
TALLINN UNIVERSITY OF TECHNOLOGY

SCHOOL OF ENGINEERING

Department of Electrical Power Engineering and Mechatronics

DEEP LEARNING BASED PAVEMENT DISTRESS

INSTANCE SEGMENTATION FROM ROAD

ORTHOPHOTOS

TEEKATTEDEFEKTIDE INDIVIDUAALNE

SEGMENTEERIMINE ORTOKAADRITELT SÜVAÕPPE
MEETODIL

MASTER THESIS

Tallinn,2021

Student: Kayode Hadilou ADJE

Student Code: 194360MAHM

Supervisor: Andri Riid Ph.D., Senior Research Scientist

Co-Supervisor Prof. Mart Tamre, Professor

AUTHOR’S DECLARATION

I hereby declare that I have written this thesis independently.

No academic degree has been applied for based on this material. All works, major

viewpoints and data of the other authors used in this thesis have been referenced.

“.......” 20…..

Author:

/signature /

Thesis is in accordance with terms and requirements

“.......” 20….

Supervisor: ….........................

/signature/

Accepted for defence

“.......”....................20… .

Chairman of theses defence commission: ...

 /name and signature/

Non-exclusive Licence for Publication and Reproduction of a

Graduation thesis1

I Kayode Hadilou ADJE (date of birth 20/04/1995)

1. grant Tallinn University of Technology free licence (non-exclusive licence) for my thesis

Deep learning based pavement distress instance segmentation from road orthophotos,

supervised by Andri Riid Ph.D.,

co-supervised by Prof. Mart Tamre

1.1 reproduced for the purposes of preservation and electronic publication of the

graduation thesis, incl. to be entered in the digital collection of the library of Tallinn

University of Technology until expiry of the term of copyright;

1.2 published via the web of Tallinn University of Technology, incl. to be entered in the

digital collection of the library of Tallinn University of Technology until expiry of the

term of copyright.

1.3 I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

2. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

1 The non-exclusive licence for Publication and Reproduction of Graduation Thesis is not valid

during the validity of access, except the university's right to reproduce the thesis for preservation
only purposes.

______________ (signature)

Department of Electrical Power Engineering and Mechatronics

THESIS TASK

Student: Kayode Hadilou ADJE,194360MAHM

Study programme MAHM02/18-Mechatronics

main speciality: Mechatronics

Supervisor: Senior Research Scientist, Ph.D. Andri Riid, Tallinn University of

Technology

Co-Supervisor: Professor, Mart Tamre, Tallinn University of Technology

Thesis topic:

(In English) Deep learning-based pavement distress instance segmentation from road

orthophotos

(in Estonian) Teekattedefektide individuaalne segmenteerimine ortokaadritelt süvaõppe

meetodil

Thesis main objectives:

1. To research convolutional neural network-based methods for instance

segmentation and road pavement detection

2. To implement a convolutional neural network method for road distress

instance segmentation.

3. To implement the solution on existing defect database layers and compare

results.

Thesis tasks and time schedule:

No Task description Deadline

1.
Task understanding and initial literature review October 2020

2.
Further literature review and dataset preparation November 2020

3. First network training with Mask RCNN as a baseline
December 2020

4.
Implementation and training of feature pyramid network on Mask
R-CNN

January 2021

5.
Implementation and training of Cascade Mask R-CNN February 2021

6.
Fine-tuning of the middle region proposal network March 2021

7.
Integration of the network into existing defect detection
databases, additional test

April, May 2021

8.
Thesis report May 2021

Language: English Deadline for submission of thesis: “10” June 2021

Student: Kayode Hadilou ADJE “.......”………….....................2021

 /signature/

Supervisor: Andri Riid, Ph.D. “.......”…………..........................2021

 /signature/

Co-Supervisor: Prof Mart Tamre “.......”..........................2021

 /signature/

Head of study programme: Prof Mart Tamre “.......”..........2021

 /signature/

6

Table of contents

Table of contents ... 6

List of figures .. 8

List of tables .. 10

PREFACE ... 11

List of abbreviations ..12

1 INTRODUCTION ... 13

2 LITERATURE REVIEW AND BACKGROUND .. 15

2.1 Road defect detection methods ..15

2.1.1 Hand-crafted methods ..15

2.1.2 Classical machine learning methods ...17

2.1.3 Deep learning methods ..18

2.1.4 Summary of road defect detection methods ..21

2.2 Convolutional neural networks ...22

2.3 Instance segmentation ...24

2.3.1 Two-stage instance segmentation ..25

2.3.2 Single-stage instance segmentation ...25

2.4 Pavement data acquisition ..26

2.5 Data annotation ...27

3 DATA PREPARATION ... 29

3.1 Data analysis and partition ...29

3.2 Data generation for instance segmentation ...30

3.3 Data augmentation ..32

4 MASK RCNN FOR PAVEMENT DEFECT INSTANCE SEGMENTATION 34

4.1 Backbone feature extractor ...34

4.1.1 Convolution operation ..35

4.1.2 Activation function ...36

4.1.3 Pooling operation ...37

4.1.4 Normalization ..37

4.2 Region proposal network ..37

4.2.1 Region proposal network’s architecture ..37

4.2.2 Anchor box generation ...38

4.2.3 Anchor box association with ground truth defects38

7

4.2.4 Region proposal network’s multitask loss ..39

4.3 Region of interest align operation ..39

4.4 Network heads ..40

4.4.1 RoI Head architecture ..40

4.4.2 RoI Head loss function ...41

5 FEATURE PYRAMID NETWORK .. 42

5.1 Motivation...42

5.2 Feature pyramid network enabled multi-scale feature extraction42

5.3 Region proposal network with feature pyramid network43

5.4 RoI heads with feature pyramid network...44

6 CASCADE HEADS ... 45

6.1 Motivation...45

6.2 Cascade R-CNN ...45

7 PERFORMANCE METRICS ... 47

7.1 Intersection over union, precision, recall ...47

7.2 Mean average precision, mean average recall ..47

7.3 Correlation and mean absolute error ..48

8 EXPERIMENTS AND RESULTS ... 50

8.1 Experiment with pavement patches ..50

8.2 Experiment with downscaled orthoframes ...54

8.2.1 Experiment with feature pyramid network-enabled Mask R-CNN54

8.2.2 Experiment with cascade heads ...58

8.3 Additional Testing ..63

9 SUMMARY ... 68

9.1 Conclusions ...68

9.2 Future works ...69

KOKKUVÕTE .. 71

LIST OF REFERENCES .. 73

8

List of figures

Figure 2.1 Image-based road defect detection methods ...16

Figure 2.2 Example of ConvNet for handwritten digit classification23

Figure 2.3 U-NET: an example of ConvNet based network for image segmentation ...24

Figure 2.4 Data annotation. ...27

Figure 2.5 Graphical user interface of the annotation tool28

Figure 3.1 Focus area and rotation pre-processing steps..30

Figure 3.2 Representation of different defect types in the whole dataset.31

Figure 3.3 Dataset distribution per category in training, validation, and testing sets ..32

Figure 3.4 Example of orthoframe augmentation. ...33

Figure 4.1 High-level architecture of MaskRCNN ...34

Figure 4.2 ResNet-based backbone feature extractor. ...35

Figure 4.3 Region Proposal Network's (RPN) architecture38

Figure 4.4 Network Heads architecture. ...40

Figure 5.1 Different scales of transverse cracking defect type42

Figure 5.2 Feature Pyramid Network's architecture ...43

Figure 5.3 FPN-enabled RoI Head's architecture ...44

Figure 6.1 COCO Instance segmentation leaderboard [34]45

Figure 6.2 Cascade RCNN architecture ..46

Figure 8.1 Loss during training with sliding windows approach.50

Figure 8.2 Sliding window approach: bounding box based average precision on the

validation set. ..51

Figure 8.3 Sliding window approach: bounding mask based average precision on the

validation set. ..52

Figure 8.4 Sliding window approach: intact ground truth(left) vs prediction (right) ...52

Figure 8.5 Sliding window approach: example of a good prediction(left) versus ground

truth(right). ...53

Figure 8.6 Sliding window approach: another example of good prediction (left) versus

ground truth (right). ...53

Figure 8.7 FPN-enabled Mask R-CNN: training loss..55

Figure 8.8 FPN-enabled Mask R-CNN: box-based AP on the validation set55

Figure 8.9 FPN-enabled Mask R-CNN: mask-based AP on the validation set.56

Figure 8.10 FPN-enabled Mask R-CNN: example of network's output(left) correcting the

manual annotation(right). ..57

Figure 8.11 FPN-enabled Mask R-CNN: example of neighboring defect instances

successfully predicted ...57

9

Figure 8.12 FPN-enabled Mask R-CNN: a second example of neighboring defect

instances successfully predicted ...58

Figure 8.13 Foreground accuracies in cascade headers. ...59

Figure 8.14 Categorical box based mean average precision for cascade headers59

Figure 8.15 Categorical mask based mean average precision for cascade headers60

Figure 8.16 Comparison (1) of results between standard head’s (left) and cascade head’s

predictions (right) and ground truth orthoframe (bottom).61

Figure 8.17 Comparison (2) of results between cascade head (left) and standard head’s

(right) predictions and ground truth data (bottom). ..62

Figure 8.18 Example of the predicted defects integrated into QGIS software.64

Figure 8.19 Metric correlations for defect types and overall defectiveness.66

Figure 8.20 Example of weathering not detected by the network.67

Figure 8.21 Example of predictions of network cracking compared to the annotations.

 ..67

10

List of tables

Table 2.1 Comparison of road defect detection methods ..22

Table 3.1 Defect types and characteristics ...29

Table 3.2 Orthoframes augmentation techniques used for training33

Table 4.1 Common activation functions used in ConvNets: sigmoid, tanh, and ReLU .36

Table 8.1 Comparison of results between cascade and standard heads60

Table 8.2 Benchmarking of results with different network configurations63

Table 8.3 Roads' descriptions for additional testing ...63

Table 8.4 Correlation and mean absolute error. ..64

11

PREFACE

I would like to express my sincere gratitude to Roland Lõuk, MSc, a data scientist at

EyeVi who previously completed his master’s degree within the same team and is

currently working on pavement defect detection for his help mainly on getting started

with the data and the task and performing a test under realistic scenarios.

12

List of abbreviations

AP Average Precision

AR Average Recall

BEMD Bidimensional Empirical Mode Decomposition

CFD Crack Forest Dataset

CNN Convolutional Neural networks

ConvNet Convolutional Neural networks

CTA Conditional Texture Anisotropy

FCN Fully Convolutional Network

GNSS Global Navigation Satellite System

GPU Graphical Processing Unit

IoU Intersection over Union

KNN K Nearest Neighbors

MAE Mean Average Error

mAP Mean Average Precision

mAR Mean Average Recall

NMS Non-Maximum Suppression

ReLU Rectified Linear Unit

RoI Region of Interest

RoIAlign Region of Interest Alignment pooling operation

SVM Support Vector Machine

VRT A special type of file used to store geospatial information

13

1 INTRODUCTION

Defected roads are characterized by distress on the road material and a deformed shape

different from the original. Road management and maintenance consist of implementing

cost-efficient strategies for the measurement and assessment of road defects. Cost-

efficient strategies imply an early assessment of pavement defects and maintenance of

roads which traditional ways employing human labor fail to do. In regions with extreme

temperatures such as Estonia, the effects of such temperature can intensify defects on

roads, requiring automatic and timely inspection of road pavements.

The project named “Applied Research for creating a cost-effective interchangeable 3D

spatial data infrastructure with survey-grade accuracy” [1] is an applied research

project to create a next-level 3D spatial database layer and to integrate it into existing

databases. One of the key tasks in the project is the use of artificial intelligence to

automate road defect detection most efficiently. Previously, within the same project, a

pipeline of three convolutional neural networks (ConvNet) has been proposed to identify

road areas from orthophotos [2], classify road segments as defects or intact [3], and

segment pavement defects in road segments [4].

However, individual networks of the proposed pipeline either classify road segments

according to the class they belong to i.e., classification, or group all defective pixels of

the same defect type together i.e., segmentation. Moreover, with a combination of

classification and segmentation as a pipeline, it is still not possible to separate individual

defects if they are bordering each other in pavement orthophotos.

The goal of this thesis is to research and implement a deep neural network-based

technique for road defect instance segmentation. Instance segmentation is a computer

vision task used to identify instances of objects (pavement defects such as potholes,

cracking, repaired patches, or weathering) in images at a pixel level. Using orthophotos

provided by the project partner EyeVi, a spin-off of Reach-U Ltd. [1] and labeled with

defect types and masks by trained personnel plus computing resources provided by the

Department of Software Science at Tallinn University of Technology, an instance

segmentation network sharing classification and segmentation tasks was researched

and implemented. By generating instance-level semantic segmentation masks for each

defect in roads’ orthophotos, the network successfully resolves the previous limitation

of not being able to distinguish individual neighboring defects.

14

Chapter 2 begins with a comparative study of visual imaging-based road defect

detection methods followed by an overview of convolutional neural networks for

different vision tasks and specifically for instance segmentation. Finally, this chapter

also describes the data acquisition and annotation processes.

Chapter 3 describes the dataset used and the pre-processing steps including data

partitioning and data generation for training.

Chapter 4,5 and 6 describes modeling approaches and network configurations used for

road defect instance segmentation. The baseline network Mask R-CNN is explained in

chapter 4, in chapter 5 an improvement on the baseline using pyramidal features maps

is explained. Chapter 6 gives a detailed description of how the network is further

improved with a cascade of 3 detection heads.

In chapter 7, performance metrics such as mean average precision (mAP) used as

standard in literature are described; in addition, the chapter also introduces correlation

and mean absolute error used to access the performance of the solution under realistic

conditions following the Estonian Road Administration’s [5] definition of pavement

defectiveness.

Chapter 8 presents different experiments and results with each network configuration.

Illustrative examples and comparisons between approaches are given. The chapter also

presents a benchmarking result of all modeling approaches.

In chapter 9, further testing under real-life scenarios is made on previously unused

16.6km of Estonian road. The results, the integration of results into existing pavement

defect software modules, and performance using metrics following the Estonian road

administration’s recommendation are given. Case by case analysis is also performed to

show the strengths and weaknesses of the proposed solution.

15

2 LITERATURE REVIEW AND BACKGROUND

2.1 Road defect detection methods

Methods for road defect detection can be classified based on the data used i.e., radar

technology, 3D image, image, etc. In this thesis, methods using visual imaging are of

particular interest since the data to be used is made of orthophotos as described in [6].

Road defect detection methods relying on visual imaging can be grouped in three

categories based on the characteristics of methods used [7]: hand-crafted road defect

detection systems, classical machine learning-based methods, and deep learning-based

methods. Figure 2.1 gives an overview of each group; methods in each group may deal

with one or many computer vision tasks (i.e., object detection, classification,

segmentation), and can be applied to one or many road defect types (i.e., cracks,

potholes, weathering).

2.1.1 Hand-crafted methods

This group of methods is based on experts’ understanding and interpretation of specific

defective roads. Rule-based methods rely on visually or statistically noticeable edges,

topology, morphology features in road images to define the rules which are used to

classify or segment defects in roads’ images. It is also common for such methods to

preprocess the images to reduce the noise captured during data acquisition.

For example, adaptive threshold-based segmentation is used in [8] to produce

candidate defected pixels from roads’ images. First, lane-markings in the image are

removed using a binary threshold; the color of road marking is previously known to be

white. Hough transforms are applied on top of binarized images to find lines with certain

dimensions and orientations corresponding to actual characteristics of lane markings.

Then, a textural measure called Conditional Texture Anisotropy CTA is used to

dynamically separate defected pixels from intact ones [8]. This method is further

improved with a machine learning method to successfully classify a total of 729 intact,

crack, joint, and bridged road images with an accuracy above 90% [8].

16

Figure 2.1 Image-based road defect detection methods

Another example of a hand-crafted method is in [9] where an ensemble of techniques

is used to distinguish non-crack roads from superficial cracks, crocodile cracks, linear

cracks, and transverse cracks. Road images are first converted to grayscale color space,

blurred with a median filter, binarized, and transformed via morphological operations,

erosion, and dilation in particular. Subsequently, features such as the total number of

pixels in processed images, the ratio of the crack area over the entire area, the number

of objects in processed images, the direction of objects in processed images were used

to classify whether the defect type is intact, a superficial crack, a crocodile crack, or a

horizontal crack, using a decision tree. Furthermore, the method provides possibilities

to customize the rules on the run to adapt them to roads under different environmental

conditions [9]. While the performance of the algorithm was not evaluated on an existing

road defect dataset, for each detection, the classifier outputs a confidence score for all

defect types, and the class with the highest score is selected.

The last example of a rule-based road defect detection is described in [10] where road

surface images were first processed either by Gaussian filter or Bidimensional Empirical

Mode Decomposition (BEMD) for noise filtering. Next, the Sobel edge detector was

17

applied to detect cracks in road images - a pixel is labeled as a non-edge defect or edge

defect, based on the gradient magnitude and direction at a current location (pixel) and

both sides of the pixel. The method was tested on a total of 15 images with different

surface properties; overall the two methods successfully detected edge defects but

BEMD was more efficient on plain cement concrete road images while the Gaussian filter

yielded better results on asphalt roads images [10].

2.1.2 Classical machine learning methods

A known disadvantage of a rule-based system is the generalization problem: it is very

common for such systems to fail to generalize to new unseen scenarios since the

predefined rules do not apply anymore. Machine learning methods remedy that by

allowing the systems to use the representation of defects and learn the mapping of the

representation to desired outputs over a given dataset. As opposed to the rule-based

methods described in 2.1.1, classical machine learning methods learn not only the

defect representation on edge, topology, or morphological features but also the

mapping from learned representations to desired outputs over a whole collection of road

images. Usually, this yields better generalization to unseen images compared to hand-

crafted methods [7].

In [11], CrackForest, a machine learning method based on structured random forests

was developed to detect cracks in road images. CrackForest can be divided into three

phases: integral channel features extraction, structural learning with random forest,

and cracks description plus detection. Integral image patches were extracted with a

sliding window of size 16 ∗ 16 from training data; patches with cracks edge at the center

were labeled as positive and used in further steps. For each image patch, a mean

intensity value 𝑚 and a 16 ∗ 16 standard deviation matrix are used as features.

Additionally, 13 integral channels (3 colors, 2 magnitudes, 8 orientations channels)

were applied to the 16 ∗ 16 image patch to generate 16 (13 ∗ 16) = 3328 candidate

integral channel features; each feature contains a specific representation of cracks. The

last features are textural features computed on a 𝑚 ∗ 𝑚 matrix where 𝑚 is the mean

pixel value and yields 300 more features for each channel. Random forests are then

used to learn the mapping between the set of extracted features and patch annotation

masks; after this step, image patches can be labeled with their semantic masks, but

these masks were only considered as preliminary results as they contain textural noise.

Predominant features from the previously extracted set are reused to compute

statistical (occurrence of features) and neighborhood (co-occurrence of two features)

18

histograms. A mapping is learned between the normalized occurrence and co-

occurrence information and the annotated defect type, using a set of KNN, SVM

classifiers. The classifiers can distinguish cracks from textural noise. This, added to the

semantic map produced by the random forest learners, made CrackForest surpass crack

detection methods such as Canny, CrackTree, and CrackIT [11] on Crack Forest Dataset

CFD [11] which contains 118 annotated images of Chinese urban roads acquired with a

mobile phone. CrackForest shows a precision of 82%, a recall of 89%, and an F1 score

of 85%.

The second example of a machine learning method in road defect assessment is [12]

where SVM was used to classify features extracted from non-overlapping patches of

road images. Each training image was divided into smaller patches; from each image,

patch, top-hat filter, mean and top-hat filters, minimum filter, and adaptive histogram

equalization were used to remove noise. Features such as intensity level, mean,

variance, and different order of moments were used to train an SVM classifier. The

system was then tested on two datasets containing respectively 56 road images of size

2048 𝑥 1536 and 165 road images of size 2048 𝑥 4096. On the first dataset, the method

achieves a recall of 98% and 94% on the second dataset. However, if trained on a set

of features coming from another data distribution, its performance suffers i.e., if trained

on a set of features coming from the first dataset distribution, the method performs

worse when tested on the second dataset and vice versa.

The last example in this category classifies road images using graph-based features

[13]. First, images are pre-processed to remove noise by applying Hough transform to

eliminate circular and rectangular shapes, which may look like road defects while they

are not. Then a local filter is applied, followed by a Gaussian filter. The resulting images

are used to define a graph object for each defect. Features based on the graph’s

properties are extracted and used as input to an SVM classifier which outputs the type

of the defect among 5 possible values: longitudinal crack, transversal crack, mixed

cracking, alligator cracking, and healthy road. System performance was tested on a

dataset consisting of 525 road images with a precision of 86%, a recall of 85%, and an

F1 score of 85%.

2.1.3 Deep learning methods

Classical machine learning methods for road defect detection rely heavily on hand-

crafted defect features introduced by experts to learn a representation and mapping of

defects. While these features may be enough to characterize defects in particular

restricted cases, in general, there are not: not all defects are visually perceptible. Some

19

features can even be abstractions difficult or impossible to define mathematically. For

example, despite being actively researched within the computer vision community, the

visual texture still has no precise definition; there are only attempts to describe texture

[14]. Deep learning methods introduce a deep stack of features, from simpler to more

general ones; by allowing more general features to be derived out of simpler ones, deep

learning-based defect detection methods can learn complex defect features that cannot

be necessarily defined by an expert or a human operator. Methods in this category are

mostly empowered by convolutional neural networks (ConvNets) (section 2.2) and

prone to a smaller generalization error.

The first example of a deep learning method for defect detection uses orthophotos

collected with Ladybug 5+ by Reach U Ltd. In Estonia, to train a deep convolutional

neural network to distinguish intact orthophotos from defected ones [6]. Road

orthophotos of size 4096 ∗ 4096 were partitioned into small redundant patches which

were augmented by random brightness, contrast, horizontal and vertical flips and

rotation flips. In total, 3 different network architectures were tried and a ResNet with

101 layers was reported to have the best performance i.e., an accuracy of 97%, a

precision of 90% and a recall of 87% on a test dataset consisting of 1007 defect-free

and 185 defected road images patches [6].

An improvement of [6] was proposed in [3] where context-awareness is enhanced by

an extra input stream to the network. This method was motivated by the fact that

ConvNets work better with images of smaller size which are not often appropriate for

detecting objects from high-resolution images. In addition to the segment containing

the defect referred to as content, a larger area segment (referred to as context)

surrounding the content is also cropped and resized to the content’s size. Two ResNets

are used to extract features from content and context image patches, the extracted

features are then fed to a classifier consisting of three fully connected layers; in the last

fully connected layer, features from context and content image patches are merged to

produce the probability of a segment being a defect or not. The performance of the

method was evaluated with different network architectures and compared to

performances of single-stream networks; the highest MCC score of 91% on a test set

consisting of 438 orthophotos of size 4096 ∗ 4096 was with a context-aware network

while the best opposing[3].

An example of an engineered system for road defect detection is described in [4]; it

introduces a pipeline of three different networks for defect detection in pavement

orthophotos: the first network is used for generating road area masks from road

20

orthophotos, the second network is equivalent to the one described in [3] and performs

road defect classification while the third network is for road defect segmentation. The

output of the first network is used to generate image patches for the second network

whose output is in turn used to select defective patches to segment by the third

network. With this pipeline, road images' probability of being defective plus their

semantic mask can be obtained. The system’s performance has been tested on a set

of 947 orthophotos of size 4096 ∗ 4096, the majority of which are from new unseen

roads; an MCC score of 72% and a mIoU 51% have been reported respectively for

defect classification and detection segmentation tasks.

In [15], a feature pyramid network boosted hierarchically has been proposed for crack

detection. The network can be divided into four parts: a bottom-up network which

consists of a succession of convolutions to generate features of different scales; a

feature pyramid network based on a top-down architecture with upper layers providing

contextual information to lower layers; side networks that use deep supervision-based

learning to predict cracks at each layer of the network; and finally, a hierarchical

boosting method based on reweighting adjacent samples from side networks. In the

same work, the authors proposed a new method for evaluating defective roads in

segmentation tasks: the Average Intersection Over Union AIU, or IoU calculated over

different thresholds. The performance was compared to other methods including edge

detection networks (such as HED) and fully convolutional methods on different defect

datasets; their method outperformed the rest with an IAU of 49 % on the Crack500

dataset [16], [17].

In [18], two network models and a new dataset were proposed for the defect detection

task. The dataset is made of 7237 images with 9 different classes used for training and

testing. Two object detectors were used during training: YOLOv2 [19] and FasterRCNN

[20]. Given an input image, the networks can output the bounding box and defect type.

The performances of these networks were evaluated using precision, recall, and F1

score. With YOLOv2, the F1 score was 85% while FasterRCNN’s F1 score was 65%.

Crack-Gan introduced in [21] is our last example of deep learning methods for

pavement defect detection. It fixes the class imbalance and lack of ground truths data

problems by using generative adversarial learning [22]. The method generates ground

truth annotation with its adversarial module and performs pavement defect detection

using an asymmetric version of U-NET. As result, the network can work with poorly

annotated and imbalanced datasets to produce annotation masks for defective

pavement images. The performance of Crack-Gan was compared to other methods such

21

as CrackIT, CrackForest; while the method does not always have the highest precision

and recall values, it has the best computational cost and solves class imbalance and

lack of ground truth training data.

2.1.4 Summary of road defect detection methods

Table 2.1 recapitulates different types of road defect detection methods, their

characteristics, advantages, and disadvantages. Due to the latest advances with

ConvNets, deep learning defect detection methods have the advantage of being able to

generalize well to unseen roads images without the need for expert knowledge but need

more annotated images and computing resources; however, machine learning defect

detection methods can also be sufficient in restricted scenarios though they require

more effort in feature extraction.

22

Table 2.1 Comparison of road defect detection methods

Category Characteristics Advantages Disadvantages

Rule-based
methods

Use defect features based on
the edge, morphological,
topological, and textural

properties of defects.

Ex: Morphological features +
decision tree [9]; BEMD or
Gaussian filter + gradient
based thresholding [10]

No need for a
dataset.

Fast and light.

Generalization
problem.

Classical

machine
learning
methods

Use defect features based on

the edge, morphological,
textural, topological properties
of defects.

Learn to map defect features
with desired outputs.

Ex: CrackForest [11], Graph-

based features + SVM [12]

Can perform well

under restricted
cases.

Can catch well-
known and well-
described defect
features.

Needs a training

dataset.

Generalization
problem.

Deep learning
methods

Learn deep stacks of abstract
defect features independently.

Learn to map learned features
with the desired output.

Ex: ConvNet based defect

classification and segmentation
[3], [4], [23],[6], [15],
CrackGan [21]

Can generalize quite
well to unseen
cases.

No need for domain

knowledge to

extract defects
features.

Needs a relatively
large training
dataset.

Needs more

computing

resources.

The black box and
non-interpretability
issue.

2.2 Convolutional neural networks

Convolutional neural networks, also called CNNs and referred to in this work as

ConvNets, are a special type of neural network that owns its name to the mathematical

operation called convolution; this type of network is good for modeling data with grid-

like topology referred to as tensors in machine learning terminology. The concept of

ConvNets dates back to 1950 but one of the first real uses of ConvNet for image

classification is from 1998 with the well-known LeNet [24], [25] by Yann LeCun for

23

handwritten digits image classification, using a dataset of 60k training images of size

28 x 28.

ConvNets were forgotten till 2012 when Alex Krizhevsky reduced the error rate from

26% to 15% in the well-known ImageNet [26] classification challenge with his ConvNet

model called AlexNet [27]. AlexNet was trained on a set of approximately 1.2 million

images of 1000 different classes for the first time on GPU machines. The error rate was

reported on a test set of 150.000 images.

Based on the task performed, ConvNets can contain different layers. For example, it is

common to have a succession of convolution, pooling, and activation layers followed by

fully connected layers in the classification task. An example of a ConvNet for

handwritten digit classification is shown in Figure 2.2.

Figure 2.2 Example of ConvNet for handwritten digit classification [27]. Conv denotes the
convolutional and fc for fully connected layers.

In Figure 2.2, an image of a handwritten digit of size 28 ∗ 28 is fed as input to a

succession of convolution and maximum pooling layers; the output of the last pooling

layer is activated with ReLU before being fed to fully connected layers to predict the

type of the handwritten digit.

Many ConvNet based network design approaches have been proposed for the semantic

segmentation task, a common and successful one uses fully convolutional layers. U-

NET [28] is a fully convolutional network that was first proposed in 2015 for medical

image segmentation. As shown in Figure 2.3, U-NET has two parts: an encoder or the

contracting part consisting of a succession of convolution plus ReLU activation and

24

maximum pooling operations; the decoder or expansive part that is a succession of up-

sampling, up-convolution, concatenation, and two convolution operations followed by

ReLU activation at the end (See Figure 2.3).

Figure 2.3 U-NET: an example of ConvNet based network for image segmentation [28]

However, the usage of ConvNet is not only limited to image classification and

segmentation, but many other computer vision tasks also including image tagging,

object detection, human pose estimation, instance segmentation, and panoptic

segmentation are now being tackled with variants of ConvNets [24], [29].

2.3 Instance segmentation

In computer vision and image processing literature, object detection consists of

detecting instances of objects of a certain class in images or videos; semantic

segmentation consists of grouping pixels belonging to the same class. Instance

segmentation is a challenging task that does both object detection and semantic

segmentation by labeling each pixel with a class label and an instance label. ConvNets

based solutions for instance segmentation can be grouped into two classes: single and

two-stage instance segmentation.

25

2.3.1 Two-stage instance segmentation

This group of methods is characterized by networks with two stages, the first stage

generates regions of interest using methods such as selective search or even more

complex methods such as region proposal network. Generated regions of interest are

evaluated to keep only the good ones. In the second stage of the network, the selected

proposals are classified, regressed, and semantically segmented with methods that vary

based on whether the detection and segmentation are run in parallel or succession.

In [30], a network for simultaneous detection and segmentation using Support Vector

Machine (SVM) as a classifier is presented. The network is divided into four subsystems:

a feature extraction with ConvNet plus region proposals generation followed by a

proposal classification step using SVM and finally a region refinement with Non-Maximal

Suppression (NMS).

One of the most successful two-stage instance segmentation methods is Mask RCNN

[31], which extends RCNN [32], Fast RCNN [33], and Faster RCNN [19] by adding a

mask predictor in addition to classification and regression heads present in Faster RCNN.

In Mask RCNN, the three tasks share the same backbone layers, only the heads are

task-specific and during training, the tasks are all learned together. This results in better

performance.

Since its appearance, improved versions of MaskRCNN have been leading the COCO

[34] object detection challenge. However, MaskRCNN and other double stage networks

are slow during inference: on MMDetection’s [35], MaskRCNN implementation runs with

an inference speed between 8fps and 16.1 fps, depending on the depth of the feature

extractor, making it not a preferable choice for real-time applications. Moreover, some

two-stage networks utilize an additional anchor generation step, which needs to be

manually tuned based on objects' geometric properties. Such models might not

generalize well for unseen data with different object shapes and need further post-

processing.

2.3.2 Single-stage instance segmentation

Single-stage networks for instance segmentation have been propelled by advances in

proposals-free object detection methods. Methods in this approach run end-to-end

instance segmentation without the necessity for intermediate object bounding boxes.

26

These methods are underexplored compared to two-stage algorithms which first detect

the bounding boxes and then classify, crop and segment the regions [36].

Fully convolutional Instance Aware Segmentation [37] is a Fully Convolutional Network

(FCN) for instance segmentation running end-to-end. Inspired by the results of FCN for

semantic segmentation, the network first uses an FCN to generate score maps, which

will be further processed by an assembling module and a set of spatial operations. On

a K40 GPU machine, it can predict instance mask with a speed of 0.24s per image and

its performance is still lower (on COCO dev-set detection challenge) than the

performance of many two-stage networks such as Mask R-CNN.

TensorMask is another example of a single-stage instance segmentation network where

the performance is closer to Mask RCNN on COCO benchmark [36], TensorMask comes

with a new view of the instance segmentation task: dense instance segmentation is

considered as a prediction task over a 4D tensor where instance-level masks are

computed without the need for object detection. While the results are not as satisfactory

as they are with Mask RCNN, TensorMask can lead to further research in dense sliding

windows-based instance segmentation.

One of the main advantages of single-stage instance segmentation is its ability to run

fast, this is especially useful for real-time applications such as autonomous driving.

Recent works on single-stage instance segmentation such as YOLACT [38] and SOLO2

[39] can offer better speed-accuracy trade-offs, however, two-stage networks are still

the leading solutions in object detection challenges such as COCO.

2.4 Pavement data acquisition

The project partner, EyeVi, an expert in geographical information systems has

developed a mobile mapping system (MMS) for large-scale automatic collection of

pavement images. The system is built on top of a car and uses 5 high-resolution

LadyBug 5+ sensors that capture panoramic images, a Global Navigation Satellite

System (GNSS) that provides accurate localization information to the panoramic

images, and a Light Detection and Ranging (LIDAR) sensor. The cameras have a

spherical field of view of 360°, providing a pixel average accuracy of 2mm from a

distance of 10m and can work under temperatures ranging from -20°C to 50°C making

it a good choice for Estonian weather. The LIDAR system is not of interest for this thesis

project which solely focuses on visual imaging data acquired by the cameras.

27

The panoramic images captured by LadyBug 5+ are further processed by EyeVi to

generate orthographic pavement images of size 4096x4096 referred to as orthoframes

in this work.

2.5 Data annotation

Orthoframes acquired using the mobile mapping system are manually annotated to

produce data to be used to train AI algorithms. Previously, the team has developed a

fast and easy-to-use annotation tool [4][40]. The tool provides a graphical user

interface to allow trained personnel to annotate pavement defects in the area of the

paved surface in orthoframes. The tool allows digitizers to select folders containing

orthoframes to annotate; using the smart brush functionality, they can easily segment

an area on the image and assign its defect type. The tool generates a grayscale mask

file for each orthoframe where each color in the mask represents a particular predefined

defect type such as a pothole, weathering, transverse cracking, etc. The same thing can

be done for the paved area of the road to generate a road mask area where the paved

area of the orthoframe is represented by white pixels. Examples of an input orthoframe

and annotated masks are shown in Figure 2.4 whilst the annotation process is shown in

Figure 2.5.

Optionally, if previous annotations of orthoframes exist as shapefiles or defect masks,

digitizers can load them together with corresponding VRT files to speed up the

annotation process (VRT files are a special type of file used to store geospatial

information of each orthoframe, they are necessary for mapping each pixel in

orthoframes to a real point on the road). This functionality is especially useful while

using predictions made by the AI mentioned in [4] to accelerate the digitization of new

unseen roads.

Figure 2.4 Data annotation. On the left, the digitized greyscale defect masks with defects of
different types; in the middle, the orthoframe, and on the right, the paved road area mask.

28

Figure 2.5 Graphical user interface of the annotation tool

29

3 DATA PREPARATION

3.1 Data analysis and partition

In total, 19046 orthoframes of size 4096 ∗ 4096 were annotated with defect types by

trained personnel employed by the Department of Software Science at Tallinn University

of Technology.The annotators have previous experience in geoinformatics. There exist

seven defect types presented in Table 3.1.

Table 3.1 Defect types and characteristics

Name in English Estonian shortcode Characteristics

Longitudinal Crack KPIKIPR Defects parallel to the
centerline of the paved road

area.

Transverse Cracking POIKPR Defects perpendicular to the
centerline of the paved road
area.

Joint Reflection Crack KVUUK Defects in-between two

surfaces of different levels.

Weathering MUREN Defects characterized by
surface erosion which become
visible with time.

Pothole AUK Defects creating a hole in
pavements, usually have a
circular shape.

Patched Road PAIK Represents pavements area
repaired by patching.

Network Cracking VORK Defects caused by fatigue of
the road material, usually
have the shape of a spider
web.

Edge Defect SERVA Defects lying on the edges of

the paved road area.

Since consecutive orthoframes can capture the same part of the road, special attention

was paid to how the data is split into training, validation, and testing sets. Instead of

random sampling, we opted for a step-based sampling where out of each 𝑁 consecutive

orthoframes, 𝑛1 consecutive orthoframes are selected for validation, 𝑛2 for testing and

the rest goes to the training set. A value of 𝑁 = 100, 𝑛1 = 15 and 𝑛2 = 10 were used. This

30

approach allows having fewer overlapping orthoframes in training, validation, and

testing sets compared to random sampling.

However, edge defects are heuristically assigned to defects close to edges of the road

and never predicted by a deep learning model. The assignment algorithm is out of the

scope of this thesis.

3.2 Data generation for instance segmentation

As observed in [6], pixels far from the shooting camera lose details and are not useful

in distinguishing defects of different types. Therefore, the same pre-processing

operation explained in [6], referred to as a focus operation, is applied to orthoframes

and masks to cut off the area of the image far away from the camera. The focus

operation shown in Figure 3.1 does cause any loss of data since consecutive

orthoframes are partially overlapping.

Another step found useful in the previous work was rotating the mask so that its

centerline is parallel to the y-axis. The rotation step is applied to images before training

and inference, predictions are de-rotated back after inference.

Figure 3.1 Focus area and rotation pre-processing steps.

The orthoframe on the left is multiplied by its focus mask (in the middle), the resulting

image (right image) is then rotated (last image).

31

Due to memory limitations on the GPUs, we were either obliged to downscale

orthoframes by a factor of k or use a sliding window of size S ∗ S to generate patches of

images referred to as ortho-patches. A value of k = 4 was chosen for downscaling and

S = 512 for sliding window size. The same resizing and downscaling operations were

performed on both orthoframes and ground truth defect masks. With the sliding

windows approach, masks patches with empty pixels (pixels with a value of 0) are

ignored as they do not contain any information that might be used for learning.

At the time of writing this thesis, the benchmark for instance segmentation is the COCO

challenge [34]. We adopted the same input format used in the benchmark where each

instance of a defect is represented by its enclosing up-right rectangle bounding box, its

mask represented as a list of points and its type is chosen between the ones listed in

Table 3.1. By default, annotated defect masks are grayscale masks with each grey pixel

corresponding to a defect type hence the need to process the raw data to extract each

defect instance referred to as annotations. Annotations are saved following the COCO

format and used as input to instance segmentation models.

Figure 3.2 Representation of different defect types in the whole dataset.

Figure 3.2 shows that potholes are the least represented class with a probability of less

than 1%, almost 1 out of 2 defects is of longitudinal type, transverse cracking is the

second dominant class, followed by network cracking. Joint reflection crack, patched

road, and weathering types represent less than 10% of the whole dataset. This

highlights that data is highly imbalanced.

32

Figure 3.3 Dataset distribution per category in training, validation, and testing sets

The data split strategy adopted in 3.1 ensures that every defect type is equally

represented in training, validation, and testing sets in terms of percentage, this can

also be observed in Figure 3.3. Overall, the training set represents 76.5%, the validation

set 13.5% and the testing set 10.1% of the whole dataset.

3.3 Data augmentation

The performance of deep learning models highly depends on the amount and quality of

data used for training. With complex models made up of different stages, the role of

data is even more crucial because as the number of neurons increases so does the

number of trainable parameters [41]. Data augmentation is a well-known technique to

avoid overfitting in deep neural networks: by generating new artificial data points from

existing training data, the model is forced to learn new representations far away from

the training points, thus minimizing the generalization error on new unseen samples.

For computer vision tasks, such as image classification, semantic segmentation, and

object detection where the main input to models are images, data augmentation can

be grouped into three groups: simple augmentations techniques, deep learning-based

approaches, and meta-learning-based approaches. In this thesis, we focused on simple

augmentations techniques, readers are referred to [41] for a detailed taxonomy of data

augmentation techniques.

33

We used Albumentation [42], a fast cross-platform data augmentation library with

support for different computer vision tasks and deep learning frameworks to add some

comprehensive augmented images to the training set.

Table 3.2 Orthoframes augmentation techniques used for training

Data augmentation Usage Probability Limit / Range

Horizontal flipping 50% -

Vertical flipping 50% -

Shortest edge resizing 100% (640,960)

Longest edge resizing 100% 1024

Center crop 10% (512,512)

Random brightness 20% (-20%, 20%)

Random contrast 20% (-20%, 20%)

For random contrast and brightness, the limit values are the factor range for applying

the transformation, for crop the limit sets the size for the width and height of the crop,

and for edge resize, the size of the new image value corresponds to the given range.

We paid attention not to use transformations that might confuse the model such as

rotation, since some defects, especially longitudinal and transverse cracking, have well-

known directions on orthoframes plus the team already adopted a rotation policy for

orthoframes as described in Figure 3.1. Examples of the above-mentioned

augmentations randomly applied to orthoframes are shown in Figure 3.1together with

the original image.

Figure 3.4 Example of orthoframe augmentation. The first image on the left is the original
image, followed by random brightness, center crop, vertical flipping, and random contrast
transformations, respectively.

34

4 MASK RCNN FOR PAVEMENT DEFECT

INSTANCE SEGMENTATION

The baseline network used in this thesis is Mask R-CNN, this is justified by the fact that

leading solutions in COCO object detection challenges are based on it [31]. The high-

level architecture of Mask R-CNN is shown in Figure 4.1; it can be divided into three

components: a backbone for feature extraction, a region proposal network that

generates defect candidates with their objectness scores, and the headers which

perform object detection (classification + localization) and semantic segmentation in

parallel. By fusing outputs from the final classification, regression, and mask layers, we

obtain instance-level masks and confidence scores for each defect (see Figure 4.1).

Figure 4.1 High-level architecture of MaskRCNN

4.1 Backbone feature extractor

The backbone feature extractor is a deep convolutional neural network that takes an

input image and generates a feature map. Preference is given to deeper neural

networks with high representational capacity such as ResNet which are known to

perform better with computer vision tasks [43]. Deep residual backbone networks are

made of a succession of residual blocks, the total number of layers (50,101) in the

blocks defines the version of the network (ResNet50, ResNet101); residuals blocks

contain a succession of ReLu activated convolutional layers with shortcut connections

to introduce identity mapping. The last pooling and fully connected layers of original

ResNets are removed in the backbone networks used in the thesis.

35

Figure 4.2 ResNet-based backbone feature extractor. Res2, res3, and res4 are the names of
residual blocks. Each block is made up of convolutions, activation, and normalization layers.
Layers in the same block have the same spatial dimensions.

4.1.1 Convolution operation

A convolution is a mathematical operation denoted by an asterisk ∗ and performed on

two matrices: 𝐼 or the input data in form of a tensor and a kernel denoted as 𝐾. The

convolution operation slides the kernel on top of the input data by performing element-

wise multiplication between the kernel 𝐾 and the part of the input 𝐼 the kernel is

currently on; the multiplication results at each sliding step are summed up into a single

pixel. The sliding process is repeated over the entire input 𝐼 to obtain a multidimensional

matrix representing the weighted sums of input features; the output of a convolution is

often referred to as a feature map.

The mathematical expression of a convolution is given below [24]:

 𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)𝑛𝑚

(4.1)

Where 𝐼 - a two-dimensional tensor,

 𝐾 the filter or kernel.

In ConvNets, filters are used to extract meaningful features from input images and the

output of convolution can also be used with another filter for another convolution

36

operation; considering the deep architectures of ConvNets, this results in extracting

more perceptible or visually recognizable features from the original input.

In addition, the filter is moved across the image left to right, top to bottom, with the

amount of movement controlled by the stride. In each block, the stride is set to 1 except

for the first layer where the stride of 2 is used to reduce the feature map size by 2. Zero

padding, on the other hand, adds zero pixels to the frame to counterbalance the size

reduction caused by stride.

4.1.2 Activation function

The activation function is the second stage of a typical ConvNet layer and is referred to

as the detector stage. At this stage, the output of a convolution operation is fed to a

nonlinear activation function to allow the network to capture complex features and to

scale features between certain range to reduce computational costs. Common

activations functions found in ConvNets are resumed in Table 4.1.

Table 4.1 Common activation functions used in ConvNets: sigmoid, tanh, and ReLU [24]

Function Graph Formula

sigmoid

𝜎(𝑥) =
1

1+𝑒−𝑥 (4.2)

tanh

 tanh(𝑥)

(4.3)

ReLU

𝑅𝑒𝐿𝑈 = max (0, 𝑥) (4.4)

Unless otherwise specified, ReLU is the activation function used in this thesis because

of its similarity to linear units and ability to make the gradient direction in active units

useful during the learning process [24].

37

4.1.3 Pooling operation

It is common to see pooling operations as the third stage immediately after activation

function in ConvNets. Pooling functions substitute outputs of activation function with

some summary statistics within a predefined neighborhood [24]. One example of such

function is maximum pooling which replaces outputs at certain locations with the

maximum possible output in the neighbor rectangle or average pooling which replaces

the outputs at a given location with the mean pixel value of the neighborhood.

Pooling functions make modeling using ConvNet invariant to translations and improve

computational efficiency by reducing the number of inputs to the next layer [24], [29].

The single pooling operation used before the first residual block is a maximum pooling

operation. The regular max pooling found at the end of a ResNet layer is removed and

not part of the backbone network for feature extraction.

4.1.4 Normalization

In deep ConvNets, normalization is used to standardize inputs of convolutional layers

to a common scale using a predefined function. Normalizations are known to facilitate

optimization and convergence of ConvNets; batch normalization is commonly used in

computer vision tasks by subtracting the mean from input features and dividing by the

standard deviation at the mini-batch level. However, with small batch sizes, batch

normalization becomes inefficient and group normalization can be used [44]. It works

independently of the batch size by performing group-wise normalization instead of batch

normalization. We used group normalization in this thesis due to memory limitations

not allowing us to work with larger batch sizes.

4.2 Region proposal network

The role of the region proposal network (RPN) is to use the feature map generated by

the backbone feature extractor to generate a set of pavement defect candidates. The

region proposal network was first proposed in Faster-RCNN object detection framework

and then reused in Mask RCNN [31].

4.2.1 Region proposal network’s architecture

The region proposal network is a simple fully convolutional network of a

3𝑥3 convolutional layer shown in Figure 4.3 as an intermediate layer followed by two

parallel layers for objectness classification and box regression.

38

Figure 4.3 Region Proposal Network's (RPN) architecture [19]

The RPN is slid over a 3x3 input sampled from the feature map, and for each point on

the feature map, it generates 2𝑘 objectness scores and 4𝑘 coordinates representing

bounding boxes of 𝑘 probable defects.

4.2.2 Anchor box generation

As shown in Figure 4.3, the RPN outputs 𝑘 defect proposals for a given location in the

feature map based on 𝑘 anchor boxes used as reference. For each sliding window, the

𝑘 anchor boxes are centered in the window and defined by predefined aspect ratios and

scales; we first tried 3 aspect ratios (1:2,1:1, 2:1) and 5 scales (32x32, 64x64,

128x128, 256x256 and 512x512) which results in 𝑘 = 15 anchor boxes for each 3x3

window.

If we consider the feature map at ResNet’s layer res3 mentioned in 4.1, the feature map

will have an output of 64x64. In total, 64x64x15 = 61,440 anchors can be generated.

4.2.3 Anchor box association with ground truth defects

We need to select good anchor boxes to use as reference boxes during the learning

phase in the region proposal network. For that, we calculate the intersection over union

(IoU) of each anchor with the ground truth defects’ boxes; anchors with an IoU higher

than 0.7 are labeled as positive or foreground anchors, anchors with an IoU less 0.3 are

labeled as negative or background and anchors with an IoU between 0.3 and 0.7 are

39

ignored and not used for training. With this association rule, most of the anchors are

background and a ground truth defect box can be associated with multiple anchor boxes.

4.2.4 Region proposal network’s multitask loss

The RPN’s loss function [19] is a combined function of objectives for classification and

regression.

𝐿 =
1

𝑁𝑐𝑙𝑠

∑𝐿log(𝑝𝑖 , 𝑝𝑖
∗) +

𝜆

𝑁𝑟𝑒𝑔

 ∑𝑝𝑖
∗𝐿𝑠𝑚𝑜𝑜𝑡ℎ 𝑙1(𝑡𝑖, 𝑡𝑖

∗)
(4.5)

Where 𝑝𝑖 is the score of an anchor 𝑖 being a defect or not,

 𝑝𝑖∗ is 1 for positive anchors and 0 otherwise,

 𝑡𝑖 is a set of 4 values derived from anchors’ bounding boxes,

 𝑡𝑖∗ is the predicted transformation representative of anchor boxes,

 𝑁𝑐𝑙𝑠 is the number of regions in an input orthoframe, typically 256,

 𝑁𝑟𝑒𝑔 is the number of anchors’ location in the feature map,

 𝜆 is an empirical parameter used the balance the weight of the regression loss.

Log and smooth L1 losses are used respectively in the classification and regression

layers, the regression loss is computed only on positive anchors. The network is trained

on randomly selected 256 anchors from an orthoframe using a backpropagation and

gradient descent algorithm. The output of the regression layer is transformed back to

bounding box coordinates and, the top-100 defect proposals are selected if more than

100 defect proposals exist after applying non-maximum suppression.

4.3 Region of interest align operation

Defect candidates from the RPN can have non-integer bounding boxes making it difficult

to pool out their corresponding ROI from the feature map. Region of Interest Align or

simply RoIAlign is a quantization-free pooling operation that uses bilinear interpolation

to pool the RoI corresponding to the defect candidates from the feature map [31]. A

pooling frame of size 𝐾2 is defined; defect candidates bounding boxes are divided into

𝐾2 bins overlaid on the feature map. Bilinear interpolation is used to estimate the pixels

points of the feature map close to the sampling points in each bin.

40

In Detectron2’s implementation of RoIAlign, an offset of 0.5 is subtracted from the

candidate boxes to make the interpolation results more accurate [44]. We used a default

pooler size 7x7 which results in 256x7x7 ROI for one training batch. During the training

and before the pooling operation, defect candidates are augmented by ground truth

boxes of the batch to speed up the training process [31].

4.4 Network heads

4.4.1 RoI Head architecture

The RoIs pooled by RoIAlign are fed to network headers to produce the defect class,

bounding box, and semantic mask. The network head is made of two components: the

object detection (classification plus localization) head and the semantic segmentation

head.

Figure 4.4 Network Heads architecture. conv stands for convolution and deconv for deconvolution.

The common part is the fifth stage of the backbone ResNet network mentioned in 4.1

The detection head contains defect type and box prediction layers while the mask head

is a fully convolutional network with a 2x2 deconvolution layer and the final mask

prediction layer which is a 1x1 convolution layer.

41

4.4.2 RoI Head loss function

The ROI head constitutes the second stage of the network, it is a combined loss function

made up of classification, regression, and segmentation losses. Given a labeled ROI and

K classes, the total loss function is defined as following [31].

𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘 (4.6)

𝐿 = − log 𝑝𝑢 + 𝜆[𝑢 ≥ 1]𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑡𝑢, 𝑣) − 𝛽 [𝑘]

1

𝐾
 ∑ 𝑦𝑢 log(𝑦𝑝𝑟𝑒𝑑)

(4.7)

Where 𝑝 = (𝑝0, … , 𝑝𝑘) for K+1 class including background computed by a softmax,

 𝑝𝑢 is the probability for the true class 𝑢,

 𝜆; 𝛽 are parameters used to balance box and mask loss scales respectively,

 𝑝 = (𝑝0, … , 𝑝𝑘) for K+1 class including background,

[𝑢 ≥ 1] indicates the box loss is defined for at least one true class,

[𝑢] indicates the mask loss is only defined for true classes,

𝑦𝑝𝑟𝑒𝑑 is the predicted binary mask for a ground truth class 𝑢 computed by a per-

pixel sigmoid.

𝑡𝑢 is a linear transformation representative of the predicted bounding box [33],

𝑣 is a linear transformation representative of the ground truth bounding box [33].

For each experiment, we chose 𝜆 and 𝛽 to adjust the losses to a common scale. By

defining a mask for each class, Mask R-CNN guarantees no competition among different

classes so that the network can output different masks for each region of interest.

42

5 FEATURE PYRAMID NETWORK

5.1 Motivation

Pavement defects of the same or different classes have different scales across

orthophotos, this is also an eminent problem in object detection where we want to

learn multiscale representations of objects in the training data [46]. In

Figure 5.1, we highlight a typical scenario of transverse cracking defect types with

different scales in two orthophotos; this is common for other defect types as well.

Figure 5.1 Different scales of transverse cracking defect type

Feature pyramid network (FPN) is a method of learning object representations at

multiple scales, it can be easily integrated into any backbone feature extractor such as

ResNet in any two-stage network [46].

5.2 Feature pyramid network enabled multi-scale

feature extraction

The architecture of the feature pyramid network (FPN) enabled multiscale feature

extractor is shown in Figure 5.2 with ResNet used as a backbone, P2-P6 are the names

given to multiscale output feature maps. FPN down-samples the last output of the

ResNet (res5) with a max-pooling of kernel size 1 and stride of 2, this downscales res5’s

output by a factor of 2. Output feature maps from all stages of the backbone feature

extractor (a stage is a set of layers of the same size) are fed to a 1x1 convolutional

layer to reduce the channel size to 256 channels through a lateral connection, up-

sampled by a factor of 2 and added to the next laterally convolved feature map from

the bottom-up backbone. The merged feature maps are fed to the last convolution layer

of 3x3 to generate the final multi-scale feature maps to be used in RoI Heads and RPN.

43

The advantage of FPN lies in the fact that ROI can be extracted from features with

different scales instead of a unique feature map.

Figure 5.2 Feature Pyramid Network's architecture

5.3 Region proposal network with feature pyramid

network

The region proposal network is the same as in 4.2, with the exception that defect

candidates are generated not only for one feature map but for the 5 pyramids of

features. This results in more defective candidates and probably with higher quality

(bounding box scales) but after non-maximum suppression, we can choose to keep the

top candidates.

Now that we have 5 multi-scale feature maps, we must decide which one to use in

RoIAlign i.e., which pyramid feature map corresponds to a given defect candidate. This

was solved in [46] with an assignment rule relating the RoI scale to a single level of

pyramid feature. Proposals with smaller scales are assigned to a higher-level feature

pyramid since they have finer resolution while proposals of higher scales are assigned

to a low-level feature pyramid.

44

5.4 RoI heads with feature pyramid network

Regions of interests all share the same RoI head independently of the feature maps they

are pooled from.

As shown in Figure 5.3, the new RoI head is different from the one introduced in 4.4.1.

The detection head contains two fully connected layers, the 256x7x7 ROI is flattened to

a tensor of size 12,544 and fed to the first fully connected layer while the second layer

is of size 1024x1024 [31]. The mask branch is fully convolutional with four 3x3

convolutional layers, followed by a 2x2 deconvolution and 1x1 convolution layers to

output the predicted mask class-agnostic binary mask [31].

Figure 5.3 FPN-enabled RoI Head's architecture

45

6 CASCADE HEADS

6.1 Motivation

A known limitation of object detectors is the remarkable decrease of the network

performance with increasing IoU thresholds. Figure 6.1 shows mask-based mean

average precision (mAP) of the leading solutions on COCO instance segmentation task:

As the IoU threshold increases, the mAP decreases considerably.

Figure 6.1 COCO Instance segmentation leaderboard [34]

Cascade headers mitigate this problem by introducing increasing IoU stages of detection

to the head of any two stage-detector. Cascade R-CNN introduces stages consisting of

only classifiers and box refinement modules [47] while Cascade Mask R-CNN follows

both Cascade R-CNN and Mask R-CNN methods to include the mask branch in each

cascade stage.

6.2 Cascade R-CNN

Cascade RCNN reuses the first part of a two-stage detector for output object proposals

and adds extra stages of classification and regression in the network head [47]. We

empirically found 3 stages of increasing IoU thresholds (0.4, 0.5, 0.6) useful in this

work. The output at a stage is used as input to train the next higher quality stage.

46

Figure 6.2 Cascade RCNN architecture [47].Conv is used for backbone convolutional network,
pool for the RoI Align operation, B0 for the proposal’ box from the RPN, H for the common part
of detection head, C for classification layer, and B for bounding box layer. At the first stage, the
proposals are used as inputs, an IoU threshold of 0.4 is used to separate foreground classes

from background classes; at the second stage the threshold is increased to 0.5 and the outputs
of the first steps are used as inputs. Same thing for the last step where the IoU threshold is 0.6.

The mask branch responsible for defect segmentation is kept intact as it is in 4.4.1

Cascade RCNN was first proposed for Faster R-CNN; while it does increase the

performance on object detection, its impact on the segmentation task is limited.

Cascade Mask R-CNN includes the mask branch in parallel to classification and

regression branches at each stage of the cascade headers. In Figure 6.2, for the first

stage, for example, this consists of adding a mask branch after the detection branch

and using its outputs for the mask branch in the second stage. We used the same IoU

thresholds as in 6.2 to distinguish between foreground and background at each stage.

47

7 PERFORMANCE METRICS

7.1 Intersection over union, precision, recall

Intersection over union or simply IoU or Jaccard index is a popular metric used in

computer vision tasks such as object detection and semantic segmentation to measure

the area of overlap between the ground truth object and its prediction.

𝐼𝑜𝑈 (𝑔𝑡, 𝑝𝑟𝑒𝑑) =
|𝑔𝑡 ⋂ 𝑝𝑟𝑒𝑑|

|𝑔𝑡 ∪ 𝑝𝑟𝑒𝑑|

(7.1)

Where 𝑔𝑡 denotes the ground truth mask or bounding box and 𝑝𝑟𝑒𝑑 denotes the

predicted mask or bounding box.

In the context of object detection, an IoU threshold is used to distinguish among

predictions. A true positive or TP is a detection where the ground truth and the prediction

have the same class, the confidence score is higher than a predefined score (0.05 % in

this work) plus the IoU between the ground truth and the prediction is higher than or

equal to the IoU threshold. When the IoU falls below the threshold, the prediction is a

false positive (FP). False-negative (FN) corresponds to non-predicted ground truth

objects or cases where the IoU is higher than the threshold, but the class is wrongly

predicted.

Precision measures the number of correctly predicted objects out of all predictions and

recall is used to find the rate of correctly predicting a ground truth object.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(7.2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(7.3)

7.2 Mean average precision, mean average recall

The expression average precision (AP) is used interchangeably with mean average

precision (mAP). For a given defect class, mAP is the average of areas under curve of

the precision-recall curves for predefined IoU thresholds. In object detection, we use

48

the definitions of precision and recall in 7.2 to draw the precision-recall curve. However,

instead of trying to find the exact area under curve, we sample the recall curve in 101

recall points (from 0 to 1 with a step of 0.01) to interpolate the area under curve.

We follow COCO’s evaluation rules and define the mAP at 10 IoU thresholds from 0.50

to 0.95 with a step of 0.05 (0.50:0.05:0.95). The mAP for a class is then given as in

the following equation.

𝐴𝑃𝑐𝑙𝑎𝑠𝑠 =
1

10
 ∑

𝑖𝑜𝑢 ∈ 𝐼𝑜𝑈 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠

𝐴𝑃𝑐𝑙𝑎𝑠𝑠(𝑖𝑜𝑢)
(7.4)

Finding the mAP of a whole dataset consists of averaging the mAP values for all K classes

present in the data.

𝐴𝑃 =
1

𝐾
 ∑

𝑐𝑙𝑎𝑠𝑠 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝐴𝑃𝑐𝑙𝑎𝑠𝑠
(7.5)

To compute the average recall AR or mAR, we use the recall-IoU curve, and follow the

same process described above to first compute the AR for each class and then the

general mAR for a dataset.

With instance segmentation models where we predict both bounding box and semantic

masks, we distinguish box-based mAP from mask-based mAP simply by how the

precision and recall are calculated (either using mask IoU or box IoU).

7.3 Correlation and mean absolute error

During testing, for every 100m long road strip, metric and object correlations are

calculated to find the relationship between the predicted and ground truth defects. The

metric correlation measures the relationship between the lengths or areas or numbers

of predicted and ground truth defects while the mean absolute error measures the

agreement between the predictions and the ground truth. The mathematical formulas

for metric correlation and mean absolute error are given in Equations 7.6 and 7.7.

49

𝐶𝑜𝑟𝑟 [𝐶𝑙𝑎𝑠𝑠] =
∑(𝛿𝑝𝑟𝑒𝑑 − 𝛿𝑝𝑟𝑒𝑑) (𝛿𝑔𝑡 − 𝛿𝑔𝑡)

√ (∑(𝛿𝑝𝑟𝑒𝑑 − 𝛿)
2

∑(𝛿 − 𝛿𝑔𝑡)
2

(7.6)

Where 𝐶𝑜𝑟𝑟 is the metric correlation and

𝛿𝑝𝑟𝑒𝑑 𝑎𝑛𝑑 𝛿𝑔𝑡 are predictions and ground truth defects’ lengths (in 𝑚) if the defect

type is longitudinal, joint reflection or transverse cracking; areas (in 𝑚2) if the

defect type is network cracking, patched road, or weathering and counts if the

defect type is a pothole.

𝑀𝐴𝐸 =
∑ |𝛿𝑝𝑟𝑒𝑑 − 𝛿𝑔𝑡 |

𝑁

(7.7)

Where 𝑀𝐴𝐸 is the mean absolute error;

𝛿𝑝𝑟𝑒𝑑 𝑎𝑛𝑑 𝛿𝑔𝑡 have the same definitions as in the equation (7.7)

𝑁 is the number of data points.

In addition to correlations, the overall defectiveness for each bin of 100m was accessed

using the following equation:

𝐷[%] =
(𝐿𝑃𝑂𝐼𝐾𝑅 ∗ 2.5 + 𝐿𝐾𝑃𝐼𝐾𝐼𝑃𝑅 ∗ 0.5 + 𝐿𝐾𝑉𝑈𝑈𝐾 ∗ 0.1 + 𝑁𝐴𝑈𝐾 + 𝐴𝑉𝑂𝑅𝐾 + 𝐴𝑀𝑈𝑅𝐸𝑁 + 𝐴𝑃𝐴𝐼𝐾 + 𝐴𝑆𝐸𝑅𝑉𝐴)

𝐿𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 𝑊𝑠𝑒𝑐𝑡𝑖𝑜𝑛

(7.8)

Where L is the length of the corresponding predicted defect type represented by its code

as defined, N is the number of such defect type and A, is the area of such type in 𝑚2.

𝐿𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑊𝑠𝑒𝑐𝑡𝑖𝑜𝑛 are the length and width of the road strip under consideration. The

coefficients are defined by the Estonian Road Administration [5]. 𝐷 is the overall defect

sum in percentage.

50

8 EXPERIMENTS AND RESULTS

Unless otherwise specified, Detectron2’s implementation of Mask R-CNN [45] was used

as baseline code and further modified for the experiments.

8.1 Experiment with pavement patches

As mentioned in 3.2, one way to generate data for instance segmentation task is by

using sliding windows of size 5122 to create patches of pavement images; patches

containing at least 500 defective pixels are considered for training. The training,

validation, and test sets contain respectively 25517, 4274, and 3335 defect instances.

The distribution of defects among classes is identical to the one described in Figure 3.3.

A standard ResNet50 based Mask R-CNN with feature pyramid network pre-trained on

COCO dataset is used as the model. A mini-batch gradient descent algorithm is used as

a solver with each batch containing 8 training images [48]. The training was performed

on a single Nvidia GeForce 2080 Titan GPU for a total of 100k iterations; the learning

rate was initialized to 0.001 and decayed by 10 at 50k and 75k iterations, respectively.

A momentum of 0.9 and a weight decay of 0.001 were used. Figure 8.1 shows how the

total loss changes during the training in training and validation sets.

Figure 8.1 Loss during training with sliding windows approach.

51

In Figure 8.1, the training loss is smoother than the validation loss; this is because the

training loss is logged more often than the validation loss.

During the training, average precision values computed on the validation set are also

monitored as shown in Figure 8.2 and Figure 8.3.

Figure 8.2 Sliding window approach: bounding box based average precision on the validation set.

The box-based APs are higher than mask-based APs; it is because localization is an

easier task compared to dense pixel-level classification i.e., segmentation. The highest

value of 𝐴𝑃50 is 69% for the bounding box and 66% for the mask. However, it is

important to remember that both the training and validation data were made of only

defective patches. So, while those values seem acceptable compared to instance

segmentation results found in the literature [31], it assumes inputs to the model are all

defective.

52

Figure 8.3 Sliding window approach: bounding mask based average precision on the validation

set.

During the testing, we ideally want to run the network on full pavement orthoframes;

for that, the same sliding window is used to slice the orthoframe into patches of size

5122 which are all fed to the network for predictions (no matter if they are defective or

not).

Figure 8.4 Sliding window approach: intact ground truth(left) vs prediction (right) , light blue is
for longitudinal cracking and violet for network cracking. The grey color indicates defective

patches.

53

Figure 8.4 shows an example of the predictions of a full orthoframe. Some non-defective

patches are also predicted as defective as it can be seen in Figure 8.4 thus making the

network not the optimal solution to use for full orthoframes containing defective and

non-defective patches. However, this can be used if prior knowledge of defective patches

is known through a middle classification network for example.

More examples of good detections by the network can be found in Figure 8.5 and Figure

8.6.

Figure 8.5 Sliding window approach: example of a good prediction(left) versus ground
truth(right). The ground truth defect instance is successfully predicted by the model as two
instances of the same class with 75% and 58% confidence scores.

Figure 8.6 Sliding window approach: another example of good prediction (left) versus ground
truth (right). In this example, weathering is successfully detected by the network with a score
of 86%.

54

8.2 Experiment with downscaled orthoframes

With the sliding window approach, the network is only able to learn from defective

patches; to counterbalance this, orthoframes were downscaled by a factor 𝑘 = 4 so they

can be fed to the GPU machine. While this approach results in loss of resolution, it allows

the network to learn from a full orthoframe instead of only defective patches. With

downscaled orthoframes, experiments were conducted with standard FPN-enabled Mask

R-CNN and FPN-enabled Mask R-CNN with cascade headers.

8.2.1 Experiment with feature pyramid network-enabled Mask R-

CNN

In this experiment, orthoframes were downscaled by a factor of 4 resulting in images of

size 1024x1024. Nearest neighbor interpolation was used for greyscale masks to avoid

having interpolated pixels values that do not correspond to any defect type while bicubic

interpolation over a 4x4 pixel neighborhood (is slower and known to produce limited

artifacts) was used for orthoframes. Small annotations with an area less than 500 pixels

were filtered out. Augmentations defined in Table 3.2 including edge resizing are applied

to the training set. In total, there exist 32460, 5718, and 4278 defect instances in

training, validation, and test sets, respectively. The distribution of instances among

classes is the same as in Figure 2.2.

Mask R-CNN with pyramidal features is used as a model; the bottom-up module of the

backbone feature extractor is the conventional ResNet50 without its last pooling layer.

The network is trained for 100k batch iterations (1 batch = 8 images) with a learning

rate of 0.001 decayed by 10 at 25K,50K, and 75K using mini-batch gradient descent

and backpropagation. A linear warmup scheduler introduced in [49] was adopted to

linearly scale up the learning rate for the first 1k iterations. A single training epoch

corresponds to ca. 1821 batches since there are 14570 orthoframes in the training set.

The learning curve is given in Figure 8.7.

55

Figure 8.7 FPN-enabled Mask R-CNN: training loss.

The weights were saved every 5k iterations. After 55k iterations, there were no further

improvements neither in the training loss (see Figure 8.7) nor in the box and mask-

based AP (see Figure 8.8 and Figure 8.9), so the weights at 55k (10k iterations after

the first learning rate decay) were selected to be the best.

Figure 8.8 FPN-enabled Mask R-CNN: box-based AP on the validation set

56

The overall average precision was 18.5% and 23% for respectively segmentation and

localization tasks while the AP50 was 41% and 45%. This is because the increase of IoU

thresholds leads to more false positives which results in lower AP values. The model

performs well with certain defect types such as patched road and transverse cracking

where the 𝐴𝑃50 for both localization and segmentation tasks is at least 60% but suffers

for example in predicting potholes which account only for ca. 0.5% of the total validation

set and weathering where the 𝐴𝑃50 is less than 30%.

Figure 8.9 FPN-enabled Mask R-CNN: mask-based AP on the validation set.

Compared to the experiment in 8.1, the network learns a better representation of non-

defective pixels since full resized orthoframes are used as inputs. In some cases, the

network can also outperform the manual annotation as shown in Figure 8.10.

57

Figure 8.10 FPN-enabled Mask R-CNN: example of network's output(left) correcting the manual
annotation(right). The orthoframe is defective, with a closer look, it is possible to identify the

defects which were missed out by the annotators but detected by the model with acceptable
confidence scores. The overlapping instances of the same type are merged during the
postprocessing step.

One of the main advantages of an instance segmentation network over a succession of

segmentation and classification networks is its ability to successfully distinguish

neighboring instances of the same or different defect types. This is in part due to the

region proposal network that can use regions from multiscale feature maps to generate

multiple defect candidates for a single image. The candidates with an IoU greater or

equal to 0.5 (in this experiment) are considered as foreground and used in the network

heads for further box refinement, plus class and mask prediction.

Figure 8.11 FPN-enabled Mask R-CNN: example of neighboring defect instances successfully
predicted as different instances (left) versus ground truth (right).

58

Figure 8.12 FPN-enabled Mask R-CNN: a second example of neighboring defect instances
successfully predicted as different instances (left) versus annotated ground truth (right).

Figure 8.11 and Figure 8.12 show examples of the model confidently distinguishing close

patched road defects instances even though those were grouped by annotators. This is

particularly useful as the Estonian Road Administration for example relies on correlations

metrics calculated using the number of defect instances in their decision-making

process.

8.2.2 Experiment with cascade heads

The experiment with cascade headers replicates the previous experiment in 8.2.1 except

that the RoI head responsible for final detection is replaced by a cascade of heads. The

cascade architecture described in 6.2 contains three successive localization heads with

0.4,0.5,0.6 IoU thresholds, respectively. We use pyramidal backbone features to

generate defect candidates of which only the ones with at least an IoU of 0.4 with a

ground truth defect are considered as positives and fed to the first localization head of

the cascade architecture. The output from the first localization head with an IoU of at

least 0.5 is used as input to the last head whose outputs are also filtered based on an

IoU of 0.6.

In each stage, the foreground accuracy defined as the number of correct foreground

predictions divided by the total number of ground truth objects is monitored and shown

in Figure 8.13.

59

Figure 8.13 Foreground accuracies in cascade headers.

Figure 8.13 shows that the foreground accuracy increases in successive stages. In other

words, by successively increasing the IoU threshold used to differentiate between

foreground and background proposals during training, the probability of a defect

proposal matching a ground truth object is increased. Using the same stages with the

same IoU thresholds during inference leads to better defect proposals and hence

detectors of higher quality. The comparison between cascade and standard headers (in

8.2.1) for all defect types confused is given in Table 8.1.

Figure 8.14 Categorical box based mean average precision for cascade headers

60

Figure 8.15 Categorical mask based mean average precision for cascade headers

The categorical mean average precision for localization and segmentation tasks (see

Figure 8.14 and Figure 8.15) are both slightly higher than in the experiment with only

feature pyramid and single network heads. One of the most visible improvement is with

pothole defect type where the 𝐴𝑃50 reaches 30% after 100k iterations but that fast jump

of the 𝐴𝑃50 should not be relied on since there are very few instances of potholes in the

validation set and might be that the network luckily predicts some potholes instances;

so, the weights at 65k were chosen to be the best.

Table 8.1 Comparison of results between cascade and standard heads, cascade performs better

 Box Mask

AP 𝐴𝑃50 𝐴𝑃75 AP 𝐴𝑃50 𝐴𝑃75

Standard Heads 24.22 46.54 22.56 19.23 43.83 14.10

Cascade Heads 26.03 48.30 24.76 19.97 45.02 15.64

The importance of cascade headers is their ability to get rid of possible false positives

and improve both the confidence score and the box shape.

61

Figure 8.16 Comparison (1) of results between standard head’s (left) and cascade head’s
predictions (right) and ground truth orthoframe (bottom).

The network with a single detection stage predicted a false positive with a confidence

score of 34% in addition to the defects present in the ground truth; this is corrected by

a cascade of 3 detection stages (see Figure 8.16). Moreover, there is a noticeable

improvement in the confidence scores with a cascade of 3 detection stages. The same

behavior can be observed in Figure 8.17 where the model with a cascade head

successfully drops a false positive defect of network cracking type.

62

Figure 8.17 Comparison (2) of results between cascade head (left) and standard head’s (right)
predictions and ground truth data (bottom).

However, it should be noted that the increase in AP also comes with more complex

network architectures, hence a slower inference speed. A benchmark comparing the

approximated number of floating-point operations per second (FLOPS), the number of

parameters, and the inference speed of network configurations described in 8.1 and 8.2

is shown in Table 8.2.

The benchmark test was performed on a single NVIDIA GeForce RTX 2080Titan GPU

machine with 11 GB of memory. The configuration with the slowest inference speed

(seconds/image) and a smaller number of FLOPS and parameters is the standard Mask

RCNN with small patches where a single scale RestNet50 is used as a feature map. But

even the slowest network configuration has an inference speed of 0.0442 second/image

which means 5000 orthoframes can be predicted in less than 4 minutes on the GPU

machine.

63

Table 8.2 Benchmarking of results with different network configurations

Configuration Total FLOPS
[Giga]

Total number of parameters
[Million]

Inference
Speed
[second/i

mage]
Backbone RPN Head Total

Cascade heads
as in 8.2.2

141.2097±2.4419 26.8 0.6 44.3 71.7 0.0442

Mask R-CNN

with FPN as in
8.2.1

197.9363±1.1368e-

13

26.8 0.6 16.6 44 0.0427

Small patches
as in 8.1

68.3246±3.0250 8.5 9.5 17.1 35.1 0.1627

8.3 Additional Testing

The additional test was performed to evaluate the performance of the network in real-

life conditions using not only performance metrics found in the literature but also the

ones defined by the Estonian road administration. The testing data contained 5511

annotated orthoframes that were previously never used. The orthoframes come from

three different road sections as described in Table 8.3.

Table 8.3 Roads' descriptions for additional testing

 Coordinates (longitude, latitude) [Decimal

Degrees]

Description Length

[Km]

 Start End

Road
A

23.82326735,59.03420139 23.71051293,58.99469076 from
Palivere-
Keedika to
Keila-
Haapsalu

8.2

Road
B

25.20221481,58.08738897 25.19883943,58.08765739 from 69306
Viljandi
County to
Soo 16

0.2

Road

C

25.15270102,59.33924343 25.0269943,59.3690348 from Raasiku

Tee (Kulli) to
Lagedi-
Arukula-
Peningi

8.2

Data preparation and augmentation described in 3.2 and 3.3 were applied to the

orthoframes. Rescaled orthoframes of size 1024x1024 were fed to the network with

pyramidal features and cascade headers described in 8.2.2 for inference. The network

configuration described in 8.2.2 was used. The semantic greyscale masks produced by

the network are digitized using an in-house software module developed by EyeVi. The

64

digitized defects can be integrated into public geographical information system software

such as QGIS [50].

An example of a road strip from road A is shown in Figure 8.18. Each defect type is

represented by a single color.

Figure 8.18 Example of the predicted defects integrated into QGIS software.

Moreover, correlation and mean absolute error defined in 7.3 were computed as shown

below to compare the predictions to the annotations.

Table 8.4 Correlation and mean absolute error.

Defect type Correlation Mean Absolute Error

Pothole [𝑐𝑜𝑢𝑛𝑡] 0.2 0.14

Longitudinal cracking [𝑚] 0.67 14.04

Joint Reflection cracking [𝑚] 0.67 4.24

Transverse cracking [𝑚] 0.89 1.97

Weathering [𝑚2] 0.56 2.56

Patched road [𝑚2] 0.32 1.49

Network cracking [𝑚2] 0.35 8.04

Defect Sum [%] 0.86 3.38

A threshold of 40% was used as a minimum confidence score. On average, the metrics

for potholes were the lowest as they are underrepresented. Patched road and network

cracking detection suffer in performance as well.

65

66

Figure 8.19 Metric correlations for defect types and overall defectiveness. Blue is for predictions
and red for annotations. The abscissa corresponds to road strips of 100m and the ordinate to the
sum of defects of such type for a certain road section.

The highest correlation was achieved with transverse cracking, probably because of their

unique characteristics in orthoframes. Transverse crackings are perpendicular to the

centreline of the paved road area. No other defect type has that same characteristic.

The overall defectiveness correlation of 86% and MAE of 3.38% show that despite the

issues with some defect types, the model still performs well and can be relied on. For

longitudinal cracking and network cracking, the model tends to predict more defects

than there are in the ground truth data.

Weathering is not easily recognizable even for humans, for example, in Figure 8.20 the

image on the left is the annotation with 2 instances of weathering colored in light-blue

while the image on the right (prediction of the network) does not contain any defect.

The network misses all the instances of weathering present in the image. Those regions

with weathering are characterized by erosion and coarser aggregates.

67

Figure 8.20 Example of weathering not detected by the network. The annotation is on the left

and the prediction on the right.

In Figure 8.21, the blue color outlines the annotated defects while the red outlines the

prediction of the same type (network cracking). The areas of the predicted defects are

larger. The model also predicts multiple consecutive instances of network cracking while

the annotation contains only a few. In such cases, the network is more reliable as the

orthoframe truly contains multiple instances of network cracking.

Figure 8.21 Example of predictions of network cracking compared to the annotations. The blue
denotes the annotated defects and the red the predictions.

68

9 SUMMARY

9.1 Conclusions

Automatic and timely road inspection is of high importance for cost-efficient road

infrastructure management. Solutions powered by deep convolutional neural networks

(ConvNet) offer expert-level performance while reducing the processing time in

automating defect detection on roads. ConvNet based models for classification, and

semantic segmentation, can detect defective areas of road pavement at a pixel-level

accuracy but will fail in separating adjacent defects which ConvNet models for instance

segmentation can successfully do in addition to eliminating the need for a pipeline of

classification and segmentation networks.

In this thesis, a two-stage instance segmentation model based on ConvNet (Mask R-

CNN [31]) was researched and implemented as a baseline for defect instance

segmentation. The baseline model achieved an 𝐴𝑃50 of 69% and 66% for the localization

and segmentation tasks, respectively, on a validation dataset made of only defective

roads orthophotos’ patches.

The baseline network was improved with pyramidal features maps [46] to enhance the

ability to learn multiscale defect representations. The new network was then trained on

downscaled orthophotos to achieve an 𝐴𝑃50 of 46.5% and 43.8% on localization and

segmentation tasks. While downscaling the orthoframes did result in a decrease in

performance, it did enable the network to be able to make more reliable and correct

defect predictions on full orthophotos not just defective orthophotos’ patches. At this

stage, the network can successfully separate adjacent defects even when grouped as

one by annotators.

To mitigate the degradation of performance with increasing IoU threshold (used to label

object candidates as positive or negative in two-stage object detectors [47]) and to

move toward a higher quality detector, a cascade architecture made of 3 stages of

detections with increasing IoU thresholds (0.4,0.5,0.6) was adopted following its original

implementation for object detection in [47]. This increases the 𝐴𝑃50 from 46.5% to

48.3% and from 43.8% to 45% for localization and semantic segmentation tasks

respectively, while running with an inference speed of 0.045 seconds/image on GeForce

RTX 2080Titan GPU machine of 11GB. The increase of performance was possible

because the network could differentiate positive defect candidates from negative ones

in multiple detections stages better than in single stage.

69

Finally, a test was performed under realistic scenarios on previously unseen 16.6km of

Estonian roads coming from 3 different road sections. The overall correlation of 86%

calculated following the definition of pavement defectiveness provided by Estonian Road

Administration and the mean absolute error of 3.38% show that even though the

network struggles with defect types such as weathering and potholes, it can still be

relied on for automatic pavement distress detection.

9.2 Future works

Currently, the dataset distribution is very unbalanced: the main reason for the low

performance with potholes is due to their low presence (<0.5%) in the training set. It

would be more interesting to validate the results found in this thesis on a more balanced

dataset because the overall mean average precision is the mean of average precisions

of individual defect types, no matter how well represented they are in the dataset.

A known limitation of two-stage object detection models such as Mask R-CNN used as

the baseline in this work is the usage of fixed-sized anchor boxes as references for

proposal generation. It has been proven that fixed-sized predefined anchors can cause

a decrease in the overall performance of the network [51]. Recently, anchor-free

instance segmentation models which allow targets to map any region in the feature map

without any restrictions have been studied and researched in the literature [51]–[55].

Even though research on that direction is still in its early stage and suffers in

performance, it would be important to consider them as future works; if successful

anchor-free models will not just get rid of manually defined anchors but also lead to a

probable faster inference and training speeds since most of those models are single

stage.

After potholes which have the lowest performance because of their low representation

in the training data, the second defect type with a low mean average precision is

weathering. As shown in Figure 8.20, weathering defects are characterized by erosion

and coarse aggregates. Such characteristics of defects could be better modeled with

textural information of roads’ pavement. The question of whether ConvNets learn better

complex texture or shape information is arguable [56], [57]. To design the next

ConvNets models, it would be important to estimate and understand how much shape

or textural information is learned in current ConvNet based solutions for pavement

detections.

Finally, two-stage instance segmentation models are multitasking models but do not

fully benefit from the multitask learning paradigm [58],[59], [60]. In this thesis, for

70

example, the target objective optimized in the network’s detection head is the weighted

sum of localization, classification, and segmentation losses and even though the three

tasks share common backbone parameters, there are still many parameters specific to

each task. For the sake of research, aspects of multitask learning paradigm such as

parameters sharing between different tasks and multitask objective optimization can be

researched.

71

KOKKUVÕTE

Tee olukorra jälgimine ja defektide õigeaegne tuvastamine (vältimaks tee olukorra

edasist halvenemist) on maanteeinfrastruktuuri haldamisel olulise tähtsusega.

Süvaõppe konvolutsiooniliste närvivõrkude põhised automatiseeritud lahendused

võistlevad täpsuselt inimannoteerijatega ning on suurema jõudlusega. Sellised defektide

klassifitseerimise ja semantilise segmenteerimise mudelid suudavad tuvastada teekatte

defektsed alasid piksli täpsusega, kuid ei suuda eristada kõrvuti asuvaid defekte.

Instantside segmenteerimiseks mõeldud mudelitel on selline võimekus olemas, samuti

on tegu kõik-ühes lahendusega, mis tähendab, et ei ole vaja treenida eraldi

klassifitseerimis- ja segmenteerimisvõrke.

Käesolevas väitekirjas uuriti ja rakendati defektide segmenteerimiseks kaheetapilist

instantside segmenteerimise mudelit (Mask R-CNN [31]). See mudel saavutas vastavalt

69% ja 66% keskmise täpsuse (𝐴𝑃50) lokaliseerimis- ja segmenteerimisülesannetes

valideerimisandmestikul, mis koosnes ainult defektsetest teede ortofotode

segmentidest.

Baasvõrku täiendati püramiidsete tunnuskaartidega [46], et parandada mudeli võimet

ära tunda eri suurusega defekte. Seejärel treeniti uut võrku vähendatud resolutsiooniga

ortofotodel ja saavutati vastavalt 46,5% ja 43,8% 𝐴𝑃50 lokaliseerimis- ja

segmenteerimisülesandes. Kuigi ortofotode resolutsiooni vähendamine halvendas

tulemusi, võimaldas see võrgustikul teha usaldusväärsemaid ja täpsemaid

defektiprognoose täissuuruses ortofotodel, mitte ainult defektsete ortofoto segmentide

kohta. Praeguses etapis suudab võrk edukalt eristada kõrvuti asuvaid defekte isegi siis,

kui annoteerijad eelistaksid need üheks defektiks grupeerida.

Selleks, et kompenseerida tulemuste halvenemist objektikandidaatide selekteerimiseks

kaheastmelises objektituvastuses [47] kasutatava IoU künnise suurendamisel, võeti

kasutusele kolmeastmeline kaskaadarhitektuur, milles kasutatakse kolmeastmelist

suurenevat IoU künnist (0,4,0,5,0,6). Tänu sellele tõusis 𝐴𝑃50 46,5% pealt 48,3% peale

lokaliseerimisülesandes ja 43,8% pealt 45% peale segmenteerimisülesandes. Süsteem

kulutab 0,045 sekundit ühe ortofoto analüüsi peale (11 GB GeForce RTX 2080Titan

GPU). Jõudluse suurenemine tuleneb asjaolust, et mitme tuvastamisetapiga võrk

suudab rohkem defektikandidaate elimineerida kui üheetapiline võrk.

Süsteemi testimiseks kasutati ortofotosid, mille kogumaht teepikkuses on 16.6

kilomeetrit ja mis pärinevad kolmelt erinevalt teelõigult, mida polnud eelnevalt

kasutatud treenimisel ega valideerimisel. Korrelatsioon 0,86 ja 3,38%-line keskmine

72

absoluutne viga võrreldes Eesti Maanteeameti metoodika järgi arvutatud tee

defektsusega näitavad, et kuigi võrk on osaliselt raskustes mõnede defektitüüpidega

nagu murenemine või (maanteedel harvaesinevad) teeaugud, on seda võimalik

kasutada automatiseeritud teekatte defektituvastuses.

73

LIST OF REFERENCES

[1] “ETIS - Kuluefektiivse ühildatava geodeetilise täpsusega 3D ruumiandmete

taristu loomise rakendusuuring.” https://www.etis.ee/Portal/Projects/Display/e344ff8c-

ce7d-4b03-8db0-ed85cb4a8170?lang=ENG (accessed Nov. 24, 2020).

[2] A. Riid, R. Pihlak, and R. Liinev, “Identification of Drivable Road Area from

Orthophotos Using a Convolutional Neural Network,” in 2020 17th Biennial Baltic

Electronics Conference (BEC), 2020, pp. 1–5. doi: 10.1109/BEC49624.2020.9277392.

[3] R. Lõuk, A. Tepljakov, and A. Riid, “A Two-Stream Context-Aware ConvNet for

Pavement Distress Detection,” in 2020 43rd International Conference on

Telecommunications and Signal Processing (TSP), 2020, pp. 270–273. doi:

10.1109/TSP49548.2020.9163538.

[4] R. Lõuk, A. Riid, R. Pihlak, and A. Tepljakov, “Pavement Defect Segmentation in

Orthoframes with a Pipeline of Three Convolutional Neural Networks,” Algorithms, vol.

13, no. 8, p. 198, Aug. 2020, doi: 10.3390/a13080198.

[5] “Maanteeamet,” Maanteeamet. https://www.mnt.ee/eng (accessed May 21,

2021).

[6] A. Riid, R. Lõuk, R. Pihlak, A. Tepljakov, and K. Vassiljeva, “Pavement Distress

Detection with Deep Learning Using the Orthoframes Acquired by a Mobile Mapping

System,” Appl. Sci., vol. 9, no. 22, p. 4829, Nov. 2019, doi: 10.3390/app9224829.

[7] W. Cao, Q. Liu, and Z. He, “Review of Pavement Defect Detection Methods,” IEEE

Access, vol. 8, pp. 14531–14544, 2020, doi: 10.1109/ACCESS.2020.2966881.

[8] T. S. Nguyen, M. Avila, and S. Begot, “Automatic Detection and Classification of

Defect on road Pavement using Anisotropy Measure,” p. 6.

[9] B. Akarsu, M. Karaköse, K. Parlak, E. Akin, and A. Sarimaden, “A Fast and

Adaptive Road Defect Detection Approach Using Computer Vision with Real Time

Implementation,” Int. J. Appl. Math. Electron. Comput., pp. 290–290, Dec. 2016, doi:

10.18100/ijamec.270546.

[10] A. Ayenu-Prah and N. Attoh-Okine, “Evaluating Pavement Cracks with

Bidimensional Empirical Mode Decomposition.,” EURASIP J Adv Sig Proc, vol. 2008, Jan.

2008.

74

[11] Y. Shi, L. Cui, Z. Qi, F. Meng, and Z. Chen, “Automatic Road Crack Detection

Using Random Structured Forests,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 12,

pp. 3434–3445, Dec. 2016, doi: 10.1109/TITS.2016.2552248.

[12] A. S. Marques and P. L. Correia, “Automatic Road Pavement Crack Detection

Using SVM,” p. 4.

[13] K. Fernandes and L. Ciobanu, Pavement Pathologies Classification Using Graph-

Based Features. 2014. doi: 10.1109/ICIP.2014.7025159.

[14] D. Zhou, Texture Analysis and Synthesis Using a Generic Markov-Gibbs Image

Model. University of Auckland, 2006. [Online]. Available:

https://books.google.de/books?id=shR8NwAACAAJ

[15] F. Yang, L. Zhang, S. Yu, D. Prokhorov, X. Mei, and H. Ling, “Feature Pyramid

and Hierarchical Boosting Network for Pavement Crack Detection,” ArXiv190106340 Cs,

Jan. 2019, Accessed: Jan. 09, 2021. [Online]. Available:

http://arxiv.org/abs/1901.06340

[16] S. Xie and Z. Tu, “Holistically-Nested Edge Detection,” ArXiv150406375 Cs, Oct.

2015, Accessed: Jan. 09, 2021. [Online]. Available: http://arxiv.org/abs/1504.06375

[17] Y. Liu, M.-M. Cheng, X. Hu, K. Wang, and X. Bai, “Richer Convolutional Features

for Edge Detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 8, pp. 1939–

1946, Aug. 2019, doi: 10.1109/TPAMI.2018.2878849.

[18] H. Majidifard, P. Jin, Y. Adu-Gyamfi, and W. G. Buttlar, “Pavement Image

Datasets: A New Benchmark Dataset to Classify and Densify Pavement Distresses,”

Transp. Res. Rec. J. Transp. Res. Board, vol. 2674, no. 2, pp. 328–339, Feb. 2020, doi:

10.1177/0361198120907283.

[19] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks,” ArXiv150601497 Cs, Jan. 2016, Accessed:

Nov. 24, 2020. [Online]. Available: http://arxiv.org/abs/1506.01497

[20] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,”

ArXiv161208242 Cs, Dec. 2016, Accessed: Jan. 09, 2021. [Online]. Available:

http://arxiv.org/abs/1612.08242

75

[21] K. Zhang, Y. Zhang, and H.-D. Cheng, “CrackGAN: Pavement Crack Detection

Using Partially Accurate Ground Truths Based on Generative Adversarial Learning,” IEEE

Trans. Intell. Transp. Syst., pp. 1–14, 2020, doi: 10.1109/TITS.2020.2990703.

[22] I. J. Goodfellow et al., “Generative Adversarial Networks,” ArXiv14062661 Cs

Stat, Jun. 2014, Accessed: Jan. 09, 2021. [Online]. Available:

http://arxiv.org/abs/1406.2661

[23] A. Tepljakov, A. Riid, R. Pihlak, K. Vassiljeva, and E. Petlenkov, “Deep Learning

for Detection of Pavement Distress using Nonideal Photographic Images,” p. 6.

[24] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, ch.

9, pp. 330-371.

[25] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998, doi:

10.1109/5.726791.

[26] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “ImageNet: A large-

scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision and

Pattern Recognition, 2009, pp. 248–255. doi: 10.1109/CVPR.2009.5206848.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks,” in Advances in Neural Information Processing Systems,

2012, vol. 25, pp. 1097–1105. [Online]. Available:

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45

b-Paper.pdf

[28] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for

Biomedical Image Segmentation,” ArXiv150504597 Cs, May 2015, Accessed: Jan. 07,

2021. [Online]. Available: http://arxiv.org/abs/1505.04597

[29] K. P. Murphy, Probabilistic Machine Learning: An introduction. MIT Press,

2021,ch. 14, pp.427-462. [Online]. Available: http://mlbayes.ai

[30] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Simultaneous Detection and

Segmentation,” ArXiv14071808 Cs, Jul. 2014, Accessed: Nov. 24, 2020. [Online].

Available: http://arxiv.org/abs/1407.1808

76

[31] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” ArXiv170306870

Cs, Jan. 2018, Accessed: Dec. 04, 2020. [Online]. Available:

http://arxiv.org/abs/1703.06870

[32] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for

accurate object detection and semantic segmentation,” ArXiv13112524 Cs, Oct. 2014,

Accessed: Nov. 24, 2020. [Online]. Available: http://arxiv.org/abs/1311.2524

[33] R. Girshick, “Fast R-CNN,” ArXiv150408083 Cs, Sep. 2015, Accessed: Nov. 24,

2020. [Online]. Available: http://arxiv.org/abs/1504.08083

[34] T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context,” ArXiv14050312

Cs, Feb. 2015, Accessed: Nov. 24, 2020. [Online]. Available:

http://arxiv.org/abs/1405.0312

[35] K. Chen et al., “MMDetection: Open MMLab Detection Toolbox and Benchmark,”

ArXiv Prepr. ArXiv190607155, 2019.

[36] X. Chen, R. Girshick, K. He, and P. Dollar, “TensorMask: A Foundation for Dense

Object Segmentation,” in 2019 IEEE/CVF International Conference on Computer Vision

(ICCV), Seoul, Korea (South), Oct. 2019, pp. 2061–2069. doi:

10.1109/ICCV.2019.00215.

[37] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully Convolutional Instance-aware

Semantic Segmentation,” ArXiv161107709 Cs, Apr. 2017, Accessed: Apr. 19, 2021.

[Online]. Available: http://arxiv.org/abs/1611.07709

[38] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “YOLACT: Real-time Instance

Segmentation,” ArXiv190402689 Cs, Oct. 2019, Accessed: May 12, 2021. [Online].

Available: http://arxiv.org/abs/1904.02689

[39] X. Wang, T. Kong, C. Shen, Y. Jiang, and L. Li, “SOLO: Segmenting Objects by

Locations,” ArXiv191204488 Cs, Jul. 2020, Accessed: May 12, 2021. [Online]. Available:

http://arxiv.org/abs/1912.04488

[40] is-centre/datm-annotation-tool. Centre for Intelligent Systems, 2021. Accessed:

Apr. 22, 2021. [Online]. Available: https://github.com/is-centre/datm-annotation-tool

[41] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for

Deep Learning,” J. Big Data, vol. 6, no. 1, p. 60, Jul. 2019, doi: 10.1186/s40537-019-

0197-0.

77

[42] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, and A. A.

Kalinin, “Albumentations: Fast and Flexible Image Augmentations,” Information, vol.

11, no. 2, 2020, doi: 10.3390/info11020125.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition,” ArXiv151203385 Cs, Dec. 2015, Accessed: Jan. 03, 2021. [Online].

Available: http://arxiv.org/abs/1512.03385

[44] Y. Wu and K. He, “Group Normalization,” ArXiv180308494 Cs, Jun. 2018,

Accessed: May 06, 2021. [Online]. Available: http://arxiv.org/abs/1803.08494

[45] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, Detectron2. 2019.

[Online]. Available: https://github.com/facebookresearch/detectron2

[46] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature

Pyramid Networks for Object Detection,” ArXiv161203144 Cs, Apr. 2017, Accessed: May

09, 2021. [Online]. Available: http://arxiv.org/abs/1612.03144

[47] Z. Cai and N. Vasconcelos, “Cascade R-CNN: High Quality Object Detection and

Instance Segmentation,” ArXiv190609756 Cs, Jun. 2019, Accessed: Feb. 03, 2021.

[Online]. Available: http://arxiv.org/abs/1906.09756

[48] S. Ruder, “An overview of gradient descent optimization algorithms,”

ArXiv160904747 Cs, Jun. 2017, Accessed: May 21, 2021. [Online]. Available:

http://arxiv.org/abs/1609.04747

[49] P. Goyal et al., “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour,”

ArXiv170602677 Cs, Apr. 2018, Accessed: May 21, 2021. [Online]. Available:

http://arxiv.org/abs/1706.02677

[50] QGIS Development Team, QGIS Geographic Information System. Open Source

Geospatial Foundation, 2009. [Online]. Available: http://qgis.osgeo.org

[51] H. Chen, K. Sun, Z. Tian, C. Shen, Y. Huang, and Y. Yan, “BlendMask: Top-Down

Meets Bottom-Up for Instance Segmentation,” ArXiv200100309 Cs, Apr. 2020,

Accessed: Apr. 08, 2021. [Online]. Available: http://arxiv.org/abs/2001.00309

[52] Y. Lee and J. Park, “CenterMask : Real-Time Anchor-Free Instance

Segmentation,” ArXiv191106667 Cs, Apr. 2020, Accessed: Nov. 23, 2020. [Online].

Available: http://arxiv.org/abs/1911.06667

78

[53] E. Xie et al., “PolarMask: Single Shot Instance Segmentation with Polar

Representation,” ArXiv190913226 Cs, Feb. 2020, Accessed: Jun. 03, 2021. [Online].

Available: http://arxiv.org/abs/1909.13226

[54] H. ul M. Riaz, N. Benbarka, and A. Zell, “FourierNet: Compact mask

representation for instance segmentation using differentiable shape decoders,”

ArXiv200202709 Cs Eess, Oct. 2020, Accessed: Jun. 03, 2021. [Online]. Available:

http://arxiv.org/abs/2002.02709

[55] X. Wang, R. Zhang, T. Kong, L. Li, and C. Shen, “SOLOv2: Dynamic and Fast

Instance Segmentation,” ArXiv200310152 Cs, Oct. 2020, Accessed: Jun. 03, 2021.

[Online]. Available: http://arxiv.org/abs/2003.10152

[56] R. Geirhos, C. Michaelis, F. A. Wichmann, P. Rubisch, M. Bethge, and W. Brendel,

“Imagenet-trained CNNs are biased towards texture; increasing shape bias improves

accuracy and robustness,” p. 22, 2019.

[57] M. A. Islam et al., “Shape or Texture: Understanding Discriminative Features in

CNNs,” ArXiv210111604 Cs, Jan. 2021, Accessed: Jun. 04, 2021. [Online]. Available:

http://arxiv.org/abs/2101.11604

[58] S. Ruder, “An Overview of Multi-Task Learning in Deep Neural Networks,”

ArXiv170605098 Cs Stat, Jun. 2017, Accessed: Nov. 24, 2020. [Online]. Available:

http://arxiv.org/abs/1706.05098

[59] R. Caruana, “Multitask Learning,” Mach. Learn., vol. 28, no. 1, pp. 41–75, Jul.

1997, doi: 10.1023/A:1007379606734.

[60] Y. Zhang and Q. Yang, “A Survey on Multi-Task Learning,” ArXiv170708114 Cs,

Jul. 2018, Accessed: Nov. 04, 2020. [Online]. Available:

http://arxiv.org/abs/1707.08114

