avoid the
skinning and proximity effects. All these ideal features can
lead to the ripple-free speed and torque production and no
vibrations.

But in the case of practical machines, all these ideal
scenarios cannot be implemented due to various kinds of
limitations. The stepped distributed windings on the stator
side, the cage structure on the rotor side, the non-uniform air
gap due to inherent eccentricities, the stator and rotor slot
openings, the non-linear nature of the magnetic material, the
skinning and proximity effects generate various kind of
current harmonics and the air gap flux density do not remain
pure sinusoidally distributed.

The most prominent harmonics are the winding and
slotting harmonics which spread across the entire frequency
spectrum of the stator current and induced voltages [13].
These harmonics produce rotating fluxes having different
angular velocities with resulting in oscillating speed and
torque profiles. These oscillations produce vibrations in the

machine and the stator windings become their first victim
with a result is the insulation damages [14].

Although the ideal structure is not possible, the effect of
the harmonics can be reduced by making the three-phase
windings symmetrical. By doing so, most of the harmonics
can be canceled out at the star common node and the
negative sequence currents in the delta connection.

The case study of ten machines from the same
manufacturer having the same rated values reveals
significant impairments. The differences are more
prominent on the stator side related to the winding
problems. The difference in the measured inductance and
resistance profile is significant, which is because of the
problems in the windings as shown in the figures.

Since the inductance is the function of the effective
number of stator and rotor turns per slot and the air gap,
hence form Table II and Table III it can be concluded that
although the number of turns per slot is the same their
effective value is different. This difference is visible in the
end winding region in the form of bad conductor
placements. The resistances are also different due to the
same reason. The resistance difference is small because they
are representing DC resistances. This difference will
increase under AC conditions because of the skinning and
proximity effects.

These asymmetries may lead to increased vibrations
with resultant scratch among the copper conductors leading
to their insulation damage. Also, the thermal profile of the
machine will not remain uniform leading to the hot spots at
specific locations.

These asymmetries can reduce the life of the machine
and cause the starting point of the stator failures. Since the
faults are degenerative, these problems can cause a
catastrophic situation in the form of total burn over.
Moreover, once the inter turn short circuit starts, the
following frequency components start appearing in the
current spectrum.

ft=fs[§(1—s) tv], v=0135. (@

where f; is the short circuit representing frequencies in the
stator current, 7 is the number of phases, s is the slip, p is
the number of poles, and v is the harmonic order.

V. CONCLUSION

In this paper, ten motors from the same manufacturer
with the same rated parameters are taken as a case study.
Their phase inductances and resistance are measured to
check their symmetry. The possible causes of the difference
in inductance and resistance profiles are investigated by
visual inspection of their stator windings. In the light of the
results and discussion it can be concluded that A special
attention should be paid to possible manufacturing faults
and taken them in account during the design process.
Particularly, the reliability, safety, and extended lifetime of
the machine, special care towards the windings should be
taken into consideration. All three phases should have
symmetrical inductance and resistance profiles to limit the
asymmetry-based harmonics. The end winding portions
should be handled carefully to avoid any minor damage
which can become the starting point of the fault.
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Abstract: Nowadays, electrical machines and drive systems are playing an essential role in different
applications. Eventually, various failures occur in long-term continuous operation. Due to the
increased influence of such devices on industry, industrial branches, as well as ordinary human
life, condition monitoring and timely fault diagnostics have gained a reasonable importance. In
this review article, there are studied different diagnostic techniques that can be used for algorithms’
training and realization of predictive maintenance. Benefits and drawbacks of intelligent diagnostic
techniques are highlighted. The most widespread faults of electrical machines are discussed as well
as techniques for parameters’ monitoring are introduced.

Keywords: artificial intelligence; condition monitoring; failure detection; fault diagnosis; fuzzy logic;
machine learning; neural networks; reliability

1. Introduction

Condition monitoring and fault diagnostics of electrical machines are gaining height-
ened popularity. It is because the vital role that electrical machines play in industry and
domestic life is increasing day by day. Electrical machines always remain prone to faults
because of the mechanically moving parts associated with them, the harsh industrial en-
vironment, and no doubt the increasing probability of failure with life. Conventional
maintenance techniques can be broadly classified into two categories: reactive maintenance
and preventive maintenance. Preventive maintenance is mainly related to the scheduled
overhauling of a system and whether or not it requires maintenance, while reactive mainte-
nance comes into play when the failure has already occurred. Unfortunately, both methods
are not suitable in industry, as they have a substantial economic impact. In the case of
reactive maintenance, the machine is already broken, disrupting the process.

In contrast, overhauling all machines, whether healthy or faulty, is not a good solution
in preventive maintenance. In comparison, predictive maintenance is a better choice, one
in which the machine’s health can be continuously monitored, and only faulty machines
can be selected for maintenance. Moreover, since the fault can be detected at an early
stage, the machine can be repaired before any catastrophic situation. However, predictive
techniques are rather complicated depending upon the type of the machine, the drive
control mechanism, and the load behavior. This is why a great many research fields are
involved in the predictive maintenance of electrical machines. Those fields may include
signal processing, statistical data analysis, artificial intelligence, mathematical modelling,
and the design and optimization of sensors and processing boards. This paper presents a
glimpse of the state of the art of condition monitoring of electrical machines so that the
reader can know the trends and challenges in this field. A wide range of diagnostic fields,
with many citations, is summarized, along with corresponding attributes.
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2. Intelligent Diagnostic Techniques

Due to increasing computational power and cloud computation, different mathe-
matical models of motors’ faults can be trained in artificial intelligence algorithms. Ma-
chine learning is an optimal tool in machine health monitoring for dealing with extensive
amounts of data [1]. Machine learning is compared frequently to data mining as both
attempt to discover new data patterns in numerous datasets. The principal difference is
that machine learning deals mostly with adaptive behavior and operative utilization, while
data mining processes large amounts of data [2]. By the usage of training data, machine
learning algorithms can create a forecasting and decision-making model. There are many
algorithms for machine learning. As shown in Figure 1, these algorithms can be generally
divided into three groups: supervised, unsupervised, and reinforcement learning [3-5].

MACHINE LEARNING
Supervised Learning Unsupervised Learning Reinforcement Learning
* Classification * Clustering * Real-time decisions
* Regression * Association *  Robot navigation
* Prediction *  Generalization * Resource management
» Image processing *  Segmentation »  Skill acquisition
» Forecasting » Big data visualization * Learning tasks

¢ Risk Assessment

* Planning

Figure 1. Machine learning algorithms.

In the case of supervised machine learning (“learning with a teacher”), the training
dataset and test dataset are set so that the algorithm can map inputs to the desired outputs
by the labelled examples. These algorithms are suitable for classification and regression
tasks [6,7]. Unlike supervised learning, unsupervised machine learning (“learning without
a teacher”) is dedicated to understanding and discovering patterns from an unknown
dataset. Unsupervised algorithms are primarily used for the generalization and association
of datasets [8,9]. In this case, the primary function is to group objects into clusters and
reduce the amount of data. Reinforcement learning is used to decrease errors and increase
accuracy by analyzing the data after each iteration. These algorithms are spread in robot
navigation, resource management, and real-time decisions [10-12]. In diagnostics of
electrical machines, the following algorithms are used: decision trees [13], support vector
machines [14], principal component analysis [15], and genetic algorithm [16].

2.1. Decision Trees

Decision trees represent supervised machine learning that is widely used for data
prediction and analysis [17]. In this case, the algorithm is focused on creating a model that
can forecast the desired output based on multiple inputs. The general algorithm of decision
trees is shown in Figure 2.
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Condition 1
Yes Fulfilled?

Condition 2
Fulfilled?

Decision 1

Yes No

Decision 2 Decision 3
Figure 2. The general algorithm of decision trees.

Decision trees are the simplest among decision-making algorithms and require a very
small amount of data to achieve a result. To obtain more accurate results, decision trees are
frequently used in parallel with other algorithms. However, decision trees are considered
unstable algorithms; insignificant changes in input data can lead to serious changes in
decision trees’ structure, leading to inaccurate results. Additionally, regression algorithms
usually fail.

2.2. Support Vector Machines

Another widely used supervised machine learning algorithm is support vector ma-
chines, which are suitable for regression tasks, feature extraction, and classification [18,19].
In the case of classification tasks, where support vector machines are preferable, algorithms
can deal with linear and non-linear cases [20]. For linear classification, each dataset repre-
sents a vector in n-dimensional space and belongs to two classes. Therefore, the algorithm
focuses on separating these data points so that there would be a maximum gap between
them. In the case of non-linear classification, the kernel machine acts the same way as for
linear algorithms but replaces the datasets [21]. The method of support vector machines is
described in Figure 3.

Class 1

Class 2
——=Possible hyperplanes
m====_ Optimal hyperplane

Figure 3. Finding an optimal hyperplane.

Generally, support vector machines are an optimal tool if there is no initial information
about datasets. Similar to decision trees, less computation power is needed to provide
accurate results. However, it can take a lot of time to process the information in datasets
that are especially large. Moreover, managing a kernel machine for non-linear processes
can be a complicated task.



Energies 2021, 14, 7459

4 0f 20

2.3. Principal Component Analysis

Unsupervised algorithms can learn spontaneously and perform a given task by finding
connections between system responses [22]. However, if datasets are extremely large, it
can be challenging to extract important information. For this reason, algorithms find
similarities between objects and divide objects into groups (clusters) [23]. The principal
component analysis is a good solution for reducing data dimensionality, while losing
a minimal amount of information at the same time. A general algorithm of principal
component analysis is shown in Figure 4. The algorithm can be described as follows [24].

(d)

Figure 4. Principal component analysis: (a) initial data points, (b) creation of optimal vector PCA, (c) projection of initial
data points on the vector PCA, (d) definition of new datasets [24].

Firstly, experimental data points with the specific coordinates are set on a plane. Then, the
vector of maximum data change is set on the plane. Next, experimental points are projected on
the vector. Finally, these projections create new datasets on the vector, and any deviations from
the vector are considered to be noise. The main benefit of principal component analysis is that
the algorithm considers each data point as an independent component and does not correlate
between them. Thus, this method can significantly reduce training as well as processing time.
Nonetheless, considering each datapoint as an independent component can lead to a loss of
information and reduced accuracy of the results.

2.4. Genetic Algorithm

Reinforcement algorithms of machine learning differ clearly from basic approaches.
In this case, the system learning process is performing by interaction with the environ-
ment [25]. These algorithms are mostly focused on solving optimization problems. One of
them is a genetic algorithm, the principle of which is shown in Figure 5.

The algorithm can be described as follows. Each data point is represented in genes.
A vector of genes creates the genotype of the population. Initially, the so-called fitness
function is created, which describes how well the genotype performs the task. Then, the
most accurate coincidences are selected, which will be used to create the next generation.
The given process continues until the task is fulfilled and the resultant population is formed.
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Figure 5. Genetic algorithm: (a) definition of initial population, (b) fitness function application, (c) selection of coincidences,
(d) definition of resultant population.

A genetic algorithm is considered as an optimal solution if there is no clarified knowl-
edge about the data domain. In this case, the result is generated through genetic operators.
The main drawback is that this genetic population can suffer from degeneracy (different
chromosomes represent the same solution). In this case, an accurate result is not possible.

2.5. Artificial Neural Networks

Another machine learning method, which is often considered a separate field, is
the artificial neural network approach. This technique is widely applicable to condition
monitoring of machine parameters [26]. Network algorithms can cover classification [27],
prediction [28], and feature extraction [29]. In addition, artificial neural networks can be
a part of supervised, unsupervised, or reinforcement learning [30]. In simple models, as
shown in Figure 6, an artificial neural network consists of three layers: input, hidden, and
output layer.

Hidden layer

Input layer Output layer

Figure 6. The architecture of artificial neural networks.
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To solve a problem, neurons transfer signals between the input and output layer
through connections. These algorithms are not to be programmed; they are supposed to be
learned. Searching for the connection coefficients between neurons is meant to occur by
learning. The easy and fast learning process is one of the main benefits of neural networks.
Algorithms are also able to restore incomplete or even destroyed data when training has
been successful.

Neural networks also have several limitations. For accurate results, a balance must
be found between overfitted and underfitted data; an overly approximated model will
not give precise results, while an extremely detailed algorithm will be too flexible but too
complicated for further implementation. Additionally, the “black box” phenomenon is
quite widespread in the case of neural networks, where approximating a hidden layer can
lead to mistakes in artificial structure [31,32].

2.6. Fuzzy Logic

Fuzzy logic is another algorithm successfully applied in various control applications
of energy systems, which resembles human perception processes and cognition [33]. Fuzzy
logic, as well as machine learning, are sub-fields of artificial intelligence. The main differ-
ence between fuzzy logic and traditional logic is that in traditional logic, an outcome can
be represented only by true or false values (1 or 0), while an outcome in fuzzy logic can
be represented in any value between 1 and 0 (true, false, partially true, etc.). As shown in
Figure 7, the classical model of fuzzy logic consists of the following stages: fuzzification,
rule base, and defuzzification [34]. Fuzzification converts input data into fuzzy sets. The
rule-based stage is a block of the decision-making system. Finally, defuzzification converts
fuzzy sets back into real values.

Rule base

0

Inference

Figure 7. Control principle of fuzzy logic.

In fuzzy fault diagnosis, there are many approaches available, such as the Mamdani
approach [35], fuzzy neural network [36], Takagi-Sugeno approach [37], etc. Therefore,
it is essential to select the best-suited algorithm to be applied to the system. Each of
them has certain benefits and drawbacks. Generally, fuzzy logic is considered a simple
solution in decision-making tasks. Fuzzy logic can also perform approximate reasoning by
a combination of membership functions through a set of rules [38]. However, to develop a
fuzzy system, a large amount of data is needed. Moreover, the development of fuzzy rules
can complicate data analysis.

2.7. Summary

In Table 1, the benefits and drawbacks of all of the aforementioned diagnostic tech-
niques are summarized.

Under industry conditions, data collection can be a complicated task. Due to the
regular controls in production, only a limited number of faulty rotating machines are
possible, which means a limited number of tests to be performed for training purposes.
Additionally, data collected in cases of composite faults in the same machine are not
straightforward in another scenario. Therefore, for effective Al training, mathematical
models with different faulty conditions must make diagnostic algorithms more reliable.
Therefore, it is important to understand the nature of machine failures, causes, and impacts.
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Table 1. Benefits and drawbacks of intelligent diagnostic techniques.
Diagnostic Technique Advantages Disadvantages
Small computational power is required High possibility of overtraining
Decision Trees Simple structure Not suitable for regression tasks
No need for data pre-processing Increased training time
Operation in high dimensionality No ability to filter unnecessary
Support Vector Work with non-linear processes information
Machines Small computational power is required =~ Complicated managing of kernel machine
No need for data specification Overlapping risk
- . No overl.ap'pmg Possible loss of information
Principal Component Analysis Reduced training time
Lo O Reduced accuracy
Good visualization
Genetic Algorithm Adap.twe algor{thm Overlapping risk
Rapid processing

Artificial Neural

Must be balance between under- and

Perform any ML algorithm overfitted data

Fast learning

k o . “Black box” ph
Networks Not sensitive to data noise ack box phenomenon
Overtraining risk
Simple structure
Fuzzy Logic Flexible algorithm A lot of data is needed
¥y 108 No need for specific hardware Inaccurate data lead to poor results

Easy reprogramming

3. Faults of Rotating Electrical Machine

As electrical machines operate under different industrial conditions, various failures
eventually occur after long-term continuous operation. The failures’ distribution depends
mainly on the machine parameters; in low-voltage motors, bearing-related faults are the
majority, while high-voltage motors receive mostly stator winding-related failures [39]. In
general, the biggest portion of overall failures in electrical machines results in mechanical
faults, such as bearing faults, eccentricities, broken rotor bars, broken end rings [40]. In
addition, electrical stresses and demagnetization problems can contribute to the shortening
of motor lifespan. All of the faults will be discussed in detail in the following sub-chapters.

3.1. Bearing Faults

One of the key parts of a rotating electrical machine is its bearings. The design and
production of the bearing are to be conducted according to stringent quality requirements.
Nonetheless, during motor running, different internal and external loads affect the bearings.
This, in turn, reduces the duration of the actual life of the bearing. Different defects
and mechanical damage are frequently met due to the wrong placement, manufacturing
mistakes, or misalignment of bearing details [41]. For this reason, it is important to control
possible manufacturing damage before bearing mounting and motor running launch.

To avoid disastrous consequences, different parameters of bearing must be monitored.
Bearing failures can be described through mathematical equations that refer to the natural
frequencies of a faulty bearing. Based on bearing geometry, which is shown in Figure 8,
faulty frequencies can be defined for the outer raceway (1), inner raceway (2), rolling
elements (3), and cage (4).
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Figure 8. Bearing geometry [42].

Faulty frequencies for these cases can be defined as follows:

_No (Do
for = 711 (l D. cos [5) 1)
Ny Dy
fi = Zn <1+D—Ccos ﬁ) ()
fo= Pepf1- (P ’ 3
= 2Dbn — (D—ccosﬁ) (3)
_n Db
fo = > (1 — D—Ccos [5) (4)

where Np—number of rolling elements, Dp—diameter of rolling element (mm),
D —bearing pitch diameter (mm), f—contact angle (degrees), n—mechanical rotor speed
(Hz) [42].

Bearings are affected by different environmental factors, such as moisture, increased
ambient temperature, dust, etc. Lubricant coating at the contact points between surfaces
can be torn if humid air enters the bearing. Additionally, without a proper seal, different
substances can pollute the lubricant and spoil its properties. Environmental processes
resulting in material resolution cause bearing corrosion. An example of a corroded bearing
is shown in Figure 9. However, increasing a bearing’s cleanliness does not always improve
its fatigue properties [43]. Cyclic and continuous loads have a remarkable effect on the
running performance of the bearing, including material fatigue, wear, and stiffness [44].
These stresses cause micro-cracks in the structure of the bearing. Without timely mainte-
nance, cracking eventually expands, and the bearing becomes incompatible for further
operation. Bearing durability can be referred to as the number of revolutions made before
the first fatigue signs appear on bearing surfaces [45]. This phenomenon can be avoided or
remarkably recessed by timely analysis of the bearing lubricant.

The proper lubrication of a bearing is one of the critical points determining its motor’s
durability and reliability in general. When the lubricant is selected correctly, it forms the
needed coating between elements and softens the impact of the rolling bodies against the
bearing rings and cage. Additionally, lubricant is used to reduce the risk of corrosion and
wear [46]. To increase the bearing lifetime, a fully flooded bearing and the corresponding
base oil viscosity should be considered [47].

Additionally, the bearing lubricant directly affects the strength of shaft currents and
influence on the bearing, which in the long term can lead to serious damage and destroy the
bearing [48]. Due to the development of energy systems and power electronics, electrical
machines, and particularly the bearing, can be injured by electrical corrosion, causing
danger to the whole motor system [49]. The effect of shaft currents on a bearing depends
mostly on several parameters, such as rotational speed, lubricant properties, current value,
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operation time, and bearing material. Bearing current-related damage can be revealed
by increased noise and vibration, but in the late stages when the surface of the bearing
is already damaged [50]. The damage is visible on the bearing surfaces at places where
the load is the largest. Practically, the following bearing current-related damage can be
classified as fluting, frosting, pitting, and dull-finish. Fluting occurs in a combination with
low voltage and constant rotational speed, which does not appear for a longer period of
time [51]. In Figure 9, an example of bearing fluting is shown in magnification.

Figure 9. Bearing fluting.

At the same time, frosting can appear in cases of varying rotational speeds. Pitting
usually appears in applications with a high-voltage source, causing a multiplicity of small
craters on the bearing surface [52]. In the case of dull-finish, this phenomenon resembles
pitting but with much smaller craters that can be studied in detail only by a microscope
with a particularly high magnification [53].

Bearings, as a critical part of rotating machinery, are prone to damage and failure. For
this reason, it is extremely important to monitor the condition of the bearing operation.
Temperature measurement, noise, and vibration analysis, as well as periodical control of
the lubricant quality can significantly reduce the risk of bearing damage.

3.2. Rotor Faults

Eccentricity can be described as an inconsistent air gap between the rotor and stator
of the motor, which is mainly caused by improper installation, lack of or missing bolts,
misalignment of the shaft, and rotor imbalance [54]. Centrifugal forces contribute as well
to rotor wear, as shown in Figure 10.

Figure 10. Damages caused by centrifugal force: (a) rotor wear and (b) stator wear.

An air gap is considered to be faulty if it exceeds 10% of the nominal value [55].
As shown in Figure 11, there are the following types of rotor eccentricity: static [56],
dynamic [57], and elliptic [58]. Authors in [59] have discussed these cases.
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Figure 11. Types of rotor eccentricity: (a) healthy; (b) static; (c) and (d) dynamic; and (e) elliptic
eccentricities [59].

Static eccentricity (SE) is the most widespread type of eccentricity in the motor, where
the rotation axis of the rotor is parallel to the stator axis and fixed in time. In the case of
dynamic eccentricity (DE), the air-gap length changes in time. Elliptic eccentricity (EE)
occurs when stator and rotor center points match; however, a non-uniform air gap still
exists because the elliptical shape of the rotor and angles change over time. The width of the
air-gap in cases of different eccentricities can be found with the following equations [59]:

gss=Rs — Ry + /R? — (d-sin p)* (5)

_ |Ow-O|

SDE (6)

go () = R, — ¢ [(Rﬁd)'COS(% - B)]Z + {(Rr - d)-cos(%t - B)]Z )

where g—air-gap, Rs—radius of the stator, R—rotor radius, d—deviation, f—initial
eccentricity angle, Oy—totational center, Os—stator symmetry center, p—number of poles.
Practically, mixed eccentricity can also be found when rotor and stator center points
and rotational axis are shifted from each other.
The most frequent permanent magnet fault is demagnetization, which means partial
or complete magnetization loss [60]. Partial demagnetization that produces additional
harmonics in the stator currents can be found at the following frequencies [61]:

k
fpdem: fe (1 + E) (8)

where fy4em is a faulty frequency, f; is a fundamental frequency, k is an integer, and p is the
number of poles.

Demagnetization of permanent magnets can be frequently caused by machine over-
load and thermal expansion [62]. Machines operate in high-temperature ranges, and the
absence of a proper cooling system significantly increases a demagnetization risk. Another
factor that can impact magnet properties is electrical stress, including short circuits [63]. It
is also reasonable to control magnet manufacturing defects and signs of corrosion. Another
widespread form of rotor damage is related to rotor bars and broken end rings [64]. One
of the most common reasons for such a failure is natural degradation, which causes rotor
wear [65]. Additionally, thermal expansion can lead to cracked rotor bars [66]. As rotor bars
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are made of copper, while laminations are made of steel, bars will expand more quickly in
cases of increased operating temperature.

3.3. Stator Faults

Insulation is one of the most prone-to-fault parts among the components of an electrical
machine [67]. In overall statistics, stator winding failures are 36% of all the faults [68].
Winding failures usually start from a turn-to-turn short circuit. Subsequently, without
timely maintenance, the failure can grow to a phase-to-phase or phase-to-ground short
circuit [69]. Since this inter-turn fault is hardly detectable in the early stages of development,
this topic is immensely challenging in the electrical machine industry [70]. Even if control
test results meet defined values, each insignificant damage of stator winding can lead to
the future breakdown of the machine [71]. Spread winding failures are shown in Figure 12.

(a) (b)

Figure 12. Stator winding faults: (a) improper winding placement, (b) insulation damage.

Asymmetrical faults, such as winding faults, induce additional sideband harmonic
components at the fundamental frequency and can be defined by the following frequencies:

fo=1fs(1+2sk); k=1,2,3,...;k € N )

where f,—harmonic frequency, f;—supply frequency, s—slip [72].

Many factors can influence the degradation of the winding insulation. More frequently,
the degradation rate of winding insulation is affected by four main stresses, also known as
TEAM (thermal, electrical, ambient, and mechanical) stresses [73]. In addition, damage can
also be inflicted on motors due to the manufacturing process and production. During the
designing process, manufacturing damage is not usually considered, but it tends to occur
during the exploitation of a machine [74].

4. Overview of Diagnostic Methods Used in Condition Monitoring

To provide reliable and effective exploitation of an electrical machine, many parame-
ters, such as current, vibration, temperature, magnetic flux, are to be monitored. In addition,
different faults have certain signatures that give a signal about upcoming failure. For this
reason, condition-based monitoring is a solution that allows one to be informed and make
decisions regarding the maintenance of the machine.

4.1. Vibration Analysis

Vibrations can come from many different sources in an electrical machine, including
magnetic fields, fluid flow, imbalances, and, especially, rotating elements, such as bearings,
gearboxes, or rotors [75]. Vibration analysis can be defined as change monitoring from
defined vibration signatures and extracting deviations in the system. Deviations are to
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be found in acceleration amplitude, frequency value, and intensity. Nowadays, many
sensor types can be used. By measuring technology, sensors can be piezoelectric [76],
capacitive [77], inductive [78], piezoresistive [79], and strain gauge [80].

Vibration analysis can provide useful information about the health of electrical equip-
ment; thus, it is widely used for diagnostics. Regarding classical diagnostic approaches,
authors in [81] used vibration signals of healthy as well as faulty bearings to identify spe-
cific frequencies on the FFT spectrum, where frequency variation of harmonic amplitudes,
particularly in fundamental components, is presented as a fault indicator, which is shown
in Figure 13.
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Figure 13. FFT spectra of healthy as well as faulty bearings [81].

Classical and intelligent approaches are frequently used in combination. In [82], authors
propose a novel method for predicting the remaining useful lifetime of bearings based on
continuous wavelet transform and convolutional neural networks, where image features
improve result accuracy. At the same time, in [83], the authors propose a novel hybrid method
of convolutional neural network and support vector machine to effectively identify an incipient
fault in rotating machinery. The proposed solution does not need manual feature extraction or
data processing. Authors in [84] also propose a condition-monitoring method of bearing fault
based on deep convolutional neural network and random forest ensemble learning to achieve
high accuracy in failure diagnosis under complex operating conditions. However, there are
several limitations: computational time and quality of raw data. Authors in [85] use a genetic
algorithm for diagnostics of gearboxes based on vibration signals to improve the process of
data exploration and exploitation.
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4.2. Electrical and Electromagnetic Monitoring

Monitoring magnetic flux has become a widespread and effective method for fault
detection in electrical machines, as many early failures create a magnetic asymmetry that
can be detected [86]. Electromagnetic measurement can be efficiently used to monitor the
electrical machine as an additional or alternative tool to stator current monitoring. By
definition, an electric machine produces electromagnetic flux, where any small unbalance
in the magnetic or electric circuit is reflected in some of the transmitted fluxes [87]. There
are many research studies on the monitoring of bearings damage [88], rotor faults [89],
short circuits [90], and magnet problems [91] through the stray magnetic flux. Authors
in [92] provide an example of flux distribution in the case of healthy and faulty rotor bars,
as shown in Figure 14.

BRB ,-
i

Figure 14. Flux distribution of healthy and faulty rotor bars in an induction motor [92].

Most of the rotating electrical machines are symmetrical, generating uniformly dis-
tributed magnetic flux. Any fault in the machine results in asymmetrical flux distribution,
resulting in more local magnetic stresses. An example of flux distribution in the case of
healthy and faulty rotor bars is shown in Figure 14. It is clear from the figure that the flux
density across the broken bar increases in magnitude, which increases the peak induced
current in subsequent rotor bars. These increased current and magnetic forces make them
vulnerable to a fault, leading to a kind of chain reaction. A machine’s performance parame-
ters such as torque, speed, voltage, and currents function to distribute flux. The analysis of
those performance parameters can detect any change in flux distribution due to any fault.
These facts make the diagnostic algorithms non-invasive and open a broad field of signal
processing techniques that can be used for condition monitoring of electrical machines.

In harmonic spectrum and data analysis-based techniques, the frequency components
of any global signal are evaluated according to cause of production. The discovered
frequency components can be further used for the health monitoring of electrical machines,
either by visual inspection or with the help of advanced statistical data analysis techniques.
A variety of research articles dealing with spectrum analysis for various machines can
be found in the literature. The stator winding insulation degradation fault analysis of
permanent magnet synchronous motor (PMSM) using the harmonic analysis of fault current
is presented in [93]. The authors of [94] used matching pursuit and wavelet transformation
for current features extraction and machine learning-based fault diagnostic algorithms for
induction motor analysis. The detection of bearing faults by statistical analysis of a motor’s
stray flux is presented in [95]. The inter-turn short circuit fault analysis in permanent
magnet multiphase machines using spectrum analysis of combined voltage space vector
is presented in [96]. The fault diagnosis of induction machines using harmonic order
tracking analysis of a stator’s current is presented in [97]. The use of wavelet transform for
stator current analysis during motor startup is presented in [98,99]. The utilization of non-
stationary stray flux harmonics for training feed-forward neural networks for monitoring
wound rotor induction motors is presented in [100]. The use of transient stray fluxes and
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the currents for the fault diagnosis of damper winding in synchronous motors is presented
in [101], while a similar work for fault detection of circular pumps is reported in [102].
Based on the type of the signal, the harmonic spectrum and data analysis-based techniques
can be broadly classified into two categories: transient analysis and steady-state analysis.
Although both types are very diverse fields, a good glimpse of induction machines fault
diagnosis can be seen in: transient [103-105], steady-state [106,107].

The harmonic spectrum analysis-based techniques are very old and well established
because most of those techniques are based on non-invasive signals. Various signal pro-
cessing techniques can be easily deployed, computationally less intense, and no kind of
sophisticated apparatus is required. The measured signals can be analyzed at any remote
location. However, with the increasing trend of drive utilization, special purpose machines
and different working environments make the conventional current and flux monitoring
techniques very challenging. The reliability of diagnostic algorithms will no doubt increase
if the algorithm mathematically knows the machine under inspection. Moreover, if the
mathematical models in the drive are compatible with the diagnostic algorithm, the drive
can continuously monitor the machine’s health.

Due to these factors, researchers are moving towards modelling- and parameters
estimation-based diagnostic techniques. For this purpose, the development of mathematical
models with reduced simulation time and that are compatible with faults simulation is the
first milestone to be achieved. Various modelling techniques are available in the literature,
e.g., modified winding function-based models [108-111], circular convolution theory-
based [112], the hybrid FEM-analytical [113,114]. These models can be used in parallel with
the real working machine to estimate design parameters. For example, authors in [114]
proposed utilizing an induction motor’s FEM model for parameters estimation using
hardware in the loop environment. In [115], the induction motor’s inversion model was
used to estimate different performance parameters for health monitoring.

4.3. Wear Monitoring

As mentioned, the bearing is one of the essential parts of a rotating machine that is
to be affected by various loads and forces, which reduce the motor’s intended lifespan.
Generally, most friction losses in rotating machines are referred to as bearings. Therefore,
wear monitoring of bearings can significantly affect a machine’s proper operation and
reliability in general. The most common causes for bearing wear are high friction load and
lack of proper lubrication. Bearing faults tend to occur in areas where lubricant coating is
the thinnest. Authors in [116] discuss a method for bearing state monitoring by simulating
lubricant state under different pressure conditions.

Regarding lubricant conditions, which directly impact the bearing’s durability, authors
in [117] use ultrasonic sensors that were instrumented on the inner and outer bearing
raceways to detect lubricant conditions. In [118], the authors propose an improved grey
k-means clustering model for monitoring bearing wear conditions. Finally, authors in [119]
propose a fault tree analysis for wear monitoring in wind turbine bearings.

4.4. Temperature Measurement

Thermal monitoring is an important component of proper functioning. Excessive
temperature increases shorten the lifespan of an electrical machine, destroy winding
insulation, cause short circuits, lead to aging of bearings, and degrade the rotor permanent
magnets [120]. The most common reasons for temperature increase are cooling-system
failures and excessive currents through windings [121].

Generally, temperature-based monitoring can be divided into two approaches: ther-
mal image analysis and local spot measurement. For local thermal measurement, there
resistance thermometer detectors and thermocouples are mostly used. At the same time,
local monitoring using thermocouples or resistance temperature detectors can be limited
by safety applications, especially due to the usage of electrically conductive material in the
sensor structure [122]. Therefore, they cannot be placed in the hottest spot.
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Thermal imaging is another potential option for thermal monitoring in rotating ma-
chinery. In [123], as shown in Figure 15, the authors present a method of feature extraction
using thermal images. For classification, the nearest neighbor classifier, k-means, and
back-propagation neural network were used.

® & £0.60

Figure 15. Thermal image of healthy as well as a faulty motor with damaged ring of squirrel-cage [123].

Authors in [124] discuss a study to determine thermal conditions using thermal
imaging, which allowed effective and accurate measurement results. In [125], the authors
propose a fault diagnosis method based on thermal images, where several intelligent
algorithms were used for model training. Finally, authors in [126] discuss a novel image
classification method—cloud detection using a random forest classifier.

5. Discussion and Conclusions

Electrical machines fault diagnostics and predictive maintenance have gained increas-
ing popularity. This is because of the increasing influence of electrical machines and drives
in industry and everyday human life. Condition monitoring and predictive maintenance
are essential for a system’s reliability and have a direct influence on economic aspects.
Because of the different types of machines, the various control mechanisms, and the wide
range of different working environments, no one condition-monitoring algorithm can be
considered uniquely suitable.

These algorithms vary for different systems depending upon several parameters. This
is the reason why the field of fault diagnostics and condition monitoring depends upon
various technical matters. The associated research areas may include signal processing,
sensors design and optimization, statistical data analysis, artificial intelligence, numerical
methods, calculus, mathematical modelling, etc. The dependency of the fault diagnostic al-
gorithm on single or multiple topics makes this field very diverse and makes it challenging
to summarize easily and quickly.

In order to give the reader a glimpse of the state of the art of this field, a variety
of advanced fault diagnostic and condition monitoring techniques are summarized in
this paper. Different diagnostic techniques that can be used for algorithms’ training and
predictive maintenance are presented. The benefits and drawbacks of each intelligent
diagnostic technique are highlighted. The most widespread faults of electrical machines
are discussed, and techniques for parameters” monitoring are introduced.
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Abstract: In this paper, the bearing faults analysis of the brushless DC motor is presented. The research
method is based on the analysis of the vibration signal of healthy as well as faulty bearings by the
identification of specific frequencies on the vibration spectrum. For the experiment, the most common
faults were inflicted on the bearings. As the used motor is intended for electric scooter applications,
seven different damages were chosen, which are highly likely to occur during the scooter operation.
The main bearing faults and the possibility of fault monitoring are addressed. The vibration data
are gathered by the acceleration sensors placed on the motor at different locations and the spectrum
analysis is performed using the fast Fourier transform. The variation in the amplitude of the frequency
harmonics particularly the fundamental component is presented as a fault indicator.

Keywords: ball bearings; DC motors; brushless machine; fault diagnosis; vibration measurement

1. Introduction

In recent years, brushless DC (BLDC) motors have gained wide attention in the electrical machine
industry. The main feature of BLDC motors lies in their construction. The absence of brushes makes the
machines more reliable and efficient. Moreover, brushless construction reduces the overall dimensions
and weight of the motor. Because of these benefits, BLDC motors have attracted the interest of
many researchers.

Brushless construction makes BLDC motors valuable in different industries. Because of the fact
that BLDC motors are controlled electronically, these motors play an important role in applications,
where sparks can be a critical factor [1]. In addition, brushless machines have gained a wide attention
in different domestic applications [2—4]. Besides, BLDC motors have the potential of contributing to
renewable energy [5-7].

During the last years, BLDC motors have contributed to the development of environmentally
friendly and innovative electric vehicles. Many studies have been done with the purpose of comparing
different motor types and their suitability for automotive applications [8]. BLDC motors are more
preferable for electric vehicle applications because of the wide speed and power ranges [9-11].
Another noticeable trend in the automotive industry is the integration of BLDC motors into electric
scooter applications, where the main requirements from the motor are high power density and starting
torque [12]. BLDC motors meet those requirements for most of the special applications quite easily as
compared to the other type of machines.
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As discussed, BLDC motors have found usage in a variety of applications; therefore, unexpected
failures of such machines are undesirable and are to be avoided. Studies related to the faults of BLDC
motors focus generally on the stator windings or rotor related faults, also problems related to Hall-effect
sensors are studied in detail [13-15]. However, there are only a few researches dedicated to the study
of bearing-related faults [16]. Nonetheless, taking into account the growth in usage of BLDC motors,
the sudden failure of such a basic and important component as a bearing can have significant economic
and dangerous consequences. Therefore, condition monitoring and ensuring the reliability of the
bearing is extremely important.

The fields of condition monitoring and signal processing are directly related to each other.
The selection of the appropriate signal along with the suitable signal processing technique is the most
important step for predictive maintenance [17,18]. Almost all advanced signal processing algorithms
rely on the basic signal processing techniques such as Fourier transform, short time Fourier transform,
and wavelet transform, etc. The fundamental objective of these techniques is to detect the fault-based
frequency components from the signal under investigation. Several research articles related with
these techniques can be found in the literature. In [19,20] fast Fourier transform (FFT) was used to
investigate the stator current of squirrel cage induction motor for the segregation of supply, spatial,
and fault-based harmonics. In [21] FFT was used along with a band stop filter to improve the legibility
of current spectrum for fault diagnostics of induction motor. In [22] FFT was used for the validation
of the simulation results with that obtained from the practical setup. In [23], evaluation based on
wavelet transforms new processing method to detect stator related faults in the induction motors was
presented. In [24], authors use wavelet transform for bearing fault diagnostics.

In general, the vibration analysis has been widely used for electrical machines fault analysis in
the past decades. This technique offers more precise fault analysis and results compared to other
techniques, especially, in the case of BLDC motors. In this work, vibration signal analysis was used
for the study of the bearing faults of BLDC machine. The vibration analysis has several advantages
over traditional diagnostic techniques, such as motor current signature analysis (MCSA), leakage flux
analysis, etc. The MCSA-based fault definition frequencies are well-defined in the case of high power
induction and synchronous machines. However, in the case of special purpose machines, like BLDC,
the impact of drives and complex structure makes conventional MCSA techniques hazier. In contrary,
the vibration signal does not need any specific definition equations. The diagnostic algorithm can
be made reliable and the fault can be detected only by comparing the faulty vibration signal with
the healthy one. The amplitude of the fundamental vibration frequency component can be used as
a threshold and a reliable indicator of fault rather than the detection of certain harmonics from a wide
range of frequencies.

The main core of this paper is related to the bearing faults of BLDC motors. The aim is to present
a study where typical bearing damages are implemented on healthy bearings, in order to explore the
impact of these faults on machine performance. This paper is arranged as follows. Section 2 presents
possible bearing faults of BLDC motors. In Section 3, fault diagnostic possibilities are described.
In Section 4, experimental setup and research methods are pointed out. Section 5 shows the results
analysis and discussion of performed research, and finally, Section 6 presents the conclusion.

2. Bearing Faults

Bearing is a basic element of an electrical machine. The production of bearings is carried out
under stringent requirements for the quality. However, the actual lifespan of the bearing can be lower
than it was intended to be. This can occur because of many reasons, such as unexpected overload,
insufficient lubrication or improper lubricant, improper bearing installation, etc. Because of the fact
that the operating conditions of electrical machines can be different, the bearing can be affected by
many fault types. The reasons for bearing failures can be different environmental or manufacturing
factors, such as [25]:
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(1) Bad lubrication;

(2) Wrong emplacement;
(3) Contamination;

(4) Shaft currents.

By monitoring the operation of bearings, measuring temperature, noise, vibration, and periodically
analyzing the quality of the lubricant, the risk of bearing damage can be significantly reduced.

2.1. Material Fatigue

This phenomenon is usually caused by cyclic and continuous loads, which crack the surface of
the bearing. When cyclic stresses are applied to a material, failure of the material occurs at stresses
much below the ultimate tensile strength of the material, because of the accumulation of damage [26].
If fatigue cracking progressively expands to a larger surface, the bearing eventually becomes unsuitable
for further operation.

The durability of a bearing is counted in the number of revolutions that the bearing makes before
the first signs of fatigue failure become noticeable on raceways and rolling bodies. Progressive stages
of material fatigue on the bearing surface are shown in Figure 1.

Figure 1. Progressive stages of material fatigue on the bearing surface [27].

The time when the first signs of material fatigue appear on the bearing surface depends on the
rotational speed of the bearing and the magnitude of the load. In the initial stage of fault development,
some microcracks remain on the subsurface. By further damage development, the surface of the
bearing begins to exfoliate and crack on a larger surface. As a result, the surface of the bearing becomes
rough. At this stage, the first symptoms are additional noise and vibration. Moreover, the operating
temperature of the bearing increases. Constant overload, poorly treated, and contaminated surfaces
inevitably lead to fatigue phenomena. This can be avoided or significantly slowed down if the bearing
is clean (not contaminated) and well lubricated.

2.2. Improper Lubrication

One of the most important operating conditions for a bearing, which determines the durability of
a bearing, is its proper lubrication. Correctly selected lubricant forms a thin oil coating, which softens
the impact of the rolling bodies against the bearing cage and rings. Additionally, the lubricant protects
the bearing from corrosion and wear.

The fact of improper lubrication can occur in the case of either insufficiently or excessively greased
bearing. Insufficient lubrication, which can occur because of low viscosity of the lubricant or its small
amount, causes friction and crack progression. Over-greasing results in undesirable shaft slipping and
leads to structural damage of the bearing.



Designs 2020, 4, 42 40f18

Additionally, improper selection of the lubricant can have a negative impact on bearing operation.
Grease lubrication as well as different oil-based lubricants (oil-mist, air-oil, or jet lubricants) are used in
bearings. Each lubrication method has its unique advantages. The main criterion for selecting between
grease and oil-based lubrication is to minimize the total life-cycle cost of the motor, including such
parameters as cost of service, repair, maintenance of the motor, and the number of years the motor
remains in service [28,29]. The life-cycle analysis implies important procedures in order to reduce
impact of electric machines on the environment [30]. To meet this requirement, the lubricant method
should be selected respectively to the operating conditions of the bearing. The choice of lubricant
depends on the operating conditions of the bearing, in particular the temperature range, speed,
and operating environment. Lubrication of bearings is mainly carried out using greases. The main
advantage of grease over oils is that it operates in friction places for a longer time and thus reduces
spending. However, oil-based lubricants are also widely used. A significant advantage of oils over
greases is improved heat dissipation. However, compared to greases, the disadvantages of oils are
high price and risk of leakage.

2.3. Wrong Emplacement

The defects in the bearings may also come up due to improper design of the bearing or
improper manufacturing or mounting, misalignment of bearing races, the unequal diameter of
rolling elements [31]. Before mounting, the bearing should be checked for manufacturing faults:
compliance with the appearance, ease of rotation, and clearances to the requirements of technical
documentation. Visually, bearings of open-type must be checked for nicks, traces of contamination,
corrosion. For sealed-type bearings, the gaskets should be checked to detect possible damages.

Before the installation, the mounting surfaces of the shells and shafts have to be checked.
The surfaces of shafts and shells mating with bearings must be thoroughly washed, wiped, dried,
and greased with a thin layer of lubricant. Additionally, the alignment of the shaft must be controlled.
It is necessary to check the deviation from the alignment of all landing surfaces located on the same
axis for compliance with the standards specified in the technical documentation.

The application of mounting forces to the separator or hit directly on the ring is inappropriate.
It is allowed to apply light blows to the ring only through a sleeve of non-hardened structural steel.
The most appropriate are the mounting methods in which simultaneous and uniform pressure is
applied around the entire circumference of the mounted ring.

In Figure 2a, a chip on a large rib of the inner ring of a tapered bearing is shown. This occurs
when an incorrect axial or heavy striking load is applied to the bearing. In addition, it can occur if
inappropriate force was applied to the rib during installation or dismantlement of the bearing. Cracks,
as shown in Figure 2b, appear as a result of the application of heavy striking load or excessive tightness.
This phenomenon is observed in those cases when the outer ring is weakly established on the shaft,
and slip occurs.

Figure 2. Chips (a) and cracks (b) due to the wrong emplacement of the bearing [32].
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2.4. Contamination

Corrosion is a process between material and environment, which results in material dissolution.
Corrosion can be caused by moisture that enters the bearing from the atmosphere. Humid air enters
the bearing and tears the lubricating coating at the contact points of surfaces and raceways. In addition,
the grease can become contaminated when water or other chemically active substances pollute the
lubricant. As the lubricant properties are deteriorated, bearing corrosion is caused. To prevent this
failure, the corrosion-resistant greases can be used. The possible impact of the environment on the
bearing is shown in Figure 3.

(b)

Figure 3. Traces of corrosion on the bearing surface: (a) Traces of corrosion on the outer ring of the
bearing; (b) traces of corrosion due to the water impact on the inner ring of the bearing [33].

Bearings can be polluted by sand, dust, or other abrasive particles, which in turn interferes
with bearing operation and leads to scratches, cracks, or other structural damage [34]. Mainly, it can
occur in hand with wrong bearing gasket selection. This can cause an entering of various particles
(dust or dirt) into the bearing. Foreign particles, such as metal shavings that penetrate the bearing,
produce dents when the rolling body rolls the shaving into the raceway. In order to prevent this,
the right gasket should be selected. Also, it is important to keep clean during assembly and not to use
contaminated lubricants.

2.5. Shaft Currents

Bearings can be affected by shaft currents. This fault occurs when electric current passes the
bearing from one ring to another through the rolling elements. The size of the damage depends on
the level of the current, exposure time, load, rotational speed, lubricant selection. More frequently,
the damages related to shaft current can be indicated by increased noise and vibration. In addition,
shaft currents cause the heating of the bearing material. Sometimes it can lead to the fusion of the
material. As a result, a variety of colored areas are formed on the surface of the bearings, as well as the
rolling elements.

This fault is clearly detectable on the bearing surface. Shaft current damages usually appear in
the areas of the bearing, which were loaded the most. The reason for this is that the lubricant coating
in the area is the thinnest, which contributes to the damage development. The appearance of damaged
surfaces is related to three major types of current faults in the bearing: “fluting,” “frosting,” and
“pitting.” The visual appearance of these damages is shown in Figure 4.

The first shaft current fault, called fluting, occurs in the combination of low voltage and constant
rotational speed. Fluting is characterized by multiple lines across the inner and outer rings, as shown
in Figure 4a. Another shaft current fault, shown in Figure 4b, is called frosting. This damage occurs
when the motor runs at varying speeds. Pitting is caused by the low rotational speed in combination
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with the high voltage source. It is mostly related to single crater damage and typically seen in DC
applications such as railway traction motors [35]. The size of the crater is small, as shown in Figure 4c
but visible to the naked eye. Practically, yet another current fault can be detected, which is called
dull-finish. This damage resembles pitting, but the craters on the bearing surface are much smaller.
The appearance of these craters can only be detected under a microscope using very high magnification.
To limit the negative impact of shaft currents, electric current should not be passed through the bearing.
In this case, bearings with electrical insulation can be used. Additionally, during electrical welding
operations, the motor shaft should be grounded to prevent the passage of electric current.

(c)

Figure 4. The visual appearance of shaft currents on the surfaces of the bearings: (a) fluting, (b) frosting,
(c) pitting [29,30].

3. Diagnostic Possibilities

Almost all advanced condition monitoring and fault diagnostics methods depend on signal
processing techniques. Among a variety of signal processing techniques, the Fourier transform has
been widely used for the conversion of a signal from the time domain to the frequency domain.
Although the Fourier transform is a very strong tool for the analysis of a signal, it possesses several
limitations. The algorithm, which can solve the complex Fourier formulas for a signal in a quicker way,
is called the fast Fourier transform (FFT). The ideal FFT formula is designed for a signal of infinite
length, as shown in Equation (1), which is practically not possible:

) N
f(t) — Z Cneina)l’ ~ Z Cneina)l’ (1)
n=-00 n=1
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w =21 —
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1 “ —inx
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where C, is the complex Fourier and f(x) is the signal under investigation and fs is the sampling
frequency (100 kHz).

The length of the signal can be reduced by truncating the signal to a finite length. This truncation
can be done using various windowing functions such as rectangular, Hamming, Chebyshev, Hann, etc.
These windows start leaking their energy in the frequency bins of the spectrum, which is called the
spectral leakage. Moreover, if the signal is the same in all other similar intervals, it means that the
signal is stationary and in the steady-state regime. Similarly, the discontinuities in the signal can be
fatal for the frequency analysis using FFT.

The field of fault diagnostics is very broad containing a huge number of industrial and domestic
applications. All applications are different in design, structure, working environment, and the types of
signals which can be used for its condition monitoring. The signals can be broadly classified into two
types, stationary and non-stationary. Although, the majority of applications work in a steady-state
regime where the signals are supposed to be stationary and without discontinuities, in some applications,
the transient analysis can give more concrete information about their health. In the transient interval,
most of the signals are non-stationary, which makes their time-frequency analysis inevitable.

The FFT fails to do time-frequency analysis of a non-stationary signal while taking it as a single
truncated piece. However, this problem can be solved by moving the window across the signal and
doing the Fourier analysis of the signal in that particular window while considering the signal in
the window as stationary. This approach is called a short-time Fourier transform (STFT). Although,
this technique can give the time-frequency analysis of the signal that the spectrum resolution is the
problem. This resolution problem is because of the inherited drawbacks of the FFT algorithms upon
which STFT depends. If someone increases the length of the moving window, he can get good frequency
resolution but poor time resolution. Similarly, by decreasing the length of the truncation window,
the time resolution can be improved but frequency resolution will be poor. Therefore, there is a trade-off
between time and frequency resolution of the spectrum according to Heisenberg’s uncertainty principle.

These FFT-related problems can be avoided to a great extent by using the wavelet transform.
Unlike STFT where the signal is divided into the small chunks and FFT is the performer for each,
in wavelet transform, a window of known amplitude and frequency is swiped across the complete
signal to check the location where it fits the most with the signal. This moving window is called the
mother wavelet which is swiped across the signal n times with varying amplitude and frequency.
It can give a much better resolution as compared to the corresponding STFT but at the cost of increased
complexity. A comparison of the common diagnostic techniques is presented in Table 1.

Table 1. Comparison of diagnostic techniques [36].

Diagnosti
a8 .OSt N Benefits Drawbacks
Technique
Works only with stationary signals
Small losses of information. Y - Y18
Aliasing
FFT .
. Bad resolution
Less computational power
Spectral leakage

Bad time-frequency resolution,
Analysis of non-stationary signals spectral leakage,
STFT aliasing
3-D (time-frequency-amplitude) plots can be Compromise between time and frequency
more informative. More computational power is required as
compared to FFT

Very precise technique,

More memory and computational power are

Wavelet Better time-frequency resolution required as compared to STFT
transform . f . .
More efficient and flexible for analysis, analysis - . . .
. . Precision requires more iterations.
of non-stationary signals.
Advanced More efficient analysis Sophisticated technology is required,
techniques More precise results Requires a lot of computational power.
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With the growing power of the computers and onboard processors, cloud computations, and the
Industry 4.0 standards, the world is moving toward advanced predictive maintenance techniques.
Unlike protective and reactive maintenance techniques, predictive maintenance techniques are
becoming increasingly popular because of their positive financial impact. The advanced diagnostic
techniques may include pattern recognition, machine learning, parameters estimation, neural networks,
Fuzzy logic, and inverse problem theory, etc., [35,37-39]. However, all those techniques somehow
depend on the fundamental signal processing techniques, described in Table 1.

4. Experimental Setup and Methods

In the framework of the given research, the typical bearing faults were inflicted on the bearings with
the purpose of investigating the failure effect on the vibration spectrum of the motor. There were used
identical ball bearings made from chrome steel with the same material standard. For the experiments,
a three-phase BLDC intended for electric scooter application was used. All the measurements were
performed at rated rotating speed 600 rpm. As the signal measuring tool, there were used three
acceleration sensors +4 g type QG40N, which were screwed to the test bench. The sensitivity error of
used acceleration sensors is <+1%.

In the experiments, as shown in Figure 5, there were used three identical acceleration sensors,
which were screwed into the test bench at different distances. Sensor 1 was mounted over the shaft of
the motor, where the vibrations are supposed to be higher and more tangible on the vibration spectrum.
Sensor 2 was placed beyond the shaft. Sensor 3 was mounted on the most distant edge from the motor.
It was done in order to find an optimal place for the data acquisition. This paper focuses on the data
taken from Sensor 1 which was placed over the shaft of the machine. Because of the proximity to the
motor shaft, the vibrations in Sensor 1 are more tangible, which in turn provides more accurate results.

Motor controller

BLDC motor

B Tam

Acceleration
sensors

Figure 5. Placement of acceleration sensors on the test bench.

Data acquisition was performed at sampling rate 100 kHz using Dewetron OXYGEN software.
In the framework of the given experiment, only fast Fourier transform (FFT) is used to detect and
compare the amplitude of the fundamental frequency component in case of healthy and faulty bearings.
The FFT algorithms are well mature and are very easy to be implemented in Matlab.
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As the given motor is used in a certain application, specifically in electric scooter application,
seven typical bearing failures, which can occur during the scooter operation, were chosen and inflicted
on bearings, as shown in Figure 6. Eventually, eight bearings were tested.

®) (h)

Figure 6. Tested bearings: (a) healthy bearing, (b) bearing without lubricant, (c) bearing with damaged
separator, (d) contaminated bearing, (e) bearing tempered at 230 °C, (f) bearing tempered at 330 °C,
(g) bearing with the cut outer raceway, (h) corroded bearing.

Faulty bearings present a specific vibration spectrum, which differs from the spectrum occurring
in the case of a healthy bearing. In theory, it is possible to differentiate four fundamental frequencies
(harmonics) in a loaded rolling bearing, which are used for diagnostics. Specific processes on different
parts of the bearing cause these harmonics. In the literature, these processes (parameters) are designated
as follows: rotation frequency on the outer raceway (Fyy), rotation frequency on the inner raceway (Fg),
operation of the bearing cage (F¢), and rotation frequency of the bearing balls (Frk). The numerical
values of the frequencies of these harmonics depend on the ratio of the geometric dimensions of the
bearing elements, and, of course, are uniquely related to the rotation frequency of the rotor (Fy).

Practically, three most frequently encountered types of signals spectra, which correspond to
various stages of defect development can be identified. On the first stages of defect development,
as shown in Figure 7a, a presentable harmonic Fyy appears on the FFT spectrum. The presence of
the frequency peak on the spectrum allows to suppose and identify explicitly an existence of the
defective element.

/Fh //H ‘/Fﬁ /” M
—— o M
©

@ (b)

1

T
/

Figure 7. Stages of damage development: (a) early fault stage; (b) progressive fault stage; (c) final fault
stage [40].
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As the defect develops, the first pair of side harmonics on the left and right side near the main
frequency peak, as shown in Figure 7b, can be observed on the spectrum. With further degradation,
other frequency pairs appear near the main frequency peak. In the given research, a good example of
this phenomenon was observed in relation to contaminated bearing. The reason for this phenomenon
is that the failed rolling body shifts so much that the adjacent rolling bodies already bear the main load
to support the shaft of the mechanism [40].

At this stage, the bearing fulfills its intended functions. However, because of the added stresses,
further operation of the bearing leads to definite breakdown of the device. In the last stages, the failure
develops to such an extent, that the bearing degrades and does not fulfill its functions. This stage
can be identified by appearing of additional harmonics, which have a random character, as shown in
Figure 7c. This occurrence was not detected in this experiment.

As discussed, for data analysis different diagnostic techniques can be used. In the given research,
as the signal is stationary and the motor rotates with constant speed, FFT was chosen to analyze the
results. For the clearer data presentation, signals FFT spectra were also studied and presented on the
logarithmic scale.

5. Result Analysis and Discussion

Figure 8 presents the vibration signals of the healthy bearing. As it can be seen, the most noticeable
vibration signal (y-axis) comes from sensor 1, which was placed above the motor shaft.

T : 2
:i M‘v”'ﬁl’ wli Ml ,E,. w. A ‘\t‘u , WIMW m Vglﬁzf
5 WV ﬂ Cak T

Time(e)

Amplitude

< o

e =2
—

[W{ | !“ﬂ
%Wl wﬁ :M fy k mM

o
[=]
[
4

Time (s)

Figure 8. Vibration signals of healthy bearing: (top) signal taken from sensor 1, (middle) signal taken
from sensor 2, (bottom) signal taken from sensor 3.
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By moving away from the shaft, the vibrations decrease. Therefore, the signal taken from sensor 1
would be more informative in the further result analysis. Mainly, the vibrations occur in x-axis,
while the signal in y- and z-axes does not change much.

Every system has a bandwidth of vibrational frequencies, which depends upon its natural
frequency bandwidth and a variety of parameters, such as ambient factors, foundation of the motor,
etc. In the given research, the most prominent frequencies appear in a frequency range of about
15Hz—35Hz. In the framework of given research, the amplitude of the most powerful vibrational
frequency component of faulty bearing was compared with the one obtained from the healthy bearing.

The FFT spectrum of healthy bearing is shown in Figure 9. The window length in this case,
as well as in the following graphs, is 31,0195 samples. In the case of healthy bearing, the acceleration
amplitude of the fundamental harmonic reaches the value of 0.00251 m/s? at the frequency 25.33 Hz.
Comparing it with the spectra of the faulty bearings, which are shown and discussed below, it can be
seen that the acceleration amplitudes of the faulty bearings are much higher.

0.01 ' S . S B S p—E—. ;
;- %102 I
0.009 I X 2533 :
I
0.006 | : o Yo0o0251 |
P !
0.007 } I I
N 1 |
é’, 0.006 | (s I
Na)2 I 1
§ o0.005} . I
g |
5 bs I
S 1
< 0.003 |
0.002
0.001
0

0 20 40 60 80 100 120 140 160 180 200
Frequency (Hz)
Figure 9. Fast Fourier transform (FFT) spectra of healthy bearing in the range of 0-200 Hz.

For better representation of the signals of faulty bearings, all of the inflicted damages were grouped
and presented separately as the FFT spectra. The first group of the faults (contaminated and corroded
bearings) can be referred to as damages caused by ambient factors. The most noticeable acceleration
amplitude was observed in the case of contaminated bearing, which is 0.0102 m/s2. Another fault,
where FFT spectrum differs compared to healthy bearing, is corrosion. From Figure 10, a wide spectrum
of harmonics in the range of 0-40 Hz and frequency peaks in the range of 120-170 Hz can be observed,
which in turn indicates the presence of a fault in the bearing.
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Figure 10. FFT spectra of contaminated and corroded bearings in comparison with healthy bearing:
(a) FFT spectrum, (b) FFT spectrum in the range of 15-35 Hz.

In the following experiment, bearings tempered at different temperatures were investigated.
Comparing these spectra with each other, there is no significant difference. As seen from Figure 11,
in both cases the side harmonics appear in the spectrum on the left and right side of the main frequency
peak. In addition, a frequency spectrum in the range of 120-170 Hz was observed. All these aspects
notify of the presence of damage and mechanical weakening in the bearing.
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Figure 11. FFT spectra of tempered bearings in comparison with healthy bearing: (a) FFT spectrum,
(b) FFT spectrum in the range of 15-35 Hz.

In the case of the last fault group (bearing with cut outer raceway, bearing with damaged separator,
and bearing with removed lubricant), the faults spectra appear similarly to the ones of tempered
bearings, as seen from Figure 12. Presentable frequency peaks can be observed in each of the cases.

Similarly to the faults discussed previously, frequency spectra in the range of 120-170 Hz can be
also observed.
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A comparison analysis of the results is shown in Table 2. Out of the several harmonics the
most powerful component (fundamental) is chosen as the benchmark signal in the healthy case.
The difference in the amplitude of that component defines the severity of the fault.

Table 2. Comparing table of the results.

Acceleration Amplitude Difference in Acceleration

Bearing Faulty Frequency (Hz) 2 Compared to Heathy Bearing

(m/s”) (m/s?)
Healthy bearing 25.33 0.00251 -

Contaminated bearing 25.67 0.0102 0.00769
Corroded bearing 23.17 0.00503 0.00252
Bearing tempered at 230 °C 26.19 0.00444 0.00193
Bearing tempered at 330 °C 25.94 0.00469 0.00218
Without lubricant 25.56 0.00284 0.00033
Cut bearing 26.13 0.00399 0.00148
Damaged separator 27.18 0.00417 0.00166

As presented, the most noticeable difference in acceleration compared to healthy bearing was
found in the case of contaminated bearing, which is 0.00769 m/s?. The smallest difference in acceleration
(0.00148 m/s?) occurred in the case of bearing, in which the outer raceway was cut. In the light of the
above results, it is evident that with the inclusion of fault the fundamental vibration component goes
stronger. The more developed the damage is, the stronger is the vibration component. The amplitude
of this component can be considered as fault indicator. Moreover, each fault gives its specific frequency
pattern. Therefore, based on the spectrum, it is possible to detect and segregate the fault type.

6. Conclusions

Over the past years, BLDC motors have gained wide attention in different domestic and industrial
branches because of their characteristics. Because of popularity gain, the unexpected faults of such
motors can be fatal and lead to negative consequences. In reference to motor failures, many studies
have been done with regard to stator or rotor faults. Although the topic of bearing related faults has
not been particularly revealed and discussed in the literature. Nevertheless, the bearing is the basic
component of the electrical machine and unforeseen faults are unfavorable.

This paper proposes a study of bearing faults and their diagnostics possibilities. In the framework
of the given research, the most common bearing failures were discussed and the reasons for these
failures were explained. In this experiment, seven typical bearing faults were inflicted on the healthy
bearing. In the experiments, BLDC motor intended for electric scooter application was used. Therefore,
the most spread faults that can occur during the electric scooter exploitation were applied to the
bearings. This study presents a possible method for bearing fault detection in BLDC motor using
acceleration sensors.

Different bearing faults were compared and analyzed. The experimental results in Section 3
address that each damage gives a specific vibration spectrum. According to the spectrum, the type and
the development stage of the damage can be detected. The amplitude of the fundamental vibration
frequency component can be used for defining a threshold level. It also can be a reliable indicator of
fault rather than the detection of certain harmonics from a wide range of frequencies. The integration
of other sophisticated diagnostic techniques into research and improvement of the given analysis
method will be considered as future work.
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Abstract: A review of the fault diagnostic techniques based on machine is presented in this paper. As
the world is moving towards industry 4.0 standards, the problems of limited computational power
and available memory are decreasing day by day. A significant amount of data with a variety of faulty
conditions of electrical machines working under different environments can be handled remotely
using cloud computation. Moreover, the mathematical models of electrical machines can be utilized
for the training of Al algorithms. This is true because the collection of big data is a challenging task
for the industry and laboratory because of related limited resources. In this paper, some promising
machine learning-based diagnostic techniques are presented in the perspective of their attributes.

Keywords: fault diagnostics; machine learning; artificial intelligence; pattern recognition; neural net-
works

1. Introduction

Nowadays, electrical machines and drive systems are being used in many applications
and play a significant role in industries. As electrical machines are used in different
applications, the maintenance question is of great importance. Today, there are plenty
of condition monitoring methods to detect failures in electrical equipment. In general,
diagnostic techniques can be divided into the following groups [1-5]:

Noise and vibration monitoring,

Motor-current signature analysis (MCSA),
Temperature measurement,

Electromagnetic field monitoring,

Chemical analysis,

Radio-frequency emissions monitoring,

Acoustic noise measurement,

Model and artificial intelligence-based techniques.

Generally, stresses that impact electrical machines’ operation can be classified into
four main categories, also known as TEAM (Thermal, Electric, Ambient, and Mechanical)
stresses. Because of these stresses, faults tend to appear in the machine.

Statistically, 36% of all motor failures are related to the stator winding faults [6].
Usually, winding failures develop from a turn-to-turn short circuit [7]. Without timely
maintenance, this fault can grow to phase-to-phase or phase-to-ground short circuits [8].
Due to the fact that this inter-turn fault is hardly detectable in the early stages of its devel-
opment, this topic is mainly challenging in the electrical machine industry [9]. From the
point of view of reliability, in this case, one of the most critical points is electrical machines’
insulation [10]. Insulation plays a significant role during the design processes [11]. The
insulation condition can be defined by chemical, mechanical, or electrical analysis of the
insulating materials [12].
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Mechanical faults make a significant proportion of overall faults in the form of eccen-
tricity, broken rotor bars, cracked end rings, damaged bearings, etc. [13]. A broken rotor
bar is a widespread and frequently occurring fault. In the machine, this fault can be caused
by high operating temperature, cracks in the bar, or natural degradation [14]. Some effects
can indicate a broken rotor bar: torque oscillations, high radial speed, sparking, rotor
asymmetry [15]. This fault is difficult to be exposed at the early stages, but it is equally
essential for avoiding negative and catastrophic consequences in production.

Another mechanical fault that occurs in an electrical machine is eccentricity. Eccen-
tricity faults refer to the inconsistent air gap between the rotor and the stator. The air gap
eccentricity exceeding 10% is considered a fault [16]. There is a variety of eccentricity types:
static eccentricity (SE), dynamic eccentricity (DE), and elliptic eccentricity [17]. Addition-
ally, there are cases when mixed eccentricity occurs in electrical machines. Eccentricity is
mainly caused by improper installation, bolts lack or missing, shaft misalignment, or rotor
imbalance [18]. Eccentricity faults can cause additional noise and vibration [19]. When the
eccentric fault becomes severe, it will cause friction between the stator and the rotor and,
as a result, affect the regular operation of the motor.

At the same time, another widely spread mechanical failure is bearing faults. The
production of bearings is carried out under stringent requirements for quality. However,
the bearing’s real lifespan can be significantly decreased due to different ambient and man-
ufacturing factors, such as material fatigue, improper placement, contamination, improper
lubrication, and bearing currents [20]. Constant monitoring of the bearing parameters, such
as temperature measurement, timely lubricant analysis, noise, and vibration measurement,
could significantly decrease the risk of bearing damage [21].

The distribution of all the faults mentioned above depends mainly on the motor’s
parameters, such as machine type, size, rated voltage, etc. To increase the reliability of the
machine, many parameters must be monitored [22]. The main faults and their signatures
are shown in Table 1.

Table 1. Signatures of the main faults in electrical machines.

Fault Signatures Winding Short Circuit Rotor Broken Bar(s) Eccentricity Bearing Faults
[23,24] [25] [26,27] [28]
vibration v v v *
current * * 4 *
temperature v v v X
magnetic flux changes * * * v
chemical analysis v X X X
torque changes * * 4 X

S —the most preferable parameter for condition monitoring; ¥/—parameter can be used for condition monitoring; X —parameter cannot
be used for condition monitoring.

As shown in Figure 1, three main types of machine maintenance can be expressed to
be applied in practice: corrective, preventive, and predictive maintenance [29].

In the case of corrective maintenance, also known as reactive maintenance, all needed
repairs are assumed to be done after the failure has already occurred. However, this
solution is appropriate only for small and insignificant workstations, where unexpected
failure does not lead to economic or catastrophic consequences. Alternatively, many
manufacturers assume preventive maintenance to the machine to avoid fatal outcomes.
In this case, the electrical equipment needs to be regularly checked by the manufacturers
through scheduled and specified inspections.



Appl. Sci. 2021, 11, 2761 30f19

(@) (b)

Failure
occurrence

/

Machine health
Machine health

Control Control
point point
Machine lifespan Machine lifespan
(©)
Repair
ﬁ point
[
)
g
2 Expected failure
& occurrence
> \
%~

Machine lifespan
Figure 1. Maintenance types: (a) corrective maintenance, (b) preventive maintenance, (c) predictive maintenance.

Although this solution can prolong machine lifespan, this schedule-based condition
monitoring approach provides very little information on the remaining useful lifetime
(RUL) of the devices and does not allow for their prognostic and full exploitation [30].
Moreover, because of the scheduled controls in production, it usually means a partial or
total shutdown of the manufacturing process, leading to inefficient resource usage and
extra operating costs.

To decrease shutdown costs and minimize downtime, manufacturers switch their
production over predictive maintenance [31,32]. Condition monitoring is an essential
component of predictive maintenance that allows forecasting a further failure based on
electrical equipment’s working conditions. A schematic illustration of the condition mon-
itoring is shown in Figure 2. As can be seen, condition monitoring consists of several
stages. The accuracy of measuring systems largely depends on the sensors used for data
acquisition. Signal processing is one of the essential stages in condition monitoring.

Feature Extraction

[Machine H Data Acquisition J—P[ Signal Processing

Fault Detection

{Machine Condition]

Figure 2. General diagram of decision models.

For feature extraction, to predict and teach the system to detect faults in the future, the
system needs a more powerful tool. Moreover, as the data amount is increasing worldwide
and computer science is rapidly developing, it is reasonable to remake production under
advanced approaches using artificial intelligence (AI). There are widely used thermal
imaging in industry to monitor the fault at the early stages of development [33]. In this
case, as an example, different variants of machine learning (ML) algorithms can be used
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for fault detection. These algorithms, as well as their comparison, are described in the
following chapters.

2. Diagnostic Possibilities with Machine Learning

Many types of research about intelligent health monitoring refer to machine learning
(ML) [34-36]. ML is a study of computer science and artificial intelligence that is not
oriented directly to problem solution but rather learning in the process by applying solu-
tions to many similar problems [37]. Typical tasks of ML are classification and regression,
learning associations, clustering, and other machine learning tasks, such as reinforcement
learning, learning to rank, and structure prediction [38]. ML is closely related to data
mining, which can discover new data patterns in large datasets. The main difference is that
ML is concentrated on adaptive behavior and operative usage, while data mining focuses
on processing extensive amounts of data and discovering unknown patterns. Based on
the dataset, so-called training data, ML algorithms can build a model that predicts and
makes decisions. There are many types as well as algorithms of ML. These algorithms can
be supervised, unsupervised, semi-supervised, and reinforcement [39]. Figure 3 shows the
most common methods used in machine learning.

|

Unsupervised Learning
Segmentation, big data visualization,

MACHINE LEARNING —J'

Neural Networks

|

Reinforcement Learning Deep Learning

Real-time decisions, skill acquisition,

face recognition, planning. learning tasks, robot navigation, Algorithms:

1. Clustering gaming, resource management. *  Autoencoder neural networks
2. Association Algorithms: +  Convolutional neural networks
3. Generalization « Control Theory *  Perceptron neural networks
Aloorithms: *  Game Theory *  Probabilistic neural networks
Algorithms:

. *  Genetic Algorithms *  Recurrent neural networks

Fuzzy C-Means

Principal Component * Multi-Agent Systems

Cluster Analysis *  Simulation-Based Optimization

. .
K-Means Statistics

*  Swarm Intelligence

*  Q-learning

Figure 3. Algorithms of machine learning.

The basic paradigms of ML are supervised and unsupervised algorithms. Supervised
ML, also known as “learning with a teacher,” is a type of learning from examples, where
the training set (situation) and test set (required solution) are set [40,41]. Those training sets
are challenging to obtain from industry and laboratories. Because of the limited number of
faulty machines working in the industry due to scheduled maintenance (preventive) and in
laboratories, a limited number of destructive tests can be performed for training purposes.
Moreover, data collection with more than one fault (composite faults) in the same machine
is not straightforward in both scenarios. Thanks to the increasing computational power of
computers and cloud computation, the mathematical models of electrical machines can
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train Al algorithms. A comparison of different types of mathematical models of induction
motors and their attributes can be found in [42,43].

At the same time, unsupervised ML, also known as “learning without a teacher”, is a
type of learning where patterns are to be discovered from unknown data [44,45]. In this
case, there is only training data, and the aim is to group objects into clusters and/or reduce
a large amount of the given data. Sometimes, industrial systems use semi-supervised
algorithms in order to get a more precise outcome. In this case, some cases have both
training set and test set, while some have only training data.

Differently from basic approaches, reinforcement ML focuses on understanding pat-
terns in repetitive situations and their generalization [46]. The purpose is to minimize
errors and increase accuracy; the machine learns to analyze the information before each
step. Moreover, the machine aims to get the maximum reward (benefit) from the learning,
which is set in advance, such as minimum resource spending, reaching the desired value,
minimum analyzing time, etc.

One group of widely used intelligent condition monitoring methods, which can be
successfully applied to condition monitoring of many machine parameters, is artificial
neural networks (ANNSs). ANNs can be supervised, unsupervised, and reinforced. Many
studies mistakenly consider NN as a separate field from machine learning groups. How-
ever, NNs and deep learning are related to computer science, artificial intelligence, and
machine learning. A diagram of NN related fields is shown in Figure 4.

Computer Science

Artificial Intelligence

Machine Learning

Neural Network

Deep Learning

Figure 4. Neural network-related fields.

Machine learning is a powerful tool with a broad set of different algorithms that can
be applied for solving many problems. These algorithms, as well as other applications, are
described in more detail in the following chapters.

3. Supervised Machine Learning

Supervised ML includes a variety of function algorithms that can map inputs to
desired outputs. Usually, supervised learning is used in the classification and regression
problems: classifiers map inputs into pre-defined classes, while regression algorithms map
inputs into a real-value domain. In other words, classification allows predicting the input
category, while regression allows predicting a numerical value based on collected data.
The general algorithm of supervised learning is shown in Figure 5.
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Figure 5. Supervised learning algorithm.

Unsupervised learning aims to discover features from labeled examples so it is possible
to analyze unlabeled examples with possibly high accuracy. Basically, the program creates
a rule according to what the data are to be processed and classified.

Among supervised algorithms, the most widely used are the following algorithms:
linear and logistic regression [47,48], Naive Bayes [49,50], nearest neighbor [51,52], and
random forest [53-56]. In condition monitoring and diagnostics of electrical machines,
the most suitable supervised algorithms are decision trees [57-59] and support vector
machines [60-62].

3.1. Decision Trees

A decision tree (DT) is a decision support tool extensively used in data analysis and
statistics. Special attention has been paid to DTs in artificial data mining. DTs’ goal is to
create a model that predicts the target’s value based on multiple inputs. The structure
of DTs can be represented by branches and leaves. The branches contain attributes on
which the function depends, while leaves contain the values of the function. The other
nodes contain attributes by which the decision cases are different. An example of the DT
algorithm is shown in Figure 6.

Among other decision models, DTs are the simplest and need a little amount of data
to succeed. Moreover, this algorithm can be a hybrid model with another decision model in
achieving a more accurate outcome. However, these models are unstable. A little amount
of input data can lead to a significant change in the decision tree structure, leading to
inaccurate results. Additionally, regression algorithms can fail in the case of decision trees.
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FIRST FEATURE

THIRD FEATURE Decision 2

Decision 3 Decision 4
Figure 6. Decision tree diagram.

3.2. Support Vector Machines

Another widely used condition monitoring set of ML algorithms are the support vector
machines (SVM). This is a set of supervised models used for regression, novelty detection
tasks, feature reduction, and SVM, which is preferable in classification objectives [63].
In linear classification, each datapoint is represented as a vector in n-dimensional space
(n—the number of features). Each of these points belongs to only one of two classes.
Figure 7 shows an example of data classification.

A Class 1
|:| Class 2

——— Possible hyperplanes
—— Optimal hyperplanes

Figure 7. Possibilities in the finding of the optimal hyperplane.

In the picture, two data classes are represented: Class 1 (triangles) and Class 2 (squares).
The aim is to separate these points by a hyperplane of dimension (n — 1), ensuring a
maximum gap between them. There are many possible hyperplanes. Maximizing the gap
between classes contributes to a more confident classification and helps to find an optimal
hyperplane. As shown in Figure 8, to detect the optimal hyperplane, it is essential to find
support vectors that can be defined in as closer position to the hyperplane as possible.
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Figure 8. Support vectors and optimal hyperplane in linear classification.

In addition to linear classification, SVMs can deal with non-linear classification using
the kernel trick, also known as the kernel machine. As shown in Figure 9, the processing
algorithm is similar to the linear one, but the kernel function replaces the datapoints.

/N Class1
[[] Class2

A I Support Vectors

Figure 9. Support vectors and optimal hyperplane in non-linear classification.

SVM is a good solution when there is no initial information about the data. This
method is highly preferred because of the little computation power needed to produce
results with significant accuracy. Although kernel machine is a great advantage of SVM, its
managing is a complicated task. Moreover, it can take a long time to make large amounts
of data processed, so SVM is not preferable in large datasets.

Supervised ML approaches are widely applicable for condition monitoring of electrical
machines. Many relevant kinds of research can be found in the literature. The authors
in [64] proposed a new signal processing method for fault diagnosis of low-speed machin-
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ery based on DT approaches. In [65], the authors applied statistical process control and
supervised ML techniques to diagnose wind turbine faults and predict maintenance needs.
The researchers in [66] presented a semi-supervised ML method that uses the DT algo-
rithm'’s co-training to handle unlabeled data and applied to fault classification in electric
power systems. In [67], the authors proposed a RUL prediction method of lithium-ion
batteries using particle filter and support vector regression.

4. Unsupervised Machine Learning

Unsupervised ML includes algorithms that can learn spontaneously to perform a
proposed task without intervention from a teacher. Unsupervised learning is often con-
trasted with supervised learning when an outcome is known, and it is required to find a
relationship between system responses. In unsupervised learning, as shown in Figure 10,
the program tries to find similarities between objects and divide them into groups if there
are similar patterns. These groups are called clusters. Among supervised algorithms, the
most widely used are the following algorithms: cluster analysis, fuzzy c-means [68,69],
and k-means [70]. In the diagnosis of electrical machines, principal component analysis is
the most frequently used algorithm [71-73].

INITIAL DATA RESULT

L] ]
Test set []

A [ DD
Al A =
] AL
n Ada
A A
A A

Class 2

L]

Class 1

A
A A

Figure 10. Unsupervised learning algorithm.

More frequently, the dataset is so large that it is difficult to interpret and distinguish
the necessary information. Principal component analysis (PCA) is one of the most spread
algorithms to reduce the data’s dimensions while losing the least amount of information.
PCA can be interpreted geometrically, as shown in Figure 11.

The algorithm of SVM is as follows:

(a) Points with specific coordinates are designated on the plane.

(b) The direction of the maximum data change is selected, and a new axis PCA is drawn
through the experimental points.

(c) Experimental points are to be projected on the axis PCA.

(d) Itis assumed that all the points were initially projected on the axis PCA, and all
deviations from this axis can be considered as noise.



Appl. Sci. 2021, 11, 2761

10 of 19

@

If noise is considerable, another axis can be added perpendicular to the first one to
describe the data’s remaining change. As a result, there is a new representation, which
has a smaller number of variables, where all variables are considered, and none of them
are deleted. An insignificant part of the data is separated and turns into noise. The main
components give the initially hidden variables that control the data device.

(d)

Figure 11. Support vectors and optimal hyperplane in non-linear classification: (a) initial dataset, (b) optimal vector

determination, (c) projection of initial dataset on the vector, (d) new data parameters definition.

PCA is the most common approach to dimensionality reduction. It is a useful tool for
the visualization of large datasets. One of PCA’s main advantages is that components are
independent of each other, and there is no correlation between them. It can significantly
reduce the training time. At the same time, these independent values can become less
interpretable. Besides applying PCA, there is still information loss, and the data analysis is
relatively less precise than the original values.

Many studies are available in the literature where unsupervised algorithms are used
for the analysis of high-dimensional datasets. In [74], the authors applied a new method to
the fault diagnosis of rolling bearings in the field of high-dimensional unbalanced fault
diagnosis data based on PCA for better classification performance. In [75], researchers used
a PCA-based method to monitor non-linear processes. The researchers in [76] proposed a
PCA-based hybrid method for monitoring linear and non-linear industrial processes.

5. Reinforcement Learning

Reinforcement learning (RL) is one of the ML methods, where the system (agent)
learns by interacting with some environment. Different from supervised algorithms, there
is no need for labeled data pairs. RL is mainly focused on finding a balance between an
unknown environment and existing knowledge. The general algorithm of reinforcement
learning is shown in Figure 12.
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Figure 12. Reinforcement learning algorithm.

One of the algorithms, which can be used in data mining and cluster analysis, is
swarm intelligence [77-79]. Swarm intelligence (SI) describes a decentralized and self-
organized system’s collective behavior, which is considered an optimization method.
SI system consists of agents (boids) that interact with each other and the environment.
SI should be a multi-agent system with self-organized behavior, which could exhibit a
reasonable behavior. This algorithm can adapt to changes and converge fast at some
optima. Simultaneously, solutions are dependent sequences of random decisions and can
be trapped in local minimum in complex tasks.

At the same time, the more frequently used reinforcement algorithm in condition
monitoring is the genetic algorithm [80-82]. A genetic algorithm (GA) is a tool for solving
optimization problems and modeling random selection using natural selection mechanisms
in the environment. A distinctive feature of the GA is the emphasis on using the “crossing”
operator, which uses the instrumental role of crossing in wildlife.

In the case of GA, the problem is formalized so that its solution can be encoded in
the form of a vector of genes (genotype), where each gene has some value. In classical
implementations of GA, it is assumed that the genotype has a fixed length. However, there
are GA variations that are free from this limitation. The general diagram of GA is shown in
Figure 13.

Basically, the optimization algorithm with the usage of GA is as follows:

(a) There is a task, and many genotypes of the initial population are to be created.

(b) This initial set of data is to be assessed using the “fitness function,” which determines
how well each initial population’s genotype solves the task.

(c) After this, the best coincidences are to be selected in the population for the next
generations.

(d) The best coincidences obtain new solutions. This process repeats until the task is
fulfilled and a resultant population is created.

The main benefit of GA is that specified knowledge about the domain is not needed.
GA generates a solution through genetic operators. Moreover, a result can contain more
than one appropriate solution. However, GA sometimes suffers from degeneracy. The de-
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generacy can occur if multiple chromosomes represent the same solution. The same shapes
of chromosomes occur repeatedly. In this case, the optimal solution is not guaranteed.

(a) (b)

(0 (d)

Figure 13. Genetic algorithm diagram: (a) creation of initial population, (b) application of fitness function, (c) selection of
the best coincidences, (d) creation of resultant population.

Nonetheless, GA is an efficient tool for industrial processes optimization. In [83],
researchers proposed a new method based on GAs that can be used for both fault-type
classification and RUL prediction. The authors in [84] proposed a method based on
genetic mutation particle swarm optimization for gear faults diagnosis. In [85], researchers
proposed a GA-based method to optimize and improve the photovoltaic array accuracy.

6. Neural Networks

ANN s have been proved as quite approving tools for condition monitoring and pre-
diction of RUL due to their adaptability, nonlinearity, and arbitrary function approximation
ability [86,87]. The main advantage of NNs is that they can outperform nearly every other
ML algorithm. This method is supposed to analyze and model processes of damage prop-
agating and predict further failures based on collected data. The main tasks that neuron
networks deal with are [88,89]:

1. Classification,
2. Prediction,
3. Recognition.
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Artificial neural networks originate from attempts to reproduce biological nervous
systems’ ability to learn and correct errors by modeling the brain’s low-level structure. To
create artificial intelligence, you need to build a system with a similar architecture. The
architecture of an ANN is shown in Figure 14.

HIDDEN LAYERS
INPUT LAYER OUTPUT LAYER

Figure 14. Neural network architecture.

ANN: s consist of machine learning algorithms that constitute the human brain with
connected signals called neurons. Neurons, both biological as well as artificial, consist of
the cell body, dendrite (input), synapse (connection), and axon (output). As seen from the
picture, the simplest model of an artificial neural network has three layers of neurons. The
first (input) layer is connected to a middle (hidden) layer. The hidden layer is connected
to the final (output) layer. In case of the neural networks, to solve a given problem, it is
necessary to collect training data. A training dataset is a collection of observations, of which
the values of the input and output variables are defined and specified. The neurons transfer
a signal from the input layer to the output. The input layer neurons receive data from the
outside environment (measuring system, sensors) and, after processing them, transmit
signals through the synapses to the neurons of the hidden layer. The neurons of the hidden
process receive signals and transmit them to the neurons of the output layer. Basically, the
neuron is a computing unit that receives information, performs simple calculations on it,
and transfers it further.

Neural networks are not being programmed; they are learning. Learning is one of
the main advantages of neural networks over traditional algorithms. Technically, training
consists of finding the coefficients of connections between neurons. In the process of
training, the neural network can identify complex dependencies between input and output
data and perform generalizations. This means that in case of successful training, the
network will be able to return the correct result based on data absent in the training sample
and incomplete or partially distorted data.

If a neural network consists of more than three layers, which is an increasing tendency
nowadays, the algorithm can be considered a deep learning or deep neural network
(DNN). Generally, deep learning is one of the ML techniques in ANNs which analyzes big
machinery data with more precise results.

NNs have been considered as a universal tool in solving many problems. However,
each method has its own limitations, and NNs are no exception. Usually, NNs are used as
a hybrid with some other condition monitoring techniques. All the limitations of ANNs
and other mentioned ML techniques are given in the following section.
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Different types of NN are used for different parameters monitoring. In the literature, a
variety of applications can be found. The authors in [90] proposed a novel intelligent fault
diagnosis method based on multiscale convolutional NN to identify different failures of
wind turbine gearbox. In [91], the authors proposed an intelligent bearing fault diagnosis
method combining compressed data acquisition and deep learning, which provides a new
strategy to handle the massive data more effectively. The authors in [92] proposed a deep
transfer learning (DTL)-based method to predict the remaining useful life in manufacturing.
In [93], the author suggested a novel deep convolutional NN cascading architecture for
performing localization and detecting defects in power line insulators. Many algorithms
have been developed over the years for the automated identification of partial discharges.
In [94], an application of a neural network to partial discharge images is presented, which
is based on the convolutional neural network architecture, to recognize the aging of high-
voltage electrical insulation.

7. Trends in Condition Monitoring and Discussion

The maintenance of the electrical equipment is a very challenging topic at present.
Proper, reliable, and efficient fault diagnostic techniques are becoming more and more
essential as the world moves towards Industry 4.0 standards [9]. A major issue related
to the prediction and condition monitoring is the reliability of the used methods [95,96].
ML algorithms have given a potent tool for classifications. ML methods are not a novelty;
thus, researchers meet different limitations. Nowadays, intelligent condition monitoring
methods mentioned in previous chapters are mainly used together as a hybrid to get more
precise and robust results of fault diagnostics in industrial systems [97].

The main problem of machine learning and neural networks is the training datasets
required for system training. To meet precise results and make accurate predictions, the
amount and the quality of data play a significant role. Mostly, the dataset shows irrelevant
features, requiring a function to build a model. This function will represent how flexible
the model is. The main problem with the data is either overfitting or underfitting.

Big data is a trending challenge nowadays. At the same time, high dimensionality and
the limited number of training samples lead to overfitting [98]. Frequently, this problem
occurs with neural networks [99]. Overfitting means that there is a very qualified training
dataset but a very poor test dataset. Simultaneously, the system cannot perform well if the
training set is too small or if the data is too noisy and corrupted with irrelevant features.
There can be an underfitting phenomenon where the test dataset is good enough, but
training data are inferior. All the examples are shown in Figure 15.

@)

(b) ()

Figure 15. Data generalization: (a) test data is underfitted, (b) test data is overfitted, (c) test data is balanced.
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As shown in Figure 15, both underfitted and overfitted models describe the same
dataset. Although the too generalized model does not give the priciest results, at the same
time, the overfitted model has a definite idea and is not flexible enough for upcoming new
datasets. The challenge is to find a balance between underfitting and overfitting by the
usage of different models.

ML is a widespread trend in load forecasting. Many operating decisions, such as
reliability analysis or maintenance planning, are based on load forecasts [100]. In this case,
artificial neural networks have paid significant attention to proper performance. The main
problem overfitted sub-optimization system of ANN that can lead to uncertain forecast
results [101]. Working in dynamically changing environments can be a complicated task
for NNs. Even if the network has been successfully trained, there is no guarantee that it
will work in the future. The market is continually transforming, so today’s model can be
obsolete tomorrow. In this case, various network architectures must be tested to choose
the best one that could follow changes in the environment. Moreover, in the case of NNs,
a phenomenon can occur known as catastrophic forgetting. This means that NNs cannot
be sequentially trained in several tasks. Each new training set will cause rewriting of all
neuron weights, and, as a result, the previously trained data will be forgotten.

Another spread limitation for NN is the so-called “black box” phenomenon. As was
already mentioned, deep learning successfully learns hidden layers of NN architecture
mapping inputs and outputs. Approximating the function makes it impossible to study
insights into the structure and, as a result, study a cause of a mistake. For this reason, in
particular, it is reasonable to choose some other technique or to use NNs in combination
with another algorithm.

8. Conclusions

A review of the state of the art, machine learning-based fault diagnostic techniques
in the field of electrical machines is presented in this paper. The artificial intelligence-
based condition monitoring techniques are becoming more popular as computer power
is increasing day by day. Unlike conventional on-board processors responsible for data
collection and analysis, the utilization of powerful remote resources using cloud compu-
tation gives the freedom of unlimited memory and processing power to handle big data
vital for intelligent techniques. Moreover, by effective training of Al algorithms using
mathematical models with various faulty conditions, the diagnostic algorithms can be
made more reliable.

The collection of these big data is neither possible from industry nor the lab environ-
ment. It is not possible from the industry because of the limited number of faulty machines
under service. In the lab, a limited number of machines can be broken due to economic
constraints. Due to the trend of mounting sensors on the remotely located machines and
collecting their data over the cloud, the processing power-related constraints are resolved.
Machine learning makes a considerably significant portion of Al techniques. For future
work, the studied techniques will be implemented in practice on real industrial objects.
Those techniques can use statistical or convention signal processing techniques to detect
fault-related patterns and estimate electrical machines’ life estimation. Moreover, they give
the flexibility to train algorithms under a variety of working conditions. Those conditions
may include grid fed, scalar control, low load, and changing load in case of induction
machines in particular and for the rest of other machines in general.
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Abstract

Bearing failures in electrical machines pose significant challenges, attracting attention in diagnostic research. The widespread
adoption of variable-speed drives across various motor applications has increased the effects of bearing currents, necessitating
thorough exploration in both academic and industrial contexts. The paper contributes valuable insights into identifying and
addressing bearing-related issues in electrical machines. It comprehensively investigates the matter, investigating damage types
and diagnostic techniques specific to bearing currents in induction machines. Moreover, it provides insights from experiments
conducted in controlled laboratory settings to replicate bearing current faults. As the industry integrates advanced technologies
into manufacturing processes and gains traction, preventive maintenance is increasingly emphasized. Consequently, the paper
expands its investigation into signal pre-processing to enhance fault prediction accuracy by optimizing machine signals. Given
the dynamic nature of industrial standards and the growing demand for predictive maintenance strategies, this research presents
a predictive method for early fault detection. Aiming for heightened efficiency, reduced downtime, and enhanced reliability,

the perspectives outlined in this paper make a meaningful contribution to the evolving field of predictive maintenance.

Keywords Induction motors - Ball bearings - Condition monitoring - Machine learning - Predictive maintenance

1 Introduction

Nowadays, electrical machines and drive systems play a piv-
otal role in various domestic and industrial sectors. Their
widespread use has brought maintenance concerns to the
forefront. Among these machines, three-phase induction
motors are particularly prominent due to their ability to
meet various industrial needs, such as low maintenance,
cost-effectiveness, compact design, and variable control
capabilities. Using frequency converters for control is the
most cost-effective method and ensures optimal performance
[1]. However, this approach can lead to the generation of
induced shaft currents. Numerous cases in the literature are
related to power electronics and bearing currents. Authors in
[2] discuss a reduction in common mode voltage and bear-
ing currents in the DC-link inverters. In Plazenet et al. [3],
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the influence of parameters on discharge bearing currents
in inverter-fed induction motors is introduced. Authors in
[4] present mitigation techniques and modeling for high-
frequency bearing currents in inverter-fed AC drives. In Xu
et al. [5], the authors discuss the experimental assessment
of high-frequency bearing currents in the induction motor
driven by a silicon carbide inverter.

Identifying surface damage resulting from shaft currents
on bearings is typically challenging, especially visually.
Shaft currents don’t consistently pass through the bearing.
However, when they do, faults often appear in areas where the
lubricant coating is thinnest due to heightened stress. Shaft
currents pose a significant challenge in various industries [6].
Case studies and their solutions can be found in wind turbines
[7], marine applications [8], assembly lines [9], and food pro-
duction [10]. Each energy system is complex, and ensuring
device reliability requires monitoring numerous parame-
ters, which demands substantial computational resources
and modern technologies. Given the vast amount of data,
employing advanced diagnostic methodologies rooted in arti-
ficial intelligence becomes logical [11]. These intelligent

@ Springer



Electrical Engineering

algorithms not only detect defects but also forecast poten-
tial faults in the future. Among various methods available,
machine learning-based algorithms are the most prevalent
tools for diagnosing rotating machines. They create a com-
plex weighted combination based on training data, which can
later be used to deduce results for incoming data [12]. When
it comes to diagnosing bearing issues in electrical machines,
commonly employed machine learning techniques include
decision trees [13], support vector machines [14], princi-
pal component analysis [15], and genetic algorithms [16].
Additionally, various neural network variations are utilized,
such as convolutional neural networks [17], generative neu-
ral networks [18], and deep learning approaches [19]. This
research has prioritized neural network-based approaches for
their ability to learn quickly and effectively.

This study makes significant contributions to the field of
predictive maintenance by addressing the critical challenge
of acquiring training datasets for implementing artificial
intelligence algorithms. This systematic approach enriches
the available datasets and provides valuable insights into the
early detection and diagnosis of bearing faults. Consequently,
it advances the development and implementation of predic-
tive maintenance strategies.

The paper thoroughly investigates bearing currents in
induction machines, covering damage types and diagnos-
tic techniques, particularly emphasizing preventive mainte-
nance strategies. Various faults were deliberately induced in
laboratory settings to overcome the challenge of acquiring
training datasets for artificial intelligence algorithms in pre-
dictive maintenance. The study underscores the significance
of vibration signals in the early detection of bearing faults,
mathematically describing them in four natural frequen-
cies. Datasets encompass data from current, voltage, torque,
speed, and vibration collected under different control settings
and loads. Additionally, the paper explores machine learning
approaches for fault detection and prediction, enriching avail-
able datasets and offering insights into early fault detection
and diagnosis, thus advancing the development and imple-
mentation of predictive maintenance strategies in industrial
settings.

This manuscript is organized as follows. Chapter 2 intro-
duces the nature of bearing currents. Chapter 3 presents
the possibility of detecting bearing currents in the machine.
Chapter 4 describes the most typical damages inflicted by
bearing currents. In Chapter 5, the bearing faults caused
by bearing currents are performed in the lab environment.
Chapter 6 presents a pre-processing of the datasets to get
predictions in Chapter 7.

@ Springer

2 Bearing currents

Atpresent, the most cost-effective and straightforward means
of ensuring optimal performance of electrical machines
involves the application of frequency converter control. This
strategy is widely embraced globally, resulting in a height-
ened adoption of power electronics. However, these solutions
often give rise to shaft currents induced by the frequency con-
verter, presenting an escalating challenge in modern industry.

Despite the longstanding acknowledgment of bearing cur-
rents in electrical machines, which has persisted for nearly
a century, it remains a prominent area of investigation
[20]. Failures arising from bearing currents inflict significant
mechanical damage on electrical machines. In contemporary
drive systems, deploying converters contributes to a phe-
nomenon wherein current traverses the circuit, encompassing
the bearings, frame, and machine shaft [21]. Although miti-
gation measures are increasingly employed to tackle bearing
currents, it is noteworthy that they may inadvertently engen-
der reliability concerns and necessitate additional mainte-
nance [22].

In general, bearing currents can be classified into two pri-
mary types: classical bearing currents and inverter-induced
bearing currents.

2.1 Classical bearing currents

In 1927, it was observed that the presence of theoretical and
practical indications of bearing current could be eliminated
if an ideally balanced and symmetrical motor design was
achievable [23]. Typically, these issues stem from structural
irregularities within the machine, including static or dynamic
eccentricity, design inconsistencies, unbalanced power sup-
ply, laminations with broken connections, and faults in the
rotor [24]. This phenomenon was demonstrated in [25]
through simulations, wherein broken rotor bars produced
eddy currents in the shaft, leading to bearing damage. The
asymmetry of the magnetic field induces a current in the
motor shaft, resulting in a measurable potential difference
between both ends of the shaft. According to standards, a
shaft voltage exceeding 300 mV is considered detrimental
to bearings, although lower levels may also cause damage
if persisting for prolonged periods. Despite enhancements in
design tolerances and the quality of production materials, the
monitoring of bearing currents remains essential due to their
potential risk to ball bearings. This concern becomes partic-
ularly critical for motors starting from 100 kW. Additionally,
classical bearing currents can be readily detected in motors
from 7.5 kW [26]. Furthermore, it is advisable to implement
preventive measures against bearing currents, such as insu-
lated bearings or shafts, in motors starting from 18.5 kW
[27].
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2.2 Inverter-induced bearing currents

Inverter-induced bearing currents encompass several cat-
egories: electrical discharge machining bearing currents,
capacitive bearing currents, bearing currents caused by rotor
ground currents, and high-frequency circulating bearing cur-
rents. The classification of these currents is illustrated in
Fig. 1. The primary source of these currents is the com-
mon mode voltage generated by the inverter and the rapid
voltage fluctuations (high du/dt) at the motor terminals [28].
This phenomenon is the root cause of various types of
bearing currents capable of causing damage to bearings in
motors operating with variable-speed drives. As a result of
coupling, the bearing capacitance and other parasitic capac-
itances become charged, leading to a voltage buildup on
the motor shaft. If this accumulated voltage surpasses the
breakdown voltage of the lubrication film, capacitive energy
discharges occur through the bearings, resulting in electrical
discharge machining current flow. The path of current trav-
els from the shaft to the frame, passing through the rings and
rolling elements of the bearing. Shaft voltages ranging from
3 to 30 V are significant enough to induce discharges in the
bearings [29], with voltage levels typically between 3 and
10% of the electrical machine’s nominal voltage [30].

The rapid fluctuations in the common mode voltage trigger
high-frequency common mode currents to traverse various
components of the motor, including the windings, stator lami-
nations, air gap, rotor, shaft, and bearings [29]. These currents
emerge from transistor switching during each switching
event. At higher speeds, a thin dielectric layer forms between
the bearing races and rolling elements, establishing a capac-
itive connection between the machine frame and the shaft.
Typically, these currents range from 5 to 10 mA and are gen-
erally considered non-detrimental to the bearings and motor
[31].

Bearing currents arising as rotor ground currents stem
from inadequate grounding of the motor frame [32]. This
situation often arises when the rotor is grounded through the
driven load, resulting in a more robust grounding than the
stator. This current traverses through the motor bearings to
the shaft, the load, and the controlling converter.

Regarding high-frequency circulating bearing currents,
the process involves the rapid du/dt of the voltage at the
machine terminals, generating additional high-frequency
common mode currents and parasitic capacitances between
the motor winding and stator laminations. With frequencies
reaching several megahertz, these currents ingress the rotat-
ing machine through the windings and exit through the frame
and laminations, creating a high-frequency circular magnetic
flux around the motor shaft. This flux induces a shaft voltage
that, if adequate, discharges through the bearings, generating
a circulating current in the bearings, shaft, and motor frame,
potentially surpassing the lubricant’s breakdown voltage.

3 Diagnostic and reduction possibilities
of bearing currents

Several techniques exist for detecting bearing currents in
electrical machines, such as the Rogowski coil [33], current
transformer [34], and a conventional multimeter. However,
given that bearing faults predominantly affect vibration rather
than the current spectrum, vibration analysis emerges as a
viable option [35]. Diagnostic approaches for bearing cur-
rents generally fall into direct and indirect methods [36].

3.1 Direct methods

Direct diagnostic methods are favored for promptly detect-
ing shaft currents. Detecting bearing currents in the motor
enables timely intervention to prevent faults, ultimately safe-
guarding the bearings of the electrical machine [37]. While
this approach identifies bearing currents, it provides only an
indirect indication. A multimeter can indicate if bearings are
prone to sparking, but precise measurement of shaft voltage
requires a multimeter with high input impedance for optimal
accuracy.

A universal and practical measuring device is recom-
mended for a comprehensive assessment of various motor
currents, shapes, and parameters. Oscilloscopes with a band-
width exceeding 100 MHz are preferred for this purpose.
Considering and recording ambient magnetic field levels are
crucial, as oscilloscopes are more susceptible to noise and
interference than multimeters. When focusing on motor bear-
ings, measuring only shaft voltage and current is typically
sufficient.

‘When measuring shaft currents, the oscilloscope’s settings
depend on factors such as motor size, speed, bearing type,
and temperature. Time scale reduction could start at approxi-
mately 500 microseconds, while voltage increase could begin
at around 5 V. Shaft voltage usually mirrors phase voltage
unless spark discharges occur in the bearings, leading to volt-
age fluctuations of =+ 20...80 V every 10 microseconds.

Alternatively, shaft currents can be measured using a
current transformer and a high-frequency non-inductive
(coaxial) shunt, preferably alongside an oscilloscope. Non-
inductive shunts, comprising two conductive tubes, mitigate
shunt saturation compared to current transformers but may
face challenges with transient currents and self-inductance.
Due to the temperature coefficient of the shunt material resis-
tance, adjustment of measurement results or adherence to
specified temperature ranges may be necessary.

Using a Rogowski coil is a common, straightforward, and
safe method for measuring phase and motor shaft currents.
During phase current measurements, the coil should encircle
power cables (excluding the neutral cable), while for shaft
current measurements, it should encircle the motor shaft. If
multiple power cables are present, the coil should encompass
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Fig. 1 Categorization of bearing
currents

INVERTER-INDUCED
BEARING CURRENTS

l

|

Common-Mode
Voltage

High-Frequency
Ground Voltage

| |
| |

EDM Bearing
Currents

Capacitive Bearing
Currents

Rotor Ground
Currents

Rotor Ground
Currents

all cables. A Rogowski measuring device connected to a log-
ger or oscilloscope, preferably with a bandwidth exceeding
100 MHz, facilitates shaft current measurements. However,
the Rogowski coil requires additional electronics and power
supply and is susceptible to noise, necessitating attention to
electromagnetic compatibility.

3.2 Indirect methods

Indirect diagnostic methods for detecting bearing currents
in electrical machines are used only after the bearing sur-
faces have suffered damage, prompting the rolling bodies to
produce vibration and noise. Moreover, identifying shaft cur-
rents indirectly demands expertise and thorough training due
to the diverse bearing damage types.

Vibration analysis stands as a commonly utilized tool
in electrical machine diagnostics. While vibration analysis
effectively pinpoints bearing faults, discerning faults aris-
ing from bearing and shaft currents amid other mechanical
defects in the bearings can pose a challenge. Thus, when
such current-induced failure modes are suspected, vibration
analysis must complement other direct or indirect diagnostic
techniques to validate findings and ensure diagnostic accu-
racy.

Ultrasonic detectors are also suitable tools for indirectly
detecting bearing currents. Similar to vibration analysis,
the ultrasonic spectrum exhibits sound peaks resulting from
passing shaft currents. Beyond data analysis, ultrasonic
detectors allow for listening to bearing defects like a stetho-
scope. While theoretically capable of detecting spark dis-
charges generated by shaft currents in bearings, the low
level of spark discharges within the ultrasonic range (with

@ Springer

Circulating Shaft
Currents

a maximum power of about 200 MHz) renders this method
challenging to implement in practice.

3.3 Limitation possibilities

In the case of motors with a power of more than 100 kW,
there are some solutions to decrease bearing currents. Table
| summarizes the main options for reducing bearing currents.

The effectiveness of these methods primarily depends on
motor parameters and the surrounding environment. How-
ever, shaft current leakage remains a risk.

4 Damages of bearing currents

During the initial phases, detecting damages caused by elec-
trical currents in the bearings often necessitates dismantling
the electrical machine, which isn’t practical. Instead, sub-
tle deviations from standard specifications on the bearing
races may be observed at a microscopic level. Visually, faults
resulting from bearing currents stand out from other mechan-
ical defects [46]. It is crucial to visually inspect replaced
bearings, especially if changes occur during maintenance
and there are concerns about shaft currents. The impact of
these currents on the bearing is influenced by factors such
as lubricant type, rotational speed, applied current, operating
duration, and material condition.

Typically, damages induced by electrical currents become
apparent only in later stages when the bearing surface has
already been compromised. Faults resulting from these cur-
rents often manifest in areas with the thinnest lubrication
layer, experiencing heightened stress. One common mani-
festation is "fluting," as depicted in Fig. 2a, where multiple
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Table 1 Possibilities to decrease bearing currents

Table 1 (continued)

Method Effect Comment

Method

Effect

Comment

One insulated Ineffective

bearing [38]

Circulating
currents within
the motor may be
mitigated, but an
uninsulated
bearing’s
lifespan is prone
to shortening

This is advised as a
temporary
measure solely
for smaller
motors. As
bearing currents
escalate, changes
in the lubricant’s
composition
significantly
reduce the
bearing’s
lifespan

Conductive
grease [39]

Effective if bearing
currents are low

One insulated Effective
bearing and
grounding

contact [40]

The ground brush
or ring should be
positioned on the
non-insulated
bearing side. For
further
mitigation, a
common mode
filter can be
employed

Two insulated
bearings and

Very effective An exceptionally

effective solution

grounding is the utilization

contact of a common
mode filter

Common mode Relatively effective The most

filter (passive) economical and

[41] effective among
filters, it
diminishes
high-frequency
currents.

However, for
large motors,
supplementary
measures are
necessary

Hybrid or ceramic ~ No spark solutions
bearings [42]

Highly effective, it
is arguably the
optimal solution
for small motors

One grounding
contact or ring
[43]

Two grounding
contacts or rings

dU/dt filter
(active) [44]

Sine wave filter
[45]

Correct ground
and cabling

Effective

Very effective

It decreases a bit in the
case of larger motors

Decreases

Longer cables can

reduce currents

Regular

maintenance is
required for the
grounding brush.
The solution is
suitable for
smaller motors.
A common mode
filter can be used

The grounding

brush must be
regularly
maintained. This
solution is
well-suited for
smaller motors
and can be
complemented
with a common
mode filter

This will be

utilized for the
highest output
voltage, reaching
up to 690 VAC

The extent of

reduction varies
depending on the
filter, but it
primarily targets
the circulating
shaft currents.
This filter type is
the costliest
among options
and entails
considerable heat
losses that need
to be considered

Proper grounding

and cabling are
fundamental
prerequisites for
addressing the
issue. This
approach
effectively
reduces the main
circulating
leakage currents,
thereby lowering
the risk of motor
insulation
failures and
disturbances
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L.

Fig. 3 Lubricant darkening due to discharges

lines form across the bearing raceways. Fluting is frequently
associated with constant rotational speeds and low voltage.
Additionally, frosting and pitting can occur due to bearing
currents. However, the focus of this paper is primarily on the
fluting fault.

Changes in the lubricant’s condition can also serve as indi-
cators of motor issues, with darkening often attributed to
bearing currents. Sparking can result in lubricant oxidation
and darkening due to electrical discharges, as observed in
experiments depicted in Fig. 3.

5 Implementation of bearing current fault
in the laboratory environment

To mitigate severe consequences and economic losses in
production, it is advisable to implement strategies related
to predictive maintenance. The system can be trained to
predict potential failures using artificial intelligence algo-
rithms in this context. However, acquiring the necessary
training datasets is a significant challenge in implementing
such approaches. To achieve accurate forecasting, gathering
a large quantity of high-quality datasets is crucial. Hence,
various faults were intentionally induced on the bearings in
laboratory settings.
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Fig.4 Experimental test bench for implementation of bearing current
faults: (1) non-drive end bearing, (2) drive end bearing, (3) belt, (4)
servo drive, (5) power supply

Faults were induced in healthy bearings to obtain faulty
bearings for experimentation. An experimental test bench
for fault implementation was meticulously constructed to
facilitate this investigation. As previously mentioned, fluting
typically occurs under conditions of low voltage and constant
rotational speed, frosting manifests when the motor operates
at variable speeds, and pitting is commonly observed in situ-
ations involving low speed and a high-voltage power source.
The radial load was applied to the bearings through the belt’s
tension. An experimental test bench was constructed to inves-
tigate and analyze these different scenarios, as illustrated in
Fig. 4.

Faults were intentionally induced under controlled con-
ditions to mimic real-world scenarios. A diverse range of
failures induced by bearing currents were successfully repli-
cated through rigorous experimentation. Table 2 presents an
analysis of all studied cases with shaft current faults.

In this paper, there were studied the fluting failure that
appeared in case of 500 r/min and 10 A. In this scenario, the
lubricant exhibited a slight darkening. With an increase in
rotational speed, a clear case of fluting was observed on the
inner raceway and a darkening on the outer raceway in the
case of the DE-bearing, as illustrated in Fig. 5. Meanwhile,
the NDE bearing displayed darkened inner and outer race-
ways with subtle fluting trails. Additionally, both bearings
showed darkening of the rolling elements.
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Table 2 Bearing current faults

under different conditions Conditions Results
Speed, Current, A Inner ring Outer ring Balls
r/min

Drive end bearing

100 10 Darkened race Darkened race No changes

100 20 Slight fluting Darkened race Darkened balls

500 10 Fluting Darkened race Darkened balls

800 10 Fluting Darkened race/slight Darkened balls
fluting

800 20 Fluting/pitting Slight fluting Darkened

balls/pitting

Non-drive end bearing

100 10 Darkened race Darkened race Slightly
darkened
balls

100 20 Slightly darkened race Darkened race Darkened balls

500 10 Darkened race Darkened race/slight Darkened balls

fluting

800 10 Slightly darkened race Darkened race/slight Darkened balls

fluting

800 20 Frosting Frosting Darkened
balls/frosting

!
?

"': ’w:

ey i
“ ) Hj Fig. 6 Experimental test bench

6 Data analysis

Induction machines are the most spread among other motor
types in production due to their easy maintenance, low
cost, and high efficiency [47]. These machines are typically
employed in variable-speed drives, which utilize power elec-
tronics for motor control, often using a frequency converter.
Consequently, there is a rising incidence of inverter-induced
Fig.5 DE bearing at 500 r/min and 10 A shaft and bearing currents. This study focused on testing bear-
ing faults in induction machines, and the experimental test
bench is illustrated in Fig. 6. The setup comprises a test-
ing machine, a loading machine, an accelerometer, and an
acquisition system.
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Fig. 7 Placement of triaxial accelerometer over the shaft

Dewetron DEWE2-M18 was used as an acquisition sys-
tem for data gathering and processing. The parameters of the
testing and loading motors are as follows:

Parameter on induction motor Value

Voltage, V Y 690 D 400 D 460
Frequency, Hz 50 50 60
Speed, r/min 1460 1460 1760
Power, kW 7.5 7.5 7.5
Current, A 8.8 15.3 12.9
Power factor 0.79 0.79 0.81

Regarding bearing faults, their primary impact is on vibra-
tion rather than the current spectrum. The vibration spectrum
is essential in this analysis of damaged bearings. In the
experiments, a triaxial accelerometer K-Shear + 100 g with
a sensitivity of 50 mV/g placed over the shaft was used
for vibration measurements. The rated values are related
to acceleration and measured in g. The placement of the
accelerometer is presented in Fig. 7.

This study’s datasets encompassed information extracted
from various parameters, including current, voltage, torque,
speed, and vibration. Data collection occurred under diverse
control settings (grid-fed, scalar, DTC) and various loads
(0-100%). To streamline the process and optimize resource
usage, it was unnecessary to analyze the entire signal. Focus-
ing on one or two specific regions where the fault’s influence
is most pronounced sufficed. The primary objective involved
identifying these crucial signal segments for training and
extracting significant patterns.

As aresult, numerous datasets contain precise information
about healthy and faulty conditions. Vibration signals can
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detect faults at a very early stage. For this reason, prioritiz-
ing vibration signals is common practice in cases of defective
bearings [48]. Identifying the frequency components associ-
ated with faults is crucial to detect early-stage damage. One
effective method for pinpointing faults is employing the fast
Fourier transform (FFT), which unveils the presence of these
faulty frequencies. Figure 8 illustrates the vibration spectra of
healthy and faulty bearings affected by fluting. Notably, the
amplitude of the faulty bearing significantly surpasses that of
the healthy one. This discrepancy arises because the damaged
bearing encounters difficulties in the rotation due to surface
damage. The fault exerts its most notable influence on the
spectrum within the 0-500 Hz range, affecting even harmon-
ics, especially at 100 and 300 Hz. In the 500-1000 Hz range,
there are no prominent harmonics except for the 700 Hz fre-
quency, which warrants examination for potential patterns
during training. Frequencies beyond 1000 Hz do not signifi-
cantly impact the analysis.

When conducting training, it is crucial to consider the
control environment’s characteristics. The amplitude and fea-
tures of fundamental harmonics differ based on the type of
control mode, especially when dealing with a faulty bearing.
DTC exhibits a noticeable alteration in harmonics. In such
cases, the fault’s most pronounced impact on the spectrum
is typically observed within the 0-500 Hz range, particu-
larly affecting even harmonics. Conversely, the 500-1000 Hz
range usually lacks prominent harmonics, except for the even
harmonic at 700 Hz.

Furthermore, the load factor plays a significant role in
shaping the fault’s characteristics, as presented in Fig. 9. Load
variations result in frequency shifts. Higher loads also have a
greater influence on side harmonics. Like previous instances,
the fault demonstrates its greatest impact within the 0-500 Hz
frequency range.

These distinctive patterns offer valuable insights for effec-
tively training the system. To improve prediction accuracy,
it is advisable to consider various parameters of motor oper-
ation.

7 Fault prediction

In the case of predictions, the fluting case was studied. The
data collected from the test bench are based on the impact
of fluting on different areas of bearings, including inner and
outer raceways. The same data were then utilized for train-
ing machine learning models to detect and predict fluting
faults on different bearing parts. This research employs two
distinct approaches in machine learning for fault detection
and prediction of fluting faults. The initial approach involves
training diverse machine learning models to detect damages
on inner and outer raceways due to the fluting. The second
approach centers on fault prediction, employing a machine
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Fig.9 Vibration spectrum of bearing with fluting under different loads

learning method based on signal spectra to train data and
evaluate the likelihood of specific faults occurring. The tech-
nique implemented in this study is described in Fig. 10.
Machine learning models were employed to pinpoint
faults upon collecting data samples from the electrical
machine, encompassing instances of bearing faults and
healthy states. Before training, the collected data under-
went preprocessing, including denoising and normalization
[49]. Denoising involved the use of low-pass filters and
median filtering. The denoised signal was then segmented
into datasets and divided into training and testing sets, with
20% of the data reserved for model validation. The electri-
cal machine’s sampling frequency was set at 20 kHz. The
training dataset comprises 23 million data points with a

sampling frequency of 20 kHz, covering various manifes-
tations of healthy and faulty signals, including inner and
outer faults. For this study, eight distinct machine learning
models were selected to compare result accuracies. Table
3 thoroughly compares the validation accuracies of these
models for bearing fault detection, covering all three sce-
narios of healthy states, inner faults, and outer faults. It is
essential to highlight that these results have the potential
for further improvement by incorporating higher-quality data
and continuous endeavors to optimize the training of machine
learning models. The results show that the Coarse Gaussian
SVM demonstrates the highest validation accuracy among
the trained models, closely followed by the Fine KNN model,
which achieves equivalent accuracy.
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Fig. 10 Flowchart of the implemented method

Table 3 Bearing current faults accuracy comparison

Machine learning model Accuracy (%)

Coarse tree 83.30
Coarse Gaussian SVM 91.70
Fine Gaussian SVM 84.70
Fine KNN 91.50
Narrow neural network 85.40
Medium neural network 85.40
Bilayered neural network 85.40
Trilayered neural network 85.90

The configurations for each model were set to be general
and were not extensively optimized for improved results in
this specific study. Careful consideration was given to the
settings for each model to prevent overfitting on the train-
ing datasets. These same settings were considered when
approaching the second part of the methodology to ensure
a fair comparison between the trained models. Further
enhancements can be explored by optimizing parameters for
each machine learning model. In the case of neural network
models, consideration was given to models with up to 16
hidden layers featuring a variable number of neurons, reach-
ing up to 1000 per layer. Figure 11 illustrates the validation
accuracy achieved by some of these trained models. It also
displays the validation results for three of the trained models.
In this study, eight different machine learning models were
utilized for training and validating the model.
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Although the neural network-trained models exhibit a
slight lag in performance, there is optimism that with the
inclusion of higher-quality data, it may be possible to refine
and enhance the accuracy of these machine learning mod-
els. In the realm of fault prediction, the same models will
be scrutinized. Still, the data will be prepared using a sig-
nal spectrum-based approach to assess whether the models
can maintain high accuracy for predictions or if any notable
changes occur.

The denoised data are now utilized to identify unique fre-
quency components within inner and outer bearing faults,
aiding in identifying fault occurrences within the incoming
signal. This strategic use of denoised data holds promise for
improving the precision of fault predictions. The gathered
data are employed to identify frequency components crucial
for training the machine learning algorithm for predictive
purposes. This process is carried out independently for each
case, with the frequency components identified based on
disparities in their amplitudes between healthy and faulty
scenarios. The chosen components are subsequently utilized
in the algorithm training. An illustrative example of these
components, along with their normalized amplitudes rang-
ing from O to 1, is depicted in Fig. 12.

Through meticulous analysis of multiple samples, distinc-
tive frequency components are identified for each occurrence
of faults. These frequency components play a crucial role in
delineating the range for the transition state, which repre-
sents the point at which a motor transitions from a healthy
state to a faulty one. This information is vital in preparing
data for training machine learning models to predict bearing
faults. Every possible combination of frequency component
values during the transition state is utilized in data prepara-
tion. Subsequently, the faults are categorized into five labels,
with specific details outlined in Table 4.

The trained models underwent blind validation; a subset
of the accuracy validation results is depicted in Fig. 13.

Table 5 compares the same models and their validation
accuracies in the context of the fault prediction model. The
accuracy of the models varies based on the complexity of
each model. Nevertheless, the second approach proves valu-
able in predicting fault occurrences in the machine by issuing
a warning in advance, signaling the likelihood of a specific
fault. This early warning capability holds significant poten-
tial for mitigating economic losses. The accuracy of fault
prediction hovers around 90%, a commendable result as it
reliably identifies two faults with heightened accuracy. While
these tests and models were evaluated using real-time data
acquired from electrical machines, it is noteworthy that spe-
cific models claim up to 95% accuracy for fault detection
based on analytical equations or simulations. However, such
high-accuracy claims might not necessarily hold in real-time
scenarios, as evident from Table 5; when the training data
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Fig. 12 Frequency spectrum with normalized amplitude of identified frequency components (0-1)

Table 4 Assigned classification

State of data Assigned label
Healthy State 1
Chance for inner bearing fault to occur 2
Chance for outer bearing fault to occur 3
Inner bearing faulty state 4
Outer bearing faulty state 5

become more complex, models trained using neural networks

demonstrate superior results compared to other methods.
The accuracy of these neural network models has notably

increased compared to other models. Further improvements

in accuracy can be achieved by training with higher-quality
data and by combining multiple models trained in a singu-
lar fault detection model. The coarse tree stands out as the
best performing model for fault detection, while its accuracy
in fault prediction is comparatively lower. However, neural
network models maintain a commendable level of accuracy,
with the bilayered neural network yielding the best results
in fault prediction. This underscores the potential for neural
network models to achieve even better results with increased
complexity and utilizing superior quality data samples.
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Table 5 Bearing current faults accuracy comparison

Machine learning model Accuracy (%)

Coarse tree 68.50
Coarse Gaussian SVM 82.20
Fine Gaussian SVM 81.70
Fine KNN 53.80
Narrow neural network 90.00
Medium neural network 88.90
Bilayered neural network 90.20
Trilayered neural network 89.60

8 Discussion and conclusion

Induction motors play a critical role in various industrial
applications, and failures in electrical machines, particularly
in bearings, can have severe consequences. Monitoring the
health of induction motors and their components has become
standard practice in today’s industry, thanks to the advent of
the Internet of Things (IoT). As the industry shifts toward
predictive maintenance, timely fault diagnosis has become
paramount to prevent catastrophic failures. Consequently,
academic research increasingly focuses on predictive main-
tenance for electrical machines, including induction motors.

This paper analyzes the causes of bearing faults, diag-
nostic possibilities, and a technique for predicting such
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faults. The results indicate that the method used for pre-
fault detection in bearings achieves a high level of accuracy,
approximately 90%, when employing neural networks. Fre-
quency components were carefully chosen to pinpoint faults,
aiding in model training. Subsequently, amplitudes of these
selected frequency components were assessed for both faulty
and healthy scenarios. Various combinations were then gen-
erated to detect faults in the electrical machine. These
combinations were utilized to train additional models to
determine the probability of fault occurrence within the
machine.

Therefore, this technique effectively monitors and diag-
noses faults in induction motors. However, validating the
algorithm across various use cases and a broader range
of faults is advisable. The algorithms trained using this
approach can be deployed for real-time monitoring and
detecting bearing faults in induction motors. Additionally,
there is potential for further improvement by considering all
potential faults exhibiting current fluctuations. In the future,
it will be considered to train the algorithm for different fault
types based on different spectra.
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Abstract—New  technological innovations, such as
integrating information technology with physical devices, have
emerged due to the industrial revolution 4.0. This has led to the
development of intelligent machines, which fall under the
Internet of Things (IoT) field. As a result of this integration,
industrial processes have become more efficient and productive.
In addition, it has reduced maintenance costs and downtime by
applying condition monitoring and machine learning algorithms
to electrical machines. Despite these advancements, there is still
a lack of algorithms for predicting faults in electrical machines,
which is an area of ongoing research. This paper presents a
comparative analysis of different machine learning models with
a combination of the signal spectrum-based machine learning
approach for predicting broken rotor bars in induction
machines as a potential solution for predictive maintenance. The
method is validated by real collected data from a working
induction machine. The preliminary comparison based on the
training time and the results' accuracy is presented.

Keywords—artificial intelligence, fault prediction, predictive
maintenance, machine learning, neural network.

1. INTRODUCTION

Diagnostics and condition monitoring of electrical
machines have gained practical importance due to their wide
usage in different domestic and industrial branches [1], [2]. At
the same time, every energy system is prone to failure.
Unexpected faults eventually lead to inefficient resource
usage and economic losses in production. While energy
systems have many parameters that must be monitored to
prevent unexpected failures, they are also complex
mechanisms [3]. To avoid potential faults, the optimal
solution is predictive maintenance [4].

Different intelligent approaches can be applied to
accurately predict the electrical machine's operation [5], [6].
Authors in [7] introduce a new signal processing method
based on decision tree algorithms for bearing diagnosis of
low-speed machines. In [8], the authors propose a detection
algorithm for line-to-line faults in photovoltaic arrays based

Research is supported by the joint Baltic-Nordic Energy Research
programme project "Guidelines for Next Generation Buildings as Future
Scalable Virtual Management of MicroGrids [Next-uGrid]", No.117766.

on a support vector machine. In [9], a deep principal
component analysis is applied to monitor non-linear
processes. Authors in [10] propose a gear fault diagnosis
method based on genetic mutation particle swarm
optimization. In [11], an artificial neural network algorithm is
used for condition monitoring and prediction of remaining
useful life (RUL) in electrical equipment.

During the operation, the electrical machine is affected by
different external forces and stresses, known as TEAM
(thermal, electrical, ambient, and mechanical) stress [12].
Eventually, failures occur in the machine. As introduced in
Fig. 1, broken rotor bars constitute, on average 10% of all
faults in induction machines [13].

10%

41%

37%

= Stator faults
= Broken rotor bars

= Bearing faults
= Eccentricity

Fig. 1. Fault distribution in rotating machines.

This paper is focused on damages related to broken rotor
bars and the possibility of predicting it by different intelligent
algorithms. The impact of these faults on global electrical
parameters was studied. These results were used to train the
system to detect and forecast potential damages. For this,
various machine learning algorithms were compared and
validated.

II. THE FAULT IMPACT ON PARAMETERS OF THE MACHINE

In this study, the possibilities for predictive maintenance
of broken rotor bars will be discussed. The stator current
modifies a particular frequency when a fault occurs. The
harmonics of a broken rotor bar can be quantitatively
represented in the following equations in the frequency
spectrum:
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wherek=1,2, 3, ..., fs is the supply frequency, p is the number
of pole pairs, and s is the slip of the machine [14].

The properties of electrical machines in the industry must
be high efficiency, manageable control, and relatively low
cost. Consequently, three-phase induction motors are the most
widely used motor type [15, 16]. Generally, there are two
types of algorithms for controlling induction machines: scalar-
based and vector-based. When using scalar control, the
motor's speed is managed by varying the stator voltages and
frequency while maintaining a constant air gap flux [17].
However, this approach is appropriate without dynamics and
variable loads. The alternative to conventional pulse width
modulation (PWM) motors is direct torque control (DTC)
[18]. The motor parameters (e.g., torque and flux) are
regulated directly when using DTC. It denotes the absence of
a modulator or other extra hardware. DTC technique is
commonly used in manufacturing as it meets industrial
demands.

In this study, different conditions of rotor bars in induction
machines were tested — healthy and faulty (one, two, and three
broken rotor bars). The parameters of the testing motor are as
follows:

Parameter Value
Voltage, V Y 690 D 400 D 460
Frequency, Hz 50 50 60
Speed, r/min 1460 1460 1760
Power, kW 7.5 7.5 7.5
Current, A 8.8 15.3 12.9
Power factor 0.79 0.79 0.81

The experimental test bench is shown in Fig. 2. As seen,
the setup includes a testing machine, loading machine,
acquisition system (Dewetron), and several rotors with
different number of broken rotor bars. The tests were
performed with rated speed.

i

BROKEN ROTORS |

T aserEE

Fig. 2. Experimental test bench.

These datasets were received from vibration, torque,
speed, currents, and voltage signals. Additionally, datasets
were examined under various conditions, including loads
(ranging from 0% to 100%) and control modes (grid-fed,
scalar, and DTC) [19, 20]. Various datasets were consequently
received.

The current spectrum is essential in this analysis since
damaged rotor bars initially impact the current. On the
frequency spectrum, faults cause ripples in speed and torque.
Due to the scattered nature of the rotor and stator windings,
the frequency spectrum of the stator and rotor current contains
several harmonics even in optimal supply and healthy motor
cases. For current measurements, Fluke current clamps were
used.

For early fault detection, it is reasonable to consider tiny
frequency components in the spectrum. It is possible by taking
Fourier transforms of the incoming signal. For the ideal FFT
with an infinite signal, there is the following equation:

0=, Ce™'= 3 Cew=2n 5 (3)

1

2m

Co=—[" fl) e ™dx, n=0,+1,+2,...

“)

where f(x) is the signal under investigation, Cn is the complex
Fourier, and fs is the sampling frequency (100 kHz).
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Fig. 3. Current spectrum of the healthy motor in different control modes.
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Fig. 4. Current spectrum of the motor with broken rotor bars in different control modes.

It is not necessary to evaluate the complete signal — it will save
training time and simplify the training process. Instead,
algorithm training will be done in areas where the fault's
impact is the highest. The current spectrum of the healthy
motor in different control modes is presented in Fig. 3. As
seen, grid-fed and scalar modes behave similarly. At the same
time, the main finding is related to DTC, where a significant
shift in frequency components occurred.

It is observed that the fundamental component shifts in the
frequency domain when a fault occurs while the machine is
working in DTC control mode. This shift does not happen in
the case of the grid and scalar control modes. The net
generated torque decreases with the increased number of
broken bars. While in the case of the DTC environment, the
controller tries to maintain constant torque by dropping the
speed. The speed drop is maintained by decreasing the
frequency of the fundamental component.

As seen in Fig. 4, similar frequency shifting phenomena
occurred in the case of damaged rotor bars. The problem
caused the amplitude increase of the fundamental frequency
components. By fault development, more noise emerges in the
frequency spectrum.

Two presentable regions of the spectrum can be studied
and trained on. The first one is the frequency range of 0-500
Hz when the fault significantly impacts even harmonics. For
fault prediction, harmonics at 750 Hz should also be
considered. Table I presents the fundamental frequency of
healthy and faulty cases under different control environments.

TABLE I. CURRENT AT FUNDAMENTAL FREQUENCY (50 HZ) IN
DIFFERENT CONTROL ENVIRONMENTS

Healthy motor Motor with broken rotor bars
X 50 49.99
Grid fed
Y 1.513 1.425
X 50 50
Scalar
Y 1.762 1.8
X 51.02 51.12
DTC
Y 1.477 1.71

* X is the frequency (Hz), and Y is the amplitude (p.u.)

Fig. 5 shows the current spectrum of the healthy motor
under various loads. It is evident that altering the load has a
distinctive effect on the spectrum's behavior. At the same time,
Fig. 6 presents the current spectrum of the faulty motor, which
also shows that behavior is changing due to the load increase.

’=)
°©

Amplitude, p.u.
]
o

25% —50% —75% ——100%

I L 1
100 150 200

1
250

L 1 L 1
300 350 400 450

Frequency, Hz

Fig. 5. Current spectrum of the healthy motor under different loads.
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III. METHODOLOGY AND RESULTS
. . . 08| 1
Here, the signal spectrum-based machine learning

approach [21] uses multiple faults, including one and two
broken rotor bars in the electrical machine. After narrowing
down the frequency components, the data is further processed
to identify the frequency components which will be used for
training machine learning algorithms for fault prediction. This
is done separately for healthy, one broken rotor bar (1BRB)
and two broken rotor bars (2BRB). This process is carried out
on multiple samples from different machines, so the identified
frequency components are universal for each case and not
specific. After identification of the frequency components,
their amplitudes are used to define the states in which the
electrical machine is, whether it is healthy, faulty, or in a
transition state between healthy and faulty. Such an example
of detected frequency components with normalized
amplitudes between 0 — 1 for each case is shown in Fig. 7.

=]
=

=
o

=
S

Amplitude, A (Nomalized)
=] o
o o

=1
&)

150 300
Frequency Component (Hz)

(b)

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on May 09,2024 at 08:10:25 UTC from IEEE Xplore. Restrictions apply.



Detected Frequency Components (2 Broken Rotor Bars)

=
©
T

=
=4

o
~
T

b
=
T

Amplitude, A (Normalized)
@ = =2 o
[} 3 - o

=
e
T

=

1] 50 100 150 2000 250 300 350 400
Frequency Component (Hz)
(©)
Fig. 7. Frequency spectrum with normalized amplitude (0 — 1) of detected

frequency components: a) healthy case, b) one broken rotor bar (1BRB), and
¢) two broken rotor bars (2BRB).

After careful analysis of multiple samples from different
machines, the amplitude ranges of these frequency
components for each case are determined for fault occurrence.
These determined values are then used to define the range of
transition state, which is a state when a motor is transitioning
from a healthy phase towards a faulty phase, which will then
be used to prepare data for training of the machine learning
models for prediction of faults of the electrical machine.

Once the range is defined, data is prepared for training the
machine learning model with every possible combination of
frequency component value in the transition state. In this case,
the probability of the faults is not defined, whereas they will
be classified into different labels for different faults along with
their transition from a healthy state. This way, it will be easier
to predict if there is a chance of a fault occurring in the
electrical machine. Here, 1BRB and 2BRB faults are
considered for training the machine learning algorithm.

After the data is generated for the transition state using
interpolation between its defined range, the next step is to train
the machine learning model and test it for validation. The data
points for validation were randomly generated from the
defined ranges for the transition state, whereas healthy and
faulty cases were collected from an electrical machine. For the
training, 150,000 data samples were used with a validation of
18,000 data samples which will be increased further. The data
samples for training are classified into five labels, shown in
Table III.

TABLE III. CLASSIFICATION ASSIGNED

State of data Classification label
Healthy State 1
Transition to 1BRB Fault 2
Transition to 2BRB Fault 3
1BRB Faulty State 4
2BRB Faulty State 5

Machine learning models were trained using blind
validation, i.e., the samples used to validate the models were
not used for training. For this paper, eight models were

considered, with the majority of the neural networks for
training. Fig. 8 shows the confusion matrix for the best-trained
and worst-trained models.

Model 1.6
3.3%

50.9% 126%

4.2% 42.3%
@

84| 284% 0.7% 0.0% 253% 9.1%
o
@
=2
=

5 0.2% 12% 04% 16.4% 136.1%

1 2 3 4 a
Predicted Class

(a)

Model 1.27

0.0% 0.3% 0.1%

95.9%

IS

True Class

FDR 1.8% 41% 3.8% 1.4% 0.8%
1 2 3 4 5
Predicted Class
(b)

Fig. 8. Machine learning results: a) Gaussian Naive Bayes, b) Wide Neural
Network.
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Table IV presents the time taken for training different
machine learning algorithms. It also gives the comparison
analysis validation result for different machine learning
trained models.

TABLE IV. MACHINE LEARNING MODELS COMPARISON RESULTS IN
TERMS OF TIME AND ACCURACY

Machine learning Accuracy .
algorithm (validation) Time (s)

Fine Gaussian SVM 86.00 % 21.808
Fine KNN 85.80 % 9.48
Coarse Tree 75.60 % 0.85
Linear Discriminant 92.60 % 1.73
gz;:‘a" Naive 60.60 % 22
Kernel Naive Bayes 80.80 % 291.94
Narrow Neural 95.90 % 47.11
Network
Medium Neural o
Network 96.20 % 40.36
Wide Neural Network 96.60 % 27.61
Bilayered Neural 96.40 % 4782
Network
Trilayered Neural 95.50 % 49.74
Network

The idea was to compare and validate different variations
of layers and number of neurons. Most of the neural network
trained models have high accuracies and are lying in the same
range. Compared with one fault presented here [17], the
accuracies for the models have dropped with the introduction
of multiple faults. The training time taken by wide settings of
neural networks takes less time to train than other neural
network models and has high accuracy. Whereas some
different machine learning model takes less time, their
accuracy is way lower. The worst-performing machine
learning model among the compared models was the Gaussian
Naive Bayes model, with an accuracy of only 60.60 %. It can
be further improved with more extensive data sets but must be
validated further.

IV. CONCLUSION AND DISCUSSION

Although there has been significant research in predictive
maintenance, a reliable predictive maintenance algorithm has
yet to be fully developed. Currently, most algorithms focus on
detecting faults rather than predicting them. While some
commercial products are available, they are costly and specific
to certain companies. Additionally, the technology used in
these products is often proprietary and includes both hardware
and software components. The algorithm discussed in this
paper aims to provide a more stable and versatile solution for
predicting faults in electrical machines, which can be applied
to various types of defects.

This paper presents a comparative analysis between
different machine learning algorithms regarding training time
and accuracy for predictive analysis of electrical machines
faults. The study further validates the signal spectrum-based
machine learning approach algorithm for predicting faults in
an electrical machine. The method involves including multiple
defects of electrical machines for data preparation and training
machine learning algorithm models for validation. Although
it requires some pre-processing for the incoming signals, the
time taken is short, and the models can be tested in real-time

scenarios. The results are promising and endorse that the
algorithm can be used for fault prediction of multiple fs with
higher accuracy.

Despite progress in the field, there is still room for
improvement in the method for predicting faults in electrical
machines. This includes expanding the algorithm’s scope to
cover a broader range of faults and accounting for various
combinations of healthy, transition, and faulty states. This
would make the algorithm more versatile and valuable for
predictive maintenance. Additionally, incorporating more
layers of transition states and combinations could improve the
algorithm's ability to determine the urgency of maintenance.
With further development and testing, this real-time approach
may be possible to predict different electrical machines' faults.

The approach presented in this work is still in its early
stages. It would be beneficial to test its general approach and
assess how well it can predict faults in electrical machines by
changing the faulty signal. Further research should focus on
testing the algorithm for different faults and evaluating its
accuracy to enhance its effectiveness. Additionally, future
work should include testing the algorithm with larger data sets
and more complex defects.
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Abstract—Nowadays, electrical machines are used in
numerous applications, where unexpected faults are to be
prevented. Sophisticated technologies are demanded to be able
to manage big data of machines conditions and store these
datasets remotely using cloud computation. This data is
necessary for algorithms to be trained and predict further
failures. This paper presents a study of bearing faults for
predictive maintenance. The data collection in lab environment
and its preliminary analysis is introduced. The impact of
different control modes and loads on global parameters of
rotating machines is discussed. The fault classification and
prediction techniques are presented.

Keywords—artificial intelligence, bearings, condition
monitoring, electric motors, fault detection, Fourier transforms,
predictive maintenance, rotating machines.

L INTRODUCTION

Condition monitoring and timely fault detection in
electrical machines have gained a reasonable importance.
Nowadays, every energy system represents a complicated
mechanism that is prone to damage [1]. In order to provide a
reliable operation, it is needed to monitor many parameters to
prevent unexpected failures. As information technologies are
developing rapidly, there are used advanced diagnostic
approaches to detect and predict faults. The possibilities
emerging with Industry 4.0, especially cloud computing and
Internet of Things, lead to more efficient diagnostics —
predictive maintenance, which attracts big data and numerical
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Council of Lithuania (LMTLT) No is S-BMT-21-5 (LT08-2-LMT-K-01-
040).
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models of the systems. This concept, as presented in Fig. 1,
uses remote condition-based monitoring over scheduled
maintenance routine, which in turn reduces the use of logistic,
energy, human, and material resources.

DATA TRANSFER

\ «—— LocicTics  CONDITION
[y = MONITORING

/ ¢ [
| & Bla

Fig. 1. The idea of remote condition monitoring.

There are many algorithms that can be used for system
training. Authors in [2] present a fault diagnosis method based
on convolutional neural networks. In [3], there is proposed an
intelligent diagnosis method for bearing faults using
compressed data acquisition and deep learning. In this
research [4], authors present a diagnosis approach that
combines empirical wavelet transform and fuzzy entropy for
bearing fault detection. In [5], authors introduce a possibility
of machine health monitoring based on recurrent unit
networks. Authors in [6] introduce a method for classification
of transformer winding faults combining frequency response
analysis and support vector machines. In [7], authors propose
a fault diagnosis method for rotating machines based on
feature learning of thermal images. Authors in [8] introduce a
gear diagnosis method based on particle swarm optimization
and probabilistic neural networks.

The main challenge is the amount and quality of training
data. For effective training, it is crucial to study the nature of
machine faults, their causes and impacts on global parameters.
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Fig. 2. Mechanical bearing faults: a) fault in outer ring, b) fault in inner ring, ¢) damaged cage.

II. DATA COLLECTION AND PRE-PROCESSING

Bearings are one of the most important parts of the rotating
machine. The production and design of the bearings are
conducted under strict quality conditions. At the same time,
there are different internal and external loads that affect the
bearings during the motor operation [9]-[11]:

e Mechanical damages,
e  Contamination,

e Material fatigue,

e Improper lubrication,
e Shaft currents.

Any unexpected failure can lead to fatal consequences in
production [12]. To avoid it, constant condition monitoring
must be provided.

Bearing damages can be described mathematically by
using the following equations, which refer to the natural
frequencies of faulty bearings. Faulty frequencies can be
defined for outer ring (1), inner ring (2), rolling elements (3),
and cage (4).

N D
f0,=7bn(l-D—bcosB) )
D
fi, = %n(l + D—bcosB) @
fy, = D. n(l- (&cosﬁ)2 (€)
® " 2D, D,
fczlz—1 1-%005[3) Q)

where Nb — number of rolling elements, Db — diameter of
rolling element (mm), Dc — bearing pitch diameter (mm), f —
contact angle (degrees), n — mechanical rotor speed (Hz) [13].

As presented in Fig. 2, the most frequent mechanical
bearing faults were studied: faulty outer ring, faulty inner ring,
and damaged cage. In order to teach the system to predict the
potential failures in the machine, a proper amount of
qualitative data is required. The experimental test bench for
data collection is presented in Fig. 3.

B

Fig. 3. Experimental test bench.

As seen, the setup includes testing machine, loading machine,
acquisition system (Dewetron). The parameters of the testing
motor are as follows:

Parameter Value
Voltage, V Y 690 D 400 D 460
Frequency, Hz 50 50 60
Speed, r/min 1460 1460 1760
Power, kW 7.5 7.5 7.5
Current, A 8.8 15.3 12.9
Power factor 0.79 0.79 0.81

In this case, healthy as well as faulty bearings were placed
into the test motor. The data was gathered and recorded
thought acquisition system. As a result, numerous datasets of
bearings’ condition were collected.
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Fig. 4. Comparison of mechanical bearing faults on vibration spectrum.

In order to have accurate fault patterns for training
purposes, there were considered different operation conditions
of the rotating machine. First of all, to study an impact of the
fault on machine parameters, the signals were taken from
current, voltage, torque, speed, and vibration. The data was
collected in different control environments: grid fed, scalar
control, and direct torque control. Besides, there were
considered different levels of motor load — the tests were
conducted at 0%, 25%, 50%, 75%, and 100% loads.

For timely failure detection, it is important to consider
specific frequency components in the harmonic spectrum [14].
These components can be detected in the frequency domain
by taking Fourier transforms of the signal coming from the
machine. As the bearing fault has the primary fault effect on
the vibration spectrum, vibration patterns were prioritized in
this case.

300 350 450

Fig. 4 introduces the preliminary comparison of different
mechanical faults on vibration spectrum, which can appear in
the bearings. As seen, there are some regions, where the
impact of fault is the highest. However, it is important firstly
to study the impact of fault on fundamental harmonics. Then,
it is reasonable to explore, how the damages influence on side
harmonics. As a result, it is possible to extract fault pattern
from each signal comparing it with healthy signal. Those
patterns will be used for system training.

In this research, the impact of machine operating
conditions was studied. As presented at Fig. 5, there were
compared several control environments of the motor and their
impact on vibration spectrum. It is important to consider this
fact during the system training. As seen from the graph, the
signals have a different behavior on fundamental harmonics.
In this case, the understanding of this difference will be
important in detection of potential fault at early stage.
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Fig. 5. Faulty bearing with damaged outer ring on vibration spectrum for different control enviroments of the motor.
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Fig. 6. Faulty bearing with damaged outer ring on vibration spectrum for different loads of the motor.

Besides, the impact of load on machine performance was
studied. In this case, the tests were performed on several load
levels from 0% to 100%. As seen from Fig. 6, there is a
shifting in frequency depending on load level at the
fundamental harmonics of 50 Hz. This difference will be also
considered for implementation of predictive maintenance.

The vibration signals gathered through the system will also
include some noise due to the effect of external parameters. It
is also considered to denoise the signal using wavelet or a
smoothening function focused on vibration signals. For the
preliminary analysis, the denoising is not considered and the
signal is taken as such to see the effect of denoising functions
later on.

III. FAULT CLASSIFICATION AND
PREDICTIVE MAINTENANCE

The data is gathered using the acquisition system and then
classified into healthy and faulty cases for machine learning
model training. The data here consists of multiple faults on
different loads including inner, outer and damaged cage of the
bearing faults. Data samples are classified into two stages:
healthy and faulty with each fault having its own label. The
labeling and classification of data samples are shown in
Table I.

TABLE 1. CLASSIFICATION AND LABELING OF TRAINING DATASETS
Data Sample Type Label Assigned
Healthy signal 0
Faulty state (inner faults) 1
Faulty state (outer faults) 2
Faulty state (damaged cage faults) 3

The data used for training is gathered at a sampling
frequency of 20 kHz and consists of 3 million data points with
150k data points used for blind validation of the trained model.

The incoming signal is analyzed and the frequency
components are identified which will be used to extract
features for training of the models.

The classified data is then used to train models using different
machine learning algorithms. The models were cross validated
to avoid data leakage and overfitting of the models. The
training data sample was evenly divided for each state.
Multiple machine learning techniques were used to train the
model among which top 5 are considered to be presented in
this paper.

Fig. 7 shows the confusion matrix for two of the machine
learning models with respect to their accuracies. Here, for the
training of models, conventional machine learning techniques
are used to keep the training simple and quick. As the
combination of faults becomes more complex, the time of
training increases, which is why deep learning techniques
were not considered for this study. In future, deep learning
techniques will also be considered to check on the comparison
between machine learning and deep learning techniques with
respect to time and accuracy.

For comparison purposes, current signature was also
considered for the training of machine learning models for the
same set of faults. It is to see which one gives a better result
as compared with the other. As, the vibration signals for each
case is too near each other and there might also be noise
present it becomes difficult to differentiate them with ease.
Whereas, in the case of current spectrum it is much easier to
identify the frequency components, which are fluctuating
because of faults.

The current spectrum was analyzed using signal spectrum-
based approach [15] and spectrum analysis [16] was used to
cover up missing data points.
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Fig. 7. Confusion matrix for machine learning algorithms: a) Linear
Discriminant, b) Wide Neural Network.

Fig. 7 shows the accuracy for the validation of each case,
which can also be improved by adding more quality data and
denoising the signal. Increasing the data set for training might
also help to increase the accuracy of the end result. This also
solidifies that it might be possible to train models for
prediction of faults occurrence of bearings but it will need
more quality data set to train a good model. As the accuracy
for healthy case is high, whereas for faulty cases as the
vibration signals are too near, there is a need for more data
samples to improve quality.

The above data shows that in each other case the accuracy
is consistent although low but it can be improved further but
needs more processing and samples. Positive predictive value
(PPV) shows the percentage of data samples that were
correctly predicted, whereas false detection ratio (FDR) is the
percentage of the signals that were detected wrongly on
validation by the trained model. Table II shows the
comparison between different machine learning techniques
with respect to accuracy.

TABLE IL. COMPARISON RESULTS FOR VIBRATION SPECTRUM

Machine Learning Algorithm Accuracy (Validation)
Linear Discriminant 70.80 %
Linear SVM 65.80 %
KNN 58.00 %
Wide Neural Network 66.70 %
Medium Neural Network 65.70 %

The accuracy of the different configurations of neural
network is more consistent than the others except in the case
of linear discriminant. Although the combination of faults is
complex, it might still be possible to further improve the
results by adding more quality data and pre-processing the
signal to remove noise. As compared to the vibration signals,
current spectrum gives better results and the faults can be
distinguished more significantly. The results for current
spectrum for same set of faults is shown in Table III.

TABLE IIL. COMPARISON RESULTS FOR CURRENT SPECTRUM
Machine Learning Algorithm Accuracy (Validation)
Linear Discriminant 85.60 %
Linear SVM 82.80 %
KNN 78.00 %
Wide Neural Network 84.40 %
Medium Neural Network 85.50 %

The accuracy of current spectrum trained models [15] is
higher from the vibration spectrum as the faults there are more
visible and distinct, but the accuracy for vibration spectrum
can be increased further by doing noise removal and
smoothening of the signal further. Adding more data samples
will also help in training a better model utilizing vibration
spectrum.

IV. CONCLUSION

With the advancement in technology and the mind set to
move towards cost-effective industrial applications, predictive
maintenance has become one of the foremost essentials for the
industry. With most of the industries moving towards
predictive maintenance from scheduled maintenance to cut
down costs of unforeseen shutdowns and resources,
researchers are proposing new designs and algorithms
utilizing machine learning and internet of things. The
diagnostics of electrical machines is also more focused on
online methods as compared to the offline ones so that the
industrial processes can be made more efficient.

In this paper, prediction of electrical machines bearing
faults based on vibration spectrum analysis using machine
learning is analyzed. Preliminary analysis is done on the
collected data using signal spectrum approach in addition to
machine learning models. As, the vibration signals are volatile
and there might be noise present in the signal, the results show
an accuracy around 70.80 % for linear discriminant method.
Whereas, the neural network result shows 66.70 % accuracy,
which needs to be analyzed and improved further. Whereas, if
current spectrums are considered this accuracy goes to around
85.00 % for similar case. Hence, it might be possible to predict
when a healthy machine is transitioning towards faulty state
for a complex combination of faults based on the trained
model but further analysis is needed. The results can be further
improved by denoising the signal and adding more quality
data set for training of models.
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Abstract—Bearings faults, one of the most common
mechanical failures in the electrical machine, have been the
diagnostic interest for a long time. The questions related to
bearing currents have become an important issue due to a
growing number of motors running with variable-speed drives.
This paper introduces a bearing current problem presenting the
leading causes and damages of induction machine bearing
currents. As the world is moving towards Industry 4.0 standards
and fault prediction in production is becoming an extremely
crucial topic, this paper presents a pre-processing of training
datasets and possibilities for predictive maintenance. The
experimental results of fault implementation in a laboratory
environment to collect training datasets are discussed.

Keywords—AC motors, artificial intelligence, ball bearings,
condition monitoring, fault detection, machine learning,
predictive maintenance

L INTRODUCTION

Three-phase induction motors are the most commonly
used type of electrical machine [1]. At the same time,
implementing frequency converter control is the most cost-
effective and easiest way to ensure the optimal operation of
the electrical machine. However, such approaches frequently
lead to shaft currents induced by frequency converters, which
is a challenging problem in production and industry. In the
case of motors with a power of more than 100 kW, there are
some solutions to decrease bearing currents, such as insulated
bearings or shafts [2], conductive greases [3], grounding
contacts [4], frequency converter regulation [5]. The
effectiveness of the aforementioned methods depends mainly
on the motor parameters and ambient environment. However,
there is always a risk of shaft current leakage.

Initially, the bearing damage caused by shaft currents is
impossible to detect visually [6]. Shaft currents do not always
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flow through the bearing. However, if it flows, the fault occurs
in those parts where the lubricant coating is the thinnest due
to the overload in this area. There are many ways to identify
bearing currents in the electrical machine using different
methods, such as Rogowski coil [7], currents transformer [8],
common multimeter, etc. However, as the bearing faults
primarily affect the vibration rather than the current spectrum,
it is reasonable to consider vibration analysis [9].

Every energy system represents a complicated mechanism
that needs monitoring of numerous parameters, which in turn
requires significant computational resources. Due to this big
data, it is reasonable to use advanced diagnostic approaches
based on artificial intelligence. These intelligent algorithms
will teach the system not only to detect but also to predict
potential faults. Regarding the bearing diagnosis in electrical
machines, there are frequently used the following algorithms:
decision trees [10], support vector machines [11], principal
component analysis [12], and genetic algorithms [13]. This
research prioritized approaches based on neural networks due
to the ability for fast and effective learning.

II. BEARING CURRENTS — CAUSES AND DAMAGES

There are several types of bearing current faults [14]. As
presented in Fig. 1, bearing current faults differ from other
mechanical damages. Fluting traces can often be found on the
bearing raceways, as shown in Fig. la. This damage is clearly
visible, as in this case, multiple lines occur across the bearing
raceway. Fluting usually appears due to the constant rotational
speed and low voltage. Frosting is another bearing current
fault, which can be detected on the bearing raceways if the
motor operates at varying speeds. The appearance of this fault
is shown in Fig. 1b. Pitting appears when the motor is supplied
by a high-voltage source and runs at low speed. Therefore,
pitting is usually presented in DC motor applications, e.g.,
railway motors. In the case of pitting, small craters are
observed on the bearing raceway, as shown in Fig. lc.

More frequently, the visible condition of the lubricant can
indicate a possible problem in the machine. One of the
indicators, which can point to the presence of bearing currents,
is the darkening of the bearing lubricant. In this case, the
sparking caused by electrical discharges oxidizes the lubricant
and changes its color. This is the first sign of a possible
problem related to shaft currents.
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Fig. 1. Bearing current faults: a) fluting, b) frosting, c) pitting.

III. DATA COLLECTION AND PRE-PROCESSING Various cases of failures caused by bearing currents have
been achieved during experiments (fluting, frosting, pitting).
The experimental results are presented in Table I. As a result,
numerous datasets with healthy and faulty data were
presented. For the training, there was used a fluting case of
500 rpm and 10 A, as presented in Fig. 3.

To avoid fatal and economic consequences in production,
it is reasonable to implement advanced approaches related to
predictive maintenance. In this case, the system can be taught
to predict potential failures using intelligent algorithms. The
most challenging aspect of such approaches is the training
datasets required for training. Gathering a huge number of
qualitative datasets is essential to reach an accurate forecast.
For this reason, the different faults were implemented to the
bearing in the lab environment by combining different current
and rotating ranges. The experimental test bench was
described in [15] and presented in Fig. 2.

S

i,

\

a) b)

BROKEN ROTORS

r———

Fig. 3. Experimental bearing 500 rpm and 10 A: a) general view, b) bearing

Fig. 2. Experimental testbench. profile with fluting traces.

TABLE IL BEARING CURRENT FAULTS UNDER DIFFERENT CONDITIONS FOR DE-BEARING
Conditions [ Results
DE-bearing
Speed, rpm Current, A Inner ring Outer ring Rolling elements
100 10 Darkened race Darkened race No changes
100 20 Slight fluting Darkened race Darkened balls
500 10 Fluting Darkened race Darkened balls
800 10 Fluting Darkened race, slight fluting Darkened balls
800 20 Fluting/pitting Slight fluting Darkened balls, pitting
NDE-bearing
Conditions Results
Speed, rpm Current, A Inner ring Outer ring Rolling elements
100 10 Darkened race Darkened race Slightly darkened balls
100 20 Slightly darkened race Darkened race Darkened balls
500 10 Darkened race Darkened race, slight fluting Darkened balls
800 10 Slightly darkened race Darkened race, slight fluting Darkened balls
800 20 Frosting Frosting Darkened balls, frosting
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In this research, these datasets were taken from current,
voltage, torque, speed, and vibration parameters. Besides, data
was gathered under different operating conditions: control
environments (grid fed, scalar, DTC) and loads (from 0% to
100%). To save training time, there is no need to analyze the
whole signal. It is enough for one or two specific regions
where the fault impact is the highest. To detect damage timely,
the small fault-based frequency components should be
considered using a fast Fourier transform (FFT).

In case of bearings, the vibration spectrum is the better
way to detect a damage. At the same time, e.g. rotor bars fault,
the current spectrum provides the better information [16]. For
this reason, vibration spectrum was prioritized in this study.
Fig. 4 presents the vibration spectrum of healthy and faulty
bearings with fluting in direct-torque control and fully loaded.
As seen from the graph, a faulty frequency's amplitude is
much higher than a healthy one's amplitude, which is caused
by the difficulty of the bearing rotating due to the damaged
surface. Results show that the fault has the highest impact on
the spectrum in the range of 0-500 Hz in even harmonics
(especially 100 and 300 Hz). In the range of 500-1000 Hz,
there are no noticeable harmonics expect of 700 Hz that can
also be studied for the potential patterns for the training. For
system training, signals under other control environments and
loads were considered. As a result, the certain pattern of the
particular fault can be distinguished from the spectrum.

IV. PREDICTIVE MAINTENANCE

After gathering data samples for healthy and faulty cases,
machine learning models were trained using a signal
spectrum-based approach. The difference between its
implementation in this article to the original is the definition
of the transition state. Here, the transition state is not further
divided into different parts. The datasets are divided into three
stages: healthy, transition, and faulty. Data samples are
gathered at a sampling frequency of 20k Hz. The incoming
data is processed, i.e., denoised, determining frequency

components, and normalized before the generation of the data
samples used for training machine learning algorithms. The
labeling and classification of data samples are shown in
Table I1.

TABLE I CLASSIFICATION AND LABELING OF TRAINING DATASETS
Data Sample Type Label Assigned
Healthy Signal 1
Transition State (Inner Faults) 2
Transition State (Outer Faults) 3
Faulty State (Inner Faults) 4
Faulty State (Outer Faults) 5

The labeled data is then used to train models using
different machine learning algorithms. To check their
accuracy, blind validation is used, i.e., the data samples used
to validate the results were not used in training. A total of 14
million data sets were used to train different machine learning
models. Also, to avoid data leakage, trained models were
cross-validated. The training data was divided evenly, with
each state comprising 20% of the training data. Different
machine learning techniques were utilized for training models,
among which the top 5 results are presented in the paper.
Fig. 5 shows the confusion matrix for two of the machine
learning methods. Here, conventional machine learning
techniques are used to train the models due to their speed and
simplicity. As the pre-analysis of incoming current signals
using signal-based spectrum analysis has already simplified
the features used for model training, conventional techniques
still give us higher accuracies with shorter training times. It is
also possible to analyze the results easily rather than deep
learning techniques. However, as the combination of faults
becomes more complex, deep learning techniques will be used
in the future for training and study will be considered to see
which one is more beneficial in comparison of accuracies and
time taken for training.

o
o
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——Faulty —Healthy
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Fig. 4. Vibration spectrum of healthy bearing and bearing with fluting (DTC, full load).
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TABLE III. COMPARISON RESULTS

Machine Learning Algorithm
Linear SVM
Cubic KNN

Accuracy (Validation)
88.70 %
83.55%

89.60 %

Narrow Neural Network

True Class

PPV

FDR| 0.1% 6.1%

13.5%

Predicted Class

b)

11%

2 14.0%
3
w
L
O
[+}]
2
=
5
PPV
FDR| 39.8% | 128% | 14.1% | 19.8% | 137%
1 2 3 4 5

Predicted Class

Fig 5. Confusion matrix for machine learning algorithms: a) Bilayered
Neural Network, b) Cubic KNN.

As seen, Fig. 5 shows the validation accuracy for each
case, which can also be improved by adding more quality data
samples for training. This also solidifies that it is possible to
predict the occurrence of inner and outer faults within an
electrical machine with the help of a signal spectrum-based
predictive maintenance approach. Table III shows that
different machine learning algorithms are giving almost
similar validation accuracies, with the Bilayered Neural
Network performing best among them.

90.60 %
90.00 %

Bilayered Neural Network

Trilayered Neural Network

The accuracy of the neural networks can be further
improved by adding more data samples for healthy and faulty
cases and defining more scenarios.

CONCLUSION

Predictive maintenance has become one of the foremost
essentials for the industry in the current era. It helps shorten
losses and improve production costs. New algorithms and
approaches are being proposed for predictive maintenance and
fault diagnostics of electrical machines, primarily based on
offline methods. The need is to implement an algorithm in
real-time with higher accuracy, enabling the industry to make
its process more efficient.

In this paper, predictions of electrical machines' bearing
faults are considered using a signal spectrum-based machine
learning approach for fault prediction. Preliminary analysis is
done on the collected data, and the approach is used to train
using different classified faults. The results show an accuracy
of around 90% for machine learning based algorithms. Hence,
predicting faults while the electrical machine is transitioning
towards a faulty state is possible with higher accuracy. This
can be further improved by adding more quality data sets to
the training sample and further defining scenario
combinations for fault occurrence so that every aspect of it is
covered.

This approach is being tested on other spread faults of
electrical machines and at the moment have been able to work
with higher accuracy validation. For the future work, this will
be tested out for different faults to valid the general approach
of the method.
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