
At-Speed Testing and Test Quality Evaluation for
High-Performance Pipelined Systems

MAKSIM GOREV

P R E S S

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C109

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Department of Computer Engineering
Chair of Computer Systems Test and Verification

This dissertation was accepted for the defense of the degree of Doctor of Phi-
losophy in Computer and Systems Engineering on October 30th, 2015.

Supervisors: Prof. Peeter Ellervee, PhD
Dept. of Computer Engineering,
Tallinn University of Technology, Tallinn, Estonia
Prof. Raimund-Johannes Ubar, D. Sc.
Chair of Computer Systems Test and Verification, Dept. of Computer Engineering,
Tallinn University of Technology, Tallinn, Estonia

Opponents: Prof. Heinrich Theodor Vierhaus, PhD
Department of Computer Science,
Brandenburg University of Technology Cottbus, Germany

Prof. Erik Larsson, PhD
Department of Electrical and Information Technology,
Lund University, Sweden

Defense of the thesis: January 14
th, 2016

Declaration:
I hereby declare that this doctoral thesis, submitted for the doctoral degree at
Tallinn University of Technology, is my original investigation and achievement
and has not been submitted for the defense of any academic degree elsewhere.

Maksim Gorev

Copyright: Maksim Gorev, 2016

ISSN 1406-4731

ISBN 978-9949-23-876-7 (publication)
ISBN 978-9949-23-877-4 (PDF)

INFORMAATIKA JA S TEHNIKA C109ÜSTEEMI

Töökiirusel testimine ja testi
kvaliteedi hindamine kõrgjõudlus-

konveierarhitektuuriga süsteemidele

MAKSIM GOREV

to my beloved parents Elena and Vladimir

C O N T E N T S

list of publications ix
acronyms xiii

1 introduction 15

1.1 Background and motivation . 16

1.2 Thesis Objectives . 19

1.3 Thesis Contributions . 19

1.4 Thesis Overview . 19

2 benchmark suite 21

2.1 Overview of the initial design . 21

2.2 Structural characteristics of the circuits 24

2.3 Testability characteristics of the circuits 27

2.3.1 Discussion of the results . 27

2.4 Chapter summary . 29

3 at-speed self-testing 31

3.1 Overview . 32

3.2 General description of the method 33

3.3 Fault simulation environment . 38

3.4 Case study: signal processing unit as UUT 44

3.5 Experimental results . 46

3.5.1 Fault coverage of the blocks 46

3.5.2 Impact of the test length . 48

3.5.3 Comparison to the state-of-the-art methods 48

3.5.4 Impact of the resource sharing 50

3.6 Chapter summary . 50

4 multi-core fault simulation environment 53

4.1 Overview . 53

4.1.1 Serial Fault Simulation . 54

4.1.2 Parallel Fault simulation . 54

4.1.3 Deductive fault simulation 55

4.1.4 Concurrent fault simulation 56

4.1.5 Differential Fault Simulation 57

4.1.6 Critical path tracing . 58

4.1.7 Multi-core methods . 58

4.2 Critical path fault tracing . 60

4.2.1 Structurally Synthesized Binary Decision Diagrams 60

4.2.2 Parallel pattern critical path fault tracing 61

4.2.3 Fast fault simulation with SSBDDs 63

4.3 Mixed level fault simulation with SSBDDs 65

vii

contents

4.4 Multicore fault simulation using SSBDDs 68

4.4.1 Representation of levels . 68

4.4.2 Fault simulation process . 69

4.5 Experimental Results . 69

4.5.1 Discussion . 72

4.5.2 Comparison . 73

4.6 Chapter summary . 75

5 combinational fault simulation environment for sequen-
tial circuits 77

5.1 Overview . 77

5.2 Modification of Sequential Circuit 78

5.3 Experimental Data . 82

5.4 Chapter summary . 84

6 conclusions 85

6.1 Benchmark Suite . 85

6.2 Methods for testing . 85

6.3 Methods for test quality evaluation 86

6.4 Future work . 87

bibliography 89

acknowledgements 97

abstract 99

annotatsioon 101

curriculum vitæ 103

appendix a 107

appendix b 115

appendix c 125

appendix d 139

appendix e 147

viii

L I S T O F P U B L I C AT I O N S

publications included in the thesis

1. Gorev, M.; Ubar, R.; Ellervee, P.; Devadze, S.; Raik, J.; Min, M. Functional
Self-Test of High-Performance Pipe-Lined Signal Processing Architec-
tures. Microprocessors and Microsystems,pages 1 - 14, 2015

The author was in charge of developing the methodology and implemented
all the necessary software components of the evaluation environment. The
author planned and executed the necessary experiments. The author pre-
pared the paper for publication.

2. Ubar, R.; Kousaar, J.; Gorev, M.; Devadze, S. Combinational Fault Sim-
ulation in Sequential Circuits. Proceedings of International Symposium on
Circuits and Systems. Lisbon, Portugal, pages 24-27 May, 2015.

The author developed the concept through the numerous discussions with
the supervisor. The author ran the experiments. The author prepared a
paper for publication.

3. Gorev, M.; Ubar, R.; Devadze, S. Fault Simulation with Parallel Exact Criti-
cal Path Tracing in Multiple Core Environment. Proceedings of IEEE Confer-
ence on Design, Automation & Test in Europe – DATE-2015. Grenoble, France,
March, 2015.

The author developed a mixed-level fault simulation concept. The author
developed a concept to run PPECPT on multi-core systems. The author
implemented the concept in the software. The author planned and run the
experiments. The author prepared the paper for publications. The author
presented the paper at the conference.

4. Gorev, M.; Ubar, R.; Ellervee, P.; Devadze, S.; Raik, J.; Min, M. At-Speed
Self-Testing of High-Performance Pipe-Lined Processing Architectures.
Proceedings of the 31st Norchip Conference, Vilnius, Lithuania, Nov. 2013.

The author was in charge of developing the methodology and implemented
all the necessary software components of the evaluation environment. The
author planned and executed the necessary experiments. The author pre-
pared the paper for publication. The author presented the paper at the
conference.

5. Kruus, H.; Ubar, R.; Ellervee, P.; Gorev, M.; Pesonen, V.; Devadze, S.; Oras-
son, E.; Brik, M.; Min, M.; Annus, P.; Kruus, M.; Meigas, K. A Benchmark
Suite for Evaluating the Efficiency of Test Tools. The 13th Biennial Baltic
Electronics Conference (BEC2012), Laulasmaa, Estonia, 2012.

ix

contents

The author participated in decision making process regarding strucural
design of the circuits. The author implemented some of the circuits. The
author participated in evaluation of testability characteristics of the circuits.
The author took part in preparation of the paper for publication.

publications not included in the thesis

Test topics

1. Kostin, Sergei; Ubar, Raimund; Magi, Gunnar; Gorev, Maksim. (2014). Com-
parison of two approaches to improve functional BIST fault coverage.
Proceedings of Baltic Electronics Conference – BEC., Laulasmaa, 6-8 October,
2014

2. Gorev, Maksim; Ubar, Raimund.Pipelined execution of data-parallel al-
gorithms. Conference proceedings of Baltic Electronic Conference 2014: Baltic
Electronic Conference, Laulasmaa, 6-8 October, 2014

Educational topics

1. Jervan, Gert; Gorev, Maksim; Pesonen, Vadim (2012). Teaching Embedded
Systems as a part of a Computer Engineering Curricula. 23rd EAEEIE
annual conference, Cagliari, Italy, February 26-27, 2012. , 1 - 4.

2. Gorev, M.; Pesonen, V.; Ellervee, P. (2010). Introducing Computer Systems
Related Topics in the First Study Semester. The 8th European Workshop on
Microelectronics Education (EWME’2010), Darmstadt, Germany, May 2010.. ,
185 - 188.

3. Pesonen, Vadim; Gorev, Maksim; Tammemae, Kalle (2010). Learning-by-
Gaming in HW/SW Codesign. 8th European Workshop on Microelectronics
Education, May 10-12, 2010, Darmstadt, Germany.

Design topics

1. Ojarand, J.; Min, M.; Annus, P.; Gorev, M.; Ellervee, P. (2014). Optimiza-
tion of Multisine Excitation for a Bioimpedance Measurement Device.
In: 2014 IEEE International Instrumentation and Measurement Technology Con-
ference Proceedings: 2014 IEEE International Instrumentation and Measurement
Technology Conference (I2MTC 2014), Montevideo, Uruguay, May 12-15, 2014.
Hoboken, NJ, USA: IEE Conference Publications, 829 - 832.

2. Gorev, M.; Pesonen, V.; Ellervee, P. (2012). Implementation of Multisine
Signal Generator for a Bioimpedance Measurement Device. The 13th
Biennial Baltic Electronics Conference (BEC2012). TTU Press.

x

contents

3. Pesonen, V.; Gorev, M.; Ellervee, P. (2012). Multisine Signal Generation
Method for a Bioimpedance Measurement. The 15th IEEE Symposium
on Design and Diagnostics of Electronic Circuits and Systems (DDECS 2012),
Tallinn, Estonia, April 2012. IEEE Computer Society, 111 - 114.

4. Jenihhin, Maksim; Gorev, Maksim; Pesonen, Vadim; Mihhailov, Dmitri; Ellervee,
Peeter; Hinrikus, Hiie; Bachmann, Maie; Lass, Jaanus. (2011). EEG Ana-
lyzer Prototype Based on FPGA. Poceedings of IEEE 7th International Sym-
posium on Image and Signal Processing and Analysis (ISPA): IEEE 7th Inter-
national Symposium on Image and Signal Processing and Analysis (ISPA 2011),
Dubrovnik, Croatia, September 4-6, 2011. IEEE, 101 - 106.

5. Gorev, Maksim; Pesonen, Vadim; Ellervee, Peeter (2011). Polynomial Curve
Fitting by Substitution. The 8th Annual FPGAworld Conference, Copen-
hagen, Stockholm, Munich, Sept. 2011.

6. Gorev, M.; Pesonen, V.; Mihhailov, D.; Jenihhin, M.; Ellervee, P. (2011).
FPGA-Based Implementation of EEG Analyzer. DATE’11 Friday Work-
shop on "Design Methods and Tools for FPGA-Based Acceleration of Scientific
Computing", Grenoble, France, March 2011.

7. Gorev, M. ; Ellervee, P. (2010). FPGA Based System for Video Compres-
sion and Transmission over Bluetooth. The 53rd IEEE International Mid-
west Symposium on Circuits and Systems (MWSCAS’2010), Seattle, Washing-
ton, USA, Aug. 2010. IEEE, 367 - 370.

8. Pesonen, V.; Gorev, M.; Annus, P.; Min, M.; Ellervee, P. (2010). Reconfig-
urable Data Acquisition Unit for Bioimpedance Measurements. In: Pro-
ceedings of the 12th Biennial Baltic Electronic Conference BEC2010: IEEE 2010
12th Biennial Baltic Electronics Conference, October 4-6, 2010, Tallinn, Estonia.
(Toim.) T. Rang, P. Ellervee, M. Min. IEEE, 257 - 260.

9. Pesonen, V.; Gorev, G.; Annus, P.; Min, M.; Ellervee, P. (2010). Reprogrammable
Data Acquisition Unit to Reduce Aliasing Effect in Bio-impedance Mea-
surements. In: Proceedings of the 7th FPGAworld Conference: The 7th Annual
FPGAworld Conference, Copenhagen, Denmark, Sept. 2010. (Toim.) Lindh,
L.; Mooney, V. J. III; Kalberg, D.; Pablo, S. de; Oberg, J.. Association for
Computing Machinery, 29 - 34.

10. Gorev, M.; Ellervee, P. (2010). Variable byte-length data compression algo-
rithm. In: Proceedings of the 12th Biennial Baltic Electronic Conference BEC2010:
IEEE 2010 12th Biennial Baltic Electronics Conference ,October 4-6, 2010, Tallinn,
Estonia. (Toim.) T. Rang, P. Ellervee, M. Min. IEEE, 353 - 356.

xi

A C R O N Y M S

ATPG Automatic Test Pattern Generation
ABIST Arithmetic Built-In Self Test
AGM Alternative Graph Model
ADC Analog-Digital Converter
BIST Built-In Self Test
BILBO Built-In Logic Block Observer
BDD Binary Decision Diagram
CEBE Centre for Integrated Electronic Systems and Biomedical Engineering
CAD Computer-Aided Design
CPU Central Processing Unit
DFT Design-For-Testability
DSP Digital Signal Processing
DTL Deterministic Test Length
DTG Deterministic Test Generation
FPGA Field-Programmable Gate Array
FS Fault Simulation
FC Fault Coverage
FFR Fanout-Free Region
GPU Graphics Processing Unit
GPGPU General-Purpose Computing on Graphics Processing Units
HBL Hybrid Built-In Self Test Test Length
HBC Hybrid Built-In Self Test Cost
HyFBIST Hybrid Functional Built-In Self Test
IC Integrated Circuit
LFSR Linear Feedback Shift Register
LBIST Logic Built-In Self Test
LSB Least Significant Bit
MEMS Microelectromechanical System
MUX Digital Multiplexer
MISR Multiple-Input Signature Register
MSB Most Significant Bit
MIMD Multiple Instruction Multiple Data
PPECPT Parallel Pattern Exact Critical Path Tracing
PPSFP Parallel Pattern Single Fault Propagation
PECPT Parallel Exact Critical Path Tracing
RTG Random Test Generation
RAM Random Access Memory
SSBDD Structurally Synthesized Binary Decision Diagrams
SAF Stuck-At Fault

xiii

contents

SP Scan Path
SIMD Single Instruction Multiple Data
S3BDD Shared Structurally Synthesized Binary Decision Diagram
TRE Test Responce Evaluation
UUT Unit Under Test
VHDL VHSIC Hardware Description Language
VLSI Very-Large-Scale Integration
XML Extensible Markup Language

xiv

1
I N T R O D U C T I O N

Advantages in manufacturing of digital Integrated Circuits (IC), driven by
Moore’s law [50], stimulate growth in size and complexity of modern digital
systems. This allowed packing more transistors into chips thus creating possi-
bilities to implement more complex systems on a single chip. In addition, such
exponential growth created challenges both for designers - how to handle such
complex designs - and for manufacturers - how to test that such complex chips
are working. The fundamental way to test the chip is to set its inputs to some
known values - test vector, and observe its outputs whether they have the ex-
pected results or not. Single test vector is not usually enough to detect all the
faults inside the chip. Therefore the sequence of different test vectors is applied.
The physical defects inside the chip are described by the variety of fault models.
In order to generate the test sequence the fault model is chosen first to obtain the
number of possible faults. The generation of the test vectors is then done either
randomly or in deterministic way [62].

In random approach the pseudo-random generator is used to find the sequence
of random vectors. In order to obtain the best test sequence the equation of the
pseudo-random generator and its initial value are modified. The resulted set of
random sequences is then simulated on the computer model of the circuit using
fault simulation to obtain the number of possible faults covered by particular
sequence. In deterministic approach the software called Automatic Test Pattern
Generator (ATPG) is used to analyse the model of the circuit and calculate the
necessary input values required for detection of particular fault. The results for
all the faults are then combined to obtain the test sequence. The test sequence is
then applied either using external testers or internally inside the chip [62].

Throughout the time the role of testing in nowadays IC design and manu-
facturing flows becomes more and more important[9, 56], because the growing
number of transistors also increases the probability of the fault occurence. With
the growth of the size and complexity of the circuits the fundamental methods
had to evolve in order to guarantee the correct operation of the chip, preserving
the quality and speed of test.

The challenges for testing created by the technology advancements can be
demonstrated on the dark-silicon example. This term refers to the percentage
of the chip that has to be shut down in order to comply with thermal constraints.
Different studies show that at 8 nm technology nodes this percentage could be
50%-80% [20]. Existing test methodologies should also account on this. For exam-

15

introduction

ple, ATPG goal is to achieve good fault coverage with short test length. In the
test situation such vectors produce higher amount of switching activity inside
an IC than during its normal operation. In the case of dark-silicon thermal con-
straints could make use of ATPG vectors infeasible, as device could simply melt
during test execution [60]. Although this fact creates new challenges, in my view
it could also be used to increase an amount of test hardware and provide growth
in reliability and yield of future ICs.

This thesis provides solutions in some important areas of nowadays structural
test, such as built-in-self-test, at-speed test, fault simulation and benchmarks. The
importance of these areas is briefly introduced next.

1.1 background and motivation

benchmarks The design process of a digital circuit consists of solving mul-
tiple tradeoff issues according to area and speed requirements. The amount of
resource sharing defines whether the circuit will be fast or compact. One thing,
which is not included into typical VLSI design flow, is how the resource sharing
affects the testability parameters of the circuit, such as random fault coverage,
fault simulation time and the time to run ATPG algorithms [8]. Considering such
things at design stage is important, because later test routines could be running
for weeks and even longer in case of big industrial designs. In this situation the ef-
fect caused to the testability characteristics by design considerations could greatly
affect time-to-market in the future designs. The benchmark circuits commonly
used are ISCAS85[11], ISCAS89[10] and ITC99[17] that provide combinational
and sequential circuits with different parameters such as random testability and
different size and dimensions. There also exist specific industrial designs such as
Leon [21] and OpenRISC [1] processors for methods specifically targeting general-
purpose CPUs. However to the best of my knowledge there are no benchmarks
that provides different design considerations in terms of resource sharing for the
circuit with the same functionality.

The goal of Chapter 2 is to present the new family of benchmark circuits tar-
geting different resource sharing considerations for the same functionality. The
benchmark is based on the industrial design for computational unit of bio-impe-
dance analyzer. The suite allows to clearly see the dependency of different testa-
bility characteristics on the amount of shared resources.

at-speed test The technology advancements impose new challenges to test-
ing of modern chips as device geometries shrink, and deep-submicron delay de-
fects are becoming more and more important requiring more accurate dynamic
tests than before [43]. Therefore testing of chips closer to real working conditions
by so-called at-speed test is becoming the must. As the size shrinks down it be-
comes more challenging to exactly control transistor parameters [59] that results
in bigger number of delay faults and lower yield. Delay faults can typically be
seen, when IC works at it’s normal speed and have poor detection rate at low
test speeds. This issue demands new methods that target at-speed execution of

16

1.1 background and motivation

test process. The use of scan chains has proven to be often inadequate increasing
the cost in terms of additional hardware and testing time [12], excessive power
dissipation during test [78] and leading to yield loss because of over-testing [15].

At-speed test is an important trend today having additional benefit of the abil-
ity to test circuits under conditions that are as close as possible to normal circuit
operation [29]. This factor has a direct impact on the number of chips that are
found defective during system operation, but still pass all manufacturing and
functional tests. At-speed testing can be used for characterization and can also
expedite test application time.

A lot of research has been carried out to relieve the burden of external testers
by introducing system self-test approaches like hardware-based Logic Built-in
Self-Test (LBIST) that typically use Linear Feedback Shift Registers (LFSR) [62].
In LBIST, typical functions of external test equipment like test generation and
response analysis are carried out on-chip, so that the tester should not handle
high-speed signals externally and its role should remain only to send the test
enable signals to the chip under test, and to receive the pass/fail signals. For
example, scan-based and logic BIST solutions such as [51] relax the requirements
on testers and considerably reduce the overall testing cost.

The question is whether a self-test sequence running in the system can ade-
quately exercise its hardware components satisfying the targeted fault coverage
requirements. Achieving the test quality target requires application of proper test
sequences that is a focus in Chapter 3 of this thesis. It should also be pointed out
that the quality of a test is measured not only by its fault coverage, but also by
its code size (to be stored in the memory of the chip), hardware overhead, and
by the test execution time.

One of the goals of Chapter 3 is to propose an approach that combines the
ideas of traditional LBIST with at-speed testing to improve the test quality at
less testing overhead and avoiding performance loss compared to the traditional
self-test approaches. The feasibility and efficiency of the new method is demon-
strated for a particular class of pipe-lined processing architectures that are easily
adaptable for at-speed on-line self-testing by inherent functional sequences.

functional test Functional testing provides a possibility to test the hard-
ware functional paths at-speed. It is considered by engineers to test the hardware
in system-like mode as thorough as possible[62]. Compared to structural testing,
which is used to test individual structural elements, such as logic gates, the hard-
ware overhead for functional testing can be smaller. This is because the inherent
functionality of the system can be reused for testing purposes.

Another advantage of functional test is its ability to avoid over-testing. This
term is related to testing of hard-to-detect or redundant structural faults that are
rarely or not even used during operation of the chip, but require significant effort
to be tested.

The disadvantage of the functional testing is comparably lower fault coverage
and complexity of finding the good functional test sequence for circuits with
complex structure. However More-than-Moore trend brings technologies outside

17

introduction

digital logic into nowadays ICs[80]. These technologies such as Micro-Electro
Mechanical Systems (MEMS) or image sensors require hardware with dedicated
functionality to access them in the best way possible. Dedicated hardware usu-
ally implements several simple functions to be able to run fast. This opens up a
possibility to use only functional test patterns to achieve good fault coverage of
such digital circuits.

One of the goals of Chapter 3 is to propose a functional test solution for a
class of pipelined circuits that achieves fault coverage comparable to traditional
scan-based approaches using either random or deterministic test vectors.

fault simulation speed Fault simulation is one of the most important
tasks in the digital circuit design and test flow. The efficiency of solving other
tasks in this field like design for testability, test quality and dependability evalua-
tion, test pattern generation and fault diagnosis relies heavily on the performance
and speed of fault simulation. Such a dependence is growing especially in case
of large circuits, and hence, the scalability of the fault simulation algorithms is
decisive. Accelerating the fault simulation would consequently improve all the
above-mentioned applications.

Fortunately nowadays advancements in multi-core systems open up different
possibilities for improvement of fault simulation algorithms in terms of their per-
formance. Available directions are pattern parallelism, fault parallelism, model
parallelism and algorithm parallelism.

Algorithm parallelism stands for parallel execution of different algorithm steps.
Most common is parallel execution of data read/write and computation opera-
tions. The speed-up depends on proper balance between these algorithm steps.
Pattern and fault parallelism achieves good speed-up, but memory usage can be
a limiting factor for scalability.

The circuit model parallelism is an interesting direction, as it allows to keep
memory requirements low, at the same time providing better scalability. The rea-
son lies in the fact that some circuit components do not depend on each other
and can be simulated in parallel, just like they work in real ICs. The better scal-
ability comes from the fact that bigger circuits have bigger number of indepen-
dent gates or sub-circuits to run in parallel. The solution proposed in Chapter 4

exploits circuit parallelism for parallel fault back-tracing and the results clearly
show scalability benefits.

Another fault simulation challenge lies in the area of sequential circuits. The
fastest algorithms are mostly applicable for combinational circuits, while they
can not be directly used with sequential circuits due to the time relations be-
tween the test vectors. One of the widely used solutions is the full-scan approach,
where all the flip-flops of the circuit are made observable through the scan chain
[62]. However observing every register could be expensive in terms of additional
hardware and power requirements. It will be shown in Chapter 5 that there exist
a way to make only a fraction of flip-flips and fan-out stems observable in order
to use combinational fault simulator for simulations of sequential circuits.

18

1.2 thesis objectives

1.2 thesis objectives

The goal of the thesis is to solve a series of closely related problems regarding
development of BIST for high-performance pipe-lined designs. These problems
target (1) the object to be tested (system under test), (2) the methods and means
used for testing (BIST), and (3) the methods and means for evaluating the quality
of test solutions (fault simulation).

From these problems the following main research objectives were set up in the
work:

• to create a benchmark family of digital circuits with different design con-
siderations for the same functionality.

• to develop a BIST methodology for at-speed execution using functional
test patterns and targeting dedicated high-performance pipelined architec-
tures.

• to improve the performance of parallel-pattern exact critical path back-
tracing for combinational circuits using general-purpose multi-core sys-
tem.

• to enable combinational fault simulation of sequential circuits with re-
duced number of observation points.

1.3 thesis contributions

This work presents the following contributions:

• the set of benchmark circuits with different amount of resource sharing and
pipelined architectures is proposed for industrial design of bio-impedance
analyzer. The analysis of different testability characteristics of the circuits.

• The methodology and a set of tools is developed targeting at-speed built-in
self test of high-performance pipe-lined designs. The method is evaluated
using bio-impedance analyzer circuit.

• The evaluation of possibility to use analog signals as a test sequence for
the digital circuits .

• The implementation of the parallel exact critical path tracing algorithm for
general-purpose multicore systems.

• The methodology to use a combinational fault simulation for sequential
circuits with reduced number of observable points.

1.4 thesis overview

The thesis is organized as following. In Chapter 2 the family of eight bench-
mark circuits along with their testability characteristics is presented. The suite

19

introduction

consists of circuits, representing pipe-lined architectures for signal processing
with the same functionality, but different structures. First the functionality and
structure of the initial circuit are described. After that, structural characteristics of
all benchmark circuits are presented. Then the experiments with different testa-
bility characteristics are described and results are discussed. It was shown that
sharing of resources in designs may reduce the test length, but on the other hand,
it will increase the time of test synthesis, and may reduce the test quality due to
increase in number of fan-out reconvergencies.

Chapter 3 is dedicated to a development of a novel at-speed functional BIST
methodology for the class of pipe-lined architectures of signal processors using
digitized analog signals for test purposes. First an overview of the existing BIST
methods is presented. After that a novel at-speed functional BIST method is de-
scribed. To overcome the high cost of fault coverage evaluation of the BIST at
long test sequences, a new original fault simulation environment has been devel-
oped and is discussed in the chapter. Next a case study on using digitized analog
signals, as a test stimulus for the proposed BIST is presented. The experimental
results regarding both the methodology and the case study are discussed in the
end of the chapter.

In Chapter 4, the problems of improving the efficiency of fault simulation are
discussed to provide better means for evaluating the quality of BIST in case of
long test sequences. At the beginning an overview of the state-of-the-art in com-
binational and sequential fault simulation is presented. The overview includes
both single core and multicore methods. In the next section, the theory of Par-
allel Pattern Exact Critical Path Tracing (PPECPT) is investigated and extended
by a novel mixed-level fault simulation method. In the following, a multi-core
solution for PPECPT is presented. Finally the experimental results are discussed.

Chapter 5 presents a new approach that allows using the combinational fault
simulation method, developed in the previous chapter, for sequential circuits as
well. A method is proposed for improving sequential circuit observability, so that
the circuit could be fault simulated using any fast combinational fault simulator.
The chapter starts with the short overview of available methods. After that the
novel method of observability improvement is presented. Following it the exper-
imental results are presented and discussed.

Thesis conclusions are drawn in Section 6 along with possibilities for future
research.

20

2
B E N C H M A R K S U I T E

This chapter is based on the publication "A Benchmark Suite for Evaluating
the Efficiency of Test Tools" (see Appendix A).

In this chapter a benchmark suite of eight circuits is presented and it’s testa-
bility characteristics are evaluated. As the result of the cooperation in the fields
of computer, electronics and biomedical engineering in the Estonian Research
Excellence Centre CEBE in our laboratory we have developed a set of circuits
representing different architectures of pipe-lined signal processors. The circuits
have the same functionality, but they are different in structural design. This set
of circuits was required for a design space exploration in order to achieve the
required performance with the smallest possible resource utilization. During this
research it turned out that although the functionality of the circuits was the same,
the change in structure resulted in big deviation in testability characteristics of
the circuits. We realized that there can be a specific relationship between differ-
ent design decisions and their corresponding testability characteristics. Such a set
of circuits with the same functionality, but different amount of resource sharing
could be used for evaluation of the test CAD tools. In this chapter every circuit in
the suite is evaluated in terms of its testability and fault analysis characteristics
in comparison with circuits structural complexity. The results are also presented
and discussed.

The author’s contribution lies in the development of the circuit variations, their
corresponding implementation and evaluation of testability characteristics.

The rest of the chapter is organized as following. The overview of the initial de-
sign for benchmark suite and it’s functionality is presented in Section 2.1. Section
2.2 discusses structural changes in the circuits forming the suite. The experimen-
tal study on the different testability characteristics of the proposed benchmark
circuits is presented in Section 2.3. Section 2.3.1 provides the discussion about
these characteristics. Finally the conclusions of the chapter are drawn in Section
2.4.

2.1 overview of the initial design

As a basis for the suite a bio-impedance signal analyzer circuit that implements
a simplified signal processing algorithm has been chosen [5, 19]. This design
was selected because of its pipe-lined structure, where every stage has a parallel
implementation that can be joined to produce certain level of reconvergency.

21

benchmark suite

Figure 2.1 – The architecture of digital multichannel bio-impedance analyzer
(DMBA).

The device is dedicated to bio-impedance measurement of biological tissue.
The synchronized excitation of sine wave of different frequencies is applied through
different channels to the tissue at one point and measured as a voltage response
at the other point of the tissue. A typical digital solution is that the response
voltage is digitized in an analog-to-digital converter (ADC) into a uniformly sam-
pled train of digital data that is then processed numerically in a digital signal
processing (DSP) unit often using the Discrete Fourier Transform (DFT). Because
the whole signal path from the generation of the set of excitation signals to the
analog-to-digital conversion procedure and data analysis is synchronous by de-
sign, optimized signal processing methods can be applied. Using of sampling,
which is synchronous to the known excitation waveform, enables to use a simpli-
fied, but much faster signal processing than the Fourier Transformation is. When
sampling the response signal uniformly with intervals t = T/4, where T is a pe-
riod of the signal, the following simple mathematics is valid [19, 46].

(1) the direct current component DC can be determined as

DC = (Re+ + Re−)/2

DC = (Im+ + Im−)/2
(2.1)

(2) the real Re and imaginary Im parts of the phasor of complex bio-impedance
Z is determined as

Re = (Re+ − Re−)/2

Im = (Im+ − Im−)/2
(2.2)

22

2.1 overview of the initial design

Figure 2.2 – A block diagram of one channel of DMBA [19]. Registers are blue,
MUXes – yellow, computation - red, control – green.

The mentioned signal analyzer is a part of the developed digital multichannel
bio-impedance analyzer (DMBA) [5], depicted in Fig. 2.1. The Source of Excita-
tion Signals generates digital waveforms that are converted by Digital Analog
Converter (DAC, not shown) into analog signals, sent through tissue, collected
by Analog Channel Selector and converted by ADC (not shown) back to digital
form. The Sampler is used to synchronize the signal source and ADC (input of
the Digital Analyzer, not shown). This sampled digital signal is processed by the
analyser unit.

Fig. 2.2 shows the architecture of the analyzer unit. As it can be seen, the
circuit has a pipe-lined structure in order to be implemented in a low-cost FPGA.
The signal is first sampled into the input buffer. On the next stage signal points
are distributed to four registers defining different signal components Re+, Re-
, Im+ and Im-. These four registers are present in all 8 different channels of
the analyzer. The sampling is performed on channel-after-channel basis. Every
sample out of 4 samples taken per channel is saved into its corresponding 16-
bit register of particular signal component. On the next stage Real, Imaginary
and Direct current components are computed with adders and subtractors, using
equations (2.1) and (2.2). On the next pipeline stage the computed components
are integrated using adders and saved into 32-bit registers, called output buffers.
Integration is made over a 1 ms period. After that the values of the output buffers
are transferred to the output register of the analyzer.

The architecture of the analyzer was defined by the used technology - low-cost
FPGA-s - and required 80 MHz sampling frequency. This constraint came from
the need to have 10-20 MHz excitation signals with 4 or 8 sampling points per
period [5]. The use of single input channel (ADC output) and sorter to reduce
aliasing effect [19] resulted in two first buffer stages. The two last buffer stages

23

benchmark suite

are defined by the need to accumulate the collected data over 1 ms period, buffer
it and transmit for further analysis [5]. The intermediate part - subtractor/adder
and accumulator - can be implemented, in principle, as a single stage. However,
when using FPGA-s, the extra pipeline stage actually makes the design not only
faster (because of the shorter combinational paths), but also smaller - every out-
put bit of an adder has a flip-flop anyway and the use of them makes routing
problem for the design tools easier. The same applies for the potential reuse of
functional units and registers that would essentially add additional multiplex-
ors to the design - the internal structure of FPGA-s is best suited for pipelined
data-stream oriented applications. This was also the case with the other imple-
mentations of the same processing unit with the different degree of reuse [19]. All
the MUXes in the circuit are used for switching the channels (there are 8 chan-
nels in the DMBA), except the last one that is switching the calculation results of
every channel to a single output.

2.2 structural characteristics of the circuits

One of the strong parts of the suite developed is the fact that different cir-
cuits represent different design alternatives that were considered during actual
design process. The suite gives a possibility to study how the different design
approaches with the same functionality would impact testability - that is not of-
ten considered at the design stage. Seven implementations of the original highly
parallel design were developed in a way circuit designer would consider doing.
These modifications bring different degree of reconvergency to different parts
of the circuit by sharing some of the components. The whole analyzer can be
sub-divided into several functional parts: acquisition, preprocessing, integration,
output. During the design process, alterations were made to first three parts of
the analyzer: acquisition, preprocessor and integrator.

The idea of the benchmark circuits is to selectively share some of the resources
in order to produce different circuit implementations of the same functionality.
This resulted in eight different configurations performing the same function: 8a,
8b, 8be, 8bk, 8bs, 8c, 8d and 8de. Fig. 2.3 shows which successive changes were
introduced into the designs. The difference of circuits 8a, 8b, 8be, 8bk and 8bs from
8c, 8d and 8de lies in additional 4 extra buffer registers in signal acquisition part of
the circuit. All the other modifications are regarding sharing of the preprocessor
and integrator resources in different manner. Table 2.1 shows which parts of the
design were modified in every implementation. This table presents the number of
adders and subtractors, number of bits in registers and area in equivalent gates,
calculated by Synopsys Design Compiler.

Here the design 8a is the initial version with 8 data channels, described in
Section 2.1. The transition from 8a to 8b lays in replacement of 8 channels in
preprocessing part of the circuit by a single common channel, thus removing the
redundancy by a shared preprocessor. It explains the decrease in adders, subtrac-
tors and registers located in preprocessor. In this version of the circuit the one
single preprocessor block is shared among 8 channels of the analyzer in channel-

24

2.2 structural characteristics of the circuits

Figure 2.3 – Overview of the benchmark designs

after-channel manner. This resulted in multiple multiplexors in the circuit that
increased reconvergency in the beginning of it. Table 2.2 shows estimation of the
number of reconvergent signals for each benchmark.

The transition from 8a to 8c resulted in implementing the extra input buffers.
The increase in register bits can also be seen from the Table 2.1. The 8 channels of

Table 2.1 – Structural differences of 8 benchmark circuits.

Circuit Structure Area, ge

16-bit # 32-bit # 16-bit Registers, logic registers total

adder adder subtract. bits

8a 8 24 16 2489 26182 17577 43759

8b 1 24 2 1705 20232 12089 32321

8be 1 3 2 1705 22090 12089 34179

8bk 1 24 1 1705 20088 12089 32177

8bs 1 1 1 1705 22671 12089 34760

8c 8 24 16 3004 28177 21182 49359

8d 1 24 2 2668 28136 18830 46966

8de 1 3 2 2668 29850 18830 48680

25

benchmark suite

Table 2.2 – Difference in level of reconvergency of 8 benchmark circuits.

Design # of reconvergent signals Modifications

Preprocessor Integrator Total

8a 32 64 96 Initial design

8b 32 64 96 Shared preprocessor

8c 32 64 96
Initial design with extra

input buffers

8d 32 64 96
Extra input buffers and

shared preprocessor

8bk 64 64 128

Shared preprocessor with
single shared

adder/subtractor

8be 32 512 544
Shared preprocessor and

integrator

8de 32 512 544
Extra input buffers, shared
preprocessor and integrator

8bs 64 1536 1600
Maximum sharing of

resources

data remained for preprocessor and integrator. That is why the number of adders
and subtractors is the same for both circuits. Extra registers brought additional
latency to data path, but didn’t add any reconvergency.

The circuit 8d has union of changes in 8b and 8c - the extra registers are added
to the input buffers and preprocessor is shared between all the channels that
brought the amount of adders and subtractors down.

The bigger changes in reconvergency start to be seen in circuit 8bk. Addition-
ally to single preprocessor block it also shares the inner part of the preprocessor.
It calculates three different characteristics of the signal using single adder and
subtractor unit for this purpose instead of three in all previously described cir-
cuits. This change added additional multiplexors to the preprocessor part that
can be seen from Table 2.2. The number of reconvergent signals rose from 32 to
64.

Apart from 8bk, circuit 8be still has separate adder and subtractor blocks inside
preprocessor. However in addition to the modifications of 8b it also has one single
integrator block shared with all 8 channels. This led directly to the decrease in
32-bit adders located inside an integrator. The multiplexors were added to the
inputs of 32-bit adders in order to enable this functionality.

26

2.3 testability characteristics of the circuits

The circuit 8de is an analog of 8be. The only difference lies in the addition of
extra buffers to the inputs that can be seen in increased number of register bits.
It doesn’t change the amount of reconvergency, but increased the latency of the
pipeline.

The circuit 8bs combined all the possible reconvergencies by sharing single
preprocessor block for all the channels. This block contains single adder and
subtractor unit for calculation of all three characteristics of the signal. And finally
the single integrator block is shared among all the 8 channels. These changes
resulted in the most compact circuit with only 3 computational units and a lot
of multiplexing. It can be seen from Table 2.2 that the number of reconvergent
signals increased considerably to the total of 1600 for this circuit.

2.3 testability characteristics of the circuits

The goal of the testability evaluation was to investigate how different level of
reconvergency and its location inside the circuit would impact the testability and
fault analysis. The changes in design alternatives are characterized by different
structural complexities that will have a direct impact on testability of circuits and
on the testing quality. The experimental results presented in Table 2.3 and Fig.
2.4 allow to easily create functional dependencies between the testability features
and the resource sharing options in design alternatives that allows to find proper
tradeoffs. In the following the depicted results are discussed in details .

Testability analysis of different configurations of the bio-signal processing de-
sign was performed by using deterministic and pseudorandom test pattern gen-
erators [57], fault simulator [70] and by using the algorithms for hybrid BIST op-
timization developed in [38]. Several testability characteristics presented in Table
2.3 were analyzed: the deterministic test length achieved (DTL) and the needed
time for deterministic test pattern generation (DTG), the time needed for fault
simulation (FS) and for the pseudorandom test simulation (RTS), the hybrid BIST
length (HBL) and the calculated optimal test cost of hybrid BIST (HBC). Genera-
tion times are given in seconds, test lengths in numbers of patterns, and costs in
abstract units. The changes in testability characteristics for the benchmark suite
are shown in Fig. 2.4.

2.3.1 Discussion of the results

The changes in design alternatives are characterized by different structural
complexities that will have a direct impact on testability of circuits and on the
testing quality. Here the experimental results presented in Table 2.3 and Fig. 2.4
will be discussed in details.

The transition from 8a to 8b resulted in improvement of all the testability char-
acteristics. The best improvements were in reduction of test synthesis time (for
deterministic test 1.4 and for pseudorandom test 1.25 times). Fault simulation be-
came 1.16 times faster. The cost of the hybrid BIST significantly improved – one

27

benchmark suite

Table 2.3 – Testability characteristics of signal processors.

Design DTL DTG FS RTS HBL HBC

8a 1364 47 13.7 1408 23 038 197 823

8b 1201 34 11.8 1130 18 540 138 324

8bk 1288 35 11.3 1129 17 497 144 876

8c 1320 75 15.5 1583 35 641 224 121

8d 1394 62 16.6 1647 32 610 209 384

8be 995 114 27.9 2784 14 202 104 474

8de 1096 112 33.4 3344 33 968 162 557

8bs 1186 296 69.0 7095 14 086 113 038

of the reasons is smaller number of inputs in 8b that results in the less cost of the
memory component of the BIST.

In transition from 8b to 8be the deterministic test length improved - it was 1.2
times shorter that can be explained by the reduction of the circuit complexity. On
the other hand, the time needed for deterministic test generation was 3.35 times
higher because of the increased number of reconverging signals in the circuit
that causes higher number of backtracks during search for consistent solutions.
Also, fault simulation time became 2.36 times slower, and the time needed for
pseudorandom test simulation was 2.46 times higher. This is explained by the
use of exact critical path tracing algorithm [70] used for fault simulation that is
highly sensitive to the number of reconvergent fan-out stems. The cost of the
hybrid BIST was improved due to the smaller number of deterministic vectors
needed.

During the transition from 8b to 8bk the increase of reconvergency (from 96 to
128) did not significantly influenced the testability of the circuit.

Opposite in transition from 8bk to 8bs the number of reconvergent signals in-
creased drastically (128 for 8bk and 1600 for 8bs). Fig. 2.4 shows worsening of the
testability regarding test generation and fault simulation: the time of determinis-
tic test generation became 8.45 times longer, the time of fault simulation 6.1 times
longer and the time of random test simulation became 6.28 times longer. On the
other hand, because of the reduction in circuit size, the length of deterministic
test set became slightly shorter (1.08 times). The length of optimal hybrid BIST
was 1.24 times shorter and optimal cost 1.28 times smaller due to the smaller
number of seeds for LFSR.

In Fig. 2.4 it can be seen that due to transition from 8a to 8c the time re-
lated characteristics have become worse: the generation time for deterministic
test became 1.59 times longer. The fault simulation became 1.13 times slower for
both deterministic and random test patterns. This worsening of indicators can be
explained by the increase of the number of reconvergencies because of adding

28

2.4 chapter summary

Figure 2.4 – Changes in testability characteristics.

control signals for addressing the buffer registers. The test length did not change
because the circuit size remained the same. The length of hybrid BIST sequence
test became 1.54 times longer, and the cost of Hybrid BIST was bigger for 8c due
to the bigger number of inputs (buffer registers).

In the transition from 8c to 8d the characteristics that changed most signifi-
cantly were deterministic test generation time (became shorter) and the length of
the optimal hybrid BIST became slightly shorter, similarly as in the case of “from
8a to 8b”.

In transition from 8d to 8de caused the increase in number of reconvergent
signals (Fig.2.4), and longer times for test generation and fault simulation. De-
terministic test generation took 1.81 times longer. Fault simulation became 2.01

times slower for determinsic test and 2.03 times longer for random. The determin-
istic test set was 1.27 times shorter and the cost of the BIST reduced 1.28 times
(due to the smaller number of seeds). This case affected the testability character-
istics in the similar way as in the case from “8b to 8bk”.

2.4 chapter summary

In this chapter the following main results were achieved:

• A novel suite of benchmark circuits was developed and investigated to
give a possibility for systematic characterization of CAD tools by creating
functional dependencies for different testability markers on the structural
complexity in terms of the number and configuration of reconvergencies
in circuits. Existing benchmark suites do not provide such a possibility.

• It was shown that sharing of resources in designs may reduce the test
length, but on the other hand, it will increase the time of the test synthesis,

29

benchmark suite

and may reduce the test quality due to increasing of number of fan-out
reconvergencies.

As the result of the cooperation in the fields of computer, electronics and
biomedical engineering in the Estonian Research Excellence Centre CEBE, a bench-
mark suite was developed for evaluating the CAD tools in their efficiency and
quality in designing dependable digital systems.

Differently from all other existing benchmark suites, all the member proces-
sors of this family perform the same function, but are implemented in different
ways, differing mainly in the amount of shared computing resources. This gives
an excellent possibility for direct systematic characterization of CAD tools by cre-
ating functional dependences for different testability markers on the structural
complexity of circuits.

The experiments show a correlation between the structural properties of cir-
cuits and their testability characteristics. It was shown that sharing of resources
in designs, which leads to increasing number of fan-out reconvergencies, may re-
duce the test length, but on the other hand, will increase the time of test synthesis,
and may reduce the test quality.

A useful synergy was achieved by creating a selection of bio-signal processors
that will have practical use in medical field, but simultaneously can be used as a
family of benchmark circuits for analyzing the properties of new test algorithms
in the field of electronics.

The new at-speed BIST methodology described in the next chapter was evalu-
ated using benchmark circuits described here.

30

3
AT- S P E E D S E L F - T E S T I N G

This chapter is based on the publications "Functional Self-Test of High-Perfor-
mance Pipe-Lined Signal Processing Architectures" (see Appendix C) and "At-
Speed Self-Testing of High-Performance Pipe-Lined Processing Architectures"
(see Appendix B).

In this chapter, the new approach for self-testing of digital systems with pipe-
lined architectures is proposed. The main contributions of the chapter are the
following:

• The new at-speed functional BIST methodology for high-performance pipe-
lined architectures.

• Novel evaluation environment to transfer sequential fault simulation task
into a set of combinational subtasks is developed.

• Exploration of the potential of digitized analog signals to be used as a
test-sequences for at-speed BIST.

The at-speed BIST methodology forms the core of the chapter. It exploits inher-
ent functionality of the system to produce internal test-sequences, thus requiring
minimal hardware overhead for testing purposes. The method targets at-speed
execution and uses single stuck-at fault model. The evaluation environment is
proposed to improve the speed scalability of the method. Also digitized analog
signals are explored to be used along with the proposed at-speed BIST method-
ology to reduce hardware requirements.

The author is in charge of the development and evaluation of the methodology
proposed, running the experiments and analysis of the results.

The rest of the chapter is organized as follows. Section 3.1 presents and overview
of the state-of-the-art. The general description of the novel at-speed BIST method-
ology is written in section 3.2. The bio-impedance analyzer from the benchmarks
proposed in chapter 3 has been used in order to describe and evaluate the method.
The section 3.3 describes the fault simulation environment intended to be used
with the methodology proposed. Later in section 3.4 this methodology is evalu-
ated and study the potential of different digitized analog sequences to be used
as a test sequence for functional BIST. The experimental results are discussed in
Section 3.5 and finally draw a conclusion in section 3.6.

31

at-speed self-testing

3.1 overview

Built-in self-test (BIST) uses on-chip hardware to both generate the test patterns
and analyze an output response of the Unit Under Test (UUT). The common way
to do this is to use pseudo-random pattern generator for generation of a test
and multiple-input signature register (MISR) to make a signature from circuit
responses. Once the self-test is done the signature is shifted out or compared
against predefined value on chip. In case of incorrect signature the chip fails the
test [62].

Throughout the years of research many variations of BIST were developed.
In traditional Logic BIST (LBIST), test pattern generation is mostly performed
by Linear Feedback Shift Registers (LFSR) [62], cellular automata [29] or mul-
tifunctional registers like Built-in Logic Block Observer (BILBO) [62] to apply
pseudorandom patterns to the Unit Under Test (UUT) and to analyze its output
responses. However, many circuits contain random-pattern-resistant faults that
limit the fault coverage that can be achieved with this approach.

One method to improve the fault coverage for LBIST is to modify the UUT by
either inserting test points [15] or by redesigning it to improve the fault coverage
[28]. The drawback of these techniques is that they generally add additional logic
levels to the circuitry that can degrade system performance. Another possibility
to improve the fault coverage is to use weighted pseudorandom test sequences
[3]. The disadvantage of this approach is in the need of storing of the weight sets
on chip, and also dedicated control logic is required to switch between weights,
so the hardware overhead may become large. A “mixed mode” approach, where
deterministic patterns will be added to detect hard-to-test faults, has been devel-
oped in [27, 31, 35, 64]. In [35] a technique based on reseeding LFSR was pro-
posed that reduces the storage requirements. In [27], multi-polynomial LFSR for
encoding a set of deterministic test cubes was introduced, and in [31] a technique
called bit flipping for generating deterministic test cubes using BIST control logic
was proposed. Further, in [64] a mixed-mode approach was presented in which
deterministic test cubes are embedded in the pseudorandom sequence of bits
itself.

As it have already been mentioned earlier the established BIST solutions use
special hardware (typically LFSR) for test pattern generation (TPG) and test re-
sponse evaluation (TRE) on chip [62], but this in general introduces significant
area overhead and performance degradation. To overcome these problems, spe-
cialized methods were proposed, which exploit specific functional units such as
arithmetic units for on-chip test pattern generation [18, 76] that may afford to
reach similar fault coverage like traditional LFSR-s. These methods are called
Arithmetic BIST (ABIST), since they essentially adopt the additive congruential
generation scheme of pseudo-random numbers [33].

In [32, 73], a mixed-mode or hybrid BIST approach was proposed, where a
test set is assembled from two parts, from pseudorandom test patterns that are
generated on-line, and deterministic test patterns that are generated off-line and
stored in the system. A combination of both test sources in an optimized fashion

32

3.2 general description of the method

allowed improving the traditional LBIST in targeting hard-to-test faults. A similar
approach called Hybrid Functional BIST (HyFBIST), where instead of LBIST the
inherent functional sequences were used, was proposed in [44, 72] for testing
digital systems, and particularly micro-programmed data-paths.

In this chapter I generalize and combine the ideas of using inherent functional
blocks for test generation [18, 58] and the inherent working sequences produced
by the UUT itself for self-testing purposes. An overall functional self-test con-
cept is proposed for pipelined architectures where the working sequences are
produced on the primary inputs of the system and Multiple Input Signature An-
alyzers (MISR) monitor the internal signals in selected test-points. A systematic
procedure is proposed for selecting the test-points to achieve the best overall fault
coverage at minimum testing overhead and cost.

To my knowledge, the usage of digital representation of analog signal se-
quences as a functional test for testing digital circuits (signal processing archi-
tectures) is investigated in the first time. Main idea is to take the input data,
which is close to what the circuit-under-test would most probably have during
its normal operation, and apply this data as an at-speed test. In the case of this
work the input data is a digital representation of the sine signal. It will be shown
in results that such a signal could yield better fault coverage in comparison to tra-
ditional pseudo-random LFSR sequence. This can also be considered as one step
further compared to the arithmetic BIST (ABIST), since the source for the first
stage of UUT is stimulated using more complicated equation (sine wave), than
traditionally used in ABIST. The next stages of the UUT can be considered as test
generators similar to ABIST. The Functional test strategies (e.g. software based
self-test) used for example in microprocessors, are traditionally using dedicated
software test routines that have to be stored in the memory. In case of proposed
method there is no need to store in the memory such test routines or other test
data.

3.2 general description of the method

Consider a digital system as a network of sub-circuits (blocks) where all the
blocks may play simultaneously two roles: on one hand, each block will be itself
UUT, and on the other hand, it will serve as the test pattern generator for the
subsequent blocks it is feeding. As the overall test source, selected input working
sequences (as functional test) will be used.

Two main problems arise: (1) how to find the best functional test sequences,
and (2) how to find the minimal set of test-points for monitoring to achieve the
highest fault coverage of testing.

In some cases, the first problem can be solved straightforwardly like in the
instruction set architectures or in signal processing units. In the first case, the
instructions can be exercised one by one where the problem recedes to finding
only proper data (operands) as test patterns [22, 71]. In case of signal processing
units, the analog signals to be processed can be used as candidates for exploiting
in testing purposes as well. The possibility of using given digital representation

33

at-speed self-testing

of analog signals as stimuli for testing signal processors is therefore also investi-
gated in this chapter. The case study on this topic is presented in Section 3.4. The
idea is similar to random (LFSR based) testing where the critical point is analysis
of the test quality as the function of test length.

For example, in bio-impedance spectroscopy, for measuring the bio-impedance
typically the following signals are generated and processed as shown in Fig.3.1:
sine [45] and chirp [52]. These signal sequences may be used as well in the role
of stimuli (i.e., functional test sequences) for self-testing purposes for the same
signal processor itself. The quality of the listed signals as test stimuli can be com-

Figure 3.1 – Signals used for measuring bio-impedance

Figure 3.2 – Monitoring of the pipe-lined signal processing unit. a. Full MISR cover-
age, b. Partial MISR coverage

34

3.2 general description of the method

pared with popular saw-tooth analog signal and pseudorandom LFSR sequences
that are traditionally used in the logic BIST solutions. Saw-tooth is easy to gen-
erate digitally; this is the reason why it is widely used in signal generation and
processing. It can also be thought of as an additive generator of exhaustive pat-
terns. The impact of presented signals on the testability of the pipe-lined circuit
is described in Section 3.4.

The second problem of selecting test-points for monitoring the test process
depends how well can the faults in different blocks be detected by the given
functional test sequence.

In Fig.3.2, an example of a pipe-lined signal processing unit is given that is
partitioned into 6 blocks. Two solutions are demonstrated for monitoring the
behavior of the circuit with MISRs. The solution in Fig.3.2a shows the case where
all blocks are monitored whereas in the solution depicted in Fig.3.2b, only three
MISR are used: the first is monitoring the behavior of blocks B1 and B2 as a
whole, the second MISR is monitoring solely the block B3, and the third MISR is
monitoring the blocks B4, B5 and B6 as a whole.

The task of partitioning of the whole system into UUT blocks has the goal to
find the highest fault detection coverage for the given functional test by achieving
well-balanced testability at the minimum number of monitoring points equipped
with MISR. Optimal partitioning is rarely possible without any feedback on the
testability of the circuit. It means that in general case a number of iterations is
required in order to find the right balance between the required level of testabil-
ity and number of monitors (area overhead). The general iterative procedure is
described next in order to find the optimal solution.

To find the minimum hardware overhead I propose the following method for
selecting test-points:

• Put MISR on the primary output of the circuit, and find the fault coverage
(FC) for the given test sequence.

• If FC is sufficient, then the problem is solved.

• Partition the circuit into a set of n blocks (each with its own MISR). Find
FC for each block as a UUT.

• Continue the partitioning of the blocks with low FC until the total FC will
be sufficient.

• Integrate the consecutive blocks with high FCs into UUTs (with a single
joint MISR in the output of the composite block) to minimize the number
of MISR, so that the total FC of the system remains sufficiently high.

The described method is illustrated in Fig.3.3. Please note that the partitioning
solutions can be found in different ways, e.g. dictated by an inherent structure
(network of registers and combinational blocks), using any ad-hoc method in a
style of "trials and error" or using more sophisticated analysis methods. This task
should be regarded as a separate problem, not discussed here.

Let’s consider an example shown in Fig.3.4. Here initially the circuit is parti-
tioned into three blocks for monitoring. The fault simulation of this configuration

35

at-speed self-testing

Figure 3.3 – General procedure for minimization of the number of observation points.

shows that the fault coverage of the first two blocks is good so they can be merged
in order to remove the monitors after the first block. The only MISR registers to
observe the functionality of this now combined block would be the ones placed af-
ter the second block. On the other hand the third block shows low fault coverage,
which suggests that the amount of observation points should be increased inside
the block. This is why this block is partitioned into three sub-blocks and moni-
tors are added after every sub-block in order to improve the fault coverage. The
bottom part of the Fig.3.4 shows that first two blocks from the top picture now be-
came one block. Also the last block now becomes divided into three blocks with
MISRs inserted after each of them. The evaluation of the fault coverage should
be carried out again separately for all the four parts, to find out if some of them
can be merged, or if there is any of them with low fault coverage that should be
further partitioned.

In case when the fault coverage will not satisfy either globally for the whole
circuit or for particular blocks as UUTs, either the better functional test sequences
should be found, or different methods, similar to the ones for improving LBIST
described in Section 3.1, may be used. Another possibility is to use ad-hoc testa-
bility improvement in terms of control points. Control points can be used with
at-speed test execution by applying them for the whole period of a test sequence.

36

3.2 general description of the method

This way the hardware overhead can be kept low and at-speed execution is still
guaranteed. However investigation of these possibilities is out of the scope of
current work and can be considered as a future research in this direction.

The described method of inserting MISR facilitates the idea of LBIST strategy.
The only exception is the use of inherent test functionality of existing hardware in
the system, instead of dedicated test generators of LBIST. This way the method af-
fords at-speed testing with no performance degradation and with little hardware
overhead and reduced test cost. The clock cycle based observation technique al-
lows to avoid fault masking, and to achieve high fault coverage. The test response
observation is carried out using built-in MISR as the only hardware overhead.

In summary the proposed method has several advantages compared to the
state-of-the-art scan-path based LBIST methods:

• no hardware test pattern generators, and no scan-path for shifting in exter-
nal test patterns are needed that results in smaller overhead;

• compared to LBIST, the typical drawback of over-testing related to LBIST
is avoided, since only functional working test patterns are used;

• testing is carried out in the normal working clock-rate that guarantees at-
speed exercising of the whole circuit.

The target of this Section was to describe the main principles of redesign for
better testability of the given UUT. The goal was not to develop exact algorithm
or tool for exploring automatically the whole space of solutions that would be in-
feasible in general case. The designer has a possibility to remove or insert MISRs
in the design and to evaluate the test quality by using the fault simulation envi-
ronment described next in Section 3.3. He has also the possibility of changing the
length of the test sequence to achieve higher fault coverage.

Figure 3.4 – Example of merging and splitting the blocks in UUT with high and low
fault detection coverage.

37

at-speed self-testing

In the next Section a novel environment is presented that supports very high
speed in analyzing the fault detection coverage in the blocks of UUT.

3.3 fault simulation environment

To carry out the procedure of minimizing the number of test-points according
to Algorithm in Fig.3.3, large number of fault simulation sessions is needed for
evaluating the fault detection coverage in the blocks of different size and for
different partitioning solutions for the given UUT. A simple scheme for fault
simulation of a sequential circuit is depicted in Fig.3.5. The model of the circuit
and the test sequence form the input data for the simulator that calculates the
fault detection rate. The faults are simulated in this case one by one. Such a
single fault simulation is very slow. On the other hand, faster methods for fault
simulation, such as deductive or critical path tracing based fault analysis, cannot
be used for sequential circuits; they are only applicable for combinational circuits.

To overcome the difficulties of fault simulation in sequential circuits a special
approach is proposed to escape from the dependency on feedback loops. Assume,
the full sequential circuit (or a sequential block as a part of it) can be presented
as a set of combinational sub-circuits each of them having a MISR in the output.
By logic simulation of the test sequence for all sub-circuits, the input sequences
are calculated (are fixed during the logic simulation). All the combinational sub-
circuits can be fault simulated now independently, because each of them has
MISR that detects the faults in the related sub-circuit. If the circuit cannot be
partitioned in such a way, a traditional slow fault simulator for sequential circuits
have to be used.

In order to calculate and save test sequences for all of the registers of the
sequential circuit I have developed a toolset that allows to use standard state-of-

Figure 3.5 – Fault simulation in sequential circuits.

38

3.3 fault simulation environment

the-art logic simulators for this purpose. The saving of register values is required
in order to create a test set for combinational version of the design as was pre-
viously mentioned. The task is to allow register data to be saved into "XML" file
for every clock cycle during logic simulation. Two separate tools were developed
for this purpose - agmReader and tstCreator. The former is used before the logic
simulation, and the latter - after the simulation.

The overall process of test set generation using sequential logic simulation is
shown in Fig.3.6. The task of agmReader is to analyze the design and extract
all necessary signals that have to be saved during logic simulation. It creates an
additional "XML" descriptor file that contains the description of every registered
signal. The description includes:

• Id

• Signal name

• Number of start bit

• Number of end bit

The signals are arranged in a way they appear in AGM model of the design.
The AGM model is the combinational description of the circuit using Structurally
Sythesized Binary Decision Diagrams (SSBDDs). Such a description has all the
registers and feedback loops cut into separate inputs and outputs of the circuit.
It has all the inputs of the registers as primary outputs of the circuit. Also all
the outputs of the registers become primary inputs of the circuit. The ordering is
important in the next steps of the process. The bit width of the signal is also im-
portant, as well as whether bit numbering starts from the LSB or MSB. Once the
signals are analyzed the agmReader creates a description of VHDL process called

Figure 3.6 – Extracting combinational test set using sequential logic simulation.

39

at-speed self-testing

sniffer. This process contains a behavioral description allowing to save all the re-
quired signal values for every clock cycle. Once the tool has finished - VHDL
sniffer process is integrated into VHDL description of the design.

As can be seen from the Fig. 3.6 the next step is to do a sequential logic simu-
lation of the design. Any traditional logic simulator can be used for this purpose.
During logic simulation the value of every signal for every clock cycle is saved
into specially formatted "sniffer XML" file. Because the resulted file is a text file -
it is important to keep the amount of auxiliary data as small as possible. This is
why any information about the signals is not saved in it, except their values. In
order to be able to decode the data after a simulation the signal values are saved
in the same order they were analyzed and recorded to the "descriptor XML".

In order to remove the confusion that may arise at this point I recall. There
are two "XML" files. The first file is a "descriptor XML", which is created during
analysis of the design and contains information regarding the registered signals
of the design and their specific ordering. Another file - "sniffer XML" is created
during sequential logic simulation of the design and contains the values of all
registered signals for every clock cycle. The values are written in the same order
they appear in the "descriptor XML".

Once the logic simulation is finished the "sniffer XML" is saved. tstCreator tool
is used to extract the data from it and create a test set file for combinational fault
simulation. This tool reads both "descriptor XML" and "sniffer XML". Because
"sniffer XML" contains data in integer format, using signal size and alignment
information from descriptor the tool decodes the integer values into binary and
aligns accordingly. As a result a saved data becomes a test set for combinational
representation of the design.

These two tools are written in Java and form a part of a novel simulation
environment. In this environment the fault simulation has to be carried out only
in the combinational parts of the UUT. It is depicted in Fig.3.7.

The fault simulation is carried out in the following flow:

1. In each current step of the Algorithm in Fig.3.3, the UUT is partitioned into
a set of blocks S = SC ∪ SS where SC is a subset of combinational blocks
and SS is a subset of sequential blocks.

2. The UUT is simulated for the whole test sequence T, and for each block
Bi ∈ S, the whole local subsequence Ti at the input of Bi, caused by T will
be collected and stored. The subsequence Ti will be regarded thereafter as
the sub-test sequence for the block Bi generated on-line by the test sequence
T.

3. All the combinational blocks Bi ∈ SC, will be fault simulated for the lo-
cal sub-test sequences Ti with the fast fault simulator for combinational
circuits as shown in Fig.3.7.

4. All the sequential blocks Bj ∈ SS, have to be fault simulated for the local
sub-test sequences Tj with the slow fault simulator for sequential circuits
in this environment according to scheme Fig.3.5.

40

3.3 fault simulation environment

Figure 3.7 – Transforming sequential fault simulation into sub-tasks of combinational
fault simulation.

For fault simulation of combinational circuits a very fast fault simulator that
implements a method of exact parallel critical path tracing, was used. It was
chosen because of its good performance that is higher than currently used com-
mercially available fault simulators[70].

The high speed in this simulator is achieved by reasoning the faults along
signal paths in the circuit for N test vectors in parallel, where N is the number
of bits in the computer word. The simulator runs in two sessions through the
whole circuit. The first session is carried out only once for all the test vectors to
be simulated. The goal of this session is to create a compact computing model
for further fault reasoning that consists of a sequence of Boolean formulas. Since
the formulas are Boolean, they can be processed in parallel. The second session
is to calculate the detected faults for packages of N test vectors in parallel using
the computing model created in the first session.

The simulator was included into the fault simulation environment in Fig.3.7,
where it will be used for simulating faults in the blocks Bi ∈ SC, block by block.

Unfortunately, the simulator cannot be used for calculating the fault coverage
for the sequential blocks Bj ∈ SS.

In the next Section, a case study will be discussed where I investigate the
feasibility of the proposed method of at-speed self-testing in a pipe-lined signal
pre-processor, described in previous chapter. Here I am going to compare the
difference in performance of two fault simulation schemes depicted in Fig.3.5
and Fig.3.7. The results of fault simulation for the whole family of 8 processors
(column 1) are presented in Table 3.1.

Column 2 describes the time in seconds for logic simulation of the sequence of
10 000 vectors on these benchmarks given by their behavior VHDL descriptions.
The columns 3 - 6 describe fault simulation experiments according to Fig.3.7 on

41

at-speed self-testing

the same sequence of 10000 vectors. In case of combinational fault simulation
two levels of fault simulation are compared – gate-level and macro-level, where
each macro represents a fan-out-free region (a gate-level sub-circuit) in a sim-
ulated combinational block of the given UUT. Only Stuck-at-Faults (SAF) were
simulated.

However, to save the time, only the correct behavior was considered during be-
havioral level simulation (column 2). The real sequential fault simulation using
fault injection can be much slower, as it requires to be run on gate-level repre-
sentation that takes more time to execute. So that the results presented on the
basis of behavioral logic simulation should be treated as ideally fast if used to
represent sequential gate-level fault simulation. It is also worth mentioning that
time values presented in column 2 in Table 3.1 are for single fault simulation. In
order to obtain the fault simulation time for the whole circuit this value have to
be multiplied by number of faults in the circuit (column 3 and 6). Time values in
columns 4 and 7 are already presented for all the faults.

To compare the two fault simulation approaches presented in Fig.3.5 and
Fig.3.7 on the basis of Table 3.1, lets consider the results for the processor architec-
ture 8a (the 1st row). For simulating 112034 gate-level SAF faults using parallel
critical path tracing in the environment in Fig.3.7 30 seconds is required. Assume
now very optimistically that for single fault simulation of sequential circuits in

Table 3.1 – Comparison of two fault simulation approaches.

Circuit
Beh. level

logic
simulation,

Fault simulation. All faults [Fig.3.7]

Single fault
[sec]

Macro level Gate Level

[Fig.3.5]
of

faults

Sim-n
time,
[sec]

Speedup
of

faults

Sim-n
time,
[sec]

Speedup

8a 0.155 66328 14.0 734 112034 30.0 579

8b 0.152 50206 12.1 631 83940 24.7 517

8be 0.168 55270 28.3 328 99330 62.1 269

8bk 0.159 49938 11.6 684 86878 25.2 548

8bs 0.154 56444 65.2 133 100820 173.4 90

8c 0.159 73182 16.3 714 122386 35.9 542

8d 0.161 71730 17.0 679 123012 35.5 558

8de 0.164 75840 34.8 357 136876 81.3 276

42

3.3 fault simulation environment

the UUT at the behavioral level the same time is needed as for simulation of the
correct circuit, i.e. 0.155 s. Then, to simulate 112034 faults in the sequentially pre-
sented gate-level UUT 17365 seconds, or about 5 hours would be needed. Hence,
the gain in speed for this particular UUT will be not less than 580 times. In fact,
it will be even more, since the gate-level simulation would be much slower than
the behavior level simulation, as was already mentioned.

The results of benchmark 8bs deserve a separate discussion. As can be seen
this benchmark has considerably smaller speed-up factor, than all the other cir-
cuits. It can be seen that in case of 8bs time of logic simulation is merely equal
to the results of other circuits, but the time of combinational fault simulation is
considerably higher than others. The reason lies in the internals of this circuit.
8bs is a modification of the bio-impedance analyzer that has maximum shared
resources and therefore great number of reconvergent fan-outs. As it was pre-
viously shown [39] the exact critical path back-tracing used in fault simulation
environment is very sensitive to the amount of reconvergency in the circuit. I can
conclude here that logic simulation doesn’t depend on the level of reconvergency
in the circuit, apart from combinational fault simulation using back-tracing.

In order to produce the results in Table 3.1 I used desktop class Intel I7-930

@ 2.80 GHz 4-core processor running Windows 7 operating system with 6GB of
physical RAM. The circuit was simulated by ModelSim SE ver.6.5c. The speedup
values were calculated in respect to theoretically assumed speed of sequential
fault simulation computed as multiple of column two and respective column for
macro- and gate-level number of faults.

Note, the main idea of such a powerful fault simulation, based on transform-
ing sequential fault simulation task into a set of combinational fault simulation
sub-tasks is directly related to the goal of this analysis. And the idea is as well
closely tailored in the method of at-speed testing being evaluated. The goal of
fault simulation is in this case to evaluate the fault detection coverage, not fault
diagnosis. In other word, I am not interested in creation of an exact fault table.
As there are signature analyzers on the outputs of simulated blocks, it will be
sufficient during testing to fix on the inputs of the block correctly only the first
erroneous vector affected by the fault. As the result, the method is not sensitive
to the possible mismatches of the subsequent input vectors of the faulty block
with those collected during logic simulation of the correct UUT.

The main advantage of using such fault simulation as a part of the method
proposed in Section 3.2 is to provide a designer with a good insight into the
testability of the given circuit. Having an information regarding fault coverage of
every combinational block the designer can improve testability more efficiently.
He can limit the circuit space for testability improvement only to those blocks
that have lower fault coverage. And for the blocks with good coverage it will
be possible to merge them in order to cut the number of points for monitoring.
Although for this task the sequential simulation is required - the size of the circuit
to be simulated is significantly reduced. Also in the Chapter 3 I propose a general
method to extend the usability of the PPECPT for simulation of the sequential

43

at-speed self-testing

circuits, even in case of partial register monitoring. This new method can also be
effectively used for the purpose of simulation of combined blocks.

Let us summarize the main idea of the section. The fast fault simulator is used
[39] that is not simulating faults one by one like in the traditional fault simulators
for sequential circuits, rather it calculates by a single run all the faults detected
in the combinational sub-circuits by a bunch of patterns (the reasoning is done
for all faults in the sub-circuits in parallel for many patterns). The confusion may
arise now because the fault reasoning is carried out for input patterns that were
collected from the behavior of the correct circuit. This means that if there was a
fault, which produces an erroneous output pattern, then the next input pattern
will be as well erroneous (because of the possible feedback loop) that means in
turn that the results of fault reasoning of all subsequent patterns will be as well
wrong. But, on the other hand, this is not any more important, because the first
erroneous pattern in the input sequence of the sub-circuit will be fixed already
by MISR as an error, and this will be sufficient for fault detection in the end of
the test (with the accuracy determined by the probability of signature aliasing).
Generating fault tables and fault diagnosis of course is not possible, but this is
not the purpose of this chapter.

To my knowledge, such an approach of running fault simulation in sequential
circuits for at-speed test has been proposed the first time.

3.4 case study : signal processing unit as uut

To investigate the feasibility of the method in the sense of achieving sufficient
fault coverage in real cases, I carried out experimental test research on one of
the benchmark circuits previously proposed. From the family of processors, dis-
cussed in the previous Section the processor with architecture 8a was selected. It
has been chosen because is represents design solution used in real-life scenarios.

As it was already mentioned in Chapter 3 the bio-impedance signal analyzer
represented by circuit 8a is only a part of industrial solutions for bio-impedance
measurements. The system also has a sine-wave generator of different frequen-
cies. It is used to produce the excitation of a sine signal into a tissue in order to
analyze it’s response for further calculation of bio-impedance. During this case
study in addition to evaluation of at-speed methodology it was also decided to
check whether digitized analog sequence can be used as a test set. The reason
for that is simple. In case such a sequence shows good fault detection quality
a generator already present in system can also be used for test purposes. This
would in turn result in savings of silicon area.

For self-test purposes, the analog part - DAC, tissue and ADC - are skipped
and the output of the Excitation Signal Generator is fed directly to the digital
input of the Digital Signal Analyzer that is shown in Fig.3.8.

Excitation signal generator along with body and analog part was exchanged
with signal generator of particular type. Also the sampler is implemented as
80MHz clock signal. As was mentioned in Chapter 3 80Mhz is a maximum clock
frequency of this analyzer. Fig.3.8 gives visual representation of the test setup.

44

3.4 case study : signal processing unit as uut

I investigated four types of signal generators to be used as test sources: sine,
chirp, saw-tooth, LFSR. Such signal generator provides input signals to all 8 chan-
nels of the analyzer. These can be seen on Fig.3.1. All the channels get the same
signal, so that each channel can be tested equally to each other. All the generators
are implemented in VHDL in order to be used with simulation environment.

1. The sine signal generator is using floating point arithmetic and sin() func-
tion of the VHDL math library. It can take amplitude, phase and frequency
as parameters to produce the corresponding sine wave. During the experi-
ments the amplitude was set to 15 bits, taking into account 1 sign bit and
16-bit wide input of the analyzer. The phase was set to 90 degrees in order
to produce the input signal from the upper part of the wave. Such signal
would produce more unique values in less time, because it covers all the
values from top to the bottom in half-period. It was useful to check whether
the test sequences of small length could produce meaningful results. The
frequency was modified during the experiment in order to detect the better
signal for testing this device.

2. The chirp generator takes as parameters start and stop frequency periods
as well as number of samples in which frequency should change from start
to end frequency value. The chirp generator changes the frequency every
sample it produces. The amplitude remained 15bits + 1 sign bit and start
phase was set to 90 degrees. During the experiments the length of the chirp
signal was manipulated – number of samples from start to end frequency.

3. Saw-tooth signal is implemented as a counter. The parameter it takes is a
period of the signal. The generator produces equally spaced samples of the
saw-tooth signal of this period. The amplitude is 15bits+1 sign bit.

Figure 3.8 – Testbench for the case study.

45

at-speed self-testing

Figure 3.9 – Equivalent circuit for the Signal Analyser in Fig.2.2.

4. LFSR signal generator is implemented as 16-bit linear feedback shift regis-
ter. The seed is taken so that it goes through all the 65535 possible values
except 0. The size of the LFSR was chosen in accordance to the input width
of the signal analyzer under test.

3.5 experimental results

Experiments were carried out for Signal Analyzer (architecture 8a) in Fig.3.8,
presented as equivalent circuit with highlighted pipe-lined tracks in Fig.3.9. As
the result of the experimental research according to method in Fig.3.3, the circuit
was finally partitioned into 7 blocks as separate UUTs that are characterized in
Table 3.2.

3.5.1 Fault coverage of the blocks

I calculated the fault coverage for all seven blocks as well as total fault cov-
erage for four different types of signals: sine, chirp, saw-tooth and LFSR. The
number of test patterns used for this simulation is 1000000 (one million). The
fault simulation environment described in Section 3.3 was used. The results of
the experimental research in percentage of fault coverage for all the different
blocks are presented in Table 3.3 and as the bar diagram in Fig. 3.10.

Blocks timer and sampling represent control logic of the circuit. These are well
tested, because their memory cells are completely covered by MISRs. The reason,
why the coverage is not 100% is that the reset logic wasn’t simulated.

As can be seen, the best results in average for all the blocks were achieved for
the input signal sine where the fault coverage was 98.20%. The lowest total fault
coverage 75.99% was registered for the signal type saw-tooth.

46

3.5 experimental results

Table 3.2 – Characteristics of the blocks in Fig.3.8

No Name of the
block

Number of
faults

Number of
inputs

Number of
outputs

1 calc_add 69544 1431 896

2 calc_sub 18588 791 256

3 in_buf 98 17 16

4 out_buf 14750 1554 769

5 out 7480 709 64

6 sig_acq 8560 538 520

7 timer 512 18 17

Total 119532 2528(5058) 2538

Table 3.3 – Results of fault coverage experiments.

No Name of the block Input signal types
Sine, % chirp, % saw-tooth, % LFSR, %

1 calc_add 97.37 94.86 76.80 95.71

2 calc_sub 98.85 99.20 64.90 99.20

3 in_buf 82.65 82.65 82.65 82.65

4 out_buf 99.88 99.86 74.74 99.86

5 out 99.14 99.06 78.66 99.14

6 sig_acq 95.63 95.63 95.63 95.63

7 timer 94.14 94.14 94.14 94.14

8 sampling 95.62 95.62 95.62 95.62

Total 98.20 96.68 75.99 97.21

47

at-speed self-testing

Considering the distribution of fault coverage among different blocks it can be
seen that the lowest test quality is mapped to the block in_buf. However, since the
block in_buf is rather small (characterized by only 98 faults), the improvement of
its testability will not lead to considerable increase in the total fault coverage of
the whole circuit.

3.5.2 Impact of the test length

Since the cost of testing depends on the time used for carrying out the self-test
procedure, I investigated how the fault coverage will depend on the test length
measured in the number of test patterns. The results are shown as the charts for
four signal types in Fig. 3.11.

The most cost effective would be the LFSR based self-test sequence where the
fault coverage around 90% will be achieved already after 80 000 test patterns
(clock cycles) whereas the sine signal based and chirp signal based tests achieve
only about 85% and 80% fault coverage, respectively, at the same test length.
When doubling, however, the test length, the sine based and LFSR based tests
become equal at the 95% fault coverage. Especially sensitive to the length of the
test is the chirp signal based test sequence.

3.5.3 Comparison to the state-of-the-art methods

I compared the test quality achieved by the proposed method with traditional
scan-path (SP) techniques both for using LFSR pseudorandom and deterministic
test sequences. The results are presented in Table 3.4.

Figure 3.10 – Distribution of fault coverage in the circuit.

48

3.5 experimental results

Table 3.4 shows that the fault coverage is nearly the same for all the methods
compared. However, to get the same fault coverage as with the proposed method,
the test length of the scan path & LFSR based approach should be even twice
bigger compared to the proposed method. To calculate the testing time cost in
clock cycles, the test length for both referenced scan-path based methods should
be multiplied by the length of the scan path that is equal to 2528 bits (the total
number of inputs of all the tested blocks in the given circuit).

For the proposed method, the testing time in number of clocks is equal to the
test length. Sp that, I can conclude that the time cost of the proposed method
is about 3-7 times cheaper than the SP & deterministic approach and more than
2500 times cheaper than SP & LFSR at the same fault coverage (in the latter case
the single scan-path was assumed).

Figure 3.11 – Dependence of the fault coverage on test length.

Table 3.4 – Comparison of different methods.

Method Fault cover. % Test length (TL) Testing time (clock
cycles)

Proposed 97.78 500000 5 ∗ 105

SP & LFSR 96.82 500000 12640 ∗ 105

Proposed 98.20 1000000 10 ∗ 105

SP & LFSR 98.73 1000000 25280 ∗ 105

SP & deterministic 98.69 1364 34 ∗ 105

49

at-speed self-testing

Table 3.5 – Fault coverage for circuit 8a - without resource sharing and 8bs - with
resource sharing.

Signal Fault coverage, %
8a 8bs

Sine 98,20 98,16

Chirp 96,68 96,49

Sawtooth 75,99 81,69

LFSR 97,21 97,05

3.5.4 Impact of the resource sharing

In order to see how resource sharing would affect the proposed method I’ve
computed fault coverage for another bio impedance benchmark circuit with the
highest reconvergency characteristics that is 8bs. The number of test vectors is 1

000 000. The results of the fault simulation of circuit 8a and 8bs for all four analog
signals can be seen in Table 3.5.

Although the results of the most test signals are lower for circuit 8bs, it can
be seen that method still provides high fault coverage even in case of high level
of reconvergency. The digitized sine signal still provides better results, than any
other test signal. The results of saw-tooth test signal improved that suggests that
circuits with higher resource sharing are better testable with exhaustive test se-
quences. However its results are still low, when compared to other digitized ana-
log signals. These preliminary results show that the efficiency of proposed at-
speed functional BIST methodology doesn’t considerably depend on the amount
of resource sharing.

3.6 chapter summary

In this Chapter the following main results were achieved:

• A new approach was developed to self-testing of digital systems with pipe-
lined architectures using inherent functionalities of systems with added
value as higher test quality, less hardware cost, and removing yield loss
due to avoiding the danger of overtesting.

• The usage of digital representation of analog signal sequences as a func-
tional test for testing digital circuits (signal processing architectures) is in-
vestigated in the first time.

• A novel BIST evaluation environment was developed that allowed a gain
of 580 times in speed of fault simulation.

The added value of using inherent functional self-test sequences is the higher
test quality explained by on-line at-speed testing. The approach to functional

50

3.6 chapter summary

BIST does not need to store high volume test data in the system memory. Addi-
tional hardware is as well not needed for on-line test pattern generation as in the
case of traditional LBIST. The only needed additional test hardware is related to
using MISR for monitoring the test responses. To minimize the needed additional
MISR hardware overhead, an original algorithm for selecting test-points was de-
veloped. As the result of avoiding artificial embedded test pattern generators like
in case of LBIST, and of using only normal working sequences for test purposes,
the dangers of over-testing and the related yield loss are removed.

To cope with the problem of very slow fault simulation in sequential circuits
needed for exploration and comparison of different self-test solutions a novel
evaluation environment was developed where the time consuming sequential
fault simulation task can be transferred into a set of combinational fault simu-
lation sub-tasks. Experiments demonstrated the gain in evaluation speed more
than 580 times without losing any accuracy in fault coverage calculation.

To investigate the feasibility of the method to achieve high fault coverage, ex-
perimental research with a digital Signal Analyzer unit was carried out as a case
study.

The goals of the experiments were twofold: (1) to select the best type of input
signal for testing purposes from a set of signals typically used for processing in
the given Signal Analyzer, and (2) to compare the new method with traditional
scan path based testing methods.

Experimental research showed that the best testing capability has the sine sig-
nal (with fault coverage of 98.2%) compared to the LFSR based pseudorandom
(97.2%) and chirp (96.7%) signals at the same test length. The worse testing ca-
pability has the saw-tooth type signal (76%). The fault coverage achieved by the
sine signal was 98.2% that is nearly the same compared to the traditional scan-
path pseudorandom (98.7%) and deterministic (98.7%) test approaches. The gain
in testing time cost was 3-7 times compared to the deterministic and more than
2500 times compared to the pseudorandom single scan-path based approach.

The comparison of the results for circuits with different level of resource shar-
ing suggests that methodology is not sensitive to this parameter, at least for the
given benchmark.

To be efficient the methodology requires strong evaluation environment based
on fault simulation. The PPECPT algorithm used in this work has very limited
use in case of sequential circuits. It also has a potential for further speed up in
fault simulation of combinational circuits. In the next two chapters I propose
methods to speed up the PPECPT algorithm based fault simulation for both com-
binational and sequential circuits.

51

4
M U LT I - C O R E FA U LT S I M U L AT I O N E N V I R O N M E N T

This chapter is based on the publication "Fault Simulation with Parallel Exact
Critical Path Tracing in Multiple Core Environment" (see Appendix D).

In this chapter a novel fault simulation method is proposed, based on ex-
act critical path tracing beyond the Fan-out-Free Regions (FFR) throughout the
fully simulated circuit. The method exploits two types of parallelism: bit-level
parallelism for multiple pattern reasoning, and distribution of the fault reason-
ing process between different cores in a multi-core processor environment. To
increase the speed and accuracy of fault simulation, compared with previous
methods, a mixed level fault reasoning approach is developed, where the fan-out
re-convergence is handled on the higher FFR network level, and the fault sim-
ulation inside of FFRs relies on the gate-level information. To allow a uniform
and seamless fault reasoning, Structurally Synthesized BDDs (SSBDD) are used
for modeling on both levels. Experimental research demonstrated very promising
results in increasing the speed and scalability of the method.

The contribution of the author lies in developing of the proposed algorithms,
implmentation of required tools and carrying out the experiments.

The rest of the chapter is organized as following. Section 4.1 provides an
overview and comparison of the available single-core and multicore fault simu-
lation methods. Section 4.2 explains the theory behind the Parallel Pattern Exact
Critical Path Tracing (PPECPT) algorithm. In Section 4.3 a new method of par-
allel critical path tracing based on mixed level fault simulation with two types
of SSBDDs is proposed. Section 4.4 describes the method of distributing the task
between multiple cores of the processor. Finally Section 4.5 describes the results
of experimental research with related discussion, and Section 4.6 concludes the
chapter.

4.1 overview

Fault simulation is one of the common and challenging tasks in nowadays
test process. In case of combinational circuits if the faults are simulated one by
one like in case of serial fault simulation the number of operations depends on
number of faults, number of test patterns and a size of the circuit. Number of
faults is roughly the same as the number of gates in the circuit. Therefore if I
denote number of gates as n and number of patterns as p - the complexity of
the fault simulation roughly becomes O(pn2), which can be challenging for large

53

multi-core fault simulation environment

circuits. This is why a lot of work have been dedicated to improve the complexity
and speed of the fault simulation process.

4.1.1 Serial Fault Simulation

It is a simplest way of fault simulation of the circuit. It consists of fault-free
simulation for all test vectors available, to obtain "good" output responses and
many simulations of "faulty circuits" to get "bad" responses. The faulty circuit is
the one where a single stuck-at fault is injected at a time. If the output responses
of faulty circuit do not match to the corresponding responses of fault-free circuit
the fault is said to be detected by a given test vector.

Prior to fault simulation the list of faults is collapsed. The collapsing is possible
due to the fact that some faults at the ouput of the gates depend on some faults on
the inputs of these gates. It means that it is only sufficient to run fault simulation
for one of these two faults. Fault collapsing is said to reduce the number of faults
by 50% to 60% [13]

If it is only required to find the detected faults during fault simulation then it
is sufficient to partially simulate the faulty circuit most of the time. It means the
fault simulation is performed for faulty circuit with particular fault injected up
to the moment, when it becomes detected. This approach is called "fault drop-
ping". As many faults are detected after relatively small number of test vectors
applied it can dramatically improve the performance of the method. Although
quite efficient the use of this technique can be limited. Fault dropping should be
avoided when fault simulation is used for diagnostic purposes. Also N-fault sim-
ulation, where the particular fault requires to be detected no less than N times,
can significantly degrade the boost in performance.

The main disadvantage of the Serial Fault Simulation is its low performance.
The advantages are simplicity and universality. Simplicity means it is only re-
quired to have standard logic simulator with fault injection and response com-
parison procedures. Also the ability to support different fault models, as long as
the fault can be injected provides universality.

4.1.2 Parallel Fault simulation

Parallel fault simulation can be divided in two groups: parallel-fault and parallel-
pattern. These two types of fault simulation take advantage of the CPU word-
length, which is commonly 32- or 64-bit wide. The 64-bit processor can pro-
cess logic operations for 64 bits at once. This parallelism can be realized in two
ways: to simulate faults in parallel (parallel fault simulation) or patterns (parallel-
pattern fault simulation).

In parallel-fault simulation the word length w is divided between w − 1 faulty
circuits. One of the bits is dedicated for fault-free simulation. Another w− 1 bits
represent signal values at presence of different faults. When one of the faulty
gates is reached the bit corresponding to this particular fault is set to the faulty

54

4.1 overview

value. As digital circuit consists of logic gates the corresponding bitwise logic
operation is used to simulate signals in parallel. When the faulty response is
obtained at the primary output of the circuit the bits not equal to the fault-free
bit show that particular faults were detected by current pattern at this particular
output.

The performance boost in comparison to serial fault simulation is about w− 1
times. However it comes at a cost of lack of universality and limited fault drop-
ping capabilities. In terms of universality the zero or unit delay models can only
be used, as several faults are computed in parallel. By the same reason we can
only drop faults, when all the faults from the bunch are detected.

In parallel-pattern fault simulation the word length w is used to pack w test
vectors to simulate one faulty circuit for all of them in parallel. The approach
also carries another name of "Parallel-Pattern Single Fault Propagation" (PPSFP).

The fault simulation process is as following. The test patterns are combined
into a bunches of CPU word-length. The fault is injected and all of the bunches
are simulated against this faulty circuit. If the fault dropping is used the simula-
tion ends once the fault is detected or all of the bunches are simulated. In order to
reason about fault detection the primary output responses are compared against
fault-free simulation responses. If some of the patterns in the bunch produce
different response it means they detect this particular fault. Once the fault is pro-
cessed for all available test patterns the simulation repeats for other fault, until
all the faults are simulated.

PPSFP approach better handles fault dropping in comparison to parallel fault
simulation, as it can drop fault right away once it has been detected [62].

4.1.3 Deductive fault simulation

This type of fault simulation differs from the previously described techniques
in a way that it uses a logic reasoning, rather than simulation. It is capable to
produce a list of faults detectable by a given test vector in one run.

The reasoning starts at the primary inputs and "propagates" a list of faults
through the circuit to the primary outputs. During this process the list of faults,
which is capable to influence the fault-free value of a signal is computed for every
signal including primary outputs. As a result at the end of the simulation process
the faults located in the lists of primary outputs are said to be detected by a given
pattern.

Fig. 4.1 shows the process of deductive fault simulation for a simple circuit for
one test vector. A letter designates every line in the circuit, including branches of
the fanout. Starting at the inputs of the circuit it can be seen that only stuck-at one
fault (A/1) can change the value of 0 at line A. The same situation is at primary
input B. However line C can be influenced not only by fault C/0, but also by
preceding B/0. Looking at AND gate G1 it can be seen that both B/0 and C/0

could not propagate further, because value of 0 at line A blocks the propagation.
On the other hand value of 1 at line C allows fault A/0 to propagate to the output

55

multi-core fault simulation environment

of G1 to line E. So that fault list of E contains A/0, along with E/1, but not B/0

or C/0. Line D can also be influenced by fault B/0, as well as D/0. Looking at
OR gate G2 reveals that both A/1 and E/1 are blocked by D value of 1. While at
the same time E value of 0 allows B/0 and D/0 propagation to the output of the
gate to the line F. The fault list of line F would eventually consist of fault F/0 as
well as B/0 and D/0, propagated through G2. These three faults can be marked
as detected by test pattern "0,1". The similar reasoning is done for all of the test
vectors.

The method is efficient because it only requires trivial logic simulation to be
run. On the other hand this method also has some limitations. First of all there
are undefined memory requirements, as the size of fault lists cannot be predicted
in advance. Another limitation is the ability to handle only zero-delay timing
model, as no timing information is considered during reasoning process [62].

4.1.4 Concurrent fault simulation

This type of fault simulation exploits the fact that only a fraction of the cir-
cuit in the output cone of the fault is influenced. So that it uses event-driven
simulation to only additionally compute events, which differ from the fault-free
simulation events. All the faults are concurrently processed along with fault free
simulation for one pattern at a time.

The simulator processes good and bad events in the same run for one test
vector at a time. The good events are those, which occur in case of fault-free
behavior. The bad events occur in case when faulty behavior of a gate produces
the result, which differs from fault-free behavior.

Every gate contains a fault list consisting of bad gates - gate copies with partic-
ular fault present. Bad gates are described by fault index and I/O values in the
presence of a fault. Bad gates are only simulated when become visible. It happens
when certain fault produces bad event, which propagates to this gate.

Figure 4.1 – Deductive fault simulation.

56

4.1 overview

The beginning of fault propagation is called divergence of a fault and the end
of propagation - a convergence of a fault. When the fault diverges is create a
bad event on the inputs of the next gates connected to the output of the faulty
gate. When this happens the bad copies of these gates corresponding to this
fault become visible and will be computed. When bad gate produces the same
result as a good gate - it converges, so that it doesn’t create a bad event for
subsequent gates. In case the bad gate for this fault was present in the fault lists
of those gates from previous run of the simulator - it is deleted. This way the only
faulty behavior that is currently active for simulated test pattern is concurrently
computed for all active faults.

The advantage of such approach is the performance improvement, especially
for large circuits, where single fault could affect about 10% of the circuit. In
this case the speed up would be an order of magnitude. On the other hand the
handling of lists of bad gates requires a lot of dynamically allocated memory,
which size is undefined in advance [62].

4.1.5 Differential Fault Simulation

This type of fault simulation is dedicated to improve sequential fault simula-
tion by combining the good sides of serial fault simulation and concurrent fault
simulation. Concurrent fault simulation has potential memory problem, due to
simulation of all the faults at once, which is bad. However it uses previous state
of the circuit - produced by previous pattern - to generate events for the next
pattern, thus doesn’t require storing and restoring the fault free state of the cir-
cuit, which is good. On the other hand the serial fault simulation simulates the
faults one at a time and doesn’t have undefined memory requirements, which is
good. However it should keep the good state of the circuit in order to restore it
every time the new fault is injected, which is bad. Differential fault simulation
taked advantage of event-driven simulation of one fault at a time using circuit
state from previously injected fault. This way it considerably saves memory.

First the fault-free circuit is simulated for the first test vector and the output re-
sponse of the fault-free circuit is saved and the state is stored. The important fact
is that only flip-flop values are stored, which reduces the memory requirements.
Then the fault is injected and produces an event that is propagated for the same
test vector to the primary outputs. The difference in state between previous state
and current state of the flip-flops is stored for current fault. All the next faults are
simulated in the similar manner for the first test vector and the corresponding
consecutive differences of states are stored.

Next the new test vector is taken and fault-free state is restored from the mem-
ory. The circuit is simulated and output values are saved. Then the first fault is
injected and the state of the flip-flops is restored using state difference saved dur-
ing simulation of this fault for previous test vector. This way all the test vectors
are simulated one by one.

57

multi-core fault simulation environment

If the faulty circuit outputs are different from the fault-free circuit output val-
ues - the fault is detected and can be dropped if required. The fault dropping
is not trivial however, as it requires the state difference of dropped fault to be
accumulated in to state differences of its consecutive undetected faults.

The shortcoming of the method is that the timing of the occurrence of events
is not the same as their order. It means that in case when gate delays must be
counted the memory requirements could become high [62].

4.1.6 Critical path tracing

The critical path tracing method [2, 6] eliminates explicit fault simulation for
faults within Fan-out-Free Regions (FFR). Similarly to deductive fault simula-
tion the reasoning about fault propagation from inputs to the output of the gate,
macro or FFR is done, instead of true simulation of faulty circuit. However the
reasoning process is accomplished in reverse direction: starting at primary out-
puts and finishing at primary inputs. The previously computed fault propagation
information is constantly reused, which eliminates redundant computations.

The main challenge in such an approach is exact fault propagation computa-
tion for global reconvergent fan-outs. A modified critical path tracing technique
that excludes fault simulation for fan-out stems and includes a system of rules
to check the exactness of critical path tracing beyond the FFRs, and which is lin-
ear in time, is proposed in [79]. However, the rule-based strategy does not allow
parallel analysis and rule check of many patterns simultaneously.

This drawback was removed in [68] by introducing a novel concept of Paral-
lel Pattern Exact Critical Path Tracing (PPECPT) which can be applied efficiently
also beyond FFRs. In [70], the same method was extended from stuck-at faults
(SAF) for a general class of X-faults. The main idea of the method was in com-
piling of a dedicated compact computing model through the circuit topology
analysis, which allows exact critical path tracing for many patterns throughout
the full circuit and not only inside FFRs. The method is described in more detail
in Section 4.2.

4.1.7 Multi-core methods

Uniprocessor methods make use of CPU word length for parallel computa-
tions. In [25] authors went further and made use of GPU to extend bit-level
parallelism to thread-level parallelism, where multiple threads are computing
different bunches of patterns in parallel (PP) for one fault. The approach is tar-
geted to produce fault table. Fault parallel (FP) methods described in [53, 54] tar-
get distributed MIMD systems, such as hypercube computers from Intel. These
approaches divide fault set into parts, which are distributed among comput-
ing nodes to simulate them pattern- by-pattern in parallel. Circuit parallel (CP)
method described in [13] uses a set of Sun 3/60 workstations for distributed simu-

58

4.1 overview

lation. The circuit is divided by levels, where gates inside the level are distributed
among workstations for event-driven simulation in parallel.

There were also attempts to combine the two of the methods. The combinations
of FP and PP have been proposed in [26, 30, 37]. In [30] the vector processor is
used to dynamically balance the simulation yield, by making use of FP approach
on the early stages of fault simulation in order to quickly cover easy-to-detect
faults. Then the algorithm dynamically scaled down the fault parallelism, using
more pattern parallelism at the end of simulation in order to quickly cover hard-
to-detect faults. The SPITFIRE-2 described in [14] has two stages. In the first stage
the test set and fault set are divided into parts and easy to detect faults in fault
subsets are simulated using test subsets. In the second stage undetected faults
are also partitioned into parts and pattern parallel fault simulation is carried out
on those parts to cover hard-to-detect faults quicker. In SPITFIRE-3 the second
stage is implemented as pipeline improving fault detection rate. It is important
to note that this approach targets sequential circuits, as well as PAUSIM [26]. The
major difference in PAUSIM is that the CPU word length is used to represent
faults, so that bunch of 32 faults can be simulated for each test vector in parallel
on single 32-bit processor. The test and fault sets are then divided into subsets
and simulated on distributed system of UNIX workstations.

The combination of FP and CP have been proposed in [55] targeting sequential
circuits. It also consists of two phases, where in the first phase easy-to-detect
faults are covered by FP simulation. Later the second phase uses event-driven CP
simulation to cover hard-to-detect faults.

PP and CP combination was proposed in [24]. The method is targeted for
execution on GPU. Paper states that circuit level parallelism is used to simulate
gates in the same level in parallel. One sub-processor only simulates 2 patterns
simultaneously, due to the LUT based model of the gates used during simulation.
The paper states that N test patterns could be simulated in parallel, but the details
of implementation are not discussed. The method also can not produce fault
table.

In the recent paper [34] it is shown that applying algorithmic optimizations
and using parallelization on pattern and structural levels yield good results on
multicore systems. Authors advanced Pattern Parallel Single Fault Propagation
(PPSFP) concept using parallel graph computations and fault dropping and were
able to achieve about 16x increase in speed.

The advantage of using model parallelism in multicore environment is also
highlighted in another work [42]. Here the parallelism is achieved in three dimen-
sions: algorithm parallelism (AP), circuit parallelism (CP) and fault parallelism
(FP). The method is executed on GPU device from NVIDIA and is optimized to
use local memory of multiprocessors. Only fan-out region affected by injected
fault is processed. Faults influencing the same fan-out region are processed in
parallel. Gate-level circuit representation is used. Gates of the same level are also
processed in parallel. The approach achieves over 35x performance increase in
comparison to traditional FSIM simulator [41]. Because the proposed method is
an advancement of FSIM it is also using fault dropping.

59

multi-core fault simulation environment

Taking into account the possible advantages of exploiting the circuit paral-
lelism on many-core system I describe the method to achieve better performance
of exact critical path back-tracing in multi-core environment. The fault simula-
tion can be accomplished on gate, macro or FFR levels. Two types of parallelism
are utilized during fault simulation: (1) bit-level parallelism for multiple pattern
reasoning originally present in PPECPT, and (2) distributing the compiled com-
puting model among a subset of different CPUs in a multi-core computing en-
vironment, so that each processor is responsible for parallel critical path tracing
in a related particular sub-circuit area. No fault dropping is used, so the method
can be used for fault table generation.

Another novelty introduced in this chapter is a mixed level fault reasoning
approach, where the problems related to the fan-out re-convergence are handled
on the higher FFR network level, and the increased speed and accuracy in fault
reasoning is achieved by fault reasoning inside FFRs using additional gate-level
simulation data. Such an approach allows to achieve a speed-up in fault simu-
lation inside FFRs and improve the accuracy of fault reasoning compared with
previous methods in [68, 70].

4.2 critical path fault tracing

Here I describe the method of critical path fault tracing using SSBDDs in more
detail. I start with definition of Structurally Synthesized Binary Decision Dia-
grams (SSBDD). Then the fault simulation beyond the fanout stems is presented.
FInally the high speed of fault simulation using SSBDDs is explained.

4.2.1 Structurally Synthesized Binary Decision Diagrams

Structurally Synthesized Binary Decision Diagrams (SSBDD) were introduced
in [65, 67] as an extension of the traditional model of Binary Decision Diagrams
(BDD). A BDD is a mean to represent, analyze, test and implement a Boolean
function. It is defined in [14] as a directed acyclic graph with two terminal
nodes, which are the 0-terminal and 1-terminal nodes. Every input variable of
the Boolean function is represented by non-terminal node and has two outgoing
edges, called 0-edge and 1-edge.

The formal definition presented in [65] is the following. An SSBDD that repre-
sents a Boolean function y = f(x) = f(x1, x2, ..., xn) is a BDD in which (inverted
or non inverted) Boolean variables xi, (i= 1,2, ..., n) label nonterminal nodes, and
constants 0 or 1 label terminal nodes.

SSBDDs are synthesized directly from the structure of the logic gate-level cir-
cuit. Superposition of elementary BDDs of the gates is used for this purpose.
SSBDDs are used to represent fan-out-free regions, which are interconnected to-
gether into complete SSBDD model of the circuit. Because every combinational
circuit can be regarded as a network of fan-out-free regions the SSBDD model

60

4.2 critical path fault tracing

forms its equivalent representation. A side effect of the SSBDD model is its linear
complexity and fault collapsing.

There are two types of mappings between SSBDDs and logic circuit:

• signal paths are represented by nodes of SSBDD

• groups of SSBDD nodes represents certain sub-circuits of the whole circuit

The major advantage of SSBDDs is that they represent the structure of the
circuit in compact manner, as well as its behavior. This fact makes it possible to
use single SSBDD model in a wide variety of tasks such as test generation, fault
and logic simulations, testability improvement and fault analysis [65].

4.2.2 Parallel pattern critical path fault tracing

Consider a combinational circuit as a network of FFRs, where each of them is
represented as a Boolean function

y = F(x1, x2, . . . , xn) = F(X) (4.1)

where X = x1, x2, . . . , xn is the input vector of the FFR. Such a network of 5 FFRs
is represented in Fig.4.2. Let Xk denote the vector of input variables of the k-th
FFR, zk denote the internal fan-out stem variables (outputs of FFRs) with zkj as
fan-out branch variables for zk (inputs of FFRs) and y denote the output variables
of the circuit.

The fault simulation can be processed as calculation of Boolean derivatives: if
∂y/∂x = 1 then the fault is propagated from x to y. This check can be performed
in parallel for a set of test patterns. In order to extend the parallel critical path
tracing beyond the fan-out free regions the concept of Boolean differentials is
used [63].

Consider the full Boolean differential of the FFR y = F(X) as

dy = y⊕ F((x1 ⊕ dx1), . . . , (xn ⊕ dxn))

= y⊕ F(X⊕ dX)
(4.2)

Figure 4.2 – Combinational circuit with 5 FFRs.

61

multi-core fault simulation environment

The change of the value of x because of the influence of a fault at x is denoted
here by ∂x. Also ∂y = 1 if some erroneous change of the values of arguments of
the function (4.2) causes the change of the value of y, otherwise ∂y = 0.

In [68] it have been shown that from the expression (4.2) the following relation-
ship can be derived:

∂y
∂x

= y⊕ F((x1 ⊕
∂x1

∂x
dx), . . . , (xn ⊕

∂xn

∂x
dx))

= y⊕ F(X⊕ ∂X
∂x

dx)
(4.3)

The formula (4.3) taken in the vector form can be simplified as

∂y
∂x

= y⊕ F(X′ ⊕ ∂X′

∂x
dx, X′′) (4.4)

where X′ ⊂ X is the sub-vector of variables which depend on x, and X′′ = X\X′
is the sub-vector of variables which do not depend on x.

For example, for calculating if the fault on z2 can be detected on y4, one can
check if

∂y4

∂z2
= y⊕ F(X4, z21 ⊕ 1, z31 ⊕

∂z3

∂z2
dz2)

= y⊕ F(X4, z21, z31 ⊕
∂z3

∂z2
dz2) = 1

(4.5)

The formula (4.4) can be used for calculating the influence of the fault at the
common fan-out stem x on the output y of the converging fan-out region by con-
secutive calculating of Boolean derivatives over related FFR chains starting from
x up to y. For that purpose, for each converging fan-out stem, the corresponding
formulas like (4.4) should be constructed for each converging FFRs. All these for-
mulas will constitute partially ordered computation model for fault simulation.
Since the formulas are Boolean, all computations can be carried out in parallel
for a bunch of test patterns.

Introduce first the following notations for the formulas above which are used
for calculating the Boolean derivatives:

• (x, y) - for ∂y/∂x

• {Xk, y} - for a subset of formulas {∂y/∂x | x ∈ Xk}

• Rxy((x, x1), . . . (x, xk)) - for the general case (3), where X′ = (x1, . . . , xk)

• Dx - vector which shows if the fault at the node x is detected or not detected
at any circuit output

• DX - a set of vectors Dx for the nodes x ∈ X

An example of a computational model of fault simulation for the circuit in
Fig.4.2 is presented in Table 4.1.

62

4.2 critical path fault tracing

The formulas presented in Table 4.1 can be easily created and stored by the
topological tracing of the circuit by algorithms developed in [68]. The algorithm
has linear complexity. However, the complexity of the computational model and
the related fault simulation speed depends on the structure of the circuit. As
shown in the papers [69, 70], the speed of the fault simulation by the proposed
parallel critical path tracing method outperforms the speed of the fault simulators
of major CAD vendors.

4.2.3 Fast fault simulation with SSBDDs

The high speed of processing the formulas is achieved by using SSBDDs for
modeling FFRs [65, 66]. Each FFR y = F(X) is represented by an SSBDD G, and

Table 4.1 – Leveled fault model equations.

L Partially ordered formulas
Types of

simulation tasks

7

∀x4,i ∈ X4 : Dx4,i = {x4,i, y4},
Dz21 = (z21, y4), Dz31 = (z31, y4);
∀x5,i ∈ X5 : Dx5,i = {x5,i, y5},

Dz13 = (z13, y5), Dz32 = (z32, y5)

Fault simulation
inside the FFRs

(F4 and F5)

6 Dz3 = Dz31 ∨ Dz32

Fault simulation
of fan-out stems

(z3)

5

∀x3,i ∈ X3 : Dx3,i = x3,i, z3 ∧ Dz3,
Dz22 = (z22, z3) ∧ Dz3,
Dz12 = (z12, z3) ∧ Dz3

Fault simulation
inside the FFRs

(F3)

4
Dz2 = Rz2, y4((z2, z21) ≡

1, (z2, z31)) ∨ ((z22, z32) ∧ Dz32)

Fault simulation
of fan-out stems

(z2)

3
∀x2,i ∈ X2 : Dx2,i = x2, i, z2 ∧ Dz2,

Dz11 = z11, z2 ∧ Dz2

Fault simulation
inside the FFRs

(F2)

2

Dz1 =
((z1, z3) ∧ Dz31) ∨ Rz1, y5((z1, z3), (z1, z13) ≡ 1)

where
(z1, z3) = Rz1, z3((z1, z22), (z1, z12) ≡ 1)

Fault simulation
of fan-out stems

(z1)

1 ∀x1,i ∈ X1 : Dx1,i = x1, i, z1 ∧ Dz1

Fault simulation
inside the FFRs

(F1)

63

multi-core fault simulation environment

Figure 4.3 – An FFR of a combinational circuit and its SSBDD.

each signal path in the FFR represented by a variable x ∈ X is modeled by a
corresponding node in the G. All the faults on a signal path collapsed into the
faults on the inputs of the FFR, are modeled by the faults at the nodes in G.
Hence, the targets of the fault simulation are the faults at the SSBDD nodes.

Consider a circuit in Fig. 4.3, and its corresponding SSBDD. The circuit con-
tains nine signal paths, and a node in the graph represents each of them. Note,
only the branches of the fan-out inputs are represented in the SSBDD as the
model of the FFR. Fault simulation is carried out by traversing the nodes in the
graph according to the given test patterns as in the case of traditional BDDs [47].

For simplification the graphical representation of SSBDDs, I use here the fol-
lowing convention: from a node labeled by a variable x, the right-hand edge
corresponds to the value x = 1, and the down-hand edge corresponds to the
value x = 0. Correspondingly, the exit from the graph to the right means enter-
ing the terminal node with constant #1, and the exit from the graph downwards
means entering the terminal node with constant #0.

Consider a test pattern 1011101 (1234567) at the inputs of the FFR in Fig. 4.3.
The pattern detects the fault at the input 3 by propagating the faulty signal from
the input 3 to the output 8. On the SSBDD in Fig. 4.3 the edges activated by
this pattern are highlighted in bold. The nodes traversed in the graph during
simulation of the pattern are marked by gray color. The value on the output 8 of
the circuit at this pattern is y = 1. Since the nodes 1, 22, 3, 4, 52 are traversed,
all they are responsible for the value y = 1s, and hence, should be taken as fault
candidates in case if the error will be noticed at the circuit output. All other
nodes 21, 51, 6, and 7 have not contributed in fault simulation, and hence, can be
excluded from the fault candidates set. Next, by simulating the faults at candidate
nodes it can be easily noticed that only the faults at the nodes 1 and 3 are detected
by the given pattern, because at these faults on the graph the terminal node #0

will be reached which means y = 0.
In [68], the algorithms for parallel logic simulation and parallel fault simula-

tion on SSBDDs were proposed. The algorithms are based on the ordering of

64

4.3 mixed level fault simulation with ssbdds

nodes m by assigning them numerical labels, so that for each node m with la-
bel n(m), all its predecessors mj must have labels n(mj) less than n(m). Logic
simulation is based on recursive calculating of the value of the formula

D(m) = (x(m) ∧ D(m1)) ∨ (¬x(m) ∧ D(m0)), (4.6)

where D(m) for the terminal nodes is equal to the respective constants #1 and
#0. Here x(m) denotes the node variable, m1 and m0 are the neighbors of m in
directions of x(m) = 1, and x(m) = 0, respectively. Fault simulation is based on
recursive calculating of values of the formulas

L(m1) = L(m1) ∨ (L(m) ∧ x(m)), (4.7)

L(m0) = L(m1) ∨ (L(m) ∧ ¬x(m)), (4.8)

S(x(m)) =
∂y

∂x(m)
= L(m) ∧ (D(m0)⊕ D(m1)) (4.9)

where S(x(m)) = 1 means that the fault at x(m) is detected by the simulated
test pattern, otherwise, if S(x(m)) = 0, the fault is not detected. Since all the pre-
sented formulas are Boolean, the algorithms can be applied by tracing the nodes
of the SSBDDs can be applied in parallel for many test patterns, each of them
represented by one bit of the computer word. The number of operations needed
for each node of SSBDD can calculate the cost of simulation. For example, the
cost of logic simulation is four operations per node, and the cost of fault simula-
tion is seven operations per node. Hence, to fault simulate the SSBDD in Fig.4.3
which includes nine nodes ,e.q. 9 * 7 = 63 (operations). Example of using the al-
gorithms can be found in [68, 70]. Using SSBDDs instead of the gate-level circuit
allows increasing both, the simulation speed for calculating the values of signals
in the network of FFRs, and the fault reasoning, since only the collapsed fault set
represented by nodes of SSBDDs is processed. This explains the efficiency of the
method demonstrated in [68].

4.3 mixed level fault simulation with ssbdds

Recently Shared SSBDDs (S3BDD) as a new type of BDDs were proposed to
speed-up logic simulation in digital circuits [48, 49]. In the following I propose a
two level implementation of the proposed method of critical path tracing, where
as the objectives of higher level, the fan-out nodes of the network of FFRs are
considered, and as the objectives of lower level, the fan-out branches and fan-out
free primary inputs of the network of FFRs are considered. The processing of for-
mulas (4.4) for calculation of detectability of faults at fan-out nodes is carried out
on the higher level using SSBDDs as in Fig. 4.3, and for computing the detectabil-
ity of faults at the inputs of FFRs, I will use the data calculated by gate-level logic
simulation.

65

multi-core fault simulation environment

In order to fault simulate all gate-level faults I propose to use S3BDDs which
can be processed in a similar way as SSBDDs. In Fig. 4.4, an S3BDD is presented
for calculation of the detectability of the faults at the inputs of FFRs. Each entry
x′ in S3BDD corresponds to a node variable x(m) in the SSBDD in Fig.4.3, and the
path from the particular entry to the terminal node represents an AND-function
of conditions needed for detectability of the input variable x of the given FFR.
For example, the path in Fig.4.4 from the entry 3′ through the nodes ¬22, c, ¬7,
a and d to the terminal node #1 corresponds to the detectability condition of
detecting the faults at the input3 of the FFR in Fig.4.3. Also Fig.4.4 shows how
the faults located inside an FFR can be r̈eachedb̈y fault simulation. It can be seen
that S3BDD graph also has gate-level nodes a′ and d′ as input terminals. This way
the S3BDD model covers all the gate-level faults. Please note that in the notation
of S3BDD graph the arrows are directed from input nodes to the output. This
however can be a point of confusion, as sensitivity calculations would run the
other direction - from output to inputs. This way redundant computations are
avoided and sensitivity results are saved along the computation process if any
fault point(input terminal node) is reached.

The set of these detectability AND-functions for all of the input variables of
the given FFR can be easily created from the gate-level structure of the FFR. To
combine them in a form of S3BDD like in Fig.4.4 the algorithm of optimized
S3BDD synthesis developed in [48] can be used.

The cost C of fault simulation using S3BDDs can be calculated in terms of
the number of operations needed. For the gates with more than 2 inputs the
synthesis process would make a 2-input gate equivalent. This way the cost can be
computed using formula (4.10), where i represents maximum number of inputs
per gate in the given FFR and jn represents the number of gates with n number
of inputs, except the terminal gate at the output of the FFR. The internal sum
is used to compute the number of operations needed for all the gates with the
same number of inputs. And the second sum computes the overall amount of
operations required for given S3BDD by adding up the results for gates with
different number of inputs. The number of operations for terminal output gate is
represented by Nt, which concludes the formula.

C = Nt +
i

∑
n=2

jn

∑
1

2(n− 1) (4.10)

For the S3BDD model in Fig.4.4 I have C = 12+ 3 = 15, which is four times less
than 63 operations needed for simulation of the SSBDD in Fig. 4.3. The calculation
of the cost of SSBDD fault simulation is discussed in Section 4.2.3. Although the
cost depends on the number of inputs of the gates inside the FFR it can be seen
from Eq.4.10 the dependency is linear. It needs to be considered that if there are
gates with many inputs inside an FFR, the FFR itself must have a big amount of
inputs, which also drives the cost of SSBDD simulation higher. It guarantees the
quicker execution of fault simulation using S3BDDs with better fault resolution.

66

4.3 mixed level fault simulation with ssbdds

Figure 4.4 – Direct fault simulation using S3BDDs.

Consider, as an example, the mixed level work share in the computing pro-
cesses of the level 2 in Table 4.1 between SSBDD and S3BDD models. These
processes handle the critical path tracing over the nested configuration of three
fan-out re-convergence areas. In the process

(z1, z3) = Rz1 , z3((z1, z22), (z1, z12) ≡ 1), (4.11)

(z1, z22) is computed at the low-level on the S3BDD for the FFR with output
z2, whereas Rz1 ,z3 is computed at the higher level using the SSBDD of z3 after
the following updates of the node variable values: z22 = z22 ⊕ (z1, z22), and
z12 = ¬z12. On the other hand, in the process

Dz1 = ((z1, z3) ∧ Dz31) ∨ Rz1 , y5((z1, z3), (z1, z13) ≡ 1), (4.12)

Dz31 is computed at the low-level on the S3BDD for the FFR with output y4,
whereas Rz1 ,y5 is computed at the higher level using the SSBDD of y5 after the
following updates: z32 = z32 ⊕ (z1, z3), and z13 = ¬z1.

Additional side effect of the mixed-level fault reasoning is the increase of the
accuracy in reporting the detected faults. Using the information about the gate-
level structure of FFRs, allows specifying the detected faults inside the FFRs. For
example, the entries a′ and d′ in the S3BDD in Fig.4.4 are introduced to mark
the sub-graphs for calculating the detectability of internal gate-level faults at the
nodes a and d, respectively, inside the FFR, presented in Fig.4.3. Similar entries
can be added in Fig.4.4 for other internal nodes b, c, e, and f in the same FFR.

The speed-up in mixed-level fault reasoning and the increasing accuracy of de-
tected fault reporting is accompanied with additional time cost needed for logic
simulation of FFRs at the gate-level. However, when comparing the total times
for logic simulation and fault simulation this payload increase will be negligible.

67

multi-core fault simulation environment

4.4 multicore fault simulation using ssbdds

The multicore approach is based on the representation of the SSBDD and topo-
logical models of the circuit in leveled order. This is followed by level organized
execution of fault simulation using OpenCL framework [23].

4.4.1 Representation of levels

The partitioning of the circuit into levels for concurrent execution have already
been used before [4, 24, 75]. The level i gate is defined in [4] as gate, which has
primary inputs of the circuit and/or outputs of level k gates as its inputs, such
that k < i. However in [75] the definition is slightly different, stating that level
of a gate represents its distance in gates from primary inputs (PI’s) of the circuit.
This definition is more strict in the sense that one of the inputs of the level i gate,
must originate from the level i− 1, if i 6= 0. This difference however is crucial for
parallelization, because the use of the first definition could potentially result in
bigger number of levels with fewer gates in them. Because levels should be eval-
uated sequentially - this could decrease the amount of parallelism dramatically. I
would stick to the second definition and rephrase it for the purpose of simulation
on macro-level, using FFRs instead of gates.

SSBDD model describes the circuit as a set of primary inputs, graphs, repre-
senting FFRs and primary outputs. Here and throughout the chapter I would use
the word variable to indicate these elements of the circuit. It means that FFRs, as
well as primary inputs and outputs form the set of variables. The level of variable
is its distance in variables from PI’s. In other words, the level i variable should
have at least one of its inputs originating from level i− 1 variable, if i 6= 0.

In SSBDD model, the variables are numbered in serial fashion starting at pri-
mary inputs and finishing at primary outputs. Variables are serialized such that
each input of variable i is the output of variable k, where k < i. This is very simi-
lar to the first definition of levels from [4]. As the OpenCL framework is used for
parallel execution there is a requirement to able to run the same function with
multiple data. Hence it is necessary to define regions of variables, belonging to
the same level, as sub-array. Only variables of particular level must be included
into sub-array. If variable x belongs to level i, then level i should be represented
as a continuous sequence of variables starting from variable x to variable y, such
that every variable z (x ≤ z < y) belongs to level i and variable y belongs to level
i + 1. This is why it is necessary, to reorder the variables according to the defi-
nition of levels stated before. Note that this operation is only required once and
does not belong to fault simulation process. The reordered SSBDD model can be
saved as a file and used later for simulation, without a need to repeat this step.
It should also be mentioned that the reordered model is identical to the original
model in terms of circuit representation.

68

4.5 experimental results

4.4.2 Fault simulation process

OpenCL framework requires single program for all the parallel devices, which
would manipulate on different data. Such program is called a kernel. It is exe-
cuted on all available devices in parallel for all variables inside a single level. The
best way to provide the data for kernel is an array. During fault model prepara-
tion the variable indexes are placed into an array according to their levels. The
kernel only requires knowing the offset of the level inside the array of variable
indexes and the size of this level. Host CPU schedules the kernel executions level
by level into the OpenCL execution queue. The execution in the queue is in order,
so that OpenCL driver handles the synchronization between consecutive kernel
executions. This ensures that all variables of the current level have been com-
puted, before moving to the next level. The computation itself is a sequence of
functions from the topological model, prebuild before the fault simulation pro-
cess. The functions are used to compute the sensitivity of primary outputs to the
change in value at the output of the particular variable.

4.5 experimental results

The experiments were carried out on IBM System x3500 M3 7380 Server (2x
6-core Xeon E5690 running at 3,47Ghz with hyper-threading) using 64-bit Nov-
ell SuSe Linux Enterprise Server 11 x86_64. This system has 12 physical CPU
cores, 12 virtual hyper-threading cores and 96Gb of RAM. Simulation times were
calculated for the sets of 10000 random test patterns. The circuits from three
benchmark suites ISCAS’85, ISCAS’89, ITC’99 were simulated. The same circuits
as in [70] were chosen in order to compare the results.

Table 4.2 shows the results of the PECPT execution time T′p in comparison to
PPECPT TPPECPT [69]. Along with execution time there are two speedup values
I compute for every benchmark. These are Sp and Sc. Both include single CPU
(non-parallel) computation time of fault model Ttpl and fault-free simulation Tf f s
of the circuit. Along with these Sp uses parallel execution time Tp for its computa-
tion and Sc uses pure parallel computation time Tc, discussed later. The equations
for speedup values Sp and Sc are as following:

Sp =
TPPECPT

Ttpl + Tf f s + Tp
=

TPPECPT
T′p

Sc =
TPPECPT

Ttpl + Tf f s + Tc
=

TPPECPT
T′c

Sc can be though as topmost ideal case of speedup by PECPT algorithm. It can
be seen from the results that smaller circuits achieve less speedup requiring less
parallel hardware. On the other hand bigger circuits take advantage of higher
number of processors. Overhead ratio R, for the case of maximum acceleration,
is also brought in the table to see the concurrency overhead for different circuits.
During the discussion I show the reasons behind the lower speedup of smaller

69

multi-core fault simulation environment

Table 4.2 – Execution times of PPECPT and PECPT.

Concurrent overhead Pure computation

Circuit TPPECPT,
s

T′p, s Sp
Sp

#cpu
R T′c s Sc

Sc
#cpu

c1908 0,0568 0,0846 0,67 6 2,86 0,0330 1,72 5

c2670 0,0405 0,0873 0,46 4 6,52 0,0334 1,21 6

c3540 0,1830 0,1315 1,39 8 1,81 0,0754 2,43 7

c5315 0,0849 0,0922 0,92 4 3,05 0,0487 1,74 5

c6288 1,4610 0,6211 2,35 6 1,61 0,3883 3,76 8

c7552 0,1545 0,1187 1,30 6 1,94 0,0718 2,15 6

s13207 0,1798 0,1332 1,35 5 5,05 0,0857 2,10 10

s15850 0,4714 0,2107 2,24 8 2,34 0,1370 3,44 7

s35932 0,2554 0,1739 1,47 10 1,95 0,1381 1,85 12

s38417 0,7453 0,2427 3,07 12 1,95 0,1869 3,99 12

s38584 0,5945 0,2492 2,39 9 2,43 0,1791 3,32 12

b14 2,7742 0,8752 3,17 8 1,29 0,7300 3,80 9

b15 5,0420 1,1771 4,28 10 1,49 0,9258 5,45 10

b17 14,8550 2,4053 6,18 20 1,29 2,1121 7,03 12

b18 67,3279 7,1499 9,42 24 1,09 6,7738 9,94 24

b19 147,6501 14,4685, 10,20 24 1,03 14,0707 10,49 24

circuits and higher overhead ratio. It can be seen from the table that overhead
ratio is getting close to one, with growth of the circuit size, getting speedup
almost identical with ideal.

Speedup Sp dependence on the number of processors is shown in Fig.4.5a
(ISCAS’85), Fig.4.5b (ISCAS’89), Fig.4.5c (ITC’99). The fluctuation in speedup of
some circuits can be explained by the fact that it is up to OpenCL runtime to de-
cide which processors to use for execution. Because test system I used has virtual
hyper-threading cores they can also be arbitrarily chosen for execution, which
could influence the speed of execution in situations where less physical cores are
used for computation, although the overall number of cores is bigger. For all the
benchmarks it can be seen that after the limit of physical cores is reached the
speedup is starting to decline or stays the same. On the ITC’99 benchmarks b18

and b19 it is slightly increasing, when more than 12 cores are used. This shows

70

4.5 experimental results

that more speedup could be achieved on more powerful system with higher num-
ber of physical CPU cores.

Figure 4.5 – Speedup vs #CPU for PECPT. a). ISCAS’85 benchmarks, b). ISCAS’89

benchmarks, c). ITC’99.

71

multi-core fault simulation environment

4.5.1 Discussion

Parallel execution of PECPT is influenced by two factors. The first factor is the
amount of parallelism available in the circuit. The second factor is the ratio of
overall execution time to pure parallel computation time. I would discuss both of
the factors below.

Amount of parallelism

The amount of parallelism available in the circuit can be expressed in average
amount of computations per level. This number grows with the size of the circuit.
This is why smaller circuits have less potential for speedup in proposed method,
than bigger circuits, because they have fewer amounts of computations to be
concurrently processed, so less hardware is needed for parallelization.

Concurrency overhead

Concurrent execution time Tp can be divided into two parts: Tp = To + Tc. The
first part is the time To, which I would call concurrent overhead. This is required
to make a transition from "single thread"- to "multiple thread"-execution and
back again. This time involves creation of multiple threads, allocating additional
memory, synchronization at the end of computation and transition back to single
thread. The second part is time Tc, which is pure computation time required by all
threads to deliver a result. This time can be seen in Table 4.2 and can be treated as
a lower possible bound for concurrent computation. The concurrent overhead To
depends on the amount of parallel hardware used and increases with number of
CPUs. The computation time Tc depends on the amount of computation required.

Amount of calculation for small circuits is small, which makes overall execu-
tion time Tp large in comparison to computation time Tc. This can be expressed
by overhead ratio R = Tp/Tc. I have carried out the set of experiments in order
to prove and demonstrate the influence of this factor on the overall speedup in
case of smaller circuits. ISCAS’85 benchmark circuits were simulated. The set of
experiments consists of PECPT simulations were the amount of computation pro-

Figure 4.6 – Overhead ratio R dependence on the amount of computation.

72

4.5 experimental results

cessed per variable is increased 8 times. This way it can be seen how Tp/Tc ratio
changes with increasing amount of computation. Fig. 4.6 shows the ratio R for
1x and 8x pattern bunches processed per each variable. It can clearly be seen that
the amount of work brings the overall concurrent execution time Tp very close to
computation time Tc. This shows that if an amount of computation is sufficient
the influence of To becomes negligible even for a small circuit and R ≈ 1. This is
also seen from the results of ITC’99 benchmarks, which are considerably bigger
then ISACS’85.

4.5.2 Comparison

I have compared PECPT to single processor simulators, which include FSIM,
PPECPT and commercial simulators C1 and C2. The execution time of all the
simulators was normalized using previous results from [70] and execution time
of PPECPT from Table 4.2, because PECPT was executed on different hardware.
The comparison is shown in Table 4.3.

Table 4.3 – Execution time comparison.

#branches Simulation time,s
circuit #fanouts max avg fsim c1 c2 PPECPTPECPT
c2670 290 28 3,7 0,081 0,223 2,430 0,041 0,087

c3540 356 22 4,5 0,407 1,505 8,745 0,183 0,132

c5315 510 31 5 0,149 0,594 6,047 0,085 0,092

c6288 1456 16 2,6 2,389 5,489 56,072 1,461 0,621

c7552 812 72 4,1 0,348 1,043 11,332 0,155 0,119

s13207 1224 37 3,7 0,225 0,503 6,291 0,180 0,133

s15850 1518 34 3,6 0,943 2,112 19,379 0,471 0,211

s35932 5295 1449 3,4 0,412 1,058 17,477 0,255 0,174

s38417 4569 49 3,2 1,725 3,343 33,007 0,745 0,243

s38584 3946 88 4,5 1,124 2,155 29,727 0,595 0,249

Average speedup 3,786 8,748 92,460 2,024 1,000
b14 2409 82 4,8 n/a 9,413 n/a 2,774 0,875

b15 2353 95 4,8 n/a 7,411 n/a 5,042 1,177

b17 8145 149 4,8 n/a 22,340 n/a 14,855 2,405

Average speedup n/a 8,774 n/a 4,118 1,000

73

multi-core fault simulation environment

PECPT proves to be around 3.5 times quicker than FSIM and around two times
- than PPECPT for relatively smaller ISCAS benchmarks. The speedup over com-
mercially available simulators is more than eight times over C1 and two orders of
magnitude over C2. When ITC’99 benchmark circuits are also taken into consider-
ation the average speedup over PPECPT grows to 4.0 in average, which suggests
that simulation of bigger circuits benefits more from proposed method. On the
other hand PECPT shows the same 8,7 times performance increase over commer-
cial simulator C1 when bigger circuits are added, which suggests that C1 also
behaves better when circuit size increases.

Comparison to GFTABLE

I have also compared PECPT speedup results to GPU based parallel fault sim-
ulator and fault table generator GFTABLE [25]. GFTABLE is pattern parallel sim-
ulator, which uses bit- and thread-level PP to boost the performance of unipro-
cessor simulator FSIM. The results from Table 4 in [70] were used to normalize
PECPT speedup. Normalization is required because PECPT speedup is computed
in relation to PPECPT, while GFTABLE speedup is computed in relation to FSIM.
As there is no FSIM execution time provided for ITC’99 benchmarks, I have taken
the average ratio of 1.7 reported in [70] to normalize PECPT results for those cir-
cuits. The performance of both methods can be seen in Fig.4.7.

Even for the circuits, which could fit into GPU memory slight decrease in per-
formance of GFTABLE can be seen. Contrary the results of presented approach
become better while circuit size increases. Both methods use shared memory sys-
tems for execution. The comparison suggests that pattern-parallelism on such
systems is better for smaller circuits, while circuit-parallelism becomes more ad-
vantageous for bigger circuits. The reason could lie in memory bottleneck of
shared-memory, which effect increases more rapidly for pattern-parallel systems
with the growth of the circuit size.

Figure 4.7 – Comparison of GFTABLE and PECPT.

74

4.6 chapter summary

Bio-impedance benchmark results

The effect of concurrency overhead has one more interesting impact on the
performance of the PECPT. To illustrate it I have simulated all of the gate-level
benchmark circuits presented in Chapter 2 using both PPECPT and PECPT. The
results are presented in Table 4.4 and in Fig.4.8. The table shows the simulation
time for both single-core PPECPT and multi-core PECPT. In all the cases the
multi-core version is faster, which is obvious as all the circuits are big enough
to provide required level of parallelism. However if the changes in simulation
time of different circuits are also compared it can be seen that multi-core version
executes more complex circuits faster than single-core algorithm. It is probably
not that obviously seen from the Table 4.4, but can clearly be seen from the Fig.4.8.
Here the simulation time of all the benchmarks is normalized to the simulation
time of the circuit 8a. For example for the circuit 8bs the simulation time of the
PPECPT is about 550% of the 8a, but only about 350% for PECPT. The reason
lies in the concurrency overhead. On the one hand the fault simulation based on
back-tracing is highly sensitive to the number of reconvergent fan-out, as they
require special time-consuming computation routines to be executed. But on the
other hand the multi-core version takes advantage of bigger computational load,
significantly reducing concurrency overhead and achieving better performance.
This results in smaller difference between execution speed of bigger and smaller
circuits.

4.6 chapter summary

In this chapter the following main results were achieved:

Table 4.4 – Simulation time for bio-impedance benchmark circuits using PPECPT and
PECPT.

design PECPT, ms PPECPT, ms Overhead %

8a 2,32214 12,9366 25

8b 2,1601 10,7997 24

8be 4,97358 40,8165 12

8bk 2,04 14,4935 25

8bs 8,04758 71,7319 9

8c 2,78738 15,1528 22

8d 2,65016 19,9979 19

8de 5,33164 50,757 9

75

multi-core fault simulation environment

Figure 4.8 – Changes in PPECPT and PECPT simulation times for bio-impedance
benchmark circuits.

• A novel two-level method of critical path tracing was developed, which
combines the FFR level and gate-level fault simulation and allows to in-
crease the accuracy in reporting of detected faults.

• A novel multi-core exact critical path tracing based fault simulation method
was developed which combines parallelism in three dimensions and allows
to improve the speed of simulation in order of magnitude compared to the
state-of-the-art commercial simulators.

The multicore parallelism is achieved by exploiting circuit-processing concur-
rency. The parallelization in fault simulation is carried out simultaneously in
three dimensions: pattern parallelism, fault parallelism and computing model
parallelism, where the pattern- and fault-parallelism are utilized using each sin-
gle CPU core, while computing model parallelism is achieved using multiple
CPUs.

Experiments showed that the average speed-up compared to the best unipro-
cessor based simulators is around 4.5 times. The method is well scaling, the
speedup of the method grows with the size of the circuit, opposite to the pattern-
parallel simulation method, which is more beneficial for smaller circuits. The rea-
son lies in the memory bottleneck of shared-memory systems, which increases
more rapidly for pattern-parallel systems with the growth of the circuit size.
Comparison to uniprocessor fault simulators shows order of magnitude average
speed-up over available state-of-the-art commercial simulators.

76

5
C O M B I N AT I O N A L FA U LT S I M U L AT I O N E N V I R O N M E N T
F O R S E Q U E N T I A L C I R C U I T S

This chapter is based on the publication "Combinational Fault Simulation in
Sequential Circuits" (see Appendix E).

In this chapter a very fast fault simulation method is proposed for sequential
circuits which is based on exact parallel critical path tracing developed for com-
binational circuits. To convert the sequential problem of fault simulation into the
combinational one a set of MISRs is introduced into the circuit to improve its
observability. The role of these MISRs is to monitor signals on the global feed-
back loops and on selected fan-out stems. The feasibility and correctness of the
method is shown, and the experimental results, which demonstrate the speed-up
achieved by the method, are presented and discussed.

The contribution of the author includes the development of the method as well
as planning and running the experiments.

The rest of the chapter is organized as following. Section 5.2 describes how
combinational fault simulation can be generalized for the case of sequential cir-
cuits. In Section 5.3 I describe experimental results and Section 5.4 concludes the
chapter.

5.1 overview

As it was already mentioned in previous chapter fault simulation is one of the
most important tasks in digital circuit design and test. Therefore it is not a sur-
prise that accelerating it would have a strong impact to a number of applications.
It is extremely necessary to speed up sequential fault simulation, as most of the
digital circuits nowadays are sequential.

I start with the overview of the fault simulation for combinational circuits, as
it forms a base for method proposed in this chapter. Many different methods
have been developed for fault simulation in combinational circuits based on the
concept of parallel pattern single fault propagation (PPSFP) [77]. Another trend
is based on the fault reasoning (deductive [7], concurrent [74] and differential
simulation [16]) used to be very powerful, since these methods allow to collect
all detectable faults by a single run of the given test pattern. What they cannot
do, is to produce reasoning for many test patterns in parallel. As it was already
mentioned in Section 4.2.2 this drawback was removed in [68] by introducing a

77

combinational fault simulation environment for sequential circuits

novel concept of Parallel Pattern Exact Critical Path Tracing (PPECPT) which can
be applied efficiently for multiple patterns inside FFRs, as well as beyond them.

Unfortunately, for sequential circuits the parallelism exploited in combina-
tional fault simulation and fault reasoning is not possible, because of the sequen-
tial (time related) dependence of signals in the circuit. The possible available
solutions include fault simulation algorithms described in Section 4.1.

Although efficient all those methods iteratively resimulate the circuit either for
all test patterns or non-dropped faults. In order to cover all the faults in one run
I propose to modify the given circuit to improve its transparency (observability).
The traditional way to do this is to use the scan-path concept [62] which converts
the sequential problem of fault simulation to the combinational one. However, the
use of scan-chains has proven to be often inadequate due to increasing the cost
in terms of additional hardware and increased testing time [12], excessive power
dissipation during test [78] and leading to yield loss because of over-testing [15].

In the following it will be shown that a sequential circuit can still be fault simu-
lated as a combinational one when to improve its observability by inserting a set
of Multiple Input Signature Registers (MISR), for monitoring of a selected subset
of test points in the circuit. Two rules for selecting these test points to include
MISRs are introduced and discussed. It is also shown how the test sequence can
be mapped into a set of independent local test sequences which can be simulated
in parallel similarly to the case of combinational circuits.

The target of this chapter is to provide a method of fault simulation in a mod-
ified circuit with a dramatic speed-up compared to the traditional non-parallel
fault simulation of sequential circuits. Only the class of stuck-at-faults (SAF) is
considered here. However, as shown in [70], the results can be extended to other
fault classes like conditional SAF, transition delays, and X-faults.

5.2 modification of sequential circuit

The substantial problem of fault simulation in sequential circuits lies in the
fact that the same fault can influence a particular component in different time
frames. This fact excludes the possibility of exploiting the powerful critical path
tracing based method, explained in the Section 4.2.2 of Chapter Chapter 4, for
fault simulation in combinational circuits. The reason is in the exponential explo-
sion of the number of nested and intersected re-converging fan-out regions over
different time-frames. However, this problem as will be shown can be neglected
if there will be a possibility to detect the fault in the first occasion when it has
propagated up to the component.

There are two reasons why a fault can be propagated to the same component
during different time frames: because of the global feedback which includes this
component, and because of a re-convergent fan-out where the fault may propa-
gate from the fan-out stem to the converging point by different number of clocks.
If a MISR will be inserted into these “problem causing” test points, the fault can
be captured always at the first occasion it influences on the component. The de-
tection of the fault is fixed, and its impact in the future can be ignored. Note,

78

5.2 modification of sequential circuit

Figure 5.1 – Sequential circuit.

only the problem of fault detection (for measuring the fault coverage) is consid-
ered here, and not the task of creating fault tables to be used for fault diagnosis
purposes.

From above, two rules result for improving the observability of the sequential
circuit:

• RULE 1: Insert a MISR to all registers (and only to them) which are in-
cluded into a global feedback. Inserting a MISR is equivalent to cutting the
feedback loop (in a sense to ignore the further fault propagation).

• RULE 2: Insert a MISR into all fan-out stems which have at least a single
converging point, so that a fault may propagate from the fan-out stem to
this point by different number of clocks.

Consider a sequential circuit in Fig.5.1 which consists of 9 registers (latches)
R1 − R9, and 8 combinational sub-circuits F1 − F9. The circuit has 5 inputs and 2

outputs.

Figure 5.2 – Sequential circuit with MISR.

79

combinational fault simulation environment for sequential circuits

Figure 5.3 – Simulation cycle of a single independent test.

In the circuit in Fig.5.1, two registers R7 and R8 are included into a global
feedback loop, and hence, according to RULE 1, they must be furnished by MISR.
On the other hand, there is a fan-out stem Z1 which has two branching paths
which re-converge in F3. The first path represents a direct connection, and the
second one is a path via register R6, where the possible faulty signal needs for
propagating from Z1 to F3 additional clock. Hence, according to RULE 2, the node
Z1 must be monitored by MISR. The modified circuit is presented in Fig.5.2.

In Fig.5.3, a simulation cycle of a single independent test sequence with lengths
of 6 clocks is shown where by rectangles the 5 observation points are denoted.
In this simulation cycle I can extract 5 functions (the upper indexes denote the
delay in clock cycles between the moments when the values of argument signals
and the function signal were fixed, respectively):

Z1 = fZ1(X−1
1 , X−1

2 , X−1
3)

R7 = fR7(R−1
7 , Z−1

1)

R8 = fR8(R−1
8 , R−2

7 , Z−2
1 , Z−3

1)

Y1 = fY1(R−2
7 , Z−2

1 , Z−3
1 , X−2

4)

Y2 = fY2(X−1
5 , R−1

8)

(5.1)

Since the arguments of these functions are either primary inputs of the circuit
or the nodes supported by MISR, the set of functions (3) can be regarded as a
model of 5 interconnected combinational circuits, which can be fault simulated
independently.

Table 5.1 represents two (shifted in one clock cycle) input sequences of the two
test segments Ti and Ti+1, and the related output sequences captured by MISR

80

5.2 modification of sequential circuit

in the test points Z1, R7, R8, and directly at outputs Y1 and Y2, which can be as
well fed into MISR. The table represents the simulation order of the functions
(3). Because the RULES 1 and 2 are satisfied in the modified circuit in Fig.5.2,
the input sequences of Ti and Ti+1,can be regarded as independent test patterns,
spread merely over different time frames. In this way, a full test sequence applied
to the circuit in Fig.5.2 can be split into a set of independent test segments, all
shifted by one clock one after another. Since the test segments can be treated as
a set of independent test patterns, they can be fault simulated by PPECPT in
parallel as in case of combinational circuits.

Fig. 5.4 shows the equivalent combinational schematic for the circuit from
Fig.5.1 constructed using Rules 1 and 2. The registers are left here for the illus-
trational purpose only for better understanding of the timing of different signal
values. In a real case they have to be exchanged by wires. It can be seen from the
Fig.5.4 that according to Rule 1 the registers R7 and R8 are broken up, such that
input of the particular register becomes auxiliary output and the output of the
register becomes auxiliary input. Also according to Rule 2 the fan-out stem Z1
was broken up into three auxiliary inputs, because it has a converging point at
register R4, where line Z13 has register R6 and line Z12 doesn’t have any register.
It means the number of clock cycles is different for a signal to arrive along these
paths to a converging point, which qualify Z1 to Rule 2.

As can be seen from the Fig.5.4 the node values throughout the circuit are
taken from different clock periods. Let t be a value of the signal node at the
current clock period. Then t− 1 is the signal value of the particular node at the
previous time period and so on. Going from outputs to inputs the clock period
is decremented once the register is crossed. This way the test sequence can be
derived, which contains the values of every node taken at different clock periods.
We can then fed this sequence into the combinational fault simulator along with
the equivalent combinational circuit, where registers become wires.

Table 5.1 – A test sequence for circuit in Fig.5.2

Cl Input sequences Output sequences
Test Ti Test Ti+1 Test Ti Test Ti+1

1 X1
1 , X1

2 , X1
3 , RES1

7

2 X2
1 , X2

2 , X2
3 X2

1 , X2
2 , X2

3 , RES2
7 Z2

1

3 R3
8, X3

4 X3
1 , X3

2 , X3
3 R3

7, Z3
1 Z3

1

4 R4
8, X4

4 R4
7, Z4

1

5 X5
5 R5

8, Y5
1

6 X6
5 Y6

2 R6
8, Y6

1

7 Y7
2

81

combinational fault simulation environment for sequential circuits

5.3 experimental data

As experimental results in Table 5.2 in our laboratory we have compared the
speed of SAF simulation in sequential circuits (where all the latches are fed into
MISR) by the PPECPT method with different known fault simulators for combi-
national circuits: FSIM [40], and two state-of-the-art commercial simulators C1

and C2 from major CAD vendors. Simulation times were calculated for 10000

patterns. Experiments were run on a 1.5GHz Ultra SPARC IV+ workstation us-
ing SunOS 5.10.

Although the method is not yet implemented I can still show the efficiency it
provides in comparison to traditional sequential fault simulation. For compari-
son I’ve picked up serial fault simulation, which simulates faults one by one for
every pattern. Although slow this method is good for comparative analysis, as
it provides the lowest bound in sequential fault simulation. It is easy to obtain
the approximate time for such simulation by running traditional logic simulation
for all the test vectors. Then the time obtained have to be multiplied by num-
ber of stuck-at faults in the circuit. I’ve simulated VHDL representations of the
benchmark circuits presented in Chapter 2, hence achieving the fastest runtime
for serial fault simulation. On the other hand, I took single-core pattern parallel
critical path tracing fault simulation method along with full-scan combinational
equivalents of the sequential benchmark circuits used for comparison.]

I investigated the feasibility of the proposed fault simulation method for calcu-
lating the fault coverage of the at-speed functional self-test developed for these
processors. The results of fault simulation for the whole family of 8 processors
(column 1) are presented in Table 5.3 where LS denotes the behavior level logic
simulation time, FS denotes the LS multiplied by the number of faults to be sim-
ulated one by one, and the PPECPT shows the simulation time needed for the

Figure 5.4 – Combinational circuit equivalent for sequential circuit.

82

5.3 experimental data

proposed method. The experiments showed that the gain achieved by using the
proposed method could be up to 2-3 orders of magnitude. For this advantage
the price have to be paid at the cost of added set of MISRs, which however is
comparable to the cost of scan-path or can be even less.

In order to correctly interpret the results I highlight the major differences of
methods used in experiment from methods used in real test cases. The serial
fault simulation is typically run on gate-level, to simulate the gate-level stuck-at
fault effect. In case of experiment the behavior level simulation is used, which is
faster than gate-level, as it doesn’t compute signal values at every gate. So the
speed of real serial fault simulation is definitely slower, than it is shown during
the experiment in Table 5.3. Also I do not use fault dropping for the sake of
comparison, as PPECPT method doesn’t use it either. The fault dropping can
speed up the serial fault simulation making it faster than it is shown in Table 5.3.

As can be seen from the Fig. 2.4 in Chapter 2 the performance of PPECPT
method depends on the amount of reconvergency in the circuit. At the same
time we use the full-scan equivalent circuits in the experiments, which make the
number of reconvergent fan-outs smaller. When using the method proposed in
this chapter the amount of observability points should become smaller, increasing
the amount of reconvergency in the circuit. Hence the PPECPT method may run
slower than it is shown in Table 5.3. Taking all mentioned above in account the
right way to interpret these experimental results would be as the upper limit of
real case scenario.

Table 5.2 – Comparison of PPECPT with other fault simulation methods for circuits
with full scan-path.

Circuit Number of SAF simulation time, s
gates Fsim C1 C2 PPECPT

c3540 2784 2.0 7.4 43 0.9

c5315 4319 1.4 5.6 57 0.8

c6288 4846 12.1 27.8 284 7.4

s15850 14841 5.4 12.1 111 2.7

s38417 34831 16.2 31.4 310 7.0

s38584 36173 12.1 23.2 320 6.4

b14 19491 N/A 49.2 N/A 14.5

b15 18248 N/A 39.1 N/A 26.6

b17 64711 N/A 117 N/A 77.8

Average speed gain 2.0 4.3 45 1

83

combinational fault simulation environment for sequential circuits

Table 5.3 – Comparison of the proposed method with single fault simulation in se-
quential circuits.

Circuits Number of SAF simulation time, s Gain
faults LS FS PPECPT

8a 112034 0.155 17365 30.0 579

8b 83940 0.152 12759 24.7 517

8be 99330 0.168 16687 62.1 269

8bk 86878 0.159 13814 25.2 548

8bs 100820 0.154 15526 173.4 90

8c 122386 0.159 19459 35.9 542

8d 123012 0.161 19804 35.5 558

8de 136876 0.164 22447 81.3 276

5.4 chapter summary

In this chapter the following main results were achieved:

• A new method of design-for testability was proposed, which allows to
convert a sequential circuit into an equivalent iterative combinational array,
by inserting a small set of observation points into circuit to be connected
with MISR.

• The parallel critical path tracing method for combinational circuits was
reused for sequential circuits, which allowed a dramatic speed-up of fault
simulation compared to the traditional single fault simulation for sequen-
tial circuits.

The high speed is achieved thanks to removing the problem of sequential de-
pendence of simulated signals in different time frames by improving observabil-
ity of the circuit by inserting a set of MISRs at selected test points. Therefore the
essential requirement for the method to work is to modify the sequential circuit
according to rules described in Section 5.2 and to create an equivalent combina-
tional circuit with auxiliary inputs and outputs. The equivalent circuit can then
be simulated using fast combinational fault simulator without loosing any accu-
racy in the fault coverage estimation.

Apart from a full-scan design, only a fraction of registers with global feedback
need to be monitored. Additional MISRs must also be added to reconverging fan-
out stems where fan-out signals arrive to reconverging point with different delay.
A pessimistic experimental setup shows dramatic speed-up of fault simulation,
compared to the traditional non-parallel fault simulation of sequential circuits.

84

6
C O N C L U S I O N S

This chapter draws the overall conclusions of the thesis and provides some
future possible directions to extend the results presented in previous chapters.
The new research results in the thesis can be classified into five groups cover-
ing: (1) the set of benchmark circuits with different amount of resource sharing
and pipelined architectures, (2) the methodology and a set of tools targeting at-
speed built-in self test of high-performance pipe-lined designs, (3) the evaluation
of possibility to use analog signals as a test sequence for the digital circuits, (4)
the implementation of the PPECPT algorithm for general-purpose multicore sys-
tems, (5) the methodology to use a combinational fault simulation for sequential
circuits.

6.1 benchmark suite

A benchmark suite was developed for evaluating the CAD tools in their effi-
ciency and quality in designing dependable digital systems. Apart from all other
existing benchmarks, all the circuits of this family perform the same function,
but differ mainly in the amount of shared computing resources. This gives an ex-
cellent possibility for direct systematic characterization of CAD tools in terms of
alternative design decisions, which is not provided by existing benchmark suites.
The experiments show a correlation between the structural properties of circuits
and their testability characteristics. It was shown that sharing of resources in de-
signs, which leads to increasing number of fan-out reconvergencies, may reduce
the test length, but on the other hand, will increase the time of test synthesis,
reducing the quality of the test.

6.2 methods for testing

methodology and set of tools for at-speed test A new ap-
proach to self-testing of digital systems with pipe-lined architectures with capa-
bility to produce internal self-test sequences using their inherent functionalities
was proposed. The added value is the higher test quality explained by on-line
at-speed testing. The approach does not need to store high volume test data
in the system memory. Additional hardware is as well not needed for on-line
test pattern generation as in the case of traditional LBIST. The only needed ad-

85

conclusions

ditions related to using MISR for monitoring the test responses. To minimize
the needed additional MISR hardware overhead, an original algorithm for se-
lecting test-points was developed. As the result of using only normal working
sequences for test purposes, the dangers of over-testing and the related yield
loss are removed. Also a novel evaluation environment was developed where
the time consuming sequential fault simulation task can be transferred into a set
of combinational fault simulation sub-tasks. Experiments demonstrated the gain
in evaluation speed more than 580 times without losing any accuracy in fault
coverage calculation.

evaluation of analog signals as a test sequence The goals
of the experiments were twofold: (1) to select the best type of input signal for
testing purposes from a set of signals typically used for processing in the given
Signal Analyzer, and (2) to compare the new method with traditional scan path
based testing methods. The fault coverage achieved by the sine signal was 98.2%,
which is nearly the same compared to the traditional scan-path pseudorandom
(98.7%) and deterministic (98.7%) test approaches. The gain in testing time cost
was 3-7 times compared to the deterministic and more than 2500 times compared
to the pseudorandom single scan-path based approach.

6.3 methods for test quality evaluation

multi-core pecpt A new method for multi-core execution of pattern par-
allel exact critical path tracing(PPECPT) based fault simulation was proposed
and implemented. The parallelism is achieved by exploiting circuit-processing
concurrency. The parallelization in fault simulation is carried out simultaneously
in three dimensions: pattern parallelism, fault parallelism and computing model
parallelism, where the pattern- and fault-parallelism are utilized using each sin-
gle CPU core, while computing model parallelism is achieved using multiple
CPUs. A novel mixed level technique for fault reasoning was proposed to speed
up and to increase the accuracy of fault simulation, compared with previous
methods. Experiments showed that the average speed-up compared to the best
uniprocessor based simulators is around 4.5 times. Comparison to commercial
uniprocessor fault simulators shows order of magnitude average speed-up of the
algorithm. The method is well scaling, because its performance grows with the
size of the circuit, opposite to the pattern-parallel simulation method GFTABLE,
which seems to be more beneficial for smaller circuits.

combinational fault simulation of sequential circuits A
novel approach for fault simulation in sequential circuits is proposed which al-
lows to achieve dramatic speed-up in simulation time compared to the traditional
single fault simulation in sequential circuits at reduced cost of additional hard-
ware. Apart from a full-scan design, only a fraction of registers and fan-out points
need to be monitored. The high speed is achieved thanks to removing the prob-
lem of sequential dependence of simulated signals in different time frames by

86

6.4 future work

improving observability of the circuit by inserting a set of MISRs at selected test
points. MISRs must be added to reconverging fan-out stems where fan-out sig-
nals arrive to reconverging point with different delay and registers with global
feedback. A pessimistic experimental setup shows dramatic speed-up of fault
simulation, compared to the traditional non-parallel fault simulation of sequen-
tial circuits.

6.4 future work

One of the possible directions for at-speed based functional BIST is to find the
ways to further improve the fault coverage. Although it is contrary to avoiding
of overtesting, some applications would definitely require achieving maximum
fault coverage possible. Another direction lies in addition of other fault models to
the methodology. For example delay faults can be computed using stuck-at fault
simulation results as shown in [36], which is directly applicable to the current
work. Finally the solid framework of tools can be developed to fully automate the
proposed method for integration into industrial test processes. Logic simulation
could be carried out by PPECPT along with fault simulation. This could possible
remove the necessity to have VHDL models of the circuits and use an external
logic simulator. Also MISR integration into the circuit can be automated.

The major issue of multi-core PPECPT algorithm is undefined dependency of
its performance on the structure of the circuit. Particularly the metric to estimate
the number of CPUs to be used for optimal performance is yet to be found. The
structure of the circuit could be a possible place to extract such a metric. This
would require examining the effect of different structural characteristics and pos-
sibly their combinations on the performance of PPECPT. Another direction is to
utilize the power of Graphic Processing Units (GPUs) as an additional computa-
tional resource in order to achieve even more gain in performance where possible.
Although the OpenCL framework provides direct support to use both GPU and
CPU for joint computations the algorithm must be optimized in different manner
for each of the platforms in order to achieve good performance on both of them
simultaneously [61].

The next logical step for the combinational fault simulation of sequential cir-
cuits is the actual implementation of the method. This would require the analysis
of the structure of the circuit to identify the points for observation. Also the gen-
eration of equivalent combinational circuit is required to make a process fully
automated. The implementation could be used to better explore the potential of
the method and also identify possible issues, which can arise when using it in
practice.

Finally both multi-core PECPT and combinational fault simulation of sequen-
tial circuits can be integrated into at-speed functional BIST methodology. PECPT
can be used directly to exchange PPECPT to provide a gain in speed for evalu-
ation of fault coverage of combinational parts of the circuit. The combinational
fault simulation of sequential circuits could be used to provide a speed up of
sequential parts of the circuit when dealing with optimizations related to num-

87

conclusions

ber of MISRs and circuit partitioning. Altogether it should dramatically improve
the scalability of the methodology, which could become feasible to be used with
large industrial designs.

88

B I B L I O G R A P H Y

[1] OpenRISC website. [WWW] http://openrisc.io/ (05.10.2015).

[2] M. Abramovici, P. R. Menon, and D. T. Miller. Critical path tracing - an
alternative to fault simulation. In The 20th ACM/IEEE Design Automation
Conference (DAC 1987), volume 20, pages 2–5, 1987.

[3] M. F. AlShaibi and Ch. Kime. Mfbist: A bist method for random pattern
resistant circuits. In The IEEE International Test Conference (ITC 1996), pages
176–185, October 1996.

[4] M. B. Amin and B. Vinnakota. Data parallel fault simulation. In The IEEE
International Conference on Computer Design VLSI in Computers and Processors
(ICCD 1995), pages 610–615, 1995.

[5] P. Annus, A. Kuusik, R. Land, O. Märtens, and A. Ronk. A digital multi-
channel bioimpedance analyser: Signal processing task and its solution. In
The IEEE Instrumentation and Measurement Technology Conference (IMTC 2006),
Sorrento, Italy, April 2006.

[6] K. J. Antreich and M. H. Schulz. Accelerated fault simulation and fault
grading in combinational circuits. In The IEEE Transactions On Computer-
Aided Design, volume 6, pages 704–712, 1987.

[7] D. B. Armstrong. A deductive method for simulating faults in logic circuits.
In IEEE Transactions On Computers, volume 21, pages 464–471, 1972.

[8] V.S. Bagad. VLSI Design. Technical Publications Pune, 1 edition, 2008.

[9] F. Baronti, R. Roncella, R. Saletti, P. D’Abramo, L. Di Piro, H. Fabian, and
M. Giardi. The importance of at-speed scan testing: an industrial experi-
ence. In The 10th Euromicro Conference on Digital System Design Architectures,
Methods and Tools, pages 672–675, Lubeck, August 2007.

[10] F. Brglez, D Bryan, and K. Kominski. Combinational profiles of sequential
benchmark circuits. In The IEEE International Symposium on Circuits and Sys-
tems (ISCAS 1989), pages 1929–1934, 1989.

[11] F. Brglez and H. Fujiwara. A neutral netlist of 10 combinational benchmark
circuits. In The IEEE International Test Conference (ITC 1985), pages 785–794,
1985.

[12] L. Bushard, N. Chelstrom, S. Ferguson, and B. Keller. Dft of the cell proces-
sor and its impact on eda test software. In The IEEE Asian Test Symposium
(ATS 2006), pages 369–374, 2006.

89

Bibliography

[13] M Bushnell and V Agrawal. Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits, volume 17. Springer Verlag, 2002.

[14] M. Čepin. Assessment of Power System Reliability. Springer Verlag London, 1

edition, 2011.

[15] L. Chen, S. Ravi, A. Raghunathan, and S. Dey. A scalable software-based self-
test methodology for programmable processors. In The IEEE/ACM Design
Automation Confernce (DAC 2003), pages 548–553, 2003.

[16] W. T. Cheng and M. L. Yu. Differential fault simulation: a fast method us-
ing minimal memory. In The ACM/IEEE Design Automation Conference (DAC
1989), pages 424–428, 1989.

[17] F. Corno, M.S. Reorda, and G. Squillero. Rt-level itc’99 benchmarks and first
atpg results. The IEEE Design Test of Computers, 17(3):44–53, July 2000.

[18] R. Dorsch and H j. Wunderlich. Accumulator based deterministic BIST. ITC
D.C, Washington, 1998.

[19] P. Ellervee, P. Annus, and M. Min. High speed data preprocessing for
bioimpedance measurements: Architectural exploration. In The 27th IEEE
NORCHIP Conference, pages 1–4. IEEE, 2009.

[20] H. Esmaeilzadeh, E. Blem, R.S. Amant, K. Sankaralingam, and D. Burger.
Dark silicon and the end of multicore scaling. In The ACM 38th Annual
International Symposium on Computer Architecture, pages 365–376. ACM, 2011.

[21] J. Gaisler. A portable and fault-tolerant microprocessor based on the sparc
v8 architecture. In The IEEE International Conference on Dependable Systems
and Networks (DSN 2002)., pages 409–415, 2002.

[22] D. Gizopoulos and et al. Systematic software-based self-test for pipelined
processors. The IEEE VLSI Systems Conference, 16(11):1441–1453, November
2008.

[23] Khronos Group. OpenCL standard for parallel programming of heteroge-
nious systems. [WWW] http://www.khronos.org/opencl (24.09.2015).

[24] K. Gulati and S. P. Khatri. Towards acceleration of fault simulation using
graphics processing units. In The 45th ACM/IEEE Design Automation Confer-
ence 2008 (DAC 2008), pages 822–827, 2008.

[25] K. Gulati and Khatri S. Fault table generation using graphics processing
units. In The IEEE International High Level Design Validation and Test Workshop
(HLDVT 2009), pages 60–67, 2009.

[26] Kyunghwan Han and Soo-Young Lee. A parallel implementation of fault
simulation on a cluster of workstations. In The IEEE International Symposium
on Parallel and Distributed Processing (IPDPS 2008), pages 1–8, 2008.

90

Bibliography

[27] S. Hellebrand, J. Rajski, S. Tarnick, B. Courtois, and S. Venkataraman. Built-
in test for circuits with scan based on reseeding of multi-polynomial linear
feedback shift registers. In IEEE Transactions On Computers, volume 44, pages
223–233, February 1995.

[28] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan, and J. Ra-
jski. Logic bist for large industrial designs. In The IEEE International Test
Conference (ITC 1999), volume 358-367, 1999.

[29] P. D. Hortensius, R. D. McLeod, and B. W. Podaima. Cellular automata
circuits for bist. IBM Journal of Research and Development., 34(2.3):389–405,
1990.

[30] N. Ishiura, M. Ito, and S. Yajima. Dynamic two-dimensional parallel simu-
lation technique for high-speed fault simulation on a vector processor. In
The IEEE Computer-Aided Design of Integrated Circuits and Systems Conference,
pages 868–875, 1990.

[31] H. j. Wunderlich and G. Kiefer. Bit flipping bist. In The IEEE International
Conference On Computer Aided Design (ICCAD 1996), pages 337–343, Novem-
ber 1996.

[32] G. Jervan, P. Eles, Z. Peng, R. Ubar, and M. Jenihhin. Hybrid bist time
minimization for core-based systems with stumps architecture. In The 18th
Int Symposium on Defect and Fault Tolerance in VLSI Systems, Cambridge, MA,
USA„ November 2003.

[33] D. E. Knuth. The art of computer programming, volume 2. Addison-Wesley,
1981.

[34] M. Kochte, M. Schaal, H.-J. Wunderlich, and C.G. Zoellin. Efficient fault
simulation on many-core processors. In The ACM/IEEE Design Automation
Conference (DAC 2010), Anaheim, California, USA, June 2010. ACM.

[35] B. Koenemann. Lfsr-coded test patterns for scan designs. In The IEEE Euro-
pean Test Conference (ETC 1991), pages 237–242, March 1991.

[36] J. Kõusaar, R. Ubar, S. Devadze, and J. Raik. Critical path tracing based
simulation of transition delay faults. In The Euromicro Conference on Digital
System Design (DSD 2014), pages 1–6, Verona, Italy, August 2014.

[37] D. Krishnaswamy, E. M. Rudnick, J. H. Patel, and P. Banerjee. Spitfire: scal-
able parallel algorithms for test set partitioned fault simulation. In The IEEE
VLSI Test Symposium, pages 274–281, 1997.

[38] H. Kruus. Optimization of BIST in Digital Systems. PhD thesis, Tallinn Uni-
versity of Technology, Tallinn, 2011.

91

Bibliography

[39] H. Kruus, R. Ubar, P. Ellervee, M. Brik, M. Gorev, M. Kruus, E. Orasson,
V. Pesonen, P. Annus, M. Min, and K. Meigas. A benchmark suite for eval-
uating the efficiency of test tools. In The IEEE Baltic Electronics Conference,
Tallinn, October 2012.

[40] H.K. Lee and D.S. Ha. Soprano: An efficient automatic test pattern genera-
tor for stuck-open faults in cmos combinational circuits. In The ACM/IEEE
Design Automation Conference (DAC 1990), Orlando,FL, June 1990.

[41] H.K. Lee and D.S. Ha. An efficient, forward fault simulation algorithm based
on the parallel pattern single fault propagation. In The IEEE International Test
Conference (ITC 1991), pages 946–955, 1991.

[42] M. Li and M.S. Hsiao. 3-d parallel fault simulation with gpgpu. In The
IEEE Computer-Aided Design of Integrated Circuits and Systems Conference, vol-
ume 30. IEEE, October 2011.

[43] T. Mak, S. Krstic, K. t. Cheng, and L. c. Wang. New challenges in delay
testing of nanometer, multi-gigahertz designs. The IEEE Design & Test of
Computers Conference, 21(3):241–248, 2004.

[44] N. Mazurova, J. Smahtina, and R. Ubar. Hybrid functional bist for digital
systems. In The 9th IEEE Biennial Baltic Electronics Conference (BEC 2004),
pages 205–208, Tallinn, October 2004.

[45] M. Min, P. Annus, R. Land, T. Paavle, E. Haldre, and R. Ruus. Bioimpedance
monitoring of tissue transplants. The IEEE Instrumentation and Measurement
Technology Conference (IMTC 2007), pages 1–4, 2007.

[46] M. Min, R. Land, O. Märtens, T. Parve, and A. Ronk. A sampling multi-
channel bioimpedance analyzer for tissue monitoring. In The 26th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society,
pages 902–905, 2004.

[47] S. Minato. BDDs and Applications for VLSI CAD. Kluwer Academic Publish-
ers, 1996.

[48] D. Mironov and R. Ubar. Lower bounds of the size of shared structurally
synthesized bdds. In IEEE 17th International Symposium on Design and Diag-
nostics of Electronic Circuits & Systems (DDECS), pages 77–82, 04 2014.

[49] D. Mironov, R. Ubar, and J. Raik. Logic simulation and fault collapsing with
shared structurally synthesized bdds. In IEEE European Test Symposium (ETS
2014), pages 26–30, 5 2014.

[50] G.E. Moore. Cramming more components onto integrated circuits. Electron-
ics, 38(8):114–117, April 1965.

92

Bibliography

[51] B. Nadeau-Dostie. Design For At-Speed Test, Diagnosis and Measurement.
Kluwer Academic Publishers, 2002.

[52] T. Paavle, M. Min, and T. Parve. Using of chirp excitation for bioimpedance
estimation: Theoretical aspects and modeling. In The 11th International Bien-
nial Baltic Electronics Conference (BEC 2008), pages 325–328, 2008.

[53] S. Parkes, P. Banerjee, and J. Patel. A parallel algorithm for fault simula-
tion based on proofs. In The IEEE International Conference on Computer De-
sign:VLSI in Computers and Processors (ICCD 1995), pages 616–621, 1995.

[54] S. Patil and P. Banerjee. Performance trade-offs in a parallel test generation/-
fault simulation environment. In The IEEE Transactions On Computer-Aided
Design of Integrated Circuits and Systems, pages 1542–1558, 1991.

[55] S. Patil, P. Banerjee, and J. H. Patel. Parallel test generation for sequential
circuits on general-purpose multiprocessors. In The ACM/IEEE Design Au-
tomation Conference (DAC 1991), pages 155–159, 1991.

[56] J. Phelps, C. Johnson, C. Goodrich, and A. Kokrady. The importance of
functional-like access for memory test. In The IEEE International Test Confer-
ence (ITC 2008), page 1, Santa Clara, CA, October 2008.

[57] J. Raik and et al. Turbo tester manual. [WWW] www.pld.ttu.ee/tt/
(28.09.2015).

[58] J. Rajski and J. Tyszer. Arithmetic BIST in embedded systems. Prentice-Hall, N
J, 1998.

[59] S. Saxena, C. Hess, H. Karbasi, A. Rossoni, S Tonello, P. McNamara,
S. Lucherini, S. Minehane, C. Dolainsky, and M. Quarantelli. Variation in
transistor performance and leakage in nanometer-scale technologies. In
The IEEE Transactions on Electron Devices, volume 55, pages 131–144, January
2008.

[60] M. Shafique, S. Garg, J. Henkel, and D. Marculescu. The eda challenges in
the dark silcon era. In The ACM/EDAC/IEEE 51st Design Automation Confer-
ence (DAC 2014), pages 1–6, San Francisco, CA, June 2014.

[61] J. Shen, J. Fang, H. Sips, and A.L. Varbanescu. Performance traps in opencl
for cpus. 21st Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, pages 38–45, February 2013.

[62] L. t. Wang, C. w. Wu, and X. Wen. VLSI test principles and architectures. Mor-
gan Kaufmann, 2006.

[63] A. Thayse. Boolean Calculus of Differences. Springer Verlag, 1981.

93

Bibliography

[64] N. A. Touba and E. J. McCluskey. Bit-fixing in pseudorandom sequences
for scan bist. In The IEEE Transactions on CAD of IC and Systems, volume 20,
page 4, April 2001.

[65] R. Ubar. Test synthesis with alternative graphs. In The IEEE Design and Test
of Computers., pages 48–59, 1996.

[66] R. Ubar. Combining functional and structural approaches in test generation
for digital systems. Journal of Microelectronics and Reliability, Elsevier Science
Ltd., 38(3):317–329, 1998.

[67] R. Ubar. Multi-valued simulation of digital circuits with structurally syn-
thesized binary decesion diagrams. Multiple Valued Logic Journal, 4:141–157,
1998.

[68] R. Ubar, S. Devadze, J. Raik, and A. Jutman. Ultra fast parallel fault analysis
on structural bdds. In The 12th IEEE European Test Symposium (ETS 2007),
pages 20–24, May 2007.

[69] R. Ubar, S. Devadze, J. Raik, and A. Jutman. Parallel fault backtracing for
calculation of fault coverage. In The 13th Asia and South Pacific Design Au-
tomation Conference (ASP-DAC 2008), pages 667–672, March 2008.

[70] R. Ubar, S. Devadze, J. Raik, and A. Jutman. Parallel x-fault simulation with
critical path tracing technique. In The IEEE Conference on Design, Automation
& Test in Europe, pages 1–6, March 2010.

[71] R. Ubar, V. Indus, O. Kalmend, and T. Evartson. Functional built-in self-test
for processor cores in soc. In The 30th IEEE NORCHIP Conference, Copen-
hagen, Denmark, November 2012.

[72] R. Ubar, N. Mazurova, J. Smahtina, E. Orasson, and J. Raik. Hyfbist: Hybrid
functional built-in self-test in microprogrammed data-paths of digital sys-
tems. In The IEEE International Conferece MIXDES, pages 497–502, Szczecin,
June 2004.

[73] R. Ubar, T. Shchenova, G. Jervan, and Z. Peng. Energy minimization for
hybrid bist in a system-on-chip test environment. In The 10th IEEE European
Test Symposium (ETS 2005), pages 2–7, May 2005.

[74] E. G. Ulrich and T. Baker. Concurrent simulator of nearly identical digital
networks. In IEEE Transactions On Computers, volume 7, pages 39–44, 1974.

[75] A. K. Varshney, B. Vinnakota, E. Skuldt, and B. Keller. High performance
parallel fault simulation. In The IEEE International Conference on Computer
Design 2001 (ICCD 2001), pages 308–313, 2001.

94

Bibliography

[76] I. Voyiatzis, D. Gizopoulos, and A. Paschalis. Accumulator-based test gener-
ation for robust sequential fault testing in dsp cores in near-optimal time. In
The IEEE Transactions on VLSI Systems, volume 13, pages 1079–1086, Septem-
ber 2005.

[77] J. A. Waicukauski and et al. Fault simulation for structured vlsi. In The IEEE
VLSI Systems Design Conference, pages 20–32, December 1985.

[78] S. Wang and S. Gupta. Atpg for heat dissipation minimization during scan
testing. In The IEEE/ACM Design Automation Conference (DAC 1997), pages
614–619, 1997.

[79] L. Wu and D. M. H. Walker. A fast algorithm for critical path tracing in vlsi
digital circuits. In The 20th IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems (DFT 2005), pages 178–186, October 2005.

[80] G.Q. Zhang. "more than moore" - the changing international landscape,
strategy and solutions of micro/nanoelectronics. In The 8th International
Conference on Electronic Packaging Technology (ICEPT 2007), page 1, Shanghai,
August 2007.

95

A C K N O W L E D G E M E N T S

I would like to thank everybody who helped me during my PhD studies and
without whom this work would never appear.
Particularly, I would like to express my gratitude to my supervisor prof. Peeter

Ellervee for providing challenging tasks to look beyond my impossible. I have
always appreciated his support and wise comments. I don’t have words to ex-
press my acknowledgement to my co-supervisor prof. Raimund-Johannes Ubar
for long dicussions, which helped me see the world in completely different per-
spective. His wise directions and strong support helped me to make this work
the best way I can.

This thesis has been written in one of the best departments of Tallinn Uni-
versity of Technology - Department of Computer Engineering. Its motivational
environment and friendly atmosphere are the key factors of success of this work.
I’d like to express my special gratitude to Margus Kruus and Heljo Saar for their
help and support during my PhD. studies.

I’d like to thank all the people who worked with me in the Department of
Computer Engineering for their amicability and help. I’d like to express special
thanks to my great colleagues Vadim Pesonen, Dr. Dmitri Mihhailov, Mairo Leier,
Priit Ruberg, Dr. Maksim Jenihhin, Dr. Uljana Reinsalu, Dr. Sergei Devadze, Dr.
Sergei Kostin and Dr. Marina Brik for their help and motivation to finish this
work. I would also like to thank Gert Jervan, Jaan Raik and Thomas Hollstein for
their helpful advises and support.

Furthermore, I would like to acknowledge the support of my PhD studies by
the following organizations: Tallinn University of Technology, National Graduate
School in Information and Communication Technologies (IKTDK), EU’s FP7 col-
laborative research project DIAMOND, European Regional Development Fund
through the Centre for Integrated Electronic Systems and Biomedical Engineer-
ing (CEBE), Estonian IT Foundation (EITSA) and Information Technology Foun-
dation for Education (HITSA).

Finally I would like to thank my parents for their support and motivation. I
would also like to thank my family, especially my beloved wife Tatjana for her
understanding and patience. Thank you!

Maksim Gorev
Tallinn, October 2015

97

A B S T R A C T

This thesis addresses a series of closely related problems regarding develop-
ment of BIST for high-performance pipe-lined designs. These problems can

be divided into three groups covering: (1) design of benchmark circuits to repre-
sent a special class of objects to be tested (high-performance pipe-lined architec-
tures), (2) the new methods for testing of this class of objects (BIST), and (3) the
new methods for evaluating the quality of test solutions (fault simulation).

In order to find the relations between different design decisions and their cor-
responding testability characteristics the benchmark suite was formed of eight
circuits with the same functionality, but different structures. The thesis describes
the structural characteristics of the circuits and provides an overview and the
discussion of their testability characteristics.

A new approach for self-testing of digital systems with pipe-lined architectures
is also proposed. This is a new at-speed functional BIST methodology for these
architectures. The key aspects include using inherent functionality of the system
to generate test sequences and usage of MISR monitors for testing. This also
leads to exploration of the potential of digitized analog signals to be used as a
test-sequences for at-speed BIST. Along with that a novel evaluation environment
to transfer sequential fault simulation task into a set of combinational subtasks is
developed. Its goal is to speed up the process of BIST design. The methodology
is evaluated in a case-study, using the benchmarks proposed previously and the
results are presented and discussed.

The combinational fault simulation using parallel pattern exact critical path
tracing is extended to run on multi-core systems. The parallelism is achieved in
three dimensions: faults, patterns and model. The fault and pattern parallelism
are achieved on each single core and the model is divided between different cores
to make a fault reasoning concurrently. The experimental results using ISCAS
and ITC benchmarks are presented and discussed.

Finally the novel method for observability improvement inside the sequential
circuits is presented. It is shown that using only two rules to insert MISR monitors
enables combinational fault simulator to be used for simulation of sequential
circuits. The results of theoretical experiments to estimate performance benefits
of such a method is also presented and discussed.

99

A N N O TAT S I O O N

Käesolevas väitekirjas uuritakse probleemide kompleksi, mille eesmärgiks on
isetestimise meetodite väljatöötamine ja uurimine kõrgjõudlus-konveierarhi-

tektuuriga skeemide jaoks. Omavahel tihedalt seotud probleemide kompleks ja-
guneb kolme gruppi: (1) uuritavate testimisobjektide klassi defineerimine ja vas-
tavate näidisskeemide disain (kõrgjõudlus-konveierarhitektuuriga skeemid), (2)
uued meetodid nimetatud objektide klassi testimiseks (isetestimine) ja (3) uued
meetodid testimiskvaliteedi hindamiseks (rikete simulatsioon).

Selleks, et leida seaduspärasusi erinevate disainiotsuste ja disainitud skeemi-
de testitavuse vahel, genereerisime töögruppis terve seeria samasuguse funkt-
sionaalsusega, kuid erineva struktuuriga, arhitektuure ja skeeme. Väitekirjas kir-
jeldatakse nimetatud skeemide strukruursete karakteristikute analüüsi ning an-
takse ülevaade eksperimentaalsest uurimistööst, mille tulemusena avastati rida
olulisi korrelatsioone skeemide struktuursete ja testitavuskarakteristikute vahel.

On välja töötatud uus meetod konveierarhitektuuriga digitaalsüsteemide funkt-
sionaalseks isetestimiseks. Meetodi oluliseks omaduseks on võimalus testida süs-
teeme reaalsel töökiirusel ja normaalsetes töötingimustes, mis tagab kõrgema
testimiskvaliteedi kui traditsioonilised staatilised meetodid. Võtmeaspektiks on
skeemi funktsionaalsuse ärakasutamine testjadade automaatseks genereerimiseks,
kus erinevalt tuntud isetestimise meetoditest pole selleks vaja lisaaparatuuri. Ain-
sa riistvaralise täiendusena viiakse skeemi spetsiaalsed MISR-tüüpi registrid, mil-
liste arvu minimeerimiseks on välja töötatud optimeerimismeetod. Esmakordselt
on välja pakutud idee testida digitaalskeeme analoogsignaalide abil. Eksperimen-
taalne uurimistöö ja võrdlus traditsioonilise digitaalse testimisega demonstreeris
uue idee suurt perspektiivsust.

Isetestimismeetodite kvaliteedi analüüsiks ja hindamiseks loodi vastav uus
simuleerimiskeskkond, kus põhikriteeriumiks, tulenevalt vajadusest analüüsida
väga pikki testsignaalide jadasid, oli rikete simuleerimise jõudlus. Simuleerimis-
kiiruse tõstmiseks teisendati mahukas järjestikskeemide simuleerimisülesanne
lihtsamate kombinatoorsete ülesannete kogumiks. Uus lähenemisviis aitas kii-
rendada simuleerimist kaks suurusjärku.

Testide kvaliteedi analüüsi kiiruse tõstmiseks töötati välja uus meetod kom-
binatoorsete skeemide rikete simuleerimiseks multiprotsessorsüsteemides. Mee-
todi iseärasuseks on arvutusprotsesside paralleliseerimine esmakordselt kolmes
dimensioonis: rikete skaala, testvektorite massiiv ja simuleeritav skeemimudel.
Rikete ja vektorite analüüsi paralleelsus on saavutatud iga üksikprotsessori suh-
tes ning skeemimudeli analüüsiprotsess on jaotatud erinevate protsessorite vahel.
Eksperementide tulemused demonstreerisid 5-10kordset simuleerimiskiiruse kas-
vu.

101

annotatsioon

Töö viimases peatükis üldistatakse kombinatoorsete skeemide jaoks välja töö-
tatud rikete simuleerimismeetod kasutamiseks järjestikskeemides. Selle võimal-
damiseks töötati välja meetod järjestikskeemide testitavuse parandamiseks, mis
seisneb kahe erireegli kasutamises vajalike täiendavate testpunktide lisamiseks
signaalide monitoorimise eesmärgil. Eksperimentaalselt näidati, et väga väikese
aparatuurse täienduse abil on võimalik dramaatiliselt tõsta rikete simuleerimis-
kiirust järjestikskeemides.

102

C U R R I C U L U M V I TA E

P E R S O N A L D ATA

Name: Maksim Gorev
Date of Birth: July 17, 1982

Place of Birth: Narva, Estonia
Citizenship: Estonian

C O N TA C T D ATA

Address: 15a Akadeemia St., 12619 Tallinn, Estonia
Phone: +372 620 2265

E-mail: maksim.gorev@ttu.ee

E D U C AT I O N

2008 – . . . PhD studies in Information and Communication Technology,
Tallinn University of Technology (TUT)

2007 – 2009 M.Sc. in Computer Science, Tallinn University of Technology
2002 – 2007 B.Sc. in Computer Science, Tallinn University of Technology
1997 – 2000 Upper Secondary Education from Narva Kreenholm

Gymnasium
1988 – 1997 Secondary Education from Narva Kreenholm

Gymnasium

C A R E E R

2011 – ... Tallinn University of Technology, Faculty of Information Technology,
Department of Computer Engineering; Early Stage Researcher

2008 – 2011 Tallinn University of Technology, Faculty of Information Technology,
Department of Computer Engineering; Engineer

2007 – 2008 Tracking Center OÜ; Service manager
2006 – 2007 Tracking Center OÜ; Service engineer
2006 – 2006 Nixor AD AS; Service engineer

103

mailto:maksim.gorev@ttu.ee

E L U L O O K I R J E L D U S

I S I K U A N D M E D

Nimi: Maksim Gorev
Sünniaeg: 17. juuli, 1982

Sünnikoht: Narva, Eesti
Kodakondsus: Eesti

K O N TA K TA N D M E D

Aadress: Akadeemia tee 15a, 12619 Tallinn, Eesti
Tel.: +372 620 2265

E-post: maksim.gorev@ttu.ee

H A R I D U S K Ä I K

2009 – . . . doktoriõpe, info- ja kommunikatsioonitehnoloogia õppekava,
Tallinna Tehnikaülikool (TTÜ)

2007 – 2009 Tallinna Tehnikaülikool, arvuti ja süsteemitehnika. Magistriõpe
2002 – 2007 Tallinna Tehnikaülikool, arvuti ja süsteemitehnika. Bakalaureuseõpe
1988 – 2000 Narva Kreenholmi Gümnaasium

T E E N I S T U S K Ä I K

2011 – . . . Tallinna Tehnikaülikool, Infotehnoloogia teaduskond,
Arvutitehnika instituut, Arvutisüsteemide projekteerimise õppetool; nooremteadur

2008 – 2011 Tallinna Tehnikaülikool, Infotehnoloogia teaduskond,
Arvutitehnika instituut; insener

2007 – 2008 Tracking Center OÜ; hooldusjuht
2006 – 2007 Tracking Center OÜ; hooldusinsener
2006 – 2006 Nixor AD AS; hooldusspetsialist

105

mailto:maksim.gorev@ttu.ee

A P P E N D I X A

A Benchmark Suite for Evaluating the Efficiency of Test Tools

H. Kruus, R. Ubar, P. Ellervee, M. Gorev, V. Pesonen, S. Devadze, E. Orasson, M. Brik,

M. Min, P. Annus, M. Kruus, K. Meigas

TTU, Ehitajate tee 5, 19086 Tallinn, Estonia,

E-mails: {helena_k, raiub, lrv, mgorev, vadim, serega, elmet, brik}@ati.ttu.ee,

{min, annus}@elin.ttu.ee, kruus@cc.ttu.ee, kalju@cb.ttu.ee

ABSTRACT: We propose a benchmark suite for systematic

evaluation of efficiency of new CAD and test algorithms. The

suite consists of a set of high performance signal processors.

Differently from all other existing benchmark suites, all the

member processors of this family perform the same

function, but are implemented in different ways, differing

mainly in sharing of computing resources. The circuits are

characterized by different structural complexities measured

in the number of reconvergent fan-outs. The latter feature

has the main impact to the testability of circuits, influencing

directly on the efficiency of test tools and on the quality of

the given test set. The main advantage of the benchmark

suite, compared to the existing ones, relies in the possibility

to create systematic dependencies of the efficiency of test

algorithms or test quality as a function of the structural

complexity of circuits.

1. Introduction

The development of CAD tools requires benchmark

circuits to experiment with new algorithms and methods.

Most public domain benchmarks are typically too small or

simply not of the right size to give realistic assessments of

the performance of new algorithms, methods and

prototype tools, especially when the test problems are

targeted. A number of efforts have been made to assemble

public domain benchmarks [1-5], but they are not well

suited for systematic evaluation of special properties of

CAD and test algorithms like sensibility to different

structural and architectural features of circuits like

hierarchy, sharing of resources, number of reconvergent

fan-outs etc.

In this paper, we propose a suite of signal processor

benchmarks developed for biosignal processing in the

broad field of biomedical engineering. All the circuits

perform the same function but they are implemented in

different ways differing mainly in sharing of computing

resources. The circuits are characterized by different

structural complexities measured in the number of

reconvergent fan-outs. The latter feature has the main

impact to the testability of circuits, to the efficiency and

productivity of CAD tools like test generation or fault

simulation, and to the properties of test sequences like test

length or fault coverage.

The paper is organized as follows. In Section 2, a

general overview about the functionality of the

benchmark suite is given, and in Section 3, the structural

diversities and characteristics of the circuits are presented.

Section 4 provides a case study of circuits regarding

different testability features, Section 5 discusses the

experimental results, and Section 6 concludes the paper.

2. Overview of the functionality of the suite

In biomedical engineering, bioimpedance is a term used

to describe the response of a living organism to an

externally applied electric current. Measurement of

electrical bioimpedance enables to characterize tissues

and organs, to get diagnostic images, etc. [6]. Multi-

channel data-acquisition devices are used often in

biomedicine to measure the properties of organs and

tissues. The main reason is the fact that the useful

information is hidden under background signals generated

by the normal body activity [7]. An example would be

respiration generated noise when measuring heart

activities. Electrical bioimpedance is determined by

measuring of voltage response to the excitation current

flow through the tissue or organ.

The impedance of tissues and organs is measured

between the electrodes having different locations.

Multisite and multifrequency bioimpedance information

has a great diagnostic value [8 ,9].

Fig. 1. A simplified block diagram of DMBA

In the following, the DSP (digital signal processing)-

based solution for a multi-frequency measurement unit

prototype has been described. The basic architecture of

the digital multichannel bioimpedance analyzer (DMBA)

is shown in Fig.1 [7], where the bioimpedance is

calculated as

Ż=R + jX

 Ż = R+ jX

Excitation signals

Sampling
pulses

Response signals

Bioimpedance

Digital
Signal

Analyzer

Digital

output

 D0

Sampler

 .
.
.

Source of
Excitation
Signals

 .
.
.

Channel

Control

Analog

Channel
Selector

Synchro

where R is the real part and X is the imaginary part.

The parameters of the response receiving part

(multiplexer and signal analyzer) are defined by the use of

single analog-to-digital converter (ADC) for multichannel

measurements. For instance, practical measurement on

body surface (thorax EBI measurements) with 8

excitation sources and also 8 response signals require

operating in the frequency range of interest between 30

kHz and 100 kHz. The task can be accomplished using

single ADC with at least 10MHz multisampling rate. The

resolution must be between 18 to 20 to represent low

(0.01% range) impedance changes adequately [10]. The

heart of the electronic test arrangement (prototype) is the

Field Programmable Gate Array (FPGA) Spartan
TM

-3

from Xilinx. The FPGA handles input channel selection,

sampling pulse generation, preamplifier gain control,

compensating voltage code generation, reading samples

from ADCs (analog-to-digital converters). The functional

block diagram of the FPGA unit is shown on Fig. 2 [10].

Fig. 2. Functional block of the FPGA unit with I/O

connections and peripheral components

3. Structural characteristics of the circuits

There has been a number of different modifications

developed in order to compare different architectural

solutions of this functionality.

Fig. 3 shows a design example – reconfigurable multi-

channel multi-frequency application specific signal

processor (DSP) that was developed for acquiring and

measuring of bioimpedance signals.

The acquired data is first sampled, then sorted and

finally processed. The processing includes calculating the

values that are needed to calculate the bioimpedance of

the tissue. The sampling order is controlled by a

programmable decoder, implemented in block RAM. The

sampled data is then either inserted into input buffers

implemented as on-chip memory banks (see Fig.3) or

skipped at all as in the case of the initial design. Data is

accumulated and accumulation registering is performed.

After that, data from registered accumulators are

multiplexed to a single output register.

The general structure of the 8-channel signal processor

for bioimpedance measurements is shown in Fig. 4.

Fig. 4. General structure of the bio-signal processor

Fig. 5. Overview of the benchmark designs

16-bit

preprocessor

32-bit

integrators
Input

buffers

Data in

DC

Re

Im

Control inputs Result

a
.

.

.

.

. b
.

.

.

.

.

bk
.

.

.

.

.

be
.

.

.

.

.

bs
.

.

.

.

.

c
.

.

.

.

. d
.

.

.

.

. de
.

.

.

.

.

Shared preprocessor

and integrator

Common buffers

for all channels

Shared prepocessor

and shared integrator

Common buffers

for all channels

Shared preprocessor

Shared

preprocessor

Shared adder/subtractor

in the preprocessor

Initial

design
Shared adder/subtractor

in the preprocessor

and shared integrator

Added buffers

for every sample

for every channel

Processor
Communication – Ethernet / TCP/ IP

I/O buffers Configuration

Sample buffers

I/Q buffers

Filter banks

Waveform code

generators

Clock and synchronization circuits

Compensation

vectors

Channel

selection, gain

and sampling

control

DAC DAC circuitsADC 1 and 2

excitation signalscompensation signalinput signals

Fig. 3. Structural schematic of the design

During the design process, alterations were made to

both preprocessor part of the design and the integrator

part of the design, resulting in eight different

configurations performing the same function: 8a, 8b, 8be,

8bk, 8bs, 8c, 8d and 8de. Fig. 5 shows which successive

changes were introduced into the designs. The design 8a

was the initial version with 8 data channels.

The goal of the research was to investigate how

different structural implementations would impact on the

testability of the design, and to find out which properties

of the design will cause worse testability.

4. Experimental study of the benchmark

suite regarding testability properties

Testability analysis of different configurations of the

biosignal processing design was performed by using

deterministic and pseudorandom test pattern generators

[11], fault simulator [12] and by using the algorithms for

hybrid BIST optimization developed in [13]. Several

testability characteristics presented in Table 1 were

analyzed: the deterministic test length achieved (DTL)

and the needed time for deterministic test pattern

generation (DTG), the time needed for fault simulation

(FS) and for the pseudorandom test generation (RTG), the

hybrid BIST length (HBL) and the calculated optimal test

cost of hybrid BIST (HBC). Generation times are given in

seconds, test lengths in numbers of patterns, and costs in

abstract units. The changes in testability characteristics

for the benchmark suite are shown in Fig. 6.

Table 1. Testability characteristics of signal processors

Design DTL DTG FS RTG HBL HBC

8a 1364 47 13.7 1408 23 038 197 823

8b 1201 34 11.8 1130 18 540 138 324

8bk 1288 35 11.3 1129 17 497 144 876

8c 1320 75 15.5 1583 35 641 224 121

8d 1394 62 16.6 1647 32 610 209 384

8be 995 114 27.9 2784 14 202 104 474

8de 1096 112 33.4 3344 33 968 162 557

8bs 1186 296 69.0 7095 14 086 113 038

Fig. 6. Changes in testability characteristics

The different design implementations are

characterized by different levels of sharing of resources

such as input buffers, preprocessing units, adders and

subtractors in preprocessors, and integrators. Sharing of

the resources was accompanied by introducing additional

multiplexers and control circuits which in their turn

increased the number of reconvergent fan-out branches in

the topology of the circuits. A rough estimation of the

number of convergent control signals is given in Table 2.

Table 2. Modifications in the different benchmark designs

Design
of reconvergent control signals

Modifications made
Preprocessor Integrator Total

8a 32 64 96 Initial design

8b 32 64 96 Shared preprocessor

8bk 64 64 128
Shared preprocessor

and adder/subtractor

8c 32 64 96
Initial design with

input buffers

8d 32 64 96 Shared preprocessor

8be 32 512 544
Shared preprocessor

and integrator

8de 32 512 544
Shared preprocessor

and integrator

8bs 64 1536 1600
Maximum sharing of

resources

5. Discussion of the results

The changes in design alternatives are characterized by

different structural complexities which will have a direct

impact on testability of circuits and on the testing quality.

The experimental results presented in Table 1 and Fig. 6

allow easily to create functional dependencies between

the testability features and the resource sharing options in

design alternatives, which allows to find proper tradeoffs.

In the following we discuss in details the depicted results.

The transition from 8a to 8b laid in replacement of 8

channels in preprocessing part of the circuit by a single

common channel, thus removing the redundancy by a

shared preprocessor. This resulted in improvement of all

the testability characteristics. The best improvements

were in reduction of test synthesis time (for deterministic

test 1.4 and for pseudorandom test 1.25 times). Fault

simulation became 1.16 times faster. The cost of the

hybrid BIST significantly improved – one of the reasons

is smaller number of inputs in 8b, which results in the less

cost of the memory component of the BIST.

The transition from 8b to 8be was equivalent to the

replacement of 8 channels of integrators with a single

channel. Multiplexers were added to the inputs of adders

in the integrator. The deterministic test length improved -

it was 1.2 times shorter, which can be explained by the

reduction of the circuit complexity. On the other hand, the

time needed for deterministic test generation was 3.35

times higher because of the increased number of

reconverging control signals in the circuit from 94 to 544,

which causes higher number of backtracks during search

for consistent solutions. Also, fault simulation time

became 2.36 times slower, and the time needed for

pseudorandom test generation was 2.46 times higher. This

is explained by the use of exact critical path tracing

algorithm [12] used for fault simulation which is highly

0%

100%

200%

300%

400%

500%

600%

700%

8a 8b 8bk 8c 8d 8be 8de 8bs

DTL DTG

FS RTG

HBL HBC

sensitive to the number of reconvergent control signals.

Since pseudorandom test generation uses the same fault

simulator, the test generation time consequently as well

increases. The cost of the hybrid BIST was improved due

to the smaller number of deterministic vectors needed.

The transition from 8b to 8bk consists in using one

adder/subtractor and additional multiplexers in the

preprocessor part. The increase of the reconvergent

control signals (from 96 to 128) did not significantly

influence the testability of the circuit.

 The transition from 8bk to 8bs combined the

preprocessor part of the design 8bk and the integrator part

of the design 8be. The number of reconvergent control

signals increased drastically (128 for 8bk and 1600 for

8bs). Fig. 6 shows worsening of the testability regarding

test generation and fault simulation: the time of

deterministic test generation became 8.45 times longer,

the time of fault simulation 6.1 times longer, and the time

of random test generation became 6.28 times longer. On

the other hand, because of the reduction in circuit size, the

length of deterministic test set became slightly shorter

(1.08 times). The length of optimal hybrid BIST was 1.24

times shorter and optimal cost 1.28 times smaller due to

the smaller number of seeds for LFSR.

The transition from 8a to 8c resulted in implementing

the programmable input buffers. The 8 channels of data

remained. In Fig. 6 it can be seen that the time related

characteristics have become worse: the generation time

for deterministic test became 1.59 times longer, and for

random test 1.13 times longer. The fault simulation

became 1.13 times slower. This worsening of indicators

can be explained by the increase of the number of

reconvergencies because of adding control signals for

addressing the buffer registers. The test length did not

change because of the circuit size remained the same.

The length of hybrid BIST sequence test became 1.54

times longer, and the cost of Hybrid BIST was bigger for

8c due to the bigger number of inputs (buffer registers).

In the transition from 8c to 8d eight channels of the

preprocessor were removed and replaced with a single

channel. Multiplexers were added to the inputs of the

preprocessor. The characteristics that changed most

significantly were deterministic test generation time

(became shorter) and the length of the optimal hybrid

BIST became slightly shorter, similarly as in the case of

“from 8a to 8b”.

In transition from 8d to 8de, 8 channels of integrator

were replaced by a single channel, and few multiplexers

were added, which caused the increase of reconvergent

control signals (Fig.6), and longer times for test

generation and fault simulation: for deterministic test 1,81

times and for random test 2.03 times longer. Fault

simulation became 2.01 times slower. The deterministic

test set was 1.27 times shorter and the cost of the BIST

reduced 1.28 times (due to the smaller number of seeds).

This case affected the testability characteristics in the

similar way as in the case from “8b to 8bk”.

6. Conclusions

As the result of the cooperation in the fields of computer,

electronics and biomedical engineering in the Estonian

Research Excellence Centre CEBE, a benchmark suite

was developed for evaluating the CAD tools in their

efficiency and quality in designing dependable digital

systems.

Differently from all other existing benchmark suites,

all the member processors of this family perform the same

function, but are implemented in different ways, differing

mainly in sharing of computing resources. This gives an

excellent possibility for direct systematic characterization

of CAD tools by creating functional dependences for

different testability markers on the structural complexity

of circuits. Existing benchmark suites do not provide such

a possibility.

By experimental research, a correlation was

established between the structural properties of circuits

and their testability characteristics. It was shown that

sharing of resources in designs, which leads to increasing

numbers of fan-out reconvergencies, may reduce the test

length, but on the other hand, will increase the time of test

synthesis, and may reduce the test quality.

A useful synergy was achieved by creating a selection

of biosignal processors, which will have practical use in

medical field, but which simultaneously can be used as

well as a family of benchmark circuits for analyzing the

properties of new test algorithms in the field of

electronics.

Acknowledgement: The work has been supported by the

project FP7-ICT-2009-4-248613 DIAMOND and by EU

through the European Regional Development Fund.

References

[1] F. Brglez, H. Fujiwara. A Neutral Netlist of 10 Combinational

Benchmark Circuits. ITC, 1985, pp.785-794.

[2] F. Brglez, D. Bryan, K. Kominski. Combinational Profiles of

Sequential Benchmark Circuits. ISCAS, 1989, pp.1929-1934.

[3] MCNC Benchmarks Suite. http://sites.google.com.site/xiaoleicustc

/research/mcnc

[4] HLSynth92 benchmarks family. www.cbl.ncsu.edu:16080

/benchmarks/HLSynth92

[5] ITC’99 Benchmarks webpage, CAD Group, Politecnico Torino,

www. cad.polito.it/tools /itc99.html

[6] E.T.McAdams, J.Jossinet. Tissue impedance: a historical review.

Physiological Measurements, Vol. 16, pp. A1-A13.

[7] V. Pesonen, M. Gorev, P. Annus, M. Min, P. Ellervee.

Reprogrammable Data Acquisition Unit to Reduce Aliasing Effect

in Bioimpedance Measurements. 7th Annual FPGAworld Conf.,

Copenhagen, Denmark, 6 pp., Sept. 2010.

[8] S. Grimnes, O. G. Martinsen. Bioimpedance and Bioelectricity

Basics. Academic Press, San Diego, 2000.

[9] T. Dudykevych, et al. Impedance Analyser Module for EIT and

Spectroscopy Using Undersampling. Physiological Measurement,

No. 22, Institute of Physics Publ. Ltd, UK, pp. 19-24, 2001.

[10] M.Min, T.Parve, P.Annus, T.Paavle. “A method of synchronous

sampling in Multifrequency Impendace Maesurments”. IMTC

2006, Sorrento, Italy, Apr. 2006.

[11] J. Raik et al. Turbo Tester Manual. Tallinn University of

Technology, www.pld.ttu.ee/TT.

[12] R.Ubar, S.Devadze, J.Raik, A.Jutman. Parallel X-Fault Simulation

with Critical Path Tracing Technique. DATE-2010, Dresden,

Germany, March 8-12, 2010, pp. 1-6.

[13] H.Kruus. Optimization of BIST in Digital Systems. PhD Thesis.

Tallinn University of Technology, 2011, 161 p.

A P P E N D I X B

1

At-Speed Self-Testing of High-Performance Pipe-Lined

Processing Architectures

Maksim Gorev, Raimund Ubar, Peeter Ellervee, Sergei Devadze, Jaan Raik, Mart Min

Tallinn University of Technology, Akadeemia tee 15A, 12618 Tallinn, Estonia,

E-mail: {maksim.gorev, raimund.ubar, peeter.ellervee, sergei.devadze, jaan.raik}@ati.ttu.ee, min@elin.ttu.ee

ABSTRACT: We propose a new methodology for Built-In

Self-Test (BIST) where contrary to the traditional scan-path

based logic BIST, the proposed solution for test generation

does not need any additional hardware, and will not have

any impact on the working performance of the system. A

class of digital systems organized as pipe-lined signal

processing architectures is targeted. The data used for

processing in the system are used as test pattern sources.

Testing at normal working conditions, and with typically

processed data, allows exercise the system on-line and at-

speed, facilitating the detection of dynamic faults like delays

and cross-talks to achieve high test quality. The proposed

new self-test method is free from the negative aspect of

over-testing, compared to the traditional logic BIST

approaches, and uses a minimal amount of additional

hardware. Experimental research was based on the case

study of a specialized bio-signal processor architecture, and

the results showed promising results in reducing the cost of

testing and achieving high fault coverage.

Keywords: pipe-lined signal processing architectures, built-

in self-test, at-speed testing, design for testability

1 Introduction

The technology advancements impose new challenges

to testing modern chips as device geometries shrink,

and deep-submicron delay defects are becoming more

and more important requiring more accurate dynamic

tests than before [1]. Therefore testing of chips in

dynamics by so called at-speed test is becoming the

must.

Increasing size and complexity of digital systems

directly reflects in more demanding test generation

and application strategies. The use of scan chains has

proven to be often inadequate increasing the cost in

terms of additional hardware and testing time [2],

excessive power dissipation during test [3] and

leading to yield loss because of over-testing [4].

A lot of research has been carried out to relieve the

burden of external testers by introducing system self-

test approaches like hardware-based logic Built-in

Self-Test (LBIST) which typically use Linear

Feedback Shift Registers (LFSR) [5]. In LBIST the

typical functions of external test equipments like test

generation and response analysis are carried out on-

chip, so that the tester should not handle high-speed

signals externally and its role should remain only to

send the test enable signals to the chip under test, and

to receive the pass/fail signals. For example, scan-

based and logic BIST solutions such as [6] relax the

requirements on testers and considerably reduce the

overall testing cost.

An important trend today is the at-speed test [7]

having additional benefit of the ability to test circuits

under conditions that are as close as possible to

normal circuit operation. This factor has a direct

impact on the number of chips that are found

defective during system operation but still pass all

manufacturing and functional tests. At-speed testing

can be used for characterization and can also expedite

test application time.

The question is whether a self-test sequence running

in the system can adequately exercise its hardware

components satisfying the targeted fault coverage

requirements. Achieving the test quality target

requires application of proper test sequences which is

the focus of the current paper. It should also be

pointed out that the quality of a test is measured not

only by its fault coverage, but also by its code size (to

be stored in the memory of the chip), hardware

overhead, and by the test execution time.

The goal of the paper is to propose an approach which

combines the ideas of traditional LBIST with at-speed

testing to improve the test quality at less testing

overhead and avoiding performance loss compared to

the traditional self-test approaches. The feasibility and

efficiency of the new method is demonstrated for a

particular class of pipe-lined processing architectures

which are easily adaptable for at-speed on-line self-

testing by inherent functional sequences.

The rest of the paper is organized as follows. In

Section 2, an overview about the state-of-the-art is

given, Section 3 presents the general idea and the

scheme of the proposed method, followed in Section 4

by the description of the representative case study

design. Section 5 presents the results of experimental

research, and Section 6 concludes the paper.

2 State-of-the-art of self-test techniques

In traditional LBIST, test pattern generation is mostly

performed by Linear Feedback Shift Registers (LFSR)

[5], cellular automata [8] or multifunctional registers

like BILBO (Built-in Logic Block Observer) [5] to

apply pseudorandom patterns to the Circuit Under

Test (CUT) and to analyse its output responses.

However, many circuits contain random-pattern-

2

resistant faults, which limit the fault coverage that can

be achieved with this approach.

One method to improve the fault coverage for LBIST

is to modify the CUT by either inserting test points [4]

or by redesigning it to improve the fault coverage [6].

The drawback of these techniques is that they

generally add additional logic levels to the circuitry

that can degrade system performance. Another

possibility to improve the fault coverage is to use

weighted pseudorandom test sequences [9]. The

disadvantage of this approach is in the need of storing

of the weight sets on chip, and also, a dedicated

control logic is required to switch between weights, so

the hardware overhead may become large.

A “mixed mode” approach, where deterministic

patterns will be added to detect hard-to-test faults, has

been developed in [10-13]. In [10] a technique based

on reseeding LFSR was proposed that reduces the

storage requirements. In [11], multi-polynomial LFSR

for encoding a set of deterministic test cubes was

introduced, and in [12] a technique called bit flipping

for generating deterministic test cubes using BIST

control logic was proposed. Further, in [13] a mixed-

mode approach was presented in which deterministic

test cubes are embedded in the pseudorandom

sequence of bits itself.

Established BIST solutions use special hardware

(typically LFSR) for pattern generation (TPG) and test

response evaluation (TRE) on chip [5], but this in

general introduces significant area overhead and

performance degradation. To overcome these

problems, specialized methods were proposed which

exploit specific functional units such as arithmetic

units for on-chip test pattern generation [14,16],

which may afford to reach similar fault coverage like

traditional LFSR-s. These methods are called

arithmetic BIST (ABIST), since they essentially adopt

the additive congruential generation scheme of

pseudo-random numbers [17].

In [18,19], a mixed-mode or hybrid BIST approach

was proposed, where a test set is assembled from two

parts, from pseudorandom test patterns that are

generated on-line, and deterministic test patterns that

are generated off-line and stored in the system.

Combination of both test sources in an optimized

fashion allowed to improve the traditional LBIST in

targeting hard-to-test faults. A similar approach called

hybrid functional BIST (HyFBIST), where instead of

LBIST the inherent functional sequences were used,

was proposed in [20,21] for testing digital systems,

and particularly micro-programmed data-paths.

In this paper we generalize and combine the ideas of

using inherent functional blocks for test generation

[14,15] and the inherent working sequences produced

by the UUT itself for self-testing purposes. We

propose an overall functional self-test concept for

pipelined architectures where the working sequences

are produced on the primary inputs of the system, and

the internal signals in selected test-points are

monitored by Multiple Input Signature Analysers

(MISR). We propose a systematic procedure for

selecting the test-points to achieve the best overall

fault coverage at minimum testing overhead and cost.

3 General description of the method

Consider a digital system as a network of sub-circuits

(blocks) where all the blocks may play simultaneously

two roles: on one hand, each block will be itself the

unit under test (UUT), and on the other hand, it will

serve as the test pattern generator for the subsequent

blocks it is feeding. As the overall test source,

selected input working sequences (as functional test)

will be used.

Two main problems arise: (1) how to find the best

functional test sequences, and (2) how to find the

minimal set of test-points for monitoring to achieve

the highest fault coverage of testing.

In some cases, the first problem can be solved

straightforwardly like in the instruction set

architectures or in signal processing units. In the first

case, the instructions can be exercised one by one

where the problem recedes to finding only proper data

(operands) as test patterns [22-23]. In case of signal

processing units, the proper signal types to be

processed in the working modes, and used as well for

testing purposes, may be selected case by case by trial

and error methods.

The second problem of selecting test-points for

monitoring depends how well are the different blocks

tested by the given functional test sequences. In Fig.1,

an example of a pipe-lined signal processing unit is

given which is partitioned into 6 blocks. Two

solutions are demonstrated for monitoring the

behaviour of the circuit with MISRs. The upper

solution shows the case where all blocks are

monitored whereas the lower solution uses only three

MISR: the first is monitoring the behaviour of B1 and

B2 as the whole, the second MISR is monitoring B3,

and the third one is monitoring the blocks B4, B5 and

B6 as the whole.

Fig.1. Pipe-lined signal processing unit

The task of partitioning of the whole system into UUT

blocks has the goal to find the highest fault coverage

B2B1 B3 B4 B5 B6SG

MISR

MISR MISR MISR

OUT

3

at the given functional test by achieving well-balanced

testability at the minimum number of MISR.

To find the minimum hardware overhead we propose

the following algorithm for selecting test-points.

Algorithm 1

1. Put MISR on the primary output of the circuit,

and find fault coverage (FC) for the given test

sequence.

2. If FC is sufficient, then the problem is solved.

3. Partition the circuit into a set of n blocks (each

with its own MISR). Find FC for each block as a

UUT.

4. Integrate the connected blocks with high FCs into

UUTs (with a single joint MISR) to minimize the

number of MISR, so that the total FC of the

system remains sufficient high.

5. For the blocks with lower FC, repeat the steps 3,4

inside the block by partitioning it into smaller

sub-circuits to improve the overall FC of this

block.

In case when the fault coverage will not satisfy either

globally for the whole circuit or for particular blocks

as UUTs, either the better functional test sequences

should be found, or different methods, similar to the

ones for improving LBIST described in Section 2,

may be used.

The proposed method facilitates the idea of LBIST

strategy except using instead of dedicated test

generators of LBIST the inherent test functionality of

existing hardware in the system. The method affords

at-speed testing with no performance degradation and

with little hardware overhead and reduced test cost.

The clock cycle based observation technique allows to

avoid fault masking, and to achieve high fault

coverage. The test response observation is carried out

using built-in MISR as the only hardware overhead.

The proposed method has several advantages

compared to the state-of-the-art scan-path based

LBIST methods:

(1) no hardware test pattern generators, and no scan-

path for shifting in external test patterns are

needed, which results in smaller overhead;

(2) compared to LBIST over-testing is avoided, since

only functional working test patterns are used;

(3) testing is carried out in the normal working clock-

rate which guarantees at-speed exercising the

circuit.

To investigate the feasibility of the method in the

sense of achieving sufficient fault coverage in real

cases, we carried out experimental test research with a

digital signal processor unit developed for industrial

purposes for measuring electrical bio-impedance

[24,25].

4 Signal processing unit as UUT

The unit under test (UUT) is a bio-impedance signal

analyser, which implements a simplified signal

processing algorithm [24]. A typical digital solution is

that the response voltage is digitized in an analog-to-

digital converter (ADC) into a uniformly sampled

train of digital data, which is then processed

numerically in a digital signal processing (DSP) unit,

often using the Discrete Fourier Transform (DFT).

Because the whole signal path from the generation of

the set of excitation signals to the A/D conversion

procedure and data analysis is synchronous by design,

optimized signal processing methods can be applied.

Using of sampling, which is synchronous to the

known excitation waveform, enables to use a

simplified but much faster signal processing than the

Fourier Transformation is. When sampling the

response signal uniformly with intervals t = T/ 4,

where T is a period of the signal, the following simple

mathematics is valid [24]:

(1) the direct current component can be determined

as

DC = (Re
+
 + Re

–
) /2 or DC = (Im

+
 + Im

–
)/2

(2) the real Re and imaginary Im parts of the phasor Z

of complex impedance is determined as

Re = (Re
+
 - Re

–
)/2, and Im = (Im

+
 - Im

–
)/2

The mentioned signal analyser is a part of the

developed digital multichannel bio-impedance

analyser (DMBA) , which is depicted in Fig. 2.

Fig. 2. A simplified block diagram of DMBA

For the test purposes of the circuit, the sampler is

implemented as 80MHz clock signal and excitation

signal generator along with body and analog part was

exchanged with signal generator of particular type.

The architecture of the signal analyser circuit is

depicted on Fig. 3. As it can be seen, the circuit has a

pipe-line structure in order to be implemented in a

low-cost FPGA. The signal is first sampled into the

input buffer. On the next stage the signals are

distributed to the particular registers of the 8 different

 Ż = R+ jX

Excitation signals

Sampling
pulses

Response signals

Bioimpedance

Digital
Signal

Analyzer

Digital

output

 D0

Sampler

 .
.
.

Source of
Excitation
Signals

 .
.
.

Channel

Control

Analog

Channel
Selector

Synchro

4

channels. The sampling is performed on channed-

after-channel basis. Every sample out of 4 samples

taken per channel is saved into its corresponding 16-

bit register. On the next stage Real and Imaginary and

Direct current components are computed with adders

and subtractors, using equations (1) and (2). On the

next pipeline stage the computed components are

integrated using adders and saved into 32-bit registers,

called output buffers. Integration is made over a 1

millisecond period. After that the values of the output

buffers are transferred to the output register of the

anayser.

Fig. 3. The architecture of Signal Analyser

We investigated four types of signal generators for

using as test sources to provide input signals to the

channels of the analyser: sine, chirp, saw-tooth,

LFSR. All the channels get the same signal, so that we

can test each channel equally to each other. All the

generators are implemented for the simulation

environment in VHDL.

(1) The sine signal generator is using floating point

arithmetics and sin() function of the VHDL math

library. It can take amplitude, phase and frequency as

a parameters to produce the corresponding sine wave.

During the experiments the amplitude was set to 15

bit, taking into account 1 sign bit and 16-bit wide

input of the analyser. The phase was set to 90 degrees

in order to produce the input signal from the upper

part of the wave. This was done because the signal

would produce more unique values in less time,

because it covers all the values from top to the bottom

in half-period. It was useful to check whether the test

sequences of small length could produce meaningful

results. The frequency was modified during the

experiment in order to detect the better signal for

testing this device.

(2) The chirp generator takes as parameters start and

stop frequency periods as well as number of samples

in which frequency should change from start to stop

frequency. The chirp generator changes the frequency

every sample it produces. The amplitude remained

15bit + 1 sign bit and phase remained 90 degrees.

During the experiments we have changed the length of

the chirp signal – number of samples from start to end

frequency.

(3) Saw-tooth signal is implemented as a counter. The

parameter it takes is a period of the signal. The

generator produces equally spaced samples of the

saw-tooth signal of this period. The amplitude is

15bit+1 sign bit.

(4) LFSR signal generator is implemented as 16-bit

linear feedback shift register. The seed is taken so that

it goes through all the 65535 possible values except 0.

The size of the LFSR was chosen in accordance to the

input width of the signal analyser under test.

5 Experimental results

Experiments were carried out for Signal Analyser in

Fig.3, presented as equivalent circuit with high-lighted

pipe-lined tracks in Fig.4. As the result of the

experimental research according to Algorithm 1, the

circuit was finally partitioned into 7 blocks as separate

UUTs which are characterized in Table 1.

Fig. 4. Equivalent circuit for the Signal Analyser in Fig.3.

No Name of

the block

Number

of faults

Number

of inputs

Number

of outputs

1 calc_add 69544 1431 896

2 calc_sub 18588 791 256

3 in_buf 98 17 16

4 out_buf 14750 1554 769

5 out 7480 709 64

6 sig_acq 8560 538 520

7 timer 512 18 17

Total 119532 5058 2538

Table 1. Characteristics of the blocks in Fig.4

We calculated the fault coverage for all the 7 blocks

as well as the total fault coverage for four different

types of signals: sine, chirp, saw-tooth and LFSR. The

results of the experimental research in percentage of

fault coverage for all the different blocks are

presented in Table 2 and as the bar diagram in Fig. 5.

As we see, the best results were achieved for the input

5

signal sine where the fault coverage was 98.20%. The

lowest total fault coverage 75.99% was registered for

the signal type saw-tooth.

No

Name of

the block

Input signal types

sine chirp
saw-

tooth
LFSR

1 calc_add 97.37 94.86 76.80 95.71

2 calc_sub 98.85 99.20 64.90 99.20

3 in_buf 82.65 82.65 82.65 82.65

4 out_buf 99.88 99.86 74.74 99.86

5 out 99.14 99.06 78.66 99.14

6 sig_acq 95.63 95.63 95.63 95.63

7 timer 94.14 94.14 94.14 94.14

Total 98.20 96.68 75.99 97.21

Table 2. Results of fault coverage experiments

Fig 5. Distribution of fault coverage in the circuit

Considering the distribution of fault coverage among

different blocks we see that the lowest test quality is

mapped to the block in_buf. Hence, for this block the

improvement of the testability by any of the methods

referenced above in Sections 2 and 3 can be foreseen

(this task was not the goal of this case study paper).

However, since the block in_buf is rather small

(characterized by only 98 faults), the improvement of

its testability will not lead to considerable increase in

the total fault coverage of the whole circuit.

Since the cost of testing depends on the time used for

carrying out the self-test procedure, we investigated

how the fault coverage will depend on the test length

measured in the number of test patterns. The results

are shown as the graphics for the different four signal

types in Fig. 6.

The most cost effective would be the LFSR based

self-test sequence where the fault coverage around

90% will be achieved already after 80 000 test

patterns (clock signals) whereas the sine signal based

and chirp signal based tests achieve only about 85%

and 80% fault coverage, respectively, at the same test

length. When doubling, however, the test length, the

sine based and LFSR based tests become equal at the

95% fault coverage. Especially sensitive to the length

of the test is the chirp signal based test sequence.

We compared the test quality achieved by the

proposed method with traditional scan-path (SP)

techniques both for using LFSR pseudorandom and

deterministic test sequences. The results are presented

in Table 3.

Fig 6. Dependence of the fault coverage on test length

Method
Fault

coverage

Test

length(TL)

Testing

time

(clocks)

Proposed 97.78 500000 500000

SP & LFSR 96.82 500000 x 2528

Proposed 98.27 1000000 1000000

SP & LFSR 98.73 1000000 x 2528

SP &

deterministic

98.69 1364 x 2528

Table 3. Comparison of different methods

As we see from Table 3, the fault coverage is nearly

the same for all the methods compared. However, to

get the same fault coverage as with the proposed

method, the test length of the scan path & LFSR based

approach should be even twice bigger compared to the

proposed method. To calculate the testing time cost in

clock numbers, the test length for both referenced

scan-path based methods should be multiplied by the

length of the scan path which is equal to 2528 bit (the

total number of inputs of all the tested blocks in the

given circuit). For the proposed method, the testing

time in number of clocks is equal to the test length.

Hence, we can conclude that the time cost of the

proposed method is about 10 times cheaper than the

SP & deterministic approach and more than 2500

times cheaper than SP & LFSR at the same fault

70
75
80
85
90
95

100

ca
lc

_
a

d
d

ca
lc

_
su

b

in
_

b
u

f

o
u

t_
b

u
f

o
u

t

sa
m

p
le

_
d

is
t…

si
g

n
a

l_
a

cq
u

is

ti
m

e
r

sine

chirp

sawtooth

lfsr

55

60

65

70

75

80

85

90

95

100

2
0

0
0

0

4
0

0
0

0

6
0

0
0

0

1
*

8
0

,0
0

0

2
*

8
0

,0
0

0

3
*

8
0

,0
0

0

4
*

8
0

,0
0

0

5
*

8
0

,0
0

0

6
*

8
0

,0
0

0

7
*

8
0

,0
0

0

8
*

8
0

,0
0

0

9
*

8
0

,0
0

0

lfsr

sine

chirp

sawtooth

6

coverage (in the latter case the single scan-path was

assumed).

6 Conclusions

We introduced a new approach to self-testing of

digital systems with pipe-lined architectures using

inherent functionalities of systems with capability to

produce internal self-test sequences. The added value

of using inherent functional self-test sequences is the

higher test quality explained by on-line at-speed

testing. The approach does not need to store high

volume test data in the system memory. Additional

hardware is as well not needed for on-line test pattern

generation as in the case of traditional LBIST. The

only needed additional test hardware is related to

using MISR for monitoring the test responses. To

minimize the needed additional MISR hardware

overhead, an original algorithm for selecting test-

points was developed. As the result of avoiding

artificial embedded test pattern generators like in case

of LBIST, and of using only normal working

sequences for test purposes, the danger of over-testing

and the related yield loss are removed.

To investigate the feasibility of the method to achieve

high fault coverage, we carried out experimental

research with a digital Signal Analyser unit as a case

study, which was developed for industrial purposes

for measuring electrical bio-impedance.

The goals of the experiments were twofold: (1) to

select the best type of input signal for testing purposes

from a set of signals typically used for processing in

the given Signal Analyser, and (2) to compare the new

method with traditional scan path based testing

methods.

Experimental research showed that the best testing

capability has the sine signal (with fault coverage of

98,2%) compared to the LFSR based pseudorandom

(97,2%) and chirp (96,7%) signals at the same test

length. The worse testing capability has the saw-tooth

type signal (76%). The fault coverage achieved by the

sine signal was 98,2%, which is nearly the same

compared to the traditional scan-path pseudorandom

(98,7%) and deterministic (98,7%) test approaches.

The gain in testing time cost was 10 times compared

to the deterministic and more than 2500 times

compared to the pseudorandom single scan-path based

approach.

Acknowledgements: The work was supported by the

Research Excellence Centre CEBE funded by EU

Structural Funds. We thank also Elmet Orasson from

Tallinn University of Technology who helped us to

carry out a part of the experimental research.

References

[1] T.Mak, S.Krstic, K.-T.Cheng, L.-C.Wang. New challenges in

delay testing of nanometer, multi-gigahertz designs. IEEE

Design & Test of Computers, 21(3), 2004, 241-248.

[2] L.Bushard, N.Chelstrom, S.Ferguson, B.Keller. DFT of the

Cell Processor and its Impact on EDA Test Software. In IEEE

Asian Test Symposium, 2006, pp. 369-374.

[3] S.Wang, S.Gupta. ATPG for heat dissipation minimization

during scan testing. In ACM IEEE Design Automation

Conference, 1997, pp. 614-619.

[4] L.Chen, S.Ravi, A.Raghunathan, S.Dey. A Scalable Software-

Based Self-Test Methodology for Programmable Processors.

In IEEE/ACM Design Automation Confernce, 2003, pp. 548-

553.

[5] L.-T.Wang, C.-W.Wu, X.Wen. VLSI test principles and

architectures. Morgan Kaufmann, 2006.

[6] G.Hetherington, T.Fryars, N.Tamarapalli, M. Kassab,

A.Hassan, J.Rajski.. Logic BIST for large industrial designs.

Proc. IEEE Int. Test Conf., pp. 358–367, 1999.

[7] B.Nadeau-Dostie. Design For At-Speed Test, Diagnosis and

Measurement. Kluwer Academic Publishers, 2002.

[8] P.D. Hortensius, R.D. McLeod, B.W. Podaima. Cellular

automata circuits for BIST. IBM J of Research and

Development. Vol.34, No.2.3, pp.389-405, 1990.

[9] M.F. AlShaibi, Ch.Kime. MFBIST: A BIST method for

random pattern resistant circuits. Proc. ITC, Oct. 1996,

pp.176-185.

[10] B.Koenemann. LFSR-coded test patterns for scan designs.

Proc. European Test Conf., Mar. 1991, pp.237-242.

[11] S.Hellebrand, J.Rajski, S.Tarnick, B.Courtois,

S.Venkataraman. Built-in test for circuits with scan based on

reseeding of ,ulti-polynomial linear feedback shift registers.

IEEE Trans. On Comput. Vol. 44, pp.223-233, Feb. 1995.

[12] H.-J. Wunderlich, G.Kiefer. Bit flipping BIST. Proc. ICCAD,

Nov. 1996, pp.337-343.

[13] N.A. Touba, E.J.McCluskey. Bit-fixing in pseudorandom

sequences for scan BIST. IEEE Trans. on CAD of IC and

Systems, Vol.20, No.4, Apr.2001.

[14] R.Dorsch, H-J.Wunderlich. Accumulator based deterministic

BIST. ITC, 1998, Washington D.C.

[15] J.Rajski, J.Tyszer. Arithmetic BIST in embedded systems,

Prentice-Hall, N J (1998).

[16] I.Voyiatzis, D.Gizopoulos, A.Paschalis. Accumulator-based

test generation for robust sequential fault testing in DSP cores

in near-optimal time. IEEE Trans. on VLSI Systems, Vol.13,

No.9, Sept., 2005, pp.1079-1086.

[17] D.E.Knuth. The art of computer programming. Vol.2,

Addison-Wesley, 1981.

[18] R.Ubar, T.Shchenova, G.Jervan, Z.Peng. Energy

Minimization for Hybrid BIST in a System-on-Chip Test

Environment. Proc. of 10th IEEE European Test Symposium,

May 22-25, 2005, pp.2-7.

[19] G.Jervan, P.Eles, Z.Peng, R.Ubar, M.Jenihhin. Hybrid BIST

Time Minimization for Core-Based Systems with STUMPS

Architecture. 18th Int. Symposium on Defect and Fault

Tolerance in VLSI Systems. Cambridge, MA, USA,

November 3-5, 2003.

[20] R.Ubar, N.Mazurova, J.Smahtina, E.Orasson, J.Raik.

HyFBIST: Hybrid Functional Built-In Self-Test in

Microprogrammed Data-Paths of Digital Systems. Int.

Conference MIXDES, Szczecin, June 24-26, 2004, pp.497-

502.

[21] N.Mazurova, J.Smahtina, R.Ubar. Hybrid Functional BIST for

Digital Systems. Proc. of the 9th Biennial Baltic Electronics

Conference, Oct. 3-6, 2004, Tallinn, pp.205-208.

7

[22] D.Gizopoulos et al. Systematic software-based self-test for

pipelined processors. IEEE Trans. on VLSI Systems, Vol. 16,

No.11, Nov. 2008, pp.1441-1453.

[23] R.Ubar, V. Indus, O. Kalmend, T.Evartson. Functional Built-

In Self-Test for Processor Cores in SoC. The 30th IEEE

NORCHIP Conference, Copenhagen, Denmark, Nov. 12-14,

2012.

[24] P.Ellervee, P.Annus, M.Min. High Speed Data Preprocessing

for Bioimpedance Measurements: Architectural Exploration.

NORCHIP, 2009.

[25] H.Kruus, R.Ubar, P.Ellervee, M.Brik, M.Gorev, M.Kruus,

E.Orasson, V.Pesonen, P. Annus, M.Min, K.Meigas. A

Benchmark Suite for Evaluating the Efficiency of Test Tools.

Proc. of Baltic Electronics Conference, Tallinn, October 3-5,

2012.

A P P E N D I X C

1

Functional Self-Test of High-Performance Pipe-Lined Signal
Processing Architectures

Maksim Gorev, Raimund Ubar, Peeter Ellervee, Sergei Devadze, Jaan Raik, Mart Min

Tallinn University of Technology, Akadeemia tee 15A, 12618 Tallinn, Estonia,

E-mail: {maksim.gorev, raimund.ubar, peeter.ellervee, sergei.devadze, jaan.raik}@ati.ttu.ee, min@elin.ttu.ee

ABSTRACT: We propose a new methodology for Built-In
Self-Test (BIST) where contrary to the traditional scan-path
based Logic BIST, the proposed solution for test generation
does not need any additional hardware, and will not have any
impact on the working performance of the system. A class of
digital systems organized as pipe-lined signal processing
architectures is targeted. The on-line generated signal data used
for processing in the system serve as test pattern sources.
Testing under normal working conditions and with typically
processed data, allows exercising of the system on-line and at-
speed, facilitating the detection of dynamic faults like delays
and cross-talks to achieve high test quality. The proposed new
self-test method is free from the negative aspect of over-
testing, compared to the traditional Logic BIST approaches,
and uses minimal amount of added hardware. Experimental
research was based on the case study of specialized bio-signal
processor architecture. The experiments showed promising
results in reducing the cost of testing and achieving high fault
coverage.

Keywords: pipe-lined signal processing architectures, built-in
self-test, at-speed testing, design for testability

1 Introduction
The technology advancements impose new challenges to
testing modern chips as device geometries shrink, and
deep-submicron delay defects are becoming more and
more important requiring more accurate dynamic tests
than before [1]. Therefore testing of chips closer to real
working conditions by so called at-speed test is
becoming the must.
Increasing size and complexity of digital systems
directly reflects in more demanding test generation and
application strategies. The use of scan chains has proven
to be often inadequate increasing the cost in terms of
additional hardware and testing time [2], excessive
power dissipation during test [3] and leading to yield
loss because of over-testing [4].
A lot of research has been carried out to relieve the
burden of external testers by introducing system self-test
approaches like hardware-based Logic Built-in Self-Test
(LBIST) which typically use Linear Feedback Shift
Registers (LFSR) [5]. In LBIST, typical functions of
external test equipment like test generation and response
analysis are carried out on-chip, so that the tester should
not handle high-speed signals externally and its role
should remain only to send the test enable signals to the
chip under test, and to receive the pass/fail signals. For
example, scan-based and logic BIST solutions such as

[6] relax the requirements on testers and considerably
reduce the overall testing cost.
An important trend today is the at-speed test [7] having
additional benefit of the ability to test circuits under
conditions that are as close as possible to normal circuit
operation. This factor has a direct impact on the number
of chips that are found defective during system operation
but still pass all manufacturing and functional tests. At-
speed testing can be used for characterization and can
also expedite test application time.
The question is whether a self-test sequence running in
the system can adequately exercise its hardware
components satisfying the targeted fault coverage
requirements. Achieving the test quality target requires
application of proper test sequences that is the focus of
the current paper. It should also be pointed out that the
quality of a test is measured not only by its fault
coverage, but also by its code size (to be stored in the
memory of the chip), hardware overhead, and by the test
execution time.
The goal of the paper is to propose an approach which
combines the ideas of traditional LBIST with at-speed
testing to improve the test quality at less testing
overhead and avoiding performance loss compared to the
traditional self-test approaches. The feasibility and
efficiency of the new method is demonstrated for a
particular class of pipe-lined processing architectures
which are easily adaptable for at-speed on-line self-
testing by inherent functional sequences.
The rest of the paper is organized as follows. In Section
2, an overview about state-of-the-art is given. Section 3
presents the general idea of the proposed method,
followed with the description of the evaluation bench in
Section 4, which is needed for exploration of solutions
for implementing the method. Section 5 presents the
description of the representative case study, and in
Section 6 the results of experimental research are
discussed. Section 7 concludes the paper.

2 State-of-the-art of self-test techniques
In traditional LBIST, test pattern generation is mostly
performed by Linear Feedback Shift Registers (LFSR)
[5], cellular automata [8] or multifunctional registers like
BILBO (Built-in Logic Block Observer) [5] to apply
pseudorandom patterns to the Unit Under Test (UUT)
and to analyse its output responses. However, many
circuits contain random-pattern-resistant faults, which

2

limit the fault coverage that can be achieved with this
approach.
One method to improve the fault coverage for LBIST is
to modify the UUT by either inserting test points [4] or
by redesigning it to improve the fault coverage [6]. The
drawback of these techniques is that they generally add
additional logic levels to the circuitry that can degrade
system performance. Another possibility to improve the
fault coverage is to use weighted pseudorandom test
sequences [9]. The disadvantage of this approach is in
the need of storing of the weight sets on chip, and also
dedicated control logic is required to switch between
weights, so the hardware overhead may become large.
A “mixed mode” approach, where deterministic patterns
will be added to detect hard-to-test faults, has been
developed in [10-13]. In [10] a technique based on
reseeding LFSR was proposed that reduces the storage
requirements. In [11], multi-polynomial LFSR for
encoding a set of deterministic test cubes was
introduced, and in [12] a technique called bit flipping for
generating deterministic test cubes using BIST control
logic was proposed. Further, in [13] a mixed-mode
approach was presented in which deterministic test cubes
are embedded in the pseudorandom sequence of bits
itself.
Established BIST solutions use special hardware
(typically LFSR) for test pattern generation (TPG) and
test response evaluation (TRE) on chip [5], but this in
general introduces significant area overhead and
performance degradation. To overcome these problems,
specialized methods were proposed which exploit
specific functional units such as arithmetic units for on-
chip test pattern generation [14, 16], which may afford to
reach similar fault coverage like traditional LFSR-s.
These methods are called Arithmetic BIST (ABIST),
since they essentially adopt the additive congruential
generation scheme of pseudo-random numbers [17].
In [18,19], a mixed-mode or hybrid BIST approach was
proposed, where a test set is assembled from two parts,
from pseudorandom test patterns that are generated on-
line, and deterministic test patterns that are generated
off-line and stored in the system. A combination of both
test sources in an optimized fashion allowed improving
the traditional LBIST in targeting hard-to-test faults. A
similar approach called Hybrid Functional BIST
(HyFBIST), where instead of LBIST the inherent
functional sequences were used, was proposed in [20,21]
for testing digital systems, and particularly micro-
programmed data-paths.
In this paper we generalize and combine the ideas of
using inherent functional blocks for test generation
[14,15] and the inherent working sequences produced by
the UUT itself for self-testing purposes. We propose an
overall functional self-test concept for pipelined
architectures where the working sequences are produced
on the primary inputs of the system and the internal
signals are monitored in selected test-points by Multiple

Input Signature Analysers (MISR). We propose a
systematic procedure for selecting the test-points to
achieve the best overall fault coverage at minimum
testing overhead and cost.
To our knowledge, the usage of digital representation of
analog signal sequences as a functional test for testing
digital circuits (signal processing architectures) is
investigated in our paper the first time. Main idea is to
take the input data, which is close to what the circuit-
under-test would most probably have during its normal
operation and apply this data as an at-speed test. In our
case this input data is digital representation of the sine
signal. It will be shown in results, that such a signal
could yield better fault coverage in comparison to
traditional pseudo-random LFSR sequence. This can also
be considered as one step further compared to the
arithmetic BIST (ABIST), since the source for the first
stage of UUT is stimulated using more complicated
equation (sine wave), than traditionally used in ABIST.
The next stages of the UUT can be considered as test
generators similar to ABIST. The Functional test
strategies (e.g. software based self-test) used for example
in microprocessors, are traditionally using dedicated
software test routines, which have to be stored in the
memory. In our case, there is no need to store in the
memory such test routines or other test data.

3 General description of the method
Consider a digital system as a network of sub-circuits
(blocks) where all the blocks may play simultaneously
two roles: on one hand, each block will be itself UUT,
and on the other hand, it will serve as the test pattern
generator for the subsequent blocks it is feeding. As the
overall test source, selected input working sequences (as
functional test) will be used.
Two main problems arise: (1) how to find the best
functional test sequences, and (2) how to find the
minimal set of test-points for monitoring to achieve the
highest fault coverage of testing.
In some cases, the first problem can be solved
straightforwardly like in the instruction set architectures
or in signal processing units. In the first case, the
instructions can be exercised one by one where the
problem recedes to finding only proper data (operands)
as test patterns [22-23]. In case of signal processing
units, the analog signals to be processed can be used as
candidates for exploiting in testing purposes as well.
We are investigating the possibility of using given digital
representation of analog signals as stimuli for testing
signal processors. The idea is similar to random (LFSR
based) testing where the critical point is analysis of the
test quality as the function of test length.

3

Fig.1. Signals used for measuring bio-impedance

For example, in bio-impedance spectroscopy, for
measuring the bio-impedance typically the following
signals are generated and processed as shown in Fig.1:
sine [28] and chirp [29]. These signal sequences may be
used as well in the role of stimuli (i.e., functional test
sequences) for self-testing purposes for the same signal
processor itself. The quality of the listed signals as test
stimuli can be compared with popular saw-tooth analog
signal and pseudorandom LFSR sequences which are
traditionally used in the logic BIST solutions. Saw-tooth
is easy to generate digitally; this is the reason why it is
widely used in signal generation and processing. It can
also be thought of as an additive generator of exhaustive
patterns.
The second problem of selecting test-points for
monitoring the test process depends how well can the
faults in different blocks be detected by the given
functional test sequence.
In Fig.2, an example of a pipe-lined signal processing
unit is given which is partitioned into 6 blocks.
Two solutions are demonstrated for monitoring the
behaviour of the circuit with MISRs. The solution in
Fig.2a shows the case where all blocks are monitored
whereas in the solution depicted in Fig.2b, only three
MISR are used: the first is monitoring the behaviour of
blocks B1 and B2 as a whole, the second MISR is
monitoring solely the block B3, and the third MISR is
monitoring the blocks B4, B5 and B6 as a whole.
The task of partitioning of the whole system into UUT
blocks has the goal to find the highest fault detection
coverage for the given functional test by achieving well-
balanced testability at the minimum number of
monitoring points equipped with MISR

a)

b)

Fig.2. Monitoring of the pipe-lined signal processing
unit.

To find the minimum hardware overhead we propose the
following method for selecting test-points:
• Put MISR on the primary output of the circuit, and

find the fault coverage (FC) for the given test
sequence.

• If FC is sufficient, then the problem is solved.
• Partition the circuit into a set of n blocks (each with

its own MISR). Find FC for each block as a UUT.
• Continue the partitioning of the blocks with low FC

until the total FC will be sufficient.
• Integrate the consecutive blocks with high FCs into

UUTs (with a single joint MISR in the output of the
composite block) to minimize the number of MISR,
so that the total FC of the system remains sufficient
high.

The described method is illustrated in Fig.3. Please note
that the partitioning solutions can be found in different
ways, e.g. dictated by an inherent structure (network of
registers and combinational blocks), using any ad hoc
method in a style of "trials and errors" or using more
sophisticated analysis methods. This task should be
regarded as a separate problem, not discussed in the
paper.
An example of merging two blocks with high fault
detection coverage according to Step 4 of the described
procedure and further partitioning of a block with low
fault detection coverage into smaller blocks, is illustrated
in Fig.4. In the new composite block, the evaluation of
the fault coverage should be carried out again separately
for all the three parts, to find out if some of them can be
merged, or if there is any of them with low fault
coverage, which should be further partitioned.

Sine

Chirp

Sawtooth

LFSR

4

Fig.3. General procedure for minimization of the

number of observation points

In case when the fault coverage will not satisfy either
globally for the whole circuit or for particular blocks as
UUTs, either the better functional test sequences should
be found, or different methods, similar to the ones for
improving LBIST described in Section 2, may be used.

Fig. 4. Example of merging and splitting the blocks in
UUT with high and low fault detection coverage

The described method of inserting MISR facilitates the
idea of LBIST strategy except using instead of dedicated
test generators of LBIST the inherent test functionality

of existing hardware in the system. The method affords
at-speed testing with no performance degradation and
with little hardware overhead and reduced test cost.
The clock cycle based observation technique allows to
avoid fault masking, and to achieve high fault coverage.
The test response observation is carried out using built-in
MISR as the only hardware overhead.

The proposed method has several advantages compared
to the state-of-the-art scan-path based LBIST methods:
(1) no hardware test pattern generators, and no scan-

path for shifting in external test patterns are needed,
which results in smaller overhead;

(2) compared to LBIST, the typical drawback of over-
testing related to LBIST is avoided, since only
functional working test patterns are used;

(3) testing is carried out in the normal working clock-
rate which guarantees at-speed exercising the whole
circuit.

Fig.5. Fault simulation in sequential circuits

The target of this Section was to describe the main
principles of redesign for better testability of the given
UUT. The goal was not to develop exact algorithm or
tool for exploring automatically the whole space of
solutions, which would be infeasible. The designer has a
possibility to remove or insert MISRs in the design and
to evaluate the test quality by using the fault simulation
environment described in Section 4. He has also the
possibility of changing the length of the test sequence to
achieve higher fault coverages.
In the next Section we present a novel environment
which supports very high speed in analysing the fault
detection coverage in the blocks of UUT.
4 Fault simulation environment
To carry out the procedure of minimizing the number of
test-points according to Algorithm in Fig.3, large
number of fault simulation sessions is needed for
evaluating the fault detection coverage in the blocks of
different size and for different partitioning solutions for
the given UUT. A simple scheme for fault simulation of
a sequential circuit is depicted in Fig.5. The model of the
circuit and the test sequence form the input data for the
simulator that calculates the fault detection rate. The

Fault simulator for
sequential circuits

Sequential
UUT

Test
sequence

Full task of fault
simulation

5

faults are simulated in this case one by one. Such a
single fault simulation is very slow. On the other hand,
faster methods for fault simulation, such as deductive or
critical path tracing based fault analysis, cannot be used
for sequential circuits; they are applicable only for
combinational circuits.
To overcome the difficulties of fault simulation in
sequential circuits we propose a special approach to
escape from the dependency on feedback loops. Assume,
the full sequential circuit (or a sequential block as a part
of it) can be presented as a set of combinational sub-
circuits each of them having a MISR in the output. By
logic simulation of the test sequence for all sub-circuits,
the input sequences are calculated (are fixed during the
logic simulation). All the combinational sub-circuits can
be fault simulated now independently, because each of
them has MISR, which detects the faults in the related
sub-circuit. If we cannot partition the circuit in such a
way, we have to use a traditional slow fault simulator for
sequential circuits.
To cope with the problem of slow fault simulation in
sequential circuits, we have developed a novel
environment in which the fault simulation has to be
carried out only in the combinational parts of the UUT.
The new fault simulation environment is depicted in
Fig.6.

Fig.6. Transforming sequential fault simulation into sub-

tasks of combinational fault simulation

The fault simulation in this environment is carried out in
the following flow:
(1) In each current step of the Algorithm in Fig.3, the

UUT is partitioned into a set of blocks S = SC ∪ SS
where SC is a subset of combinational blocks and SS
is a subset of sequential blocks.

(2) The UUT is simulated for the whole test sequence T,
and for each block Bi ∈ S, the whole local

subsequence Ti at the input of Bi, caused by T will be
collected and stored. The subsequence Ti will be
regarded thereafter as the sub-test sequence for the
block Bi generated on-line by the test sequence T.

(3) All the combinational blocks Bi ∈ SC, will be fault
simulated for the local sub-test sequences Ti with the
fast fault simulator for combinational circuits as
shown in Fig.6.

(4) All the sequential blocks Bj ∈ SS, have to be fault
simulated for the local sub-test sequences Tj with the
slow fault simulator for sequential circuits in this
environment according to scheme Fig.5.

For fault simulation of combinational circuits we have
developed a very fast fault simulator that implements a
method of exact parallel critical path tracing, which has
higher speed than currently used commercially available
professional fault simulators have [24].
The high speed in our simulator is achieved by reasoning
the faults along signal paths in the circuit for N test
vectors in parallel, where N is the number of bits in the
computer word. The simulator runs in two sessions
through the whole circuit. The first session is carried out
only once for all the test vectors to be simulated. The
goal of this session is to create a compact computing
model for further fault reasoning which consists of a
sequence of Boolean formulas. Since the formulas are
Boolean, they can be processed in parallel. The second
session is to calculate the detected faults for packages of
N test vectors in parallel using the computing model
created in the first session.
We included this simulator into the fault simulation
environment in Fig.6, where it will be used for
simulating faults in the blocks Bi ∈ SC, block by block.
Unfortunately, the simulator cannot be used for
calculating the fault coverage for the sequential blocks Bj
∈ SS. Currently, we are working on the problem, how to
use the simulator proposed in [24] for estimating fault
coverage in sequential circuits as well.
In the next Section, a case study will be discussed where
we investigated the feasibility of the proposed method of
at-speed self-testing in a pipe-lined signal pre-processor
of a family of pre-processors with different architectures
developed for analysis of electrical bio-impedance
signals [new, 25, 26]. The results of fault simulation for
the whole family of 8 processors (column 1) are
presented in Table 1, and they allow comparing the
performance of the two simulation schemes depicted in
Fig.5 and Fig.6.
Column 2 describes the time in seconds for logic
simulation of the sequence of 10 000 vectors on these
processors given by their behaviour VHDL descriptions.
The columns 3 - 6 describe fault simulation experiments
according to Fig.6 on the same sequence of 10000
vectors. Two levels of fault simulation are compared –
gate-level and macro-level, where each macro represents
a fan-out-free region (a gate-level sub-circuit) in a

Combinational
sub-circuits

Logic simulator

Sequential
UUT

Test
sequence

T

T1 Tn

B1 Bn

Sub-test
sequences

Fault simulator for
combinational circuits

Sub-tasks of
fault simulation

6

simulated combinational block of the given UUT. Only
Stuck-at-Faults (SAF) were simulated. However, to save
the time, only the correct behaviour was considered
during behaviour level simulation (column 2).

C
irc

ui
t

B
eh

. l
ev

el
 lo

gi
c

si
m

ul
at

io
nn

, [
se

c]

[F
ig

.5
]

Fault simulation (Fig.6)
Macro level Gate level

of
faults

Si
m

-n
 ti

m
e,

[s

ec
]

Sp
ee

du
p

of
faults

Si
m

ul
. t

im
e,

[s

ec
]

Sp
ee

du
p

8a 0.155 66328 14.0 734 112034 30.0 579
8b 0.152 50206 12.1 631 83940 24.7 517
8be 0.168 55270 28.3 328 99330 62.1 269
8bk 0.159 49938 11.6 684 86878 25.2 548
8bs 0.154 56444 65.2 133 100820 173.4 90
8c 0.159 73182 16.3 714 122386 35.9 542
8d 0.161 71730 17.0 679 123012 35.5 558
8de 0.164 75840 34.8 357 136876 81.3 276

Table 1. Comparison of two fault simulation approaches

To compare the two fault simulation approaches
presented in Fig.5 and Fig.6 on the basis of Table 1, let
consider the results for the processor architecture 8a (the
1st row). For simulating 112034 gate-level SAF faults
using parallel critical path tracing in the environment in
Fig.6, we need 30 s. Assume now very optimistically
that for single fault simulation of sequential circuits in
the UUT at the behaviour level we would need the same
time as for simulation of the correct circuit, i.e. 0.155 s.
Then, to simulate 112034 faults in the sequentially
presented gate-level UUT, we would need 17365 s, or
about 5 hours. Hence, the gain in speed for this particular
UUT will be not less than 580 times. In fact, it will be
even more, since the gate-level simulation would be
much slower than the behaviour level simulation.
In order to produce the results in Table I used desktop
class intel I7-930 @ 2,80GHz 4-core processor running
Windows 7 operating system with 6GB of physical
RAM. The circuit was simulated by ModelSim SE
ver.6.5c. The speedup values were calculated in respect
to theoretically assumed speed of sequential fault
simulation computed as multiple of column two and
respective column for macro- and gate-level number of
faults.
Note, the main idea of such a powerful fault simulation,
based on transforming sequential fault simulation task
into a set of combinational fault simulation sub-tasks is
directly related to the goal we have in this analysis. And
the idea is as well closely tailored in the method of at-
speed testing that we are evaluating. The goal of fault
simulation is in our case to evaluate the fault detection
coverage, not fault diagnosis. In other word, we are not
interested in creation of an exact fault table. As we have
on the outputs of simulated blocks signature analysers, it
will be sufficient during testing to fix on the inputs of the
block correctly only the first erroneous vector affected
by the fault. As the result, the method is not sensitive to

the possible mismatches of the subsequent input vectors
of the fault block with those collected during simulation
of the correct UUT.

Let us summarize the main idea of the Section. We use
our fast fault simulator [24], which is not simulating
faults one by one like in the traditional fault simulators
for sequential circuits, rather it calculates by a single run
all the faults detected in the combinational sub-circuits
by a bunch of patterns (we do the reasoning of all faults
in the sub-circuits in parallel for many patterns). The
confusion may arise now because the fault reasoning is
carried out for input patterns, which were collected from
the behavior of the correct circuit. This means that if
there was a fault, which produces an erroneous output
pattern, then the next input pattern will be as well
erroneous (because of the feedback loop), which means
in turn that the results of fault reasoning of all
subsequent patterns will be as well wrong. But, on the
other hand, this is not any more important, because the
first erroneous pattern in the input sequence of the sub-
circuit will be fixed already by MISR as an error, and
this will be sufficient for fault detection in the end of the
test (with the accuracy determined by the probability of
signature aliasing). Generating fault tables and fault
diagnosis of course is not possible, but this is not the
purpose of our paper.
To our knowledge, such an approach of handling
feedback loops during fault simulation in sequential
circuits has been proposed the first time.
5 Case study: signal processing unit as UUT
To investigate the feasibility of the method in the sense
of achieving sufficient fault coverage in real cases, we
carried out experimental test research with a digital
signal pre-processor unit developed for industrial
purposes for measuring electrical bio-impedance [25, 26,
27]. From the family of processors, discussed in the
previous Section we selected the processor with
architecture 8a.

	

 Ż = R+ jX
Excitation signals

Sampling
pulses

Response signals

Bioimpedance

Digital
Signal

Analyzer

Digital
output
 D0

Sampler

 . . .

Source of
Excitation
Signals

 . . .

Channel
Control

Analog

Channel
Selector

Synchro

Fig. 7. The architecture 8a of Signal Analyser.

7

The selected unit under test (UUT) is a bio-impedance
signal analyser that implements a simplified signal
processing algorithm [25, 27]. The architecture of the
signal analyser circuit is depicted on Fig. 7. A typical
digital solution is that the response voltage is digitized in
an analog-to-digital converter (ADC) into a uniformly
sampled train of digital data, which is then processed
numerically in a digital signal processing (DSP) unit,
often using the Discrete Fourier Transform (DFT).
Because the whole signal path from the generation of the
set of excitation signals to the analog-to-digital
conversion procedure and data analysis is synchronous
by design, optimized signal processing methods can be
applied. Using of sampling, which is synchronous to the
known excitation waveform, enables to use a simplified
but much faster signal processing than the Fourier
Transformation is. When sampling the response signal
uniformly with intervals t = T/4, where T is a period of
the signal, the following simple mathematics is valid
[25][30]:
(1) the direct current component DC can be determined

as

DC = (Re+ + Re–) /2 or DC = (Im+ + Im–)/2

(2) the real Re and imaginary Im parts of the phasor of

complex bio-impedance Z is determined as

Re = (Re+ - Re–)/2, and Im = (Im+ - Im–)/2

The mentioned signal analyser is a part of the developed
digital multichannel bio-impedance analyser (DMBA)
[27], depicted in Fig. 7. The Source of Excitation Signals
generates digital waveforms that are converted by
Digital Analog Converter (DAC, not shown) into analog
signals, sent through tissue, collected by Analog Channel
Sellector and sampled converted by ADC (not shown)
back to digital form. The Sampler is used to synchronize
the signal source and ADC (input of the Digital
Analyzer, not shown). This sampled digital signal is
processed by the analysis unit. For self-test purposes, the

analog part - DAC, tissue and ADC - are skipped and the
output of the Excitation Signal Generator is fed directly
to the digital input of the Digital Signal Analyzer, which
is shown in Fig.9.

For the test purposes of the circuit, the sampler is
implemented as 80MHz clock signal and excitation
signal generator along with body and analog part was
exchanged with signal generator of particular type. Fig.9.
gives visual representation of it. As it can be seen, the
circuit has a pipe-line structure in order to be
implemented in a low-cost FPGA. The signal is first
sampled into the input buffer. On the next stage the
signals are distributed to the particular registers of the 8
different channels. The sampling is performed on
channed-after-channel basis. Every sample out of 4
samples taken per channel is saved into its corresponding
16-bit register. On the next stage Real and Imaginary and
Direct current components are computed with adders and
subtractors, using equations (1) and (2). On the next
pipeline stage the computed components are integrated
using adders and saved into 32-bit registers, called
output buffers. Integration is made over a 1 millisecond
period. After that the values of the output buffers are
transferred to the output register of the anayser.

The architecture of the analyzer (see Fig. 8) was defined
by the used technology - low-cost FPGA-s - that defined
the used 80 MHz sampling frequency. This itself was
defined by the need to have 10-20 MHz excitation
signals with 4 or 8 sampling points per period [27]. The
use of single input channel (ADC output) and sorter to
reduce aliasing effect [25], defines the need for two first
buffer stages. The two last buffer stages are defined by
the need to accumulate the collected data over 1 ms
period, to buffer it and to transmit [27]. The intermediate
part - subtracter/adder and accumulator - can be
implemented, in principle, as a single stage. However,
when using FPGA-s, the extra pipeline stage actually
makes the design not only faster (because of the shorter
combinational paths) but also smaller - every output bit
of an adder has a flip-flop anyway and the use of them

Fig.8. A block diagram of one channel of DMBA[25]. Registers
are blue, MUXes – yellow, computation - red, control – green.

8

makes routing problem for the design tools easier. The
same applies for the potential reuse of functional units
and registers that would essentially add additional
multiplexers to the design - the internal structure of
FPGA-s is best suited for pipelined data-stream oriented
applications. This was also the case with the other
implementations of the same processing unit with the
different degree of reuse [25]. All the MUXes in the
circuit are used for switching the channels (there are 8
channels in the DMBA), except the last one, which is
switching every channel result to a single output.

We investigated four types of signal generators for using
as test sources to provide input signals to the channels of
the analyser: sine, chirp, saw-tooth, LFSR. These can be
see on Fig.1. All the channels get the same signal, so that
we can test each channel equally to each other. All the
generators are implemented for the simulation
environment in VHDL.
 (1) The sine signal generator is using floating point
arithmetics and sin() function of the VHDL math library.
It can take amplitude, phase and frequency as a
parameters to produce the corresponding sine wave.
During the experiments the amplitude was set to 15 bits,
taking into account 1 sign bit and 16-bit wide input of
the analyser. The phase was set to 90 degrees in order to
produce the input signal from the upper part of the
wave. This was done because the signal would produce
more unique values in less time, because it covers all the
values from top to the bottom in half-period. It was
useful to check whether the test sequences of small
length could produce meaningful results. The frequency
was modified during the experiment in order to detect
the better signal for testing this device.
(2) The chirp generator takes as parameters start and
stop frequency periods as well as number of samples in
which frequency should change from start to stop
frequency. The chirp generator changes the frequency
every sample it produces. The amplitude remained 15bits

+ 1 sign bit and phase remained 90 degrees. During the
experiments we have changed the length of the chirp
signal – number of samples from start to end frequency.
(3) Saw-tooth signal is implemented as a counter. The
parameter it takes is a period of the signal. The generator
produces equally spaced samples of the saw-tooth signal
of this period. The amplitude is 15bits+1 sign bit.

Fig. 10. Equivalent circuit for the Signal Analyser in Fig.8.

(4) LFSR signal generator is implemented as 16-bit
linear feedback shift register. The seed is taken so that it
goes through all the 65535 possible values except 0. The
size of the LFSR was chosen in accordance to the input
width of the signal analyser under test.
6 Experimental results
Experiments were carried out for Signal Analyser
(architecture 8a) in Fig.9, presented as equivalent circuit
with highlighted pipe-lined tracks in Fig.10. As the result
of the experimental research according to method in
Fig.3, the circuit was finally partitioned into 7 blocks as
separate UUTs which are characterized in Table 2.

No Name of
the block

Number
of faults

Number of
inputs

Number
of

outputs
1 calc_add 69544 1431 896
2 calc_sub 18588 791 256
3 in_buf 98 17 16
4 out_buf 14750 1554 769
5 out 7480 709 64
6 sig_acq 8560 538 520
7 timer 512 18 17

Total 119532 2528(5058) 2538

Table 2. Characteristics of the blocks in Fig.9

We calculated the fault coverage for all the 7 blocks as
well as the total fault coverage for four different types of
signals: sine, chirp, saw-tooth and LFSR. The number of

Fig. 9. Testbench for the case study

9

test patterns used for this simulation is 1000000. The
results of the experimental research in percentage of
fault coverage for all the different blocks are presented
in Table 3 and as the bar diagram in Fig. 11. Blocks
timer and sampling represent control logic of the circuit.
These are well tested, because their memory cells are
completely covered by MISRs. The reason, why the
coverage is not 100% is that we didn’t simulated the
reset logic of the circuit.

 As we see, the best results in average for all the blocks
were achieved for the input signal sine where the fault
coverage was 98.20%. The lowest total fault coverage
75.99% was registered for the signal type saw-tooth.

No Name of
the block

Input signal types
Sine,

%
chirp,

%
saw-

tooth, %
LFSR,

%
1 calc_add 97.37 94.86 76.80 95.71
2 calc_sub 98.85 99.20 64.90 99.20
3 in_buf 82.65 82.65 82.65 82.65
4 out_buf 99.88 99.86 74.74 99.86
5 out 99.14 99.06 78.66 99.14
6 sig_acq 95.63 95.63 95.63 95.63
7 timer 94.14 94.14 94.14 94.14
8 sampling 95.62 95.62 95.62 95.62

Total 98.20 96.68 75.99 97.21

Table 3. Results of fault coverage experiments

Considering the distribution of fault coverage among
different blocks we see that the lowest test quality is
mapped to the block in_buf. Hence, for this block the
improvement of the testability by any of the methods
referenced above in Sections 2 and 3 can be foreseen
(this task was not the goal of this case study paper).
However, since the block in_buf is rather small
(characterized by only 98 faults), the improvement of its
testability will not lead to considerable increase in the
total fault coverage of the whole circuit.

Fig 11. Distribution of fault coverage in the circuit

Since the cost of testing depends on the time used for
carrying out the self-test procedure, we investigated how
the fault coverage will depend on the test length
measured in the number of test patterns. The results are
shown as the graphics for the different four signal types
in Fig. 12.
The most cost effective would be the LFSR based self-
test sequence where the fault coverage around 90% will
be achieved already after 80 000 test patterns (clock
cycles) whereas the sine signal based and chirp signal
based tests achieve only about 85% and 80% fault
coverage, respectively, at the same test length. When
doubling, however, the test length, the sine based and
LFSR based tests become equal at the 95% fault
coverage. Especially sensitive to the length of the test is
the chirp signal based test sequence.
We compared the test quality achieved by the proposed
method with traditional scan-path (SP) techniques both
for using LFSR pseudorandom and deterministic test
sequences. The results are presented in Table 4.
As we see from Table 4, the fault coverage is nearly the
same for all the methods compared. However, to get the
same fault coverage as with the proposed method, the
test length of the scan path & LFSR based approach
should be even twice bigger compared to the proposed
method. To calculate the testing time cost in clock
cycles, the test length for both referenced scan-path
based methods should be multiplied by the length of the
scan path which is equal to 2528 bits (the total number
of inputs of all the tested blocks in the given circuit).

Fig 12. Dependence of the fault coverage on test length

For the proposed method, the testing time in number of
clocks is equal to the test length. Hence, we can
conclude that the time cost of the proposed method is
about 5-7 times cheaper than the SP & deterministic
approach and more than 2500 times cheaper than SP &

50	

60	

70	

80	

90	

100	

ca
lc
_a
dd
	

ca
lc
_s
ub
	

in
_b
uf
	

ou
t_
bu
f	

ou
t	

si
gn
al
_a
cq
u

tim
er
	

sa
m
pl
in
g	

sine	

chirp	

sawtooth	

lfsr	

55	

60	

65	

70	

75	

80	

85	

90	

95	

100	

20
00
0	

40
00
0	

60
00
0	

80
00
0	

16
00
00
	

24
00
00
	

32
00
00
	

40
00
00
	

48
00
00
	

56
00
00
	

64
00
00
	

72
00
00
	

lfsr	
 sine	

chirp	
 sawtooth	

% covered

Logic
Block

% covered

Test
length

10

LFSR at the same fault coverage (in the latter case the
single scan-path was assumed).

Method
Fault
cover

%

Test
length
(TL)

Testing
time

(clock
cycles)

Proposed 97.78 500000 5 *10
5

SP & LFSR 96.82 500000 12640 *10
5

Proposed 98.20 1000000 10 *10
5

SP & LFSR 98.73 1000000 25280 *10
5

SP &
deterministic 98.69 1364 34 *10

5

Table 4. Comparison of different methods

7 Conclusions
We introduced a new approach to self-testing of digital
systems with pipe-lined architectures using inherent
functionalities of systems with capability to produce
internal self-test sequences. The added value of using
inherent functional self-test sequences is the higher test
quality explained by on-line at-speed testing. The
approach does not need to store high volume test data in
the system memory. Additional hardware is as well not
needed for on-line test pattern generation as in the case
of traditional LBIST. The only needed additional test
hardware is related to using MISR for monitoring the
test responses. To minimize the needed additional MISR
hardware overhead, an original algorithm for selecting
test-points was developed. As the result of avoiding
artificial embedded test pattern generators like in case of
LBIST, and of using only normal working sequences for
test purposes, the danger of over-testing and the related
yield loss are removed.
To cope with the problem of very slow fault simulation
in sequential circuits, needed for exploration and
comparison of different self-test solutions we developed
a novel evaluation environment where the time
consuming sequential fault simulation task can be
transferred into a set of combinational fault simulation
sub-tasks. Experiments demonstrated the gain in
evaluation speed more than 580 times without losing any
accuracy in fault coverage calculation.
To investigate the feasibility of the method to achieve
high fault coverage, we carried out experimental
research with a digital Signal Analyser unit as a case
study, which was developed for industrial purposes for
measuring electrical bio-impedance.
The goals of the experiments were twofold: (1) to select
the best type of input signal for testing purposes from a

set of signals typically used for processing in the given
Signal Analyser, and (2) to compare the new method
with traditional scan path based testing methods.
Experimental research showed that the best testing
capability has the sine signal (with fault coverage of
98.2%) compared to the LFSR based pseudorandom
(97.2%) and chirp (96.7%) signals at the same test
length. The worse testing capability has the saw-tooth
type signal (76%). The fault coverage achieved by the
sine signal was 98.2%, which is nearly the same
compared to the traditional scan-path pseudorandom
(98.7%) and deterministic (98.7%) test approaches. The
gain in testing time cost was 3-7 times compared to the
deterministic and more than 2500 times compared to the
pseudorandom single scan-path based approach.

Acknowledgements: The work was supported in part by
EU FP7 STREP project BASTION, Estonian ICT project
FUSETEST, by EU through the European Structural and
Regional Development Funds, by the Estonian Doctoral
School in Information and Communication Technology
and by the IT Academy Program of Information
Technology Foundation for Education.

References
[1] T. Mak, S. Krstic, K.-T. Cheng, L.-C. Wang. New

challenges in delay testing of nanometer, multi-
gigahertz designs. IEEE Design & Test of
Computers, 21(3), 2004, 241-248.

[2] L. Bushard, N. Chelstrom, S. Ferguson, B. Keller.
DFT of the Cell Processor and its Impact on EDA
Test Software. In IEEE Asian Test Symposium,
2006, pp. 369-374.

[3] S. Wang, S. Gupta. ATPG for heat dissipation
minimization during scan testing. In ACM IEEE
Design Automation Conference, 1997, pp. 614-619.

[4] L. Chen, S. Ravi, A. Raghunathan, S. Dey. A
Scalable Software-Based Self-Test Methodology for
Programmable Processors. In IEEE/ACM Design
Automation Confernce, 2003, pp. 548-553.

[5] L.-T. Wang, C.-W. Wu, X. Wen. VLSI test
principles and architectures. Morgan Kaufmann,
2006.

[6] G. Hetherington, T. Fryars, N. Tamarapalli, M.
Kassab, A. Hassan, J. Rajski.. Logic BIST for large
industrial designs. Proc. IEEE Int. Test Conf., pp.
358–367, 1999.

[7] B. Nadeau-Dostie. Design For At-Speed Test,
Diagnosis and Measurement. Kluwer Academic
Publishers, 2002.

[8] P.D. Hortensius, R.D. McLeod, B.W. Podaima.
Cellular automata circuits for BIST. IBM J of
Research and Development. Vol.34, No.2.3, pp.389-
405, 1990.

11

[9] M.F. AlShaibi, Ch. Kime. MFBIST: A BIST
method for random pattern resistant circuits. Proc.
ITC, Oct. 1996, pp.176-185.

[10] B. Koenemann. LFSR-coded test patterns for scan
designs. Proc. European Test Conf., Mar. 1991,
pp.237-242.

[11] S. Hellebrand, J. Rajski, S. Tarnick, B. Courtois,
S.Venkataraman. Built-in test for circuits with scan
based on reseeding of ,ulti-polynomial linear
feedback shift registers. IEEE Trans. On Comput.
Vol. 44, pp.223-233, Feb. 1995.

[12] H.-J. Wunderlich, G. Kiefer. Bit flipping BIST.
Proc. ICCAD, Nov. 1996, pp.337-343.

[13] N.A. Touba, E.J. McCluskey. Bit-fixing in
pseudorandom sequences for scan BIST. IEEE
Trans. on CAD of IC and Systems, Vol.20, No.4,
Apr.2001.

[14] R. Dorsch, H-J. Wunderlich. Accumulator based
deterministic BIST. ITC, 1998, Washington D.C.

[15] J. Rajski, J. Tyszer. Arithmetic BIST in embedded
systems, Prentice-Hall, N J (1998).

[16] I. Voyiatzis, D. Gizopoulos, A. Paschalis.
Accumulator-based test generation for robust
sequential fault testing in DSP cores in near-optimal
time. IEEE Trans. on VLSI Systems, Vol.13, No.9,
Sept., 2005, pp.1079-1086.

[17] D.E. Knuth. The art of computer programming.
Vol.2, Addison-Wesley, 1981.

[18] R. Ubar, T. Shchenova, G. Jervan, Z. Peng. Energy
Minimization for Hybrid BIST in a System-on-Chip
Test Environment. Proc. of 10th IEEE European
Test Symposium, May 22-25, 2005, pp.2-7.

[19] G. Jervan, P. Eles, Z. Peng, R. Ubar, M. Jenihhin.
Hybrid BIST Time Minimization for Core-Based
Systems with STUMPS Architecture. 18th Int.
Symposium on Defect and Fault Tolerance in VLSI
Systems. Cambridge, MA, USA, November 3-5,
2003.

[20] R. Ubar, N. Mazurova, J. Smahtina, E. Orasson,
J.Raik. HyFBIST: Hybrid Functional Built-In Self-
Test in Microprogrammed Data-Paths of Digital
Systems. Int. Conference MIXDES, Szczecin, June
24-26, 2004, pp.497-502.

[21] N. Mazurova, J. Smahtina, R. Ubar. Hybrid
Functional BIST for Digital Systems. Proc. of the
9th Biennial Baltic Electronics Conference, Oct. 3-
6, 2004, Tallinn, pp.205-208.

[22] D. Gizopoulos et al. Systematic software-based self-
test for pipelined processors. IEEE Trans. on VLSI
Systems, Vol. 16, No.11, Nov. 2008, pp.1441-1453.

[23] R. Ubar, V. Indus, O. Kalmend, T.Evartson.
Functional Built-In Self-Test for Processor Cores in
SoC. The 30th IEEE NORCHIP Conference,
Copenhagen, Denmark, Nov. 12-14, 2012.

[24] R. Ubar, S. Devadze, J. Raik, A. Jutman, "Parallel
X-Fault Simulation with Critical Path Tracing
Technique". DATE, 2010.

[25] P. Ellervee, P. Annus, M. Min. High Speed Data
Preprocessing for Bioimpedance Measurements:
Architectural Exploration. NORCHIP, 2009.

[26] H. Kruus, R. Ubar, P. Ellervee, M. Brik, M. Gorev,
M. Kruus, E. Orasson, V. Pesonen, P. Annus, M.
Min, K. Meigas. A Benchmark Suite for Evaluating
the Efficiency of Test Tools. Proc. of Baltic
Electronics Conference, Tallinn, October 3-5, 2012.

[27] P. Annus, A. Kuusik, R. Land, O. Märtens, A.
Ronk, “A Digital Multichannel Bioimpedance
Analyser: Signal Processing Task and its Solution”.
Instrumentation and Measurement Technology
Conference (IMTC 2006), Sorrento, Italy, Apr.
2006.

[28] Min, M., Annus, P., Land, R., Paavle, T., Haldre, E.,
Ruus, R., "Bioimpedance Monitoring of Tissue
Transplants",Instrumentation and Measurement
Technology Conference Proceedings, 2007. pp: 1- 4

[29] Paavle, T., Min, M., Parve, T., "Using of chirp
excitation for bioimpedance estimation: Theoretical
aspects and modeling", 11th International Biennial
Baltic Electronics Conference, 2008. pp: 325-328

[30] Min, M., Land, R., Martens, O., Parve, T., Ronk, A.,
"A sampling multichannel bioimpedance analyzer
for tissue monitoring", 26th Annual International
Conference of the IEEE Engineering in Medicine
and Biology Society, 2004. pp: 902-905

[31] J.Kõusaar, R.Ubar, S.Devadze, J.Raik. Critical Path
Tracing based Simulation of Transition Delay
Faults. The EUROMICRO Conference on Digital
System Design – DSD, Verona, Italy, Aug. 27-29, p.
1-6.

A P P E N D I X D

Fault Simulation with Parallel Exact Critical Path Tracing in
Multiple Core Environment

Maksim Gorev
Department of Computer Engineering

Tallinn University of Technology
Tallinn, Estonia

Email: maksim.gorev@ttu.ee

Raimund Ubar
Department of Computer Engineering

Tallinn University of Technology
Tallinn, Estonia

Email: raimund.ubar@ati.ttu.ee

Sergei Devadze
Department of Computer Engineering

Tallinn University of Technology
Tallinn, Estonia

Email: serega@pld.ttu.ee

Abstract—A novel fault simulation method is proposed, based on exact
critical path tracing beyond the Fan-out-Free Regions (FFR) throughout
the full circuit. The method exploits two types of parallelism: bit-level
parallelism for multiple pattern reasoning, and distribution the fault
reasoning process between different cores in a multi-core processor
environment. To increase the speed and accuracy of fault simulation,
compared with previous methods, a mixed level fault reasoning approach
is developed, were the fan-out re-convergence is handled on the higher
FFR network level, and the fault simulation inside of FFRs relies on the
gate-level information. To allow a uniform and seamless fault reasoning,
Structurally Synthesized BDDs (SSBDD) are used for modeling on both
levels. Experimental research demonstrated very promising results in
increasing the speed and scalability of the method.

I. INTRODUCTION

Fault simulation is one of the most important tasks in the digital
circuit design and test flow. The efficiency of solving other tasks
in this field like design for testability, test quality and dependability
evaluation, test pattern generation, fault diagnosis relies heavily on
the performance and speed of fault simulation. Such a dependence is
growing especially in case of large circuits, and hence, the scalability
of the fault simulation algorithms is decisive. Accelerating the fault
simulation would consequently improve all the above-mentioned
applications.

Parallel pattern single fault propagation (PPSFP) concept [1] has
been widely used in combinational and full scan-path circuits for
fault simulation. Many proposed fault simulation concepts incorporate
PPSFP with other sophisticated techniques such as test detect [2],
critical path tracing [3], [4], stem region [5] and dominator concept
[4], [6]. These techniques have helped to reduce further simulation
time. Another trend of fault simulation methods based on reasoning
(deductive [7], concurrent [8] and differential simulation [9]) used
to be very powerful since they allow to collect all detectable faults
by a single run of the given test pattern. What they cannot do, is to
produce reasoning for many test patterns in parallel.

The critical path tracing method [3], [4] eliminates explicit fault
simulation for faults within Fan-out-Free Regions (FFR). A modified
critical path tracing technique that excludes fault simulation for fan-
out stems and includes a system of rules to check the exactness of
critical path tracing beyond the FFRs, and which is linear in time,
is proposed in [10]. However, the rule based strategy does not allow
parallel analysis and rule check of many patterns simultaneously. This
drawback was removed in [11] by introducing a novel concept of
Parallel Pattern Exact Critical Path Tracing (PPECPT) which can be
applied efficiently also beyond FFRs. In [12], the same method was
extended from stuck-at faults (SAF) for a general class of X-faults.
The main idea of the method was in compiling of a dedicated compact
computing model through the circuit topology analysis, which allows
exact critical path tracing throughout the full circuit and not only

inside FFRs.
In this paper we propose a new PECPT method, where we

implement two types of parallelism during fault simulation: (1) bit-
level parallelism for multiple pattern reasoning, and (2) distributing
the compiled computing model among a subset of different CPUs
in a multi-core computing environment, so that each processor were
responsible for parallel critical path tracing in a related particular
sub-circuit area.

Another novelty of the paper is in developing of a mixed level
fault reasoning approach, were the problems related to the fan-out
re-convergence are handled on the higher FFR network level, using
collapsed fault set, and the increased speed and accuracy in fault
reasoning is achieved by fault reasoning inside FFRs using additional
gate-level simulation data, without fault collapsing.

To speed-up simulation and improve the accuracy of fault rea-
soning compared with previous methods in [11], [12], we propose
here a mixed level PPECPT method based on using of two types of
Structurally Synthesized BDDs (SSBDD).

Since during a single run of parallel analysis of patterns through-
out the circuit we process all the faults in the circuit, we can
say that the approach we propose is exploiting concurrency in
three dimensions: pattern dimension, fault dimension and computing
model dimension, where the pattern and fault parallelism is utilized
using each single CPU core, while computing model concurrency
is achieved exploiting multiple CPUs. Compared to the traditional
approaches which can use only pattern- and fault-parallelism in multi-
CPU systems (at the bit and system level, respectively), such a
new dimension addition gives further possibilities to speed up fault
simulation in multi-processor systems.

The availability of parallel execution environments such as mul-
tiprocessor system on chips (MPSoCs), multicore processors and
GPGPU devices provides a possibility for concurrent execution of the
same algorithm for different data or for different parts of the same
algorithms and the same data. This is done to utilize the available new
hardware resources, as well as to speed up execution in comparison to
uniprocessor system. In the landscape of fault simulation, where this
paper is targeted, the growing size and complexity of digital circuits
also requires speed up of available algorithms.

The rest of the paper is organized as following. In Section 2 we
present the theoretical basics of exact fault simulation by parallel
critical path tracing beyond the fanout stems. In Section 3 we present
the basics of fault simulation using SSBDDs, and in Section 4 we
propose a new method of parallel critical path tracing based on mixed
level fault simulation with two types of SSBDDs. Section 5 describes
the method of distributing the task between multiple cores of the
processor, Section 6 describes the results of experimental research

Fig. 1. Combinational circuit with 5 FFRs.

with related discussion, and Section 7 concludes the paper.

II. PARALLEL PATTERN CRITICAL PATH FAULT TRACING

Consider a combinational circuit as a network of FFRs, where
each of them is represented as a Boolean function

y = F (x1, x2, . . . , xn) = F (X) (1)

where X = x1, x2, . . . , xn is the input vector of the FFR. Such a
network of 5 FFRs is represented in Fig.1. Let Xk denote the vector
of input variables of the k-th FFR, zk denote the internal fan-out stem
variables (outputs of FFRs) with zkj as fan-out branch variables for
zk (inputs of FFRs) and y denote the output variables of the circuit.

The fault simulation can be processed as calculation of Boolean
derivatives: if ∂y/∂x = 1 then the fault is propagated from x to y.
This check can be performed in parallel for a set of test patterns. In
order to extend the parallel critical path tracing beyond the fan-out
free regions we use the concept of Boolean differentials [13].

Consider the full Boolean differential of the FFR y = F (X) as

dy = y ⊕ F ((x1 ⊕ dx1), . . . , (xn ⊕ dxn)) (2)

Here, by ∂x we denote the change of the value of x because of the
influence of a fault at x, and ∂y = 1 if some erroneous change of
the values of arguments of the function (2) causes the change of the
value of y, otherwise ∂y = 0.

In [11] we have shown that from the expression (2) the following
relationship can be derived:

∂y

∂x
= y ⊕ F ((x1 ⊕ ∂x1

∂x
dx), . . . , (xn ⊕ ∂xn

∂x
dx)) (3)

For example, the fault at z2 is detected on y4 if

∂y4
∂z2

= y ⊕ F (X4, z21 ⊕ 1, z31 ⊕ ∂z3
∂z2

dz2)

= y ⊕ F (X4, z21, z31 ⊕ ∂z3
∂z2

dz2) = 1
(4)

The formula 3 can be used for calculating the influence of the fault
at the common fan-out stem x on the output y of the converging
fan-out region by consecutive calculating of Boolean derivatives over
related FFR chains starting from x up to y. For that purpose, for each
converging fan-out stem, the corresponding formulas like (3) should
be constructed for each converging FFRs. All these formulas will
constitute partially ordered computation model for fault simulation.
Since the formulas are Boolean, all computations can be carried out
in parallel for a bunch of test patterns.

Introduce first the following notations for the formulas above
which are used for calculating the Boolean derivatives:

• (x, y) - for ∂y/∂x
• {Xk, y} - for a subset of formulas {∂y/∂x | x ∈ Xk}
• Rxy((x, x1), (x, xk)) - for the general case (3)
• Dx - vector which shows if the fault at the node x is detected

or not detected at any circuit output
• DX - a set of vectors Dx for the nodes x ∈ X

An example of a computational model of fault simulation for the
circuit in Fig.1 is presented in Table I.

The formulas in Table I can be easily created and stored by the
topological tracing of the circuit by algorithms developed in [11].
The algorithm has linear complexity. However, the complexity of the
computational model and the related fault simulation speed depends
on the structure of the circuit. As shown in the papers [14][12], the
speed of fault simulation by the proposed parallel critical path tracing
method outperforms the speed of the fault simulators of major CAD
vendors.

III. FAULT SIMULATION WITH SSBDDS

The high speed of processing the formulas is achieved by using
Structurally Synthesized BDDs (SSBDD) for modeling FFRs [15],
[16]. Each FFR y = F (X) is represented by an SSBDD G, and each
signal path in the FFR represented by a variable x ∈ X is modelled
by a corresponding node in the G. All the faults on a signal path
collapsed into the faults on the inputs of the FFR, are modelled by
the faults at the nodes in G. Hence, the targets of the fault simulation
are the faults at the SSBDD nodes.

Consider a circuit in Fig. 2, and its corresponding SSBDD. The
circuit contains nine signal paths, and each of them is represented by
a node in the graph. Note, only the branches of the fan-out inputs are
represented in the SSBDD as the model of the FFR. Fault simulation
is carried out by traversing the nodes in the graph according to the
given test patterns as in the case of traditional BDDs [17].

For simplification the graphical representation of SSBDDs, we
use here the following convention: from a node labelled by a variable
x, the right-hand edge corresponds to the value x = 1, and the down-
hand edge corresponds to the value x = 0. Correspondingly, the exit
from the graph to the right means entering the terminal node with
constant #1, and the exit from the graph downwards means entering
the terminal node with constant #0.

Consider a test pattern 1011101 (1234567) at the inputs of the
FFR in Fig. 2. The pattern detects the fault at the input 3 by
propagating the faulty signal from the input 3 to the output 8. On the
SSBDD in Fig. 2 the edges activated by this pattern are highlighted in
bold. The nodes traversed in the graph during simulation of the pattern
are marked by gray color. The value on the output 8 of the circuit at
this pattern is y = 1. Since the nodes 1, 22, 3, 4, 52 are traversed, all
they are responsible for the value y = 1s, and hence, should be taken
as fault candidates in case if the error will be noticed at the circuit
output. All other nodes 21, 51, 6, and 7 have not contributed in fault

TABLE I. LEVELIZED FAULT MODEL EQUATIONS.

L Partially ordered formulas Types of simulation
tasks

7

∀x4,i ∈ X4 : Dx4,i
= {x4,i, y4},

Dz21 = (z21, y4), Dz31 = (z31, y4);
∀x5,i ∈ X5 : Dx5,i

= {x5,i, y5},
Dz13 = (z13, y5), Dz32 = (z32, y5)

Fault simulation
inside the FFRs

(F4 and F5)

6 Dz3 = Dz31 ∨Dz32
Fault simulation of
fan-out stems (z3)

5
∀x3,i ∈ X3 : Dx3,i = x3,i, z3 ∧Dz3,

Dz22 = (z22, z3) ∧Dz3,
Dz12 = (z12, z3) ∧Dz3

Fault simulation
inside the FFRs

(F3)

4 Dz2 = Rz2, y4((z2, z21) ≡ 1, (z2, z31))∨
((z22, z32) ∧Dz32)

Fault simulation of
fan-out stems (z2)

3 ∀x2,i ∈ X2 : Dx2,i = x2, i, z2 ∧Dz2,
Dz11 = z11, z2 ∧Dz2

Fault simulation
inside the FFRs

(F2)

2
Dz1 = ((z1, z3) ∧Dz31) ∨

Rz1, y5((z1, z3), (z1, z13) ≡ 1) where
(z1, z3) = Rz1, z3((z1, z22), (z1, z12) ≡ 1)

Fault simulation of
fan-out stems (z1)

1 ∀x1,i ∈ X1 : Dx1,i = x1, i, z1 ∧Dz1

Fault simulation
inside the FFRs

(F1)

Fig. 2. An FFR of a combinational circuit and its SSBDD.

simulation, and hence, can be excluded from the fault candidates set.
Next, by simulating the faults at candidate nodes we can easily notice
that only the faults at the nodes 1 and 3 are detected by the given
pattern, because at these faults on the graph the terminal node #0 will
be reached which means y = 0.

In [11], the algorithms for parallel logic simulation and parallel
fault simulation on SSBDDs were proposed. The algorithms are based
on the ordering of nodes m by assigning them numerical labels, so
that for each node m with label n(m), all its predecessors mj must
have labels n(mj) less than n(m). Logic simulation is based on
recursive calculating of the value of the formula

D(m) = (x(m) ∧D(m1)) ∨ (¬x(m) ∧D(m0)), (5)

where D(m) for the terminal nodes is equal to the respective
constants #1 and #0. Here x(m) denotes the node variable, m1 and
m0 are the neighbors of m in directions of x(m) = 1, and x(m) = 0,
respectively. Fault simulation is based on recursive calculating of
values of the formulas

L(m1) = L(m1) ∨ (L(m) ∧ x(m)), (6)

L(m0) = L(m1) ∨ (L(m) ∧ ¬x(m)), (7)

S(x(m)) =
∂y

∂x(m)
= L(m) ∧ (D(m0)⊕D(m1)) (8)

where S(x(m)) = 1 means that the fault at x(m) is detected by
the simulated test pattern, otherwise, if S(x(m)) = 0, the fault is not
detected. Since all the presented formulas are Boolean, the algorithms
can be applied by tracing the nodes of the SSBDDs can be applied
in parallel for many test patterns, each of them represented by one
bit of the computer word. The cost of simulation can be calculated
by the number of operations needed for each node of SSBDD. For
example, the cost of logic simulation is four operations per node, and
the cost of fault simulation is seven operations per node. Hence, to
fault simulate the SSBDD in Fig.2 which includes nine nodes, we
need 9 * 7 = 63 operations. Example of using the algorithms can be
found in [11]. Using SSBDDs instead of the gate-level circuit allows
to increase both, the simulation speed for calculating the values of
signals in the network of FFRs, and the fault reasoning, since only
the collapsed fault set represented by nodes of SSBDDs is processed.
This explains the efficiency of the method demonstrated in [11], [12].

IV. MIXED LEVEL FAULT SIMULATION WITH SSBDDS

Recently Shared SSBDDs (S3BDD) as a new type of BDDs were
proposed to speed-up logic simulation in digital circuits [18], [19]. In
the following we propose a two level implementation of the proposed
method of critical path tracing, where as the objectives of higher
level, the fan-out nodes of the network of FFRs are considered, and
as the objectives of lower level, the fan-out branches and fan-out free
primary inputs of the network of FFRs are considered. The processing
of formulas (3) for calculation of detectability of faults at fan-out
nodes is carried out on the higher level using SSBDDs as in Fig. 2,

and for computing the detectability of faults at the inputs of FFRs,
we will use the data calculated by gate-level logic simulation. To
speed up computing of detectability of faults at the inputs of FFRs,
we propose to use S3BDDs which can be processed in a similar way
as SSBDDs. In Fig. 3, an S3BDD is presented for calculation of
the detectability of the faults at the inputs of FFRs. Each entry x in
S3BDD corresponds to a node variable x(m) in the SSBDD in Fig.2,
and the path from the particular entry to the terminal node represents
an AND-function of conditions needed for detectability of the input
variable x of the given FFR. For example, the path in Fig.3 from the
entry 3 through the nodes ¬22, c, ¬7, a and d to the terminal node
#1 corresponds to the detectability condition of detecting the faults
at the input3 of the FFR in Fig.2.

The set of these detectability AND-functions for all of the input
variables of the given FFR can be easily created from the gate-level
structure of the FFR. To combine them in a form of S3BDD like
in Fig.3 we can use the algorithm of optimized S3BDD synthesis
developed in [19].

The cost of fault simulation using S3BDDs can be calculated
in terms of the number of operations needed, and is equal to C =
N−NT where N is the number of all nodes in the S3BDD model, and
NT is the number of end nodes of the model. For the S3BDD model
in Fig.3 we have C = 17− 2 = 15, which is four times less than 63
operations needed for simulation of the SSBDD in Fig. 2. Consider,
as an example, the mixed level work share in the computing processes
of the level 2 in Table I between SSBDD and S3BDD models. These
processes handle the critical path tracing over the nested configuration
of three fan-out re-convergence areas. In the process

(z1, z3) = Rz1 , z3((z1, z22), (z1, z12)1), (9)

(z1, z22) is computed at the low-level on the S3BDD for the FFR
with output z2, whereas Rz1 ,z3 is computed at the higher level using
the SSBDD of z3 after the following updates of the node variable
values: z22 = z22⊕ (z1, z22), and z12 = ¬z12. On the other hand,
in the process

Dz1 = ((z1, z3) ∧Dz31) ∨Rz1 , y5((z1, z3), (z1, z13)1), (10)

Dz31 is computed at the low-level on the S3BDD for the FFR with
output y4, whereas Rz1 ,y5 is computed at the higher level using the
SSBDD of y5 after the following updates: z32 = z32 ⊕ (z1, z3), and
z13 = ¬z1.

Additional side-effect of the mixed-level fault reasoning is the
increase of the accuracy in reporting the detected faults. Using the
information about the gate-level structure of FFRs, allows to specify
the detected faults inside the FFRs. For example, the entries a′ and
d′ in the S3BDD in Fig.3 are introduced to mark the sub-graphs for
calculating the detectability of internal gate-level faults at the nodes a
and d, respectively, inside the FFR, presented in Fig.2. Similar entries

Fig. 3. Direct fault simulation using S3BDDs.

can be added in Fig.3 for other internal nodes b, c, e, and f in the
same FFR.

The speed-up in mixed-level fault reasoning and the increasing
accuracy of detected fault reporting is accompanied with additional
time cost needed for logic simulation of FFRs at the gate-level.
However, when comparing the total times for logic simulation and
fault simulation this payload increase will be negligible.

V. REORDERING THE COMPUTING MODEL USING LEVELS

As was mentioned earlier circuit partitioning technique into levels
for concurrent execution have been already used before [20][22][23].
The level i gate is defined in [20] as one having primary inputs of
the circuit and outputs of level k gates as its inputs, such that k < i.
However in [22], which cites the previous paper the definition is
slightly different, stating that level of a gate represents its distance
in gates from primary inputs (PI’s) of the circuit. This definition is
more strict in the sense that one of the inputs of the level i gate,
must originate from the level i−1, if i 6= 0. This difference however
is crutial for parallelisation, because the use of the first definition
could potentially result in bigger number of levels with fewer gates in
them. As levels should be evaluated sequentially - this could decrease
the amount of parallelism dramatically. In our case, as we deal with
FFRs, we would stick to the second definition and rephrase it for our
purpose.

Both, the logic simulation model and the computational model for
fault back-tracing described in Section II are presented as networks
of partially ordered formulas linked to each other by variables and
computed using SSBDDs. Here and throughout the paper we would
use the word variable to indicate these elements of the circuit. The
level of variable is its distance in variables from PI’s or, in other
words, the level i variable should have at least one of its inputs
originating from level i-1 variable, if i 6= 0.

In the computational model, the variables are numbered in serial
fashion starting at primary inputs and finishing at primary outputs.
Variables are serialized such that each input of variable i is the
output of variable k, where k < i. This is very similar to the first
definition of levels from [20].We are using OpenCL framework for
parallel execution[21]. Therefore it is necessary to define regions of
variables, belonging to the same level, as sub-array. Only variables of
particular level must be included into sub-array. If variable x belongs
to level i, then level i should be represented as a continuous sequence
of variables starting from variable x to variable y, such that every
variable z (x ≤ z < y) belongs to level i and variable y belongs
to level i + 1. This is why it is necessary, to reorder the variables
according to our definition of levels. Note that this operation is only
required once and does not belong to fault simulation process. The
reordered computational model can be saved as a file and used later
for simulation, without a need to repeat this step.

Fault model represents segments of critical path to be simulated.
Each segment starts at the output of particular variable and ends at
primary output of the circuit. Therefore there is one-to-one corre-
spondence between critical path segments to be fault simulated and
particular variable. This fact makes it possible to use levelized struc-
ture of computational model for Fault model as well. It is important
because using levels we could analyze critical path segments starting
at the same level in parallel, thus speeding up the fault simulation.

OpenCL framework requires single program for all the parallel
devices, which would manipulate on different data. Such program
is called kernel. It is executed on all available devices in parallel
for all variables inside a single level. The best way to provide the
data for kernel is an array. During preparation of the computational

model the variable indexes are placed into an array according to
their levels. The kernel only requires to know the offset of the level
inside the array of variable indexes and the size of this level. Host
CPU schedules the kernel executions level by level into the OpenCL
execution queue. The execution in the queue is strictly ordered, so
that OpenCL driver handles the synchronisation between consecutive
kernel executions. This ensures that all variables of the current level
have been computed, before moving to the next level.

VI. RESULTS

The experiments were carried out on IBM System x3500 M3
7380 Server (2x 6-core Xeon E5690 running at 3,47Ghz with
hyperthreading) using 64-bit Novell SuSe Linux Enterprise Server
11 x86 64. This system has 12 physical CPU cores, 12 virtual
hyperthreading cores and 96Gb of RAM. Simulation times were
calulated for the sets of 10000 random test patterns. The circuits
from three benchmark suites ISCAS’85, ISCAS’89, ITC’99 were
simulated. The same circuits as in [12] were chosen in order to
compare the results.

Concurrent execution time Tp of PECPT fault simulation can be
divided into two parts: Tp = To + Tc. The first part is the time
To, which we would call concurrency overhead. This is required
to make a transition from ”single thread”- to ”multiple thread”-
execution and back again. This time slot involves creation of multiple
threads, allocating additional memory, synchronisation at the end of
computation and transition back to single thread. The second part
is time Tc, which is pure computation time required by all threads
to deliver a result. This time can be seen in Table II and can be
treated as a lower possible bound for concurrent computation. The
concurrency overhead To depends on the amount of parallel hardware
used and increases with number of CPUs. The computation time Tc

depends on the amount of computation required. Parallel simulation
time T ′

p = Tp+Tfm+Tff , where Tfm is the time required to compile
the fault model and Tff is the time of fault-free logic simulation.

Table II shows the results of the PECPT execution time T ′
p in

comparison to PPECPT TPPECPT [14]. As we see, the new method
outperforms considerably the previous method, and the gain increases
with the size of the circuit (up to the order of magnitude in case of the
circuit b19 containing 450 thousands gates). Amount of calculation
for small circuits is small, which makes overall execution time Tp

large in comparison to computation time Tc. This can be expressed
by overhead ratio R = Tp/Tc and is clearly seen from results in
Table II. Overhead ratio R for the case of maximum acceleration is
also brought in the table to see the concurrency overhead for different
circuits. It can be seen from the Table II that overhead ratio is getting
closer to one, with growth of the circuit size. In case of circuit b19
the speedup gets almost identical to ideal, because Tp and Tc become
almost equal.

Along with execution time there are two speedup values we
compute for every benchmark. These are Sp and Sc. Both include
single CPU (non-parallel) computation time of fault model Ttpl and
fault-free simulation Tffs of the circuit. Along with these Sp uses
parallel execution time Tp for its computation and Sc uses pure
parallel computation time Tc. The equations for speedup values Sp

and Sc are as following:

Sp =
TPPECPT

Ttpl + Tffs + Tp
=

TPPECPT

T ′
p

Sc =
TPPECPT

Ttpl + Tffs + Tc
=

TPPECPT

T ′
c

Sc can be though as topmost ideal case of speedup by PECPT
algorithm. It can be seen from the results that smaller circuits achieve

TABLE II. EXECUTION TIMES OF PPECPT AND PECPT.

Concurrency overhead
(PECPT)

Pure computation
(PECPT)

Circuit Tppecpt,
s T ′

p, s Sp
Sp

#cpu R T ′
c s Sc

Sc

#cpu
c1908 0,0568 0,0846 0,67 6 2,86 0,0330 1,72 5
c2670 0,0405 0,0873 0,46 4 6,52 0,0334 1,21 6
c3540 0,1830 0,1315 1,39 8 1,81 0,0754 2,43 7
c5315 0,0849 0,0922 0,92 4 3,05 0,0487 1,74 5
c6288 1,4610 0,6211 2,35 6 1,61 0,3883 3,76 8
c7552 0,1545 0,1187 1,30 6 1,94 0,0718 2,15 6
s13207 0,1798 0,1332 1,35 5 5,05 0,0857 2,10 10
s15850 0,4714 0,2107 2,24 8 2,34 0,1370 3,44 7
s35932 0,2554 0,1739 1,47 10 1,95 0,1381 1,85 12
s38417 0,7453 0,2427 3,07 12 1,95 0,1869 3,99 12
s38584 0,5945 0,2492 2,39 9 2,43 0,1791 3,32 12

b14 2,7742 0,8752 3,17 8 1,29 0,7300 3,80 9
b15 5,0420 1,1771 4,28 10 1,49 0,9258 5,45 10
b17 14,8550 2,4053 6,18 20 1,29 2,1121 7,03 12
b18 67,3279 7,1499 9,42 24 1,09 6,7738 9,94 24
b19 147,6501 14,4685, 10,20 24 1,03 14,0707 10,49 24

small or negative speedup. On the other hand bigger circuits take
advantage of higher number of processors. Such poor result for
smaller circuits can be explained by low amount of parallelism
accompanied by high overhead ratio R. Both of the factors change
positively when circuit size becomes bigger. One of the challenges
of this method is that different number of processors is required
to achieve maximum speedup for different circuits. The number of
processors used to achieve maximum speedup is brought under #cpu
columns. It can be seen that this number grows along with the circuit
size.

Speedup Sp dependence on the number of processors is shown
in Fig.4a (ISCAS’85), Fig.4b (ISCAS’89), Fig.4c (ITC’99). The
fluctuation in speedup of some circuits can be explained by the
fact, that it is up to OpenCL runtime to decide which processors to
use for execution. Because our testsystem has virtual hyperthreading
cores they can also be arbitrarily chosen for execution, which could
influence the speed of execution in situations where less physical
cores are used for computation, although the overall number of cores
is bigger. For all the benchmarks we can see that after the limit of
physical cores is reached the speedup is starting to decline or stays the
same. On the ITC’99 benchmarks b18 and b19 it is slightly increasing,
when more than 12 cores are used. This shows that the larger the
circuits, the more number of cores can be exploited to achieve the
maximum speed-up of simulation.

We compared PECPT to single processor simulators, such as
FSIM, PPECPT and commercial simulators C1 and C2. We nor-
malised execution time of all the simulators using previous results
from [12] and execution time of PPECPT from Table II, because
PECPT was executed on different hardware. The comparison is shown

in Table III.
PECPT proves to be in average 3.8 times quicker than FSIM

and around two times - than PPECPT for relatively smaller ISCAS
benchmarks. The speedup over commercially available simulators is
more than eight times over C1 and two orders of magnitude over C2.
When ITC’99 benchmark circuits are also taken into consideration
the average speedup over PPECPT grows to 4.0 and over C1 even
8.7 times in average, which suggests that simulation of bigger circuits
benefits more from our method.

We have also compared PECPT speedup results to GPU based
parallel fault simulator and fault table generater GFTABLE [24].
GFTABLE is pattern parallel simulator, which uses bit- and thread-
level PP to boost the performance of uniprocessor simulator FSIM.
We have used the results from Table 4 in [12] to normalize PECPT
speedup. Normalization is required because PECPT speedup is com-
puted in relation to PPECPT, while GFTABLE speedup is computed
in relation to FSIM. As there is no FSIM execution time provided for
ITC’99 benchmarks, we have taken the average ratio of 1.7 reported
in [12] to normalize PECPT results for those circuits.

The Fig. 5 shows speedup in comparison to uniprocessor version
of FSIM for both algorithms. We have arranged circuits in sequence
where their corresponding number of gates is growing. This way we
could clearly see the speedup dependency on the size of the circuit.
It can be seen that PECPT proves to be more beneficial on the circuit
sizes comparable to ITC’99 benchmarks. For example for circuit
c5315 from ISCAS’85 the speedup is 8.03 for GFTABLE and 1.50
- PECPT, while for the ITC’99 circuit b15 the speedup is 2.57 for
GFTABLE and 7.28 - PECPT. It is interesting to note that results of
the GFTABLE decrease when circuit size is growing, while PECPT
in opposite gives less gain in speed-up, while circuit size is smaller.

TABLE III. EXECUTION TIME COMPARISON.

#branches Simulation time,s
circuit #fanouts max avg fsim c1 c2 ppecpt pecpt
c2670 290 28 3,7 0,081 0,223 2,430 0,041 0,087
c3540 356 22 4,5 0,407 1,505 8,745 0,183 0,132
c5315 510 31 5 0,149 0,594 6,047 0,085 0,092
c6288 1456 16 2,6 2,389 5,489 56,072 1,461 0,621
c7552 812 72 4,1 0,348 1,043 11,332 0,155 0,119
s13207 1224 37 3,7 0,225 0,503 6,291 0,180 0,133
s15850 1518 34 3,6 0,943 2,112 19,379 0,471 0,211
s35932 5295 1449 3,4 0,412 1,058 17,477 0,255 0,174
s38417 4569 49 3,2 1,725 3,343 33,007 0,745 0,243
s38584 3946 88 4,5 1,124 2,155 29,727 0,595 0,249

Average speedup 3,786 8,748 92,460 2,024 1,000
b14 2409 82 4,8 n/a 9,413 n/a 2,774 0,875
b15 2353 95 4,8 n/a 7,411 n/a 5,042 1,177
b17 8145 149 4,8 n/a 22,340 n/a 14,855 2,405

Average speedup n/a 8,774 n/a 4,118 1,000

Fig. 4. Speedup vs #CPU for PECPT. a). ISCAS’85 benchmarks, b). ISCAS’89 benchmarks, c). ITC’99.

Fig. 5. Comparison of GFTABLE and PECPT.

It is stated in [24], that performance of GFTABLE for bigger circuits
is influenced by amount of global memory available on GPU. This
highlights the scalability bottelneck of the GFTABLE. The results of
our approach also depend on the amount of system memory available,
but CPU systems in general are more flexible in increasing memory
size than GPUs. Even for the circuits, which could fit into GPU
memory we can see slight decrease in performance of GFTABLE.
Contrary the results of our approach in average become better while
circuit size increases.

A. Future work
In order to make the method more practical it is needed to

define the number of CPUs involved to provide the best speedup for
particular circuit. We believe this can be achieved by further research
because the optimum number of CPUs and speedup depend on circuit
parameters.

VII. CONCLUSION

We have proposed a new method for concurrent pattern parallel
exact critical backtracing based fault simulation by exploiting circuit
processing concurrency. The first time, the parallelization in fault
simulation is carried out simultaneously in three dimensions: pattern
parallelism, fault parallelism and computing model parallelism, where
the pattern- and fault-parallelism are utilized using each single CPU
core, while computing model parallelism is achieved using multiple
CPUs.

A novel mixed level technique for fault reasoning was proposed
to speed up and to increase the accuracy of fault simulation, compared
with previous methods.

Experiments showed that the average speed-up compared to the
best uniprocessor based simulators is around 3-4 times in average,
and up to order of magnitude compared to the available state-of-the-
art commercial uniprocessor based simulators. The method is well
scaling, the speed up of the method grows with the size of the circuit,
opposite to the pattern-parallel simulation method. The reason lies in
the memory bottleneck of shared-memory systems, which increases
more rapidly for pattern-parallel systems with the growth of the circuit
size.

ACKNOWLEDGMENT

The work was supported in part by EU FP7 STREP project
BASTION, Estonian ICT project FUSETEST, by EU through the Eu-
ropean Structural and Regional Development Funds, by the Estonian
Doctoral School in Information and Communication Technology and
by the IT Academy Program of Information Technology Foundation
for Education.

REFERENCES

[1] J. A. Waicukauski and et al.,Fault simulation for structured VLSI, VLSI
Systems Design, pp.20-32, Dec. 1985

[2] B. Underwood, J. Ferguson. The Parallel Test Detect Fault Simulation
Algorithm. ITC, pp.712-717, 1989

[3] M. Abramovici, P. R. Menon, D. T. Miller. Critical Path Tracing An Al-
ternative to Fault Simulation. Proc. 20th Design Automation Conference,
pp. 2-5, 1987.

[4] K. J. Antreich, M. H. Schulz. Accelerated Fault Simulation and Fault
Grading in Combinational Circuits. IEEE Trans. On Computer-Aided
Design, Vol. 6, No. 5, pp.704-712, 1987.

[5] F. Maamari, J. Rajski. A Method of Fault Simulation Based on Stem
Region. IEEE Trans. on CAD, Vol.9, No.2, pp. 212-220, 1990.

[6] D. Harel, R. Sheng, J. Udell. Efficient Single Fault Propagation in
Combinational Circuits. Int. Conf. on CAD, pp.2-5, 1987.

[7] D. B. Armstrong. A deductive method for simulating faults in logic
circuits. IEEE Trans. Comp., C-21(5), 464-471, 1972.

[8] E. G. Ulrich, T. Baker. Concurrent simulator of nearly identical digital
networks. IEEE Trans.on Comp.,7(4), pp.39-44, 1974.

[9] W. T. Cheng, M. L. Yu. Differential fault simulation: a fast method using
minimal memory. DAC, pp.424-428, 1989.

[10] L. Wu,D. M.H.Walker, A Fast Algorithm for Critical Path Tracing in
VLSI Digital Circuits, 20th IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems(DFT’05), 3-5 October, 2005,pp.178-
186.

[11] R. Ubar, S. Devadze, J. Raik, A. Jutman. Ultra Fast Parallel Fault
Analysis on Structural BDDs. 12th IEEE European Test Symposium ETS
2007, Freiburg, Germany, May 20-24, 2007.

[12] R. Ubar, S. Devadze, J. Raik, A. Jutman. Parallel X-Fault Simulation
with Critical Path Tracing Technique. IEEE Conf. Design, Automation
& Test in Europe - DATE-2010, Dresden, Germany, March 8-12, 2010,
pp. 1-6.

[13] Thayse, Boolean Calculus of Differences, Springer Verlag, 1981.
[14] R. Ubar, S. Devadze, J. Raik, A. Jutman. Parallel Fault Backtracing

for Calculation of fault Coverage. 13th Asia and South Pacific Design
Automation Conference - ASP-DAC 2008, Seoul, Korea, Jan. 21-24,
2008, pp. 667-672.

[15] R. Ubar. Test Synthesis with Alternative Graphs. IEEE Design and Test
of Computers. Spring, 1996, pp.48-59.

[16] R. Ubar. Combining Functional and Structural Approaches in Test Gen-
eration for Digital Systems. Journal of Microelectronics and Reliability,
Elsevier Science Ltd. Vol. 38:3, pp.317-329, 1998.

[17] Minato, S. BDDs and Applications for VLSI CAD. Kluwer Academic
Publishers. 1996.

[18] D. Mironov, R. Ubar, J. Raik. Logic Simulation and Fault Collapsing
with Shared Structurally Synthesized BDDs. IEEE European Test Sym-
posium, Paderborn, Germany, May 26-30, 2014.

[19] D. Mironov, R. Ubar. Lower Bounds of the Size of Shared Structurally
Synthesized BDDs. IEEE 17th International Symposium on Design and
Diagnostics of Electronic Circuits & Systems (DDECS). Warsaw, April,
23-25, 2014, pp. 77-82.

[20] Amin, M.B. ; Vinnakota, B., Data parallel fault simulation. Inter-
national Conference on Computer Design: VLSI in Computers and
Processors (ICCD ’95), 1995, pp. 610-615.

[21] OpenCL standard for parallel programming of heterogenious systems.
https://www.khronos.org/opencl/

[22] Varshney, A.K., Vinnakota, B., Skuldt, E., Keller, B., High Performance
Parallel Fault Simulation. International Conference on Computer Design
2001 (ICCD 2001), 2001, pp. 308-313.

[23] Gulati, K., Khatri, S.P., Towards Acceleration of Fault Simulation
using Graphics Processing Units. 45th ACM/IEEE Design Automation
Conference 2008 (DAC 2008), 2008, pp. 822-827.

[24] Gulati, K. ; Khatri, S.P., Fault Table Generation using Graphics
Processing Units. IEEE International High Level Design Validation and
Test Workshop 2009 (HLDVT 2009), 2009, pp. 60-67.

A P P E N D I X E

Combinational Fault Simulation in Sequential Circuits

Raimund Ubar, Jaak Kõusaar, Maksim Gorev, Sergei Devadze
Department of Computer Engineering, TTU, Ehitajate tee 5, 19086 Tallinn, Estonia

E-mails: raiub@pld.ttu.ee, jaak.kousaar@gmail.com, maksim.gorev@ttu.ee, serega@pld.ttu.ee

Abstract. We propose a very fast fault simulation

method which is based on exact parallel critical path

tracing developed for combinational circuits. To

convert the sequential problem of fault simulation into

the combinational one we introduce into the circuit a

set of MISRs to improve the circuit’s observability.

The role of these MISRs is to monitor signals on the

global feedback loops, and on selected fan-out stems in

the circuit. The given sequential circuit is partitioned

into a set of sequential or combinational sub-circuits,

with breakpoints at global feedback loops or at

selected fan-out stems. The simulated test sequence is

mapped into local sets of input patterns applied to the

sub-circuits. For these local test patterns, each sub-

circuit is fault simulated by exact parallel critical path

tracing similarly as a combinational equivalent circuit.

The feasibility and correctness of the method is shown,

and the experimental results which demonstrate the

speed-up achieved by the method are provided.

Keywords: sequential circuits, stuck-at-faults, design for

testability, fault simulation with critical path tracing

I. INTRODUCTION

Fault simulation is one of the most important tasks in

digital circuit design and test. The efficiency of test

quality and dependability evaluation, test generation and

fault diagnosis relies heavily on the speed of fault

simulation. Accelerating fault simulation would have a

strong impact to all of the mentioned applications.

Many different methods have been proposed for fault

simulation in combinational circuits based on the concept

of parallel pattern single fault propagation (PPSFP) [1].

Another trend is based on the fault reasoning (deductive

[2], concurrent [3] and differential simulation [4]) used to

be very powerful, since these methods allow to collect all

detectable faults by a single run of the given test pattern.

What they cannot do, is to produce reasoning for many

test patterns in parallel.

The original critical path tracing method [5, 6]

eliminates explicit fault simulation for faults within Fan-

out-Free Regions (FFR). However, the explicit simulation

of faults at fan-outs was still needed. A modified critical

path tracing technique that excludes fault simulation for

fan-out stems, and includes a system of rules to check the

exactness of critical path tracing beyond the FFRs, and

which is linear in time, was proposed in [7]. However, the

rule based strategy does not allow parallel analysis and

rule check for many patterns simultaneously. This

drawback was removed in [8] by introducing a novel

concept of Parallel Pattern Exact Critical Path Tracing

(PPECPT) which can be applied efficiently also beyond

FFRs. In [9], the same method was for a general class of

X-faults. The main idea of the method was in compiling a

dedicated compact computing model through the circuit

topology analysis, which allows exact critical path tracing

throughout the full circuit and not only inside FFRs.

Unfortunately, for sequential circuits the parallelism

in fault simulation and fault reasoning is not possible,

because of the sequential (time related) dependence of

signals in the circuit. In this paper we propose to modify

the given circuit to improve the transparency

(observability) of the circuit. The traditional way to do

that is to use the scan-path concept [10] which converts

the sequential problem of fault simulation to the

combinational one. However, the use of scan-chains has

proven to be often inadequate due to increasing the cost in

terms of additional hardware and increased testing time

[11], excessive power dissipation during test [12] and

leading to yield loss because of over-testing [13].

In the following we show that a sequential circuit can

still be fault simulated as a combinational one when to

improve its observability by inserting a set of Multiple

Input Signature Registers (MISR), for monitoring of a

selected subset of test points in the circuit. We introduce

and discuss two rules for selecting these test points for

including MISRs, and then show how the test sequence

can be mapped into a set of independent local test

sequences which can be simulated in parallel similarly to

the case of combinational circuits.

The target of the paper is to combine three ideas: to

suggest functional testing of sequential circuits to be

carried out at-speed and on-line, instead of scan-path

testing, for providing better test quality; to improve

observability (testability) of the circuit with better fault

diagnostic resolution; and, finally, to provide a method of

fault simulation in a modified circuit with a dramatic

speed-up compared to the traditional non-parallel fault

simulation of sequential circuits.

We consider in this paper only the class of stuck-at-

faults (SAF), however, as shown in [9], the results can be

extended to other fault classes like conditional SAF,

transition delays, and X-faults.

The rest of the paper is organized as following. In

Section 2 we present the theoretical basics of the topic by

giving a short overview of the exact parallel critical path

tracing in combinational circuits were we show how the

fault tracing can be expanded in exact way beyond the

fan-out stems. In Section 3 we describe how this method

can be generalized for the case of sequential circuits. In

Section 4, we describe experimental results, and Section 5

concludes the paper.

II: PARALLEL PATTERN CRITICAL PATH TRACING

Consider a combinational circuit as a network of FFRs

where each of the FFRs can be represented as a Boolean

function y = F(x1, x2, … xn) = F(X), where X = x1, x2, … xn

is the input vector of the FFR. Such a network is

presented in Fig.1.

The fault simulation for a FFR according to

traditional critical path tracing is equivalent to

calculation of Boolean derivatives: if ∂y/∂x = 1 then the

fault is propagated from x to y. This check can be

performed in parallel for a given subset of test patterns.

In order to extend the parallel critical path tracing

beyond the fan-out free regions we use the concept of

Boolean differentials [14].

F4

F5

F3

F2

F1
X1

y4

y5

X2

X5

z2

z3
z1

X3

X4

z21

z22

z13

z31

z32

z
11

z
12

Fig.1. Combinational circuit with five FFRs

Consider the full Boolean differential of the FFR

given by y = F(X) as

)(

))(),...,((11

dXXFy

dxxdxxFydy nn

⊕⊕

=⊕⊕⊕= (1)

Here, by dx we denote the change of the value of x

because of a fault at x, whereas dy = 1 if some erroneous

change of the values of arguments of the function (1)

due to a fault causes the change of the value of y,

otherwise dy = 0.

Let x be a fan-out variable with branches which

converge in a FFR y = F(X) at the inputs denoted by a

subset X’ ⊂ X . In [11] we have shown that from the

expression (1) the following relationship can be derived:

)())(),...,((1
1

x

X
XFy

x

x
x

x

x
xFy

x

y n
n

∂

∂
⊕⊕=

∂

∂
⊕

∂

∂
⊕⊕=

∂

∂

or taken in the vector form as

)'',

'
'(X

x

X
XFy

x

y

∂

∂
⊕⊕=

∂

∂ (2)

where X’ ⊂ X is the sub-vector of variables which

depend on x, and X’’ = X \X’ is the sub-vector of

variables which do not depend on x.

For example, to get to know if the fault on z2 in the

circuit of Fig.1 can be detected on y4 by the given

pattern, we have to check if

1),,(),1,(
2

3
31214

2

3
31214

2

4 =
∂

∂
⊕⊕=

∂

∂
⊕⊕⊕=

∂

∂

z

z
zzXFy

z

z
zzXFy

z

y

The formula (2) can be used for calculating the

impact of the fault at the fan-out stem x on the output y

of the converging fan-out region by consecutive

calculating of Boolean derivatives over related FFR

chains starting from x up to y. For that purpose, for each

converging fan-out stem, the corresponding formulas

like (3) should be constructed for each FFR involved in

the convergence. In the case of nested convergences, the

formulas will have as well a nested structure. All these

formulas will constitute partially ordered computation

model for fault simulation which can be composed by

the topological analysis of the circuit [9]. Since the

formulas are Boolean, all computations can be carried

out in parallel for a bunch of test patterns.

Introduce the following notations for representing

symbolically the computing model for fault simulation

using the formula (3):

• (x, y) – for ∂y/∂x,

• {Xk, y} – for a subset of formulas {∂y/∂x  x ∈

Xk}

• Rxy((x, x1), … (x, xk)) – for the general case (3),

where X’ = (x1,…,xk),

• Dx – vector which shows if the fault at the node x

is detected or not detected at any circuit output,

• DX – a set of vectors Dx for the nodes x ∈ X.

An example of a computational model, using the

given symbolics, for the full fault simulation of the

circuit in Fig.1, is presented in Table 1.

Table I. Computational model for fault simulation

L Partially ordered formulas
Types of simulation

tasks

7

∀x4,i∈X4: Dx4,i = {x4,i,y4},

Dz21 = (z21,y4), Dz31 = (z31,y4);

∀x5,i∈X5: Dx5,i = {x5,i,y5},

Dz13 = (z13,y5), Dz32 = (z32,y5)

Fault simulation
inside the FFRs

(F4and F5)

6 Dz3 = Dz31∨ Dz32
Fault simulation of
fan-out stems (z3)

5

∀x3,i∈X3: Dx3,i = {x3,i,z3}∧Dz3

Dz22 = (z22,z3)∧Dz3,

Dz12 = (z12,z3)∧Dz3

Fault simulation
inside the FFRs (F3)

4
Dz2 = Rz2,y4((z2,z21) ≡ 1,(z2,z31)) ∨

((z22,z32)∧Dz32)

Fault simulation of
fan-out stems (z2)

3
∀x2,i∈X2: Dx2,i = {x2,i,z2}∧Dz2,

Dz11 = {z11,z2}∧Dz2

Fault simulation
inside the FFRs (F2)

2

Dz1 = ((z1, z3) ∧ Dz31) ∨

Rz1,y5((z1,z3),(z1,z13) ≡ 1) where

(z1, z3) = Rz1,z3((z1,z22),(z1,z12) ≡ 1))

Fault simulation of
fan-out stems (z1)

1 ∀x1,i∈X1: Dx1,i = {x1,i,z1}∧ Dz1
Fault simulation

inside the FFRs (F1)

 The formulas presented in Table 1 can be easily

created and stored by the topological tracing of the

circuit by algorithms developed in [9]. The algorithm

has linear complexity. However, the complexity of the

computational model and the related fault simulation

speed depends on the structure of the circuit.

III. CONVERTING THE SEQUENTIAL FAULT SIMULATION

TASK INTO THE COMBINATIONAL ONE

The substantial problem of fault simulation in sequential

circuits lies in the fact that the same fault can influence on

a particular component in different time frames. This fact

excludes the possibility of exploiting the powerful critical

path tracing based method, explained in the previous

section, for fault simulation in combinational circuits. The

reason is in the exponential explosion of the number of

nested and intersected re-converging fan-out regions over

different time-frames. However, this problem as we will

show can be removed if there will be a possibility to

detect the fault in the first occasion when it has

propagated up to the component.

There are two reasons why a fault can be propagated

to the same component during different time frames:

because of the global feedback which includes this

component, and because of a re-convergent fan-out where

the fault may propagate from the fan-out stem to the

converging point by different number of clocks. If we will

insert a MISR to these “problem causing” test points, the

fault can be captured always at the first occasion it

influences on the component. The detection of the fault is

fixed, and we can ignore its impact in the future. Note, we

consider here only the problem of fault detection (for

measuring the fault coverage), and not the task of creating

fault tables to be used for fault diagnosis purposes.

From above, two rules result for improving the

observability of the sequential circuit:

RULE 1: Insert a MISR to all registers (and only to

them) which are included into a global feedback. Inserting

a MISR is equivalent to cutting the feedback loop (in a

sense to ignore the further fault propagation).

RULE 2: Insert a MISR into all fan-out stems which

have at least a single converging point, so that a fault may

propagate from the fan-out stem to this point by different

number of clocks.

Consider a sequential circuit in Fig.2 which consists

of 9 registers (latches) R1 – R9, and 8 combinational sub-

circuits F1 – F9. The circuit has 5 inputs and 2 outputs.

F1

R6

R1

R2

R7

X1

X2

X3

F2

F3

F4

R8

R4

R5

R3X4

F5

F7

F8

F6 R10

X5

R9

Y2

Y1

Z1

Z2

Fig.2. Sequential circuit

F1 ... F8

Z1

MISR

R7,R8

X1 – X5 Y1, Y2

Fig.3. Sequential circuit with MISR

In the circuit in Fig.2, two registers R7 and R8 are

included into a global feedback loop, and hence,

according to RULE 1, they must be furnished by MISR.

On the other hand, there is a fan-out stem Z1 which has

two branching paths which re-converge in F3. The first

path represents a direct connection, and the second one is

a path via register R6, where the possible faulty signal

needs for propagating from Z1 to F3 additional clock.

Hence, according to RULE 2, the node Z1 must be

monitored by MISR. The modified circuit is presented in

Fig.3. For better focusing to the problem under

discussion, and to skip the technical question of handling

don’t care signals, we assume that the registers with

global feedback R7 and R8 are provided with RESET

inputs RES7 and RES8, respectively.

In Fig.4, a simulation cycle of a single independent

test sequence with lengths of 6 clocks is shown where by

rectangles the 5 observation points are denoted. In this

simulation cycle we can extract 5 functions (the upper

indexes denote the delay in clock cycles between the

moments when the values of argument signals and the

function signal were fixed, respectively):

 (3)

 Y2

R8
X5

Z2
R8

R5
R4

Y1

R3

Z1 R7RES8 X4

Z1

R2
R1

R7

X2
X1 X2 RES7

Cl = 1

Cl = 2

Cl = 3

Cl = 4

Cl = 5

Cl = 6

R6

Fig.4. Simulation cycle of a single independent test

Since the arguments of these functions are either primary

inputs of the circuit or the nodes supported by MISR, we

can regard the set of functions (3) as a model of 5

interconnected combinational circuits, which can be fault

simulated independently.

Table 2. A test sequence for circuit in Fig.3

Cl
Input sequences Output sequences

Test Ti Test Ti+1 Test Ti Test Ti+1

1
X1

1, X2
1, X3

1,

RES7
1

2 X1
2, X2

2, X3
2

X1
2, X2

2, X3
2,

RES7
2

Z1
2

3 RES8
3, X4

3 X1
3, X2

3, X3
3 R7

3, Z1
3 Z1

3

4 RES8
4, X4

4 R7
4, Z1

4

5 X5
5 R8

5, Y1
5

6 X5
6 Y2

6 R8
6, Y1

6

7 Y2
7

Table 2 represents two (shifted in one clock cycle)

input sequences of the two test segments Ti and Ti+1, and

the related output sequences captured by MISR in the

),(

),,,(

),,,(

),(

),,(

1

8

1

522

2

4

3

1

2

1

2

711

3

1

2

1

2

7

2

888

1

1

2

777

1

3

1

2

1

111

−−

−−−−

−−−−

−−

−−−

=

=

=

=

=

RXfY

XZZRfY

ZZRRESfR

ZRESfR

XXXfZ

Y

Y

R

R

z

test points Z1, R7, R8, and directly at outputs Y1 and Y2,

which can be as well fed into MISR. The table represents

the simulation order of the functions (3). Because of the

RULES 1 and 2 are satisfied in the modified circuit in

Fig 3, the input sequences of Ti and Ti+1,can be regarded

as independent test patterns, spread merely over different

time frames. In this way, a full test sequence applied to

the circuit in Fig.3 can be split into a set of independent

test segments, all shifted by one clock one after another.

Since the test segments can be treated as a set of

independent test patterns, they can be fault simulated by

PPECPT in parallel as in case of combinational circuits.

IV. EXPERIMENTAL DATA

As experimental results we compare in Table 3 the speed

of SAF simulation in sequential circuits (where all the

latches are fed into MISR) by the PPECPT method

described in Section 2 with different known fault

simulators for combinational circuits: FSIM [15], and two

state-of-the-art commercial simulators C1 and C2 from

major CAD vendors. Simulation times were calculated

for 10000 patterns. Experiments were run on a 1.5GHz

Ultra SPARC IV+ workstation using SunOS 5.10.

Table 3. Comparison of PPECPT with other fault
simulation methods for circuits with full scan-path

Circuts
Number

of gates

SAF simulation time, s

Fsim C1 C2 PPECPT

c3540 2784 2.0 7.4 43 0.9

c5315 4319 1.4 5.6 57 0.8

c6288 4846 12.1 27.8 284 7.4

s15850 14841 5.4 12.1 111 2.7

s38417 34831 16.2 31.4 310 7.0

s38584 36173 12.1 23.2 320 6.4

b14 19491 N/A 49.2 N/A 14.5

b15 18248 N/A 39.1 N/A 26.6

b17 64711 N/A 117 N/A 77.8

Average speed gain 2.0 4.3 45 1

In [16] we have presented a family of benchmark

circuits which represent different architectures of a bio-

impedance signal analyser (a pipe-lined signal processor)

with the same functionality. We investigated the

feasibility of the proposed fault simulation method for

calculating the fault coverage of the at-speed functional

self-test developed for these processors. The results of

fault simulation for the whole family of 8 processors

(column 1) are presented in Table 4 where LS denotes the

behaviour level logic simulation time, FS denotes the LS

multiplied by the number of faults to be simulated one by

one, and the PPECPT shows the simulation time needed

for the proposed method. The experiments showed that

the gain we achieved by using the proposed method is

around 2-3 orders of magnitude. For this advantage we

have to pay by the cost of added set of MISR which

however is comparable to the cost of scan-path. On the

other hand, we achieve by the proposed method dramatic

speed-up in the test time, compared to the scan-path

approach, and improved fault diagnosis.

V. CONCLUSIONS

In this paper we have proposed a novel approach for fault

simulation in sequential circuits which allows to achieve

dramatic speed-up in simulation time compared to the

traditional single fault simulation in sequential circuits.

The high speed is achieved thanks to removing the

problem of sequential dependence of simulated signals in

different time frames by improving observability of the

circuit by inserting a set of MISRs at selected test points.

Table 4. Comparison of the proposed method with single
fault simulation in sequential circuits

Circuts
Number

of faults

SAF simulation time, s
Gain

LS FS PPECPT

8a 112034 0.155 17365 30.0 579

8b 83940 0.152 12759 24.7 517

8be 99330 0.168 16687 62.1 269

8bk 86878 0.159 13814 25.2 548

8bs 100820 0.154 15526 173.4 90

8c 122386 0.159 19459 35.9 542

8d 123012 0.161 19804 35.5 558

8de 136876 0.164 22447 81.3 276

The main novelties of the paper are as follows. Instead of

full scan-path we propose to use MISR for monitoring the

circuit in selected test points. As a consequence, we can

use instead of scan-path testing at-speed functional test

which guarantees better test quality. Improved

observability of the circuit allows better fault diagnostic

resolution. Finally, a dramatic speed-up of fault

simulation, compared to the traditional non-parallel fault

simulation of sequential circuits, was achieved.

Acknowledgement: The work was supported by EC FP7

STREP project BASTION and by Research Centre CEBE

funded by EU Structural Funds.

REFERENCES

[1] [1] J.A.Waicukauski, et.al. Fault Simulation of Structured VLSI.

VLSI Systems Design, Vol.6, No.12, pp.20-32, 1985.

[2] D.B. Armstrong. A deductive method for simulating faults in

logic circuits. IEEE Trans. Comp., C-21(5), 464-471, 1972.

[3] E.G.Ulrich, T.Baker. Concurrent simulator of nearly identical

digital networks. IEEE Trans.on Comp.,7(4), pp.39-44, 1974.

[4] W.T.Cheng, M.L.Yu. Differential fault simulation: a fast method

using minimal memory. DAC, pp.424-428, 1989.

[5] M.Abramovici, P.R.Menon, D.T.Miller. Critical Path Tracing -

An Alternative to Fault Simulation. Proc. 20th Design

Automation Conference, pp. 2-5, 1987.

[6] K.J.Antreich, M.H.Schulz. Accelerated Fault Simulation and

Fault Grading in Combinational Circuits. IEEE Trans. On

Computer-Aided Design, Vol. 6, No. 5, pp.704-712, 1987.

[7] L.Wu, D.M.H.Walker. A Fast Algorithm for Critical Path

Tracing in VLSI. Int. Symp. on Defect and Fault Tolerance in

VLSI Systems, Oct. 2005, pp.178-186.

[8] R.Ubar, S.Devadze, J.Raik, A.Jutman. Ultra Fast Parallel Fault

Analysis on Structural BDDs. ETS, Freiburg, May 20-24, 2007.

[9] R.Ubar, S.Devadze, J.Raik, A.Jutman. Parallel X-Fault

Simulation with Critical Path Tracing Technique. IEEE Conf.

Design, Automation & Test in Europe - DATE-2010, Dresden,

Germany, March 8-12, 2010, pp. 1-6.

[10] L.-T.Wang, C.-W.Wu, X.Wen. VLSI Test Principles and

Architectures. Elsevier, 2006.

[11] L. Bushard, N. Chelstrom, S. Ferguson, B. Keller. DFT of the

Cell Processor and its Impact on EDA Test Software. In IEEE

Asian Test Symposium, 2006, pp. 369-374.

[12] S. Wang, S. Gupta. ATPG for heat dissipation minimization

during scan testing. In ACM IEEE Design Automation

Conference, 1997, pp. 614-619.

[13] L. Chen, S. Ravi, A. Raghunathan, S. Dey. A Scalable Software-

Based Self-Test Methodology for Programmable Processors. In

IEEE/ACM Design Automation Confernce, 2003, pp. 548-553.

[14] Thayse, “Boolean Calculus of Differences”, Springer Verlag,

1981T

[15] H.K.Lee, D.S.Ha. SOPRANO: An Efficent Automatic Test

Pattern Generator for Stuck-Open Faults in CMOS

Combinational Circuits. DAC, Orlando, FL, June 1990.

[16] M.Gorev, R.Ubar, P.Ellervee, S.Devadze, J.Raik, M.Min. At-

Speed Self-Testing of High-Performance Pipe-Lined Processing

Architectures. IEEE Conference NORCHIP, Vilnius, 2013.

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.
2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.
3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the Third-Order Statistical Models.

1999.
4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility Impairments – Case Studies

and Views from Estonia. 1999.
5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business. 1999.
6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.
7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of Cost Effective Hardware Solu-

tions. 2001.
8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by Decision Diagrams. 2001.
9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods for Control Part of Digital
Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data Signals. 2002.
12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and Reproduction of Periodic

Components of Band-Limited Discrete-Time Signals. 2002.
13. Toivo Paavle. System Level Modeling of the Phase Locked Loops: Behavioral Analysis and Parameteriza-

tion. 2003.
14. Irina Astrova. On Integration of Object-Oriented Applications with Relational Databases. 2003.
15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented Business Modelling and Simula-

tion. 2004.
16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.
17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of Digital Systems. 2004.
18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in Maintenance-Free Batteries

with Fixed Electrolyte. 2004.
19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to Semiconductor Silicon. 2004.
20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.
21. Marko Koort. Transmitter Power Control in Wireless Communication Systems. 2005.
22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-Aware, UML and Agent Based

Approach. 2005.
23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based Complementary JBS Structures.

2005.
24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja elementide disainimine ja op-

timeerimine. 2005.
25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I. 2005.
26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum Clique Problem. 2005.
27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.
28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.
29. Eero Ivask. Digital Test in WEB-Based Environment. 2006.
30. Виктор Войтович. Разработка технологий выращивания из жидкой фазы эпитакси-

альных структур арсенида галлия с высоковольтным p-n переходом и изготовления
диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech Recognition. 2006.
32. Erki Eessaar. Relational and Object-Relational Database Management Systems as Platforms for Managing

Softwareengineering Artefacts. 2006.
33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-impedance. 2007.
34. Madis Listak. A Task-Oriented Design of a Biologically Inspired Underwater Robot. 2007.

153

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis and Optimization of BIST.
2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of Nonlinear Systems: ANARX
Model Based Approach. 2007.

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case Studies of Linguistic and Banking
Data. 2007.

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit State Model Checking. 2007.
39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering: A Unified View, Extensions and

an Application to Inventory Management. 2008.
40. Andrei Pokatilov. Development of National Standard for Voltage Unit Based on Solid-State References.

2008.
41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear Information Processing Methods:

Case Studies of Estonian Islands Environments. 2008.
42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-Level Decision Diagrams. 2008.
43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program Transformations. 2008.
44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model – Dependency Flow Graphs-

Based Approach. 2008.
45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.
46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.
47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the Thoracic Bio-Impedance Varia-

tions into Cardiac and Respiratory Components. 2009.
48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like Networks on Chips. 2009.
49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.
50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.
51. Erika Matsak. Discovering Logical Constructs from Estonian Children Language. 2009.
52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation Methods and Design Principles.

2009.
53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and Synthesis for Nonlinear Control

Systems. 2010.
54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of Attack Trees. 2010.
55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User Interfaces. 2010.
56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and Reasoning of Ad-Hoc Network

Agents. 2010.
57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages. 2010.
58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability Identification Techniques for Syn-

chronous Sequential Circuits. 2010.
59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated Circuit for Portable Appli-

cations. 2011.
60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia. 2011.
61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-Silicon Carbide Contact Obtained

by Diffusion Welding. 2011.
62. Martin Jaanus. The Interactive Learning Environment for Mobile Laboratories. 2011.
63. Argo Kasemaa. Analog Front End Components for Bio-Impedance Measurement: Current Source Design

and Implementation. 2011.
64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber Attack Mitigation Strategies.

2011.
65. Riina Maigre. Composition of Web Services on Large Service Models. 2011.
66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.
67. Gunnar Piho. Archetypes Based Techniques for Development of Domains, Requirements and Sofware.

2011.
68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.
69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting Algorithms Using Tree-like Structures

and HFSM Models. 2012.
70. Anton Tšertov. System Modeling for Processor-Centric Test Automation. 2012.
71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

154

72. Mihkel Tagel. System-Level Design of Timing-Sensitive Network-on-Chip Based Dependable Systems.
2012.

73. Juri Belikov. Polynomial Methods for Nonlinear Control Systems. 2012.
74. Kristina Vassiljeva. Restricted Connectivity Neural Networks based Identification for Control. 2012.
75. Tarmo Robal. Towards Adaptive Web – Analysing and Recommending Web Users‘ Behaviour. 2012.
76. Anton Karputkin. Formal Verification and Error Correction on High-Level Decision Diagrams. 2012.
77. Vadim Kimlaychuk. Simulations in Multi-Agent Communication System. 2012.
78. Taavi Viilukas. Constraints Solving Based Hierarchical Test Generation for Synchronous Sequential Cir-

cuits. 2012.
79. Marko Kääramees. A Symbolic Approach to Model-based Online Testing. 2012.
80. Enar Reilent. Whiteboard Architecture for the Multi-agent Sensor Systems. 2012.
81. Jaan Ojarand. Wideband Excitation Signals for Fast Impedance Spectroscopy of Biological Objects. 2012.
82. Igor Aleksejev. FPGA-based Embedded Virtual Instrumentation. 2013.
83. Juri Mihhailov. Accurate Flexible Current Measurement Method and its Realization in Power and Battery

Management Integrated Circuits for Portable Applications. 2013.
84. Tõnis Saar. The Piezo-Electric Impedance Spectroscopy: Solutions and Applications. 2013.
85. Ermo Täks. An Automated Legal Content Capture and Visualisation Method. 2013.
86. Uljana Reinsalu. Fault Simulation and Code Coverage Analysis of RTL Designs Using High-Level Deci-

sion Diagrams. 2013.
87. Anton Tšepurov. Hardware Modeling for Design Verification and Debug. 2013.
88. Ivo Müürsepp. Robust Detectors for Cognitive Radio. 2013.
89. Jaas Ježov. Pressure sensitive lateral line for underwater robot. 2013.
90. Vadim Kaparin. Transformation of Nonlinear State Equations into Observer Form. 2013.
91. puudub
92. Reeno Reeder. Development and Optimisation of Modelling Methods and Algorithms for Terahertz Range

Radiation Sources Based on Quantum Well Heterostructures. 2014.
93. Ants Koel. GaAs and SiC Semiconductor Materials Based Power Structures: Static and Dynamic Behavior

Analysis. 2014.
94. Jaan Übi. Methods for Coopetition and Retention Analysis: An Application to University Management.

2014.
95. Innokenti Sobolev. Hyperspectral Data Processing and Interpretation in Remote Sensing Based on Laser-

Induced Fluorescence Method. 2014.
96. Jana Toompuu. Investigation of the Specific Deep Levels in p-, i- and n- Regions of GaAs p+-pin-n+

Structures. 2014.
97. Taavi Salumäe. Flow-Sensitive Robotic Fish: From Concept to Experiments. 2015.
98. Yar Muhammad. A Parametric Framework for Modelling of Bioelectrical Signals. 2015.
99. Ago Mõlder. Image Processing Solutions for Precise Road Profile Measurement Systems. 2015.

100. Kairit Sirts. Non-Parametric Bayesian Models for Computational Morphology. 2015.
101. Alina Gavrijaševa. Coin Validation by Electromagnetic, Acoustic and Visual Features. 2015.
102. Emiliano Pastorelli. Analysis and 3D Visualisation of Microstructured Materials on Custom-Built Vir-

tual Reality Environment. 2015.
103. Asko Ristolainen. Phantom Organs and their Applications in Robotic Surgery and Radiology Training.

2015.
104. Aleksei Tepljakov. Fractional-order Modeling and Control of Dynamic Systems. 2015.
105. Ahti Lohk. A System of Test Patterns to Check and Validate the Semantic Hierarchies of Wordnet-type

Dictionaries. 2015.
106. Hanno Hantson. Mutation-Based Verification and Error Correction in High-Level Designs. 2015.
107. Lin Li. Statistical Methods for Ultrasound Image Segmentation. 2015.
108. Aleksandr Lenin. Reliable and Efficient Determination of the Likelihood of Rational Attacks. 2015.

155

	Contents
	List of Publications
	Acronyms
	1 Introduction
	1.1 Background and motivation
	1.2 Thesis Objectives
	1.3 Thesis Contributions
	1.4 Thesis Overview

	2 Benchmark Suite
	2.1 Overview of the initial design
	2.2 Structural characteristics of the circuits
	2.3 Testability characteristics of the circuits
	2.3.1 Discussion of the results

	2.4 Chapter summary

	3 At-speed self-testing
	3.1 Overview
	3.2 General description of the method
	3.3 Fault simulation environment
	3.4 Case study: signal processing unit as UUT
	3.5 Experimental results
	3.5.1 Fault coverage of the blocks
	3.5.2 Impact of the test length
	3.5.3 Comparison to the state-of-the-art methods
	3.5.4 Impact of the resource sharing

	3.6 Chapter summary

	4 Multi-core fault simulation environment
	4.1 Overview
	4.1.1 Serial Fault Simulation
	4.1.2 Parallel Fault simulation
	4.1.3 Deductive fault simulation
	4.1.4 Concurrent fault simulation
	4.1.5 Differential Fault Simulation
	4.1.6 Critical path tracing
	4.1.7 Multi-core methods

	4.2 Critical path fault tracing
	4.2.1 Structurally Synthesized Binary Decision Diagrams
	4.2.2 Parallel pattern critical path fault tracing
	4.2.3 Fast fault simulation with SSBDDs

	4.3 Mixed level fault simulation with SSBDDs
	4.4 Multicore fault simulation using SSBDDs
	4.4.1 Representation of levels
	4.4.2 Fault simulation process

	4.5 Experimental Results
	4.5.1 Discussion
	4.5.2 Comparison

	4.6 Chapter summary

	5 Combinational fault simulation environment for sequential circuits
	5.1 Overview
	5.2 Modification of Sequential Circuit
	5.3 Experimental Data
	5.4 Chapter summary

	6 Conclusions
	6.1 Benchmark Suite
	6.2 Methods for testing
	6.3 Methods for test quality evaluation
	6.4 Future work

	Bibliography
	Acknowledgements
	Abstract
	Annotatsioon
	Curriculum Vitæ
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

