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1
I N T R O D U C T I O N

Advantages in manufacturing of digital Integrated Circuits (IC), driven by
Moore’s law [50], stimulate growth in size and complexity of modern digital
systems. This allowed packing more transistors into chips thus creating possi-
bilities to implement more complex systems on a single chip. In addition, such
exponential growth created challenges both for designers - how to handle such
complex designs - and for manufacturers - how to test that such complex chips
are working. The fundamental way to test the chip is to set its inputs to some
known values - test vector, and observe its outputs whether they have the ex-
pected results or not. Single test vector is not usually enough to detect all the
faults inside the chip. Therefore the sequence of different test vectors is applied.
The physical defects inside the chip are described by the variety of fault models.
In order to generate the test sequence the fault model is chosen first to obtain the
number of possible faults. The generation of the test vectors is then done either
randomly or in deterministic way [62].

In random approach the pseudo-random generator is used to find the sequence
of random vectors. In order to obtain the best test sequence the equation of the
pseudo-random generator and its initial value are modified. The resulted set of
random sequences is then simulated on the computer model of the circuit using
fault simulation to obtain the number of possible faults covered by particular
sequence. In deterministic approach the software called Automatic Test Pattern
Generator (ATPG) is used to analyse the model of the circuit and calculate the
necessary input values required for detection of particular fault. The results for
all the faults are then combined to obtain the test sequence. The test sequence is
then applied either using external testers or internally inside the chip [62].

Throughout the time the role of testing in nowadays IC design and manu-
facturing flows becomes more and more important[9, 56], because the growing
number of transistors also increases the probability of the fault occurence. With
the growth of the size and complexity of the circuits the fundamental methods
had to evolve in order to guarantee the correct operation of the chip, preserving
the quality and speed of test.

The challenges for testing created by the technology advancements can be
demonstrated on the dark-silicon example. This term refers to the percentage
of the chip that has to be shut down in order to comply with thermal constraints.
Different studies show that at 8 nm technology nodes this percentage could be
50%-80% [20]. Existing test methodologies should also account on this. For exam-
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ple, ATPG goal is to achieve good fault coverage with short test length. In the
test situation such vectors produce higher amount of switching activity inside
an IC than during its normal operation. In the case of dark-silicon thermal con-
straints could make use of ATPG vectors infeasible, as device could simply melt
during test execution [60]. Although this fact creates new challenges, in my view
it could also be used to increase an amount of test hardware and provide growth
in reliability and yield of future ICs.

This thesis provides solutions in some important areas of nowadays structural
test, such as built-in-self-test, at-speed test, fault simulation and benchmarks. The
importance of these areas is briefly introduced next.

1.1 background and motivation

benchmarks The design process of a digital circuit consists of solving mul-
tiple tradeoff issues according to area and speed requirements. The amount of
resource sharing defines whether the circuit will be fast or compact. One thing,
which is not included into typical VLSI design flow, is how the resource sharing
affects the testability parameters of the circuit, such as random fault coverage,
fault simulation time and the time to run ATPG algorithms [8]. Considering such
things at design stage is important, because later test routines could be running
for weeks and even longer in case of big industrial designs. In this situation the ef-
fect caused to the testability characteristics by design considerations could greatly
affect time-to-market in the future designs. The benchmark circuits commonly
used are ISCAS85[11], ISCAS89[10] and ITC99[17] that provide combinational
and sequential circuits with different parameters such as random testability and
different size and dimensions. There also exist specific industrial designs such as
Leon [21] and OpenRISC [1] processors for methods specifically targeting general-
purpose CPUs. However to the best of my knowledge there are no benchmarks
that provides different design considerations in terms of resource sharing for the
circuit with the same functionality.

The goal of Chapter 2 is to present the new family of benchmark circuits tar-
geting different resource sharing considerations for the same functionality. The
benchmark is based on the industrial design for computational unit of bio-impe-
dance analyzer. The suite allows to clearly see the dependency of different testa-
bility characteristics on the amount of shared resources.

at-speed test The technology advancements impose new challenges to test-
ing of modern chips as device geometries shrink, and deep-submicron delay de-
fects are becoming more and more important requiring more accurate dynamic
tests than before [43]. Therefore testing of chips closer to real working conditions
by so-called at-speed test is becoming the must. As the size shrinks down it be-
comes more challenging to exactly control transistor parameters [59] that results
in bigger number of delay faults and lower yield. Delay faults can typically be
seen, when IC works at it’s normal speed and have poor detection rate at low
test speeds. This issue demands new methods that target at-speed execution of
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test process. The use of scan chains has proven to be often inadequate increasing
the cost in terms of additional hardware and testing time [12], excessive power
dissipation during test [78] and leading to yield loss because of over-testing [15].

At-speed test is an important trend today having additional benefit of the abil-
ity to test circuits under conditions that are as close as possible to normal circuit
operation [29]. This factor has a direct impact on the number of chips that are
found defective during system operation, but still pass all manufacturing and
functional tests. At-speed testing can be used for characterization and can also
expedite test application time.

A lot of research has been carried out to relieve the burden of external testers
by introducing system self-test approaches like hardware-based Logic Built-in
Self-Test (LBIST) that typically use Linear Feedback Shift Registers (LFSR) [62].
In LBIST, typical functions of external test equipment like test generation and
response analysis are carried out on-chip, so that the tester should not handle
high-speed signals externally and its role should remain only to send the test
enable signals to the chip under test, and to receive the pass/fail signals. For
example, scan-based and logic BIST solutions such as [51] relax the requirements
on testers and considerably reduce the overall testing cost.

The question is whether a self-test sequence running in the system can ade-
quately exercise its hardware components satisfying the targeted fault coverage
requirements. Achieving the test quality target requires application of proper test
sequences that is a focus in Chapter 3 of this thesis. It should also be pointed out
that the quality of a test is measured not only by its fault coverage, but also by
its code size (to be stored in the memory of the chip), hardware overhead, and
by the test execution time.

One of the goals of Chapter 3 is to propose an approach that combines the
ideas of traditional LBIST with at-speed testing to improve the test quality at
less testing overhead and avoiding performance loss compared to the traditional
self-test approaches. The feasibility and efficiency of the new method is demon-
strated for a particular class of pipe-lined processing architectures that are easily
adaptable for at-speed on-line self-testing by inherent functional sequences.

functional test Functional testing provides a possibility to test the hard-
ware functional paths at-speed. It is considered by engineers to test the hardware
in system-like mode as thorough as possible[62]. Compared to structural testing,
which is used to test individual structural elements, such as logic gates, the hard-
ware overhead for functional testing can be smaller. This is because the inherent
functionality of the system can be reused for testing purposes.

Another advantage of functional test is its ability to avoid over-testing. This
term is related to testing of hard-to-detect or redundant structural faults that are
rarely or not even used during operation of the chip, but require significant effort
to be tested.

The disadvantage of the functional testing is comparably lower fault coverage
and complexity of finding the good functional test sequence for circuits with
complex structure. However More-than-Moore trend brings technologies outside

17



introduction

digital logic into nowadays ICs[80]. These technologies such as Micro-Electro
Mechanical Systems (MEMS) or image sensors require hardware with dedicated
functionality to access them in the best way possible. Dedicated hardware usu-
ally implements several simple functions to be able to run fast. This opens up a
possibility to use only functional test patterns to achieve good fault coverage of
such digital circuits.

One of the goals of Chapter 3 is to propose a functional test solution for a
class of pipelined circuits that achieves fault coverage comparable to traditional
scan-based approaches using either random or deterministic test vectors.

fault simulation speed Fault simulation is one of the most important
tasks in the digital circuit design and test flow. The efficiency of solving other
tasks in this field like design for testability, test quality and dependability evalua-
tion, test pattern generation and fault diagnosis relies heavily on the performance
and speed of fault simulation. Such a dependence is growing especially in case
of large circuits, and hence, the scalability of the fault simulation algorithms is
decisive. Accelerating the fault simulation would consequently improve all the
above-mentioned applications.

Fortunately nowadays advancements in multi-core systems open up different
possibilities for improvement of fault simulation algorithms in terms of their per-
formance. Available directions are pattern parallelism, fault parallelism, model
parallelism and algorithm parallelism.

Algorithm parallelism stands for parallel execution of different algorithm steps.
Most common is parallel execution of data read/write and computation opera-
tions. The speed-up depends on proper balance between these algorithm steps.
Pattern and fault parallelism achieves good speed-up, but memory usage can be
a limiting factor for scalability.

The circuit model parallelism is an interesting direction, as it allows to keep
memory requirements low, at the same time providing better scalability. The rea-
son lies in the fact that some circuit components do not depend on each other
and can be simulated in parallel, just like they work in real ICs. The better scal-
ability comes from the fact that bigger circuits have bigger number of indepen-
dent gates or sub-circuits to run in parallel. The solution proposed in Chapter 4

exploits circuit parallelism for parallel fault back-tracing and the results clearly
show scalability benefits.

Another fault simulation challenge lies in the area of sequential circuits. The
fastest algorithms are mostly applicable for combinational circuits, while they
can not be directly used with sequential circuits due to the time relations be-
tween the test vectors. One of the widely used solutions is the full-scan approach,
where all the flip-flops of the circuit are made observable through the scan chain
[62]. However observing every register could be expensive in terms of additional
hardware and power requirements. It will be shown in Chapter 5 that there exist
a way to make only a fraction of flip-flips and fan-out stems observable in order
to use combinational fault simulator for simulations of sequential circuits.
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1.2 thesis objectives

The goal of the thesis is to solve a series of closely related problems regarding
development of BIST for high-performance pipe-lined designs. These problems
target (1) the object to be tested (system under test), (2) the methods and means
used for testing (BIST), and (3) the methods and means for evaluating the quality
of test solutions (fault simulation).

From these problems the following main research objectives were set up in the
work:

• to create a benchmark family of digital circuits with different design con-
siderations for the same functionality.

• to develop a BIST methodology for at-speed execution using functional
test patterns and targeting dedicated high-performance pipelined architec-
tures.

• to improve the performance of parallel-pattern exact critical path back-
tracing for combinational circuits using general-purpose multi-core sys-
tem.

• to enable combinational fault simulation of sequential circuits with re-
duced number of observation points.

1.3 thesis contributions

This work presents the following contributions:

• the set of benchmark circuits with different amount of resource sharing and
pipelined architectures is proposed for industrial design of bio-impedance
analyzer. The analysis of different testability characteristics of the circuits.

• The methodology and a set of tools is developed targeting at-speed built-in
self test of high-performance pipe-lined designs. The method is evaluated
using bio-impedance analyzer circuit.

• The evaluation of possibility to use analog signals as a test sequence for
the digital circuits .

• The implementation of the parallel exact critical path tracing algorithm for
general-purpose multicore systems.

• The methodology to use a combinational fault simulation for sequential
circuits with reduced number of observable points.

1.4 thesis overview

The thesis is organized as following. In Chapter 2 the family of eight bench-
mark circuits along with their testability characteristics is presented. The suite
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consists of circuits, representing pipe-lined architectures for signal processing
with the same functionality, but different structures. First the functionality and
structure of the initial circuit are described. After that, structural characteristics of
all benchmark circuits are presented. Then the experiments with different testa-
bility characteristics are described and results are discussed. It was shown that
sharing of resources in designs may reduce the test length, but on the other hand,
it will increase the time of test synthesis, and may reduce the test quality due to
increase in number of fan-out reconvergencies.

Chapter 3 is dedicated to a development of a novel at-speed functional BIST
methodology for the class of pipe-lined architectures of signal processors using
digitized analog signals for test purposes. First an overview of the existing BIST
methods is presented. After that a novel at-speed functional BIST method is de-
scribed. To overcome the high cost of fault coverage evaluation of the BIST at
long test sequences, a new original fault simulation environment has been devel-
oped and is discussed in the chapter. Next a case study on using digitized analog
signals, as a test stimulus for the proposed BIST is presented. The experimental
results regarding both the methodology and the case study are discussed in the
end of the chapter.

In Chapter 4, the problems of improving the efficiency of fault simulation are
discussed to provide better means for evaluating the quality of BIST in case of
long test sequences. At the beginning an overview of the state-of-the-art in com-
binational and sequential fault simulation is presented. The overview includes
both single core and multicore methods. In the next section, the theory of Par-
allel Pattern Exact Critical Path Tracing (PPECPT) is investigated and extended
by a novel mixed-level fault simulation method. In the following, a multi-core
solution for PPECPT is presented. Finally the experimental results are discussed.

Chapter 5 presents a new approach that allows using the combinational fault
simulation method, developed in the previous chapter, for sequential circuits as
well. A method is proposed for improving sequential circuit observability, so that
the circuit could be fault simulated using any fast combinational fault simulator.
The chapter starts with the short overview of available methods. After that the
novel method of observability improvement is presented. Following it the exper-
imental results are presented and discussed.

Thesis conclusions are drawn in Section 6 along with possibilities for future
research.
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2
B E N C H M A R K S U I T E

This chapter is based on the publication "A Benchmark Suite for Evaluating
the Efficiency of Test Tools" (see Appendix A).

In this chapter a benchmark suite of eight circuits is presented and it’s testa-
bility characteristics are evaluated. As the result of the cooperation in the fields
of computer, electronics and biomedical engineering in the Estonian Research
Excellence Centre CEBE in our laboratory we have developed a set of circuits
representing different architectures of pipe-lined signal processors. The circuits
have the same functionality, but they are different in structural design. This set
of circuits was required for a design space exploration in order to achieve the
required performance with the smallest possible resource utilization. During this
research it turned out that although the functionality of the circuits was the same,
the change in structure resulted in big deviation in testability characteristics of
the circuits. We realized that there can be a specific relationship between differ-
ent design decisions and their corresponding testability characteristics. Such a set
of circuits with the same functionality, but different amount of resource sharing
could be used for evaluation of the test CAD tools. In this chapter every circuit in
the suite is evaluated in terms of its testability and fault analysis characteristics
in comparison with circuits structural complexity. The results are also presented
and discussed.

The author’s contribution lies in the development of the circuit variations, their
corresponding implementation and evaluation of testability characteristics.

The rest of the chapter is organized as following. The overview of the initial de-
sign for benchmark suite and it’s functionality is presented in Section 2.1. Section
2.2 discusses structural changes in the circuits forming the suite. The experimen-
tal study on the different testability characteristics of the proposed benchmark
circuits is presented in Section 2.3. Section 2.3.1 provides the discussion about
these characteristics. Finally the conclusions of the chapter are drawn in Section
2.4.

2.1 overview of the initial design

As a basis for the suite a bio-impedance signal analyzer circuit that implements
a simplified signal processing algorithm has been chosen [5, 19]. This design
was selected because of its pipe-lined structure, where every stage has a parallel
implementation that can be joined to produce certain level of reconvergency.
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Figure 2.1 – The architecture of digital multichannel bio-impedance analyzer
(DMBA).

The device is dedicated to bio-impedance measurement of biological tissue.
The synchronized excitation of sine wave of different frequencies is applied through
different channels to the tissue at one point and measured as a voltage response
at the other point of the tissue. A typical digital solution is that the response
voltage is digitized in an analog-to-digital converter (ADC) into a uniformly sam-
pled train of digital data that is then processed numerically in a digital signal
processing (DSP) unit often using the Discrete Fourier Transform (DFT). Because
the whole signal path from the generation of the set of excitation signals to the
analog-to-digital conversion procedure and data analysis is synchronous by de-
sign, optimized signal processing methods can be applied. Using of sampling,
which is synchronous to the known excitation waveform, enables to use a simpli-
fied, but much faster signal processing than the Fourier Transformation is. When
sampling the response signal uniformly with intervals t = T/4, where T is a pe-
riod of the signal, the following simple mathematics is valid [19, 46].

(1) the direct current component DC can be determined as

DC = (Re+ + Re−)/2

DC = (Im+ + Im−)/2
(2.1)

(2) the real Re and imaginary Im parts of the phasor of complex bio-impedance
Z is determined as

Re = (Re+ − Re−)/2

Im = (Im+ − Im−)/2
(2.2)
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2.1 overview of the initial design

Figure 2.2 – A block diagram of one channel of DMBA [19]. Registers are blue,
MUXes – yellow, computation - red, control – green.

The mentioned signal analyzer is a part of the developed digital multichannel
bio-impedance analyzer (DMBA) [5], depicted in Fig. 2.1. The Source of Excita-
tion Signals generates digital waveforms that are converted by Digital Analog
Converter (DAC, not shown) into analog signals, sent through tissue, collected
by Analog Channel Selector and converted by ADC (not shown) back to digital
form. The Sampler is used to synchronize the signal source and ADC (input of
the Digital Analyzer, not shown). This sampled digital signal is processed by the
analyser unit.

Fig. 2.2 shows the architecture of the analyzer unit. As it can be seen, the
circuit has a pipe-lined structure in order to be implemented in a low-cost FPGA.
The signal is first sampled into the input buffer. On the next stage signal points
are distributed to four registers defining different signal components Re+, Re-
, Im+ and Im-. These four registers are present in all 8 different channels of
the analyzer. The sampling is performed on channel-after-channel basis. Every
sample out of 4 samples taken per channel is saved into its corresponding 16-
bit register of particular signal component. On the next stage Real, Imaginary
and Direct current components are computed with adders and subtractors, using
equations (2.1) and (2.2). On the next pipeline stage the computed components
are integrated using adders and saved into 32-bit registers, called output buffers.
Integration is made over a 1 ms period. After that the values of the output buffers
are transferred to the output register of the analyzer.

The architecture of the analyzer was defined by the used technology - low-cost
FPGA-s - and required 80 MHz sampling frequency. This constraint came from
the need to have 10-20 MHz excitation signals with 4 or 8 sampling points per
period [5]. The use of single input channel (ADC output) and sorter to reduce
aliasing effect [19] resulted in two first buffer stages. The two last buffer stages
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are defined by the need to accumulate the collected data over 1 ms period, buffer
it and transmit for further analysis [5]. The intermediate part - subtractor/adder
and accumulator - can be implemented, in principle, as a single stage. However,
when using FPGA-s, the extra pipeline stage actually makes the design not only
faster (because of the shorter combinational paths), but also smaller - every out-
put bit of an adder has a flip-flop anyway and the use of them makes routing
problem for the design tools easier. The same applies for the potential reuse of
functional units and registers that would essentially add additional multiplex-
ors to the design - the internal structure of FPGA-s is best suited for pipelined
data-stream oriented applications. This was also the case with the other imple-
mentations of the same processing unit with the different degree of reuse [19]. All
the MUXes in the circuit are used for switching the channels (there are 8 chan-
nels in the DMBA), except the last one that is switching the calculation results of
every channel to a single output.

2.2 structural characteristics of the circuits

One of the strong parts of the suite developed is the fact that different cir-
cuits represent different design alternatives that were considered during actual
design process. The suite gives a possibility to study how the different design
approaches with the same functionality would impact testability - that is not of-
ten considered at the design stage. Seven implementations of the original highly
parallel design were developed in a way circuit designer would consider doing.
These modifications bring different degree of reconvergency to different parts
of the circuit by sharing some of the components. The whole analyzer can be
sub-divided into several functional parts: acquisition, preprocessing, integration,
output. During the design process, alterations were made to first three parts of
the analyzer: acquisition, preprocessor and integrator.

The idea of the benchmark circuits is to selectively share some of the resources
in order to produce different circuit implementations of the same functionality.
This resulted in eight different configurations performing the same function: 8a,
8b, 8be, 8bk, 8bs, 8c, 8d and 8de. Fig. 2.3 shows which successive changes were
introduced into the designs. The difference of circuits 8a, 8b, 8be, 8bk and 8bs from
8c, 8d and 8de lies in additional 4 extra buffer registers in signal acquisition part of
the circuit. All the other modifications are regarding sharing of the preprocessor
and integrator resources in different manner. Table 2.1 shows which parts of the
design were modified in every implementation. This table presents the number of
adders and subtractors, number of bits in registers and area in equivalent gates,
calculated by Synopsys Design Compiler.

Here the design 8a is the initial version with 8 data channels, described in
Section 2.1. The transition from 8a to 8b lays in replacement of 8 channels in
preprocessing part of the circuit by a single common channel, thus removing the
redundancy by a shared preprocessor. It explains the decrease in adders, subtrac-
tors and registers located in preprocessor. In this version of the circuit the one
single preprocessor block is shared among 8 channels of the analyzer in channel-
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Figure 2.3 – Overview of the benchmark designs

after-channel manner. This resulted in multiple multiplexors in the circuit that
increased reconvergency in the beginning of it. Table 2.2 shows estimation of the
number of reconvergent signals for each benchmark.

The transition from 8a to 8c resulted in implementing the extra input buffers.
The increase in register bits can also be seen from the Table 2.1. The 8 channels of

Table 2.1 – Structural differences of 8 benchmark circuits.

Circuit Structure Area, ge

# 16-bit # 32-bit # 16-bit Registers, logic registers total

adder adder subtract. bits

8a 8 24 16 2489 26182 17577 43759

8b 1 24 2 1705 20232 12089 32321

8be 1 3 2 1705 22090 12089 34179

8bk 1 24 1 1705 20088 12089 32177

8bs 1 1 1 1705 22671 12089 34760

8c 8 24 16 3004 28177 21182 49359

8d 1 24 2 2668 28136 18830 46966

8de 1 3 2 2668 29850 18830 48680
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Table 2.2 – Difference in level of reconvergency of 8 benchmark circuits.

Design # of reconvergent signals Modifications

Preprocessor Integrator Total

8a 32 64 96 Initial design

8b 32 64 96 Shared preprocessor

8c 32 64 96
Initial design with extra

input buffers

8d 32 64 96
Extra input buffers and

shared preprocessor

8bk 64 64 128

Shared preprocessor with
single shared

adder/subtractor

8be 32 512 544
Shared preprocessor and

integrator

8de 32 512 544
Extra input buffers, shared
preprocessor and integrator

8bs 64 1536 1600
Maximum sharing of

resources

data remained for preprocessor and integrator. That is why the number of adders
and subtractors is the same for both circuits. Extra registers brought additional
latency to data path, but didn’t add any reconvergency.

The circuit 8d has union of changes in 8b and 8c - the extra registers are added
to the input buffers and preprocessor is shared between all the channels that
brought the amount of adders and subtractors down.

The bigger changes in reconvergency start to be seen in circuit 8bk. Addition-
ally to single preprocessor block it also shares the inner part of the preprocessor.
It calculates three different characteristics of the signal using single adder and
subtractor unit for this purpose instead of three in all previously described cir-
cuits. This change added additional multiplexors to the preprocessor part that
can be seen from Table 2.2. The number of reconvergent signals rose from 32 to
64.

Apart from 8bk, circuit 8be still has separate adder and subtractor blocks inside
preprocessor. However in addition to the modifications of 8b it also has one single
integrator block shared with all 8 channels. This led directly to the decrease in
32-bit adders located inside an integrator. The multiplexors were added to the
inputs of 32-bit adders in order to enable this functionality.
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The circuit 8de is an analog of 8be. The only difference lies in the addition of
extra buffers to the inputs that can be seen in increased number of register bits.
It doesn’t change the amount of reconvergency, but increased the latency of the
pipeline.

The circuit 8bs combined all the possible reconvergencies by sharing single
preprocessor block for all the channels. This block contains single adder and
subtractor unit for calculation of all three characteristics of the signal. And finally
the single integrator block is shared among all the 8 channels. These changes
resulted in the most compact circuit with only 3 computational units and a lot
of multiplexing. It can be seen from Table 2.2 that the number of reconvergent
signals increased considerably to the total of 1600 for this circuit.

2.3 testability characteristics of the circuits

The goal of the testability evaluation was to investigate how different level of
reconvergency and its location inside the circuit would impact the testability and
fault analysis. The changes in design alternatives are characterized by different
structural complexities that will have a direct impact on testability of circuits and
on the testing quality. The experimental results presented in Table 2.3 and Fig.
2.4 allow to easily create functional dependencies between the testability features
and the resource sharing options in design alternatives that allows to find proper
tradeoffs. In the following the depicted results are discussed in details .

Testability analysis of different configurations of the bio-signal processing de-
sign was performed by using deterministic and pseudorandom test pattern gen-
erators [57], fault simulator [70] and by using the algorithms for hybrid BIST op-
timization developed in [38]. Several testability characteristics presented in Table
2.3 were analyzed: the deterministic test length achieved (DTL) and the needed
time for deterministic test pattern generation (DTG), the time needed for fault
simulation (FS) and for the pseudorandom test simulation (RTS), the hybrid BIST
length (HBL) and the calculated optimal test cost of hybrid BIST (HBC). Genera-
tion times are given in seconds, test lengths in numbers of patterns, and costs in
abstract units. The changes in testability characteristics for the benchmark suite
are shown in Fig. 2.4.

2.3.1 Discussion of the results

The changes in design alternatives are characterized by different structural
complexities that will have a direct impact on testability of circuits and on the
testing quality. Here the experimental results presented in Table 2.3 and Fig. 2.4
will be discussed in details.

The transition from 8a to 8b resulted in improvement of all the testability char-
acteristics. The best improvements were in reduction of test synthesis time (for
deterministic test 1.4 and for pseudorandom test 1.25 times). Fault simulation be-
came 1.16 times faster. The cost of the hybrid BIST significantly improved – one
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Table 2.3 – Testability characteristics of signal processors.

Design DTL DTG FS RTS HBL HBC

8a 1364 47 13.7 1408 23 038 197 823

8b 1201 34 11.8 1130 18 540 138 324

8bk 1288 35 11.3 1129 17 497 144 876

8c 1320 75 15.5 1583 35 641 224 121

8d 1394 62 16.6 1647 32 610 209 384

8be 995 114 27.9 2784 14 202 104 474

8de 1096 112 33.4 3344 33 968 162 557

8bs 1186 296 69.0 7095 14 086 113 038

of the reasons is smaller number of inputs in 8b that results in the less cost of the
memory component of the BIST.

In transition from 8b to 8be the deterministic test length improved - it was 1.2
times shorter that can be explained by the reduction of the circuit complexity. On
the other hand, the time needed for deterministic test generation was 3.35 times
higher because of the increased number of reconverging signals in the circuit
that causes higher number of backtracks during search for consistent solutions.
Also, fault simulation time became 2.36 times slower, and the time needed for
pseudorandom test simulation was 2.46 times higher. This is explained by the
use of exact critical path tracing algorithm [70] used for fault simulation that is
highly sensitive to the number of reconvergent fan-out stems. The cost of the
hybrid BIST was improved due to the smaller number of deterministic vectors
needed.

During the transition from 8b to 8bk the increase of reconvergency (from 96 to
128) did not significantly influenced the testability of the circuit.

Opposite in transition from 8bk to 8bs the number of reconvergent signals in-
creased drastically (128 for 8bk and 1600 for 8bs). Fig. 2.4 shows worsening of the
testability regarding test generation and fault simulation: the time of determinis-
tic test generation became 8.45 times longer, the time of fault simulation 6.1 times
longer and the time of random test simulation became 6.28 times longer. On the
other hand, because of the reduction in circuit size, the length of deterministic
test set became slightly shorter (1.08 times). The length of optimal hybrid BIST
was 1.24 times shorter and optimal cost 1.28 times smaller due to the smaller
number of seeds for LFSR.

In Fig. 2.4 it can be seen that due to transition from 8a to 8c the time re-
lated characteristics have become worse: the generation time for deterministic
test became 1.59 times longer. The fault simulation became 1.13 times slower for
both deterministic and random test patterns. This worsening of indicators can be
explained by the increase of the number of reconvergencies because of adding
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Figure 2.4 – Changes in testability characteristics.

control signals for addressing the buffer registers. The test length did not change
because the circuit size remained the same. The length of hybrid BIST sequence
test became 1.54 times longer, and the cost of Hybrid BIST was bigger for 8c due
to the bigger number of inputs (buffer registers).

In the transition from 8c to 8d the characteristics that changed most signifi-
cantly were deterministic test generation time (became shorter) and the length of
the optimal hybrid BIST became slightly shorter, similarly as in the case of “from
8a to 8b”.

In transition from 8d to 8de caused the increase in number of reconvergent
signals (Fig.2.4), and longer times for test generation and fault simulation. De-
terministic test generation took 1.81 times longer. Fault simulation became 2.01

times slower for determinsic test and 2.03 times longer for random. The determin-
istic test set was 1.27 times shorter and the cost of the BIST reduced 1.28 times
(due to the smaller number of seeds). This case affected the testability character-
istics in the similar way as in the case from “8b to 8bk”.

2.4 chapter summary

In this chapter the following main results were achieved:

• A novel suite of benchmark circuits was developed and investigated to
give a possibility for systematic characterization of CAD tools by creating
functional dependencies for different testability markers on the structural
complexity in terms of the number and configuration of reconvergencies
in circuits. Existing benchmark suites do not provide such a possibility.

• It was shown that sharing of resources in designs may reduce the test
length, but on the other hand, it will increase the time of the test synthesis,
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and may reduce the test quality due to increasing of number of fan-out
reconvergencies.

As the result of the cooperation in the fields of computer, electronics and
biomedical engineering in the Estonian Research Excellence Centre CEBE, a bench-
mark suite was developed for evaluating the CAD tools in their efficiency and
quality in designing dependable digital systems.

Differently from all other existing benchmark suites, all the member proces-
sors of this family perform the same function, but are implemented in different
ways, differing mainly in the amount of shared computing resources. This gives
an excellent possibility for direct systematic characterization of CAD tools by cre-
ating functional dependences for different testability markers on the structural
complexity of circuits.

The experiments show a correlation between the structural properties of cir-
cuits and their testability characteristics. It was shown that sharing of resources
in designs, which leads to increasing number of fan-out reconvergencies, may re-
duce the test length, but on the other hand, will increase the time of test synthesis,
and may reduce the test quality.

A useful synergy was achieved by creating a selection of bio-signal processors
that will have practical use in medical field, but simultaneously can be used as a
family of benchmark circuits for analyzing the properties of new test algorithms
in the field of electronics.

The new at-speed BIST methodology described in the next chapter was evalu-
ated using benchmark circuits described here.
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3
AT- S P E E D S E L F - T E S T I N G

This chapter is based on the publications "Functional Self-Test of High-Perfor-
mance Pipe-Lined Signal Processing Architectures" (see Appendix C) and "At-
Speed Self-Testing of High-Performance Pipe-Lined Processing Architectures"
(see Appendix B).

In this chapter, the new approach for self-testing of digital systems with pipe-
lined architectures is proposed. The main contributions of the chapter are the
following:

• The new at-speed functional BIST methodology for high-performance pipe-
lined architectures.

• Novel evaluation environment to transfer sequential fault simulation task
into a set of combinational subtasks is developed.

• Exploration of the potential of digitized analog signals to be used as a
test-sequences for at-speed BIST.

The at-speed BIST methodology forms the core of the chapter. It exploits inher-
ent functionality of the system to produce internal test-sequences, thus requiring
minimal hardware overhead for testing purposes. The method targets at-speed
execution and uses single stuck-at fault model. The evaluation environment is
proposed to improve the speed scalability of the method. Also digitized analog
signals are explored to be used along with the proposed at-speed BIST method-
ology to reduce hardware requirements.

The author is in charge of the development and evaluation of the methodology
proposed, running the experiments and analysis of the results.

The rest of the chapter is organized as follows. Section 3.1 presents and overview
of the state-of-the-art. The general description of the novel at-speed BIST method-
ology is written in section 3.2. The bio-impedance analyzer from the benchmarks
proposed in chapter 3 has been used in order to describe and evaluate the method.
The section 3.3 describes the fault simulation environment intended to be used
with the methodology proposed. Later in section 3.4 this methodology is evalu-
ated and study the potential of different digitized analog sequences to be used
as a test sequence for functional BIST. The experimental results are discussed in
Section 3.5 and finally draw a conclusion in section 3.6.
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3.1 overview

Built-in self-test (BIST) uses on-chip hardware to both generate the test patterns
and analyze an output response of the Unit Under Test (UUT). The common way
to do this is to use pseudo-random pattern generator for generation of a test
and multiple-input signature register (MISR) to make a signature from circuit
responses. Once the self-test is done the signature is shifted out or compared
against predefined value on chip. In case of incorrect signature the chip fails the
test [62].

Throughout the years of research many variations of BIST were developed.
In traditional Logic BIST (LBIST), test pattern generation is mostly performed
by Linear Feedback Shift Registers (LFSR) [62], cellular automata [29] or mul-
tifunctional registers like Built-in Logic Block Observer (BILBO) [62] to apply
pseudorandom patterns to the Unit Under Test (UUT) and to analyze its output
responses. However, many circuits contain random-pattern-resistant faults that
limit the fault coverage that can be achieved with this approach.

One method to improve the fault coverage for LBIST is to modify the UUT by
either inserting test points [15] or by redesigning it to improve the fault coverage
[28]. The drawback of these techniques is that they generally add additional logic
levels to the circuitry that can degrade system performance. Another possibility
to improve the fault coverage is to use weighted pseudorandom test sequences
[3]. The disadvantage of this approach is in the need of storing of the weight sets
on chip, and also dedicated control logic is required to switch between weights,
so the hardware overhead may become large. A “mixed mode” approach, where
deterministic patterns will be added to detect hard-to-test faults, has been devel-
oped in [27, 31, 35, 64]. In [35] a technique based on reseeding LFSR was pro-
posed that reduces the storage requirements. In [27], multi-polynomial LFSR for
encoding a set of deterministic test cubes was introduced, and in [31] a technique
called bit flipping for generating deterministic test cubes using BIST control logic
was proposed. Further, in [64] a mixed-mode approach was presented in which
deterministic test cubes are embedded in the pseudorandom sequence of bits
itself.

As it have already been mentioned earlier the established BIST solutions use
special hardware (typically LFSR) for test pattern generation (TPG) and test re-
sponse evaluation (TRE) on chip [62], but this in general introduces significant
area overhead and performance degradation. To overcome these problems, spe-
cialized methods were proposed, which exploit specific functional units such as
arithmetic units for on-chip test pattern generation [18, 76] that may afford to
reach similar fault coverage like traditional LFSR-s. These methods are called
Arithmetic BIST (ABIST), since they essentially adopt the additive congruential
generation scheme of pseudo-random numbers [33].

In [32, 73], a mixed-mode or hybrid BIST approach was proposed, where a
test set is assembled from two parts, from pseudorandom test patterns that are
generated on-line, and deterministic test patterns that are generated off-line and
stored in the system. A combination of both test sources in an optimized fashion
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allowed improving the traditional LBIST in targeting hard-to-test faults. A similar
approach called Hybrid Functional BIST (HyFBIST), where instead of LBIST the
inherent functional sequences were used, was proposed in [44, 72] for testing
digital systems, and particularly micro-programmed data-paths.

In this chapter I generalize and combine the ideas of using inherent functional
blocks for test generation [18, 58] and the inherent working sequences produced
by the UUT itself for self-testing purposes. An overall functional self-test con-
cept is proposed for pipelined architectures where the working sequences are
produced on the primary inputs of the system and Multiple Input Signature An-
alyzers (MISR) monitor the internal signals in selected test-points. A systematic
procedure is proposed for selecting the test-points to achieve the best overall fault
coverage at minimum testing overhead and cost.

To my knowledge, the usage of digital representation of analog signal se-
quences as a functional test for testing digital circuits (signal processing archi-
tectures) is investigated in the first time. Main idea is to take the input data,
which is close to what the circuit-under-test would most probably have during
its normal operation, and apply this data as an at-speed test. In the case of this
work the input data is a digital representation of the sine signal. It will be shown
in results that such a signal could yield better fault coverage in comparison to tra-
ditional pseudo-random LFSR sequence. This can also be considered as one step
further compared to the arithmetic BIST (ABIST), since the source for the first
stage of UUT is stimulated using more complicated equation (sine wave), than
traditionally used in ABIST. The next stages of the UUT can be considered as test
generators similar to ABIST. The Functional test strategies (e.g. software based
self-test) used for example in microprocessors, are traditionally using dedicated
software test routines that have to be stored in the memory. In case of proposed
method there is no need to store in the memory such test routines or other test
data.

3.2 general description of the method

Consider a digital system as a network of sub-circuits (blocks) where all the
blocks may play simultaneously two roles: on one hand, each block will be itself
UUT, and on the other hand, it will serve as the test pattern generator for the
subsequent blocks it is feeding. As the overall test source, selected input working
sequences (as functional test) will be used.

Two main problems arise: (1) how to find the best functional test sequences,
and (2) how to find the minimal set of test-points for monitoring to achieve the
highest fault coverage of testing.

In some cases, the first problem can be solved straightforwardly like in the
instruction set architectures or in signal processing units. In the first case, the
instructions can be exercised one by one where the problem recedes to finding
only proper data (operands) as test patterns [22, 71]. In case of signal processing
units, the analog signals to be processed can be used as candidates for exploiting
in testing purposes as well. The possibility of using given digital representation
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of analog signals as stimuli for testing signal processors is therefore also investi-
gated in this chapter. The case study on this topic is presented in Section 3.4. The
idea is similar to random (LFSR based) testing where the critical point is analysis
of the test quality as the function of test length.

For example, in bio-impedance spectroscopy, for measuring the bio-impedance
typically the following signals are generated and processed as shown in Fig.3.1:
sine [45] and chirp [52]. These signal sequences may be used as well in the role
of stimuli (i.e., functional test sequences) for self-testing purposes for the same
signal processor itself. The quality of the listed signals as test stimuli can be com-

Figure 3.1 – Signals used for measuring bio-impedance

Figure 3.2 – Monitoring of the pipe-lined signal processing unit. a. Full MISR cover-
age, b. Partial MISR coverage
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pared with popular saw-tooth analog signal and pseudorandom LFSR sequences
that are traditionally used in the logic BIST solutions. Saw-tooth is easy to gen-
erate digitally; this is the reason why it is widely used in signal generation and
processing. It can also be thought of as an additive generator of exhaustive pat-
terns. The impact of presented signals on the testability of the pipe-lined circuit
is described in Section 3.4.

The second problem of selecting test-points for monitoring the test process
depends how well can the faults in different blocks be detected by the given
functional test sequence.

In Fig.3.2, an example of a pipe-lined signal processing unit is given that is
partitioned into 6 blocks. Two solutions are demonstrated for monitoring the
behavior of the circuit with MISRs. The solution in Fig.3.2a shows the case where
all blocks are monitored whereas in the solution depicted in Fig.3.2b, only three
MISR are used: the first is monitoring the behavior of blocks B1 and B2 as a
whole, the second MISR is monitoring solely the block B3, and the third MISR is
monitoring the blocks B4, B5 and B6 as a whole.

The task of partitioning of the whole system into UUT blocks has the goal to
find the highest fault detection coverage for the given functional test by achieving
well-balanced testability at the minimum number of monitoring points equipped
with MISR. Optimal partitioning is rarely possible without any feedback on the
testability of the circuit. It means that in general case a number of iterations is
required in order to find the right balance between the required level of testabil-
ity and number of monitors (area overhead). The general iterative procedure is
described next in order to find the optimal solution.

To find the minimum hardware overhead I propose the following method for
selecting test-points:

• Put MISR on the primary output of the circuit, and find the fault coverage
(FC) for the given test sequence.

• If FC is sufficient, then the problem is solved.

• Partition the circuit into a set of n blocks (each with its own MISR). Find
FC for each block as a UUT.

• Continue the partitioning of the blocks with low FC until the total FC will
be sufficient.

• Integrate the consecutive blocks with high FCs into UUTs (with a single
joint MISR in the output of the composite block) to minimize the number
of MISR, so that the total FC of the system remains sufficiently high.

The described method is illustrated in Fig.3.3. Please note that the partitioning
solutions can be found in different ways, e.g. dictated by an inherent structure
(network of registers and combinational blocks), using any ad-hoc method in a
style of "trials and error" or using more sophisticated analysis methods. This task
should be regarded as a separate problem, not discussed here.

Let’s consider an example shown in Fig.3.4. Here initially the circuit is parti-
tioned into three blocks for monitoring. The fault simulation of this configuration
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Figure 3.3 – General procedure for minimization of the number of observation points.

shows that the fault coverage of the first two blocks is good so they can be merged
in order to remove the monitors after the first block. The only MISR registers to
observe the functionality of this now combined block would be the ones placed af-
ter the second block. On the other hand the third block shows low fault coverage,
which suggests that the amount of observation points should be increased inside
the block. This is why this block is partitioned into three sub-blocks and moni-
tors are added after every sub-block in order to improve the fault coverage. The
bottom part of the Fig.3.4 shows that first two blocks from the top picture now be-
came one block. Also the last block now becomes divided into three blocks with
MISRs inserted after each of them. The evaluation of the fault coverage should
be carried out again separately for all the four parts, to find out if some of them
can be merged, or if there is any of them with low fault coverage that should be
further partitioned.

In case when the fault coverage will not satisfy either globally for the whole
circuit or for particular blocks as UUTs, either the better functional test sequences
should be found, or different methods, similar to the ones for improving LBIST
described in Section 3.1, may be used. Another possibility is to use ad-hoc testa-
bility improvement in terms of control points. Control points can be used with
at-speed test execution by applying them for the whole period of a test sequence.
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This way the hardware overhead can be kept low and at-speed execution is still
guaranteed. However investigation of these possibilities is out of the scope of
current work and can be considered as a future research in this direction.

The described method of inserting MISR facilitates the idea of LBIST strategy.
The only exception is the use of inherent test functionality of existing hardware in
the system, instead of dedicated test generators of LBIST. This way the method af-
fords at-speed testing with no performance degradation and with little hardware
overhead and reduced test cost. The clock cycle based observation technique al-
lows to avoid fault masking, and to achieve high fault coverage. The test response
observation is carried out using built-in MISR as the only hardware overhead.

In summary the proposed method has several advantages compared to the
state-of-the-art scan-path based LBIST methods:

• no hardware test pattern generators, and no scan-path for shifting in exter-
nal test patterns are needed that results in smaller overhead;

• compared to LBIST, the typical drawback of over-testing related to LBIST
is avoided, since only functional working test patterns are used;

• testing is carried out in the normal working clock-rate that guarantees at-
speed exercising of the whole circuit.

The target of this Section was to describe the main principles of redesign for
better testability of the given UUT. The goal was not to develop exact algorithm
or tool for exploring automatically the whole space of solutions that would be in-
feasible in general case. The designer has a possibility to remove or insert MISRs
in the design and to evaluate the test quality by using the fault simulation envi-
ronment described next in Section 3.3. He has also the possibility of changing the
length of the test sequence to achieve higher fault coverage.

Figure 3.4 – Example of merging and splitting the blocks in UUT with high and low
fault detection coverage.
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In the next Section a novel environment is presented that supports very high
speed in analyzing the fault detection coverage in the blocks of UUT.

3.3 fault simulation environment

To carry out the procedure of minimizing the number of test-points according
to Algorithm in Fig.3.3, large number of fault simulation sessions is needed for
evaluating the fault detection coverage in the blocks of different size and for
different partitioning solutions for the given UUT. A simple scheme for fault
simulation of a sequential circuit is depicted in Fig.3.5. The model of the circuit
and the test sequence form the input data for the simulator that calculates the
fault detection rate. The faults are simulated in this case one by one. Such a
single fault simulation is very slow. On the other hand, faster methods for fault
simulation, such as deductive or critical path tracing based fault analysis, cannot
be used for sequential circuits; they are only applicable for combinational circuits.

To overcome the difficulties of fault simulation in sequential circuits a special
approach is proposed to escape from the dependency on feedback loops. Assume,
the full sequential circuit (or a sequential block as a part of it) can be presented
as a set of combinational sub-circuits each of them having a MISR in the output.
By logic simulation of the test sequence for all sub-circuits, the input sequences
are calculated (are fixed during the logic simulation). All the combinational sub-
circuits can be fault simulated now independently, because each of them has
MISR that detects the faults in the related sub-circuit. If the circuit cannot be
partitioned in such a way, a traditional slow fault simulator for sequential circuits
have to be used.

In order to calculate and save test sequences for all of the registers of the
sequential circuit I have developed a toolset that allows to use standard state-of-

Figure 3.5 – Fault simulation in sequential circuits.
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the-art logic simulators for this purpose. The saving of register values is required
in order to create a test set for combinational version of the design as was pre-
viously mentioned. The task is to allow register data to be saved into "XML" file
for every clock cycle during logic simulation. Two separate tools were developed
for this purpose - agmReader and tstCreator. The former is used before the logic
simulation, and the latter - after the simulation.

The overall process of test set generation using sequential logic simulation is
shown in Fig.3.6. The task of agmReader is to analyze the design and extract
all necessary signals that have to be saved during logic simulation. It creates an
additional "XML" descriptor file that contains the description of every registered
signal. The description includes:

• Id

• Signal name

• Number of start bit

• Number of end bit

The signals are arranged in a way they appear in AGM model of the design.
The AGM model is the combinational description of the circuit using Structurally
Sythesized Binary Decision Diagrams (SSBDDs). Such a description has all the
registers and feedback loops cut into separate inputs and outputs of the circuit.
It has all the inputs of the registers as primary outputs of the circuit. Also all
the outputs of the registers become primary inputs of the circuit. The ordering is
important in the next steps of the process. The bit width of the signal is also im-
portant, as well as whether bit numbering starts from the LSB or MSB. Once the
signals are analyzed the agmReader creates a description of VHDL process called

Figure 3.6 – Extracting combinational test set using sequential logic simulation.
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sniffer. This process contains a behavioral description allowing to save all the re-
quired signal values for every clock cycle. Once the tool has finished - VHDL
sniffer process is integrated into VHDL description of the design.

As can be seen from the Fig. 3.6 the next step is to do a sequential logic simu-
lation of the design. Any traditional logic simulator can be used for this purpose.
During logic simulation the value of every signal for every clock cycle is saved
into specially formatted "sniffer XML" file. Because the resulted file is a text file -
it is important to keep the amount of auxiliary data as small as possible. This is
why any information about the signals is not saved in it, except their values. In
order to be able to decode the data after a simulation the signal values are saved
in the same order they were analyzed and recorded to the "descriptor XML".

In order to remove the confusion that may arise at this point I recall. There
are two "XML" files. The first file is a "descriptor XML", which is created during
analysis of the design and contains information regarding the registered signals
of the design and their specific ordering. Another file - "sniffer XML" is created
during sequential logic simulation of the design and contains the values of all
registered signals for every clock cycle. The values are written in the same order
they appear in the "descriptor XML".

Once the logic simulation is finished the "sniffer XML" is saved. tstCreator tool
is used to extract the data from it and create a test set file for combinational fault
simulation. This tool reads both "descriptor XML" and "sniffer XML". Because
"sniffer XML" contains data in integer format, using signal size and alignment
information from descriptor the tool decodes the integer values into binary and
aligns accordingly. As a result a saved data becomes a test set for combinational
representation of the design.

These two tools are written in Java and form a part of a novel simulation
environment. In this environment the fault simulation has to be carried out only
in the combinational parts of the UUT. It is depicted in Fig.3.7.

The fault simulation is carried out in the following flow:

1. In each current step of the Algorithm in Fig.3.3, the UUT is partitioned into
a set of blocks S = SC ∪ SS where SC is a subset of combinational blocks
and SS is a subset of sequential blocks.

2. The UUT is simulated for the whole test sequence T, and for each block
Bi ∈ S, the whole local subsequence Ti at the input of Bi, caused by T will
be collected and stored. The subsequence Ti will be regarded thereafter as
the sub-test sequence for the block Bi generated on-line by the test sequence
T.

3. All the combinational blocks Bi ∈ SC, will be fault simulated for the lo-
cal sub-test sequences Ti with the fast fault simulator for combinational
circuits as shown in Fig.3.7.

4. All the sequential blocks Bj ∈ SS, have to be fault simulated for the local
sub-test sequences Tj with the slow fault simulator for sequential circuits
in this environment according to scheme Fig.3.5.
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Figure 3.7 – Transforming sequential fault simulation into sub-tasks of combinational
fault simulation.

For fault simulation of combinational circuits a very fast fault simulator that
implements a method of exact parallel critical path tracing, was used. It was
chosen because of its good performance that is higher than currently used com-
mercially available fault simulators[70].

The high speed in this simulator is achieved by reasoning the faults along
signal paths in the circuit for N test vectors in parallel, where N is the number
of bits in the computer word. The simulator runs in two sessions through the
whole circuit. The first session is carried out only once for all the test vectors to
be simulated. The goal of this session is to create a compact computing model
for further fault reasoning that consists of a sequence of Boolean formulas. Since
the formulas are Boolean, they can be processed in parallel. The second session
is to calculate the detected faults for packages of N test vectors in parallel using
the computing model created in the first session.

The simulator was included into the fault simulation environment in Fig.3.7,
where it will be used for simulating faults in the blocks Bi ∈ SC, block by block.

Unfortunately, the simulator cannot be used for calculating the fault coverage
for the sequential blocks Bj ∈ SS.

In the next Section, a case study will be discussed where I investigate the
feasibility of the proposed method of at-speed self-testing in a pipe-lined signal
pre-processor, described in previous chapter. Here I am going to compare the
difference in performance of two fault simulation schemes depicted in Fig.3.5
and Fig.3.7. The results of fault simulation for the whole family of 8 processors
(column 1) are presented in Table 3.1.

Column 2 describes the time in seconds for logic simulation of the sequence of
10 000 vectors on these benchmarks given by their behavior VHDL descriptions.
The columns 3 - 6 describe fault simulation experiments according to Fig.3.7 on
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the same sequence of 10000 vectors. In case of combinational fault simulation
two levels of fault simulation are compared – gate-level and macro-level, where
each macro represents a fan-out-free region (a gate-level sub-circuit) in a sim-
ulated combinational block of the given UUT. Only Stuck-at-Faults (SAF) were
simulated.

However, to save the time, only the correct behavior was considered during be-
havioral level simulation (column 2). The real sequential fault simulation using
fault injection can be much slower, as it requires to be run on gate-level repre-
sentation that takes more time to execute. So that the results presented on the
basis of behavioral logic simulation should be treated as ideally fast if used to
represent sequential gate-level fault simulation. It is also worth mentioning that
time values presented in column 2 in Table 3.1 are for single fault simulation. In
order to obtain the fault simulation time for the whole circuit this value have to
be multiplied by number of faults in the circuit (column 3 and 6). Time values in
columns 4 and 7 are already presented for all the faults.

To compare the two fault simulation approaches presented in Fig.3.5 and
Fig.3.7 on the basis of Table 3.1, lets consider the results for the processor architec-
ture 8a (the 1st row). For simulating 112034 gate-level SAF faults using parallel
critical path tracing in the environment in Fig.3.7 30 seconds is required. Assume
now very optimistically that for single fault simulation of sequential circuits in

Table 3.1 – Comparison of two fault simulation approaches.

Circuit
Beh. level

logic
simulation,

Fault simulation. All faults [Fig.3.7]

Single fault
[sec]

Macro level Gate Level

[Fig.3.5]
# of

faults

Sim-n
time,
[sec]

Speedup
# of

faults

Sim-n
time,
[sec]

Speedup

8a 0.155 66328 14.0 734 112034 30.0 579

8b 0.152 50206 12.1 631 83940 24.7 517

8be 0.168 55270 28.3 328 99330 62.1 269

8bk 0.159 49938 11.6 684 86878 25.2 548

8bs 0.154 56444 65.2 133 100820 173.4 90

8c 0.159 73182 16.3 714 122386 35.9 542

8d 0.161 71730 17.0 679 123012 35.5 558

8de 0.164 75840 34.8 357 136876 81.3 276
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the UUT at the behavioral level the same time is needed as for simulation of the
correct circuit, i.e. 0.155 s. Then, to simulate 112034 faults in the sequentially pre-
sented gate-level UUT 17365 seconds, or about 5 hours would be needed. Hence,
the gain in speed for this particular UUT will be not less than 580 times. In fact,
it will be even more, since the gate-level simulation would be much slower than
the behavior level simulation, as was already mentioned.

The results of benchmark 8bs deserve a separate discussion. As can be seen
this benchmark has considerably smaller speed-up factor, than all the other cir-
cuits. It can be seen that in case of 8bs time of logic simulation is merely equal
to the results of other circuits, but the time of combinational fault simulation is
considerably higher than others. The reason lies in the internals of this circuit.
8bs is a modification of the bio-impedance analyzer that has maximum shared
resources and therefore great number of reconvergent fan-outs. As it was pre-
viously shown [39] the exact critical path back-tracing used in fault simulation
environment is very sensitive to the amount of reconvergency in the circuit. I can
conclude here that logic simulation doesn’t depend on the level of reconvergency
in the circuit, apart from combinational fault simulation using back-tracing.

In order to produce the results in Table 3.1 I used desktop class Intel I7-930

@ 2.80 GHz 4-core processor running Windows 7 operating system with 6GB of
physical RAM. The circuit was simulated by ModelSim SE ver.6.5c. The speedup
values were calculated in respect to theoretically assumed speed of sequential
fault simulation computed as multiple of column two and respective column for
macro- and gate-level number of faults.

Note, the main idea of such a powerful fault simulation, based on transform-
ing sequential fault simulation task into a set of combinational fault simulation
sub-tasks is directly related to the goal of this analysis. And the idea is as well
closely tailored in the method of at-speed testing being evaluated. The goal of
fault simulation is in this case to evaluate the fault detection coverage, not fault
diagnosis. In other word, I am not interested in creation of an exact fault table.
As there are signature analyzers on the outputs of simulated blocks, it will be
sufficient during testing to fix on the inputs of the block correctly only the first
erroneous vector affected by the fault. As the result, the method is not sensitive
to the possible mismatches of the subsequent input vectors of the faulty block
with those collected during logic simulation of the correct UUT.

The main advantage of using such fault simulation as a part of the method
proposed in Section 3.2 is to provide a designer with a good insight into the
testability of the given circuit. Having an information regarding fault coverage of
every combinational block the designer can improve testability more efficiently.
He can limit the circuit space for testability improvement only to those blocks
that have lower fault coverage. And for the blocks with good coverage it will
be possible to merge them in order to cut the number of points for monitoring.
Although for this task the sequential simulation is required - the size of the circuit
to be simulated is significantly reduced. Also in the Chapter 3 I propose a general
method to extend the usability of the PPECPT for simulation of the sequential
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circuits, even in case of partial register monitoring. This new method can also be
effectively used for the purpose of simulation of combined blocks.

Let us summarize the main idea of the section. The fast fault simulator is used
[39] that is not simulating faults one by one like in the traditional fault simulators
for sequential circuits, rather it calculates by a single run all the faults detected
in the combinational sub-circuits by a bunch of patterns (the reasoning is done
for all faults in the sub-circuits in parallel for many patterns). The confusion may
arise now because the fault reasoning is carried out for input patterns that were
collected from the behavior of the correct circuit. This means that if there was a
fault, which produces an erroneous output pattern, then the next input pattern
will be as well erroneous (because of the possible feedback loop) that means in
turn that the results of fault reasoning of all subsequent patterns will be as well
wrong. But, on the other hand, this is not any more important, because the first
erroneous pattern in the input sequence of the sub-circuit will be fixed already
by MISR as an error, and this will be sufficient for fault detection in the end of
the test (with the accuracy determined by the probability of signature aliasing).
Generating fault tables and fault diagnosis of course is not possible, but this is
not the purpose of this chapter.

To my knowledge, such an approach of running fault simulation in sequential
circuits for at-speed test has been proposed the first time.

3.4 case study : signal processing unit as uut

To investigate the feasibility of the method in the sense of achieving sufficient
fault coverage in real cases, I carried out experimental test research on one of
the benchmark circuits previously proposed. From the family of processors, dis-
cussed in the previous Section the processor with architecture 8a was selected. It
has been chosen because is represents design solution used in real-life scenarios.

As it was already mentioned in Chapter 3 the bio-impedance signal analyzer
represented by circuit 8a is only a part of industrial solutions for bio-impedance
measurements. The system also has a sine-wave generator of different frequen-
cies. It is used to produce the excitation of a sine signal into a tissue in order to
analyze it’s response for further calculation of bio-impedance. During this case
study in addition to evaluation of at-speed methodology it was also decided to
check whether digitized analog sequence can be used as a test set. The reason
for that is simple. In case such a sequence shows good fault detection quality
a generator already present in system can also be used for test purposes. This
would in turn result in savings of silicon area.

For self-test purposes, the analog part - DAC, tissue and ADC - are skipped
and the output of the Excitation Signal Generator is fed directly to the digital
input of the Digital Signal Analyzer that is shown in Fig.3.8.

Excitation signal generator along with body and analog part was exchanged
with signal generator of particular type. Also the sampler is implemented as
80MHz clock signal. As was mentioned in Chapter 3 80Mhz is a maximum clock
frequency of this analyzer. Fig.3.8 gives visual representation of the test setup.

44



3.4 case study : signal processing unit as uut

I investigated four types of signal generators to be used as test sources: sine,
chirp, saw-tooth, LFSR. Such signal generator provides input signals to all 8 chan-
nels of the analyzer. These can be seen on Fig.3.1. All the channels get the same
signal, so that each channel can be tested equally to each other. All the generators
are implemented in VHDL in order to be used with simulation environment.

1. The sine signal generator is using floating point arithmetic and sin() func-
tion of the VHDL math library. It can take amplitude, phase and frequency
as parameters to produce the corresponding sine wave. During the experi-
ments the amplitude was set to 15 bits, taking into account 1 sign bit and
16-bit wide input of the analyzer. The phase was set to 90 degrees in order
to produce the input signal from the upper part of the wave. Such signal
would produce more unique values in less time, because it covers all the
values from top to the bottom in half-period. It was useful to check whether
the test sequences of small length could produce meaningful results. The
frequency was modified during the experiment in order to detect the better
signal for testing this device.

2. The chirp generator takes as parameters start and stop frequency periods
as well as number of samples in which frequency should change from start
to end frequency value. The chirp generator changes the frequency every
sample it produces. The amplitude remained 15bits + 1 sign bit and start
phase was set to 90 degrees. During the experiments the length of the chirp
signal was manipulated – number of samples from start to end frequency.

3. Saw-tooth signal is implemented as a counter. The parameter it takes is a
period of the signal. The generator produces equally spaced samples of the
saw-tooth signal of this period. The amplitude is 15bits+1 sign bit.

Figure 3.8 – Testbench for the case study.
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Figure 3.9 – Equivalent circuit for the Signal Analyser in Fig.2.2.

4. LFSR signal generator is implemented as 16-bit linear feedback shift regis-
ter. The seed is taken so that it goes through all the 65535 possible values
except 0. The size of the LFSR was chosen in accordance to the input width
of the signal analyzer under test.

3.5 experimental results

Experiments were carried out for Signal Analyzer (architecture 8a) in Fig.3.8,
presented as equivalent circuit with highlighted pipe-lined tracks in Fig.3.9. As
the result of the experimental research according to method in Fig.3.3, the circuit
was finally partitioned into 7 blocks as separate UUTs that are characterized in
Table 3.2.

3.5.1 Fault coverage of the blocks

I calculated the fault coverage for all seven blocks as well as total fault cov-
erage for four different types of signals: sine, chirp, saw-tooth and LFSR. The
number of test patterns used for this simulation is 1000000 (one million). The
fault simulation environment described in Section 3.3 was used. The results of
the experimental research in percentage of fault coverage for all the different
blocks are presented in Table 3.3 and as the bar diagram in Fig. 3.10.

Blocks timer and sampling represent control logic of the circuit. These are well
tested, because their memory cells are completely covered by MISRs. The reason,
why the coverage is not 100% is that the reset logic wasn’t simulated.

As can be seen, the best results in average for all the blocks were achieved for
the input signal sine where the fault coverage was 98.20%. The lowest total fault
coverage 75.99% was registered for the signal type saw-tooth.
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Table 3.2 – Characteristics of the blocks in Fig.3.8

No Name of the
block

Number of
faults

Number of
inputs

Number of
outputs

1 calc_add 69544 1431 896

2 calc_sub 18588 791 256

3 in_buf 98 17 16

4 out_buf 14750 1554 769

5 out 7480 709 64

6 sig_acq 8560 538 520

7 timer 512 18 17

Total 119532 2528(5058) 2538

Table 3.3 – Results of fault coverage experiments.

No Name of the block Input signal types
Sine, % chirp, % saw-tooth, % LFSR, %

1 calc_add 97.37 94.86 76.80 95.71

2 calc_sub 98.85 99.20 64.90 99.20

3 in_buf 82.65 82.65 82.65 82.65

4 out_buf 99.88 99.86 74.74 99.86

5 out 99.14 99.06 78.66 99.14

6 sig_acq 95.63 95.63 95.63 95.63

7 timer 94.14 94.14 94.14 94.14

8 sampling 95.62 95.62 95.62 95.62

Total 98.20 96.68 75.99 97.21
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Considering the distribution of fault coverage among different blocks it can be
seen that the lowest test quality is mapped to the block in_buf. However, since the
block in_buf is rather small (characterized by only 98 faults), the improvement of
its testability will not lead to considerable increase in the total fault coverage of
the whole circuit.

3.5.2 Impact of the test length

Since the cost of testing depends on the time used for carrying out the self-test
procedure, I investigated how the fault coverage will depend on the test length
measured in the number of test patterns. The results are shown as the charts for
four signal types in Fig. 3.11.

The most cost effective would be the LFSR based self-test sequence where the
fault coverage around 90% will be achieved already after 80 000 test patterns
(clock cycles) whereas the sine signal based and chirp signal based tests achieve
only about 85% and 80% fault coverage, respectively, at the same test length.
When doubling, however, the test length, the sine based and LFSR based tests
become equal at the 95% fault coverage. Especially sensitive to the length of the
test is the chirp signal based test sequence.

3.5.3 Comparison to the state-of-the-art methods

I compared the test quality achieved by the proposed method with traditional
scan-path (SP) techniques both for using LFSR pseudorandom and deterministic
test sequences. The results are presented in Table 3.4.

Figure 3.10 – Distribution of fault coverage in the circuit.
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Table 3.4 shows that the fault coverage is nearly the same for all the methods
compared. However, to get the same fault coverage as with the proposed method,
the test length of the scan path & LFSR based approach should be even twice
bigger compared to the proposed method. To calculate the testing time cost in
clock cycles, the test length for both referenced scan-path based methods should
be multiplied by the length of the scan path that is equal to 2528 bits (the total
number of inputs of all the tested blocks in the given circuit).

For the proposed method, the testing time in number of clocks is equal to the
test length. Sp that, I can conclude that the time cost of the proposed method
is about 3-7 times cheaper than the SP & deterministic approach and more than
2500 times cheaper than SP & LFSR at the same fault coverage (in the latter case
the single scan-path was assumed).

Figure 3.11 – Dependence of the fault coverage on test length.

Table 3.4 – Comparison of different methods.

Method Fault cover. % Test length (TL) Testing time (clock
cycles)

Proposed 97.78 500000 5 ∗ 105

SP & LFSR 96.82 500000 12640 ∗ 105

Proposed 98.20 1000000 10 ∗ 105

SP & LFSR 98.73 1000000 25280 ∗ 105

SP & deterministic 98.69 1364 34 ∗ 105
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Table 3.5 – Fault coverage for circuit 8a - without resource sharing and 8bs - with
resource sharing.

Signal Fault coverage, %
8a 8bs

Sine 98,20 98,16

Chirp 96,68 96,49

Sawtooth 75,99 81,69

LFSR 97,21 97,05

3.5.4 Impact of the resource sharing

In order to see how resource sharing would affect the proposed method I’ve
computed fault coverage for another bio impedance benchmark circuit with the
highest reconvergency characteristics that is 8bs. The number of test vectors is 1

000 000. The results of the fault simulation of circuit 8a and 8bs for all four analog
signals can be seen in Table 3.5.

Although the results of the most test signals are lower for circuit 8bs, it can
be seen that method still provides high fault coverage even in case of high level
of reconvergency. The digitized sine signal still provides better results, than any
other test signal. The results of saw-tooth test signal improved that suggests that
circuits with higher resource sharing are better testable with exhaustive test se-
quences. However its results are still low, when compared to other digitized ana-
log signals. These preliminary results show that the efficiency of proposed at-
speed functional BIST methodology doesn’t considerably depend on the amount
of resource sharing.

3.6 chapter summary

In this Chapter the following main results were achieved:

• A new approach was developed to self-testing of digital systems with pipe-
lined architectures using inherent functionalities of systems with added
value as higher test quality, less hardware cost, and removing yield loss
due to avoiding the danger of overtesting.

• The usage of digital representation of analog signal sequences as a func-
tional test for testing digital circuits (signal processing architectures) is in-
vestigated in the first time.

• A novel BIST evaluation environment was developed that allowed a gain
of 580 times in speed of fault simulation.

The added value of using inherent functional self-test sequences is the higher
test quality explained by on-line at-speed testing. The approach to functional
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BIST does not need to store high volume test data in the system memory. Addi-
tional hardware is as well not needed for on-line test pattern generation as in the
case of traditional LBIST. The only needed additional test hardware is related to
using MISR for monitoring the test responses. To minimize the needed additional
MISR hardware overhead, an original algorithm for selecting test-points was de-
veloped. As the result of avoiding artificial embedded test pattern generators like
in case of LBIST, and of using only normal working sequences for test purposes,
the dangers of over-testing and the related yield loss are removed.

To cope with the problem of very slow fault simulation in sequential circuits
needed for exploration and comparison of different self-test solutions a novel
evaluation environment was developed where the time consuming sequential
fault simulation task can be transferred into a set of combinational fault simu-
lation sub-tasks. Experiments demonstrated the gain in evaluation speed more
than 580 times without losing any accuracy in fault coverage calculation.

To investigate the feasibility of the method to achieve high fault coverage, ex-
perimental research with a digital Signal Analyzer unit was carried out as a case
study.

The goals of the experiments were twofold: (1) to select the best type of input
signal for testing purposes from a set of signals typically used for processing in
the given Signal Analyzer, and (2) to compare the new method with traditional
scan path based testing methods.

Experimental research showed that the best testing capability has the sine sig-
nal (with fault coverage of 98.2%) compared to the LFSR based pseudorandom
(97.2%) and chirp (96.7%) signals at the same test length. The worse testing ca-
pability has the saw-tooth type signal (76%). The fault coverage achieved by the
sine signal was 98.2% that is nearly the same compared to the traditional scan-
path pseudorandom (98.7%) and deterministic (98.7%) test approaches. The gain
in testing time cost was 3-7 times compared to the deterministic and more than
2500 times compared to the pseudorandom single scan-path based approach.

The comparison of the results for circuits with different level of resource shar-
ing suggests that methodology is not sensitive to this parameter, at least for the
given benchmark.

To be efficient the methodology requires strong evaluation environment based
on fault simulation. The PPECPT algorithm used in this work has very limited
use in case of sequential circuits. It also has a potential for further speed up in
fault simulation of combinational circuits. In the next two chapters I propose
methods to speed up the PPECPT algorithm based fault simulation for both com-
binational and sequential circuits.
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4
M U LT I - C O R E FA U LT S I M U L AT I O N E N V I R O N M E N T

This chapter is based on the publication "Fault Simulation with Parallel Exact
Critical Path Tracing in Multiple Core Environment" (see Appendix D).

In this chapter a novel fault simulation method is proposed, based on ex-
act critical path tracing beyond the Fan-out-Free Regions (FFR) throughout the
fully simulated circuit. The method exploits two types of parallelism: bit-level
parallelism for multiple pattern reasoning, and distribution of the fault reason-
ing process between different cores in a multi-core processor environment. To
increase the speed and accuracy of fault simulation, compared with previous
methods, a mixed level fault reasoning approach is developed, where the fan-out
re-convergence is handled on the higher FFR network level, and the fault sim-
ulation inside of FFRs relies on the gate-level information. To allow a uniform
and seamless fault reasoning, Structurally Synthesized BDDs (SSBDD) are used
for modeling on both levels. Experimental research demonstrated very promising
results in increasing the speed and scalability of the method.

The contribution of the author lies in developing of the proposed algorithms,
implmentation of required tools and carrying out the experiments.

The rest of the chapter is organized as following. Section 4.1 provides an
overview and comparison of the available single-core and multicore fault simu-
lation methods. Section 4.2 explains the theory behind the Parallel Pattern Exact
Critical Path Tracing (PPECPT) algorithm. In Section 4.3 a new method of par-
allel critical path tracing based on mixed level fault simulation with two types
of SSBDDs is proposed. Section 4.4 describes the method of distributing the task
between multiple cores of the processor. Finally Section 4.5 describes the results
of experimental research with related discussion, and Section 4.6 concludes the
chapter.

4.1 overview

Fault simulation is one of the common and challenging tasks in nowadays
test process. In case of combinational circuits if the faults are simulated one by
one like in case of serial fault simulation the number of operations depends on
number of faults, number of test patterns and a size of the circuit. Number of
faults is roughly the same as the number of gates in the circuit. Therefore if I
denote number of gates as n and number of patterns as p - the complexity of
the fault simulation roughly becomes O(pn2), which can be challenging for large
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circuits. This is why a lot of work have been dedicated to improve the complexity
and speed of the fault simulation process.

4.1.1 Serial Fault Simulation

It is a simplest way of fault simulation of the circuit. It consists of fault-free
simulation for all test vectors available, to obtain "good" output responses and
many simulations of "faulty circuits" to get "bad" responses. The faulty circuit is
the one where a single stuck-at fault is injected at a time. If the output responses
of faulty circuit do not match to the corresponding responses of fault-free circuit
the fault is said to be detected by a given test vector.

Prior to fault simulation the list of faults is collapsed. The collapsing is possible
due to the fact that some faults at the ouput of the gates depend on some faults on
the inputs of these gates. It means that it is only sufficient to run fault simulation
for one of these two faults. Fault collapsing is said to reduce the number of faults
by 50% to 60% [13]

If it is only required to find the detected faults during fault simulation then it
is sufficient to partially simulate the faulty circuit most of the time. It means the
fault simulation is performed for faulty circuit with particular fault injected up
to the moment, when it becomes detected. This approach is called "fault drop-
ping". As many faults are detected after relatively small number of test vectors
applied it can dramatically improve the performance of the method. Although
quite efficient the use of this technique can be limited. Fault dropping should be
avoided when fault simulation is used for diagnostic purposes. Also N-fault sim-
ulation, where the particular fault requires to be detected no less than N times,
can significantly degrade the boost in performance.

The main disadvantage of the Serial Fault Simulation is its low performance.
The advantages are simplicity and universality. Simplicity means it is only re-
quired to have standard logic simulator with fault injection and response com-
parison procedures. Also the ability to support different fault models, as long as
the fault can be injected provides universality.

4.1.2 Parallel Fault simulation

Parallel fault simulation can be divided in two groups: parallel-fault and parallel-
pattern. These two types of fault simulation take advantage of the CPU word-
length, which is commonly 32- or 64-bit wide. The 64-bit processor can pro-
cess logic operations for 64 bits at once. This parallelism can be realized in two
ways: to simulate faults in parallel (parallel fault simulation) or patterns (parallel-
pattern fault simulation).

In parallel-fault simulation the word length w is divided between w − 1 faulty
circuits. One of the bits is dedicated for fault-free simulation. Another w− 1 bits
represent signal values at presence of different faults. When one of the faulty
gates is reached the bit corresponding to this particular fault is set to the faulty
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value. As digital circuit consists of logic gates the corresponding bitwise logic
operation is used to simulate signals in parallel. When the faulty response is
obtained at the primary output of the circuit the bits not equal to the fault-free
bit show that particular faults were detected by current pattern at this particular
output.

The performance boost in comparison to serial fault simulation is about w− 1
times. However it comes at a cost of lack of universality and limited fault drop-
ping capabilities. In terms of universality the zero or unit delay models can only
be used, as several faults are computed in parallel. By the same reason we can
only drop faults, when all the faults from the bunch are detected.

In parallel-pattern fault simulation the word length w is used to pack w test
vectors to simulate one faulty circuit for all of them in parallel. The approach
also carries another name of "Parallel-Pattern Single Fault Propagation" (PPSFP).

The fault simulation process is as following. The test patterns are combined
into a bunches of CPU word-length. The fault is injected and all of the bunches
are simulated against this faulty circuit. If the fault dropping is used the simula-
tion ends once the fault is detected or all of the bunches are simulated. In order to
reason about fault detection the primary output responses are compared against
fault-free simulation responses. If some of the patterns in the bunch produce
different response it means they detect this particular fault. Once the fault is pro-
cessed for all available test patterns the simulation repeats for other fault, until
all the faults are simulated.

PPSFP approach better handles fault dropping in comparison to parallel fault
simulation, as it can drop fault right away once it has been detected [62].

4.1.3 Deductive fault simulation

This type of fault simulation differs from the previously described techniques
in a way that it uses a logic reasoning, rather than simulation. It is capable to
produce a list of faults detectable by a given test vector in one run.

The reasoning starts at the primary inputs and "propagates" a list of faults
through the circuit to the primary outputs. During this process the list of faults,
which is capable to influence the fault-free value of a signal is computed for every
signal including primary outputs. As a result at the end of the simulation process
the faults located in the lists of primary outputs are said to be detected by a given
pattern.

Fig. 4.1 shows the process of deductive fault simulation for a simple circuit for
one test vector. A letter designates every line in the circuit, including branches of
the fanout. Starting at the inputs of the circuit it can be seen that only stuck-at one
fault (A/1) can change the value of 0 at line A. The same situation is at primary
input B. However line C can be influenced not only by fault C/0, but also by
preceding B/0. Looking at AND gate G1 it can be seen that both B/0 and C/0

could not propagate further, because value of 0 at line A blocks the propagation.
On the other hand value of 1 at line C allows fault A/0 to propagate to the output
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of G1 to line E. So that fault list of E contains A/0, along with E/1, but not B/0

or C/0. Line D can also be influenced by fault B/0, as well as D/0. Looking at
OR gate G2 reveals that both A/1 and E/1 are blocked by D value of 1. While at
the same time E value of 0 allows B/0 and D/0 propagation to the output of the
gate to the line F. The fault list of line F would eventually consist of fault F/0 as
well as B/0 and D/0, propagated through G2. These three faults can be marked
as detected by test pattern "0,1". The similar reasoning is done for all of the test
vectors.

The method is efficient because it only requires trivial logic simulation to be
run. On the other hand this method also has some limitations. First of all there
are undefined memory requirements, as the size of fault lists cannot be predicted
in advance. Another limitation is the ability to handle only zero-delay timing
model, as no timing information is considered during reasoning process [62].

4.1.4 Concurrent fault simulation

This type of fault simulation exploits the fact that only a fraction of the cir-
cuit in the output cone of the fault is influenced. So that it uses event-driven
simulation to only additionally compute events, which differ from the fault-free
simulation events. All the faults are concurrently processed along with fault free
simulation for one pattern at a time.

The simulator processes good and bad events in the same run for one test
vector at a time. The good events are those, which occur in case of fault-free
behavior. The bad events occur in case when faulty behavior of a gate produces
the result, which differs from fault-free behavior.

Every gate contains a fault list consisting of bad gates - gate copies with partic-
ular fault present. Bad gates are described by fault index and I/O values in the
presence of a fault. Bad gates are only simulated when become visible. It happens
when certain fault produces bad event, which propagates to this gate.

Figure 4.1 – Deductive fault simulation.
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The beginning of fault propagation is called divergence of a fault and the end
of propagation - a convergence of a fault. When the fault diverges is create a
bad event on the inputs of the next gates connected to the output of the faulty
gate. When this happens the bad copies of these gates corresponding to this
fault become visible and will be computed. When bad gate produces the same
result as a good gate - it converges, so that it doesn’t create a bad event for
subsequent gates. In case the bad gate for this fault was present in the fault lists
of those gates from previous run of the simulator - it is deleted. This way the only
faulty behavior that is currently active for simulated test pattern is concurrently
computed for all active faults.

The advantage of such approach is the performance improvement, especially
for large circuits, where single fault could affect about 10% of the circuit. In
this case the speed up would be an order of magnitude. On the other hand the
handling of lists of bad gates requires a lot of dynamically allocated memory,
which size is undefined in advance [62].

4.1.5 Differential Fault Simulation

This type of fault simulation is dedicated to improve sequential fault simula-
tion by combining the good sides of serial fault simulation and concurrent fault
simulation. Concurrent fault simulation has potential memory problem, due to
simulation of all the faults at once, which is bad. However it uses previous state
of the circuit - produced by previous pattern - to generate events for the next
pattern, thus doesn’t require storing and restoring the fault free state of the cir-
cuit, which is good. On the other hand the serial fault simulation simulates the
faults one at a time and doesn’t have undefined memory requirements, which is
good. However it should keep the good state of the circuit in order to restore it
every time the new fault is injected, which is bad. Differential fault simulation
taked advantage of event-driven simulation of one fault at a time using circuit
state from previously injected fault. This way it considerably saves memory.

First the fault-free circuit is simulated for the first test vector and the output re-
sponse of the fault-free circuit is saved and the state is stored. The important fact
is that only flip-flop values are stored, which reduces the memory requirements.
Then the fault is injected and produces an event that is propagated for the same
test vector to the primary outputs. The difference in state between previous state
and current state of the flip-flops is stored for current fault. All the next faults are
simulated in the similar manner for the first test vector and the corresponding
consecutive differences of states are stored.

Next the new test vector is taken and fault-free state is restored from the mem-
ory. The circuit is simulated and output values are saved. Then the first fault is
injected and the state of the flip-flops is restored using state difference saved dur-
ing simulation of this fault for previous test vector. This way all the test vectors
are simulated one by one.
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If the faulty circuit outputs are different from the fault-free circuit output val-
ues - the fault is detected and can be dropped if required. The fault dropping
is not trivial however, as it requires the state difference of dropped fault to be
accumulated in to state differences of its consecutive undetected faults.

The shortcoming of the method is that the timing of the occurrence of events
is not the same as their order. It means that in case when gate delays must be
counted the memory requirements could become high [62].

4.1.6 Critical path tracing

The critical path tracing method [2, 6] eliminates explicit fault simulation for
faults within Fan-out-Free Regions (FFR). Similarly to deductive fault simula-
tion the reasoning about fault propagation from inputs to the output of the gate,
macro or FFR is done, instead of true simulation of faulty circuit. However the
reasoning process is accomplished in reverse direction: starting at primary out-
puts and finishing at primary inputs. The previously computed fault propagation
information is constantly reused, which eliminates redundant computations.

The main challenge in such an approach is exact fault propagation computa-
tion for global reconvergent fan-outs. A modified critical path tracing technique
that excludes fault simulation for fan-out stems and includes a system of rules
to check the exactness of critical path tracing beyond the FFRs, and which is lin-
ear in time, is proposed in [79]. However, the rule-based strategy does not allow
parallel analysis and rule check of many patterns simultaneously.

This drawback was removed in [68] by introducing a novel concept of Paral-
lel Pattern Exact Critical Path Tracing (PPECPT) which can be applied efficiently
also beyond FFRs. In [70], the same method was extended from stuck-at faults
(SAF) for a general class of X-faults. The main idea of the method was in com-
piling of a dedicated compact computing model through the circuit topology
analysis, which allows exact critical path tracing for many patterns throughout
the full circuit and not only inside FFRs. The method is described in more detail
in Section 4.2.

4.1.7 Multi-core methods

Uniprocessor methods make use of CPU word length for parallel computa-
tions. In [25] authors went further and made use of GPU to extend bit-level
parallelism to thread-level parallelism, where multiple threads are computing
different bunches of patterns in parallel (PP) for one fault. The approach is tar-
geted to produce fault table. Fault parallel (FP) methods described in [53, 54] tar-
get distributed MIMD systems, such as hypercube computers from Intel. These
approaches divide fault set into parts, which are distributed among comput-
ing nodes to simulate them pattern- by-pattern in parallel. Circuit parallel (CP)
method described in [13] uses a set of Sun 3/60 workstations for distributed simu-
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lation. The circuit is divided by levels, where gates inside the level are distributed
among workstations for event-driven simulation in parallel.

There were also attempts to combine the two of the methods. The combinations
of FP and PP have been proposed in [26, 30, 37]. In [30] the vector processor is
used to dynamically balance the simulation yield, by making use of FP approach
on the early stages of fault simulation in order to quickly cover easy-to-detect
faults. Then the algorithm dynamically scaled down the fault parallelism, using
more pattern parallelism at the end of simulation in order to quickly cover hard-
to-detect faults. The SPITFIRE-2 described in [14] has two stages. In the first stage
the test set and fault set are divided into parts and easy to detect faults in fault
subsets are simulated using test subsets. In the second stage undetected faults
are also partitioned into parts and pattern parallel fault simulation is carried out
on those parts to cover hard-to-detect faults quicker. In SPITFIRE-3 the second
stage is implemented as pipeline improving fault detection rate. It is important
to note that this approach targets sequential circuits, as well as PAUSIM [26]. The
major difference in PAUSIM is that the CPU word length is used to represent
faults, so that bunch of 32 faults can be simulated for each test vector in parallel
on single 32-bit processor. The test and fault sets are then divided into subsets
and simulated on distributed system of UNIX workstations.

The combination of FP and CP have been proposed in [55] targeting sequential
circuits. It also consists of two phases, where in the first phase easy-to-detect
faults are covered by FP simulation. Later the second phase uses event-driven CP
simulation to cover hard-to-detect faults.

PP and CP combination was proposed in [24]. The method is targeted for
execution on GPU. Paper states that circuit level parallelism is used to simulate
gates in the same level in parallel. One sub-processor only simulates 2 patterns
simultaneously, due to the LUT based model of the gates used during simulation.
The paper states that N test patterns could be simulated in parallel, but the details
of implementation are not discussed. The method also can not produce fault
table.

In the recent paper [34] it is shown that applying algorithmic optimizations
and using parallelization on pattern and structural levels yield good results on
multicore systems. Authors advanced Pattern Parallel Single Fault Propagation
(PPSFP) concept using parallel graph computations and fault dropping and were
able to achieve about 16x increase in speed.

The advantage of using model parallelism in multicore environment is also
highlighted in another work [42]. Here the parallelism is achieved in three dimen-
sions: algorithm parallelism (AP), circuit parallelism (CP) and fault parallelism
(FP). The method is executed on GPU device from NVIDIA and is optimized to
use local memory of multiprocessors. Only fan-out region affected by injected
fault is processed. Faults influencing the same fan-out region are processed in
parallel. Gate-level circuit representation is used. Gates of the same level are also
processed in parallel. The approach achieves over 35x performance increase in
comparison to traditional FSIM simulator [41]. Because the proposed method is
an advancement of FSIM it is also using fault dropping.
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Taking into account the possible advantages of exploiting the circuit paral-
lelism on many-core system I describe the method to achieve better performance
of exact critical path back-tracing in multi-core environment. The fault simula-
tion can be accomplished on gate, macro or FFR levels. Two types of parallelism
are utilized during fault simulation: (1) bit-level parallelism for multiple pattern
reasoning originally present in PPECPT, and (2) distributing the compiled com-
puting model among a subset of different CPUs in a multi-core computing en-
vironment, so that each processor is responsible for parallel critical path tracing
in a related particular sub-circuit area. No fault dropping is used, so the method
can be used for fault table generation.

Another novelty introduced in this chapter is a mixed level fault reasoning
approach, where the problems related to the fan-out re-convergence are handled
on the higher FFR network level, and the increased speed and accuracy in fault
reasoning is achieved by fault reasoning inside FFRs using additional gate-level
simulation data. Such an approach allows to achieve a speed-up in fault simu-
lation inside FFRs and improve the accuracy of fault reasoning compared with
previous methods in [68, 70].

4.2 critical path fault tracing

Here I describe the method of critical path fault tracing using SSBDDs in more
detail. I start with definition of Structurally Synthesized Binary Decision Dia-
grams (SSBDD). Then the fault simulation beyond the fanout stems is presented.
FInally the high speed of fault simulation using SSBDDs is explained.

4.2.1 Structurally Synthesized Binary Decision Diagrams

Structurally Synthesized Binary Decision Diagrams (SSBDD) were introduced
in [65, 67] as an extension of the traditional model of Binary Decision Diagrams
(BDD). A BDD is a mean to represent, analyze, test and implement a Boolean
function. It is defined in [14] as a directed acyclic graph with two terminal
nodes, which are the 0-terminal and 1-terminal nodes. Every input variable of
the Boolean function is represented by non-terminal node and has two outgoing
edges, called 0-edge and 1-edge.

The formal definition presented in [65] is the following. An SSBDD that repre-
sents a Boolean function y = f(x) = f(x1, x2, ..., xn) is a BDD in which (inverted
or non inverted) Boolean variables xi, (i= 1,2, ..., n) label nonterminal nodes, and
constants 0 or 1 label terminal nodes.

SSBDDs are synthesized directly from the structure of the logic gate-level cir-
cuit. Superposition of elementary BDDs of the gates is used for this purpose.
SSBDDs are used to represent fan-out-free regions, which are interconnected to-
gether into complete SSBDD model of the circuit. Because every combinational
circuit can be regarded as a network of fan-out-free regions the SSBDD model
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forms its equivalent representation. A side effect of the SSBDD model is its linear
complexity and fault collapsing.

There are two types of mappings between SSBDDs and logic circuit:

• signal paths are represented by nodes of SSBDD

• groups of SSBDD nodes represents certain sub-circuits of the whole circuit

The major advantage of SSBDDs is that they represent the structure of the
circuit in compact manner, as well as its behavior. This fact makes it possible to
use single SSBDD model in a wide variety of tasks such as test generation, fault
and logic simulations, testability improvement and fault analysis [65].

4.2.2 Parallel pattern critical path fault tracing

Consider a combinational circuit as a network of FFRs, where each of them is
represented as a Boolean function

y = F(x1, x2, . . . , xn) = F(X) (4.1)

where X = x1, x2, . . . , xn is the input vector of the FFR. Such a network of 5 FFRs
is represented in Fig.4.2. Let Xk denote the vector of input variables of the k-th
FFR, zk denote the internal fan-out stem variables (outputs of FFRs) with zkj as
fan-out branch variables for zk (inputs of FFRs) and y denote the output variables
of the circuit.

The fault simulation can be processed as calculation of Boolean derivatives: if
∂y/∂x = 1 then the fault is propagated from x to y. This check can be performed
in parallel for a set of test patterns. In order to extend the parallel critical path
tracing beyond the fan-out free regions the concept of Boolean differentials is
used [63].

Consider the full Boolean differential of the FFR y = F(X) as

dy = y⊕ F((x1 ⊕ dx1), . . . , (xn ⊕ dxn))

= y⊕ F(X⊕ dX)
(4.2)

Figure 4.2 – Combinational circuit with 5 FFRs.
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The change of the value of x because of the influence of a fault at x is denoted
here by ∂x. Also ∂y = 1 if some erroneous change of the values of arguments of
the function (4.2) causes the change of the value of y, otherwise ∂y = 0.

In [68] it have been shown that from the expression (4.2) the following relation-
ship can be derived:

∂y
∂x

= y⊕ F((x1 ⊕
∂x1

∂x
dx), . . . , (xn ⊕

∂xn

∂x
dx))

= y⊕ F(X⊕ ∂X
∂x

dx)
(4.3)

The formula (4.3) taken in the vector form can be simplified as

∂y
∂x

= y⊕ F(X′ ⊕ ∂X′

∂x
dx, X′′) (4.4)

where X′ ⊂ X is the sub-vector of variables which depend on x, and X′′ = X\X′
is the sub-vector of variables which do not depend on x.

For example, for calculating if the fault on z2 can be detected on y4, one can
check if

∂y4

∂z2
= y⊕ F(X4, z21 ⊕ 1, z31 ⊕

∂z3

∂z2
dz2)

= y⊕ F(X4, z21, z31 ⊕
∂z3

∂z2
dz2) = 1

(4.5)

The formula (4.4) can be used for calculating the influence of the fault at the
common fan-out stem x on the output y of the converging fan-out region by con-
secutive calculating of Boolean derivatives over related FFR chains starting from
x up to y. For that purpose, for each converging fan-out stem, the corresponding
formulas like (4.4) should be constructed for each converging FFRs. All these for-
mulas will constitute partially ordered computation model for fault simulation.
Since the formulas are Boolean, all computations can be carried out in parallel
for a bunch of test patterns.

Introduce first the following notations for the formulas above which are used
for calculating the Boolean derivatives:

• (x, y) - for ∂y/∂x

• {Xk, y} - for a subset of formulas {∂y/∂x | x ∈ Xk}

• Rxy((x, x1), . . . (x, xk)) - for the general case (3), where X′ = (x1, . . . , xk)

• Dx - vector which shows if the fault at the node x is detected or not detected
at any circuit output

• DX - a set of vectors Dx for the nodes x ∈ X

An example of a computational model of fault simulation for the circuit in
Fig.4.2 is presented in Table 4.1.
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The formulas presented in Table 4.1 can be easily created and stored by the
topological tracing of the circuit by algorithms developed in [68]. The algorithm
has linear complexity. However, the complexity of the computational model and
the related fault simulation speed depends on the structure of the circuit. As
shown in the papers [69, 70], the speed of the fault simulation by the proposed
parallel critical path tracing method outperforms the speed of the fault simulators
of major CAD vendors.

4.2.3 Fast fault simulation with SSBDDs

The high speed of processing the formulas is achieved by using SSBDDs for
modeling FFRs [65, 66]. Each FFR y = F(X) is represented by an SSBDD G, and

Table 4.1 – Leveled fault model equations.

L Partially ordered formulas
Types of

simulation tasks

7

∀x4,i ∈ X4 : Dx4,i = {x4,i, y4},
Dz21 = (z21, y4), Dz31 = (z31, y4);
∀x5,i ∈ X5 : Dx5,i = {x5,i, y5},

Dz13 = (z13, y5), Dz32 = (z32, y5)

Fault simulation
inside the FFRs

(F4 and F5)

6 Dz3 = Dz31 ∨ Dz32

Fault simulation
of fan-out stems

(z3)

5

∀x3,i ∈ X3 : Dx3,i = x3,i, z3 ∧ Dz3,
Dz22 = (z22, z3) ∧ Dz3,
Dz12 = (z12, z3) ∧ Dz3

Fault simulation
inside the FFRs

(F3)

4
Dz2 = Rz2, y4((z2, z21) ≡

1, (z2, z31)) ∨ ((z22, z32) ∧ Dz32)

Fault simulation
of fan-out stems

(z2)

3
∀x2,i ∈ X2 : Dx2,i = x2, i, z2 ∧ Dz2,

Dz11 = z11, z2 ∧ Dz2

Fault simulation
inside the FFRs

(F2)

2

Dz1 =
((z1, z3) ∧ Dz31) ∨ Rz1, y5((z1, z3), (z1, z13) ≡ 1)

where
(z1, z3) = Rz1, z3((z1, z22), (z1, z12) ≡ 1)

Fault simulation
of fan-out stems

(z1)

1 ∀x1,i ∈ X1 : Dx1,i = x1, i, z1 ∧ Dz1

Fault simulation
inside the FFRs

(F1)
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Figure 4.3 – An FFR of a combinational circuit and its SSBDD.

each signal path in the FFR represented by a variable x ∈ X is modeled by a
corresponding node in the G. All the faults on a signal path collapsed into the
faults on the inputs of the FFR, are modeled by the faults at the nodes in G.
Hence, the targets of the fault simulation are the faults at the SSBDD nodes.

Consider a circuit in Fig. 4.3, and its corresponding SSBDD. The circuit con-
tains nine signal paths, and a node in the graph represents each of them. Note,
only the branches of the fan-out inputs are represented in the SSBDD as the
model of the FFR. Fault simulation is carried out by traversing the nodes in the
graph according to the given test patterns as in the case of traditional BDDs [47].

For simplification the graphical representation of SSBDDs, I use here the fol-
lowing convention: from a node labeled by a variable x, the right-hand edge
corresponds to the value x = 1, and the down-hand edge corresponds to the
value x = 0. Correspondingly, the exit from the graph to the right means enter-
ing the terminal node with constant #1, and the exit from the graph downwards
means entering the terminal node with constant #0.

Consider a test pattern 1011101 (1234567) at the inputs of the FFR in Fig. 4.3.
The pattern detects the fault at the input 3 by propagating the faulty signal from
the input 3 to the output 8. On the SSBDD in Fig. 4.3 the edges activated by
this pattern are highlighted in bold. The nodes traversed in the graph during
simulation of the pattern are marked by gray color. The value on the output 8 of
the circuit at this pattern is y = 1. Since the nodes 1, 22, 3, 4, 52 are traversed,
all they are responsible for the value y = 1s, and hence, should be taken as fault
candidates in case if the error will be noticed at the circuit output. All other
nodes 21, 51, 6, and 7 have not contributed in fault simulation, and hence, can be
excluded from the fault candidates set. Next, by simulating the faults at candidate
nodes it can be easily noticed that only the faults at the nodes 1 and 3 are detected
by the given pattern, because at these faults on the graph the terminal node #0

will be reached which means y = 0.
In [68], the algorithms for parallel logic simulation and parallel fault simula-

tion on SSBDDs were proposed. The algorithms are based on the ordering of
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nodes m by assigning them numerical labels, so that for each node m with la-
bel n(m), all its predecessors mj must have labels n(mj) less than n(m). Logic
simulation is based on recursive calculating of the value of the formula

D(m) = (x(m) ∧ D(m1)) ∨ (¬x(m) ∧ D(m0)), (4.6)

where D(m) for the terminal nodes is equal to the respective constants #1 and
#0. Here x(m) denotes the node variable, m1 and m0 are the neighbors of m in
directions of x(m) = 1, and x(m) = 0, respectively. Fault simulation is based on
recursive calculating of values of the formulas

L(m1) = L(m1) ∨ (L(m) ∧ x(m)), (4.7)

L(m0) = L(m1) ∨ (L(m) ∧ ¬x(m)), (4.8)

S(x(m)) =
∂y

∂x(m)
= L(m) ∧ (D(m0)⊕ D(m1)) (4.9)

where S(x(m)) = 1 means that the fault at x(m) is detected by the simulated
test pattern, otherwise, if S(x(m)) = 0, the fault is not detected. Since all the pre-
sented formulas are Boolean, the algorithms can be applied by tracing the nodes
of the SSBDDs can be applied in parallel for many test patterns, each of them
represented by one bit of the computer word. The number of operations needed
for each node of SSBDD can calculate the cost of simulation. For example, the
cost of logic simulation is four operations per node, and the cost of fault simula-
tion is seven operations per node. Hence, to fault simulate the SSBDD in Fig.4.3
which includes nine nodes ,e.q. 9 * 7 = 63 (operations). Example of using the al-
gorithms can be found in [68, 70]. Using SSBDDs instead of the gate-level circuit
allows increasing both, the simulation speed for calculating the values of signals
in the network of FFRs, and the fault reasoning, since only the collapsed fault set
represented by nodes of SSBDDs is processed. This explains the efficiency of the
method demonstrated in [68].

4.3 mixed level fault simulation with ssbdds

Recently Shared SSBDDs (S3BDD) as a new type of BDDs were proposed to
speed-up logic simulation in digital circuits [48, 49]. In the following I propose a
two level implementation of the proposed method of critical path tracing, where
as the objectives of higher level, the fan-out nodes of the network of FFRs are
considered, and as the objectives of lower level, the fan-out branches and fan-out
free primary inputs of the network of FFRs are considered. The processing of for-
mulas (4.4) for calculation of detectability of faults at fan-out nodes is carried out
on the higher level using SSBDDs as in Fig. 4.3, and for computing the detectabil-
ity of faults at the inputs of FFRs, I will use the data calculated by gate-level logic
simulation.
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In order to fault simulate all gate-level faults I propose to use S3BDDs which
can be processed in a similar way as SSBDDs. In Fig. 4.4, an S3BDD is presented
for calculation of the detectability of the faults at the inputs of FFRs. Each entry
x′ in S3BDD corresponds to a node variable x(m) in the SSBDD in Fig.4.3, and the
path from the particular entry to the terminal node represents an AND-function
of conditions needed for detectability of the input variable x of the given FFR.
For example, the path in Fig.4.4 from the entry 3′ through the nodes ¬22, c, ¬7,
a and d to the terminal node #1 corresponds to the detectability condition of
detecting the faults at the input3 of the FFR in Fig.4.3. Also Fig.4.4 shows how
the faults located inside an FFR can be r̈eachedb̈y fault simulation. It can be seen
that S3BDD graph also has gate-level nodes a′ and d′ as input terminals. This way
the S3BDD model covers all the gate-level faults. Please note that in the notation
of S3BDD graph the arrows are directed from input nodes to the output. This
however can be a point of confusion, as sensitivity calculations would run the
other direction - from output to inputs. This way redundant computations are
avoided and sensitivity results are saved along the computation process if any
fault point(input terminal node) is reached.

The set of these detectability AND-functions for all of the input variables of
the given FFR can be easily created from the gate-level structure of the FFR. To
combine them in a form of S3BDD like in Fig.4.4 the algorithm of optimized
S3BDD synthesis developed in [48] can be used.

The cost C of fault simulation using S3BDDs can be calculated in terms of
the number of operations needed. For the gates with more than 2 inputs the
synthesis process would make a 2-input gate equivalent. This way the cost can be
computed using formula (4.10), where i represents maximum number of inputs
per gate in the given FFR and jn represents the number of gates with n number
of inputs, except the terminal gate at the output of the FFR. The internal sum
is used to compute the number of operations needed for all the gates with the
same number of inputs. And the second sum computes the overall amount of
operations required for given S3BDD by adding up the results for gates with
different number of inputs. The number of operations for terminal output gate is
represented by Nt, which concludes the formula.

C = Nt +
i

∑
n=2

jn

∑
1

2(n− 1) (4.10)

For the S3BDD model in Fig.4.4 I have C = 12+ 3 = 15, which is four times less
than 63 operations needed for simulation of the SSBDD in Fig. 4.3. The calculation
of the cost of SSBDD fault simulation is discussed in Section 4.2.3. Although the
cost depends on the number of inputs of the gates inside the FFR it can be seen
from Eq.4.10 the dependency is linear. It needs to be considered that if there are
gates with many inputs inside an FFR, the FFR itself must have a big amount of
inputs, which also drives the cost of SSBDD simulation higher. It guarantees the
quicker execution of fault simulation using S3BDDs with better fault resolution.
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Figure 4.4 – Direct fault simulation using S3BDDs.

Consider, as an example, the mixed level work share in the computing pro-
cesses of the level 2 in Table 4.1 between SSBDD and S3BDD models. These
processes handle the critical path tracing over the nested configuration of three
fan-out re-convergence areas. In the process

(z1, z3) = Rz1 , z3((z1, z22), (z1, z12) ≡ 1), (4.11)

(z1, z22) is computed at the low-level on the S3BDD for the FFR with output
z2, whereas Rz1 ,z3 is computed at the higher level using the SSBDD of z3 after
the following updates of the node variable values: z22 = z22 ⊕ (z1, z22), and
z12 = ¬z12. On the other hand, in the process

Dz1 = ((z1, z3) ∧ Dz31) ∨ Rz1 , y5((z1, z3), (z1, z13) ≡ 1), (4.12)

Dz31 is computed at the low-level on the S3BDD for the FFR with output y4,
whereas Rz1 ,y5 is computed at the higher level using the SSBDD of y5 after the
following updates: z32 = z32 ⊕ (z1, z3), and z13 = ¬z1.

Additional side effect of the mixed-level fault reasoning is the increase of the
accuracy in reporting the detected faults. Using the information about the gate-
level structure of FFRs, allows specifying the detected faults inside the FFRs. For
example, the entries a′ and d′ in the S3BDD in Fig.4.4 are introduced to mark
the sub-graphs for calculating the detectability of internal gate-level faults at the
nodes a and d, respectively, inside the FFR, presented in Fig.4.3. Similar entries
can be added in Fig.4.4 for other internal nodes b, c, e, and f in the same FFR.

The speed-up in mixed-level fault reasoning and the increasing accuracy of de-
tected fault reporting is accompanied with additional time cost needed for logic
simulation of FFRs at the gate-level. However, when comparing the total times
for logic simulation and fault simulation this payload increase will be negligible.

67



multi-core fault simulation environment

4.4 multicore fault simulation using ssbdds

The multicore approach is based on the representation of the SSBDD and topo-
logical models of the circuit in leveled order. This is followed by level organized
execution of fault simulation using OpenCL framework [23].

4.4.1 Representation of levels

The partitioning of the circuit into levels for concurrent execution have already
been used before [4, 24, 75]. The level i gate is defined in [4] as gate, which has
primary inputs of the circuit and/or outputs of level k gates as its inputs, such
that k < i. However in [75] the definition is slightly different, stating that level
of a gate represents its distance in gates from primary inputs (PI’s) of the circuit.
This definition is more strict in the sense that one of the inputs of the level i gate,
must originate from the level i− 1, if i 6= 0. This difference however is crucial for
parallelization, because the use of the first definition could potentially result in
bigger number of levels with fewer gates in them. Because levels should be eval-
uated sequentially - this could decrease the amount of parallelism dramatically. I
would stick to the second definition and rephrase it for the purpose of simulation
on macro-level, using FFRs instead of gates.

SSBDD model describes the circuit as a set of primary inputs, graphs, repre-
senting FFRs and primary outputs. Here and throughout the chapter I would use
the word variable to indicate these elements of the circuit. It means that FFRs, as
well as primary inputs and outputs form the set of variables. The level of variable
is its distance in variables from PI’s. In other words, the level i variable should
have at least one of its inputs originating from level i− 1 variable, if i 6= 0.

In SSBDD model, the variables are numbered in serial fashion starting at pri-
mary inputs and finishing at primary outputs. Variables are serialized such that
each input of variable i is the output of variable k, where k < i. This is very simi-
lar to the first definition of levels from [4]. As the OpenCL framework is used for
parallel execution there is a requirement to able to run the same function with
multiple data. Hence it is necessary to define regions of variables, belonging to
the same level, as sub-array. Only variables of particular level must be included
into sub-array. If variable x belongs to level i, then level i should be represented
as a continuous sequence of variables starting from variable x to variable y, such
that every variable z (x ≤ z < y) belongs to level i and variable y belongs to level
i + 1. This is why it is necessary, to reorder the variables according to the defi-
nition of levels stated before. Note that this operation is only required once and
does not belong to fault simulation process. The reordered SSBDD model can be
saved as a file and used later for simulation, without a need to repeat this step.
It should also be mentioned that the reordered model is identical to the original
model in terms of circuit representation.

68



4.5 experimental results

4.4.2 Fault simulation process

OpenCL framework requires single program for all the parallel devices, which
would manipulate on different data. Such program is called a kernel. It is exe-
cuted on all available devices in parallel for all variables inside a single level. The
best way to provide the data for kernel is an array. During fault model prepara-
tion the variable indexes are placed into an array according to their levels. The
kernel only requires knowing the offset of the level inside the array of variable
indexes and the size of this level. Host CPU schedules the kernel executions level
by level into the OpenCL execution queue. The execution in the queue is in order,
so that OpenCL driver handles the synchronization between consecutive kernel
executions. This ensures that all variables of the current level have been com-
puted, before moving to the next level. The computation itself is a sequence of
functions from the topological model, prebuild before the fault simulation pro-
cess. The functions are used to compute the sensitivity of primary outputs to the
change in value at the output of the particular variable.

4.5 experimental results

The experiments were carried out on IBM System x3500 M3 7380 Server (2x
6-core Xeon E5690 running at 3,47Ghz with hyper-threading) using 64-bit Nov-
ell SuSe Linux Enterprise Server 11 x86_64. This system has 12 physical CPU
cores, 12 virtual hyper-threading cores and 96Gb of RAM. Simulation times were
calculated for the sets of 10000 random test patterns. The circuits from three
benchmark suites ISCAS’85, ISCAS’89, ITC’99 were simulated. The same circuits
as in [70] were chosen in order to compare the results.

Table 4.2 shows the results of the PECPT execution time T′p in comparison to
PPECPT TPPECPT [69]. Along with execution time there are two speedup values
I compute for every benchmark. These are Sp and Sc. Both include single CPU
(non-parallel) computation time of fault model Ttpl and fault-free simulation Tf f s
of the circuit. Along with these Sp uses parallel execution time Tp for its computa-
tion and Sc uses pure parallel computation time Tc, discussed later. The equations
for speedup values Sp and Sc are as following:

Sp =
TPPECPT

Ttpl + Tf f s + Tp
=

TPPECPT
T′p

Sc =
TPPECPT

Ttpl + Tf f s + Tc
=

TPPECPT
T′c

Sc can be though as topmost ideal case of speedup by PECPT algorithm. It can
be seen from the results that smaller circuits achieve less speedup requiring less
parallel hardware. On the other hand bigger circuits take advantage of higher
number of processors. Overhead ratio R, for the case of maximum acceleration,
is also brought in the table to see the concurrency overhead for different circuits.
During the discussion I show the reasons behind the lower speedup of smaller
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Table 4.2 – Execution times of PPECPT and PECPT.

Concurrent overhead Pure computation

Circuit TPPECPT,
s

T′p, s Sp
Sp

#cpu
R T′c s Sc

Sc
#cpu

c1908 0,0568 0,0846 0,67 6 2,86 0,0330 1,72 5

c2670 0,0405 0,0873 0,46 4 6,52 0,0334 1,21 6

c3540 0,1830 0,1315 1,39 8 1,81 0,0754 2,43 7

c5315 0,0849 0,0922 0,92 4 3,05 0,0487 1,74 5

c6288 1,4610 0,6211 2,35 6 1,61 0,3883 3,76 8

c7552 0,1545 0,1187 1,30 6 1,94 0,0718 2,15 6

s13207 0,1798 0,1332 1,35 5 5,05 0,0857 2,10 10

s15850 0,4714 0,2107 2,24 8 2,34 0,1370 3,44 7

s35932 0,2554 0,1739 1,47 10 1,95 0,1381 1,85 12

s38417 0,7453 0,2427 3,07 12 1,95 0,1869 3,99 12

s38584 0,5945 0,2492 2,39 9 2,43 0,1791 3,32 12

b14 2,7742 0,8752 3,17 8 1,29 0,7300 3,80 9

b15 5,0420 1,1771 4,28 10 1,49 0,9258 5,45 10

b17 14,8550 2,4053 6,18 20 1,29 2,1121 7,03 12

b18 67,3279 7,1499 9,42 24 1,09 6,7738 9,94 24

b19 147,6501 14,4685, 10,20 24 1,03 14,0707 10,49 24

circuits and higher overhead ratio. It can be seen from the table that overhead
ratio is getting close to one, with growth of the circuit size, getting speedup
almost identical with ideal.

Speedup Sp dependence on the number of processors is shown in Fig.4.5a
(ISCAS’85), Fig.4.5b (ISCAS’89), Fig.4.5c (ITC’99). The fluctuation in speedup of
some circuits can be explained by the fact that it is up to OpenCL runtime to de-
cide which processors to use for execution. Because test system I used has virtual
hyper-threading cores they can also be arbitrarily chosen for execution, which
could influence the speed of execution in situations where less physical cores are
used for computation, although the overall number of cores is bigger. For all the
benchmarks it can be seen that after the limit of physical cores is reached the
speedup is starting to decline or stays the same. On the ITC’99 benchmarks b18

and b19 it is slightly increasing, when more than 12 cores are used. This shows
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that more speedup could be achieved on more powerful system with higher num-
ber of physical CPU cores.

Figure 4.5 – Speedup vs #CPU for PECPT. a). ISCAS’85 benchmarks, b). ISCAS’89

benchmarks, c). ITC’99.
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4.5.1 Discussion

Parallel execution of PECPT is influenced by two factors. The first factor is the
amount of parallelism available in the circuit. The second factor is the ratio of
overall execution time to pure parallel computation time. I would discuss both of
the factors below.

Amount of parallelism

The amount of parallelism available in the circuit can be expressed in average
amount of computations per level. This number grows with the size of the circuit.
This is why smaller circuits have less potential for speedup in proposed method,
than bigger circuits, because they have fewer amounts of computations to be
concurrently processed, so less hardware is needed for parallelization.

Concurrency overhead

Concurrent execution time Tp can be divided into two parts: Tp = To + Tc. The
first part is the time To, which I would call concurrent overhead. This is required
to make a transition from "single thread"- to "multiple thread"-execution and
back again. This time involves creation of multiple threads, allocating additional
memory, synchronization at the end of computation and transition back to single
thread. The second part is time Tc, which is pure computation time required by all
threads to deliver a result. This time can be seen in Table 4.2 and can be treated as
a lower possible bound for concurrent computation. The concurrent overhead To
depends on the amount of parallel hardware used and increases with number of
CPUs. The computation time Tc depends on the amount of computation required.

Amount of calculation for small circuits is small, which makes overall execu-
tion time Tp large in comparison to computation time Tc. This can be expressed
by overhead ratio R = Tp/Tc. I have carried out the set of experiments in order
to prove and demonstrate the influence of this factor on the overall speedup in
case of smaller circuits. ISCAS’85 benchmark circuits were simulated. The set of
experiments consists of PECPT simulations were the amount of computation pro-

Figure 4.6 – Overhead ratio R dependence on the amount of computation.
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cessed per variable is increased 8 times. This way it can be seen how Tp/Tc ratio
changes with increasing amount of computation. Fig. 4.6 shows the ratio R for
1x and 8x pattern bunches processed per each variable. It can clearly be seen that
the amount of work brings the overall concurrent execution time Tp very close to
computation time Tc. This shows that if an amount of computation is sufficient
the influence of To becomes negligible even for a small circuit and R ≈ 1. This is
also seen from the results of ITC’99 benchmarks, which are considerably bigger
then ISACS’85.

4.5.2 Comparison

I have compared PECPT to single processor simulators, which include FSIM,
PPECPT and commercial simulators C1 and C2. The execution time of all the
simulators was normalized using previous results from [70] and execution time
of PPECPT from Table 4.2, because PECPT was executed on different hardware.
The comparison is shown in Table 4.3.

Table 4.3 – Execution time comparison.

#branches Simulation time,s
circuit #fanouts max avg fsim c1 c2 PPECPTPECPT
c2670 290 28 3,7 0,081 0,223 2,430 0,041 0,087

c3540 356 22 4,5 0,407 1,505 8,745 0,183 0,132

c5315 510 31 5 0,149 0,594 6,047 0,085 0,092

c6288 1456 16 2,6 2,389 5,489 56,072 1,461 0,621

c7552 812 72 4,1 0,348 1,043 11,332 0,155 0,119

s13207 1224 37 3,7 0,225 0,503 6,291 0,180 0,133

s15850 1518 34 3,6 0,943 2,112 19,379 0,471 0,211

s35932 5295 1449 3,4 0,412 1,058 17,477 0,255 0,174

s38417 4569 49 3,2 1,725 3,343 33,007 0,745 0,243

s38584 3946 88 4,5 1,124 2,155 29,727 0,595 0,249

Average speedup 3,786 8,748 92,460 2,024 1,000
b14 2409 82 4,8 n/a 9,413 n/a 2,774 0,875

b15 2353 95 4,8 n/a 7,411 n/a 5,042 1,177

b17 8145 149 4,8 n/a 22,340 n/a 14,855 2,405

Average speedup n/a 8,774 n/a 4,118 1,000
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PECPT proves to be around 3.5 times quicker than FSIM and around two times
- than PPECPT for relatively smaller ISCAS benchmarks. The speedup over com-
mercially available simulators is more than eight times over C1 and two orders of
magnitude over C2. When ITC’99 benchmark circuits are also taken into consider-
ation the average speedup over PPECPT grows to 4.0 in average, which suggests
that simulation of bigger circuits benefits more from proposed method. On the
other hand PECPT shows the same 8,7 times performance increase over commer-
cial simulator C1 when bigger circuits are added, which suggests that C1 also
behaves better when circuit size increases.

Comparison to GFTABLE

I have also compared PECPT speedup results to GPU based parallel fault sim-
ulator and fault table generator GFTABLE [25]. GFTABLE is pattern parallel sim-
ulator, which uses bit- and thread-level PP to boost the performance of unipro-
cessor simulator FSIM. The results from Table 4 in [70] were used to normalize
PECPT speedup. Normalization is required because PECPT speedup is computed
in relation to PPECPT, while GFTABLE speedup is computed in relation to FSIM.
As there is no FSIM execution time provided for ITC’99 benchmarks, I have taken
the average ratio of 1.7 reported in [70] to normalize PECPT results for those cir-
cuits. The performance of both methods can be seen in Fig.4.7.

Even for the circuits, which could fit into GPU memory slight decrease in per-
formance of GFTABLE can be seen. Contrary the results of presented approach
become better while circuit size increases. Both methods use shared memory sys-
tems for execution. The comparison suggests that pattern-parallelism on such
systems is better for smaller circuits, while circuit-parallelism becomes more ad-
vantageous for bigger circuits. The reason could lie in memory bottleneck of
shared-memory, which effect increases more rapidly for pattern-parallel systems
with the growth of the circuit size.

Figure 4.7 – Comparison of GFTABLE and PECPT.
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Bio-impedance benchmark results

The effect of concurrency overhead has one more interesting impact on the
performance of the PECPT. To illustrate it I have simulated all of the gate-level
benchmark circuits presented in Chapter 2 using both PPECPT and PECPT. The
results are presented in Table 4.4 and in Fig.4.8. The table shows the simulation
time for both single-core PPECPT and multi-core PECPT. In all the cases the
multi-core version is faster, which is obvious as all the circuits are big enough
to provide required level of parallelism. However if the changes in simulation
time of different circuits are also compared it can be seen that multi-core version
executes more complex circuits faster than single-core algorithm. It is probably
not that obviously seen from the Table 4.4, but can clearly be seen from the Fig.4.8.
Here the simulation time of all the benchmarks is normalized to the simulation
time of the circuit 8a. For example for the circuit 8bs the simulation time of the
PPECPT is about 550% of the 8a, but only about 350% for PECPT. The reason
lies in the concurrency overhead. On the one hand the fault simulation based on
back-tracing is highly sensitive to the number of reconvergent fan-out, as they
require special time-consuming computation routines to be executed. But on the
other hand the multi-core version takes advantage of bigger computational load,
significantly reducing concurrency overhead and achieving better performance.
This results in smaller difference between execution speed of bigger and smaller
circuits.

4.6 chapter summary

In this chapter the following main results were achieved:

Table 4.4 – Simulation time for bio-impedance benchmark circuits using PPECPT and
PECPT.

design PECPT, ms PPECPT, ms Overhead %

8a 2,32214 12,9366 25

8b 2,1601 10,7997 24

8be 4,97358 40,8165 12

8bk 2,04 14,4935 25

8bs 8,04758 71,7319 9

8c 2,78738 15,1528 22

8d 2,65016 19,9979 19

8de 5,33164 50,757 9
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Figure 4.8 – Changes in PPECPT and PECPT simulation times for bio-impedance
benchmark circuits.

• A novel two-level method of critical path tracing was developed, which
combines the FFR level and gate-level fault simulation and allows to in-
crease the accuracy in reporting of detected faults.

• A novel multi-core exact critical path tracing based fault simulation method
was developed which combines parallelism in three dimensions and allows
to improve the speed of simulation in order of magnitude compared to the
state-of-the-art commercial simulators.

The multicore parallelism is achieved by exploiting circuit-processing concur-
rency. The parallelization in fault simulation is carried out simultaneously in
three dimensions: pattern parallelism, fault parallelism and computing model
parallelism, where the pattern- and fault-parallelism are utilized using each sin-
gle CPU core, while computing model parallelism is achieved using multiple
CPUs.

Experiments showed that the average speed-up compared to the best unipro-
cessor based simulators is around 4.5 times. The method is well scaling, the
speedup of the method grows with the size of the circuit, opposite to the pattern-
parallel simulation method, which is more beneficial for smaller circuits. The rea-
son lies in the memory bottleneck of shared-memory systems, which increases
more rapidly for pattern-parallel systems with the growth of the circuit size.
Comparison to uniprocessor fault simulators shows order of magnitude average
speed-up over available state-of-the-art commercial simulators.
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5
C O M B I N AT I O N A L FA U LT S I M U L AT I O N E N V I R O N M E N T
F O R S E Q U E N T I A L C I R C U I T S

This chapter is based on the publication "Combinational Fault Simulation in
Sequential Circuits" (see Appendix E).

In this chapter a very fast fault simulation method is proposed for sequential
circuits which is based on exact parallel critical path tracing developed for com-
binational circuits. To convert the sequential problem of fault simulation into the
combinational one a set of MISRs is introduced into the circuit to improve its
observability. The role of these MISRs is to monitor signals on the global feed-
back loops and on selected fan-out stems. The feasibility and correctness of the
method is shown, and the experimental results, which demonstrate the speed-up
achieved by the method, are presented and discussed.

The contribution of the author includes the development of the method as well
as planning and running the experiments.

The rest of the chapter is organized as following. Section 5.2 describes how
combinational fault simulation can be generalized for the case of sequential cir-
cuits. In Section 5.3 I describe experimental results and Section 5.4 concludes the
chapter.

5.1 overview

As it was already mentioned in previous chapter fault simulation is one of the
most important tasks in digital circuit design and test. Therefore it is not a sur-
prise that accelerating it would have a strong impact to a number of applications.
It is extremely necessary to speed up sequential fault simulation, as most of the
digital circuits nowadays are sequential.

I start with the overview of the fault simulation for combinational circuits, as
it forms a base for method proposed in this chapter. Many different methods
have been developed for fault simulation in combinational circuits based on the
concept of parallel pattern single fault propagation (PPSFP) [77]. Another trend
is based on the fault reasoning (deductive [7], concurrent [74] and differential
simulation [16]) used to be very powerful, since these methods allow to collect
all detectable faults by a single run of the given test pattern. What they cannot
do, is to produce reasoning for many test patterns in parallel. As it was already
mentioned in Section 4.2.2 this drawback was removed in [68] by introducing a
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novel concept of Parallel Pattern Exact Critical Path Tracing (PPECPT) which can
be applied efficiently for multiple patterns inside FFRs, as well as beyond them.

Unfortunately, for sequential circuits the parallelism exploited in combina-
tional fault simulation and fault reasoning is not possible, because of the sequen-
tial (time related) dependence of signals in the circuit. The possible available
solutions include fault simulation algorithms described in Section 4.1.

Although efficient all those methods iteratively resimulate the circuit either for
all test patterns or non-dropped faults. In order to cover all the faults in one run
I propose to modify the given circuit to improve its transparency (observability).
The traditional way to do this is to use the scan-path concept [62] which converts
the sequential problem of fault simulation to the combinational one. However, the
use of scan-chains has proven to be often inadequate due to increasing the cost
in terms of additional hardware and increased testing time [12], excessive power
dissipation during test [78] and leading to yield loss because of over-testing [15].

In the following it will be shown that a sequential circuit can still be fault simu-
lated as a combinational one when to improve its observability by inserting a set
of Multiple Input Signature Registers (MISR), for monitoring of a selected subset
of test points in the circuit. Two rules for selecting these test points to include
MISRs are introduced and discussed. It is also shown how the test sequence can
be mapped into a set of independent local test sequences which can be simulated
in parallel similarly to the case of combinational circuits.

The target of this chapter is to provide a method of fault simulation in a mod-
ified circuit with a dramatic speed-up compared to the traditional non-parallel
fault simulation of sequential circuits. Only the class of stuck-at-faults (SAF) is
considered here. However, as shown in [70], the results can be extended to other
fault classes like conditional SAF, transition delays, and X-faults.

5.2 modification of sequential circuit

The substantial problem of fault simulation in sequential circuits lies in the
fact that the same fault can influence a particular component in different time
frames. This fact excludes the possibility of exploiting the powerful critical path
tracing based method, explained in the Section 4.2.2 of Chapter Chapter 4, for
fault simulation in combinational circuits. The reason is in the exponential explo-
sion of the number of nested and intersected re-converging fan-out regions over
different time-frames. However, this problem as will be shown can be neglected
if there will be a possibility to detect the fault in the first occasion when it has
propagated up to the component.

There are two reasons why a fault can be propagated to the same component
during different time frames: because of the global feedback which includes this
component, and because of a re-convergent fan-out where the fault may propa-
gate from the fan-out stem to the converging point by different number of clocks.
If a MISR will be inserted into these “problem causing” test points, the fault can
be captured always at the first occasion it influences on the component. The de-
tection of the fault is fixed, and its impact in the future can be ignored. Note,
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Figure 5.1 – Sequential circuit.

only the problem of fault detection (for measuring the fault coverage) is consid-
ered here, and not the task of creating fault tables to be used for fault diagnosis
purposes.

From above, two rules result for improving the observability of the sequential
circuit:

• RULE 1: Insert a MISR to all registers (and only to them) which are in-
cluded into a global feedback. Inserting a MISR is equivalent to cutting the
feedback loop (in a sense to ignore the further fault propagation).

• RULE 2: Insert a MISR into all fan-out stems which have at least a single
converging point, so that a fault may propagate from the fan-out stem to
this point by different number of clocks.

Consider a sequential circuit in Fig.5.1 which consists of 9 registers (latches)
R1 − R9, and 8 combinational sub-circuits F1 − F9. The circuit has 5 inputs and 2

outputs.

Figure 5.2 – Sequential circuit with MISR.
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Figure 5.3 – Simulation cycle of a single independent test.

In the circuit in Fig.5.1, two registers R7 and R8 are included into a global
feedback loop, and hence, according to RULE 1, they must be furnished by MISR.
On the other hand, there is a fan-out stem Z1 which has two branching paths
which re-converge in F3. The first path represents a direct connection, and the
second one is a path via register R6, where the possible faulty signal needs for
propagating from Z1 to F3 additional clock. Hence, according to RULE 2, the node
Z1 must be monitored by MISR. The modified circuit is presented in Fig.5.2.

In Fig.5.3, a simulation cycle of a single independent test sequence with lengths
of 6 clocks is shown where by rectangles the 5 observation points are denoted.
In this simulation cycle I can extract 5 functions (the upper indexes denote the
delay in clock cycles between the moments when the values of argument signals
and the function signal were fixed, respectively):

Z1 = fZ1(X−1
1 , X−1

2 , X−1
3 )

R7 = fR7(R−1
7 , Z−1

1 )

R8 = fR8(R−1
8 , R−2

7 , Z−2
1 , Z−3

1 )

Y1 = fY1(R−2
7 , Z−2

1 , Z−3
1 , X−2

4 )

Y2 = fY2(X−1
5 , R−1

8 )

(5.1)

Since the arguments of these functions are either primary inputs of the circuit
or the nodes supported by MISR, the set of functions (3) can be regarded as a
model of 5 interconnected combinational circuits, which can be fault simulated
independently.

Table 5.1 represents two (shifted in one clock cycle) input sequences of the two
test segments Ti and Ti+1, and the related output sequences captured by MISR
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in the test points Z1, R7, R8, and directly at outputs Y1 and Y2, which can be as
well fed into MISR. The table represents the simulation order of the functions
(3). Because the RULES 1 and 2 are satisfied in the modified circuit in Fig.5.2,
the input sequences of Ti and Ti+1,can be regarded as independent test patterns,
spread merely over different time frames. In this way, a full test sequence applied
to the circuit in Fig.5.2 can be split into a set of independent test segments, all
shifted by one clock one after another. Since the test segments can be treated as
a set of independent test patterns, they can be fault simulated by PPECPT in
parallel as in case of combinational circuits.

Fig. 5.4 shows the equivalent combinational schematic for the circuit from
Fig.5.1 constructed using Rules 1 and 2. The registers are left here for the illus-
trational purpose only for better understanding of the timing of different signal
values. In a real case they have to be exchanged by wires. It can be seen from the
Fig.5.4 that according to Rule 1 the registers R7 and R8 are broken up, such that
input of the particular register becomes auxiliary output and the output of the
register becomes auxiliary input. Also according to Rule 2 the fan-out stem Z1
was broken up into three auxiliary inputs, because it has a converging point at
register R4, where line Z13 has register R6 and line Z12 doesn’t have any register.
It means the number of clock cycles is different for a signal to arrive along these
paths to a converging point, which qualify Z1 to Rule 2.

As can be seen from the Fig.5.4 the node values throughout the circuit are
taken from different clock periods. Let t be a value of the signal node at the
current clock period. Then t− 1 is the signal value of the particular node at the
previous time period and so on. Going from outputs to inputs the clock period
is decremented once the register is crossed. This way the test sequence can be
derived, which contains the values of every node taken at different clock periods.
We can then fed this sequence into the combinational fault simulator along with
the equivalent combinational circuit, where registers become wires.

Table 5.1 – A test sequence for circuit in Fig.5.2

Cl Input sequences Output sequences
Test Ti Test Ti+1 Test Ti Test Ti+1

1 X1
1 , X1

2 , X1
3 , RES1

7

2 X2
1 , X2

2 , X2
3 X2

1 , X2
2 , X2

3 , RES2
7 Z2

1

3 R3
8, X3

4 X3
1 , X3

2 , X3
3 R3

7, Z3
1 Z3

1

4 R4
8, X4

4 R4
7, Z4

1

5 X5
5 R5

8, Y5
1

6 X6
5 Y6

2 R6
8, Y6

1

7 Y7
2
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5.3 experimental data

As experimental results in Table 5.2 in our laboratory we have compared the
speed of SAF simulation in sequential circuits (where all the latches are fed into
MISR) by the PPECPT method with different known fault simulators for combi-
national circuits: FSIM [40], and two state-of-the-art commercial simulators C1

and C2 from major CAD vendors. Simulation times were calculated for 10000

patterns. Experiments were run on a 1.5GHz Ultra SPARC IV+ workstation us-
ing SunOS 5.10.

Although the method is not yet implemented I can still show the efficiency it
provides in comparison to traditional sequential fault simulation. For compari-
son I’ve picked up serial fault simulation, which simulates faults one by one for
every pattern. Although slow this method is good for comparative analysis, as
it provides the lowest bound in sequential fault simulation. It is easy to obtain
the approximate time for such simulation by running traditional logic simulation
for all the test vectors. Then the time obtained have to be multiplied by num-
ber of stuck-at faults in the circuit. I’ve simulated VHDL representations of the
benchmark circuits presented in Chapter 2, hence achieving the fastest runtime
for serial fault simulation. On the other hand, I took single-core pattern parallel
critical path tracing fault simulation method along with full-scan combinational
equivalents of the sequential benchmark circuits used for comparison. ]

I investigated the feasibility of the proposed fault simulation method for calcu-
lating the fault coverage of the at-speed functional self-test developed for these
processors. The results of fault simulation for the whole family of 8 processors
(column 1) are presented in Table 5.3 where LS denotes the behavior level logic
simulation time, FS denotes the LS multiplied by the number of faults to be sim-
ulated one by one, and the PPECPT shows the simulation time needed for the

Figure 5.4 – Combinational circuit equivalent for sequential circuit.
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proposed method. The experiments showed that the gain achieved by using the
proposed method could be up to 2-3 orders of magnitude. For this advantage
the price have to be paid at the cost of added set of MISRs, which however is
comparable to the cost of scan-path or can be even less.

In order to correctly interpret the results I highlight the major differences of
methods used in experiment from methods used in real test cases. The serial
fault simulation is typically run on gate-level, to simulate the gate-level stuck-at
fault effect. In case of experiment the behavior level simulation is used, which is
faster than gate-level, as it doesn’t compute signal values at every gate. So the
speed of real serial fault simulation is definitely slower, than it is shown during
the experiment in Table 5.3. Also I do not use fault dropping for the sake of
comparison, as PPECPT method doesn’t use it either. The fault dropping can
speed up the serial fault simulation making it faster than it is shown in Table 5.3.

As can be seen from the Fig. 2.4 in Chapter 2 the performance of PPECPT
method depends on the amount of reconvergency in the circuit. At the same
time we use the full-scan equivalent circuits in the experiments, which make the
number of reconvergent fan-outs smaller. When using the method proposed in
this chapter the amount of observability points should become smaller, increasing
the amount of reconvergency in the circuit. Hence the PPECPT method may run
slower than it is shown in Table 5.3. Taking all mentioned above in account the
right way to interpret these experimental results would be as the upper limit of
real case scenario.

Table 5.2 – Comparison of PPECPT with other fault simulation methods for circuits
with full scan-path.

Circuit Number of SAF simulation time, s
gates Fsim C1 C2 PPECPT

c3540 2784 2.0 7.4 43 0.9

c5315 4319 1.4 5.6 57 0.8

c6288 4846 12.1 27.8 284 7.4

s15850 14841 5.4 12.1 111 2.7

s38417 34831 16.2 31.4 310 7.0

s38584 36173 12.1 23.2 320 6.4

b14 19491 N/A 49.2 N/A 14.5

b15 18248 N/A 39.1 N/A 26.6

b17 64711 N/A 117 N/A 77.8

Average speed gain 2.0 4.3 45 1
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Table 5.3 – Comparison of the proposed method with single fault simulation in se-
quential circuits.

Circuits Number of SAF simulation time, s Gain
faults LS FS PPECPT

8a 112034 0.155 17365 30.0 579

8b 83940 0.152 12759 24.7 517

8be 99330 0.168 16687 62.1 269

8bk 86878 0.159 13814 25.2 548

8bs 100820 0.154 15526 173.4 90

8c 122386 0.159 19459 35.9 542

8d 123012 0.161 19804 35.5 558

8de 136876 0.164 22447 81.3 276

5.4 chapter summary

In this chapter the following main results were achieved:

• A new method of design-for testability was proposed, which allows to
convert a sequential circuit into an equivalent iterative combinational array,
by inserting a small set of observation points into circuit to be connected
with MISR.

• The parallel critical path tracing method for combinational circuits was
reused for sequential circuits, which allowed a dramatic speed-up of fault
simulation compared to the traditional single fault simulation for sequen-
tial circuits.

The high speed is achieved thanks to removing the problem of sequential de-
pendence of simulated signals in different time frames by improving observabil-
ity of the circuit by inserting a set of MISRs at selected test points. Therefore the
essential requirement for the method to work is to modify the sequential circuit
according to rules described in Section 5.2 and to create an equivalent combina-
tional circuit with auxiliary inputs and outputs. The equivalent circuit can then
be simulated using fast combinational fault simulator without loosing any accu-
racy in the fault coverage estimation.

Apart from a full-scan design, only a fraction of registers with global feedback
need to be monitored. Additional MISRs must also be added to reconverging fan-
out stems where fan-out signals arrive to reconverging point with different delay.
A pessimistic experimental setup shows dramatic speed-up of fault simulation,
compared to the traditional non-parallel fault simulation of sequential circuits.
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6
C O N C L U S I O N S

This chapter draws the overall conclusions of the thesis and provides some
future possible directions to extend the results presented in previous chapters.
The new research results in the thesis can be classified into five groups cover-
ing: (1) the set of benchmark circuits with different amount of resource sharing
and pipelined architectures, (2) the methodology and a set of tools targeting at-
speed built-in self test of high-performance pipe-lined designs, (3) the evaluation
of possibility to use analog signals as a test sequence for the digital circuits, (4)
the implementation of the PPECPT algorithm for general-purpose multicore sys-
tems, (5) the methodology to use a combinational fault simulation for sequential
circuits.

6.1 benchmark suite

A benchmark suite was developed for evaluating the CAD tools in their effi-
ciency and quality in designing dependable digital systems. Apart from all other
existing benchmarks, all the circuits of this family perform the same function,
but differ mainly in the amount of shared computing resources. This gives an ex-
cellent possibility for direct systematic characterization of CAD tools in terms of
alternative design decisions, which is not provided by existing benchmark suites.
The experiments show a correlation between the structural properties of circuits
and their testability characteristics. It was shown that sharing of resources in de-
signs, which leads to increasing number of fan-out reconvergencies, may reduce
the test length, but on the other hand, will increase the time of test synthesis,
reducing the quality of the test.

6.2 methods for testing

methodology and set of tools for at-speed test A new ap-
proach to self-testing of digital systems with pipe-lined architectures with capa-
bility to produce internal self-test sequences using their inherent functionalities
was proposed. The added value is the higher test quality explained by on-line
at-speed testing. The approach does not need to store high volume test data
in the system memory. Additional hardware is as well not needed for on-line
test pattern generation as in the case of traditional LBIST. The only needed ad-
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ditions related to using MISR for monitoring the test responses. To minimize
the needed additional MISR hardware overhead, an original algorithm for se-
lecting test-points was developed. As the result of using only normal working
sequences for test purposes, the dangers of over-testing and the related yield
loss are removed. Also a novel evaluation environment was developed where
the time consuming sequential fault simulation task can be transferred into a set
of combinational fault simulation sub-tasks. Experiments demonstrated the gain
in evaluation speed more than 580 times without losing any accuracy in fault
coverage calculation.

evaluation of analog signals as a test sequence The goals
of the experiments were twofold: (1) to select the best type of input signal for
testing purposes from a set of signals typically used for processing in the given
Signal Analyzer, and (2) to compare the new method with traditional scan path
based testing methods. The fault coverage achieved by the sine signal was 98.2%,
which is nearly the same compared to the traditional scan-path pseudorandom
(98.7%) and deterministic (98.7%) test approaches. The gain in testing time cost
was 3-7 times compared to the deterministic and more than 2500 times compared
to the pseudorandom single scan-path based approach.

6.3 methods for test quality evaluation

multi-core pecpt A new method for multi-core execution of pattern par-
allel exact critical path tracing(PPECPT) based fault simulation was proposed
and implemented. The parallelism is achieved by exploiting circuit-processing
concurrency. The parallelization in fault simulation is carried out simultaneously
in three dimensions: pattern parallelism, fault parallelism and computing model
parallelism, where the pattern- and fault-parallelism are utilized using each sin-
gle CPU core, while computing model parallelism is achieved using multiple
CPUs. A novel mixed level technique for fault reasoning was proposed to speed
up and to increase the accuracy of fault simulation, compared with previous
methods. Experiments showed that the average speed-up compared to the best
uniprocessor based simulators is around 4.5 times. Comparison to commercial
uniprocessor fault simulators shows order of magnitude average speed-up of the
algorithm. The method is well scaling, because its performance grows with the
size of the circuit, opposite to the pattern-parallel simulation method GFTABLE,
which seems to be more beneficial for smaller circuits.

combinational fault simulation of sequential circuits A
novel approach for fault simulation in sequential circuits is proposed which al-
lows to achieve dramatic speed-up in simulation time compared to the traditional
single fault simulation in sequential circuits at reduced cost of additional hard-
ware. Apart from a full-scan design, only a fraction of registers and fan-out points
need to be monitored. The high speed is achieved thanks to removing the prob-
lem of sequential dependence of simulated signals in different time frames by
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improving observability of the circuit by inserting a set of MISRs at selected test
points. MISRs must be added to reconverging fan-out stems where fan-out sig-
nals arrive to reconverging point with different delay and registers with global
feedback. A pessimistic experimental setup shows dramatic speed-up of fault
simulation, compared to the traditional non-parallel fault simulation of sequen-
tial circuits.

6.4 future work

One of the possible directions for at-speed based functional BIST is to find the
ways to further improve the fault coverage. Although it is contrary to avoiding
of overtesting, some applications would definitely require achieving maximum
fault coverage possible. Another direction lies in addition of other fault models to
the methodology. For example delay faults can be computed using stuck-at fault
simulation results as shown in [36], which is directly applicable to the current
work. Finally the solid framework of tools can be developed to fully automate the
proposed method for integration into industrial test processes. Logic simulation
could be carried out by PPECPT along with fault simulation. This could possible
remove the necessity to have VHDL models of the circuits and use an external
logic simulator. Also MISR integration into the circuit can be automated.

The major issue of multi-core PPECPT algorithm is undefined dependency of
its performance on the structure of the circuit. Particularly the metric to estimate
the number of CPUs to be used for optimal performance is yet to be found. The
structure of the circuit could be a possible place to extract such a metric. This
would require examining the effect of different structural characteristics and pos-
sibly their combinations on the performance of PPECPT. Another direction is to
utilize the power of Graphic Processing Units (GPUs) as an additional computa-
tional resource in order to achieve even more gain in performance where possible.
Although the OpenCL framework provides direct support to use both GPU and
CPU for joint computations the algorithm must be optimized in different manner
for each of the platforms in order to achieve good performance on both of them
simultaneously [61].

The next logical step for the combinational fault simulation of sequential cir-
cuits is the actual implementation of the method. This would require the analysis
of the structure of the circuit to identify the points for observation. Also the gen-
eration of equivalent combinational circuit is required to make a process fully
automated. The implementation could be used to better explore the potential of
the method and also identify possible issues, which can arise when using it in
practice.

Finally both multi-core PECPT and combinational fault simulation of sequen-
tial circuits can be integrated into at-speed functional BIST methodology. PECPT
can be used directly to exchange PPECPT to provide a gain in speed for evalu-
ation of fault coverage of combinational parts of the circuit. The combinational
fault simulation of sequential circuits could be used to provide a speed up of
sequential parts of the circuit when dealing with optimizations related to num-
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ber of MISRs and circuit partitioning. Altogether it should dramatically improve
the scalability of the methodology, which could become feasible to be used with
large industrial designs.
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A B S T R A C T

This thesis addresses a series of closely related problems regarding develop-
ment of BIST for high-performance pipe-lined designs. These problems can

be divided into three groups covering: (1) design of benchmark circuits to repre-
sent a special class of objects to be tested (high-performance pipe-lined architec-
tures), (2) the new methods for testing of this class of objects (BIST), and (3) the
new methods for evaluating the quality of test solutions (fault simulation).

In order to find the relations between different design decisions and their cor-
responding testability characteristics the benchmark suite was formed of eight
circuits with the same functionality, but different structures. The thesis describes
the structural characteristics of the circuits and provides an overview and the
discussion of their testability characteristics.

A new approach for self-testing of digital systems with pipe-lined architectures
is also proposed. This is a new at-speed functional BIST methodology for these
architectures. The key aspects include using inherent functionality of the system
to generate test sequences and usage of MISR monitors for testing. This also
leads to exploration of the potential of digitized analog signals to be used as a
test-sequences for at-speed BIST. Along with that a novel evaluation environment
to transfer sequential fault simulation task into a set of combinational subtasks is
developed. Its goal is to speed up the process of BIST design. The methodology
is evaluated in a case-study, using the benchmarks proposed previously and the
results are presented and discussed.

The combinational fault simulation using parallel pattern exact critical path
tracing is extended to run on multi-core systems. The parallelism is achieved in
three dimensions: faults, patterns and model. The fault and pattern parallelism
are achieved on each single core and the model is divided between different cores
to make a fault reasoning concurrently. The experimental results using ISCAS
and ITC benchmarks are presented and discussed.

Finally the novel method for observability improvement inside the sequential
circuits is presented. It is shown that using only two rules to insert MISR monitors
enables combinational fault simulator to be used for simulation of sequential
circuits. The results of theoretical experiments to estimate performance benefits
of such a method is also presented and discussed.
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A N N O TAT S I O O N

Käesolevas väitekirjas uuritakse probleemide kompleksi, mille eesmärgiks on
isetestimise meetodite väljatöötamine ja uurimine kõrgjõudlus-konveierarhi-

tektuuriga skeemide jaoks. Omavahel tihedalt seotud probleemide kompleks ja-
guneb kolme gruppi: (1) uuritavate testimisobjektide klassi defineerimine ja vas-
tavate näidisskeemide disain (kõrgjõudlus-konveierarhitektuuriga skeemid), (2)
uued meetodid nimetatud objektide klassi testimiseks (isetestimine) ja (3) uued
meetodid testimiskvaliteedi hindamiseks (rikete simulatsioon).

Selleks, et leida seaduspärasusi erinevate disainiotsuste ja disainitud skeemi-
de testitavuse vahel, genereerisime töögruppis terve seeria samasuguse funkt-
sionaalsusega, kuid erineva struktuuriga, arhitektuure ja skeeme. Väitekirjas kir-
jeldatakse nimetatud skeemide strukruursete karakteristikute analüüsi ning an-
takse ülevaade eksperimentaalsest uurimistööst, mille tulemusena avastati rida
olulisi korrelatsioone skeemide struktuursete ja testitavuskarakteristikute vahel.

On välja töötatud uus meetod konveierarhitektuuriga digitaalsüsteemide funkt-
sionaalseks isetestimiseks. Meetodi oluliseks omaduseks on võimalus testida süs-
teeme reaalsel töökiirusel ja normaalsetes töötingimustes, mis tagab kõrgema
testimiskvaliteedi kui traditsioonilised staatilised meetodid. Võtmeaspektiks on
skeemi funktsionaalsuse ärakasutamine testjadade automaatseks genereerimiseks,
kus erinevalt tuntud isetestimise meetoditest pole selleks vaja lisaaparatuuri. Ain-
sa riistvaralise täiendusena viiakse skeemi spetsiaalsed MISR-tüüpi registrid, mil-
liste arvu minimeerimiseks on välja töötatud optimeerimismeetod. Esmakordselt
on välja pakutud idee testida digitaalskeeme analoogsignaalide abil. Eksperimen-
taalne uurimistöö ja võrdlus traditsioonilise digitaalse testimisega demonstreeris
uue idee suurt perspektiivsust.

Isetestimismeetodite kvaliteedi analüüsiks ja hindamiseks loodi vastav uus
simuleerimiskeskkond, kus põhikriteeriumiks, tulenevalt vajadusest analüüsida
väga pikki testsignaalide jadasid, oli rikete simuleerimise jõudlus. Simuleerimis-
kiiruse tõstmiseks teisendati mahukas järjestikskeemide simuleerimisülesanne
lihtsamate kombinatoorsete ülesannete kogumiks. Uus lähenemisviis aitas kii-
rendada simuleerimist kaks suurusjärku.

Testide kvaliteedi analüüsi kiiruse tõstmiseks töötati välja uus meetod kom-
binatoorsete skeemide rikete simuleerimiseks multiprotsessorsüsteemides. Mee-
todi iseärasuseks on arvutusprotsesside paralleliseerimine esmakordselt kolmes
dimensioonis: rikete skaala, testvektorite massiiv ja simuleeritav skeemimudel.
Rikete ja vektorite analüüsi paralleelsus on saavutatud iga üksikprotsessori suh-
tes ning skeemimudeli analüüsiprotsess on jaotatud erinevate protsessorite vahel.
Eksperementide tulemused demonstreerisid 5-10kordset simuleerimiskiiruse kas-
vu.
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annotatsioon

Töö viimases peatükis üldistatakse kombinatoorsete skeemide jaoks välja töö-
tatud rikete simuleerimismeetod kasutamiseks järjestikskeemides. Selle võimal-
damiseks töötati välja meetod järjestikskeemide testitavuse parandamiseks, mis
seisneb kahe erireegli kasutamises vajalike täiendavate testpunktide lisamiseks
signaalide monitoorimise eesmärgil. Eksperimentaalselt näidati, et väga väikese
aparatuurse täienduse abil on võimalik dramaatiliselt tõsta rikete simuleerimis-
kiirust järjestikskeemides.
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ABSTRACT: We propose a benchmark suite for systematic 

evaluation of efficiency of new CAD and test algorithms. The 

suite consists of a set of high performance signal processors. 

Differently from all other existing benchmark suites, all the 

member processors of this family perform the same 

function, but are implemented in different ways, differing 

mainly in sharing of computing resources. The circuits are 

characterized by different structural complexities measured 

in the number of reconvergent fan-outs. The latter feature 

has the main impact to the testability of circuits, influencing 

directly on the efficiency of test tools and on the quality of 

the given test set. The main advantage of the benchmark 

suite, compared to the existing ones, relies in the possibility 

to create systematic dependencies of the efficiency of test 

algorithms or test quality as a function of the structural 

complexity of circuits.  

 

1. Introduction 

The development of CAD tools requires benchmark 

circuits to experiment with new algorithms and methods. 

Most public domain benchmarks are typically too small or 

simply not of the right size to give realistic assessments of 

the performance of new algorithms, methods and 

prototype tools, especially when the test problems are 

targeted. A number of efforts have been made to assemble 

public domain benchmarks [1-5], but they are not well 

suited for systematic evaluation of special properties of 

CAD and test algorithms like sensibility to different 

structural and architectural features of circuits like 

hierarchy, sharing of resources, number of reconvergent 

fan-outs etc.  

In this paper, we propose a suite of signal processor 

benchmarks developed for biosignal processing in the 

broad field of biomedical engineering. All the circuits 

perform the same function but they are implemented in 

different ways differing mainly in sharing of computing 

resources. The circuits are characterized by different 

structural complexities measured in the number of 

reconvergent fan-outs. The latter feature has the main 

impact to the testability of circuits, to the efficiency and 

productivity of CAD tools like test generation or fault 

simulation, and to the properties of test sequences like test 

length or fault coverage. 

The paper is organized as follows. In Section 2, a 

general overview about the functionality of the 

benchmark suite is given, and in Section 3, the structural 

diversities and characteristics of the circuits are presented. 

Section 4 provides a case study of circuits regarding 

different testability features, Section 5 discusses the 

experimental results, and Section 6 concludes the paper. 

2. Overview of the functionality of the suite 

In biomedical engineering, bioimpedance is a term used 

to describe the response of a living organism to an 

externally applied electric current. Measurement of 

electrical bioimpedance enables to characterize tissues 

and organs, to get diagnostic images, etc. [6]. Multi-

channel data-acquisition devices are used often in 

biomedicine to measure the properties of organs and 

tissues. The main reason is the fact that the useful 

information is hidden under background signals generated 

by the normal body activity [7]. An example would be 

respiration generated noise when measuring heart 

activities. Electrical bioimpedance is determined by 

measuring of voltage response to the excitation current 

flow through the tissue or organ. 

The impedance of tissues and organs is measured 

between the electrodes having different locations. 

Multisite and multifrequency bioimpedance information 

has a great diagnostic value [8 ,9]. 

 

 

 

 

 

 

 

Fig. 1. A simplified block diagram of DMBA 

In the following, the DSP (digital signal processing)-

based solution for a multi-frequency measurement unit 

prototype has been described. The basic architecture of 

the digital multichannel bioimpedance analyzer (DMBA) 

is shown in Fig.1 [7], where the bioimpedance is 

calculated as 

Ż=R + jX 
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where R is the real part and X is the imaginary part. 

The parameters of the response receiving part 

(multiplexer and signal analyzer) are defined by the use of 

single analog-to-digital converter (ADC) for multichannel 

measurements. For instance, practical measurement on 

body surface (thorax EBI measurements) with 8 

excitation sources and also 8 response signals require 

operating in the frequency range of interest between 30 

kHz and 100 kHz. The task can be accomplished using 

single ADC with at least 10MHz multisampling rate. The 

resolution must be between 18 to 20 to represent low 

(0.01% range) impedance changes adequately [10]. The 

heart of the electronic test arrangement (prototype) is the 

Field Programmable Gate Array (FPGA) Spartan
TM

-3 

from Xilinx. The FPGA handles input channel selection, 

sampling pulse generation, preamplifier gain control, 

compensating voltage code generation, reading samples 

from ADCs (analog-to-digital converters). The functional 

block diagram of the FPGA unit is shown on Fig. 2 [10]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Functional block of the FPGA unit with I/O 

connections and peripheral components 

3. Structural characteristics of the circuits 

There has been a number of different modifications 

developed in order to compare different architectural 

solutions of this functionality.  

Fig. 3 shows a design example – reconfigurable multi-

channel multi-frequency application specific signal 

processor (DSP) that was developed for acquiring and 

measuring of bioimpedance signals.  

The acquired data is first sampled, then sorted and 

finally processed. The processing includes calculating the 

values that are needed to calculate the bioimpedance of 

the tissue. The sampling order is controlled by a 

programmable decoder, implemented in block RAM. The 

sampled data is then either inserted into input buffers 

implemented as on-chip memory banks (see Fig.3) or 

skipped at all as in the case of the initial design. Data is 

accumulated and accumulation registering is performed. 

After that, data from registered accumulators are 

multiplexed to a single output register. 

The general structure of the 8-channel signal processor 

for bioimpedance measurements is shown in Fig. 4. 

 

 

Fig. 4. General structure of the bio-signal processor 

 

Fig. 5. Overview of the benchmark designs 
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Fig. 3. Structural schematic of the design 

 



During the design process, alterations were made to 

both preprocessor part of the design and the integrator 

part of the design, resulting in eight different 

configurations performing the same function: 8a, 8b, 8be, 

8bk, 8bs, 8c, 8d and 8de. Fig. 5 shows which successive 

changes were introduced into the designs. The design 8a 

was the initial version with 8 data channels.  

The goal of the research was to investigate how 

different structural implementations would impact on the 

testability of the design, and to find out which properties 

of the design will cause worse testability. 

4. Experimental study of the benchmark 

suite regarding testability properties 

Testability analysis of different configurations of the 

biosignal processing design was performed by using 

deterministic and pseudorandom test pattern generators 

[11], fault simulator [12] and by using the algorithms for 

hybrid BIST optimization developed in [13]. Several 

testability characteristics presented in Table 1 were 

analyzed: the deterministic test length achieved (DTL) 

and the needed time for deterministic test pattern 

generation (DTG), the time needed for fault simulation 

(FS) and for the pseudorandom test generation (RTG), the 

hybrid BIST length (HBL) and the calculated optimal test 

cost of hybrid BIST (HBC). Generation times are given in 

seconds, test lengths in numbers of patterns, and costs in 

abstract units. The changes in testability characteristics 

for the benchmark suite are shown in Fig. 6. 

Table 1. Testability characteristics of signal processors 

Design DTL DTG FS RTG HBL HBC 

8a  1364 47 13.7 1408 23 038 197 823 

8b 1201 34 11.8 1130 18 540 138 324 

8bk 1288 35 11.3 1129 17 497 144 876 

8c 1320 75 15.5 1583 35 641 224 121 

8d 1394 62 16.6 1647 32 610 209 384 

8be 995 114 27.9 2784 14 202 104 474 

8de 1096 112 33.4 3344 33 968 162 557 

8bs 1186 296 69.0 7095 14 086 113 038 

 

Fig. 6. Changes in testability characteristics 

The different design implementations are 

characterized by different levels of sharing of resources 

such as input buffers, preprocessing units, adders and 

subtractors in preprocessors, and integrators. Sharing of 

the resources was accompanied by introducing additional 

multiplexers and control circuits which in their turn 

increased the number of reconvergent fan-out branches in 

the topology of the circuits. A rough estimation of the 

number of convergent control signals is given in Table 2.  

Table 2. Modifications in the different benchmark designs 

Design 
# of reconvergent control signals 

Modifications made 
Preprocessor Integrator Total 

8a 32 64 96 Initial design 

8b 32 64 96 Shared preprocessor 

8bk 64 64 128 
Shared preprocessor 

and adder/subtractor 

8c 32 64 96 
Initial design with 

input buffers 

8d 32 64 96 Shared preprocessor 

8be 32 512 544 
Shared preprocessor 

and integrator 

8de 32 512 544 
Shared preprocessor 

and integrator 

8bs 64 1536 1600 
Maximum sharing of 

resources 

 

5. Discussion of the results 

The changes in design alternatives are characterized by 

different structural complexities which will have a direct 

impact on testability of circuits and on the testing quality. 

The experimental results presented in Table 1 and Fig. 6 

allow easily to create functional dependencies between 

the testability features and the resource sharing options in 

design alternatives, which allows to find proper tradeoffs. 

In the following we discuss in details the depicted results. 

The transition from 8a to 8b laid in replacement of 8 

channels in preprocessing part of the circuit by a single 

common channel, thus removing the redundancy by a 

shared preprocessor. This resulted in improvement of all 

the testability characteristics. The best improvements 

were in reduction of test synthesis time (for deterministic 

test 1.4 and for pseudorandom test 1.25 times). Fault 

simulation became 1.16 times faster. The cost of the 

hybrid BIST significantly improved – one of the reasons 

is smaller number of inputs in 8b, which results in the less 

cost of the memory component of the BIST.  

The transition from 8b to 8be was equivalent to the 

replacement of 8 channels of integrators with a single 

channel. Multiplexers were added to the inputs of adders 

in the integrator. The deterministic test length improved - 

it was 1.2 times shorter, which can be explained by the 

reduction of the circuit complexity. On the other hand, the 

time needed for deterministic test generation was 3.35 

times higher because of the increased number of  

reconverging control signals in the circuit from 94 to 544, 

which causes higher number of backtracks during search 

for consistent solutions. Also, fault simulation time 

became 2.36 times slower, and the time needed for 

pseudorandom test generation was 2.46 times higher. This 

is explained by the use of exact critical path tracing 

algorithm [12] used for fault simulation which is highly 
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sensitive to the number of reconvergent control signals. 

Since pseudorandom test generation uses the same fault 

simulator, the test generation time consequently as well 

increases. The cost of the hybrid BIST was improved due 

to the smaller number of deterministic vectors needed.  

The transition from 8b to 8bk consists in using one 

adder/subtractor and additional multiplexers in the 

preprocessor part. The increase of the reconvergent 

control signals (from 96 to 128) did not significantly 

influence the testability of the circuit.  

 The transition from 8bk to 8bs combined the 

preprocessor part of the design 8bk and the integrator part 

of the design 8be. The number of reconvergent control 

signals increased drastically (128 for 8bk and 1600 for 

8bs). Fig. 6 shows worsening of the testability regarding 

test generation and fault simulation: the time of 

deterministic test generation became 8.45 times longer, 

the time of fault simulation 6.1 times longer, and the time 

of random test generation became 6.28 times longer. On 

the other hand, because of the reduction in circuit size, the 

length of deterministic test set became slightly shorter 

(1.08 times). The length of optimal hybrid BIST was 1.24 

times shorter and optimal cost 1.28 times smaller due to 

the smaller number of seeds for LFSR. 

The transition from 8a to 8c resulted in implementing 

the programmable input buffers. The 8 channels of data 

remained. In Fig. 6 it can be seen that the time related 

characteristics have become worse: the generation time 

for deterministic test became 1.59 times longer, and for 

random test 1.13 times longer. The fault simulation 

became 1.13 times slower. This worsening of indicators 

can be explained by the increase of the number of 

reconvergencies because of adding control signals for 

addressing the buffer registers. The test length did not 

change because of the circuit size remained the same.  

The length of hybrid BIST sequence test became 1.54 

times longer, and the cost of Hybrid BIST was bigger for 

8c due to the bigger number of inputs (buffer registers).  

In the transition from 8c to 8d eight channels of the 

preprocessor were removed and replaced with a single 

channel. Multiplexers were added to the inputs of the 

preprocessor. The characteristics that changed most 

significantly were deterministic test generation time 

(became shorter) and the length of the optimal hybrid 

BIST became slightly shorter, similarly as in the case of 

“from 8a to 8b”. 

In transition from 8d to 8de, 8 channels of integrator 

were replaced by a single channel, and few multiplexers 

were added, which caused the increase of reconvergent 

control signals (Fig.6), and longer times for test 

generation and fault simulation: for deterministic test 1,81 

times and for random test 2.03 times longer. Fault 

simulation became 2.01 times slower. The deterministic 

test set was 1.27 times shorter and the cost of the BIST 

reduced 1.28 times (due to the smaller number of seeds). 

This case affected the testability characteristics in the 

similar way as in the case from “8b to 8bk”. 

6. Conclusions 

As the result of the cooperation in the fields of computer, 

electronics and biomedical engineering in the Estonian 

Research Excellence Centre CEBE, a benchmark suite 

was developed for evaluating the CAD tools in their 

efficiency and quality in designing dependable digital 

systems.  

Differently from all other existing benchmark suites, 

all the member processors of this family perform the same 

function, but are implemented in different ways, differing 

mainly in sharing of computing resources. This gives an 

excellent possibility for direct systematic characterization 

of CAD tools by creating functional dependences for 

different testability markers on the structural complexity 

of circuits. Existing benchmark suites do not provide such 

a possibility. 

By experimental research, a correlation was 

established between the structural properties of circuits 

and their testability characteristics. It was shown that 

sharing of resources in designs, which leads to increasing 

numbers of fan-out reconvergencies, may reduce the test 

length, but on the other hand, will increase the time of test 

synthesis, and may reduce the test quality.  

A useful synergy was achieved by creating a selection 

of biosignal processors, which will have practical use in 

medical field, but which simultaneously can be used as 

well as a family of benchmark circuits for analyzing the 

properties of new test algorithms in the field of 

electronics. 
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ABSTRACT: We propose a new methodology for Built-In 

Self-Test (BIST) where contrary to the traditional scan-path 

based logic BIST, the proposed solution for test generation 

does not need any additional hardware, and will not have 

any impact on the working performance of the system. A 

class of digital systems organized as pipe-lined signal 

processing architectures is targeted. The data used for 

processing in the system are used as test pattern sources. 

Testing at normal working conditions, and with typically 

processed data, allows exercise the system on-line and at-

speed, facilitating the detection of dynamic faults like delays 

and cross-talks to achieve high test quality. The proposed 

new self-test method is free from the negative aspect of 

over-testing, compared to the traditional logic BIST 

approaches, and uses a minimal amount of additional 

hardware. Experimental research was based on the case 

study of a specialized bio-signal processor architecture, and 

the results showed promising results in reducing the cost of 

testing and achieving high fault coverage. 

 
Keywords: pipe-lined signal processing architectures, built-

in self-test, at-speed testing, design for testability 

1 Introduction 

The technology advancements impose new challenges 

to testing modern chips as device geometries shrink, 

and deep-submicron delay defects are becoming more 

and more important requiring more accurate dynamic 

tests than before [1]. Therefore testing of chips in 

dynamics by so called at-speed test is becoming the 

must.  

Increasing size and complexity of digital systems 

directly reflects in more demanding test generation 

and application strategies. The use of scan chains has 

proven to be often inadequate increasing the cost in 

terms of additional hardware and testing time [2], 

excessive power dissipation during test [3] and 

leading to yield loss because of over-testing [4]. 

A lot of research has been carried out to relieve the 

burden of external testers by introducing system self-

test approaches like hardware-based logic Built-in 

Self-Test (LBIST) which typically use Linear 

Feedback Shift Registers (LFSR) [5]. In LBIST  the 

typical functions of external test equipments like test 

generation and response analysis are carried out on-

chip, so that the tester should not handle high-speed 

signals externally and its role should remain only to 

send the test enable signals to the chip under test, and 

to receive the pass/fail signals. For example, scan-

based and logic BIST solutions such as [6] relax the 

requirements on testers and considerably reduce the 

overall testing cost. 

An important trend today is the at-speed test [7] 

having additional benefit of the ability to test circuits 

under conditions that are as close as possible to 

normal circuit operation. This factor has a direct 

impact on the number of chips that are found 

defective during system operation but still pass all 

manufacturing and functional tests. At-speed testing 

can be used for characterization and can also expedite 

test application time. 

The question is whether a self-test sequence running 

in the system can adequately exercise its hardware 

components satisfying the targeted fault coverage 

requirements. Achieving the test quality target 

requires application of proper test sequences which is 

the focus of the current paper. It should also be 

pointed out that the quality of a test is measured not 

only by its fault coverage, but also by its code size (to 

be stored in the memory of the chip), hardware 

overhead, and by the test execution time.  

The goal of the paper is to propose an approach which 

combines the ideas of traditional LBIST with at-speed 

testing to improve the test quality at less testing 

overhead and avoiding performance loss compared to 

the traditional self-test approaches. The feasibility and 

efficiency of the new method is demonstrated for a 

particular class of pipe-lined processing architectures 

which are easily adaptable for at-speed on-line self-

testing by inherent functional sequences. 

The rest of the paper is organized as follows. In 

Section 2, an overview about the state-of-the-art is 

given, Section 3 presents the general idea and the 

scheme of the proposed method, followed in Section 4 

by the description of the representative case study 

design. Section 5 presents the results of experimental 

research, and Section 6 concludes the paper. 

2 State-of-the-art of self-test techniques 

In traditional LBIST, test pattern generation is mostly 

performed by Linear Feedback Shift Registers (LFSR) 

[5], cellular automata [8] or multifunctional registers 

like BILBO (Built-in Logic Block Observer) [5] to 

apply pseudorandom patterns to the Circuit Under 

Test (CUT) and to analyse its output responses. 

However, many circuits contain random-pattern-
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resistant faults, which limit the fault coverage that can 

be achieved with this approach.  

One method to improve the fault coverage for LBIST 

is to modify the CUT by either inserting test points [4] 

or by redesigning it to improve the fault coverage [6]. 

The drawback of these techniques is that they 

generally add additional logic levels to the circuitry 

that can degrade system performance. Another 

possibility to improve the fault coverage is to use 

weighted pseudorandom test sequences [9]. The 

disadvantage of this approach is in the need of storing 

of the weight sets on chip, and also, a dedicated 

control logic is required to switch between weights, so 

the hardware overhead may become large. 

A “mixed mode” approach, where deterministic 

patterns will be added to detect hard-to-test faults, has 

been developed in [10-13]. In [10] a technique based 

on reseeding LFSR was proposed that reduces the 

storage requirements. In [11], multi-polynomial LFSR 

for encoding a set of deterministic test cubes was 

introduced, and in [12] a technique called bit flipping 

for generating deterministic test cubes using BIST 

control logic was proposed. Further, in [13] a mixed-

mode approach was presented in which deterministic 

test cubes are embedded in the pseudorandom 

sequence of bits itself. 

Established BIST solutions use special hardware 

(typically LFSR) for pattern generation (TPG) and test 

response evaluation (TRE) on chip [5], but this in 

general introduces significant area overhead and 

performance degradation. To overcome these 

problems, specialized methods were proposed which 

exploit specific functional units such as arithmetic 

units for on-chip test pattern generation [14,16], 

which may afford to reach similar fault coverage like 

traditional LFSR-s. These methods are called 

arithmetic BIST (ABIST), since they essentially adopt 

the additive congruential generation scheme of 

pseudo-random numbers [17]. 

In [18,19], a mixed-mode or hybrid BIST approach 

was proposed, where a test set is assembled from two 

parts, from pseudorandom test patterns that are 

generated on-line, and deterministic test patterns that 

are generated off-line and stored in the system. 

Combination of both test sources in an optimized 

fashion allowed to improve the traditional LBIST in 

targeting hard-to-test faults. A similar approach called 

hybrid functional BIST (HyFBIST), where instead of 

LBIST the inherent functional sequences were used, 

was proposed in [20,21] for testing digital systems, 

and particularly micro-programmed data-paths.  

In this paper we generalize and combine the ideas of 

using inherent functional blocks for test generation 

[14,15] and the inherent working sequences produced 

by the UUT itself for self-testing purposes. We 

propose an overall functional self-test concept for 

pipelined architectures where the working sequences 

are produced on the primary inputs of the system, and 

the internal signals in selected test-points are 

monitored by Multiple Input Signature Analysers 

(MISR). We propose a systematic procedure for 

selecting the test-points to achieve the best overall 

fault coverage at minimum testing overhead and cost. 

3   General description of the method 

Consider a digital system as a network of sub-circuits 

(blocks) where all the blocks may play simultaneously 

two roles: on one hand, each block will be itself the 

unit under test (UUT), and on the other hand, it will 

serve as the test pattern generator for the subsequent 

blocks it is feeding. As the overall test source, 

selected input working sequences (as functional test) 

will be used. 

Two main problems arise: (1) how to find the best 

functional test sequences, and (2) how to find the 

minimal set of test-points for monitoring to achieve 

the highest fault coverage of testing.  

In some cases, the first problem can be solved 

straightforwardly like in the instruction set 

architectures or in signal processing units. In the first 

case, the instructions can be exercised one by one 

where the problem recedes to finding only proper data 

(operands) as test patterns [22-23]. In case of signal 

processing units, the proper signal types to be 

processed in the working modes, and used as well for 

testing purposes, may be selected case by case by trial 

and error methods.    

The second problem of selecting test-points for 

monitoring depends how well are the different blocks 

tested by the given functional test sequences. In Fig.1, 

an example of a pipe-lined signal processing unit is 

given which is partitioned into 6 blocks. Two 

solutions are demonstrated for monitoring the 

behaviour of the circuit with MISRs. The upper 

solution shows the case where all blocks are 

monitored whereas the lower solution uses only three 

MISR: the first is monitoring the behaviour of B1 and 

B2 as the whole, the second MISR is monitoring B3, 

and the third one is monitoring the blocks B4, B5 and 

B6 as the whole.  

 

 

Fig.1. Pipe-lined signal processing unit 

The task of partitioning of the whole system into UUT 

blocks has the goal to find the highest fault coverage 

B2B1 B3 B4 B5 B6SG

MISR

MISR MISR MISR

OUT
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at the given functional test by achieving well-balanced 

testability at the minimum number of MISR. 

To find the minimum hardware overhead we propose 

the following algorithm for selecting test-points. 

Algorithm 1 

1. Put MISR on the primary output of the circuit, 

and find fault coverage (FC) for the given test 

sequence. 

2. If FC is sufficient, then the problem is solved. 

3. Partition the circuit into a set of n blocks (each 

with its own MISR). Find FC for each block as a 

UUT. 

4. Integrate the connected blocks with high FCs into   

UUTs (with a single joint MISR) to minimize the 

number of MISR, so that the total FC of the 

system remains sufficient high. 

5. For the blocks with lower FC, repeat the steps 3,4 

inside the block by partitioning it into smaller 

sub-circuits to improve the overall FC of this 

block.   

In case when the fault coverage will not satisfy either 

globally for the whole circuit or for particular blocks 

as UUTs, either the better functional test sequences 

should be found, or different methods, similar to the 

ones for improving LBIST described in Section 2, 

may be used. 

The proposed method facilitates the idea of LBIST 

strategy except using instead of dedicated test 

generators of LBIST the inherent test functionality of 

existing hardware in the system. The method affords 

at-speed testing with no performance degradation and 

with little hardware overhead and reduced test cost.  

The clock cycle based observation technique allows to 

avoid fault masking, and to achieve high fault 

coverage. The test response observation is carried out 

using built-in MISR as the only hardware overhead.  

The proposed method has several advantages 

compared to the state-of-the-art scan-path based 

LBIST methods: 

(1) no hardware test pattern generators, and no scan-

path for shifting in external test patterns are 

needed, which results in smaller overhead;  

(2) compared to LBIST over-testing is avoided, since 

only functional working test patterns are used;  

(3) testing is carried out in the normal working clock-

rate which guarantees at-speed exercising the 

circuit. 

To investigate the feasibility of the method in the 

sense of achieving sufficient fault coverage in real 

cases, we carried out experimental test research with a 

digital signal processor unit developed for industrial 

purposes for measuring electrical bio-impedance 

[24,25]. 

4   Signal processing unit as UUT 

The unit under test (UUT) is a bio-impedance signal 

analyser, which implements a simplified signal 

processing algorithm [24]. A typical digital solution is 

that the response voltage is digitized in an analog-to-

digital converter (ADC) into a uniformly sampled 

train of digital data, which is then processed 

numerically in a digital signal processing (DSP) unit, 

often using the Discrete Fourier Transform (DFT). 

Because the whole signal path from the generation of 

the set of excitation signals to the A/D conversion 

procedure and data analysis is synchronous by design, 

optimized signal processing methods can be applied. 

Using of sampling, which is synchronous to the 

known excitation waveform, enables to use a 

simplified but much faster signal processing than the 

Fourier Transformation is. When sampling the 

response signal uniformly with intervals  t = T/ 4, 

where T is a period of the signal, the following simple 

mathematics is valid [24]: 

(1) the direct current component can be determined 

as 

DC = (Re
+
 + Re

–
) /2  or  DC = (Im

+
 + Im

–
)/2           

(2) the real Re and imaginary Im parts of the phasor Z 

of complex impedance is determined as 

Re = (Re
+
 - Re

–
)/2,  and  Im = (Im

+
 - Im

–
)/2            

The mentioned signal analyser is a part of the 

developed digital multichannel bio-impedance 

analyser (DMBA) , which is depicted in Fig. 2. 

 

Fig. 2. A simplified block diagram of DMBA 

For the test purposes of the circuit, the sampler is 

implemented as 80MHz clock signal and excitation 

signal generator along with body and analog part was 

exchanged with signal generator of particular type. 

The architecture of the signal analyser circuit is 

depicted on Fig. 3. As it can be seen, the circuit has a 

pipe-line structure in order to be implemented in a 

low-cost FPGA. The signal is first sampled into the 

input buffer. On the next stage the signals are 

distributed to the particular registers of the 8 different 
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channels. The sampling is performed on channed-

after-channel basis. Every sample out of 4 samples 

taken per channel is saved into its corresponding 16-

bit register. On the next stage Real and Imaginary and 

Direct current components are computed with adders 

and subtractors, using equations (1) and (2). On the 

next pipeline stage the computed components are 

integrated using adders and saved into 32-bit registers, 

called output buffers. Integration is made over a 1 

millisecond period. After that the values of the output 

buffers are transferred to the output register of the 

anayser. 

 

Fig. 3. The architecture of Signal Analyser 

We investigated four types of signal generators for 

using as test sources to provide input signals to the 

channels of the analyser: sine, chirp, saw-tooth, 

LFSR. All the channels get the same signal, so that we 

can test each channel equally to each other. All the 

generators are implemented for the simulation 

environment in VHDL.  

(1) The sine signal generator is using floating point 

arithmetics and sin() function of the VHDL math 

library. It can take amplitude, phase and frequency as 

a parameters to produce the corresponding sine wave. 

During the experiments the amplitude was set to 15 

bit, taking into account 1 sign bit and 16-bit wide 

input of the analyser. The phase was set to 90 degrees 

in order to produce the input signal from the upper 

part of the  wave. This was done because the signal 

would produce more unique values in less time, 

because it covers all the values from top to the bottom 

in half-period. It was useful to check whether the test 

sequences of small length could produce meaningful 

results. The frequency was modified during the 

experiment in order to detect the better signal for 

testing this device. 

(2) The chirp generator takes as parameters start and 

stop frequency periods as well as number of samples 

in which frequency should change from start to stop 

frequency. The chirp generator changes the frequency 

every sample it produces. The amplitude remained 

15bit + 1 sign bit and phase remained 90 degrees. 

During the experiments we have changed the length of 

the chirp signal – number of samples from start to end 

frequency. 

(3) Saw-tooth signal is implemented as a counter. The 

parameter it takes is a period of the signal. The 

generator produces equally spaced samples of the 

saw-tooth signal of this period. The amplitude is 

15bit+1 sign bit. 

(4) LFSR signal generator is implemented as 16-bit 

linear feedback shift register. The seed is taken so that 

it goes through all the 65535 possible values except 0. 

The size of the LFSR was chosen in accordance to the 

input width of the signal analyser under test.  

5 Experimental results  

Experiments were carried out for Signal Analyser in 

Fig.3, presented as equivalent circuit with high-lighted 

pipe-lined tracks in Fig.4. As the result of the 

experimental research according to Algorithm 1, the 

circuit was finally partitioned into 7 blocks as separate 

UUTs which are characterized in Table 1.  

 
Fig. 4. Equivalent circuit for the Signal Analyser in Fig.3.  

 

No Name of 

the block 

Number 

of faults 

Number 

of inputs 

Number 

of outputs 

1 calc_add 69544 1431 896 

2 calc_sub 18588 791 256 

3 in_buf 98 17 16 

4 out_buf 14750 1554 769 

5 out 7480 709 64 

6 sig_acq 8560 538 520 

7 timer 512 18 17 

Total  119532 5058 2538 

Table 1. Characteristics of the blocks in Fig.4 

We calculated the fault coverage for all the 7 blocks 

as well as the total fault coverage for four different 

types of signals: sine, chirp, saw-tooth and LFSR. The 

results of the experimental research in percentage of 

fault coverage for all the different blocks are 

presented in Table 2 and as the bar diagram in Fig. 5. 

As we see, the best results were achieved for the input 
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signal sine where the fault coverage was 98.20%. The 

lowest total fault coverage 75.99% was registered for 

the signal type saw-tooth. 

No 

Name of 

the block 

Input signal types 

sine chirp 
saw-

tooth 
LFSR 

1 calc_add 97.37 94.86 76.80 95.71 

2 calc_sub 98.85 99.20 64.90 99.20 

3 in_buf 82.65 82.65 82.65 82.65 

4 out_buf 99.88 99.86 74.74 99.86 

5 out 99.14 99.06 78.66 99.14 

6 sig_acq 95.63 95.63 95.63 95.63 

7 timer 94.14 94.14 94.14 94.14 

Total 98.20 96.68 75.99 97.21 

Table 2. Results of fault coverage experiments 

 

Fig 5. Distribution of fault coverage in the circuit 

Considering the distribution of fault coverage among 

different blocks we see that the lowest test quality is 

mapped to the block in_buf. Hence, for this block the 

improvement of the testability by any of the methods 

referenced above in Sections 2 and 3 can be foreseen 

(this task was not the goal of this case study paper). 

However, since the block in_buf is rather small 

(characterized by only 98 faults), the improvement of 

its testability  will not lead to considerable increase in 

the total fault coverage of the whole circuit. 

Since the cost of testing depends on the time used for 

carrying out the self-test procedure, we investigated 

how the fault coverage will depend on the test length 

measured in the number of test patterns. The results 

are shown as the graphics for the different four signal 

types in Fig. 6. 

The most cost effective would be the LFSR based 

self-test sequence where the fault coverage around 

90% will be achieved already after 80 000 test 

patterns (clock signals) whereas the sine signal based 

and chirp signal based tests achieve only about 85% 

and 80% fault coverage, respectively, at the same test 

length. When doubling, however, the test length, the 

sine based and LFSR based tests become equal at the 

95% fault coverage. Especially sensitive to the length 

of the test is the chirp signal based test sequence.  

We compared the test quality achieved by the 

proposed method with traditional scan-path (SP) 

techniques both for using LFSR pseudorandom and 

deterministic test sequences. The results are presented 

in Table 3. 

 

 

Fig 6. Dependence of the fault coverage on test length 

Method 
Fault 

coverage 

Test 

length(TL) 

Testing 

time 

(clocks) 

Proposed 97.78 500000 500000 

SP & LFSR 96.82 500000 x 2528 

Proposed 98.27 1000000 1000000 

SP & LFSR 98.73 1000000 x 2528 

SP & 

deterministic 

98.69 1364 x 2528 

Table 3. Comparison of different methods 

As we see from Table 3, the fault coverage is nearly 

the same for all the methods compared.  However, to 

get the same fault coverage as with the proposed 

method, the test length of the scan path & LFSR based 

approach should be even twice bigger compared to the 

proposed method. To calculate the testing time cost in 

clock numbers, the test length for both referenced 

scan-path based methods should be multiplied by the 

length of the scan path which is equal to 2528 bit (the 

total number of inputs of all the tested blocks in the 

given circuit). For the proposed method, the testing 

time in number of clocks is equal to the test length. 

Hence, we can conclude that the time cost of the 

proposed method is about 10 times cheaper than the 

SP & deterministic approach and more than 2500 

times cheaper than SP & LFSR at the same fault 
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coverage (in the latter case the single scan-path was 

assumed). 

 

6 Conclusions  

We introduced a new approach to self-testing of 

digital systems with pipe-lined architectures using 

inherent functionalities of systems with capability to 

produce internal self-test sequences. The added value 

of using inherent functional self-test sequences is the 

higher test quality explained by on-line at-speed 

testing. The approach does not need to store high 

volume test data in the system memory. Additional 

hardware is as well not needed for on-line test pattern 

generation as in the case of traditional LBIST. The 

only needed additional test hardware is related to 

using MISR for monitoring the test responses. To 

minimize the needed additional MISR hardware 

overhead, an original algorithm for selecting test-

points was developed. As the result of avoiding 

artificial embedded test pattern generators like in case 

of LBIST, and of using only normal working 

sequences for test purposes, the danger of over-testing 

and the related yield loss are removed. 

To investigate the feasibility of the method to achieve 

high fault coverage, we carried out experimental 

research with a digital Signal Analyser unit as a case 

study, which was developed for industrial purposes 

for measuring electrical bio-impedance. 

The goals of the experiments were twofold: (1) to 

select the best type of input signal for testing purposes 

from a set of signals typically used for processing in 

the given Signal Analyser, and (2) to compare the new 

method with traditional scan path based testing 

methods. 

Experimental research showed that the best testing 

capability has the sine signal (with fault coverage of 

98,2%) compared to the LFSR based pseudorandom 

(97,2%) and chirp (96,7%) signals at the same test 

length. The worse testing capability has the saw-tooth 

type signal (76%). The fault coverage achieved by the 

sine signal was 98,2%, which is nearly the same 

compared to the traditional scan-path pseudorandom 

(98,7%) and deterministic (98,7%) test approaches. 

The gain in testing time cost was 10 times compared 

to the deterministic and more than 2500 times 

compared to the pseudorandom single scan-path based 

approach. 
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ABSTRACT: We propose a new methodology for Built-In 
Self-Test (BIST) where contrary to the traditional scan-path 
based Logic BIST, the proposed solution for test generation 
does not need any additional hardware, and will not have any 
impact on the working performance of the system. A class of 
digital systems organized as pipe-lined signal processing 
architectures is targeted. The on-line generated signal data used 
for processing in the system serve as test pattern sources. 
Testing under normal working conditions and with typically 
processed data, allows exercising of the system on-line and at-
speed, facilitating the detection of dynamic faults like delays 
and cross-talks to achieve high test quality. The proposed new 
self-test method is free from the negative aspect of over-
testing, compared to the traditional Logic BIST approaches, 
and uses minimal amount of added hardware. Experimental 
research was based on the case study of specialized bio-signal 
processor architecture. The experiments showed promising 
results in reducing the cost of testing and achieving high fault 
coverage. 
 
Keywords: pipe-lined signal processing architectures, built-in 
self-test, at-speed testing, design for testability 

1 Introduction 
The technology advancements impose new challenges to 
testing modern chips as device geometries shrink, and 
deep-submicron delay defects are becoming more and 
more important requiring more accurate dynamic tests 
than before [1]. Therefore testing of chips closer to real 
working conditions by so called at-speed test is 
becoming the must.  
Increasing size and complexity of digital systems 
directly reflects in more demanding test generation and 
application strategies. The use of scan chains has proven 
to be often inadequate increasing the cost in terms of 
additional hardware and testing time [2], excessive 
power dissipation during test [3] and leading to yield 
loss because of over-testing [4]. 
A lot of research has been carried out to relieve the 
burden of external testers by introducing system self-test 
approaches like hardware-based Logic Built-in Self-Test 
(LBIST) which typically use Linear Feedback Shift 
Registers (LFSR) [5]. In LBIST, typical functions of 
external test equipment like test generation and response 
analysis are carried out on-chip, so that the tester should 
not handle high-speed signals externally and its role 
should remain only to send the test enable signals to the 
chip under test, and to receive the pass/fail signals. For 
example, scan-based and logic BIST solutions such as 

[6] relax the requirements on testers and considerably 
reduce the overall testing cost. 
An important trend today is the at-speed test [7] having 
additional benefit of the ability to test circuits under 
conditions that are as close as possible to normal circuit 
operation. This factor has a direct impact on the number 
of chips that are found defective during system operation 
but still pass all manufacturing and functional tests. At-
speed testing can be used for characterization and can 
also expedite test application time. 
The question is whether a self-test sequence running in 
the system can adequately exercise its hardware 
components satisfying the targeted fault coverage 
requirements. Achieving the test quality target requires 
application of proper test sequences that is the focus of 
the current paper. It should also be pointed out that the 
quality of a test is measured not only by its fault 
coverage, but also by its code size (to be stored in the 
memory of the chip), hardware overhead, and by the test 
execution time.  
The goal of the paper is to propose an approach which 
combines the ideas of traditional LBIST with at-speed 
testing to improve the test quality at less testing 
overhead and avoiding performance loss compared to the 
traditional self-test approaches. The feasibility and 
efficiency of the new method is demonstrated for a 
particular class of pipe-lined processing architectures 
which are easily adaptable for at-speed on-line self-
testing by inherent functional sequences. 
The rest of the paper is organized as follows. In Section 
2, an overview about state-of-the-art is given. Section 3 
presents the general idea of the proposed method, 
followed with the description of the evaluation bench in 
Section 4, which is needed for exploration of solutions 
for implementing the method. Section 5 presents the 
description of the representative case study, and in 
Section 6 the results of experimental research are 
discussed. Section 7 concludes the paper. 

2 State-of-the-art of self-test techniques 
In traditional LBIST, test pattern generation is mostly 
performed by Linear Feedback Shift Registers (LFSR) 
[5], cellular automata [8] or multifunctional registers like 
BILBO (Built-in Logic Block Observer) [5] to apply 
pseudorandom patterns to the Unit Under Test (UUT) 
and to analyse its output responses. However, many 
circuits contain random-pattern-resistant faults, which 
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limit the fault coverage that can be achieved with this 
approach.  
One method to improve the fault coverage for LBIST is 
to modify the UUT by either inserting test points [4] or 
by redesigning it to improve the fault coverage [6]. The 
drawback of these techniques is that they generally add 
additional logic levels to the circuitry that can degrade 
system performance. Another possibility to improve the 
fault coverage is to use weighted pseudorandom test 
sequences [9]. The disadvantage of this approach is in 
the need of storing of the weight sets on chip, and also 
dedicated control logic is required to switch between 
weights, so the hardware overhead may become large. 
A “mixed mode” approach, where deterministic patterns 
will be added to detect hard-to-test faults, has been 
developed in [10-13]. In [10] a technique based on 
reseeding LFSR was proposed that reduces the storage 
requirements. In [11], multi-polynomial LFSR for 
encoding a set of deterministic test cubes was 
introduced, and in [12] a technique called bit flipping for 
generating deterministic test cubes using BIST control 
logic was proposed. Further, in [13] a mixed-mode 
approach was presented in which deterministic test cubes 
are embedded in the pseudorandom sequence of bits 
itself. 
Established BIST solutions use special hardware 
(typically LFSR) for test pattern generation (TPG) and 
test response evaluation (TRE) on chip [5], but this in 
general introduces significant area overhead and 
performance degradation. To overcome these problems, 
specialized methods were proposed which exploit 
specific functional units such as arithmetic units for on-
chip test pattern generation [14, 16], which may afford to 
reach similar fault coverage like traditional LFSR-s. 
These methods are called Arithmetic BIST (ABIST), 
since they essentially adopt the additive congruential 
generation scheme of pseudo-random numbers [17]. 
In [18,19], a mixed-mode or hybrid BIST approach was 
proposed, where a test set is assembled from two parts, 
from pseudorandom test patterns that are generated on-
line, and deterministic test patterns that are generated 
off-line and stored in the system. A combination of both 
test sources in an optimized fashion allowed improving 
the traditional LBIST in targeting hard-to-test faults. A 
similar approach called Hybrid Functional BIST 
(HyFBIST), where instead of LBIST the inherent 
functional sequences were used, was proposed in [20,21] 
for testing digital systems, and particularly micro-
programmed data-paths.  
In this paper we generalize and combine the ideas of 
using inherent functional blocks for test generation 
[14,15] and the inherent working sequences produced by 
the UUT itself for self-testing purposes. We propose an 
overall functional self-test concept for pipelined 
architectures where the working sequences are produced 
on the primary inputs of the system and the internal 
signals are monitored in selected test-points by Multiple 

Input Signature Analysers (MISR). We propose a 
systematic procedure for selecting the test-points to 
achieve the best overall fault coverage at minimum 
testing overhead and cost. 
To our knowledge, the usage of digital representation of 
analog signal sequences as a functional test for testing 
digital circuits (signal processing architectures) is 
investigated in our paper the first time. Main idea is to 
take the input data, which is close to what the circuit-
under-test would most probably have during its normal 
operation and apply this data as an at-speed test. In our 
case this input data is digital representation of the sine 
signal. It will be shown in results, that such a signal 
could yield better fault coverage in comparison to 
traditional pseudo-random LFSR sequence. This can also 
be considered as one step further compared to the 
arithmetic BIST (ABIST), since the source for the first 
stage of UUT is stimulated using more complicated 
equation (sine wave), than traditionally used in ABIST. 
The next stages of the UUT can be considered as test 
generators similar to ABIST. The Functional test 
strategies (e.g. software based self-test) used for example 
in microprocessors, are traditionally using dedicated 
software test routines, which have to be stored in the 
memory. In our case, there is no need to store in the 
memory such test routines or other test data. 
 

3   General description of the method 
Consider a digital system as a network of sub-circuits 
(blocks) where all the blocks may play simultaneously 
two roles: on one hand, each block will be itself UUT, 
and on the other hand, it will serve as the test pattern 
generator for the subsequent blocks it is feeding. As the 
overall test source, selected input working sequences (as 
functional test) will be used. 
Two main problems arise: (1) how to find the best 
functional test sequences, and (2) how to find the 
minimal set of test-points for monitoring to achieve the 
highest fault coverage of testing.  
In some cases, the first problem can be solved 
straightforwardly like in the instruction set architectures 
or in signal processing units. In the first case, the 
instructions can be exercised one by one where the 
problem recedes to finding only proper data (operands) 
as test patterns [22-23]. In case of signal processing 
units, the analog signals to be processed can be used as 
candidates for exploiting in testing purposes as well. 
We are investigating the possibility of using given digital 
representation of analog signals as stimuli for testing 
signal processors. The idea is similar to random (LFSR 
based) testing where the critical point is analysis of the 
test quality as the function of test length.  
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Fig.1. Signals used for measuring bio-impedance 

 
For example, in bio-impedance spectroscopy, for 
measuring the bio-impedance typically the following 
signals are generated and processed as shown in Fig.1: 
sine [28] and chirp [29]. These signal sequences may be 
used as well in the role of stimuli (i.e., functional test 
sequences) for self-testing purposes for the same signal 
processor itself. The quality of the listed signals as test 
stimuli can be compared with popular saw-tooth analog 
signal and pseudorandom LFSR sequences which are 
traditionally used in the logic BIST solutions. Saw-tooth 
is easy to generate digitally; this is the reason why it is 
widely used in signal generation and processing. It can 
also be thought of as an additive generator of exhaustive 
patterns. 
The second problem of selecting test-points for 
monitoring the test process depends how well can the 
faults in different blocks be detected by the given 
functional test sequence.  
In Fig.2, an example of a pipe-lined signal processing 
unit is given which is partitioned into 6 blocks.  
Two solutions are demonstrated for monitoring the 
behaviour of the circuit with MISRs. The solution in 
Fig.2a shows the case where all blocks are monitored 
whereas in the solution depicted in Fig.2b, only three 
MISR are used: the first is monitoring the behaviour of 
blocks B1 and B2 as a whole, the second MISR is 
monitoring solely the block B3, and the third MISR is 
monitoring the blocks B4, B5 and B6 as a whole.  
The task of partitioning of the whole system into UUT 
blocks has the goal to find the highest fault detection 
coverage for the given functional test by achieving well-
balanced testability at the minimum number of 
monitoring points equipped with MISR  
 

 
a) 

 
b) 

Fig.2. Monitoring of the pipe-lined signal processing 
unit. 

 
To find the minimum hardware overhead we propose the 
following method for selecting test-points: 
• Put MISR on the primary output of the circuit, and 

find the fault coverage (FC) for the given test 
sequence. 

• If FC is sufficient, then the problem is solved. 
• Partition the circuit into a set of n blocks (each with 

its own MISR). Find FC for each block as a UUT. 
• Continue the partitioning of the blocks with low FC 

until the total FC will be sufficient. 
• Integrate the consecutive blocks with high FCs into   

UUTs (with a single joint MISR in the output of the 
composite block) to minimize the number of MISR, 
so that the total FC of the system remains sufficient 
high. 

The described method is illustrated in Fig.3. Please note 
that the partitioning solutions can be found in different 
ways, e.g. dictated by an inherent structure (network of 
registers and combinational blocks), using any ad hoc 
method in a style of "trials and errors" or using more 
sophisticated analysis methods. This task should be 
regarded as a separate problem, not discussed in the 
paper. 
An example of merging two blocks with high fault 
detection coverage according to Step 4 of the described 
procedure and further partitioning of a block with low 
fault detection coverage into smaller blocks, is illustrated 
in Fig.4. In the new composite block, the evaluation of 
the fault coverage should be carried out again separately 
for all the three parts, to find out if some of them can be 
merged, or if there is any of them with low fault 
coverage, which should be further partitioned.  

Sine

Chirp

Sawtooth

LFSR
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Fig.3. General procedure for minimization of the 

number of observation points 
 
 
In case when the fault coverage will not satisfy either 
globally for the whole circuit or for particular blocks as 
UUTs, either the better functional test sequences should 
be found, or different methods, similar to the ones for 
improving LBIST described in Section 2, may be used. 

 
Fig. 4. Example of merging and splitting the blocks in 
UUT with high and low fault detection coverage 

 
The described method of inserting MISR facilitates the 
idea of LBIST strategy except using instead of dedicated 
test generators of LBIST the inherent test functionality 

of existing hardware in the system. The method affords 
at-speed testing with no performance degradation and 
with little hardware overhead and reduced test cost.  
The clock cycle based observation technique allows to 
avoid fault masking, and to achieve high fault coverage. 
The test response observation is carried out using built-in 
MISR as the only hardware overhead.  
 
The proposed method has several advantages compared 
to the state-of-the-art scan-path based LBIST methods: 
(1) no hardware test pattern generators, and no scan-

path for shifting in external test patterns are needed, 
which results in smaller overhead;  

(2) compared to LBIST, the typical drawback of over-
testing related to LBIST is avoided, since only 
functional working test patterns are used;  

(3) testing is carried out in the normal working clock-
rate which guarantees at-speed exercising the whole 
circuit. 
 

 
 

Fig.5. Fault simulation in sequential circuits 
 
The target of this Section was to describe the main 
principles of redesign for better testability of the given 
UUT. The goal was not to develop exact algorithm or 
tool for exploring automatically the whole space of 
solutions, which would be infeasible. The designer has a 
possibility to remove or insert MISRs in the design and 
to evaluate the test quality by using the fault simulation 
environment described in Section 4. He has also the 
possibility of changing the length of the test sequence to 
achieve higher fault coverages. 
In the next Section we present a novel environment 
which supports very high speed in analysing the fault 
detection coverage in the blocks of UUT. 
4    Fault simulation environment  
To carry out the procedure of minimizing the number of 
test-points according to Algorithm in Fig.3, large 
number of fault simulation sessions is needed for 
evaluating the fault detection coverage in the blocks of 
different size and for different partitioning solutions for 
the given UUT. A simple scheme for fault simulation of 
a sequential circuit is depicted in Fig.5. The model of the 
circuit and the test sequence form the input data for the 
simulator that calculates the fault detection rate. The 

Fault simulator for 
sequential circuits

Sequential 
UUT

Test 
sequence

Full task of fault 
simulation
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faults are simulated in this case one by one. Such a 
single fault simulation is very slow. On the other hand, 
faster methods for fault simulation, such as deductive or 
critical path tracing based fault analysis, cannot be used 
for sequential circuits; they are applicable only for 
combinational circuits.  
To overcome the difficulties of fault simulation in 
sequential circuits we propose a special approach to 
escape from the dependency on feedback loops. Assume, 
the full sequential circuit (or a sequential block as a part 
of it) can be presented as a set of combinational sub-
circuits each of them having a MISR in the output. By 
logic simulation of the test sequence for all sub-circuits, 
the input sequences are calculated (are fixed during the 
logic simulation). All the combinational sub-circuits can 
be fault simulated now independently, because each of 
them has MISR, which detects the faults in the related 
sub-circuit. If we cannot partition the circuit in such a 
way, we have to use a traditional slow fault simulator for 
sequential circuits. 
To cope with the problem of slow fault simulation in 
sequential circuits, we have developed a novel 
environment in which the fault simulation has to be 
carried out only in the combinational parts of the UUT. 
The new fault simulation environment is depicted in 
Fig.6. 
 

 
Fig.6. Transforming sequential fault simulation into sub-

tasks of combinational fault simulation 
 

The fault simulation in this environment is carried out in 
the following flow: 
(1) In each current step of the Algorithm in Fig.3, the 

UUT is partitioned into a set of blocks S = SC  ∪ SS 
where SC is a subset of combinational blocks and SS 
is a subset of sequential blocks.  

(2) The UUT is simulated for the whole test sequence T, 
and for each block Bi ∈ S, the whole local 

subsequence Ti at the input of Bi, caused by T will be 
collected and stored. The subsequence Ti will be 
regarded thereafter as the sub-test sequence for the 
block Bi generated on-line by the test sequence T. 

(3) All the combinational blocks Bi ∈ SC, will be fault 
simulated for the local sub-test sequences Ti with the 
fast fault simulator for combinational circuits as 
shown in Fig.6. 

(4) All the sequential blocks Bj ∈ SS, have to be fault 
simulated for the local sub-test sequences Tj with the 
slow fault simulator for sequential circuits in this 
environment according to scheme Fig.5. 

For fault simulation of combinational circuits we have 
developed a very fast fault simulator that implements a 
method of exact parallel critical path tracing, which has 
higher speed than currently used commercially available 
professional fault simulators have [24]. 
The high speed in our simulator is achieved by reasoning 
the faults along signal paths in the circuit for N test 
vectors in parallel, where N is the number of bits in the 
computer word. The simulator runs in two sessions 
through the whole circuit. The first session is carried out 
only once for all the test vectors to be simulated. The 
goal of this session is to create a compact computing 
model for further fault reasoning which consists of a 
sequence of Boolean formulas. Since the formulas are 
Boolean, they can be processed in parallel. The second 
session is to calculate the detected faults for packages of 
N test vectors in parallel using the computing model 
created in the first session. 
We included this simulator into the fault simulation 
environment in Fig.6, where it will be used for 
simulating faults in the blocks Bi ∈ SC, block by block. 
Unfortunately, the simulator cannot be used for 
calculating the fault coverage for the sequential blocks Bj 
∈ SS. Currently, we are working on the problem, how to 
use the simulator proposed in [24] for estimating fault 
coverage in sequential circuits as well. 
In the next Section, a case study will be discussed where 
we investigated the feasibility of the proposed method of 
at-speed self-testing in a pipe-lined signal pre-processor 
of a family of pre-processors with different architectures 
developed for analysis of electrical bio-impedance 
signals [new, 25, 26]. The results of fault simulation for 
the whole family of 8 processors (column 1) are 
presented in Table 1, and they allow comparing the 
performance of the two simulation schemes depicted in 
Fig.5 and Fig.6. 
Column 2 describes the time in seconds for logic 
simulation of the sequence of 10 000 vectors on these 
processors given by their behaviour VHDL descriptions. 
The columns 3 - 6 describe fault simulation experiments 
according to Fig.6 on the same sequence of 10000 
vectors. Two levels of fault simulation are compared – 
gate-level and macro-level, where each macro represents 
a fan-out-free region (a gate-level sub-circuit) in a 

Combinational 
sub-circuits

Logic simulator

Sequential 
UUT

Test 
sequence

T

T1 Tn

B1 Bn

Sub-test 
sequences

Fault simulator for 
combinational circuits

Sub-tasks of 
fault simulation
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simulated combinational block of the given UUT. Only 
Stuck-at-Faults (SAF) were simulated. However, to save 
the time, only the correct behaviour was considered 
during behaviour level simulation (column 2).  
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8a 0.155 66328 14.0 734 112034 30.0 579 
8b 0.152 50206 12.1 631 83940 24.7 517 
8be 0.168 55270 28.3 328 99330 62.1 269 
8bk 0.159 49938 11.6 684 86878 25.2 548 
8bs 0.154 56444 65.2 133 100820 173.4 90 
8c 0.159 73182 16.3 714 122386 35.9 542 
8d 0.161 71730 17.0 679 123012 35.5 558 
8de 0.164 75840 34.8 357 136876 81.3 276 

Table 1. Comparison of two fault simulation approaches 

To compare the two fault simulation approaches 
presented in Fig.5 and Fig.6 on the basis of Table 1, let 
consider the results for the processor architecture 8a (the 
1st row).  For simulating 112034 gate-level SAF faults 
using parallel critical path tracing in the environment in 
Fig.6, we need 30 s. Assume now very optimistically 
that for single fault simulation of sequential circuits in 
the UUT at the behaviour level we would need the same 
time as for simulation of the correct circuit, i.e. 0.155 s. 
Then, to simulate 112034 faults in the sequentially 
presented gate-level UUT, we would need 17365 s, or 
about 5 hours. Hence, the gain in speed for this particular 
UUT will be not less than 580 times. In fact, it will be 
even more, since the gate-level simulation would be 
much slower than the behaviour level simulation. 
In order to produce the results in Table I used desktop 
class intel I7-930 @ 2,80GHz 4-core processor running 
Windows 7 operating system with 6GB of physical 
RAM. The circuit was simulated by ModelSim SE 
ver.6.5c. The speedup values were calculated in respect 
to theoretically assumed speed of sequential fault 
simulation computed as multiple of column two and 
respective column for macro- and gate-level number of 
faults.  
Note, the main idea of such a powerful fault simulation, 
based on transforming sequential fault simulation task 
into a set of combinational fault simulation sub-tasks is 
directly related to the goal we have in this analysis. And 
the idea is as well closely tailored in the method of at-
speed testing that we are evaluating. The goal of fault 
simulation is in our case to evaluate the fault detection 
coverage, not fault diagnosis. In other word, we are not 
interested in creation of an exact fault table. As we have 
on the outputs of simulated blocks signature analysers, it 
will be sufficient during testing to fix on the inputs of the 
block correctly only the first erroneous vector affected 
by the fault. As the result, the method is not sensitive to 

the possible mismatches of the subsequent input vectors 
of the fault block with those collected during simulation 
of the correct UUT.  

 

 
Let us  summarize the main idea of the Section. We use 
our fast fault simulator [24], which is not simulating 
faults one by one like in the traditional fault simulators 
for sequential circuits, rather it calculates by a single run 
all the faults detected in the combinational sub-circuits 
by a bunch of patterns (we do the reasoning of all faults 
in the sub-circuits in parallel for many patterns). The 
confusion may arise now because the fault reasoning is 
carried out for input patterns, which were collected from 
the behavior of the correct circuit. This means that if 
there was a fault, which produces an erroneous output 
pattern, then the next input pattern will be as well 
erroneous (because of the feedback loop), which means 
in turn that the results of fault reasoning of all 
subsequent patterns will be as well wrong. But, on the 
other hand, this is not any more important, because the 
first erroneous pattern in the input sequence of the sub-
circuit will be fixed already by MISR as an error, and 
this will be sufficient for fault detection in the end of the 
test (with the accuracy determined by the probability of 
signature aliasing). Generating fault tables and fault 
diagnosis of course is not possible, but this is not the 
purpose of our paper.  
To our knowledge, such an approach of handling 
feedback loops during fault simulation in sequential 
circuits has been proposed the first time.  
5 Case study: signal processing unit as UUT 
To investigate the feasibility of the method in the sense 
of achieving sufficient fault coverage in real cases, we 
carried out experimental test research with a digital 
signal pre-processor unit developed for industrial 
purposes for measuring electrical bio-impedance [25, 26, 
27]. From the family of processors, discussed in the 
previous Section we selected the processor with 
architecture 8a. 
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Fig. 7. The architecture 8a of Signal Analyser. 
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The selected unit under test (UUT) is a bio-impedance 
signal analyser that implements a simplified signal 
processing algorithm [25, 27]. The architecture of the 
signal analyser circuit is depicted on Fig. 7. A typical 
digital solution is that the response voltage is digitized in 
an analog-to-digital converter (ADC) into a uniformly 
sampled train of digital data, which is then processed 
numerically in a digital signal processing (DSP) unit, 
often using the Discrete Fourier Transform (DFT). 
Because the whole signal path from the generation of the 
set of excitation signals to the analog-to-digital 
conversion procedure and data analysis is synchronous 
by design, optimized signal processing methods can be 
applied. Using of sampling, which is synchronous to the 
known excitation waveform, enables to use a simplified 
but much faster signal processing than the Fourier 
Transformation is. When sampling the response signal 
uniformly with intervals t = T/4, where T is a period of 
the signal, the following simple mathematics is valid 
[25][30]: 
(1) the direct current component DC can be determined 

as 

DC = (Re+ + Re–) /2  or  DC = (Im+ + Im–)/2           

 
(2) the real Re and imaginary Im parts of the phasor of 

complex bio-impedance Z is determined as 

Re = (Re+ - Re–)/2,  and  Im = (Im+ - Im–)/2            

The mentioned signal analyser is a part of the developed 
digital multichannel bio-impedance analyser (DMBA) 
[27], depicted in Fig. 7. The Source of Excitation Signals 
generates digital waveforms that are converted by 
Digital Analog Converter (DAC, not shown) into analog 
signals, sent through tissue, collected by Analog Channel 
Sellector and sampled converted by ADC (not shown)  
back to digital form.  The Sampler is used to synchronize 
the signal source and ADC (input of the Digital 
Analyzer, not shown). This sampled digital signal is 
processed by the analysis unit. For self-test purposes, the 

analog part - DAC, tissue and ADC - are skipped and the 
output of the Excitation Signal Generator is fed directly 
to the digital input of the Digital Signal Analyzer, which 
is shown in Fig.9. 

For the test purposes of the circuit, the sampler is 
implemented as 80MHz clock signal and excitation 
signal generator along with body and analog part was 
exchanged with signal generator of particular type. Fig.9. 
gives visual representation of it. As it can be seen, the 
circuit has a pipe-line structure in order to be 
implemented in a low-cost FPGA. The signal is first 
sampled into the input buffer. On the next stage the 
signals are distributed to the particular registers of the 8 
different channels. The sampling is performed on 
channed-after-channel basis. Every sample out of 4 
samples taken per channel is saved into its corresponding 
16-bit register. On the next stage Real and Imaginary and 
Direct current components are computed with adders and 
subtractors, using equations (1) and (2). On the next 
pipeline stage the computed components are integrated 
using adders and saved into 32-bit registers, called 
output buffers. Integration is made over a 1 millisecond 
period. After that the values of the output buffers are 
transferred to the output register of the anayser. 

The architecture of the analyzer (see Fig. 8) was defined 
by the used technology - low-cost FPGA-s - that defined 
the used 80 MHz sampling frequency. This itself was 
defined by the need to have 10-20 MHz excitation 
signals with 4 or 8 sampling points per period [27]. The 
use of single input channel (ADC output) and sorter to 
reduce aliasing effect [25], defines the need for two first 
buffer stages. The two last buffer stages are defined by 
the need to accumulate the collected data over 1 ms 
period, to buffer it and to transmit [27]. The intermediate 
part - subtracter/adder and accumulator - can be 
implemented, in principle, as a single stage. However, 
when using FPGA-s, the extra pipeline stage actually 
makes the design not only faster (because of the shorter 
combinational paths) but also smaller - every output bit 
of an adder has a flip-flop anyway and the use of them 

Fig.8. A block diagram of one channel of DMBA[25]. Registers 
are blue, MUXes – yellow, computation - red, control – green. 
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makes routing problem for the design tools easier. The 
same applies for the potential reuse of functional units 
and registers that would essentially add additional 
multiplexers to the design - the internal structure of 
FPGA-s is best suited for pipelined data-stream oriented 
applications. This was also the case with the other 
implementations of the same processing unit with the 
different degree of reuse [25]. All the MUXes in the 
circuit are used for switching the channels (there are 8 
channels in the DMBA), except the last one, which is 
switching every channel result to a single output. 

 

 
We investigated four types of signal generators for using 
as test sources to provide input signals to the channels of 
the analyser: sine, chirp, saw-tooth, LFSR. These can be 
see on Fig.1. All the channels get the same signal, so that 
we can test each channel equally to each other. All the 
generators are implemented for the simulation 
environment in VHDL. 
 (1) The sine signal generator is using floating point 
arithmetics and sin() function of the VHDL math library. 
It can take amplitude, phase and frequency as a 
parameters to produce the corresponding sine wave. 
During the experiments the amplitude was set to 15 bits, 
taking into account 1 sign bit and 16-bit wide input of 
the analyser. The phase was set to 90 degrees in order to 
produce the input signal from the upper part of the  
wave. This was done because the signal would produce 
more unique values in less time, because it covers all the 
values from top to the bottom in half-period. It was 
useful to check whether the test sequences of small 
length could produce meaningful results. The frequency 
was modified during the experiment in order to detect 
the better signal for testing this device.  
(2) The chirp generator takes as parameters start and 
stop frequency periods as well as number of samples in 
which frequency should change from start to stop 
frequency. The chirp generator changes the frequency 
every sample it produces. The amplitude remained 15bits 

+ 1 sign bit and phase remained 90 degrees. During the 
experiments we have changed the length of the chirp 
signal – number of samples from start to end frequency. 
(3) Saw-tooth signal is implemented as a counter. The 
parameter it takes is a period of the signal. The generator 
produces equally spaced samples of the saw-tooth signal 
of this period. The amplitude is 15bits+1 sign bit. 

 
Fig. 10. Equivalent circuit for the Signal Analyser in Fig.8.  

(4) LFSR signal generator is implemented as 16-bit 
linear feedback shift register. The seed is taken so that it 
goes through all the 65535 possible values except 0. The 
size of the LFSR was chosen in accordance to the input 
width of the signal analyser under test.  
6  Experimental results  
Experiments were carried out for Signal Analyser 
(architecture 8a) in Fig.9, presented as equivalent circuit 
with highlighted pipe-lined tracks in Fig.10. As the result 
of the experimental research according to method in 
Fig.3, the circuit was finally partitioned into 7 blocks as 
separate UUTs which are characterized in Table 2.   
 

No Name of 
the block 

Number 
of faults 

Number of 
inputs 

Number 
of 

outputs 
1 calc_add 69544 1431 896 
2 calc_sub 18588 791 256 
3 in_buf 98 17 16 
4 out_buf 14750 1554 769 
5 out 7480 709 64 
6 sig_acq 8560 538 520 
7 timer 512 18 17 

Total 119532 2528(5058) 2538 

Table 2. Characteristics of the blocks in Fig.9 

We calculated the fault coverage for all the 7 blocks as 
well as the total fault coverage for four different types of 
signals: sine, chirp, saw-tooth and LFSR. The number of 

Fig. 9. Testbench for the case study 
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test patterns used for this simulation is 1000000. The 
results of the experimental research in percentage of 
fault coverage for all the different blocks are presented 
in Table 3 and as the bar diagram in Fig. 11. Blocks 
timer and sampling represent control logic of the circuit. 
These are well tested, because their memory cells are 
completely covered by MISRs. The reason, why the 
coverage is not 100% is that we didn’t simulated the 
reset logic of the circuit. 

 As we see, the best results in average for all the blocks 
were achieved for the input signal sine where the fault 
coverage was 98.20%. The lowest total fault coverage 
75.99% was registered for the signal type saw-tooth. 
 

No Name of 
the block 

Input signal types 
Sine, 

% 
chirp, 

% 
saw-

tooth, % 
LFSR, 

% 
1 calc_add 97.37 94.86 76.80 95.71 
2 calc_sub 98.85 99.20 64.90 99.20 
3 in_buf 82.65 82.65 82.65 82.65 
4 out_buf 99.88 99.86 74.74 99.86 
5 out 99.14 99.06 78.66 99.14 
6 sig_acq 95.63 95.63 95.63 95.63 
7 timer 94.14 94.14 94.14 94.14 
8 sampling 95.62 95.62 95.62 95.62 

Total 98.20 96.68 75.99 97.21 

Table 3. Results of fault coverage experiments 

Considering the distribution of fault coverage among 
different blocks we see that the lowest test quality is 
mapped to the block in_buf. Hence, for this block the 
improvement of the testability by any of the methods 
referenced above in Sections 2 and 3 can be foreseen 
(this task was not the goal of this case study paper). 
However, since the block in_buf is rather small 
(characterized by only 98 faults), the improvement of its 
testability will not lead to considerable increase in the 
total fault coverage of the whole circuit. 

 

 
Fig 11. Distribution of fault coverage in the circuit 

Since the cost of testing depends on the time used for 
carrying out the self-test procedure, we investigated how 
the fault coverage will depend on the test length 
measured in the number of test patterns. The results are 
shown as the graphics for the different four signal types 
in Fig. 12. 
The most cost effective would be the LFSR based self-
test sequence where the fault coverage around 90% will 
be achieved already after 80 000 test patterns (clock 
cycles) whereas the sine signal based and chirp signal 
based tests achieve only about 85% and 80% fault 
coverage, respectively, at the same test length. When 
doubling, however, the test length, the sine based and 
LFSR based tests become equal at the 95% fault 
coverage. Especially sensitive to the length of the test is 
the chirp signal based test sequence.  
We compared the test quality achieved by the proposed 
method with traditional scan-path (SP) techniques both 
for using LFSR pseudorandom and deterministic test 
sequences. The results are presented in Table 4. 
As we see from Table 4, the fault coverage is nearly the 
same for all the methods compared.  However, to get the 
same fault coverage as with the proposed method, the 
test length of the scan path & LFSR based approach 
should be even twice bigger compared to the proposed 
method. To calculate the testing time cost in clock 
cycles, the test length for both referenced scan-path 
based methods should be multiplied by the length of the 
scan path which is equal to 2528 bits (the total number 
of inputs of all the tested blocks in the given circuit). 

 

 
Fig 12. Dependence of the fault coverage on test length 

For the proposed method, the testing time in number of 
clocks is equal to the test length. Hence, we can 
conclude that the time cost of the proposed method is 
about 5-7 times cheaper than the SP & deterministic 
approach and more than 2500 times cheaper than SP & 
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LFSR at the same fault coverage (in the latter case the 
single scan-path was assumed). 
 

Method 
Fault 
cover 

% 

Test 
length 
(TL) 

Testing 
time 

(clock 
cycles) 

Proposed 97.78 500000 5 *10
5
 

SP & LFSR 96.82 500000 12640 *10
5
 

Proposed 98.20 1000000 10 *10
5
 

SP & LFSR 98.73 1000000 25280 *10
5
 

SP & 
deterministic 98.69 1364 34 *10

5
 

Table 4. Comparison of different methods 

7 Conclusions  
We introduced a new approach to self-testing of digital 
systems with pipe-lined architectures using inherent 
functionalities of systems with capability to produce 
internal self-test sequences. The added value of using 
inherent functional self-test sequences is the higher test 
quality explained by on-line at-speed testing. The 
approach does not need to store high volume test data in 
the system memory. Additional hardware is as well not 
needed for on-line test pattern generation as in the case 
of traditional LBIST. The only needed additional test 
hardware is related to using MISR for monitoring the 
test responses. To minimize the needed additional MISR 
hardware overhead, an original algorithm for selecting 
test-points was developed. As the result of avoiding 
artificial embedded test pattern generators like in case of 
LBIST, and of using only normal working sequences for 
test purposes, the danger of over-testing and the related 
yield loss are removed. 
To cope with the problem of very slow fault simulation 
in sequential circuits, needed for exploration and 
comparison of different self-test solutions we developed 
a novel evaluation environment where the time 
consuming sequential fault simulation task can be 
transferred into a set of combinational fault simulation 
sub-tasks. Experiments demonstrated the gain in 
evaluation speed more than 580 times without losing any 
accuracy in fault coverage calculation.   
To investigate the feasibility of the method to achieve 
high fault coverage, we carried out experimental 
research with a digital Signal Analyser unit as a case 
study, which was developed for industrial purposes for 
measuring electrical bio-impedance. 
The goals of the experiments were twofold: (1) to select 
the best type of input signal for testing purposes from a 

set of signals typically used for processing in the given 
Signal Analyser, and (2) to compare the new method 
with traditional scan path based testing methods. 
Experimental research showed that the best testing 
capability has the sine signal (with fault coverage of 
98.2%) compared to the LFSR based pseudorandom 
(97.2%) and chirp (96.7%) signals at the same test 
length. The worse testing capability has the saw-tooth 
type signal (76%). The fault coverage achieved by the 
sine signal was 98.2%, which is nearly the same 
compared to the traditional scan-path pseudorandom 
(98.7%) and deterministic (98.7%) test approaches. The 
gain in testing time cost was 3-7 times compared to the 
deterministic and more than 2500 times compared to the 
pseudorandom single scan-path based approach. 
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Abstract—A novel fault simulation method is proposed, based on exact
critical path tracing beyond the Fan-out-Free Regions (FFR) throughout
the full circuit. The method exploits two types of parallelism: bit-level
parallelism for multiple pattern reasoning, and distribution the fault
reasoning process between different cores in a multi-core processor
environment. To increase the speed and accuracy of fault simulation,
compared with previous methods, a mixed level fault reasoning approach
is developed, were the fan-out re-convergence is handled on the higher
FFR network level, and the fault simulation inside of FFRs relies on the
gate-level information. To allow a uniform and seamless fault reasoning,
Structurally Synthesized BDDs (SSBDD) are used for modeling on both
levels. Experimental research demonstrated very promising results in
increasing the speed and scalability of the method.

I. INTRODUCTION

Fault simulation is one of the most important tasks in the digital
circuit design and test flow. The efficiency of solving other tasks
in this field like design for testability, test quality and dependability
evaluation, test pattern generation, fault diagnosis relies heavily on
the performance and speed of fault simulation. Such a dependence is
growing especially in case of large circuits, and hence, the scalability
of the fault simulation algorithms is decisive. Accelerating the fault
simulation would consequently improve all the above-mentioned
applications.

Parallel pattern single fault propagation (PPSFP) concept [1] has
been widely used in combinational and full scan-path circuits for
fault simulation. Many proposed fault simulation concepts incorporate
PPSFP with other sophisticated techniques such as test detect [2],
critical path tracing [3], [4], stem region [5] and dominator concept
[4], [6]. These techniques have helped to reduce further simulation
time. Another trend of fault simulation methods based on reasoning
(deductive [7], concurrent [8] and differential simulation [9]) used
to be very powerful since they allow to collect all detectable faults
by a single run of the given test pattern. What they cannot do, is to
produce reasoning for many test patterns in parallel.

The critical path tracing method [3], [4] eliminates explicit fault
simulation for faults within Fan-out-Free Regions (FFR). A modified
critical path tracing technique that excludes fault simulation for fan-
out stems and includes a system of rules to check the exactness of
critical path tracing beyond the FFRs, and which is linear in time,
is proposed in [10]. However, the rule based strategy does not allow
parallel analysis and rule check of many patterns simultaneously. This
drawback was removed in [11] by introducing a novel concept of
Parallel Pattern Exact Critical Path Tracing (PPECPT) which can be
applied efficiently also beyond FFRs. In [12], the same method was
extended from stuck-at faults (SAF) for a general class of X-faults.
The main idea of the method was in compiling of a dedicated compact
computing model through the circuit topology analysis, which allows
exact critical path tracing throughout the full circuit and not only

inside FFRs.
In this paper we propose a new PECPT method, where we

implement two types of parallelism during fault simulation: (1) bit-
level parallelism for multiple pattern reasoning, and (2) distributing
the compiled computing model among a subset of different CPUs
in a multi-core computing environment, so that each processor were
responsible for parallel critical path tracing in a related particular
sub-circuit area.

Another novelty of the paper is in developing of a mixed level
fault reasoning approach, were the problems related to the fan-out
re-convergence are handled on the higher FFR network level, using
collapsed fault set, and the increased speed and accuracy in fault
reasoning is achieved by fault reasoning inside FFRs using additional
gate-level simulation data, without fault collapsing.

To speed-up simulation and improve the accuracy of fault rea-
soning compared with previous methods in [11], [12], we propose
here a mixed level PPECPT method based on using of two types of
Structurally Synthesized BDDs (SSBDD).

Since during a single run of parallel analysis of patterns through-
out the circuit we process all the faults in the circuit, we can
say that the approach we propose is exploiting concurrency in
three dimensions: pattern dimension, fault dimension and computing
model dimension, where the pattern and fault parallelism is utilized
using each single CPU core, while computing model concurrency
is achieved exploiting multiple CPUs. Compared to the traditional
approaches which can use only pattern- and fault-parallelism in multi-
CPU systems (at the bit and system level, respectively), such a
new dimension addition gives further possibilities to speed up fault
simulation in multi-processor systems.

The availability of parallel execution environments such as mul-
tiprocessor system on chips (MPSoCs), multicore processors and
GPGPU devices provides a possibility for concurrent execution of the
same algorithm for different data or for different parts of the same
algorithms and the same data. This is done to utilize the available new
hardware resources, as well as to speed up execution in comparison to
uniprocessor system. In the landscape of fault simulation, where this
paper is targeted, the growing size and complexity of digital circuits
also requires speed up of available algorithms.

The rest of the paper is organized as following. In Section 2 we
present the theoretical basics of exact fault simulation by parallel
critical path tracing beyond the fanout stems. In Section 3 we present
the basics of fault simulation using SSBDDs, and in Section 4 we
propose a new method of parallel critical path tracing based on mixed
level fault simulation with two types of SSBDDs. Section 5 describes
the method of distributing the task between multiple cores of the
processor, Section 6 describes the results of experimental research



Fig. 1. Combinational circuit with 5 FFRs.

with related discussion, and Section 7 concludes the paper.

II. PARALLEL PATTERN CRITICAL PATH FAULT TRACING

Consider a combinational circuit as a network of FFRs, where
each of them is represented as a Boolean function

y = F (x1, x2, . . . , xn) = F (X) (1)

where X = x1, x2, . . . , xn is the input vector of the FFR. Such a
network of 5 FFRs is represented in Fig.1. Let Xk denote the vector
of input variables of the k-th FFR, zk denote the internal fan-out stem
variables (outputs of FFRs) with zkj as fan-out branch variables for
zk (inputs of FFRs) and y denote the output variables of the circuit.

The fault simulation can be processed as calculation of Boolean
derivatives: if ∂y/∂x = 1 then the fault is propagated from x to y.
This check can be performed in parallel for a set of test patterns. In
order to extend the parallel critical path tracing beyond the fan-out
free regions we use the concept of Boolean differentials [13].

Consider the full Boolean differential of the FFR y = F (X) as

dy = y ⊕ F ((x1 ⊕ dx1), . . . , (xn ⊕ dxn)) (2)

Here, by ∂x we denote the change of the value of x because of the
influence of a fault at x, and ∂y = 1 if some erroneous change of
the values of arguments of the function (2) causes the change of the
value of y, otherwise ∂y = 0.

In [11] we have shown that from the expression (2) the following
relationship can be derived:

∂y

∂x
= y ⊕ F ((x1 ⊕ ∂x1

∂x
dx), . . . , (xn ⊕ ∂xn

∂x
dx)) (3)

For example, the fault at z2 is detected on y4 if

∂y4
∂z2

= y ⊕ F (X4, z21 ⊕ 1, z31 ⊕ ∂z3
∂z2

dz2)

= y ⊕ F (X4, z21, z31 ⊕ ∂z3
∂z2

dz2) = 1
(4)

The formula 3 can be used for calculating the influence of the fault
at the common fan-out stem x on the output y of the converging
fan-out region by consecutive calculating of Boolean derivatives over
related FFR chains starting from x up to y. For that purpose, for each
converging fan-out stem, the corresponding formulas like (3) should
be constructed for each converging FFRs. All these formulas will
constitute partially ordered computation model for fault simulation.
Since the formulas are Boolean, all computations can be carried out
in parallel for a bunch of test patterns.

Introduce first the following notations for the formulas above
which are used for calculating the Boolean derivatives:

• (x, y) - for ∂y/∂x
• {Xk, y} - for a subset of formulas {∂y/∂x | x ∈ Xk}
• Rxy((x, x1), (x, xk)) - for the general case (3)
• Dx - vector which shows if the fault at the node x is detected

or not detected at any circuit output
• DX - a set of vectors Dx for the nodes x ∈ X

An example of a computational model of fault simulation for the
circuit in Fig.1 is presented in Table I.

The formulas in Table I can be easily created and stored by the
topological tracing of the circuit by algorithms developed in [11].
The algorithm has linear complexity. However, the complexity of the
computational model and the related fault simulation speed depends
on the structure of the circuit. As shown in the papers [14][12], the
speed of fault simulation by the proposed parallel critical path tracing
method outperforms the speed of the fault simulators of major CAD
vendors.

III. FAULT SIMULATION WITH SSBDDS

The high speed of processing the formulas is achieved by using
Structurally Synthesized BDDs (SSBDD) for modeling FFRs [15],
[16]. Each FFR y = F (X) is represented by an SSBDD G, and each
signal path in the FFR represented by a variable x ∈ X is modelled
by a corresponding node in the G. All the faults on a signal path
collapsed into the faults on the inputs of the FFR, are modelled by
the faults at the nodes in G. Hence, the targets of the fault simulation
are the faults at the SSBDD nodes.

Consider a circuit in Fig. 2, and its corresponding SSBDD. The
circuit contains nine signal paths, and each of them is represented by
a node in the graph. Note, only the branches of the fan-out inputs are
represented in the SSBDD as the model of the FFR. Fault simulation
is carried out by traversing the nodes in the graph according to the
given test patterns as in the case of traditional BDDs [17].

For simplification the graphical representation of SSBDDs, we
use here the following convention: from a node labelled by a variable
x, the right-hand edge corresponds to the value x = 1, and the down-
hand edge corresponds to the value x = 0. Correspondingly, the exit
from the graph to the right means entering the terminal node with
constant #1, and the exit from the graph downwards means entering
the terminal node with constant #0.

Consider a test pattern 1011101 (1234567) at the inputs of the
FFR in Fig. 2. The pattern detects the fault at the input 3 by
propagating the faulty signal from the input 3 to the output 8. On the
SSBDD in Fig. 2 the edges activated by this pattern are highlighted in
bold. The nodes traversed in the graph during simulation of the pattern
are marked by gray color. The value on the output 8 of the circuit at
this pattern is y = 1. Since the nodes 1, 22, 3, 4, 52 are traversed, all
they are responsible for the value y = 1s, and hence, should be taken
as fault candidates in case if the error will be noticed at the circuit
output. All other nodes 21, 51, 6, and 7 have not contributed in fault

TABLE I. LEVELIZED FAULT MODEL EQUATIONS.

L Partially ordered formulas Types of simulation
tasks

7

∀x4,i ∈ X4 : Dx4,i
= {x4,i, y4},

Dz21 = (z21, y4), Dz31 = (z31, y4);
∀x5,i ∈ X5 : Dx5,i

= {x5,i, y5},
Dz13 = (z13, y5), Dz32 = (z32, y5)

Fault simulation
inside the FFRs

(F4 and F5)

6 Dz3 = Dz31 ∨Dz32
Fault simulation of
fan-out stems (z3)

5
∀x3,i ∈ X3 : Dx3,i = x3,i, z3 ∧Dz3,

Dz22 = (z22, z3) ∧Dz3,
Dz12 = (z12, z3) ∧Dz3

Fault simulation
inside the FFRs

(F3)

4 Dz2 = Rz2, y4((z2, z21) ≡ 1, (z2, z31))∨
((z22, z32) ∧Dz32)

Fault simulation of
fan-out stems (z2)

3 ∀x2,i ∈ X2 : Dx2,i = x2, i, z2 ∧Dz2,
Dz11 = z11, z2 ∧Dz2

Fault simulation
inside the FFRs

(F2)

2
Dz1 = ((z1, z3) ∧Dz31) ∨

Rz1, y5((z1, z3), (z1, z13) ≡ 1) where
(z1, z3) = Rz1, z3((z1, z22), (z1, z12) ≡ 1)

Fault simulation of
fan-out stems (z1)

1 ∀x1,i ∈ X1 : Dx1,i = x1, i, z1 ∧Dz1

Fault simulation
inside the FFRs

(F1)



Fig. 2. An FFR of a combinational circuit and its SSBDD.

simulation, and hence, can be excluded from the fault candidates set.
Next, by simulating the faults at candidate nodes we can easily notice
that only the faults at the nodes 1 and 3 are detected by the given
pattern, because at these faults on the graph the terminal node #0 will
be reached which means y = 0.

In [11], the algorithms for parallel logic simulation and parallel
fault simulation on SSBDDs were proposed. The algorithms are based
on the ordering of nodes m by assigning them numerical labels, so
that for each node m with label n(m), all its predecessors mj must
have labels n(mj) less than n(m). Logic simulation is based on
recursive calculating of the value of the formula

D(m) = (x(m) ∧D(m1)) ∨ (¬x(m) ∧D(m0)), (5)

where D(m) for the terminal nodes is equal to the respective
constants #1 and #0. Here x(m) denotes the node variable, m1 and
m0 are the neighbors of m in directions of x(m) = 1, and x(m) = 0,
respectively. Fault simulation is based on recursive calculating of
values of the formulas

L(m1) = L(m1) ∨ (L(m) ∧ x(m)), (6)

L(m0) = L(m1) ∨ (L(m) ∧ ¬x(m)), (7)

S(x(m)) =
∂y

∂x(m)
= L(m) ∧ (D(m0)⊕D(m1)) (8)

where S(x(m)) = 1 means that the fault at x(m) is detected by
the simulated test pattern, otherwise, if S(x(m)) = 0, the fault is not
detected. Since all the presented formulas are Boolean, the algorithms
can be applied by tracing the nodes of the SSBDDs can be applied
in parallel for many test patterns, each of them represented by one
bit of the computer word. The cost of simulation can be calculated
by the number of operations needed for each node of SSBDD. For
example, the cost of logic simulation is four operations per node, and
the cost of fault simulation is seven operations per node. Hence, to
fault simulate the SSBDD in Fig.2 which includes nine nodes, we
need 9 * 7 = 63 operations. Example of using the algorithms can be
found in [11]. Using SSBDDs instead of the gate-level circuit allows
to increase both, the simulation speed for calculating the values of
signals in the network of FFRs, and the fault reasoning, since only
the collapsed fault set represented by nodes of SSBDDs is processed.
This explains the efficiency of the method demonstrated in [11], [12].

IV. MIXED LEVEL FAULT SIMULATION WITH SSBDDS

Recently Shared SSBDDs (S3BDD) as a new type of BDDs were
proposed to speed-up logic simulation in digital circuits [18], [19]. In
the following we propose a two level implementation of the proposed
method of critical path tracing, where as the objectives of higher
level, the fan-out nodes of the network of FFRs are considered, and
as the objectives of lower level, the fan-out branches and fan-out free
primary inputs of the network of FFRs are considered. The processing
of formulas (3) for calculation of detectability of faults at fan-out
nodes is carried out on the higher level using SSBDDs as in Fig. 2,

and for computing the detectability of faults at the inputs of FFRs,
we will use the data calculated by gate-level logic simulation. To
speed up computing of detectability of faults at the inputs of FFRs,
we propose to use S3BDDs which can be processed in a similar way
as SSBDDs. In Fig. 3, an S3BDD is presented for calculation of
the detectability of the faults at the inputs of FFRs. Each entry x in
S3BDD corresponds to a node variable x(m) in the SSBDD in Fig.2,
and the path from the particular entry to the terminal node represents
an AND-function of conditions needed for detectability of the input
variable x of the given FFR. For example, the path in Fig.3 from the
entry 3 through the nodes ¬22, c, ¬7, a and d to the terminal node
#1 corresponds to the detectability condition of detecting the faults
at the input3 of the FFR in Fig.2.

The set of these detectability AND-functions for all of the input
variables of the given FFR can be easily created from the gate-level
structure of the FFR. To combine them in a form of S3BDD like
in Fig.3 we can use the algorithm of optimized S3BDD synthesis
developed in [19].

The cost of fault simulation using S3BDDs can be calculated
in terms of the number of operations needed, and is equal to C =
N−NT where N is the number of all nodes in the S3BDD model, and
NT is the number of end nodes of the model. For the S3BDD model
in Fig.3 we have C = 17− 2 = 15, which is four times less than 63
operations needed for simulation of the SSBDD in Fig. 2. Consider,
as an example, the mixed level work share in the computing processes
of the level 2 in Table I between SSBDD and S3BDD models. These
processes handle the critical path tracing over the nested configuration
of three fan-out re-convergence areas. In the process

(z1, z3) = Rz1 , z3((z1, z22), (z1, z12)1), (9)

(z1, z22) is computed at the low-level on the S3BDD for the FFR
with output z2, whereas Rz1 ,z3 is computed at the higher level using
the SSBDD of z3 after the following updates of the node variable
values: z22 = z22⊕ (z1, z22), and z12 = ¬z12. On the other hand,
in the process

Dz1 = ((z1, z3) ∧Dz31) ∨Rz1 , y5((z1, z3), (z1, z13)1), (10)

Dz31 is computed at the low-level on the S3BDD for the FFR with
output y4, whereas Rz1 ,y5 is computed at the higher level using the
SSBDD of y5 after the following updates: z32 = z32 ⊕ (z1, z3), and
z13 = ¬z1.

Additional side-effect of the mixed-level fault reasoning is the
increase of the accuracy in reporting the detected faults. Using the
information about the gate-level structure of FFRs, allows to specify
the detected faults inside the FFRs. For example, the entries a′ and
d′ in the S3BDD in Fig.3 are introduced to mark the sub-graphs for
calculating the detectability of internal gate-level faults at the nodes a
and d, respectively, inside the FFR, presented in Fig.2. Similar entries

Fig. 3. Direct fault simulation using S3BDDs.



can be added in Fig.3 for other internal nodes b, c, e, and f in the
same FFR.

The speed-up in mixed-level fault reasoning and the increasing
accuracy of detected fault reporting is accompanied with additional
time cost needed for logic simulation of FFRs at the gate-level.
However, when comparing the total times for logic simulation and
fault simulation this payload increase will be negligible.

V. REORDERING THE COMPUTING MODEL USING LEVELS

As was mentioned earlier circuit partitioning technique into levels
for concurrent execution have been already used before [20][22][23].
The level i gate is defined in [20] as one having primary inputs of
the circuit and outputs of level k gates as its inputs, such that k < i.
However in [22], which cites the previous paper the definition is
slightly different, stating that level of a gate represents its distance
in gates from primary inputs (PI’s) of the circuit. This definition is
more strict in the sense that one of the inputs of the level i gate,
must originate from the level i−1, if i 6= 0. This difference however
is crutial for parallelisation, because the use of the first definition
could potentially result in bigger number of levels with fewer gates in
them. As levels should be evaluated sequentially - this could decrease
the amount of parallelism dramatically. In our case, as we deal with
FFRs, we would stick to the second definition and rephrase it for our
purpose.

Both, the logic simulation model and the computational model for
fault back-tracing described in Section II are presented as networks
of partially ordered formulas linked to each other by variables and
computed using SSBDDs. Here and throughout the paper we would
use the word variable to indicate these elements of the circuit. The
level of variable is its distance in variables from PI’s or, in other
words, the level i variable should have at least one of its inputs
originating from level i-1 variable, if i 6= 0.

In the computational model, the variables are numbered in serial
fashion starting at primary inputs and finishing at primary outputs.
Variables are serialized such that each input of variable i is the
output of variable k, where k < i. This is very similar to the first
definition of levels from [20].We are using OpenCL framework for
parallel execution[21]. Therefore it is necessary to define regions of
variables, belonging to the same level, as sub-array. Only variables of
particular level must be included into sub-array. If variable x belongs
to level i, then level i should be represented as a continuous sequence
of variables starting from variable x to variable y, such that every
variable z (x ≤ z < y) belongs to level i and variable y belongs
to level i + 1. This is why it is necessary, to reorder the variables
according to our definition of levels. Note that this operation is only
required once and does not belong to fault simulation process. The
reordered computational model can be saved as a file and used later
for simulation, without a need to repeat this step.

Fault model represents segments of critical path to be simulated.
Each segment starts at the output of particular variable and ends at
primary output of the circuit. Therefore there is one-to-one corre-
spondence between critical path segments to be fault simulated and
particular variable. This fact makes it possible to use levelized struc-
ture of computational model for Fault model as well. It is important
because using levels we could analyze critical path segments starting
at the same level in parallel, thus speeding up the fault simulation.

OpenCL framework requires single program for all the parallel
devices, which would manipulate on different data. Such program
is called kernel. It is executed on all available devices in parallel
for all variables inside a single level. The best way to provide the
data for kernel is an array. During preparation of the computational

model the variable indexes are placed into an array according to
their levels. The kernel only requires to know the offset of the level
inside the array of variable indexes and the size of this level. Host
CPU schedules the kernel executions level by level into the OpenCL
execution queue. The execution in the queue is strictly ordered, so
that OpenCL driver handles the synchronisation between consecutive
kernel executions. This ensures that all variables of the current level
have been computed, before moving to the next level.

VI. RESULTS

The experiments were carried out on IBM System x3500 M3
7380 Server (2x 6-core Xeon E5690 running at 3,47Ghz with
hyperthreading) using 64-bit Novell SuSe Linux Enterprise Server
11 x86 64. This system has 12 physical CPU cores, 12 virtual
hyperthreading cores and 96Gb of RAM. Simulation times were
calulated for the sets of 10000 random test patterns. The circuits
from three benchmark suites ISCAS’85, ISCAS’89, ITC’99 were
simulated. The same circuits as in [12] were chosen in order to
compare the results.

Concurrent execution time Tp of PECPT fault simulation can be
divided into two parts: Tp = To + Tc. The first part is the time
To, which we would call concurrency overhead. This is required
to make a transition from ”single thread”- to ”multiple thread”-
execution and back again. This time slot involves creation of multiple
threads, allocating additional memory, synchronisation at the end of
computation and transition back to single thread. The second part
is time Tc, which is pure computation time required by all threads
to deliver a result. This time can be seen in Table II and can be
treated as a lower possible bound for concurrent computation. The
concurrency overhead To depends on the amount of parallel hardware
used and increases with number of CPUs. The computation time Tc

depends on the amount of computation required. Parallel simulation
time T ′

p = Tp+Tfm+Tff , where Tfm is the time required to compile
the fault model and Tff is the time of fault-free logic simulation.

Table II shows the results of the PECPT execution time T ′
p in

comparison to PPECPT TPPECPT [14]. As we see, the new method
outperforms considerably the previous method, and the gain increases
with the size of the circuit (up to the order of magnitude in case of the
circuit b19 containing 450 thousands gates). Amount of calculation
for small circuits is small, which makes overall execution time Tp

large in comparison to computation time Tc. This can be expressed
by overhead ratio R = Tp/Tc and is clearly seen from results in
Table II. Overhead ratio R for the case of maximum acceleration is
also brought in the table to see the concurrency overhead for different
circuits. It can be seen from the Table II that overhead ratio is getting
closer to one, with growth of the circuit size. In case of circuit b19
the speedup gets almost identical to ideal, because Tp and Tc become
almost equal.

Along with execution time there are two speedup values we
compute for every benchmark. These are Sp and Sc. Both include
single CPU (non-parallel) computation time of fault model Ttpl and
fault-free simulation Tffs of the circuit. Along with these Sp uses
parallel execution time Tp for its computation and Sc uses pure
parallel computation time Tc. The equations for speedup values Sp

and Sc are as following:

Sp =
TPPECPT

Ttpl + Tffs + Tp
=

TPPECPT

T ′
p

Sc =
TPPECPT

Ttpl + Tffs + Tc
=

TPPECPT

T ′
c

Sc can be though as topmost ideal case of speedup by PECPT
algorithm. It can be seen from the results that smaller circuits achieve



TABLE II. EXECUTION TIMES OF PPECPT AND PECPT.

Concurrency overhead
(PECPT)

Pure computation
(PECPT)

Circuit Tppecpt,
s T ′

p, s Sp
Sp

#cpu R T ′
c s Sc

Sc

#cpu
c1908 0,0568 0,0846 0,67 6 2,86 0,0330 1,72 5
c2670 0,0405 0,0873 0,46 4 6,52 0,0334 1,21 6
c3540 0,1830 0,1315 1,39 8 1,81 0,0754 2,43 7
c5315 0,0849 0,0922 0,92 4 3,05 0,0487 1,74 5
c6288 1,4610 0,6211 2,35 6 1,61 0,3883 3,76 8
c7552 0,1545 0,1187 1,30 6 1,94 0,0718 2,15 6
s13207 0,1798 0,1332 1,35 5 5,05 0,0857 2,10 10
s15850 0,4714 0,2107 2,24 8 2,34 0,1370 3,44 7
s35932 0,2554 0,1739 1,47 10 1,95 0,1381 1,85 12
s38417 0,7453 0,2427 3,07 12 1,95 0,1869 3,99 12
s38584 0,5945 0,2492 2,39 9 2,43 0,1791 3,32 12

b14 2,7742 0,8752 3,17 8 1,29 0,7300 3,80 9
b15 5,0420 1,1771 4,28 10 1,49 0,9258 5,45 10
b17 14,8550 2,4053 6,18 20 1,29 2,1121 7,03 12
b18 67,3279 7,1499 9,42 24 1,09 6,7738 9,94 24
b19 147,6501 14,4685, 10,20 24 1,03 14,0707 10,49 24

small or negative speedup. On the other hand bigger circuits take
advantage of higher number of processors. Such poor result for
smaller circuits can be explained by low amount of parallelism
accompanied by high overhead ratio R. Both of the factors change
positively when circuit size becomes bigger. One of the challenges
of this method is that different number of processors is required
to achieve maximum speedup for different circuits. The number of
processors used to achieve maximum speedup is brought under #cpu
columns. It can be seen that this number grows along with the circuit
size.

Speedup Sp dependence on the number of processors is shown
in Fig.4a (ISCAS’85), Fig.4b (ISCAS’89), Fig.4c (ITC’99). The
fluctuation in speedup of some circuits can be explained by the
fact, that it is up to OpenCL runtime to decide which processors to
use for execution. Because our testsystem has virtual hyperthreading
cores they can also be arbitrarily chosen for execution, which could
influence the speed of execution in situations where less physical
cores are used for computation, although the overall number of cores
is bigger. For all the benchmarks we can see that after the limit of
physical cores is reached the speedup is starting to decline or stays the
same. On the ITC’99 benchmarks b18 and b19 it is slightly increasing,
when more than 12 cores are used. This shows that the larger the
circuits, the more number of cores can be exploited to achieve the
maximum speed-up of simulation.

We compared PECPT to single processor simulators, such as
FSIM, PPECPT and commercial simulators C1 and C2. We nor-
malised execution time of all the simulators using previous results
from [12] and execution time of PPECPT from Table II, because
PECPT was executed on different hardware. The comparison is shown

in Table III.
PECPT proves to be in average 3.8 times quicker than FSIM

and around two times - than PPECPT for relatively smaller ISCAS
benchmarks. The speedup over commercially available simulators is
more than eight times over C1 and two orders of magnitude over C2.
When ITC’99 benchmark circuits are also taken into consideration
the average speedup over PPECPT grows to 4.0 and over C1 even
8.7 times in average, which suggests that simulation of bigger circuits
benefits more from our method.

We have also compared PECPT speedup results to GPU based
parallel fault simulator and fault table generater GFTABLE [24].
GFTABLE is pattern parallel simulator, which uses bit- and thread-
level PP to boost the performance of uniprocessor simulator FSIM.
We have used the results from Table 4 in [12] to normalize PECPT
speedup. Normalization is required because PECPT speedup is com-
puted in relation to PPECPT, while GFTABLE speedup is computed
in relation to FSIM. As there is no FSIM execution time provided for
ITC’99 benchmarks, we have taken the average ratio of 1.7 reported
in [12] to normalize PECPT results for those circuits.

The Fig. 5 shows speedup in comparison to uniprocessor version
of FSIM for both algorithms. We have arranged circuits in sequence
where their corresponding number of gates is growing. This way we
could clearly see the speedup dependency on the size of the circuit.
It can be seen that PECPT proves to be more beneficial on the circuit
sizes comparable to ITC’99 benchmarks. For example for circuit
c5315 from ISCAS’85 the speedup is 8.03 for GFTABLE and 1.50
- PECPT, while for the ITC’99 circuit b15 the speedup is 2.57 for
GFTABLE and 7.28 - PECPT. It is interesting to note that results of
the GFTABLE decrease when circuit size is growing, while PECPT
in opposite gives less gain in speed-up, while circuit size is smaller.

TABLE III. EXECUTION TIME COMPARISON.

#branches Simulation time,s
circuit #fanouts max avg fsim c1 c2 ppecpt pecpt
c2670 290 28 3,7 0,081 0,223 2,430 0,041 0,087
c3540 356 22 4,5 0,407 1,505 8,745 0,183 0,132
c5315 510 31 5 0,149 0,594 6,047 0,085 0,092
c6288 1456 16 2,6 2,389 5,489 56,072 1,461 0,621
c7552 812 72 4,1 0,348 1,043 11,332 0,155 0,119
s13207 1224 37 3,7 0,225 0,503 6,291 0,180 0,133
s15850 1518 34 3,6 0,943 2,112 19,379 0,471 0,211
s35932 5295 1449 3,4 0,412 1,058 17,477 0,255 0,174
s38417 4569 49 3,2 1,725 3,343 33,007 0,745 0,243
s38584 3946 88 4,5 1,124 2,155 29,727 0,595 0,249

Average speedup 3,786 8,748 92,460 2,024 1,000
b14 2409 82 4,8 n/a 9,413 n/a 2,774 0,875
b15 2353 95 4,8 n/a 7,411 n/a 5,042 1,177
b17 8145 149 4,8 n/a 22,340 n/a 14,855 2,405

Average speedup n/a 8,774 n/a 4,118 1,000

Fig. 4. Speedup vs #CPU for PECPT. a). ISCAS’85 benchmarks, b). ISCAS’89 benchmarks, c). ITC’99.



Fig. 5. Comparison of GFTABLE and PECPT.

It is stated in [24], that performance of GFTABLE for bigger circuits
is influenced by amount of global memory available on GPU. This
highlights the scalability bottelneck of the GFTABLE. The results of
our approach also depend on the amount of system memory available,
but CPU systems in general are more flexible in increasing memory
size than GPUs. Even for the circuits, which could fit into GPU
memory we can see slight decrease in performance of GFTABLE.
Contrary the results of our approach in average become better while
circuit size increases.

A. Future work
In order to make the method more practical it is needed to

define the number of CPUs involved to provide the best speedup for
particular circuit. We believe this can be achieved by further research
because the optimum number of CPUs and speedup depend on circuit
parameters.

VII. CONCLUSION

We have proposed a new method for concurrent pattern parallel
exact critical backtracing based fault simulation by exploiting circuit
processing concurrency. The first time, the parallelization in fault
simulation is carried out simultaneously in three dimensions: pattern
parallelism, fault parallelism and computing model parallelism, where
the pattern- and fault-parallelism are utilized using each single CPU
core, while computing model parallelism is achieved using multiple
CPUs.

A novel mixed level technique for fault reasoning was proposed
to speed up and to increase the accuracy of fault simulation, compared
with previous methods.

Experiments showed that the average speed-up compared to the
best uniprocessor based simulators is around 3-4 times in average,
and up to order of magnitude compared to the available state-of-the-
art commercial uniprocessor based simulators. The method is well
scaling, the speed up of the method grows with the size of the circuit,
opposite to the pattern-parallel simulation method. The reason lies in
the memory bottleneck of shared-memory systems, which increases
more rapidly for pattern-parallel systems with the growth of the circuit
size.
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Abstract.  We propose a very fast fault simulation 

method which is based on exact parallel critical path 

tracing developed for combinational circuits. To 

convert the sequential problem of fault simulation into 

the combinational one we introduce into the circuit a 

set of MISRs to improve the circuit’s observability. 

The role of these MISRs is to monitor signals on the 

global feedback loops, and on selected fan-out stems in 

the circuit. The given sequential circuit is partitioned 

into a set of sequential or combinational sub-circuits, 

with breakpoints at global feedback loops or at 

selected fan-out stems. The simulated test sequence is 

mapped into local sets of input patterns applied to the 

sub-circuits. For these local test patterns, each sub-

circuit is fault simulated by exact parallel critical path 

tracing similarly as a combinational equivalent circuit. 

The feasibility and correctness of the method is shown, 

and the experimental results which demonstrate the 

speed-up achieved by the method are provided.     

  

Keywords:  sequential circuits, stuck-at-faults, design for 

testability, fault simulation with critical path tracing 

I.  INTRODUCTION 

Fault simulation is one of the most important tasks in 

digital circuit design and test. The efficiency of test 

quality and dependability evaluation, test generation and 

fault diagnosis relies heavily on the speed of fault 

simulation. Accelerating fault simulation would have a 

strong impact to all of the mentioned applications. 

Many different methods have been proposed for fault 

simulation in combinational circuits based on the concept 

of  parallel pattern single fault propagation (PPSFP) [1].  

Another trend is based on the fault reasoning (deductive 

[2], concurrent [3] and differential simulation [4]) used to 

be very powerful, since these methods allow to collect all 

detectable faults by a single run of the given test pattern. 

What they cannot do, is to produce reasoning for many 

test patterns in parallel. 

The original critical path tracing method [5, 6] 

eliminates explicit fault simulation for faults within Fan-

out-Free Regions (FFR). However, the explicit simulation 

of faults at fan-outs was still needed. A modified critical 

path tracing technique that excludes fault simulation for 

fan-out stems, and includes a system of rules to check the 

exactness of critical path tracing beyond the FFRs, and 

which is linear in time, was proposed in [7]. However, the 

rule based strategy does not allow parallel analysis and 

rule check for many patterns simultaneously. This 

drawback was removed in [8] by introducing a novel 

concept of Parallel Pattern Exact Critical Path Tracing 

(PPECPT) which can be applied efficiently also beyond 

FFRs. In [9], the same method was for a general class of 

X-faults. The main idea of the method was in compiling a 

dedicated compact computing model through the circuit 

topology analysis, which allows exact critical path tracing 

throughout the full circuit and not only inside FFRs. 

Unfortunately, for sequential circuits the parallelism 

in fault simulation and fault reasoning is not possible, 

because of the sequential (time related) dependence of 

signals in the circuit. In this paper we propose to modify 

the given circuit to improve the transparency 

(observability) of the circuit. The traditional way to do 

that is to use the scan-path concept [10] which converts 

the sequential problem of fault simulation to the 

combinational one. However, the use of scan-chains has 

proven to be often inadequate due to increasing the cost in 

terms of additional hardware and increased testing time 

[11], excessive power dissipation during test [12] and 

leading to yield loss because of over-testing [13]. 

In the following we show that a sequential circuit can 

still be fault simulated as a combinational one when to 

improve its observability by inserting a set of Multiple 

Input Signature Registers (MISR), for monitoring of a 

selected subset of test points in the circuit. We introduce 

and discuss two rules for selecting these test points for 

including MISRs, and then show how the test sequence 

can be mapped into a set of independent local test 

sequences which can be simulated in parallel similarly to 

the case of combinational circuits.  

The target of the paper is to combine three ideas: to 

suggest functional testing of sequential circuits to be 

carried out at-speed and on-line, instead of scan-path 

testing, for providing better test quality; to improve 

observability (testability) of the circuit with better fault 

diagnostic resolution; and, finally, to provide a method of 

fault simulation in a modified circuit with a dramatic 

speed-up compared to the traditional non-parallel fault 

simulation of sequential circuits. 

We consider in this paper only the class of stuck-at-

faults (SAF), however, as shown in [9], the results can be 

extended to other fault classes like conditional SAF, 

transition delays, and X-faults. 

The rest of the paper is organized as following. In 

Section 2 we present the theoretical basics of the topic by 

giving a short overview of the exact parallel critical path 

tracing in combinational circuits were we show how the 

fault tracing can be expanded in exact way beyond the 

fan-out stems. In Section 3 we describe how this method 

can be generalized for the case of sequential circuits. In 

Section 4, we describe experimental results, and Section 5 

concludes the paper.  



II: PARALLEL PATTERN CRITICAL PATH TRACING 

Consider a combinational circuit as a network of FFRs 

where each of the FFRs can be represented as a Boolean 

function y = F(x1, x2, … xn) = F(X), where X = x1, x2, … xn 

is the input vector of the FFR. Such a network is 

presented in Fig.1.  

The fault simulation for a FFR according to 

traditional critical path tracing is equivalent to 

calculation of Boolean derivatives: if ∂y/∂x = 1 then the 

fault is propagated from x to y. This check can be 

performed in parallel for a given subset of test patterns. 

In order to extend the parallel critical path tracing 

beyond the fan-out free regions we use the concept of 

Boolean differentials [14].  
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Fig.1. Combinational circuit with five FFRs 

Consider the full Boolean differential of the FFR 

given by   y = F(X) as  
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Here, by dx we denote the change of the value of x 

because of a fault at x, whereas dy = 1 if some erroneous 

change of the values of arguments of the function (1) 

due to a fault causes the change of the value of y, 

otherwise dy = 0.  

Let x be a fan-out variable with branches which 

converge in a FFR y = F(X) at the inputs denoted by a 

subset X’ ⊂ X . In [11] we have shown that from the 

expression (1) the following relationship can be derived: 
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where X’ ⊂ X is the sub-vector of variables which 

depend on x, and X’’ = X \X’ is the sub-vector of 

variables which do not depend on x.  

For example, to get to know if the fault on z2 in the 

circuit of Fig.1 can be detected on y4 by the given 

pattern, we have to check if 
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The formula (2) can be used for calculating the 

impact of the fault at the fan-out stem x on the output y 

of the converging fan-out region by consecutive 

calculating of Boolean derivatives over related FFR 

chains starting from x up to y. For that purpose, for each 

converging fan-out stem, the corresponding formulas 

like (3) should be constructed for each FFR involved in 

the convergence. In the case of nested convergences, the 

formulas will have as well a nested structure. All these 

formulas will constitute partially ordered computation 

model for fault simulation which can be composed by 

the topological analysis of the circuit [9]. Since the 

formulas are Boolean, all computations can be carried 

out in parallel for a bunch of test patterns. 

Introduce the following notations for representing 

symbolically the computing model for fault simulation 

using the formula (3): 

• (x, y) – for ∂y/∂x, 

• {Xk, y} – for a subset of formulas {∂y/∂x  x ∈ 

Xk} 

• Rxy((x, x1), … (x, xk)) – for the general case (3), 

where X’ = (x1,…,xk), 

• Dx – vector which shows if the fault at the node x 

is detected or not detected at any circuit output, 

• DX – a set of vectors Dx for the nodes x ∈ X. 

An example of a computational model, using the 

given symbolics, for the full fault simulation of the 

circuit in Fig.1, is presented in Table 1. 

Table I. Computational model for fault simulation 

L Partially ordered formulas 
Types of simulation 

tasks 

7 

∀x4,i∈X4: Dx4,i = {x4,i,y4},  

Dz21 = (z21,y4), Dz31 = (z31,y4);  

∀x5,i∈X5: Dx5,i = {x5,i,y5},  

Dz13 = (z13,y5), Dz32 = (z32,y5) 

Fault simulation 
inside the FFRs  

(F4and F5) 

6 Dz3 = Dz31∨ Dz32 
Fault simulation of 
fan-out stems (z3) 

5 

∀x3,i∈X3: Dx3,i = {x3,i,z3}∧Dz3 

Dz22 = (z22,z3)∧Dz3,  

Dz12 = (z12,z3)∧Dz3 

Fault simulation 
inside the FFRs (F3) 

4 
Dz2 = Rz2,y4((z2,z21) ≡ 1,(z2,z31)) ∨  

((z22,z32)∧Dz32) 

Fault simulation of 
fan-out stems (z2) 

3 
∀x2,i∈X2: Dx2,i = {x2,i,z2}∧Dz2,  

Dz11 = {z11,z2}∧Dz2  

Fault simulation 
inside the FFRs (F2) 

2 

Dz1 = ((z1, z3) ∧ Dz31) ∨  

Rz1,y5((z1,z3),(z1,z13) ≡ 1) where  

(z1, z3) = Rz1,z3((z1,z22),(z1,z12) ≡ 1)) 

Fault simulation of 
fan-out stems (z1) 

1 ∀x1,i∈X1: Dx1,i = {x1,i,z1}∧ Dz1 
Fault simulation 

inside the FFRs (F1) 

 
      The formulas presented in Table 1 can be easily 

created and stored by the topological tracing of the 

circuit by algorithms developed in [9]. The algorithm 

has linear complexity. However, the complexity of the 

computational model and the related fault simulation 

speed depends on the structure of the circuit.  

III. CONVERTING THE SEQUENTIAL FAULT SIMULATION 

TASK INTO THE COMBINATIONAL ONE 

The substantial problem of fault simulation in sequential 

circuits lies in the fact that the same fault can influence on 

a particular component in different time frames. This fact 

excludes the possibility of exploiting the powerful critical 

path tracing based method, explained in the previous 

section, for fault simulation in combinational circuits. The 

reason is in the exponential explosion of the number of 

nested and intersected re-converging fan-out regions over 

different time-frames. However, this problem as we will 

show can be removed if there will be a possibility to 

detect the fault in the first occasion when it has 

propagated up to the component.   



There are two reasons why a fault can be propagated 

to the same component during different time frames: 

because of the global feedback which includes this 

component, and because of a re-convergent fan-out where 

the fault may propagate from the fan-out stem to the 

converging point by different number of clocks. If we will 

insert a MISR to these “problem causing” test points, the 

fault can be captured always at the first occasion it 

influences on the component. The detection of the fault is 

fixed, and we can ignore its impact in the future. Note, we 

consider here only the problem of fault detection (for 

measuring the fault coverage), and not the task of creating 

fault tables to be used for fault diagnosis purposes. 

From above, two rules result for improving the 

observability of the sequential circuit: 

RULE 1: Insert a MISR to all registers (and only to 

them) which are included into a global feedback. Inserting 

a MISR is equivalent to cutting the feedback loop (in a 

sense to ignore the further fault propagation). 

RULE 2: Insert a MISR into all fan-out stems which 

have at least a single converging point, so that a fault may 

propagate from the fan-out stem to this point by different 

number of clocks. 

Consider a sequential circuit in Fig.2 which consists 

of 9 registers (latches) R1 – R9, and 8 combinational sub-

circuits F1 – F9. The circuit has 5 inputs and 2 outputs.  
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Fig.2. Sequential circuit 
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Fig.3. Sequential circuit with MISR 

In the circuit in Fig.2, two registers R7 and R8 are 

included into a global feedback loop, and hence, 

according to RULE 1, they must be furnished by MISR. 

On the other hand, there is a fan-out stem Z1 which has 

two branching paths which re-converge in F3. The first 

path represents a direct connection, and the second one is 

a path via register R6, where the possible faulty signal 

needs for propagating from Z1 to F3 additional clock. 

Hence, according to RULE 2, the node Z1 must be 

monitored by MISR. The modified circuit is presented in 

Fig.3. For better focusing to the problem under 

discussion, and to skip the technical question of handling 

don’t care signals, we assume that the registers with 

global feedback R7 and R8 are provided with RESET 

inputs RES7 and RES8, respectively. 

In Fig.4, a simulation cycle of a single independent 

test sequence with lengths of 6 clocks is shown where by 

rectangles the 5 observation points are denoted. In this 

simulation cycle we can extract 5 functions (the upper 

indexes denote the delay in clock cycles between the 

moments when the values of argument signals and the 

function signal were fixed, respectively):  
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Fig.4. Simulation cycle of a single independent test   

Since the arguments of these functions are either primary 

inputs of the circuit or the nodes supported by MISR, we 

can regard the set of functions (3) as a model of 5 

interconnected combinational circuits, which can be fault 

simulated independently. 

Table 2. A test sequence for circuit in Fig.3 

Cl 
Input sequences Output sequences 

Test Ti Test Ti+1 Test Ti Test Ti+1 

1 
X1

1, X2
1, X3

1, 

RES7
1    

2 X1
2, X2

2, X3
2 

X1
2, X2

2, X3
2, 

RES7
2 

Z1
2  

3 RES8
3, X4

3 X1
3, X2

3, X3
3 R7

3, Z1
3 Z1

3 

4  RES8
4, X4

4  R7
4, Z1

4 

5 X5
5  R8

5, Y1
5  

6  X5
6 Y2

6 R8
6, Y1

6 

7    Y2
7 

Table 2 represents two (shifted in one clock cycle) 

input sequences of the two test segments Ti and Ti+1, and 

the related output sequences captured by MISR in the 
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test points Z1, R7, R8, and directly at outputs Y1 and Y2, 

which can be as well fed into MISR. The table represents 

the simulation order of the functions (3). Because of the 

RULES 1 and 2 are satisfied in the modified circuit in 

Fig 3, the input sequences of Ti and Ti+1,can be regarded 

as independent test patterns, spread merely over different 

time frames. In this way, a full test sequence applied to 

the circuit in Fig.3 can be split into a set of independent 

test segments, all shifted by one clock one after another. 

Since the test segments can be treated as a set of 

independent test patterns, they can be fault simulated by 

PPECPT in parallel as in case of combinational circuits.  

IV.  EXPERIMENTAL DATA 

As experimental results we compare in Table 3 the speed 

of SAF simulation in sequential circuits (where all the 

latches are fed into MISR) by the PPECPT method 

described in Section 2 with different known fault 

simulators for combinational circuits: FSIM [15], and two 

state-of-the-art commercial simulators C1 and C2 from 

major CAD vendors.  Simulation times were calculated 

for 10000 patterns. Experiments were run on a 1.5GHz 

Ultra SPARC IV+ workstation using SunOS 5.10. 

Table 3. Comparison of PPECPT with other fault 
simulation methods for circuits with full scan-path 

Circuts 
Number 

of gates 

SAF simulation time, s 

Fsim C1 C2 PPECPT 

c3540 2784 2.0 7.4 43 0.9 

c5315 4319 1.4 5.6 57 0.8 

c6288 4846 12.1 27.8 284 7.4 

s15850 14841 5.4 12.1 111 2.7 

s38417 34831 16.2 31.4 310 7.0 

s38584 36173 12.1 23.2 320 6.4 

b14 19491 N/A 49.2 N/A 14.5 

b15 18248 N/A 39.1 N/A 26.6 

b17 64711 N/A 117 N/A 77.8 

Average speed gain 2.0 4.3 45 1 

In [16] we have presented a family of benchmark 

circuits which represent different architectures of a bio-

impedance signal analyser (a pipe-lined signal processor) 

with the same functionality. We investigated the 

feasibility of the proposed fault simulation method for 

calculating the fault coverage of the at-speed functional 

self-test developed for these processors. The results of 

fault simulation for the whole family of 8 processors 

(column 1) are presented in Table 4 where LS denotes the 

behaviour level logic simulation time, FS denotes the LS 

multiplied by the number of faults to be simulated one by 

one, and the PPECPT shows the simulation time needed 

for the proposed method. The experiments showed that 

the gain we achieved by using the proposed method is 

around 2-3 orders of magnitude. For this advantage we 

have to pay by the cost of added set of MISR which 

however is comparable to the cost of scan-path. On the 

other hand, we achieve by the proposed method dramatic 

speed-up in the test time, compared to the scan-path 

approach, and improved fault diagnosis. 

V. CONCLUSIONS 

In this paper we have proposed a novel approach for fault 

simulation in sequential circuits which allows to achieve 

dramatic speed-up in simulation time compared to the 

traditional single fault simulation in sequential circuits. 

The high speed is achieved thanks to removing the 

problem of sequential dependence of simulated signals in 

different time frames by improving observability of the 

circuit by inserting a set of MISRs at selected test points. 

Table 4. Comparison of the proposed method with single 
fault simulation in sequential circuits 

Circuts 
Number 

of faults 

SAF simulation time, s 
Gain 

LS FS PPECPT 

8a 112034 0.155 17365 30.0 579 

8b 83940 0.152 12759 24.7 517 

8be 99330 0.168 16687 62.1 269 

8bk 86878 0.159 13814 25.2 548 

8bs 100820 0.154 15526 173.4 90 

8c 122386 0.159 19459 35.9 542 

8d 123012 0.161 19804 35.5 558 

8de 136876 0.164 22447 81.3 276 

 

The main novelties of the paper are as follows. Instead of 

full scan-path we propose to use MISR for monitoring the 

circuit in selected test points. As a consequence, we can 

use instead of scan-path testing at-speed functional test 

which guarantees better test quality.  Improved 

observability of the circuit allows better fault diagnostic 

resolution. Finally, a dramatic speed-up of fault 

simulation, compared to the traditional non-parallel fault 

simulation of sequential circuits, was achieved. 
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