
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Computer Science

Oskar Pihlak 185147IAIB

PROGRAMMING ASSIGNMENT MANAGEMENT REGISTRY

AURORA
Bachelor’s Thesis

Supervisor: Ago Luberg
PhD

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Tarkvarateaduse instituut

Oskar Pihlak 185147IAIB

PROGRAMMEERIMISÜLESANNETE HALDAMISE

REGISTER AURORA
Bakalaureusetöö

Supervisor: Ago Luberg
PhD

Tallinn 2021

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature, and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Oskar Pihlak
(signature)

Date: 25.05.2021

i

Annotatsioon

PROGRAMMEERIMISÜLESANNETE HALDAMISE REGISTER
AURORA

Mitmed kursused Tallinna Tehnikaülikoolis kasutavad õppeaine läbiviimiseks lisanduvalt
loengutele programmeerimisülesandeid. Antud lähenemist on praktiseeritud üle pikema aja
ning ülesannete arv on kasvanud peaaegu tuhandetesse. Õpetajatele on esitatud väljakutse
määrata kursusele parim ülesanne, kuna iga kursus on erinev ja neil puudub ülevaade juba
olemasolevatest ülesannetest.

Lõputööks on ülesannete haldamise register TalTechi töötajatele, mis võimaldab töötajatel
lihtsalt valida ülesanne kindla teema ja raskustasemega. Parima tulemuse saavutamiseks
analüüsitakse olemasolevaid lahendusi ning teadusartikleid. Pärast esialgset analüüsi
ja nõuete kogumist alustatakse arendust toetudes Agile ja DevOps kultuuridele, ning
Continous Delivery ja Ekstreemse programmeerimise tavadele. Töö eesmärk on lihtsustada
õpetajate ja abiõpetajate tööd.

Rakenduse veebipõhine kasutajaliides on saadaval õpetajatele ja abiõpetajatele leheküljel
cs.ttu.ee/services/aurora/front/.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 34 leheküljel, 10 peatükki, 8 joon-
ist, 1 tabelit.

ii

cs.ttu.ee/services/aurora/front/

Abstract

Multiple courses in TalTech teach their subjects by giving students programming assign-
ments. Throughout semesters the number of assignments the course teaching staff has
to choose from - grows. After a while, the management of sources can become hard to
manage. It is a challenge for teachers to determine the best assignment for the current
course since every course is different.

In this thesis, an assignment management registry is developed for TalTech staff dealing
with assignments in courses. Existing research and solutions are analyzed. After the initial
analysis and requirements gathering, the progressing development is conducted with the
Agile and DevOps cultures, taking adaptation from the Continuous Delivery and Extreme
programming practices. The goal of the work is to simplify operational activities for
teachers and teaching assistants working on assignments.

The application’s client interface is available for teachers and teaching assistants on
cs.ttu.ee/services/aurora/front/.

This thesis is written in English and is 34 pages long, including 10 chapters, 8 figures, and
1 table.

iii

cs.ttu.ee/services/aurora/front/

List of abbreviations and terms

API Application Programming Interface
BEM Block Element Modifier
CD Continuous Delivery
CI Continuous Integration
CLI Command Line Interface
CRUD The four basic functions of persistent storage - create, read,

update, delete
CSS Cascading Style Sheets
DAO Data Access Object
DevOps A set of practices that combines software development (Dev)

and IT operations (Ops)
DTO Data Transfer Object
DSC Desired State Config
GMT Greenwich Mean Time
HTML HyperText Markup Language
HTTP HyperText Transport Protocol
IDE Integrated Development Environment
JDBC Java Database Connectivity.
JPA Java Persistence API
JSON JavaScript Object Notation
MVC Model View Controller
NFR Non-functional requirement
NPM Node Package Manager
ORM Object Relational Mapper
OSI Open Systems Interconnection
PostgreSQL Relational database system.
PWA Progressive Web App
REST Representational State Transfer in an architectural method-

ology, which is a guideline.
SASS Syntactically Awesome Style Sheets
SCSS Sassy CSS
SIL Service Interface Layer
SQL Structured Query Language

iv

TCP Transmission Control Protocol
UI User Interface
URI Uniform Resource Identifier
URL Uniform Resource Locator
UX User Experience
SSH Secure Shell Protocol
VM Virtual Machine
YAML (A recursive acronym for "YAML Ain’t Markup Language")

is a human-readable data-serialization language for present-
ing data.

v

Table of Contents

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Domain overview . 2
1.2 Task setting . 2
1.3 Goal setting . 3
1.4 The scope of the thesis . 3
1.5 Existing work and research . 3

1.5.1 Hackerrank . 4
1.5.2 Codera . 4
1.5.3 UVa Online Judge . 5
1.5.4 LeetCode . 5
1.5.5 Exercism.io . 5

1.6 Projects . 6

2 Methodologies 7
2.1 Values . 7
2.2 Project management . 8

2.2.1 Development iterations . 8
2.2.2 Prioritization . 9

2.3 Continuous Integration and Continuous Delivery 10
2.3.1 Continuous delivery and deployment 10
2.3.2 Continuous integration . 11

3 Analysis 12
3.1 Requirements . 12

3.1.1 Requirements classification . 12

4 IT Operations 15
4.1 Virtualization . 15
4.2 Containerization . 15
4.3 Proxies . 17
4.4 Pipelines . 17

vi

5 Architecture 20
5.1 Architectural overview . 20

6 Back-end 22
6.1 API . 22

6.1.1 Testing . 23
6.2 Persistence . 23

6.2.1 Schema . 24
6.2.2 Continuous Database Integration and Delivery 24

7 Front-end 26
7.1 Web user interface . 26
7.2 Styling . 26
7.3 Angular . 27
7.4 Node.js . 28

8 Core Features 29
8.1 Repository Management . 29
8.2 Assignment Search . 30
8.3 Assignment Classification . 31
8.4 Assignment Similarity . 31
8.5 Tagging . 32

9 Results analysis 33

10 Summary 34

Bibliography 35

Appendix 1 - Non-exclusive licence for reproduction and publication of a grad-
uation thesis 38

Appendix 2 - Spring entity 38

Appendix 3 - Migration script 40

Appendix 4 - Operations project Docker stack file 41

Appendix 5 - Assignments SQL view 42

Appendix 6 - Ubuntu node with containers 43

Appendix 7 - The periodic table of Prioritization Techniques 44

vii

Appendix 8 - Assignment search page 45

Appendix 9 - Repository page 46

Appendix 10 - Tag management page 47

Appendix 11 - Assignments API pipeline needs 47

Appendix 12 - User requirements 48

Appendix 13 - SCSS file structure 51

viii

List of Figures

1 MoSCoW labels in the GitLab project. 10

2 Docker Swarm. 16
3 Aurora Operations pipeline. 18
4 Aurora Web UI pipeline. 18
5 Aurora Assignments API pipeline. 19

6 Architectural system containers. 21

7 Database entity diagram. 25

8 Assignments module routing in the base rooting module 28

ix

List of Tables

1 Sprints. 8

x

1. Introduction

Students in TalTech IT degree programs solve lots of programming assignments during
semesters. Current methods of managing created assignments between Git, Moodle,
Codera, and other TalTech toolings are time-consuming. Manual management without a
complete overview of all assignment sources and content makes it possible to accidentally
introduce duplicates into the system, additionally to the intentional duplicates introduced
due to current management methods.

For results validation, a weekly feedback loop is established with teachers and teaching
assistants who will be using the software alongside development. The expected outputs
are the following:

1. Time reduction in assignment management overhead;
2. Achieving a better overview of assignments;
3. Improving the jobs of teachers and teaching assistants who come in contact with

assignment creation or management.

The registry will enable TalTech to integrate Git and other possible storing mediums
for programming challenges and materials. Jetbrains1 IDEs (Integrated Development
Environment) were used in the registry development.

This paper consists of ten chapters. The introduction composes the first. The second and
third chapters cover planning, introducing used methodologies, and the analysis. The
fourth, fifth, sixth, and seventh chapters are the core of the paper. The fourth goes over
the constructed system’s infrastructure side. The fifth introduces the architecture of the
software system. The sixth gives an overview of the back-end. The seventh chapter gives
an overview of the front-end. An introduction to the most prominent features is given in
the eighth chapter. The ninth and tenth chapters look at the results, summarise the paper,
and propose further development plans.

1https://www.jetbrains.com/

1

https://www.jetbrains.com/

1.1 Domain overview

An assignment is a piece of work given to someone as a part of their studies or job [1]. In
Aurora, it is defined as a programming challenge with a description and tests. It is stored in
any TalTech Git repository where challenges are eligible to be chosen for students to solve.
Assigning programming assignments to students is practiced across TalTech IT courses.
The following are examples of a few:

1. ITI0202 - Computer programming;
2. ITI0002 - Refresher Course in Programming;
3. ITI0204 - Algorithms and Data Structures;
4. ITI0211 - Logical Programming;
5. ITI0102 - Introduction to Programming.

A course can accumulate many Git repositories, and the assignment management can
become tedious. The following are examples of courses whose assignment management
extends across multiple repositories:

� ITI0202 - Computer programming;
1. iti0202-2021,
2. iti0202-2020,
3. iti0202-2019,

� ITI0102 - Introduction to Programming;
1. iti0102-2021,
2. iti0102-2020,
3. iti0102-2019.

1.2 Task setting

TalTech teachers create repositories to store assignments for every course. Through-
out many classes, the amount of repositories created eventually decreases assignment
maintainability, and achieving a complete overview is challenging. Searching for the
most up-to-date assignment is time-consuming and troublesome, especially if the correct
repository is unknown.

2

1.3 Goal setting

The author’s primary goal is to simplify the work of teachers and teaching assistants who
maintain, create or test assignments. This work aims to construct TalTech’s assignment
management registry named Aurora. The name is an inspiration from Roman mythology.
The registry will unify assignment management into a single tool. The goal is divided into
the following subtasks:

1. Build and maintain a production environment;
2. Develop the Assignments API (Application Programming Interface);
3. Develop the UI (User Interface);
4. Document the work done;
5. Establishing registry-specific software development practices and processes;
6. Conducting business analysis with supervisor feedback;
7. Creating an evolutionary system design.

1.4 The scope of the thesis

The thesis covers the maintenance, development, analysis, and system design of the appli-
cation. Existing programming assignment management algorithms in TalTech’s Computer
Science department are also analyzed. An initial set of requirements are established upon
the analysis. The thesis scope includes but is not limited to the following:

1. Analyzing similar applications;
2. Requirement gathering;
3. Application environment setup and maintenance;
4. Development and architecture of the application;
5. Project management.

1.5 Existing work and research

Before starting the registry development, some related applications were analyzed to
understand what has worked for different business use cases. Many relevant applications
are developed as online judges, focusing on programming interview passings. Regardless
of the slight difference in domain focus, these applications have relevant functionality for
the assignment registry.

3

1.5.1 Hackerrank

Hackerrank2 was founded in 2009. The technology company focuses on competitive pro-
gramming assignments for developers and businesses [2]. The product holds unnecessary
complexity regarding the thesis need.
This software is used in the course Advanced Programming (ITI0214) for some assignment
solving. The following are the most relevant pros and cons:

+ Possibility for partnerships
+ Many programming assignments
+ SaaS service does not require self-hosting and maintenance.
- No possible integrations with Moodle
- No possible integrations with Gitlab or Github
- Not possible to develop custom functionality according to needs

1.5.2 Codera

Potentially a similar system to the current thesis development is Codera3. It is a TalTech
programming assignments application developed as a Bachelor’s thesis4 by Kirill Denisov
for holding public programming assignments. Codera manages tasks but is created with the
end goal of publicly sharing programming assignments [3]. The current Bachelor’s thesis
goal is to be more of a tool for teachers and teaching assistants. Since both applications
are meant for different business needs, writing an extension for Codera in the scope of this
thesis is not reasonable and will introduce unnecessary coupling. The following are the
most relevant pros and cons:

+ Possible storage for assignments
- Difficult to dynamically add assignments
- Difficult to search assignments
- Different end goal

2https://www.hackerrank.com/
3https://codera.cs.ttu.ee/
4https://digikogu.taltech.ee/et/Item/49b19a90-a516-434b-80d4-addaf5178bb6

4

https://www.hackerrank.com/
https://codera.cs.ttu.ee/
https://digikogu.taltech.ee/et/Item/49b19a90-a516-434b-80d4-addaf5178bb6

1.5.3 UVa Online Judge

The automated online judge UVa5 Hosted by the University of Valladolid [4]. This software
is used in the course Advanced Programming (ITI0214) for some assignment solving.

+ Many programming challenges (4000+)
+ User registration for everyone
+ Possibility to test assignments
- No direct integration with the search of TalTech’s Git repositories

1.5.4 LeetCode

LeetCode6 was founded in 2015 [5]. It is one of the most well-known online judge
platforms.

+ Many programming challenges (1000+)
+ Many programming languages (15+)
+ User registration for everyone
+ Possibility to test assignments
- No direct integration with the search of TalTech’s Git repositories

1.5.5 Exercism.io

Exercism7 is a coding challenge website created by Katrina Owen in 2013 as a tool to
be used by her programming students [6]. The website is being evolved in 2021, but the
current analysis is the following:

+ Many programming challenges
+ Many programming languages
- Difficult to search and solve assignments
- No direct integration with the search of TalTech’s Git repositories

5https://onlinejudge.org/
6https://leetcode.com/
7https://exercism.io/

5

https://onlinejudge.org/
https://leetcode.com/
https://exercism.io/

1.6 Projects

The thesis content is held on TalTech GitLab8 servers. This Git provider was chosen
because the registry is developed as their native tool, and it is seamless to iterate processes
in the client environments. Doing so prevents conflicts that may arise with any environment
migrations to TalTech platforms in the future. The thesis has been developed for around
600 hours between three projects.

The Aurora Operations9 project holds the Docker Swarm containers, documentation, code,
system cleanup jobs, and assets for keeping the registry working correctly. For example,
the Aurora-specific proxy is deployed here. This project is in semi-active management,
meaning tasks are created, but sprints are not made since the amount of work is not
consistent.

The Aurora Web UI10 project (122 issues, 252,3 hours, 8870 lines of code) is the browser-
based front-end web interface, exposing the registry to users. It communicates with the
registry APIs, currently only with the Aurora Assignments API. This project is in active
development. Sprints are organized weekly, a backlog of issues exists.

The Aurora Assignments API11 project (147 issues, 232,7 hours, 7208 lines of code) is a
back-end service, which provides data for the Aurora Web UI and any other UI type. It
communicates with persistence solutions and holds complex business logic. This project is
in active development. Sprints are organized weekly, a backlog of issues exists.

8https://gitlab.cs.ttu.ee/
9https://gitlab.cs.ttu.ee/aurora/aurora-devops

10https://gitlab.cs.ttu.ee/aurora/aurora-frontend
11https://gitlab.cs.ttu.ee/aurora/aurora-backend

6

https://gitlab.cs.ttu.ee/
https://gitlab.cs.ttu.ee/aurora/aurora-devops
https://gitlab.cs.ttu.ee/aurora/aurora-frontend
https://gitlab.cs.ttu.ee/aurora/aurora-backend

2. Methodologies

Methodologies are systems of practices, techniques, procedures, and rules used by those
who work in a discipline [7]. The project development has adapted properties from the
Agile and DevOps cultures.

2.1 Values

Practices describe how things are done, and values add the reasoning. The registry
development is following these values:

� Minimalism - Easy to understand, deal with, and use;
� Feedback - Weekly cycles, CI (Continuous Integration)/CD (Continuous Delivery),

Incremental design, small builds, ruthless prioritization;
� Transparency - The client and the development team know what is being worked on;
� Sustainability - Iterative effort, development at a maintainable velocity.

Minimalism proved challenging to maintain with the registry development velocity. More-
over, later required multiple phases of refactoring, which dragged down new feature
development speed. This shows that technical debt is initially good in the lifecycle of a
feature, but after features are established, the debt should be removed to maintain speed.

The feedback cycles were beneficial beyond expectations. Thanks to them, many initially
developed ideas were improved, re-prioritized, and re-tailored to more accurately match
user needs. Feedback cycles were established with the experienced teaching assistants
Enrico Vompa, Timo Loomets and the supervisor Ago Luberg.

Transparency was easy to keep with the GitLab project group management tooling. Since
the client and relevant personnel have access to the registry project group, they can see the
tasks in development. A weekly overview was also given to the client and supervisor Ago
Luberg.

Sustainability was the starting value. The project idea was already established in May
2020. Starting from the end of 2020, the projects have been in constant development.

7

2.2 Project management

Choosing a management approach depends on project characteristics and the type of people
in the team. The thesis is developed in a dynamic environment. Feature requirements and
priorities could have changed weekly, depending on feedback. As a result, the Agile set of
principles were adapted [8].

2.2.1 Development iterations

Up until the start of 2021, the development was done more in a kanban way. The first
sprints in the API and UI projects were accumulating all the work done in 2020. After the
first sprints, the ongoing sprints were made in weeks or two weeks. Sprints are focused,
sustainable, planned, and measured. Upon completing a sprint, a release version tag was
added to the final commit, and a release was made. Every sprint moved the version by 0.1.
Since the API is complex, in some weeks, only that was developed. This results in version
differences between the UI and API projects. The sprints made are listed in Table 1

Table 1. Sprints.

V. Front-end Back-end

0.1
Initial release
(34 issues, 118h)

Initial release
(16 issues, 89h 20m)

0.2
Assignments display
(4 issues, 3h 5m)

Assignments API
(13 issues, 44h 19m)

0.3
Repositories & Assignments
(10 issues, 15h 10m)

Database & Assignments API
(5 issues, 27h)

0.4
Tags & repositories
(13 issues, 26h 13m)

Assignments API & Git improvements
(6 issues, 13h)

0.5
Repository & Assignment view
(22 issues, 15h 35m)

Assignments API
& Further Git improvements
(3 issues, 4h)

0.6
Handle no API communication
(16 issues, 34h 47m)

Gitlab API, assignments & repositories
(6 issues, 18h)

0.7
Automatic tagging
& similar assignments
(10 issues, 23h 35m)

Assignments, repositories
& maintenance
(7 issues, 14h 55m)

Continues...

8

Table 1 – Continues...

V. Front-end Back-end

0.8 -
Tags & repositories
(9 issues, 28h 24m)

0.9 -
Assignment files & performance
(26 issues, 45h 35m)

1.0 -
Tags, Tests, Repositories,
Assignments, Filesystem
(20 issues, 47h 5m)

1.1 -
Similar files, Dynamic tagging
(16 issues, 32h)

2.2.2 Prioritization

Prioritization is the most significant and critical portion of requirements analysis and
project planning due to restrictions on development time and resources. Techniques can be
categorized into three scales called nominal, ordinal, and ratio [9]. A variety of approaches
can be found in appendix 7.

This project uses the MoSCoW1 prioritization technique on development tasks. It is a
collaboration-based nominal scale technique and is one of the easiest methods, originating
from the dynamic software development method [9]. The MoSCoW categories are im-
plemented as GitLab tags seen in Figure 1. A category is assigned to a task based on the
implementation importance. Requirements in the same group represent similar priorities.

The Kano model2 is used for a more customer-centric view. Requirements can be divided
into the three following categories:

� Baseline Expectations - Must be present for the product to be successful
(e.g., assignment search);

� Linear Satisfiers - The better they are – the more customer satisfaction they bring, the
worse they are, the more dissatisfaction they bring (e.g., assignment search speed);

� Delighters - Details that will typically not be missed if they are absent but will
impress the client (e.g., displaying search speed and loading spinners);

Combining the simplicity of MoSCoW with Kano’s customer-centric view results in a

1https://www.productplan.com/glossary/moscow-prioritization/
2https://www.career.pm/briefings/kano-model

9

https://www.productplan.com/glossary/moscow-prioritization/
https://www.career.pm/briefings/kano-model

Figure 1. MoSCoW labels in the GitLab project.

robust lexicon to explore the mix of requirements that need to be delivered [10]. This
proved beneficial when prior sprint planning was conducted with the supervisor. The
MoSCoW tags were added to GitLab tasks, but Kano tags were kept on a feature-basis
on notes instead of task-basis in GitLab since Kano is more general and MoSCoW works
with individual task tagging better.

2.3 Continuous Integration and Continuous Delivery

This section will introduce techniques for keeping development speed and software release
roll-outs stable and agile.

2.3.1 Continuous delivery and deployment

Delivery is the ability to deploy on-demand. Deployment is the instant production deploy-
ment of a change upon a passed pipeline. CD practices lower deployment risks enable real
progress and regular user feedback [11].

All the deployable projects are developed using trunk-based development and started out
using Continuous Deployment, meaning a production deployment on every commit. This
was convenient but restricted committing flexibility. After projects increased in complexity
enough, they were switched to Continuous Delivery, starting with the API, then the UI
project. CD allowed pushing commits up to the remote more often without the fear of
affecting the production environment. A pipeline failure is handled by rolling forward.
Doing so leaves behind a trail of the broken version for potential auditing. There are

10

various deployment strategies that were considered: for example, Dark launching3, GitHub,
Rolling Update4, Blue/Green deployment/Phoenix deployment5, Canary deployment6. The
projects Swarm services will use the rolling updates deployment method since Docker
Swarm has a built-in mechanism for this approach7 [11].

2.3.2 Continuous integration

CI (Continuous Integration) goal is to get fast, automated feedback on the correctness of
the application every time there is a code change. CD cannot be done without good CI
practices in place.
Feature toggles is a tool for aiding trunk-based development and an easy way to test
business features. Each toggle’s technical debt and life span are different [12], [13]. The
application used a release toggle with the file authoring feature implementation. The
application projects will use CI in the provided VM (Virtual Machine) with trunk-based
development.

3https://martinfowler.com/bliki/DarkLaunching.html
4https://link.springer.com/chapter/10.1007/978-3-540-30225-4_13
5https://martinfowler.com/bliki/BlueGreenDeployment.html
6https://martinfowler.com/bliki/CanaryRelease.html
7https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/

11

https://martinfowler.com/bliki/DarkLaunching.html
https://link.springer.com/chapter/10.1007/978-3-540-30225-4_13
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/CanaryRelease.html
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/

3. Analysis

This section will cover the domain background check, functional requirements, non-
functional requirements, alternative requirement classifications, possible requirement
gathering methodologies, and the ones used.

3.1 Requirements

Requirements are usable representations of needs, which focus on understanding what
kind of value could be delivered if they are fulfilled [14]. Initial requirements are gathered
and then iterated with the supervisor. After an iteration, they are classified into functional
and non-functional requirements and persisted on notes.

3.1.1 Requirements classification

Requirements will be differentiated between behavior (e.g., assignment search response
time) and representation (e.g., programming languages). Representational NFRs (Non-
functional Requirements) are how systems are syntactically or technically represented,
described, structured, implemented, or executed [15]. Behavioral NFRs are additionally
classified according to the system view (interface, architecture, or state) and the expressive
behavior theory, which are the following [16], [17], [18]:

� Syntactic - structure on which behavior can be described;
� Logical - set of interaction patterns;
� Probabilistic - probabilities for a set of interaction patterns;
� Timed - set of interaction patterns with relation to time.

12

User requirements are covered in appendix 12, and system requirements are distributed
according to the ISO 9126–11 in the following way:

� Functionality
– Interface

1. Syntactic - A list of assignments will be displayed when navigating to the
assignments page;

2. Logical - Assignments will be returned according to the filtering criteria
that the user provides;

3. Logical - If the assignment file’s content matches the search criteria, a
snippet of the file will be displayed;

4. Syntactic - It has to be possible to search for assignment repositories.
� Usability

– Representational
1. The application can be comfortably used from a device with a screen size

of 1200px x 700px;
2. The application displays notifications about successful and failed requests

to the user;
� Reliability

– Interface
1. Logical - Application maintainers will be notified of system failures.

– Architecture
1. Probabilistic - The system availability shall be 90%;
2. Logical - Application containers shall be restarted upon failure when

feasible.
– State

1. Timed - The system should recover from an incident within two hours.
� Efficiency

– Interface
1. Timed - The application shall respond to any TCP (Transmission Control

Protocol) request within 10s.

1. Logical - Real-time communication that takes longer than 10s to complete
should use an alternate communication form (e.g., WebSockets).

1https://www.iso.org/standard/22749.html

13

https://www.iso.org/standard/22749.html

� Maintainability
– Representational

1. The expected lifespan of the software is at least two years;
2. The back-end of the application shall be written in Java 11 or higher, and

Spring-boot;
3. The front end of the application shall be written in Angular 11 or higher;
4. The source code for the applications will be stored in the client’s Git

environment.
� Portability

– Interface
1. Timed - The administrator should be able to migrate the application manu-

ally between different VM’s at most in 2 hours.
– Representational

1. Applications shall be placed inside Docker containers;
2. A VM shall have at least a single container of each application container;
3. The application shall run on a Linux VM.

14

4. IT Operations

The application is deployed to a TalTech server VM and is reachable on the base Aurora
URL1 (Uniform Resource Locator). It supports reading from multiple SSH (Secure Shell
Protocol) key files for receiving credentials, which are needed to access TalTech GitLab
repositories. Multiple SSH key support was implemented because many sprints went into
debugging Git credentials. This also simplifies local development’s key management if
prior keys exist in the local machine. Furthermore, distributing repository access between
different keys in production increases security. Although it is possible, a single SSH key is
used in production. The software is planned to operate within TalTech, so no remote URI
(Uniform Resource Identifier) whitelisting was done.

4.1 Virtualization

Virtualization provides a platform to run different services of operating systems. It facili-
tates building multiple virtual machines on a single primary physical machine, either in
the form of hypervisors or containers [19].

The supervisor provided a single TalTech server VM, and the registry author accessed
it through SSH. The time zone was set to GMT+3 (Greenwich Mean Time) to match
Tallinn, SSH keys for the registry were inserted, Docker tooling was installed, and GitLab
runners were set up for CI/CD. The application’s production environment, pipelines, and
monitoring all operate within a single Ubuntu 18.042 VM instance with 10 GB of storage
and 4 GB of RAM (Random Access Memory). Containers running on the VM instance
can be viewed in appendix 6.

4.2 Containerization

Containerization technology combines the application and related dependencies into a
deployable package. Such a platform is, for example, Docker3 [19]. It enables application
separation from the infrastructure, providing the ability to run applications in a loosely
isolated environment [20].

1https://cs.ttu.ee/services/aurora
2https://releases.ubuntu.com/18.04/
3https://www.docker.com/

15

https://cs.ttu.ee/services/aurora
https://releases.ubuntu.com/18.04/
https://www.docker.com/

The deployed application runs in a single node cluster Docker Swarm4. An alternative
would have been to use Kubernetes5, but Swarm matches the thesis requirements closest
due to the development scope and no detailed configuration needs. In the future, it is
possible to split the cluster between multiple nodes. A single node is kept since the VM
has enough capability to serve the users, and a multi-node setup will unnecessarily increase
complexity. The Swarm topology is shown in Figure 2. The Swarm cluster is project
agnostic, meaning containers and networks can be deployed from various projects. The
cluster-wide overlay network is called aurora-network. The back- and front-end bridge
networks are called back-end, and front-end respectively. To prevent the VM from being
overloaded, some of the Swarm container’s resource consumption is limited. At one point,
the registry proxy failed to serve the API due to resource restrictions, but this was fixed by
increasing the maximum possible amount of resources to consume. The Docker container
description is written in YAML(YAML Ain’t Markup Language), and the operations
project file can be seen in appendix 4.

Figure 2. Docker Swarm.

4https://docs.docker.com/engine/swarm/
5https://kubernetes.io/

16

https://docs.docker.com/engine/swarm/
https://kubernetes.io/

4.3 Proxies

All the proxies relevant to the registry are HTTP (Layer 7 of the OSI networking model).
The application reverse proxy was chosen from vendors who could support distributed
systems. Initially, a Cloud-Native networking stack called Traefik6 was chosen. However,
the configuration and maintenance were too general purpose and complex for the project.
Instead, it was decided to match the host’s reverse proxy with NGINX7. It is used as a
proxy for load balancing, back-end routing, caching, and serving web content.

The application is reached through two NGINX reverse proxies, the TalTech, and the
application proxy. The TalTech proxy detects for the Aurora base URL8. After receiving
a request, it is directed through an internal network to the application’s Swarm proxy
container, which listens to port 8080. The base URL suffix /front displays the web
application UI, /api exposes the APIs; currently, only the Assignments API and /portainer
reveals the Docker Swarm monitoring interface.

4.4 Pipelines

Every commit is considered a release candidate. A commit or a group of commits trigger a
pipeline run on the UI, API, and Operations projects. CD has the purpose of killing bad
release candidates [12]. After a pipeline passes on any project, there should be confidence
for deployment. If any of the application project pipeline jobs fail before deployment,
the production environment remains running. A failing deployment signals operational
problems (e.g., VM’s memory is full). The application and its architectures increase in
complexity throughout development (e.g., separating layers into different projects), and
the pipelines become various but simpler or as complex.

The pipelines center around dealing with DockerHub Docker containers. All projects
except Aurora Resources have a pipeline. The main application pipelines are in Aurora Web
UI and Aurora Assignments API. The project Aurora Operations focuses on operational
aspects. After the operations project pipelines reach DockerHub’s anonymous user pull
rate limit9 (100 pulls/6h), all Docker networking operations on every project are conducted
from an authenticated user account, which rate limit is higher (200 pulls/6h). A fallback
image pulling policy "if-not-present" is added into GitLab runners10. The pipelines and the
production environment run on the same VM. Since there have been various production

6https://traefik.io/
7https://www.nginx.com/
8https://cs.ttu.ee/services/aurora
9https://www.docker.com/increase-rate-limit

10https://docs.gitlab.com/runner/executors/docker.html

17

https://traefik.io/
https://www.nginx.com/
https://cs.ttu.ee/services/aurora
https://www.docker.com/increase-rate-limit
https://docs.gitlab.com/runner/executors/docker.html

outage incidents due to the VM memory getting close to full, the pipelines are designed
to take up minimal storage space. The pipeline’s storage consumption optimization is to
conduct storage and Docker cache checking and clean up before and after every pipeline.
As of the time of writing, no other pipelines have caused the VM to fail.

In Figure 3 the Aurora Operationspassed pipeline is presented. The given pipeline updates
the monitoring and proxy setups when needed.

Figure 3. Aurora Operations pipeline.

In Figure 4 the Aurora Web UIpassed pipeline is presented. The service update job
updates the Swarm NGINX container. The pipeline compiles the code into a production
state and deploys the image to Docker Hub11. The deployment pulls the new image into
the production environment and runs it. There is a minor downtime ≈ 1 min between
deployments.

Figure 4. Aurora Web UI pipeline.

In Figure 5 the Aurora Assignments APIpassed pipeline is presented, which begins and
ends with a memory cleanup. This is the most complex pipeline of the application. The
testing phase goes over the VM’s memory state and the API unit tests. The build phase
creates a Docker image and dry-runs the database schema changes. The deployment is
triggered manually and consists of the database and API deployments, which are done
separately. The order of the pipeline jobs matters since the following jobs may depend
on previous ones, displayed in appendix 11. After a database schema update failure, the

11https://hub.docker.com/

18

https://hub.docker.com/

transaction will be rolled back. The new API version could break if it were deployed
before the database with data model changes, and the database update failed. There is a
minor downtime ≈ 1 min between deployments.

Figure 5. Aurora Assignments API pipeline.

19

5. Architecture

It is a shared understanding of the system’s most essential and hard-to-change aspects.
Every project has to decide what is architectural for their case. The types can be categorized
as technical, data, security, and domain. Some architectural patterns are monolithic (e.g.,
layered), service-based (e.g., microservices), and distributed (e.g., event-driven) [21].

5.1 Architectural overview

The application uses a monolithic approach in the thesis scope. The system containers
can be found in Figure 6. This is done since it is easier to fix modeling decisions and
layer bordering within the same application and extract when clear domain borders have
been established. Distributing a system introduces lots of complexity which is not required
in the current scope. The application components are organized and assembled into a
top-down four-layered architectural pattern. The pattern organizes itself into layers that are
specific to significant system responsibilities. Layers are independently isolated portions
of the system that behave like external entities with the rest of the system. They are named
presentation, business, services, and data/infrastructure.

Interactions between other system components are done via well-defined interfaces, e.g.,
REST (Representational State Transfer). A layer exposes its functionalities through an ab-
stract API. An example of an n-layered pattern is the OSI (Open Systems Interconnection)
model.

Developing without a traditional architecture in place could result in the "Big Ball-of-Mud"
anti-pattern. The thesis application layers will be closed, meaning each layer responds only
to the layer above it. The system will be designed with the evolution of the architecture kept
in mind, meaning it will be possible to easily extract components from the monolith. After
demand within an extractable component increases, it could be pulled into a microservice.
Consistency and coherency are the critical aspects of a system design.

20

Figure 6. Architectural system containers.

21

6. Back-end

The back-end composes a single JDK 11 based API with a dedicated relational database. It
is named the Aurora Assignments API, and handles the assignments part of the software.

6.1 API

The namings have to be clear and consistent throughout the system, indicating intent,
action, and the service provided. The correct design of methods, classes, systems, APIs,
services, and microservices is connected [22].

The Assignments API1 is written in Java 11 using Spring Boot since the author has the most
experience with them. Java is a strongly and statically typed, general-purpose, concurrent,
class-based, object-oriented language related to C and C++ and intended to be a production,
not a research language [23]. Spring Boot simplifies Spring development by handling
explicit boilerplate configuration [24]. The build tool used with Spring Boot is Gradle
since it can have faster build times compared to other tooling [25].

The web-API is implemented relying on the OpenAPI2 specification and is designed with
some parts course-grained to prevent network congestion (e.g., repository update requests),
where the API consumers have the requirement to call multiple endpoints for a task. Simple
API calls are fine-grained (e.g., assignment tagging) [22]. The Assignments API web
controllers have 38 endpoints distributed between 10 controllers. The most extensive
controllers are the assignments controller (11 endpoints), and the git repository controller
(12 endpoints), and the tag controller (6 endpoints).

The back-end primary modules are organized around the following operational layers:
persistence (communicates with PostgreSQL, holds DAOs (Data Access Object), entities,
and configurations), domain (holds DTOs, and enums), services (holds business logic
between services and interactors), utils (globally accessible tooling by functionality), web-
api (the interface between the API and services). The Liquibase module is separated from
the others, since it is not part of the API, but evolves alongside it.

1https://cs.ttu.ee/services/aurora/api/swagger-ui/
2https://swagger.io/specification/

22

https://cs.ttu.ee/services/aurora/api/swagger-ui/
https://swagger.io/specification/

The developed system’s business logic modules act as a black box, exposed to external
clients by a public Domain Facade pattern3. The built system is agnostic of the context in
which it runs, meaning any SIL4 (Service Interface Layer) could be implemented. During
the period of the thesis development, a Web-API SIL5 is implemented.

6.1.1 Testing

Software testing is the process of verifying computer code functions to match the in-
tended design. Software should be predictable and consistent, presenting no surprises to
clients [26].

The application is tested manually and with module (unit) testing. Manual testing is done
in both local and production environments. An excellent manual integration test was with
the GitLab API to press a button on the repository page, which refreshed all the registry
repositories. For example, unit tests cover the cloned repositories file traversal logic,
which classifies assignments. During the tests, a mock filesystem is created. Tests have
helped discover the differences between file path conventions in windows and Linux-based
systems. This saved much manual debugging time. The file system traversal functionality
was written prior to the tests, but debugging was done with tests. Prior to every release, the
software was manually tested.

6.2 Persistence

The Aurora Assignments API uses a SQL (Structured Query Language)-based open-source
relational database system called PostgreSQL6 as the persistence technology. Persisted
data objects are defined with classes called entities shown in appendix 2. The transition
from class objects to database rows is done with an ORM (Object Relational Mapper)
called Hibernate7, which implements JPA (Java Persistence API).

The API uses Git as a secondary persistence medium and downstream. Maintaining
assignment data integrity is difficult due to every part of a file within a Git repository
having the possibility of being changed. For example, file and repository renaming,
path changes, and content updates on the registry update would create a new assignment
reference. The solution is to traverse the file system and map through the file path. The

3https://www.geeksforgeeks.org/facade-method-python-design-patterns/
4https://www.researchgate.net/publication/267690101_Implementation_

of_MDA_Method_into_SOA_Environment_for_Enterprise_Integration
5https://www.youtube.com/watch?v=3JAwNtNthbU
6https://www.postgresql.org/
7https://hibernate.org/

23

https://www.geeksforgeeks.org/facade-method-python-design-patterns/
https://www.researchgate.net/publication/267690101_Implementation_of_MDA_Method_into_SOA_Environment_for_Enterprise_Integration
https://www.researchgate.net/publication/267690101_Implementation_of_MDA_Method_into_SOA_Environment_for_Enterprise_Integration
https://www.youtube.com/watch?v=3JAwNtNthbU
https://www.postgresql.org/
https://hibernate.org/

deletion of files is rarely done, and validations occur prior to that. A repository change
event that causes a duplicate assignment can be mapped back to the original assignment.
The mapping feature is yet to be implemented in Aurora.

6.2.1 Schema

The Assignments API database is named aurora_db_s1, and the content is inside the public
schema, which has 16 entity tables, seen in Figure 7. Triggers were created to check for
duplicate inserts on the similar_repository and tagging_job tables. The database tables are
named using a singular form to convey the power scale relations between tables clearly.
Understanding power scales clearer makes table joining easier to conduct. Primary keys are
prefixed with pk, foreign keys - fk, unique constraints - uk, alternative keys - ak, domain
values - d, and views - v. Two views were created, the assignments view seen in appendix
5, and the repository view.

The API began with testing JPA and Spring generated schema approaches. In the beginning
the JPA approach was chosen, but as complexity grew, JPA was replaced with an SQL
scripting-based evolutionary tool. For evolving the relational database schema with SQL,
the considered options were Liquibase8 and Flyway9. Liquibase was favored since it offers
more in the free tier, and the author has more work experience with the tool.

6.2.2 Continuous Database Integration and Delivery

Data incidents are more complex to recover than code incidents. To prevent data losses,
machines should do the database evolution and deployment instead of humans. There are
two methodologies of doing this: Migrations and DSC (Desired State Config) [27].

The Assignments API database is evolved with Liquibase migration scripts. This achieves
manual control over the created scripts since in DSC, migration scripts are generated
automatically [27]. The Liquibase tooling is used locally for development, migrations are
triggered by a custom made Gradle command dbUpdate. Production schema evolution is
conducted by the API CD pipeline, which spins up a Docker container and runs the update
command against the production Postgres Docker instance. Liquibase migration scripts
are stored and written in the respective API project since the API and the data model often
evolve together. An example of a migration script can be seen in appendix 3.

8https://www.liquibase.org/
9https://flywaydb.org/

24

https://www.liquibase.org/
https://flywaydb.org/

Figure 7. Database entity diagram.

25

7. Front-end

It is the architecture’s presentation layer, which exposes a web UI to users. Compared
to a CLI (Command Line Interface), it is more complex to build but enables a better UX
(User Experience) while interacting with the functionality provided by the application’s
back-end.

7.1 Web user interface

The web UI is rendered on the client-side to reduce server load, keep the web page more
dynamic, and decrease the client and server coupling. The web page content is rendered
through JavaScript, HTML (HyperText Markup Language), and CSS (Cascading Style
Sheets). The development uses TypeScript, SCSS (Sassy CSS), and HTML.

For enabling PWA (Progressive Web App) features and improving performance, a service
worker is implemented. It is JavaScript running separately from the main browser thread,
intercepting network requests. It caches or retrieves resources from the cache, enables the
application to control network requests, cache those requests to improve performance and
provide offline access to cached content [28].

7.2 Styling

The CSS development uses the SASS (Syntactically Awesome Style Sheets)1 preprocessor,
with SCSS syntax and adaptations from the BEM (Block Element Modifier) naming
convention for writing custom styles. It is a styling language for reducing repetition and
maintainability challenges of traditional CSS, allowing to scale styles faster and more
efficiently to write reusable styles from scratch. SASS uses variables, nesting, mixins, and
functions to write reusable styles [29].

At the beginning of the UI development, a comprehensive SCSS architecture seen in
appendix 13 was designed to be agnostic to the used development framework and external
styling libraries. The aim was to write all application styles without third-party tooling,
using only SASS. After a sprint, it was realized that doing so would leave little time for

1https://sass-lang.com/

26

https://sass-lang.com/

developing higher priority features. This resulted in the adaptation of Bootstrap 52, and
Angular Material component library3. The custom styles have higher precedence over
third-party libraries, and the component styles have the highest priority.

7.3 Angular

Angular is used to write the SPA (Single Page Application). It was chosen since the
author has prior experience using the platform. Angular4 is a development platform built
on TypeScript, which is a superset of JavaScript. It enables the separation of concerns
with an MVC (Model View Controller) architecture. As a platform, Angular includes
a component-based framework, a well-integrated collection of libraries, and a suite of
developer tools [30]. In an Angular production build, TypeScript, SCSS, and HTML will
be built into HTML, JavaScript, and CSS.

The NgRx5 framework is used for managing the global application state. Initially all API
requests were routed through state management, but due to management overhead this was
discontinued. In future developments, it is planned to keep user preferences in the global
state.

The front-end project was the first where active development began. Since the API
was not ready from the start, the beginning requests were mocked with json-server,
Node.js, and faker, running on port 3000. There are three environment configurations:
development, production, and mock, which configure the used API paths, versioning,
logging, and allowed authorization methods.

The application app directory is structured into core, dto, features, and shared
modules. The core spans over the entire application and holds global enums, constants,
factories, alerting, authorization, language selection, and WebSocket services. Multilingual
support is built-in, but only English is supported. dto content matches the APIs DTO
objects. features hold the business components, and each sub-folder here is a separate
page, which has its own routing module. An example of assignments routing module is
given in Figure 8.

2https://getbootstrap.com/docs/5.0/getting-started/introduction/
3https://material.angular.io/
4https://angular.io/
5https://ngrx.io/

27

https://getbootstrap.com/docs/5.0/getting-started/introduction/
https://material.angular.io/
https://angular.io/
https://ngrx.io/

{
path: ’assignments’,
canActivate: [AuthGuard],
loadChildren: () => {

// @ts-ignore
return import(’./features/assignments/assignments.module’)
.then(m => m.AssignmentsModule);

},
},

Figure 8. Assignments module routing in the base rooting module

7.4 Node.js

Node.js6 is an asynchronous event-driven JavaScript runtime, and it is designed for building
scalable network applications. HTTP (HyperText Transport Protocol) is a first-class citizen
in Node.js, designed with streaming and low latency in mind, which makes it well suited
for the foundation of a web library or framework [31].

NPM7 (Node Package Manager) is the default package manager for Node.js, which enables
sharing packaged modules of code. The NPM registry is a public collection of packages of
open-source code for Node.js [32].

Node.js and NPM are used for the web UI project development. They do not run production,
but are used in building the production package.

6https://nodejs.org/en/
7https://www.npmjs.com/

28

https://nodejs.org/en/
https://www.npmjs.com/

8. Core Features

These are the most significant features implemented in the registry in terms of time,
complexity, and importance. The application has three primary pages: assignments search,
repository management, and tag management.

Currently in progress are the following: dashboard, administration, automatic tagging,
and settings. The dashboard, settings, and administration are waiting for the user system
implementation. Browsing between the pages is close to instant. Many requests are not
made before, for example opening specific tabs. This saves resources and keeps browsing
as seamless as possible.

8.1 Repository Management

This is one of the core administrative features operating with Git. The UI is seen in appendix
9. Aurora sees and uses the available repositories at the moment only through the GitLab
API and via a Personal Access Token provided to the Aurora GitLab user aurora-user
account. When aurora-user is added into a repository with cloning/pulling per-
missions, it becomes visible for the registry, and in the production environment, the
repository becomes available for cloning into the registry’s file system. The API enables
to push changes up to repositories, but this functionality is not yet implemented by the
API-consuming UI. This feature will be fully-added after the user permission system is im-
plemented so that git logs show the logged-in user as the file changer. Only administrators
will be allowed to change files under the aurora-user.

There is an issue with repository persistence in production, which is related to entity
recursion. This is why repository update requests are rate limited to 1 per 30 minutes.
The recursion causes the API to crash, but Swarm redeploys an instance, occurring in
downtime of around 3 minutes. This will be fixed outside of the thesis scope since the
problem discovery has already taken over 10h.

29

Git systems offer file authoring (blame) annotations. The Assignments API uses the GitLab
APIs to extract additional data for assignments. The GitLab API handling blame requests
only returns a single blame response per request, meaning that it takes around 5 seconds per
file to request and persist the record. The blame annotation persistence accumulative time
is linear depending on the number of files. Initially, blame was added upon a repository
update. Currently, it is updated manually through an API call, and in the following sprints,
it will be made a cron job.

8.2 Assignment Search

The search UI has gone through 2 remodels thanks to user feedback. The current visual
is seen in appendix 8. Assignment searching is the core functionality that provides the
most significant business value. Many features are built alongside to help with searching.
The query response is paginated in the Assignments API to 10, 25, 50, and 100 results,
defaulting to 10. The initial load without query criterion search ignores file content search
for performance reasons.

After a more detailed search-criterion is given, and the database has returned a query result,
the API goes into a multithreaded mode and splits the queried results pairing between the
available threads in the pool, which conduct file snippet extraction, analysis, and response
mapping. Since the biggest file in the database has 4 217 441 characters, the analyzable
files are kept a standard deviation over the average character size in the system, resulting
in the limit of 40 000 characters per file, excluding Text, CSV, and JSON files. Information
about file sizes is stored in the database alongside the files.

In the search result, the assignment file snippets matching the search criteria are displayed,
with three lines before and after the found result. Found snippets count is displayed in the
expanded assignments navigation header and the root node in parentheses. In the case of
similar files, also a tag is displayed in the assignment root, with the similar assignments
count shown in the expanded header. In the similar file listing, the similarity percentage is
displayed with the same file path format as in the root assignment files.

Initially, the assignment search content was a single table query executed via a JPA
repository. As features were added, a view was created, which replaced the table query.
As additional features were added, the search query performance started to suffer. Initial
page loading took close to 10s, following queries took 5s, which is below the requirement,
but realistically very slow. At this point, a custom SQL query service was implemented
and integrated with the view. It created the most optimal query depending on the given
criterion from the request. The assignment search base view can be viewed in appendix 5.

30

8.3 Assignment Classification

The default assignments classification is one of the functionalities that is covered in unit
tests since file traversal logic may differ depending on the host system file path structuring
methods. By default, Aurora searches in the cloned repositories file tree leaf folders, which
have at least a single file inside them. The traversal excludes the Git and Python system
files. A set of keywords written in the traversal service act as the parent for the following
assignment files. Such keywords are, for example, KT, EX, PR. The keywords are searched
for in the file path with Regular expression.

To make the assignment classification through the filesystem more customizable, it is
possible to add metadata files into Git repositories named aurora.json which the
registry will take into account while traversing the repository file tree. This is primarily
added to enable overriding of the system default assignment classification algorithm.
Currently, the metadata is not persisted and only taken into account if the type of KT is
described. The metadata will be used as a second persistence solution for tags, descriptions,
and custom properties in upcoming sprints.

8.4 Assignment Similarity

Since administrative staff often copy assignments from existing repositories, there are
duplicates in the system.

Aurora implements a similarity scanning feature to cross-compare all the assignment file
contents between repositories, comparing two repositories files at a time. The comparison
uses Levenshtein distance computation and persists file relations that are over 0.55 in
similarity. Comparable file contents are viewed as two strings, a and b, and the Levenshtein
distance1 between them is given by leva,b(|a|, |b|). Since the comparison can take an
extended amount of time (10 000 comparisons/1h), it is run agnostic to the UI.

This is achieved through implementing a queue in the form of a database table. There
is a separate table for storing the queued jobs and the comparison results. The trouble
with this is determining when a comparison job has encountered errors or is stuck. The
running comparison job is updated over 3 minutes. If the job has not been completed and
10 minutes have passed from the latest update, it is considered no longer running. During
development, around 250000 file pairs have been compared in 18h 12m.

1https://www.cuelogic.com/blog/the-levenshtein-algorithm

31

https://www.cuelogic.com/blog/the-levenshtein-algorithm

8.5 Tagging

The tagging feature has gone through three remodeling iterations. The logic in the UI is
complex and has been completely remade twice. In addition to tags being a search query
input, they also enable assignment tag editing. It started out as a single assignment edit,
then to speed up tagging - support for multiple assignment edits was added. Tags provide
quick context about the type of assignments.

Tags have a management page seen in appendix 10 where users can create or edit tag
groups with custom colorings by providing a correct color hex value.

A feature in the development roadmap is to implement automatic tagging on assignments
based on custom user-defined input. The user-given configuration will be persisted in a
keyword table in Postgres. The API side is complete, but the UI is yet to be created.

32

9. Results analysis

By May 2021 the registry has been used for a few months. During development, the
production environment managed 8 GitLab repositories, with 523 classified assignments
and 1335 files (125 Restructured Text, 673 Python, 206 Java, 255 Markdown, 49 Text, 6
JSON, 18 CSV, 2 not classified). 250000 similar files were compared, and 2000 tags were
added.

The initial assignment search takes a bit longer than the average load speed (3-6 seconds),
if no prior searches have been made. This Exceeds the required request-response ceiling
time of 10s. This is because the database connection pool needs to provide a connection
which takes more time. Following requests were within the 10s response bounds, with up
to 100 assignments per query.

Since the application runs in Docker Swarm, migration durations between VMs are kept
under the 2h requirement.

33

10. Summary

The goal of the work was to create an assignment registry for teachers and teaching
assistants for managing assignments. For the registry development an analysis was made,
methodologies and disciplines were adopted, requirements were continuously gathered
and modified, and the application was iteratively developed with the client.

The created registry is a client-server application. The API is written in Java 11 with
the Spring Boot framework. The Postgres database system and Git repositories were
used as persistence mediums. The web UI is written in Angular 11. The application
is running inside a single node cluster, Docker Swarm. Thanks to the adopted DevOps
culture, changes were easily deployed through the GitLab CI/CD pipelines. The registry
core features are the following:

1. Repository management;
2. Assignment search;
3. Assignment classification;
4. Assignment similarity;
5. Tagging.

The web UI1, Assignments API2, and monitoring3 are accessible from the TalTech page4.

The application is designed to be extensible, and an overview of the approaches, technolo-
gies, and experiences were given in the thesis. The following are additional objectives to
reach that were left out of the thesis scope:

1. Programming language detection from the assignment file content;
2. User Authentication and authorization with uniid;
3. Administration tooling;
4. Possibility to test assignments with the Testing service Arete;
5. Increased registry proxy resilience to upstream connection losses.

1cs.ttu.ee/services/aurora/front/
2cs.ttu.ee/services/aurora/api/
3cs.ttu.ee/services/aurora/portainer/
4cs.ttu.ee

34

cs.ttu.ee/services/aurora/front/
cs.ttu.ee/services/aurora/api/
cs.ttu.ee/services/aurora/portainer/
cs.ttu.ee

Bibliography

[1] Cambridge University Press. Cambridge Dictionary. Apr. 7, 2021. URL: https:
//dictionary.cambridge.org/dictionary/english/.

[2] HackerRank. About Us. May 23, 2021. URL: https://www.hackerrank.
com/about-us/.

[3] Kirill Denisov. Development of a Code Writing Practice Platform. 2019.

[4] Aaron Bloomfield and Borja Sotomayor. “A Programming Contest Strategy Guide”.
In: SIGCSE (2016).

[5] Leetcode. Overview. Apr. 20, 2021. URL: https://www.linkedin.com/
company/leet-code/about/.

[6] Exercism. About Exercism. Apr. 24, 2021. URL: https://exercism.io/
about.

[7] Axelsoft. Agile Project Management: Best Practices and Methodologies. Apr. 16,
2021. URL: https://www.altexsoft.com/whitepapers/agile-
project-management-best-practices-and-methodologies/.

[8] Manifesto for Agile Software Development. Apr. 15, 2021. URL: https://
agilemanifesto.org/.

[9] Amjad Hudaib et al. “Requirements Prioritization Techniques Comparison”. In:
Modern Applied Science 12 (Jan. 2018). DOI: 10.5539/mas.v12n2p62.

[10] Hot PMO. MoSCoW or Kano Models – how do you prioritize? Apr. 17, 2021. URL:
https://www.hotpmo.com/management-models/moscow-kano-

prioritize/.

[11] Martin Fowler. ContinuousDelivery. May 30, 2021. URL: https://martinfowler.
com/bliki/ContinuousDelivery.html.

[12] Ken Mugrage. It’s Not Continuous Delivery If You Can’t Deploy Right Now. Mar. 23,
2021. URL: https://www.youtube.com/watch?v=po712VIZZ7M.

[13] Pete Hodgson. Feature Toggles (aka Feature Flags). Apr. 20, 2021. URL: https:
//martinfowler.com/articles/feature-toggles.html.

[14] International Institute of Business Analysis. BABOK v3: A GUIDE TO THE BUSI-

NESS ANALYSIS. 2015.

35

https://dictionary.cambridge.org/dictionary/english/
https://dictionary.cambridge.org/dictionary/english/
https://www.hackerrank.com/about-us/
https://www.hackerrank.com/about-us/
https://www.linkedin.com/company/leet-code/about/
https://www.linkedin.com/company/leet-code/about/
https://exercism.io/about
https://exercism.io/about
https://www.altexsoft.com/whitepapers/agile-project-management-best-practices-and-methodologies/
https://www.altexsoft.com/whitepapers/agile-project-management-best-practices-and-methodologies/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://doi.org/10.5539/mas.v12n2p62
https://www.hotpmo.com/management-models/moscow-kano-prioritize/
https://www.hotpmo.com/management-models/moscow-kano-prioritize/
https://martinfowler.com/bliki/ContinuousDelivery.html
https://martinfowler.com/bliki/ContinuousDelivery.html
https://www.youtube.com/watch?v=po712VIZZ7M
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html

[15] Jonas Eckhardt, Andreas Vogelsang, and Daniel Méndez Fernández. “Are "Non-
Functional" Requirements Really Non-Functional? An Investigation of Non-
Functional Requirements in Practice”. In: Proceedings of the 38th International

Conference on Software Engineering. ICSE ’16. Austin, Texas: Association
for Computing Machinery, 2016, pp. 832–842. ISBN: 9781450339001. DOI:
10.1145/2884781.2884788. URL: https://doi.org/10.1145/
2884781.2884788.

[16] M. Broy. “Rethinking Nonfunctional Software Requirements”. In: Computer 48.5
(2015), pp. 96–99. DOI: 10.1109/MC.2015.139.

[17] J. Eckhardt, D. Mendez Fernandez, and A. Vogelsang. “How to Specify Non-
Functional Requirements to Support Seamless Modeling? A Study Design and
Preliminary Results”. In: 2015 ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM). 2015, pp. 1–4. DOI: 10.1109/
ESEM.2015.7321200.

[18] S. Robertson J. Robertson. Volere Requirements Specification Template. 2016.

[19] Amit M Potdar et al. “Performance Evaluation of Docker Container and Virtual Ma-
chine”. In: Procedia Computer Science 171 (2020). Third International Conference
on Computing and Network Communications (CoCoNet’19), pp. 1419–1428. ISSN:
1877-0509. DOI: https://doi.org/10.1016/j.procs.2020.04.152.
URL: https://www.sciencedirect.com/science/article/pii/
S1877050920311315.

[20] Docker. Docker overview. Feb. 25, 2021. URL: https://docs.docker.com/
get-started/overview/.

[21] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-Oriented

Software Architecture, Volume 5: On Patterns and Pattern Languages. Chich-
ester, UK: Wiley, 2007. ISBN: 978-0-471-48648-0. URL: https : / / www .
safaribooksonline.com/library/view/pattern- oriented-

software/9780471486480/.

[22] Matthias Biehl. RESTful API Design. May 22, 2021.

[23] James Gosling et al. The Java Language Specification, Java SE 16 Edition. Feb. 12,
2021.

[24] Craig Walls and Andrew Glover. Spring Boot in action. Manning Publications Co.,
2016.

[25] Gradle. Gradle vs Maven: Performance Comparison. May 6, 2021. URL: https:
//gradle.org/gradle-vs-maven-performance/.

36

https://doi.org/10.1145/2884781.2884788
https://doi.org/10.1145/2884781.2884788
https://doi.org/10.1145/2884781.2884788
https://doi.org/10.1109/MC.2015.139
https://doi.org/10.1109/ESEM.2015.7321200
https://doi.org/10.1109/ESEM.2015.7321200
https://doi.org/https://doi.org/10.1016/j.procs.2020.04.152
https://www.sciencedirect.com/science/article/pii/S1877050920311315
https://www.sciencedirect.com/science/article/pii/S1877050920311315
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://www.safaribooksonline.com/library/view/pattern-oriented-software/9780471486480/
https://www.safaribooksonline.com/library/view/pattern-oriented-software/9780471486480/
https://www.safaribooksonline.com/library/view/pattern-oriented-software/9780471486480/
https://gradle.org/gradle-vs-maven-performance/
https://gradle.org/gradle-vs-maven-performance/

[26] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software Testing.
3rd. Wiley Publishing, 2011. ISBN: 1118031962.

[27] Jimmy Bogard NDC Conferences. Continuous Integration and Delivery for

Databases. Feb. 25, 2021. URL: https://www.youtube.com/watch?v=
HdXDSjWe2Q8.

[28] Goolge. Introduction to Service Worker. Apr. 27, 2021. URL: https : / /
developers . google . com / web / ilt / pwa / introduction - to -

service-worker.

[29] Jane O’Donnell. “SASS (Syntactically Awesome Style Sheets)”. In: J. Comput. Sci.

Coll. 34.4 (Apr. 2019), pp. 101–102. ISSN: 1937-4771.

[30] Angular. What is Angular? Apr. 27, 2021. URL: https://angular.io/
guide/what-is-angular.

[31] Nodejs. About Node.js. Apr. 27, 2021. URL: https://nodejs.org/en/
about/.

[32] Npmjs. About npm. Apr. 27, 2021. URL: https://www.npmjs.com/about.

[33] https://www.career.pm/briefings/product-prioritization-techniques. 20 Product Pri-

oritization Techniques - A Map and Guided Tour. Mar. 25, 2021.

[34] GitLab. Directed Acyclic Graph. May 3, 2021. URL: https://docs.gitlab.
com/13.11/ee/ci/directed_acyclic_graph/.

[35] XP123. INVEST in Good Stories, and SMART Tasks. May 5, 2021. URL: https:
//xp123.com/articles/invest-in-good-stories-and-smart-

tasks/.

37

https://www.youtube.com/watch?v=HdXDSjWe2Q8
https://www.youtube.com/watch?v=HdXDSjWe2Q8
https://developers.google.com/web/ilt/pwa/introduction-to-service-worker
https://developers.google.com/web/ilt/pwa/introduction-to-service-worker
https://developers.google.com/web/ilt/pwa/introduction-to-service-worker
https://angular.io/guide/what-is-angular
https://angular.io/guide/what-is-angular
https://nodejs.org/en/about/
https://nodejs.org/en/about/
https://www.npmjs.com/about
https://docs.gitlab.com/13.11/ee/ci/directed_acyclic_graph/
https://docs.gitlab.com/13.11/ee/ci/directed_acyclic_graph/
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

Appendix 1 - Non-exclusive license for reproduc-
tion and publication of a graduation thesis5

I, Oskar Pihlak

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis Programming assignment management registry Aurora, supervised by Ago
Luberg
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

25.05.2021

5The non-exclusive license is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean, except
in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation thesis
is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive license, the non-exclusive
license shall not be valid for the period.

38

Appendix 2 - Spring entity

package ee.taltech.aurora.persistence.entity.assignment;

import io.swagger.annotations.ApiModel;
import lombok.*;
import org.hibernate.annotations.DynamicUpdate;

import javax.persistence.*;
import java.io.Serializable;

@ApiModel(value = "Assignment",
description = "The assignments that we get")

@Builder
@Data
@Entity
@NoArgsConstructor
@AllArgsConstructor
@DynamicUpdate
@Table(name = "assignment",

uniqueConstraints=@UniqueConstraint(columnNames = {"file_path"}))
@SequenceGenerator(name = "assignment_assignment_id_seq", sequenceName

= "assignment_assignment_id_seq", allocationSize = 1)
public class Assignment implements Serializable {

private static final long serialVersionUID = 1L;

@Id
@GeneratedValue(generator="assignment_assignment_id_seq",

strategy=GenerationType.SEQUENCE)
@Column(name = "assignment_id", unique = true)
private Long assignmentId;

@Column(name = "name")
private String name;

@Column(name = "repository_id")
private Long repositoryId;

@Column(name = "file_path", unique = true, nullable = false)
private String filePath;

@Column(name = "assignment_version", nullable = false)
private Integer assignmentVersion;

@Column(name = "parent_assignment_id")
private Long parentAssignmentId;

}

39

Appendix 3 - Liquibase migration script

--liquibase formatted sql
--changeset oskar:create-table__tagging_job context:prod
--runOnChange:false
--logicalFilePath:db/07-changes/changes/2021/2021_05_14/
-- 03-ddl-create-table__tagging_key_word.sql

CREATE TABLE IF NOT EXISTS tagging_key_word
(

tagging_key_word_id BIGSERIAL NOT NULL,
assignment_tag_id BIGINT NOT NULL

CONSTRAINT fk_tagging_key_word_assignment_tag_assignment_tag_id
REFERENCES assignment_tag(assignment_tag_id)
ON UPDATE CASCADE ON DELETE SET NULL,

programming_language_code VARCHAR(255) NOT NULL
CONSTRAINT fk_tagging_key_word_prog_lang_prog_lang_code

REFERENCES programming_language(programming_language_code)
ON UPDATE CASCADE ON DELETE SET NULL,

key_word VARCHAR(255) NOT NULL
);

CREATE UNIQUE index tagging_key_word_tagging_key_word_id_uindex
ON tagging_key_word (tagging_key_word_id);

ALTER TABLE tagging_key_word
ADD CONSTRAINT pk_tagging_key_word

PRIMARY KEY (tagging_key_word_id);

40

Appendix 4 - Operations project Docker stack file

41

Appendix 5 - Assignments SQL view

SELECT * FROM (SELECT a.assignment_id AS assignment_id, a.file_path,
(SELECT COALESCE(t.tags, ’[]’::jsonb)
FROM (SELECT (JSONB_AGG(DISTINCT JSONB_BUILD_OBJECT(

’assignmentTagId’, at.assignment_tag_id,
’assignmentTagGroupCode’, at.assignment_tag_group_code,
’assignmentTagCode’, at.assignment_tag_code,
’assignmentTagName’, at.assignment_tag_name,
’assignmentTagDescription’, at.assignment_tag_description,
’tagGroupColor’, atg.tag_group_color

))) AS tags
FROM assignment_tags ats

LEFT JOIN assignment_tag at ON at.assignment_tag_id =
ats.assignment_tag_id

LEFT JOIN assignment_tag_group atg ON at.assignment_tag_group_code =
atg.assignment_tag_group_code

WHERE ats.assignment_id = a.assignment_id) t) AS tags,
REPLACE(rl.http_url_to_repo, ’.git’, ’/’) || ’-/tree/master’
|| REPLACE(REPLACE(a.file_path, ’./repositories/’, ’’),

rl.file_path, ’’) AS repository_https_reference,
REPLACE(a.file_path, ’/’, ’ / ’) AS name,
(SELECT COALESCE(t.p_lang, ’[]’::jsonb)
FROM (SELECT (JSONB_AGG(JSONB_BUILD_OBJECT(’programmingLanguage’,

af2.programming_language, ’characters’, af2.characters) ORDER BY
af2.characters DESC)) AS p_lang

FROM (SELECT af1.programming_language, SUM(af1.characters) AS
characters FROM assignment_file af1 WHERE
af1.assignment_id = a.assignment_id GROUP BY
af1.programming_language) af2) t) AS programming_languages,

(SELECT COALESCE(t.author, ’{}’::jsonb)
FROM (SELECT (JSONB_BUILD_OBJECT(

’authoredDate’, af.latest_authoring_date,
’authorName’, af.latest_authorer_name

)) AS author
FROM assignment_file af WHERE af.assignment_id = a.assignment_id
GROUP BY af.latest_authoring_date, af.latest_authorer_name
ORDER BY af.latest_authoring_date DESC LIMIT 1) t) AS authoring,

(SELECT ARRAY_AGG(DISTINCT CASE WHEN (a.assignment_id = fs
.assignment_id_1) THEN fs.assignment_id_2 ELSE fs.assignment_id_1 END)
FROM assignment_file af
INNER JOIN file_similarity fs ON af.assignment_file_id =

fs.assignment_file_id_1 OR af.assignment_file_id =
fs.assignment_file_id_2

WHERE af.assignment_id = a.assignment_id) AS similar_assignment_ids
FROM assignment a
INNER JOIN repository rl ON rl.repository_id = a.repository_id
GROUP BY a.assignment_id, rl.http_url_to_repo, rl.file_path
) t3 ORDER BY t3.authoring ->> ’authoredDate’ DESC NULLS LAST;

42

Appendix 6 - Ubuntu node with containers

43

Appendix 7 - The periodic table of Prioritization
Techniques

Figure 7-1 Prioritizations table [33].

44

Appendix 8 - Assignment search page

45

Appendix 9 - Repository page

46

Appendix 10 - Tag management page

47

Appendix 11 - Assignments API pipeline needs

The needs visualization shown in Figure 11-1 makes it easier to visualize the relationships
between dependent jobs in a DAG (Directed Acyclic Graph) [34].

Figure 11-1 Assignments API pipeline needs

48

Appendix 12 - User requirements

User requirements are analyzed on an epic basis. Table 12-1 covers the epic sizes, and
Table 12-2 lists the epics.

Table 12-1 Epic sizes.

Epic size label Weeks Numeric
identifier

XS 0–1 0,5

S 1–2 1,0

M 2–4 2,0

L 4–8 5,0

XL 8–16 8,0

Table 12-2 List of epics.

Epic name Business
value
(1-10)

Kano
category

Risk/Value Epic sizing
(Table 12-1)

Assignment search 10 Delighted Low risk /
high value

L

Assignment tagging 3 Satisfied Low risk
/ medium
value

M

Repository overview 7 Satisfied Low risk /
high value

M

Assignment similarity
automatic assessment

6 Satisfied Low risk /
high value

M

Assignment grouping 5 Satisfied Low risk /
high value

M

Assignment editing 6 Neutral Medium
risk / high
value

L

Continues...

49

Table 12-2 – Continues...

Epic name Business
value
(1-10)

Kano
category

Risk/Value Epic sizing
(Table 12-1)

Assignment
automatic tagging

6 Neutral Medium
risk / high
value

L

The stories in Table 12-3 are analyzed with the INVEST methodology. The letters in
the acronym stand for the following: I (Independent), N (Negotiable), V (Valuable), E
(Estimable), S(Small), T (Testable) [35].

Table 12-3 User stories.

Nr. User story I N V E S T
1 I as a user, I want to search for as-

signments by name so that I can find
them

true true true true true true

2 I as a user, I want to search for as-
signments by file contents so that I
can get a better overview of the as-
signments input

true true true true true true

3 I as a user, I want to see the file
snippets where the search query was
found, to get more information

false true true true true true

4 I as a user, I want to add tags to as-
signments so that I can have a better
understand of the contents

true true true true true true

5 I as a user, I want to search for as-
signments via tags, so that I can get
wished results quicker

false true true true true true

6 I as a user, I want to see the reposito-
ries listed in the system so that I can
get an overview of the assignments
in the system

true true true true true true

50

A user story is considered done when all acceptance criteria (e.g., Table 12-4) are com-
pleted, the client has accepted the stories, and the feature is in production.

Table 12-4 Acceptance criteria.

User
story
nr.

Acceptance criteria

1 User sees searched assignments

The searched result of the assignment name is highlighted

2 User sees searched assignments

The number of substrings found in files is shown on assignment as a number

3 User expands the file snippet viewing section and can see the code snippets

A green dotted line separates the snippets if there are many in a single file

4 User can add tags to an assignment or multiple assignments

Added tags are persisted

5 User can search via tags

Active tags are highlighted

6 Repositories are displayed for the user when navigating to the repositories
page

7 Assignments are automatically tagged & tags are persisted and displayed

51

Appendix 13 - SCSS file structure

52

	List of Figures
	List of Tables
	Introduction
	Domain overview
	Task setting
	Goal setting
	The scope of the thesis
	Existing work and research
	Hackerrank
	Codera
	UVa Online Judge
	LeetCode
	Exercism.io

	Projects

	Methodologies
	Values
	Project management
	Development iterations
	Prioritization

	Continuous Integration and Continuous Delivery
	Continuous delivery and deployment
	Continuous integration

	Analysis
	Requirements
	Requirements classification

	IT Operations
	Virtualization
	Containerization
	Proxies
	Pipelines

	Architecture
	Architectural overview

	Back-end
	API
	Testing

	Persistence
	Schema
	Continuous Database Integration and Delivery

	Front-end
	Web user interface
	Styling
	Angular
	Node.js

	Core Features
	Repository Management
	Assignment Search
	Assignment Classification
	Assignment Similarity
	Tagging

	Results analysis
	Summary
	Bibliography
	Appendix 1 - Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2 - Spring entity
	Appendix 3 - Migration script
	Appendix 4 - Operations project Docker stack file
	Appendix 5 - Assignments SQL view
	Appendix 6 - Ubuntu node with containers
	Appendix 7 - The periodic table of Prioritization Techniques
	Appendix 8 - Assignment search page
	Appendix 9 - Repository page
	Appendix 10 - Tag management page
	Appendix 11 - Assignments API pipeline needs
	Appendix 12 - User requirements
	Appendix 13 - SCSS file structure

