
TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology
Department of Computer Science

Raigo Aljand

Assessing Article Quality in Wikipedia Using
Machine Learning Algorithms

bachelor’s thesis

Advisor:
Jaagup Irve
Chair of Network
Software

Tallinn 2014

Abstract

The Estonian Wikipedia has a lot of articles that are of high-quality, but
are hard to find from the huge set of articles. The aim of this thesis is to
filter out the high-quality articles from the low-quality ones using a machine
learning algorithm called logistic regression.

The main problem was filtering out the high-quality articles from the low-
quality articles. An algorithm was written using gradient descent to find
the logistic regression weights from a matrix of numerical data. Therefore,
the main tasks of this thesis were to find known high-quality articles and
known low-quality Wikipedia articles, translate them into numerical data,
train the machine learning algorithm in a small enough number of iterations
and validate the accuracy of this algorithm.

Research shows that the Estonian Wikipedia has a category for hand-picked
high-quality articles and a way to obtain a random article, which will labeled
as low-quality. Training the algorithm with those results, the accuracy of the
result is enough to filter out high-quality articles out of all of the Estonian
Wikipedia.

List of Tables
1 Training results . 32

1

List of Figures
1 Python popularity . 7
2 Logistics curve . 23

2

Contents
List of Tables 1

List of Figures 2

Introduction 4

1 Tools 5
1.1 Programming language . 5

1.1.1 Imperative programming 6
1.1.2 Functional programming 10
1.1.3 Implementation . 15

1.2 Client-server architecture . 17
1.3 MediaWiki . 18
1.4 PyWikiBot . 20

1.4.1 Page . 21
1.5 Machine learning . 21

2 The implementation 26
2.1 Prerequisites . 26
2.2 Interface . 27
2.3 Architecture . 27

2.3.1 Machine learning . 28
2.3.2 Searching . 31

3 Results 32

Summary 33

References 34

3

Introduction

The Estonian Wikipedia has a lot of low-quality articles because there are
not enough editors. The aim of this thesis is to make the lives of the editors
easier by sorting the articles to high-quality and low-quality. The editors
can then focus more on the low-quality articles and less on the high-quality
articles.

Main questions I had to solve before writing the algorithm was:

• What features of the article will weigh in calculating whether an article
is high-quality or low-quality?

• What articles to label as high-quality and what articles to label as
low-quality in machine learning?

• What is the most reasonable way to accomplish this task?

Accordingly, the work was divided into 5 steps:

1. Researching the tools.

2. Determining the features.

3. Collecting the test data.

4. Implementing the algorithm

5. Validating the result.

In the tools section, the prior work and tools used in creating this algorithm
will be described. The theoretical base for each tool and then the tool itself
will be described. Even though there are a lot of tools, the only choosable
part was the programming language. Python was selected because of prior
experience with the language, the current popularity and the availability of
prior tools.

In the implementation section, the prerequisites, the interface, the imple-
mentation of the algorithm and the infrastructure required and the results
will be described.

4

1 Tools

1.1 Programming language

Programming language is a formal language with a set of rules about how the
computer should behave. Programming languages usually have syntax and
semantics. The syntax of the language is usually considered the grammar of
the language. For example, if there is a syntax problem in the program, the
computer doesn’t understand the command and stops. The semantics of the
language is considered to be the vocabulary and meaning of the language. If
there is a semantical problem, then the program is valid and understandable
to the computer, but it is not what the programmer wished to happen. The
program will react rather unpredictably. Syntactic sugar is a feature that
the programmer can easily implement it in the language and is there for the
convenience.[20]

Any sufficiently complex program or programming language needs to hold
and manipulate data. Because holding and manipulating only bits and bytes
is uncomfortable and prone to errors, more abstraction is required. Dividing
the data into different types will help with ease of use and early detection
of errors. A type is the upper bound of a range of values that a variable
can assume. In a typed language a variable can be given a nontrivial type
while in untyped languages a variable is not limited to a type. Strongly
checked languages will give an error in case of mistyping and weakly checked
languages will not check for such errors and might produce type-related bugs.
Statically checked languages check for type errors during compile time and
dynamically checked languages will check during the runtime.[3]

Programming languages are usually divided into two categories: high level
languages and low level languages. The difference is that low level languages
are designed more around how the computer works, while high level languages
are designed more around the productivity of the programmer. Because high
level languages need to do more translation between what the programmer
wants and what the computer accepts, they are usually slower than low
level languages. Another advantage of lower level languages is that they
enable the programmer to have better access to specific operations and more
understanding how the program is executed. This is very useful when the
main goal is optimisation.[22]

Python is a widely-used, general-purpose programming language as shown in
figure 1. Python focuses on human readability, simplicity and power to the

5

programmer.[21, 7] That fact is most likely best expressed by the fact that
Python uses indentation to divide its blocks. A language like C uses the curly
braces for that and uses the indentation only for clarity of reading. Python,
however, forces the programmer to make the program more readable and
standardised. Semantically Python is very flexible. It supports functional,
object-oriented and procedural programming styles.

Python uses dynamic typing, also called duck typing. Duck typing doesn’t
check if an object implements some certain interface, but simply tries to call
the method or attribute. The principle is “If it looks like a duck and quacks
like a duck, it must be a duck”.[8, duck-typing] This method of type checking
renders interfaces useless.

1.1.1 Imperative programming

Imperative programming is a style of programming with the philosophy of
changing the machine’s state to the required state, which could be a file in
a hard drive or a video on the screen. For that the computer executes a
sequence of operations in order, which are specified by the programmer. An
operation is some change of state in the computer or calculation of some
data.

Procedural programming Procedural programming is a subset of im-
perative programming. Procedural programming tries to divide the program
into variables, data structures and procedures. Procedures are meant to
group together abstract operations so they could be reused in different sit-
uations. In this case an operation can also be a procedure. Data structures
are meant to group together conjoined data so they could be moved and
manipulated more easily. Variables are pointers to data. They point to the
location of the data in the memory which can be then easily retrieved.

6

Figure 1: Popularity of Python compared to other languages[2]

7

Python procedures look like this:

>>> def fib(n): # write Fibonacci series up to n
... """Print a Fibonacci series up to n."""
... a, b = 0, 1
... while a < n:
... print a,
... a, b = b, a+b
...
>>> # Now call the function we just defined:
... fib(2000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

“The keyword def introduces a function definition. It must be
followed by the function name and the parenthesized list of formal
parameters. The statements that form the body of the function
start at the next line, and must be indented.”[6, 4.6. Defining
Functions]

Python doesn’t make a comparison between functions and procedures.

Each file in python is a module with the same name as the filename, except
without the .py extension. Each module can import another module or every
object in another modules namespace with the import command. When the
import command is evaluated, the whole file is evaluated once. A directory
can also be a module if it contains a __init__.py file. In that case the
module is initialised with the __init__.py file and it’s namespace contains
the file modules in the directory.

If a variable is nonlocal and the variable in the function is only read, then
the interpreter will try to find it from a nonlocal context. However, if the
variable is given new value anywhere in the function, the interpreter will
assume that the variable is local and the global variable will not be visible.
One can make a variable global with the global keyword. After that, every
reference to the variable will be a reference to the global variable.

Object-oriented programming Object-oriented programming is another
subset of imperative programming. Object-oriented programming tries to
divide the program into objects that communicate with each other. Each
object has fields and methods. Fields and methods are similar to variables
and procedures, but they are tied to the object. Fields are considered to
be the objects inner state and methods are considered to be the object’s

8

behaviour or object’s interface.[19]

The goal of object-oriented programming is encapsulation. Encapsulation
means that each object has an inner state, inner behaviour and an interface
for other objects to use. An outer object doesn’t need to know what is
happening within the object. It only needs to know how the object is going
to react to an interface procedure. Access protection modifiers are generally
employed to better enforce this behaviour. These modifiers are usually tied
to a method or field and they describe what other methods are allowed to
access these methods or fields. Right to access a field means the right to read
or change the field and right to access a method means the right to run the
method. An object’s methods always have access to its objects fields.[1]

An object can inherit another object. The inheriting object is called subob-
ject and the inherited object is called the superobject. The subobject gets the
superobject’s fields and methods. A copy of the superobject is created and
retained in the subobject. When searching for the subobject’s methods or
fields and they are not found then the superobject is searched for the field or
method. A subobject doesn’t automatically have access to the superobject’s
private fields and methods. The subobject can override the superobject’s
public methods. The type signature of the method cannot change, but the
content or the action of the method is changed.

Class-based programming separates the object into the class and the instance.
The class is an abstraction and the classification of the object while the
instance is a actual object with actual data. Usually the class holds the
behaviour of the object, which includes the constructor. The constructor is
a special method, that is called when a new instance is being created from
the object. Inheritance works by remembering the inheritance line and then
searching for the methods in the right class.

An interface is a class that has no fields and all its methods are public.
All of the methods are abstract methods, meaning that the methods have no
content or implementation. A class can usually implement multiple interfaces
but inherit from only one class. One can’t make a instance of an interface,
there needs to be an implementing class. An abstract class is a class that
has atleast one abstract method. Similar to interfaces, it is impossible to
make an instance of them. However they are still classes and and they are
inherited, not implemented.

Python has a class-based object-oriented style. Python, however, is more
dynamic than a normal static class-based language like Java. After an object
has been created from a class, one can still change that concrete object’s

9

variables and methods. Every property is also public. Properties, that the
programmer considers private, are usually prefixed with underscores. Each
statement is evaluated top to bottom. If there are multiple properties with
the same name, then the last evaluated property is remembered.

class MyClass:
"""A simple example class"""
i = 12345
def f(self):

return ’hello world’

In Python, methods are functions, that get the object’s instance in the
first parameter, but are called with the first parameter ignored, like this:
my_object.f(). If there are brackets after the class name and another class’s
name inside the brackets, the class inherits from the class in the bracket. A
method can access the superclass with the super function. The super func-
tion takes two arguments: the type of the class of whose the super is being
searched for and the second is the object.

Multiple inheritance is supported by putting multiple class names in the
brackets supported by comas. If called for a property, that a object doesn’t
have, the environment will try to find the property from the first named
superclass recursively until it hits object class and then the next superclass
recursively and so on. The object class is the superclass of every class. If
there are no brackets or the brackets are empty, then the object class is an
implicit superclass.

1.1.2 Functional programming

Functional programming languages are designed around functions. Program-
ming functions are similar to mathematical functions, that it has inputs as
parameters and returns a value as output. A function should always return
the same output with the same inputs and the inputs should not be changed
inside the function. This leads to a particularly stateless form of program-
ming.

Due to the stateless form of this style, functional programming languages
usually support immutable datastuctures. Instead of updating a datastruc-
ture, it is copied with the new values replaced and the new datastucture is
returned. First-class functions and dynamic evaluation of functions are also
supported.[18]

10

Python functions are very similar to Python procedures:

>>> def fib2(n): # return Fibonacci series up to n
... """Return a list containing the Fibonacci series
... up to n."""
... result = []
... a, b = 0, 1
... while a < n:
... result.append(a) # see below
... a, b = b, a+b
... return result
...
>>> f100 = fib2(100) # call it
>>> f100 # write the result
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

What has changed is that now the results are being collected into a list and
then the list is returned with the return keyword.[6, 4.6. Defining Functions]

A more functional way of programming would be this:

>>> def fib2(n): # return Fibonacci series up to n
... """Return a list containing the Fibonacci series

up to n."""
... a, b = 0, 1
... while a < n:
... yield a # see below
... a, b = b, a+b
...
>>> list(fib2(100))
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

In this example we don’t change the list to collect the results, but instead
yield the result. When the function is called, instead of returning a final
result, it will return a generator. A generator is a simple data structure,
that is iterable through only once. The list function takes an iterable and
returns a list with the iterable’s elements.

A yield created generator will evaluate the function until the first yield
keyword, return the result and pause the function. When the next element is
asked for, the function is continued and return the result of the next yield.
When the end of the function is reached, the generator stops.

“Small anonymous functions can be created with the lambda

11

keyword. This function returns the sum of its two arguments:
lambda a, b: a+b. Lambda functions can be used wherever
function objects are required. They are syntactically restricted
to a single expression. Semantically, they are just syntactic sugar
for a normal function definition. Like nested function defini-
tions, lambda functions can reference variables from the contain-
ing scope:”[6, 4.7.5. Lambda Expressions]

>>> def make_incrementor(n):
... return lambda x: x + n
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43

Python has support for lexical closures, which gives the function a strong
reference to the namespace. This excludes the possibility that the namespace
will be garbage collected while the function is still in memory. The function
has the guarantee that the non-local values will exist even after the enclosing
context is deleted or garbage collected.[15]

Since other functional languages have them, Python also has functions map,
filter and reduce. map applies a function to every item in an iterable and
returns a new list with the results of the function. filter applies a function
to every item in an iterable and returns a new list with the items where the
function returned True. And reduce applies a function for every item in an
iterable and returns the value of the last evaluation. In this case the function
must have two parameters and the first parameter holds the value from the
last evaluation of the function.

A way to avoid using map and filter is by generator expressions and list
comprehensions. List comprehensions are a syntactic sugar to easily create
lists. Unlike map, list comprehensions don’t need to be supplied a func-
tion, but can also use arbitrary expressions. A sample list comprehension is:
[2 * item for item in iterable if item % 2 == 0]. This expression
returns a filtered list where each element of iterable is multiplied with 2. The
returned list contains only elements that were even before. Therefore the syn-
tax is [expression for expr1 in sequence1 if condition1 for expr2 in sequence2 if condition2 ...].
The commands are nested with the right being inside the left and the first
expression being the returned innermost expression. Generator expressions
are syntactically same, except normal brackets instead of square brackets are

12

used and they create a generator instead of a list.

Functional programming requires immutable data structures. Fot that python
has tuples and named tuples. A tuple is an immutable data structure, that
allows packing different data together and afterwards unpack them or access
them with an index. Tuples are immutable, meaning they can’t be changed.

>>> t = 12345, 54321, ’hello!’
>>> t[0]
12345
>>> t
(12345, 54321, ’hello!’)
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, ’hello!’), (1, 2, 3, 4, 5))
>>> # Tuples are immutable:
... t[0] = 88888
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: ’tuple’ object does not support item assignment
>>> # but they can contain mutable objects:
... v = ([1, 2, 3], [3, 2, 1])
>>> v
([1, 2, 3], [3, 2, 1])

namedtuple is a function in the collections module that returns a class
that inherits from the tuple class. Named tuples have all the properties of a
tuple and add on a couple of things:

1. The named tuple has a name and a fitting string representation.

2. Every field in a named tuple is registered with a name instead of an
index.

(a) You can initialise the named tuple with the named tuples.

(b) You can access the fields of the named tuple by their names.

(c) You can’t construct a named tuple with more or less elements
than it expects.

>>> Point = namedtuple(’Point’, [’x’, ’y’], verbose=True)
class Point(tuple):

’Point(x, y)’

13

__slots__ = ()

_fields = (’x’, ’y’)

def __new__(_cls, x, y):
’Create a new instance of Point(x, y)’
return _tuple.__new__(_cls, (x, y))

@classmethod
def _make(cls, iterable, new=tuple.__new__, len=len):

’Make a new Point object from a sequence or iterable’
result = new(cls, iterable)
if len(result) != 2:

raise TypeError(’Expected 2 arguments,
got %d’ % len(result))

return result

def __repr__(self):
’Return a nicely formatted representation string’
return ’Point(x=%r, y=%r)’ % self

def _asdict(self):
’Return a new OrderedDict which maps
field names to their values’
return OrderedDict(zip(self._fields, self))

def _replace(_self, **kwds):
’Return a new Point object
replacing specified fields with new values’
result = _self._make(map(kwds.pop, (’x’, ’y’), _self))
if kwds:

raise ValueError(
’Got unexpected field names: %r’ % kwds.keys())

return result

def __getnewargs__(self):
’Return self as a plain tuple.
Used by copy and pickle.’
return tuple(self)

14

__dict__ = _property(_asdict)

def __getstate__(self):
’Exclude the OrderedDict from pickling’
pass

x = _property(_itemgetter(0),
doc=’Alias for field number 0’)

y = _property(_itemgetter(1),
doc=’Alias for field number 1’)

>>> p = Point(11, y=22) # instantiate with
... # positional or keyword arguments
>>> p[0] + p[1] # indexable like
... # the plain tuple (11, 22)
33
>>> x, y = p # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y # fields also accessible by name
33
>>> p # readable __repr__
... # with a name=value style
Point(x=11, y=22)

1.1.3 Implementation

A programming language by itself is not useful. It also needs an implemen-
tation. An implementation is a program that evaluates the syntax of the
program into machine actions. There are 3 ways to create an implementa-
tion:

Interpretation Interpretation parses the source code and performs the in-
structions directly

Compilation Compilation is transforming the current source code into a
another format that can then be interpreted. Compiled language can
also compile into another compiled language which will compile that
into another language and so on.

15

just-in-time (JIT) compilation JIT takes a hybrid approach of interpre-
tation and compilation. While interpreting the program, the JIT com-
piler will observe what parts of the program are most often interpreted
and will compile those parts.

Generally the compiling phase is called the compile time and the interpreta-
tion phase is called the runtime. Compiled languages are usually considered
fastest, because compilation can heavily optimise the programmer’s code,
which leads to a faster runtime. Interpretation however is faster and easier
to use for the programmer because the compilation step is skipped. For this
reason interpreted languages are usually used for scripting. JIT implementa-
tions are usually as easy to use as interpreted implementations, but are a lot
faster. However because the analysation is fairly complex and runs parallel
to the execution of the program, JIT compilers take a lot more memory.[16]

The official implementation of Python is CPython. Every formal change to
the language will be almost immediately mirrored in this implementation. It
will be supported for a long time will be the most current and up-to-date
compared to other implementations. CPython is a bytecode interpreter. It
compiles to an intermediate bytecode, which it then interprets. It compiles
every time the source file has been changed. This implementation is slow
compared to other languages[5], but enables hooking the script to a C module.
Since the C programming language is fast,[4] it is possible to write most of
the program in Python and write the bottlenecks in C.

The most popular alternative implementation to CPython is PyPy. PyPy is
a JIT compiler written in Python. It is popular because of its speed. As of
June 7, 2014, PyPy is about 6.2 times faster than pure CPython.[23] There
are two disadvantages: PyPy doesn’t have hooks into C and PyPy isn’t as
up-to-date as CPython. As of June 7, 2014, Python 3 support for PyPyis
in the beta state while CPython supports Python 3.4.0. Also since PyPy
doesn’t have hooks into C, it can’t speed up the bottlenecks of a program.
With simple calculation from [4, 23], C gcc is still about 3 times faster than
PyPy.

There are also Jython and IronPython. Jython compiles down to Java byte-
code. It allows the programmer to use libraries from Java in his project.
IronPython is the same principle, only it compiles to the .NET bytecode.
That gives IronPython projects access to .NET libraries.

16

1.2 Client-server architecture

Client is process that requires some service. Server offers that service. The
client and server communicate with HTTP. HTTP is a protocol in which the
client sends the server a request and the server processes the request and
sends a response. HTTP is purely plaintext. The HTTP request is divided
into headers and content. The request has an URL in the header. URL
stands for Uniform Resource Locator. It is a way for the client to request a
certain page or other resource on the server. Another thing that the URL can
contain are extra parameters. From those parameters the server can return
the resource in a different form. Usually the request content is empty.

Extensible Markup Language (XML) is a protocol to describe data. It tries to
nest data between descriptive tags. The tags can be nested and the tags can
have attributes. The tags are not preset, so every user can design it’s own way
of presenting data. The syntax of a XML tag is <tag attribute1=“value1“
attribute2=“value2“>data</tag>. A tag can’t have the same attribute
with different values. data can be normal text or more tags. <tag /> is
shorthand for <tag></tag> for when the user doesn’t have data to insert.

The HTTP response also splits into a header and content. Inside the content
is usually the requested data. A browser is an application that sends HTTP
requests to servers and parses and visualises the response to the user. To help
with the visualisation and interactiveness of the pages, HTML was created.
HTML is an Extensible Markup Language (XML) where the tags are focused
on giving text some form of context. For example, the a is a tag for a link
and the h1 is a tag for a level 1 header. The browser also parses the HTML
into visual cues and interactions with the user.

HTML, however, lacks the ability change the HTML tags the user is cur-
rently seeing. This means, the programmer is unable to interact with the
user. For that purpose there exists JavaScript (JS). JavaScript is a dynamic
general-purpose programming language. JavaScript works by registering a
JavaScript function with an HTML event, so that when that event is fired,
that JavaScript function is run. JavaScript interacts with the user by chang-
ing the current HTML the user is seeing. Because JavaScript is a general-
purpose programming language, unlike HTML, any arbitrary calculation is
possible. JavaScript uses Asynchronous JavaScript and XML (AJAX) to
send HTTP requests to outside servers. Despite the name, the returned
format doesn’t have to be XML.

HTML pages are purely intended for browsers to parse and a human to see.

17

For an another application to get data from a HTML page, it has to web
scrape. Web scraping is observing beforehand how a web page is built and
later filtering out the necessary data from the HTML. Another way is for
the server to offer an Application Programming Interface (API). An API is a
way for a program to get data from the server with a HTTP requst in a more
formal and machine-friendly form. There are multiple formats for getting
the data: JavaSrict Object Notation (JSON), a Domain specific XML and
so on.

With JSON the HTTP content is one legal JavaScript Object, which makes
it easy to read into JavaScript. Another advantage of it over XML is that
there is basic type checking. Javascript allows a value to have a few different
types with different notations: a string, a number, another object, an array;
and the three constant values true, false, null.[9, 10]

1.3 MediaWiki

A wiki page is a page that owns a title in that wiki and is supposed to aggre-
gate information on the world wide web about the subject of the title. Most
of the content in the wiki pages are created or changed by the users of the
wiki. MediaWiki is software for a content-classification wiki. A content clas-
sification wiki forbids writing personal knowledge and opinions on the wiki
page and only allows writing information that can be referenced. MediaWiki
has a separarate web page for discussion.[14]

An interwiki link is a link that refers to another wiki page in the same wiki.
This way wikis don’t have to duplicate information on different pages and
just refer to an another page. Links that link to outside the wiki are called
external links. Usually external links are in the page as references. There are
a special type of wiki pages that are called templates. They are not meant
to aggregate information, but that to act as a form template. Whenever a
page links to a template, it expands to form a part of the page it is linked
on.

MediaWiki has 3 core dependencies. It is completely written in php, there-
fore it needs php on the system it is running on. It also needs to run on
a http server like Apache that is also configured to have php enabled and
index.php as a root file. Running MediaWiki is an act of putting the Medi-
aWiki directory in the http server root directory and pointing the browser
to the MediaWiki directory. MediaWiki also needs a database service. Offi-
cially it supports MySQL 5.0.2+, MariaDB 5.1+, PostgreSQL 8.1+, SQLite

18

3 and Oracle.[13]

The first time MediaWiki is run, the user is guided through an installation
process which will install the database in the database service and create a
config file that must be placed in the MediaWiki root directory.

MediaWiki also has an API that exposes the MediaWiki articles to bots
without the need to screen scrape. For that in the MediaWiki root directory
is the file api.php. Queries made at api.php with the right query parameters
will return bot friendly results.[12] For example:

http://en.wikipedia.org/w/api.php?format=json&action=query&titles=
Main%20Page&prop=revisions&rvprop=content

The format parameter tells what format the bot wants the data to be in.
Each format also has a version with a fm added to the end. The fm version
pretty-prints, what the bot would have seen, in HTML so it is easy for the
programmer to debug with the browser. Different possible formats include
JSON, XML, serialized PHP, WDDX and YAML, where xmlfm is the default.
However, JSON is the recommended format and all the other formats are
deprecated.

The action parameter is the second required parameter. It tells what action
the bot wants to do in the wiki. The rest of the query parameters are specific
to the action. Most important to us is the query action, which is used to query
data from wikipedia. The titles parameter is used to specify pages by name to
query. Another way to specify pages is using a generator. Generators gener-
ate a list of pages. A bot can give a generator additional arguments by prefix-
ing the parameters with the letter g. For example: http://en.wikipedia.
org/w/api.php?action=query&generator=allpages&gaplimit=3&gapfrom=
Ba&prop=links|categories

This example gets the links and categories of the first three pages. The
generator parameter tells the API which generator use to generate the
pages. The gaplimit tells the allpages generator how many pages should
the generator generate at one time. The gapfrom tells what page the API
should start listing from. The pages are alphabetically ordered. By default
the allpages generator uses the main namespace to generate pages from.
Another significant generator is random that generates pages randomly.

To limit a single user from putting a server on too much of a load. The
API allows only a certain number of pages to be queried at once. To have
bigger queries, the bot has to use continues. To let the server know, that the
bot supports continues, the bot has to add the continue parameter with an

19

http://en.wikipedia.org/w/api.php?format=json&action=query&titles=Main%20Page&prop=revisions&rvprop=content
http://en.wikipedia.org/w/api.php?format=json&action=query&titles=Main%20Page&prop=revisions&rvprop=content
http://en.wikipedia.org/w/api.php?action=query&generator=allpages&gaplimit=3&gapfrom=Ba&prop=links|categories
http://en.wikipedia.org/w/api.php?action=query&generator=allpages&gaplimit=3&gapfrom=Ba&prop=links|categories
http://en.wikipedia.org/w/api.php?action=query&generator=allpages&gaplimit=3&gapfrom=Ba&prop=links|categories

empty value to the query. When the query is big enough, the server returns
a dictionary under a continue parameter. The bot then takes the dictionary
and queries again with the same arguments except the dictionary added as
query parameters and arguments. The original continue argument will be
overwritten. If it is not possible to continue, the server will not return a
continue parameter.

1.4 PyWikiBot

PyWikiBot is a Python framework which allows an application to commu-
nicate with a MediaWiki instance through the MediaWiki API. Firstly the
core component of PyWikiBot is the Site object. The site object holds the
connection to the MediaWiki instance that PyWikiBot is supposed to query
from. It is instantiated without arguments. Instead it takes the instantiation
data from the current PyWikiBot configuration.

PyWikiBot is configurable with the user-config.py file. On a linux system
the user-config.py file has to be in the directory ~/.pywikibot. The
user-config.py file is created with the script generate_user_files.py.
It will ask the necessary questions and then generate the user-config.py
file in the necessary location.

All bots in Wikipedia should have a user account that the bot is using to
query and make changes from. All those user accounts should also be flagged
as bots, so the admins can make better informed decisions in case of high
load. PyWikiBot follows this principle by not being able to run anonymously.
When generating user files, PyWikiBot will ask what will be the user name
to run with. When running the bot, PyWikiBot will also ask the user for
the password. PyWikiBot will remember the password and it is usually not
necessary to write the password in again even after a computer restart.

The site that PyWikiBot will query from is dependent on the family and
the language. These two are also asked when generating user files. A family
is a group of sites that are grouped together according to some theme. A
language is the the 2 character code of the language that the site was written
in. The url of the site doesn’t have to be ll.family.tld, where ll is the
language and tld is the top level domain of the site, like how it is with
wikipedia. Each site can have it’s own url.

20

1.4.1 Page

The page object holds data about a single wiki page. A page instantation
can have 3 arguments. First is the source from which the page will be loaded.
The second is the title of the page. The third is the namespace from which
the page is loaded. The first argument is obligatory and the instantiating
values depend on it. If the source is an another page, then it will make a
copy of the page with the title overridden if it is given. If the source is a
site, then it reads the title and namespace argument and creates a link from
them. If the source is a link instance then it is remembered and the rest of
the arguments are ignored.

A link represents a link to a page. A link has 3 instantiation arguments.
The first is the text of the link. The second is the site that the link is on.
And the third is the namespace to default to if the link text doesn’t contain
the namespace where the link points to. The text is the only obligatory
argument. If no site is given then a new site is initialised. Unless otherwise
specified the default namespace will be the main namespace.

Another way to get pages is to use PageGenerators. A PageGenerator is a
generator that queries Pages according to a specific criteria. For example,
the RandomPageGenerator generates random pages from the Wiki. It uses
the MediaWiki generator API. There probably is a PyWikiBot PageGenerator
for each MediaWiki generator.

1.5 Machine learning

Machine learning is used when the programmer doesn’t know all about the
domain he is writing for. It is then necessary to have the machine learn by it-
self by some criteria. Machine learning generally divides into two categories:
supervised learning and unsupervised learning. Supervised learning is when
you have a known data set where for a known input there will be a known
output. In unsupervised learning there is no such data set and the pro-
grammer is mostly looking for correlation between the inputs. Unsupervised
learning is mostly used for data mining.

Logistic regression is a form of supervised learning which is used for classifi-
cation. Our dataset D will consist of the input of the model, a matrix of the
the vectors xn and the required outputs yn for the inputs. A input vector
xn will consist of the numerical features of the data prefixed with a 1 for the
bias. yn can have only 2 values: 1 or -1. There are more complex forms of

21

logistic regression that can handle more than two values for y but it is out
of the scope of this paper. N will be the size of our dataset.

D = {(x1, y1), (x2, y2), . . . , (xN, yN)}
xn = [1 x1 . . . xd]T

Similar to another supervised learning algorithm linear regression, logistic
regression is a linear model.“All linear models make use of a "signal" s which
is a linear combination of the input vector x components weighed by the
corresponding components in a weight vector w.”[?]

w =
[
w0 w1 . . . wd

]T
s = w0 + w1x1 + · · ·+ wdxd =

d∑
i=0

wixi = w · x = wT x

Linear regression will use the signal directly as output, but logistic regression
will pass the signal through a sigmoid or logistic function and treat thats
output as the probability that y = 1.

h(x) = θ(s)

θ(s) = es

1 + es
= 1

1 + e−s

As shown in figure 2, the logistic function is good for translating between
linear values and probability, because the higher the linear value, the higher
the probability of the output value being 1 and the lower the linear value
the higher the probability of the output being -1. At input value 0, the
probability of it being either value is 0.5.

“We say that the data is generated by a noisy target.”[17]

P (y|x) =
{
f(x) for y = +1
1− f(x) for y = −1

We want to learn a hypothesis h(x) that best fits the above target according
to some error function.

h(x) = θ
(
wT x

)
≈ f(x)

“It’s important to note that the data does not tell you the probability of
a label but rather what label the sample has after being generated by the

22

0

0.5

1

−6 −4 −2 0 2 4 6

Figure 2: The shape of a logistics curve.

target distribution.”[17]. The goal of the training will be to calculate the
weight vector w so that it minimizes some kind of in-sample error measure.

wh = arg min
w

Ein(w)

Our error measure will be based on likelihood. Likelihood is the probability
of generating the data with a model. Likelihood will be high if the hypothesis
is similar to the target distribution. Let’s assume that the data was generated
by the hypothesis:

P (y|x) =
{
h(x) for y = +1
1− h(x) for y = −1

h(x) = θ(wT x)

Let’s try to remove the cases using the property θ(−s) = 1− θ(s).

if y = +1 then h(x) = θ(wT x) = θ(ywT x)
if y = −1 then 1− h(x) = 1− θ(wT x) = θ(−wT x) = θ(ywT x)

}
P (y|x) = θ(ywT x)

23

Let’s denote an arbitrary hypothesis g, in which case the likelyhood is defined
as:

L(D|g) =
N∏

n=1
P (yn|xn) =

N∏
n=1

θ(ynwT
g xn)

To find the best hypothesis, we have to find the best weight vector w.

w = arg max
w

L (D|h) = arg max
w

N∏
n=1

θ
(
ynwT xn

)
= arg max

w
ln
(

N∏
n=1

θ
(
ynwT xn

))

= arg max
w

1
N

ln
(

N∏
n=1

θ
(
ynwT xn

))
= arg min

w

[
− 1
N

ln
(

N∏
n=1

θ
(
ynwT x

))]

= arg min
w

1
N

N∑
n=1

ln
(

1
θ (ynwT xn)

)
= arg min

w

1
N

N∑
n=1

ln
(
1 + e−ynwT xn

)
We have derived a good form for the error measure, which is the loss function
or the average point error.

Ein (w) = 1
N

N∑
n=1

ln
(
1 + e−ynxnwT

)
= 1
N

N∑
n=1

e (h (xn) , yn)

e (h (xn) , yn) = ln
(
1 + e−ynxnwT

)
We minimise the error function using gradient descent. Gradient descent
works by moving the current value towards the local minimum. With the
derivative, one can calculate the necessary direction and the rough distance
of the local minimum from the current value. Therefore training works with
the formula:

wi+1 = wi − η∇Ein (wi)
Where η is the learning rate. We need the derivative of the point error
function and the average point error.

d

dw
e (h (xn) , yn) = −ynxne

−ynwT xn

1 + e−ynwT xn
= − ynxn

1 + eynwT xn

∇Ein (w) = d

dw

[
1
N

N∑
n=1

e (h (xn) , yn)
]

= 1
N

N∑
n=1

d

dw
e (h (xn) , yn)

= 1
N

N∑
n=1

(
− ynxn

1 + eynwT xn

)
= − 1

N

N∑
n=1

ynxn

1 + eynwT xn

wi+1 = wi − η
(
− 1
N

N∑
n=1

ynxn

1 + eynwT
i xn

)
= wi + η

(
1
N

N∑
n=1

ynxn

1 + eynwT
i xn

)

24

To lower the number of iterations, each feature of x should be normalised
before it is used for predicting or training the model. Normalising means that
the program calculates the standard score of each of the features which is
then used instead. The standard score subtracts the mean from the features
and divides that with the standard deviation of the values. A values standard
score floats around the 0 value and roughly has the same absolute value as
other standard scores. When normalising x for predicting, the mean and
standard deviation cannot be enhanced with that data, because then the
trained model will not be expecting such data. It would mean comparing
two fundamentally different sets of data. It is important to note that the
bias variable in x should not be normalised, because it will end in a divide
by zero error.[11]

25

2 The implementation

The purpose of this project is to separate high-quality articles from low-
quality articles.

2.1 Prerequisites

The author used Arch Linux of June 7, 2014 to make this program and hasn’t
tested installing and running it on other systems. Proceed on your own cau-
tion.

This project requires the Python 2 interpreter on the system. As of June
7, 2014 PyWikiBot does not support Python 3 and therefore this paper’s
code was also not written in Python 3. The Python library numpy is also
necessary. One can install them with the terminal command
sudo pacman -S --needed python2 python2-numpy.

A user-config.py configuration file must also exist. To generate it, there is
a script in the pywikibot folder. It’s named generate_user_files.py and
and it must be run with the Python interpreter. This is a sample installation
process:

raigo@archofraigo ~/git/wiki-analyse-bot/core (git)-[master] %
python2 generate_user_files.py :(

Your default user directory is "/home/raigo/.pywikibot"
How to proceed? ([K]eep [c]hange)
Do you want to copy user files from an existing pywikipedia
installation? n
Create user-config.py file? Required for running bots ([y]es,
[N]o) y
1: anarchopedia
2: battlestarwiki
[...]
26: wikinews
27: wikipedia
28: wikiquote
[...]
33: wiktionary
34: wowwiki
Select family of sites we are working on, just enter the number

26

not name (default: wikipedia):
This is the list of known language(s):
ab ace [...] es et eu [...] zh-yue zu
The language code of the site we’re working on (default: ’en’):
et
Username (et wikipedia): AnalyseBot
Which variant of user_config.py:
[S]mall or [E]xtended (with further information)? S
Do you want to add any other projects? (y/N)
’/home/raigo/.pywikibot/user-config.py’ written.
Create user-fixes.py file? Optional and for advanced users
([y]es, [N]o)

Questions without answers use the default answer by pressing Enter.

The analyse-wiki.py file needs to have the right to execute. Otherwise one
must use the python interpreter to run it. This can be achieved with the
command chmod u+x analyse-wiki.py

2.2 Interface

This project is run through the Command Line Interface. The user will
find the file to run in the core folder. The file is called analyse-wiki.py
and it needs to be run with the command ./analyse-wiki.py. The default
behaviour of the script is to retrain the machine learning algorithm and filter
the good pages from all of Vikipeedia. The command can also take one
argument. If the argument is train, then the command will only retrain the
machine learning algorithm. If the argument is find, the command will only
search for good pages using the result of the last retraining.

When the program finds a good page, it will print it out on the terminal in a
URL format. After the bot has found all of the good pages, it will then write
the list of good pages in a file named good_pages.pkl using the Python
library pickle.

2.3 Architecture

Since, PyWikiBot is a framework and not a library, all of the code is in the
src folder. In it is another pywikibot folder and the analyse folder. In the
pywikibot folder is all of the code for the PyWikiBot framework and in the

27

analyse folder is the code written for this paper. The interface script is also
in the src folder named wiki-analyse.py.

Most of the analysis code is programmed in a functional style. There are no
classes, only named tuples and most functions don’t change the inner state
of the parameters, but return a new value. The only imperative part of the
program is in the voidlib.py file. There each function changes the state of
the machine by saving files and outputting messages to the user. Only the
highest level functions are there.

The wiki-analyse contains only one main() function which will be run when
the script is run, but not when it is imported. For that there is the safeguard:

if __name__ == "__main__":
try:

start = time.clock()
main(pywikibot.handleArgs())
pywikibot.output("Run time: " + str(time.clock() - start) + " seconds")

finally:
pywikibot.stopme()

2.3.1 Machine learning

In the train_resultlib module is the TrainResult datastructure, which
holds the weights, mean and standard deviation of each feature as 3 lists.
The module also has one function train_result(model_list). The fun-
tions takes in a list of PageModel and returns the result of training to them.
PageModel is a simple datastructure that contains a wiki Page and the label
assigned to that page.

The modellib module contains the
predicted_label(train_result, page) function, that will return the ma-
chine’s prediction for the Page’s label.

The training data consists of the pages in the category “Head artiklid”12

except for the 5 articles that are articles about the category itself and are
not examples of good articles. This category is hand built by the Vikipeedia
team. An article must fill multiple requirements before it is considered to be
good:[24]

1https://et.wikipedia.org/wiki/Kategooria:Head_artiklid
2Good articles in Estonian

28

https://et.wikipedia.org/wiki/Kategooria:Head_artiklid

Well written It is clearly worded and has the correct spelling. It conforms
to the style requirements and doesn’t use made-up words or slang.

Factually accurate and verifiable Each paragraph has a citation to used
sources and the sources must credible. A good article doesn’t contain
original research.

Covers the whole subject The main aspects of the subject must be cov-
ered while not being derailed to other subjects.

Neutral The subject is presented fairly and without contradiction.

Stabile The article is not often changed because of current arguments or
events.

Illustrated with pictures if possible Each picture is marked with copy-
rights which are not incompatible with Vikipeedia policy. The pictures
must be on topic and sufficiently explained. A good article may not
have pictures if it is complicated to obtain one.

PageModels with the pages from the “Head artiklid” category are built with
the label GOOD_PAGE. Then the program asks for the same amount of random
pages whose PageModel is initialised with the label AVERAGE_PAGE. Most
likely the AVERAGE_PAGE set will have some very high-quality articles and
very low-quality articles besides average articles, but it averages out. Those
two sets are then added together and shuffled. Then 70% of it will be used for
training and the rest will be used to test the precision of the bot. Sometimes
the set the bot is trained with may be biased and the user might want to
train the bot again.

Each page has 7 features:

1. Length of the text of the Page.

2. Number of Pages that refers this Page.

3. Number of pages this Page links to.

4. Number of images this Page links to.

5. Number of external links this Page contains.

6. Number of templates this Page links to.

7. Number of categories this Page is in.

Common reasoning says that the higher these features are, the better a Page
would be. However we don’t know, how one feature weighs against another

29

feature. That’s what the machine learning algorithm figures out. These 7
features with a prefix of the vaule 1 make up the vector x.

To keep the number of iterations small, The values of x are normalised before
they are trained or predicted with. It helps keep all the values of x around
the same size and around the 0 value. The bias prefix 1 is added after the
normalisation so it wouldn’t be normalised. This all happens in the below
function.

def prepare_x(x, mean, std):
normalised = numpy.divide(numpy.subtract(x, mean), std)
return numpy.hstack((numpy.ones((normalised.shape[0], 1)),

normalised))

The result y is the numerical value of the label of the page. If it was a good
page, y = 1. If the page was average, then y = -1. The program calculates
the probability that y = 1 with the given x vector.

For the function implementing the gradient descent, I am using the example
function from [17] with slight modifications:

def gradient_descent(z, y, w_h=None, eta=0.5,
max_iterations=10000, epsilon=0.001):

if w_h is None:
w_h = numpy.array([0.0 for i in range(z.shape[1])])

save a history of the weight vectors into an array
w_h_i = [numpy.copy(w_h)]

for i in range(max_iterations):
subset_indices = range(z.shape[0])

point_error = (- y[subset_indices] /
(1.0 +
numpy.exp(y[subset_indices] *

w_h.dot(z[subset_indices]
.T))))

grad_E_in = numpy.mean(numpy.tile(point_error,
(z.shape[1], 1)).T *

z[subset_indices], axis=0)

w_h -= eta * grad_E_in
w_h_i.append(numpy.copy(w_h))

30

if (numpy.linalg.norm(grad_E_in) <=
numpy.linalg.norm(w_h) * epsilon):

break
else:

raise Exception("Hit max iterations")

return numpy.array(w_h_i)

2.3.2 Searching

The bot finds the good pages using a brute force mechanism. It requests
all the pages from Wikipedia and then tries to predict whether the page is
good or average. It skips all pages with exceptions, mostly that would be
redirects.

31

Training
iterations

Tests Wrong
predictions

Error
rate (%)

Runtime
(seconds)

766 68 1 1.5 26
680 68 1 1.5 20
653 68 3 4.4 15
645 68 1 1.5 22
785 68 2 2.9 23
760 68 1 1.5 22

Average 715 68 1.50 2.2 21.3
Standard
Deviation

57 0 0.76 1.1 3.3

Table 1: Training results

3 Results

The most significant result is the error rate of prediction. To calculate it,
when the program collects the pages to train the machine learning algorithm,
30% of the pages are randomly selected and separated into a separate set.
After the training is complete, the algorithm is then asked to calculate the
label of each page in the test set. The calculated label and the known label
are then compared and it is possible to tell, whether the calculation was
wrong or not. If we add up all the wrong predictions, we get the error rate
or the prediction accuracy.

Since the low-quality pages are just random pages, they might have a bias in
any feature dimension. However, with big enough sets, the bias will average
out. Also, because the test pages are also randomly selected, there might be
a bias in them too. Therefore, the error rate can be varied. Table 1, however,
shows that the variance is generally small.

Another type of result is the number of iterations of training. The training
algorithm gradient descent looks for the local minimum or maximum. It
iterates over the result of the last iteration and makes it more precise. It
is possible for gradient descent to iterate for a long time or forever, if the
required precision or the step between iterations is too high. If the number
of iterations reaches 10000, the algorithm is considered to never finish and
throws an error. Through trial and error the allowed error rate was fixed at
0.1% and the step size was fixed at 0.5.

The practical use of this algorithm is creating a list of high-quality articles
for the Vikipeedia editors.

32

Summary

The aim of this thesis is to provide a way to filter out the high-quality articles
in the Estonian Wikipedia. The best way to do so would be using logistic
regression, a machine learning algorithm.

The Estonian Wikipedia has a hand-picked category for high-quality articles.
The machine learning algorithm can be trained with these articles. Logistic
regression has a weight for each feature or dimension of the article. Logistic
regression is also blind to data type and only sees the scalar value. That
means that it is impossible to identify whether an article uses a certain kind
of template or has certain words or characters in it.

An article has 7 features: characters, pages that refer it, pages that it refers
to, images it refers to, external links it contains, templates it links to, cate-
gories it is in. These features were selected because they were readily available
through the PyWikiBot framework. Because logistic regression accepts only
scalar values, the count of each feature was used. A 8th constant weight is
added as a prefix to counteract the bias in the data.

An algorithm was written using gradient descent to find the logistic regression
weights from the matrix of numerical data. Gradient descent is an algorithm
to calculate the local minimum or maximum of a range of data. In this case,
we want to find the minimum of the error rate. It iterates over the last result
and changes it towards the local minimum. The size of the step of each
iteration must be carefully chosen or the algorithm might step over the local
minimum without lowering the deviation.

When the data has a great bias or big deviations, gradient descent must go
through a lot of iterations to negate that. By normalising the data before-
hand, all the features have the same small bias and deviation. This is also
done in this thesis, otherwise the iteration count might grow so large, that it
is hard to differentiate between a forever looping algorithm and an eventually
stopping algorithm.

Validation is done by setting aside 30% of the articles gathered for training
and then comparing the label the algorithm predicted for these articles with
their true label.

The average error rate of the algorithm detailed in this thesis is 2.22%. This
is achieved with averagly 714.8 iterations of gradient descent. This error rate
can be considered good enough for the purposes of the editors in Vikipeedia.

One possible improvement is not using the PyWikiBot framework. Because

33

of the way the PyWikiBot framework’s interface works the program queries
more times from the MediaWiki server than is required. Each article has a
summary page about the article’s metadata, which can be screen scraped to
get most of the required features with one query. It is also possible to make
one specific query through the MediaWiki API to get the required metadata.

Another possible improvement is to subjectively separate bad articles and
use that data to teach the machine learning algorithm. In this thesis sep-
arating the high-quality articles was done because the high-quality articles
were already handpicked by the Vikipeedia editors. The logistic regression
algorithm can also be made to accept multiple classifications instead of 2.

I conclude that it is entirely possible to use machine learning to sift out the
high-quality articles.

References

[1] Access protection modifiers in java. http://bmanolov.free.fr/
javaprotection.php. [Online; accessed June 7, 2014].

[2] TIOBE Software BV. TIOBE software: Tiobe index. http://
www.tiobe.com/index.php/content/paperinfo/tpci/index.html,
March 2014. [Online; accessed June 7, 2014].

[3] Luca Cardelli. Type systems. ACM Computing Surveys, 28(1):263–
264, March 1996. http://www.cs.colorado.edu/~bec/courses/
csci5535/reading/cardelli-typesystems.pdf.

[4] Debian. C gcc vs python 3 | computer language benchmarks game.
http://benchmarksgame.alioth.debian.org/u64q/benchmark.php?
test=all&lang=gcc&lang2=python3&data=u64q. [Online; accessed
June 7, 2014].

[5] Debian. Python 3 vs java | computer language benchmarks game. http:
//benchmarksgame.alioth.debian.org/u64q/python.php. [Online;
accessed June 7, 2014].

[6] Python Software Foundation. 4. more control flow tools — python
v2.7.6 documentation. https://docs.python.org/2/tutorial/
controlflow.html, April 2014. [Online; accessed June 7, 2014].

[7] Python Software Foundation. General python faq — python
v2.7.6 documentation. http://docs.python.org/2/faq/general.

34

http://bmanolov.free.fr/javaprotection.php
http://bmanolov.free.fr/javaprotection.php
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.cs.colorado.edu/~bec/courses/csci5535/reading/cardelli-typesystems.pdf
http://www.cs.colorado.edu/~bec/courses/csci5535/reading/cardelli-typesystems.pdf
http://benchmarksgame.alioth.debian.org/u64q/benchmark.php?test=all&lang=gcc&lang2=python3&data=u64q
http://benchmarksgame.alioth.debian.org/u64q/benchmark.php?test=all&lang=gcc&lang2=python3&data=u64q
http://benchmarksgame.alioth.debian.org/u64q/python.php
http://benchmarksgame.alioth.debian.org/u64q/python.php
https://docs.python.org/2/tutorial/controlflow.html
https://docs.python.org/2/tutorial/controlflow.html
http://docs.python.org/2/faq/general.html#why-was-python-created-in-the-first-place

html#why-was-python-created-in-the-first-place, April 2014.
[Online; accessed June 7, 2014].

[8] Python Software Foundation. Glossary — python v2.7.6 documentation.
http://docs.python.org/2/glossary.html, April 2014. [Online; ac-
cessed June 7, 2014].

[9] Ecma International. Json. http://www.json.org/, October 2013. [On-
line; accessed June 7, 2014].

[10] Ecma International. Standard ECMA-404 — 1st edition — the JSON
data interchange format. http://www.ecma-international.org/
publications/files/ECMA-ST/ECMA-404.pdf, October 2013. [Online;
accessed June 7, 2014].

[11] Richard Lee. Gradient descent and normalized data
| richard lee’s blog. http://rl337.org/2012/07/03/
gradient-descent-and-normalized-data/, July 2012. [Online;
accessed June 7, 2014].

[12] MediaWiki. Api:main page - mediawiki. http://www.mediawiki.org/
wiki/Api.php, April 2014. [Online; accessed June 7, 2014].

[13] MediaWiki. Manual:installation requirements — mediawiki, the
free wiki engine. http://www.mediawiki.org/w/index.php?title=
Manual:Installation_requirements&oldid=939059, 2014. [Online;
accessed June 7, 2014].

[14] MediaWiki. Manual:what is mediawiki? — mediawiki, the free wiki
engine. http://www.mediawiki.org/w/index.php?title=Manual:
What_is_MediaWiki%3F&oldid=937775, 2014. [Online; accessed June
7, 2014].

[15] Alex Munroe. Gotcha: Python, scoping, and closures -
fuzzy notepad. http://me.veekun.com/blog/2011/04/24/
gotcha-python-scoping-closures/, April 2011. [Online; accessed
June 7, 2014].

[16] Necrolis. compiler — why does jit’ed code consume so much more
memory than either compiled or interpreted code? — stack overflow.
http://stackoverflow.com/a/8675550, December 2011. [Online; ac-
cessed June 7, 2014].

[17] Viet Nguyen. Fun with logistic regression. http://nbviewer.ipython.
org/gist/vietjtnguyen/6655020, September 2013. [Online; accessed
June 7, 2014].

35

http://docs.python.org/2/faq/general.html#why-was-python-created-in-the-first-place
http://docs.python.org/2/glossary.html
http://www.json.org/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://rl337.org/2012/07/03/gradient-descent-and-normalized-data/
http://rl337.org/2012/07/03/gradient-descent-and-normalized-data/
http://www.mediawiki.org/wiki/Api.php
http://www.mediawiki.org/wiki/Api.php
http://www.mediawiki.org/w/index.php?title=Manual:Installation_requirements&oldid=939059
http://www.mediawiki.org/w/index.php?title=Manual:Installation_requirements&oldid=939059
http://www.mediawiki.org/w/index.php?title=Manual:What_is_MediaWiki%3F&oldid=937775
http://www.mediawiki.org/w/index.php?title=Manual:What_is_MediaWiki%3F&oldid=937775
http://me.veekun.com/blog/2011/04/24/gotcha-python-scoping-closures/
http://me.veekun.com/blog/2011/04/24/gotcha-python-scoping-closures/
http://stackoverflow.com/a/8675550
http://nbviewer.ipython.org/gist/vietjtnguyen/6655020
http://nbviewer.ipython.org/gist/vietjtnguyen/6655020

[18] Chris Okasaki. Purely functional data structures. http://www.cs.cmu.
edu/~rwh/theses/okasaki.pdf, September 1996. [Online; accessed
June 7, 2014].

[19] Oracle. Lesson: Object-oriented programming concepts (the javaTM

tutorials > learning the java language). http://docs.oracle.com/
javase/tutorial/java/concepts/. [Online; accessed June 7, 2014].

[20] Terence Parr. What do "syntax" and "semantics" mean and how are they
different? http://www.jguru.com/faq/view.jsp?EID=81, May 2012.
[Online; accessed June 7, 2014].

[21] Tim Peters. Pep 20 – the zen of python. http://www.python.org/dev/
peps/pep-0020/, August 2004. [Online; accessed June 7, 2014].

[22] Lutz Prechelt. Are scripting languages any good? a validation of perl,
python, rexx, and tcl against c, c++, and java. http://page.mi.
fu-berlin.de/prechelt/Biblio/jccpprt2_advances2003.pdf, Au-
gust 2002. [Online; accessed June 7, 2014].

[23] PyPy. Pypy’s speed center. http://speed.pypy.org/. [Online; ac-
cessed June 7, 2014].

[24] Vikipeedia. Vikipeedia:hea artikli nõuded — vikipeedia.
//et.wikipedia.org/w/index.php?title=Vikipeedia:Hea_
artikli_n%C3%B5uded&oldid=3590326, 2013. [Online; accessed
June 7, 2014].

36

http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf
http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf
http://docs.oracle.com/javase/tutorial/java/concepts/
http://docs.oracle.com/javase/tutorial/java/concepts/
http://www.jguru.com/faq/view.jsp?EID=81
http://www.python.org/dev/peps/pep-0020/
http://www.python.org/dev/peps/pep-0020/
http://page.mi.fu-berlin.de/prechelt/Biblio/jccpprt2_advances2003.pdf
http://page.mi.fu-berlin.de/prechelt/Biblio/jccpprt2_advances2003.pdf
http://speed.pypy.org/
//et.wikipedia.org/w/index.php?title=Vikipeedia:Hea_artikli_n%C3%B5uded&oldid=3590326
//et.wikipedia.org/w/index.php?title=Vikipeedia:Hea_artikli_n%C3%B5uded&oldid=3590326

	List of Tables
	List of Figures
	Introduction
	Tools
	Programming language
	Imperative programming
	Functional programming
	Implementation

	Client-server architecture
	MediaWiki
	PyWikiBot
	Page

	Machine learning

	The implementation
	Prerequisites
	Interface
	Architecture
	Machine learning
	Searching

	Results
	Summary
	References

