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1 Introduction
Importance of fin-actuated AUVs:
The vastness of the underwater domain, with its intricate terrains and unpredictable dy-namics, has always posed challenges for exploration and research. While effective inmanyscenarios, traditional propeller-driven Autonomous Underwater Vehicles (AUVs) often fallshort when navigating complex environments such as coral reefs, shipwrecks, or under-water caves. The limitations of these conventional AUVs have led to a growing interest inalternative propulsion mechanisms, particularly those inspired by nature [6, 7].Inspired by these biological principles, Fin-actuated AUVs have emerged as a promis-ing alternative to traditional AUVs [8, 9]. Through millions of years of evolution, marineanimals have developed efficient locomotion mechanisms that allow them to navigate di-verse underwater terrains with remarkable agility. Observing these creatures, it becomesevident that their fins play a pivotal role in their movement. While aerial creatures likebirds and insects use flapping motions to generate thrust and lift, certain aquatic speciespredominantly employ fin flapping to produce thrust. This has spurred a surge of interestin the design and control of fin-actuated robotic systems [10, 11, 12, 13].Biomimetic fins offer several advantages, unlike propellers, which can be environmen-tally harmful and less efficient in intricate environments. Firstly, they provide better lo-comotion efficiency, allowing the AUV to cover longer distances with the same energyexpenditure [14]. Secondly, fin-actuated AUVs are environmentally benign, reducing therisk of damaging delicate underwater ecosystems or harming marine life. This is particu-larly crucial in areas like coral reefs, which are biodiversity hotspots and highly susceptibleto external disturbances.However, the transition from propeller-driven to fin-actuated AUVs is not straightfor-ward. The dynamics of fin propulsion are inherently different and more complex. Under-standing these dynamics is crucial for designing efficient fin-actuated AUVs. Moreover,the control mechanisms for these AUVs need to account for the unique challenges posedby fin propulsion, such as ensuring stability while navigating with oscillating fins.
1.1 Problem formulation and related work
Inspired by marine life, Fin-actuated AUVs have risen as a potential answer to this call.Their bio-mimetic design and agile manoeuvrability uniquely suit them for various under-water tasks. Yet, their deployment is not without challenges:
1.1.1 Human-AUV interaction
The potential of underwater human-robot collaboration has garnered significant atten-tion in recent research [15, 16, 17]. While underwater robots offer promising capabilities,their autonomy is hindered due to communication and localisation challenges inherentto underwater conditions. Conversely, human divers face constraints such as limited pay-load capacity, restricted diving durations, and the risks associated with confined spaces.This has led to the exploration of AUVs as potential aids for divers, assisting in tasks likepayload transport, data collection, and area inspection.A pivotal aspect of this collaboration is the ability to detect and track divers accurately.Achieving precise diver following using compact underwater vehicles can pave theway forthe development of companion robots, beneficial for applications like underwater archae-ology and off-shore structure inspections [16].While target detection and tracking arewell-established for terrestrial applications [18,19, 20, 21, 22], the underwater environment presents unique challenges. Factors such as
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electromagnetic wave propagation limitations and the distinct optical properties of water,including absorption, diffusion, and turbidity, complicate the use of conventional vision-based tracking methods [23].
Despite these challenges, substantial research has been conducted using vision-basedand acoustic-based methods. Although limited by detection range and feature extractionchallenges, vision-based techniques are effective in certain conditions, such as when op-erating in clear or shallowwaters. Various features, including colour and shape, have beenexplored for underwater object detection [24, 25, 26, 27, 28]. However, each method haslimitations, often requiring optimal visibility and proximity to the target. The challenge ofensuring the target remains within the camera’s field of view further complicates thesetechniques.
Recent advancements in GPU computing power have facilitated the adoption of deepneural networks (DNN) for image processing [29]. State-of-the-art algorithms for terres-trial object detection now leverage DNN architectures [30, 31, 32, 33]. This approach isbeing adapted for underwater target tracking with digital cameras and sonar imagery[34, 35, 36, 37, 38, 39]. These DNN models, especially the downscaled versions, offerthe potential for rapid and reliable target detection even on vehicles with constrainedcomputational resources.
However, all vision-based techniques, whether relying on digital cameras or acousticimaging, face a common limitation: the diver needs to remain within the sensor’s field ofview. This restricts diver mobility and poses challenges if external disturbances cause thediver to exit the camera’s view. Addressing this issue remains a gap in current research.
In underwater settings, acoustic methods are often more viable. They can be em-ployed in various capacities, from sonar imaging to precise beacon localisation. Acousticsignals also present challenges, influenced by reflections, low frequencies, and environ-mental disturbances. The quality of these signals can vary based on the underwater en-vironment, with factors like water depth, surface movement, and ambient noise playingcrucial roles [40, 41].
Combining acoustic perception with machine vision techniques offers a comprehen-sive solution [42]. The fusion of these modalities overcomes their limitations, presentinga more robust approach to diver tracking [43].

1.1.2 Complex dynamics of fin-actuated AUVs
Designing efficient fin-actuated AUVs necessitates a nuanced understanding of hydrody-namics, further complicated by the flexible nature of oscillating fins and the intricate fluid-structure interactions they entail. Fin-actuated underwater vehicles typically modulatetheir motion by altering various locomotion primitives of the fins, such as frequency, am-plitude, and phase shift. More advanced designs also consider parameters like angle ofattack, stiffness, and surface area [44]. Over the years, control mechanisms for MedianPaired Fin (MPF) actuated robots have evolved, incorporating techniques from PID con-trol [45] to adaptive control [46], RISE control [47], fuzzy logic control [1], and bio-inspiredCentral Pattern Generator (CPG) control [48, 49]. However, the efficacy of these controlmechanisms is often constrained by the availability of a reliable and invertible model thatcan relate the controller output to the fin’s oscillating parameters.

In this context, numerous studies have been undertaken to model the thrust gener-ated by flapping foils. For instance, the work in [50] related average thrust to mass flowrate but was limited to specific mass flow rate ranges—another approach [51] focusedon lift force to simulate robot dynamics. While computational fluid dynamics have beenemployed for precise modelling [52, 53, 54], their real-time implementation on resource-
10



constrained robots remains a challenge. Authors in [55] presented a low-order set of ordi-nary differential equations focused on open-loop control, offering a step in this directionbut leaving room for further exploration and refinement.
The need for an invertiblemodel becomes evident when considering the limitations ofexisting methods. An invertible model would allow for a more direct and efficient trans-lation of control outputs to fin oscillation parameters, enhancing the AUV’s navigationalcapabilities.

1.1.3 Motion control challenges
Unlike traditional AUVs, which are typically designed to be either fully actuated or over-actuated, fin-actuated vehicles offer a unique advantage; they can utilise the fins not onlyfor thrust generation but also for thrust vectoring, allowing for motion control in multi-ple DOF with fewer actuators. However, this advantage comes with complex challengesdue to the need for precise control of both thrust magnitude and direction using the lim-ited number of fin actuators. Effectively managing these challenges requires the develop-ment of specialised control allocation methods tailored to the unique characteristics offin-actuated vehicles.

While several studies have addressed the control allocation problem for motion con-trol in AUVs [56], these investigations have predominantly focused on propeller-basedactuation systems. These studies have proposed various methodologies, such as directcontrol allocation [57, 58], daisy chaining [59, 60], and real-time optimisation using con-strained linear or quadratic programming [61, 62, 63, 64]. Recent advancements in AUVdesigns with tiltable thrusters have also explored control allocation techniques tomanageactuation redundancy [65, 66]. For instance, research has demonstrated the efficacy ofpseudo-inverse control allocation methods with predefined tilting angles for stable hov-ering performance in propeller-based AUVs [65]. Decomposing the nonlinear force inputterm of tilting thrusters into horizontal and vertical directions and using pseudo-inverseand null-space solutions has proven effective inminimising thrust force [66]. However, it isessential to acknowledge that control allocation methods developed for propeller-basedactuation systems may not directly apply to fin-actuated vehicles. Unlike fixed thrusters,fins require rotation to change the thrust direction, leading to delays and disturbances incontrol response. While tiltable thrusters need a similar amount of rotation, they do notcreate the same amount of disturbances due to the difference in geometry comparedto fins, which create a significant amount of drag when rotated. Additionally, tiltablethrusters can theoretically produce thrust throughout the rotation, while thrust gener-ation is halted during rotation for fin-based actuation. These characteristics of fin actua-tion necessitate the development of tailored control allocation approaches that accountfor the specific characteristics of fin-actuated vehicles. It is thus hypothesised that a min-imisation of necessary fin rotations and an intelligent choice of the number of actuatorscontributing to each DOF are crucial for successful trajectory tracking.
Beyond control allocation, regardingmotion control, the control of turtle-like fin-drivenvehicles has mainly been manual or without feedback. A considerable focus has been onopen-loop gait generation, with several works emphasising the use of CPGs for this pur-pose [67, 68, 69, 70, 71].
In the realm of feedback-based control, Geder et al. explored a model-free controlframework specifically for heading or depth control [54]. Licht et al. [72] delved into at-titude control tailored for various turning manoeuvres. Siegenthaler et al. [73] employeda model-free angular rate controller to stabilize forward swimming. However, these solu-tions predominantly addressed a single Degree of Freedom (DOF) at a time, often relying
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on more straightforward model-free control frameworks that may not guarantee robust-ness or provable stability.
Chemori et al. [47] took a step further by investigating depth control for theU-CATAUV.By comparing a model-free RISE controller to a standard PID control, they demonstratedthe superior performance of the RISE controller, especially in scenarios with external dis-turbances. Yet, this approach still focused on a single DOF.
The challenges of path following and trajectory tracking, essential formonitoring tasks,remain relatively understudied for the AUV types under consideration. Some works, suchas [50] and [74], have delved into modelling and model-based control of the Aqua AUVfor trajectory tracking control, but again, these studies often address only a single DOFat a time. Giguere et al. [75] presented a multi-DOF control approach for the Aqua AUV,employing PID and PI controllers. Their method, while effective, required the tuning of 45control parameters.
Salumäe et al. [76] proposed a more comprehensive framework for the U-CAT AUV,enabling simultaneous motion in multiple DOFs. Their model-based approach, termedinverse dynamics, utilized feedback linearization with acceleration feedforward. This con-troller outperformed standard PID controllers, especially in the presence of external dis-turbances. However, complexities arising from motion coupling were addressed by prior-itizing specific DOFs, meaning that not all trajectories were followed simultaneously.
Fin-based actuation’s inherent agility and versatility have not been fully leveraged inexisting solutions. Smallwood and Whitcomb [77] highlighted the potential advantagesof adaptive model-based control approaches over fixed model-based controllers. Whileadaptive model-based control for 6-DOF tracking has been extensively studied for stan-dard propeller-driven AUVs [78, 79, 80], the common orientation representations for suchframeworks, which often rely on Euler angles, contain singularities. This has led to theexploration of quaternion-based controllers, which offer a singularity-free representa-tion of 3D orientation [81, 82]. However, achieving global asymptotic stabilization withcontinuous-time state feedback remains a challenge [83].
In this context, Basso et al. [84] introduced a hybrid adaptive control approach, whichwas experimentally validated using a BlueROV2. This work adapted their framework totest two control tasks for an under-actuated fin-actuated AUV with only four actuators.The challenges posed by fin actuation, such as the need for precise control of thrustmagni-tude and direction with limited actuators, necessitate innovative control allocation meth-ods tailored to fin-actuated vehicles.

1.1.4 Fault tolerance
Given the hostile nature of underwater environments, AUVs are vulnerable to variousfaults, from external disturbances to system malfunctions. Ensuring the fault toleranceof these systems is not just a technical requirement but a safety imperative. The pursuitof robust fault-tolerant control (FTC) strategies for thruster-based underwater robots hasbeen a focal point of research endeavours in recent times [85, 86]. This domain encom-passes a spectrum of techniques addressing the triad of FTC components: (i) Fault De-tection: This phase is concerned with identifying operational anomalies that hinder therobot’s optimal functionality. (ii) Fault Isolation: Post detection, this step zeroes in on theroot cause and specific location of the detected fault. (iii) Fault Accommodation: The finalcomponent ensures the robot can fulfil its designated tasks despite detected faults. Read-ers are directed to seminal works such as [85, 87, 86] and the encompassed referencesfor a comprehensive understanding of fault detection and isolation.

Fault accommodation strategies in the literature predominantly bifurcate into active
12



and passive FTC paradigms.
Active FTC: This approach, exemplified by methodologies like control reconfiguration[88, 89] and control allocation [90, 91, 92], is characterized by its proactive stance. It man-dates continuous system surveillance to detect potential faults preemptively, deployingcorrective actions to either avert or minimise the ramifications of hardwaremalfunctions.
Passive FTC: Contrasting with its active counterpart, passive FTC, as illustrated in stud-ies like [93, 94], capitalises on the built-in redundancy and resilience of the system’s de-sign. This inherent robustness enables the system towithstand and operate through faultswithout necessitating active oversight or interventions.
While a significant portion of the research, asmentioned above, is tailored to thruster-actuated AUVs, there’s a burgeoning interest in fin-actuated AUVs [8, 9]. This inclinationstems from their enhanced locomotion efficacy [14] and superior manoeuvring capabili-ties [95]. However, the literature landscape reveals a conspicuous gap in FTC strategiesdesigned explicitly for fin-actuated AUVs. To the best of the authors’ knowledge, the soli-tary contribution in this niche is [96], where a passive FTC mechanism was introduced.This mechanism leveraged a CPG-based controller to rectify the directional orientation ofa bio-inspired robot equipped with a multi-joint tail design.

1.2 Contributions of the thesis

To address the multifaceted challenges within underwater robotics, this thesis is drivenby a set of clear and ambitious objectives. These objectives are designed to push theboundaries of what is currently achievable in the field, leveraging insights from marinelife and the latest advancements in robotics. The primary objectives of this thesis areoutlined below:
1.2.1 Contribution 1: Data-fusion based diver tracking
The first objective of this thesis is to design and implement an advanced diver tracking so-lution tailored explicitly for fin-actuated AUVs. These AUVs offer the advantage of safe finactuation, making them ideal for operations near divers. The proposed solution is engi-neered to function robustly in challenging underwater conditions, such as limited visibilityand dynamic marine settings. The proposed solution aims for superior tracking accuracyby combining visual and acoustic data from low-cost sensors. This integrated approachnot only enhances the robustness of the tracking but also contributes to the safety andefficiency of underwater operations [Publication I].
1.2.2 Contribution 2: Inverse modelling of fin dynamics
The second objective addresses the challenges associated with the dynamic modellingof fin-actuated AUVs. Unlike traditional propeller-driven AUVs, fin-actuated vehicles ex-hibit complex fluid-structure interactions due to their oscillating fins. The aim is to de-velop an invertible nonlinear analytical model that captures the relationship between os-cillation amplitude, frequency, and the required thrust force. This model is empiricallyvalidated and computationally efficient, making it suitable for real-time implementationon resource-constrained underwater vehicles. This model serves as a critical foundationfor developing more advanced and efficient control strategies by providing a direct map-ping between controller outputs and fin oscillation parameters. It offers a significant stepforward in understanding fin-actuated AUVs’ unique propulsion mechanisms and naviga-tional capabilities [Publication II].
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1.2.3 Contribution 3: Control allocation for 6-DOF control of fin-Actuated AUVsAchieving precise control in all six degrees of freedom (6-DOF) with only four actuatorsis a formidable challenge, yet it is a central objective of this thesis. Building upon thedynamic model developed in Objective 2, this objective seeks to pioneer a novel 6-DOFcontrol method explicitly tailored for fin-actuated AUVs. This innovative control methodwill enable these vehicles to navigate intricate underwater paths with remarkable preci-sion, significantly advancing the capabilities of underwater robotics [Publication IV].
1.2.4 Contribution 4: Fault-tolerant control for fin-actuated AUVsIn the unpredictable andoftenhostile underwater environment, fault tolerance is paramount.The fourth objective of this thesis is to establish a robust fault-tolerant framework for fin-actuated AUVs. This framework ensures these vehicles’ continued operation and safety,even in system faults, external disturbances, and challenging underwater conditions. Byaddressing fault tolerance, this objective contributes to the reliability and resilience ofaquatic robotic systems, mitigating potential risks and losses [Publication III].
1.3 Thesis outline
Chapter 2 initiates with an introduction to the U-CAT platform, covering body kinematics,dynamics, and finmodelling. An established control allocationmodel concludes the chap-ter. Chapter 3, onData-fusion BasedDiver Tracking, provides an overview andmotivationfor diver tracking. A data-fusion-based tracking algorithm is introduced, concluded withexperimental results and discussions related to the proposed data-fusion-based trackingsystem. Chapter 4, titled Inverse modeling of fin dynamics, starts with an overview andmotivation for a thrust-to-amplitudemodel. An empirical and anonlinear analyticalmodelare described, followed by experimental validation. Chapter 5, on Control allocation for
6-DOF control of fin-Actuated AUVs, starts with an overview and motivation for solvingthe control allocation problem. The chapter then explores various solutions. Methodassessment is carried out through simulation and experimental setups, and the chapterconcludes with results and discussions that assess the proposed solutions. Chapter 6,on Fault-tolerant control for fin-actuated AUVs, offers an overview and motivation forAUV resilience. A Fault-Tolerant Control scheme is proposed and validated through exper-iments. Finally, Chapter 7 serves as the conclusion, summarising findings and suggestingfuture research.
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2 Hardware and Modelling
This section presents the foundational concepts necessary for understanding the dynam-ics and control of the underwater vehicle, U-CAT. It initiateswith a description of the exper-imental platform, followed by discussions on body dynamics and fin dynamics modelling.Finally, control allocation is also presented, determining how control inputs are translatedinto vehicle actions.
2.1 Experimental platform U-CAT

(a)

FR
RR

RL FL

(b)
Figure 1: a) View of U-CAT robot during an inspection mission in a submerged structure. b)Illustration of U-CAT’s fins configuration. The robot’s front right, rear right, rear left, and front leftfins are denoted by FR, RR, RL, and FL, respectively. In equations, these fins are indexed as 1, 2, 3,and 4, corresponding to FR, RR, RL, and FL. ([Publication II]©2021 Elsevier Ltd).

U-CAT, as shown in Figure 1a, is a bio-inspired AUV, conceived during the EuropeanUnion’s 7th Framework ARROWS project [97]. Unlike similar underwater robots, U-CAT’sunique four-finned design is driven purely by the specific needs and environmental chal-lenges of shipwreck exploration. Its primary function is to capture detailed video footageof underwater sites. To cater to the specific demands of archaeological shipwreck inspec-tions [98], a design of a 4-flipper structure tomanage its 6-DOFswas created. The orienta-tion of the fourmotors powering the fins is depicted in Figure 1b, enabling the robot’s om-nidirectional movement. The fins are outward-facing to maximize forward thrust, whileside-to-side control is reserved for meticulous movements in tight areas. Additionally, U-CAT’s weight distribution ensures its natural stability, with its centre of mass positionedjust below its buoyancy centre. Comprehensive technical details about U-CAT are in Table1.
2.2 Kinematics modelling
This section focuses on the modelling of underwater vehicles. The modelling objective isto find a mathematical representation that captures the real system’s behaviour, whichcan later be used for simulation purposes or control law synthesis.
2.2.1 Coordinates system
Various representations exist for marine vehicles. This section introduces the most com-mon representation, as defined in 1950 by the SNAME (Society of Naval Architects andMarine Engineers) and detailed in [99]. This representation necessitates the definition of
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two frames:
• Fixed Frame: This frame, attached to the Earth, has its origin O and the orientationof the axes x y and z following the North East Down (NED) convention will be used,whereOx points north,Oy points east, andOz is oriented downwards perpendicularto the Earth’s surface. The origin O is positioned on the surface at a fixed pointwithin the robot’s operational zone. This frame will be denoted as Rn, with index’n’ denoting NED.
• Mobile Frame: This frame, attached to the vehicle, is denoted as Rb (with index ’b’indicating Body fixed frame). The centre O is located at the vehicle’s centre of grav-ity. The axes Ox, Oy, and Oz are aligned with the vehicle’s primary symmetry axes.TheOx axis (longitudinal) points towards the vehicle’s front, theOy axis (transversal)points to starboard, and the Oz axis (normal) points downwards.
The state vector representing the vehicle’s position and orientation in the earth frame

Rn is denoted as η = [x,y,z,φ ,θ ,ψ]T . The coordinates (x,y,z), measured in meters, rep-resent the position of the frame Rb centre within the frame Rn. The angles φ , θ , and ψ ,in radians, describe the orientation of the frame Rb relative to the frame Rn. These anglesare respectively termed roll, pitch, and yaw.
The transformation from frame Rn to frame Rb can be expressed in matrix form. Theassociated rotationmatrix isRb

n. Conversely, to go from frameRb to frameRn, the rotationmatrix Rn
b is used. These matrices are related by:

Rb
n = (Rn

b)
−1 = (Rn

b)
T (1)

The vector ν = [u,v,w, p,q,r]T aggregates linear and angular velocities in the frame
Rb associated with the vehicle.The velocities u, v, and w, in m/s, correspond to the velocities along the vehicle’s axes
Ox, Oy, and Oz. They are respectively termed surge (longitudinal speed), sway (transver-sal speed), and heave. The rotational p, q, and r, in rad/s, are the roll, pitch, and yawvelocities of the vehicle.

Table 1: Main technical specifications of the U-CAT robot
Technical specification Specification / DescriptionOnboard camera PointGrey Chameleon 2Hydrophones Aquarian Audio H1cMotors Maxon EC-maxAttitude sensor MPU-6050 IMUDepth sensor GEMS 22CS Series Pressure SensorBatteries 4x HP Compaq NX8200 8cell batteriesMaximal speed (surge) 0.25 m/sMaximal depth 100mAutonomy ∼6 hoursMass 19 KgDimensions 560mm× 329mm× 258mmFins’ material Zhermack Elite Double 22
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Figure 2: Illustration of the Earth Fixed FrameRn (North East Down convention) and the robot’s BodyFixed Frame Rb. ([Publication I]©2020 Wiley Periodicals LLC)

2.2.2 Kinematic Model:
The derivative η̇ of the state vector η in frame Rn can be computed from the velocities νin frame Rb using the relation:

η̇ = J(η)ν (2)
Where J(η) is a transformation matrix defined as:

η̇ =

[
Rn

b O3x3
O3x3 Θ

]
(3)

Rn
b is the previously described rotation matrix, used to calculate the linear velocities

ẋ, ẏ, ż in the frame Rn based on the linear velocities u,v,w in the mobile frame Rb.
Θ is the transformation matrix used to compute the derivatives φ̇ , θ̇ , ψ̇ of the nauticalangles from the angular rotation velocities p,q,r.These matrices depend on the vehicle’s orientation and are expressed as:

Rn
b =




cψcθ −sψcφ + cψsθsφ sψsφ + cψsθcφ
sψcθ cψcφ + sψsθsφ −cψsφ + sψsθcφ
−sθ cθsφ cθcφ


 (4)

and

Θ =




1 sφ tθ cφ tθ
0 cφ −sφ
0 sφ

cθ
cφ
cθ


 (5)

Where φ , θ , and ψ are the previously defined nautical angles, and c. = cos(.), s. =
sin(.), and t.= tan(.).
2.3 Dynamics Modelling
In general, the NED frame is considered a Galilean frame even though it’s fixed to theEarth’s surface. This is because the forces on the vehicle due to Earth’s rotation are neg-ligible compared to hydrodynamic forces [100]. Below are the different forces acting onthe vehicle:
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2.3.1 Weight and Buoyancy:
Gravitational force (weight) and hydrostatic force (buoyancy) play crucial roles in an under-water vehicle’s stability. Vehicles are typically balanced such that weight is nearly equiv-alent or marginally less than buoyancy for energy-efficient submersion and spontaneoussurfacing during malfunctions.Let B represent the magnitude of the buoyancy force (in N) on the vehicle, andW bethe magnitude of the vehicle’s weight (in N). If the vehicle’s centre of gravity is positionedat (xg,yg,zg) and the centre of volume at (xb,yb,zb) in the frame Rb tied to the vehicle,the hydrostatic forces and moments vector, FG, is expressed in Rb as:

fG = G(η) =




−(W −B)sθ
(W −B)cθsφ
(W −B)cθcφ

(ygW − ybB)cθcφ − (zgW − zbB)cθsφ
−(xgW − xbB)cθcφ − (zgW − zbB)sθ
(xgW − xbB)cθsφ +(ygW − ybB)sθ




(6)

2.3.2 Hydrodynamic Damping:
The combined damping forces, FD, are represented as [99]:

FD =−D(ν)ν =−(Dl +Dn(ν))ν (7)
Where Dl ∈R6×6 is the linear damping matrix, Dn(ν) ∈R6×6 is the non-linear damp-ing matrix, and ν = [u,v,w, p,q,r]T is the vector of translational and rotational velocitiesin the vehicle’s frame.Often, D(ν) is approximated as diagonal such as:

Dl =




Du . . . 0... . . . ...
0 . . . Dr


 (8)

Dn =




Dnu|u| . . . 0... . . . ...
0 . . . Dnr|r|


 (9)

2.3.3 Coriolis and Centrifugal Inertia Forces:
In applying fundamental dynamic principles, accounting for inertia forces is vital. Thus, thecombined effect, FC, of these forces is expressed by the matrix product: FC =−CRB(ν)ν .Parameters of the matrix CRB are typically estimated using strip theory [101] or hydrody-namic simulations.
2.3.4 Fins-Generated wrenches:
Thrust and torque produced by the U-CAT robot’s fins depend on several factors, like theangle of attack, oscillation frequency, and amplitude. The resultant force is denoted τ :

τ = [τx,τy,τz,τΦ,τΘ,τΨ]
T (10)

A more detailed derivation of τ based on fins actuation parameters is described in 2.4
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2.3.5 External Disturbances:
Significant disturbances on the U-CAT robot, denoted as w, include marine currents andthe umbilical when teleoperated. Though their modelling is challenging, there are manystudies in this area. Chapter 4 in the reference [99] elaborates further.

After describing all forces acting on the vehicle, the vehicle’s dynamic model is:
η̇ = J(ν)ν

ν̇ = M−1(−G(η)−C(ν)ν −D(ν)ν + τ +w)
(11)

Where ν̇ = [u̇, v̇, ẇ, ṗ, q̇, ṙ]T is the vehicle’s acceleration vector, M ∈ R6×6 is the vehi-cle’s inertia matrix, given by:

M =




m 0 0 0 mzg −myg
0 m 0 −mzg 0 mxg
0 0 m myg −mxg 0
0 −mzg myg Ix −Ixy −Ixz

mzg 0 −mxg −Iyx Iy −Iyz
−myg mxg 0 −Izx −Izy Iz



+Mam (12)

where m the mass of the robot, [xg,yg,zg] denote the coordinates of the centre ofgravity in Rb, and the matrix Mam is a matrix summarizing parameters describing the hy-drodynamic effect of added mass [99].
2.4 Fin dynamics modelling
The dynamicmodel utilized to describe the fins of theU-CATAUV is based on the rigid pad-dle model, as documented in [102]. This model’s validity has been previously establishedand confirmed in research conducted by Georgiades et al. [12], where it was employed tosimulate the underwater hexapod robot AQUA [103].

The fins of the U-CAT are assumed to generate horizontal ( fx) and vertical ( fz) forcesrelative to the fin’s resting frame, as illustrated in Figure 3. The model relies on the fol-lowing mathematical expressions:

Fin joint

inflow
velocity

normal
velocity

Figure 3: Visualization of forces on ith fin based on the simple lift and drag model (model and figureadopted from [12]).

19



fx = D f sin(β )+L f cos(β )
fz =−L f sin(β )+D f cos(β )

(13)
Here, β denotes the direction of the flow impinging on the fin, and D f and L f repre-sent the lift and drag forces, respectively. These forces are defined as:

L f = 0.5ρU2
f S fCLmax sin(2αaoa)

D f = 0.5ρU2
f S fCDmax(1− cos(2αaoa))

(14)
In these equations, αaoa signifies the angle of attack, while U f corresponds to thevelocity of the flow impacting the fin. Additionally, S f corresponds to the surface area ofthe fin. Lastly, CLmax and CDmax represent the maximum lift and drag coefficients of thepaddle, respectively.For amore comprehensive discussion on themodelling of fin forces, interested readersare encouraged to refer to Georgiades et al.’s work [12].

2.5 Control allocation
To produce the wrenches required to control the 6-DOF body motions, U-CAT’s actuationfollows an oscillatory movement described by:

ϕosc
i (t) = Aosc

i sin(ωosc
i t +ϕosc

o f fi)+φ0,i (15)
with the oscillation amplitudeAosc, the oscillation rateωosc, the phase offsetϕosc

o f f and thezero direction of the oscillation φ0,i.This will result in wrenches in body frame that can be modelled as:
τ(ϕosc) =

n

∑
i=0

[AdTi,b ] R(φ0,i) fth
i (ϕosc) (16)

with n being the total number of fins. R(φ0,i) is the two-dimensional rotation matrixfor fin i which maps the thrust produced along φ0,i to horizontal and vertical forces in therest frame of the fin.

R(φ0,i) =




cφ0,i 0 sφ0,i
0 1 0 03x3

−sφ0,i 0 cφ0,i

03x3 03x3




(17)

Furthermore, [AdTi,b ] is the adjoint representation of the homogeneous transforma-tionmatrixTf ,b that is used tomapwrenches produced in the static fin frame to the robot’sbody frame:
[AdTi,b ] =

[
R(Φ f in

i ) 03x3

[p f in
i ]×R(Φ f in

i ) R(Φ f in
i )

]
(18)

with p f in
i = [x f in

i ,y f in
i ,z f in

i ]being the fin coordinates relative to the centre of the vehicleand with R(Φi) being the rotation matrix mapping from fin to body frame based on the
orientation vector of the fin rest frame Φ f in

i = [φ f in
i ,θ f in

i ,ψ f in
i ]T :
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R(Φ) =




cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ
sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ
−sθ cθsφ cθcφ


 (19)

To simplify the modelling, the instantaneous thrust f th produced by each fin can beaveraged over one oscillation period Tosc [104]:
f th =

1
Tosc

∫ Tosc

0
f th(ϕosc,τ int)dτ int (20)

with τ int being the integration time variable. Now by using (18) and defining ψ f in =

|ψ f in
1 |, x f in = x f in

1 and y f in = y f in
1 we can define the resulting wrenches τ in the body frameas a system of six algebraic equations with the fins’ zero directions φ0,1−4 and thrusts

f th
1−4 as independent variables written in matrix form τ = BX :

τ =




τx
cψ f
τy

sψ f

τz
τΦ
y f
τΘ
x f
τΨ
Ma




=




1 −1 −1 1 0 0 0 0
−1 −1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 −1 −1
0 0 0 0 −1 1 1 −1
−1 1 −1 1 0 0 0 0







cφ0,1 f th
1

cφ0,2 f th
2

cφ0,3 f th
3

cφ0,4 f th
4

sφ0,1 f th
1

sφ0,2 f th
2

sφ0,3 f th
3

sφ0,4 f th
4




(21)

with Ma = x f in cψ f in − y f in sψ f in.
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3 Data-fusion Based Diver Tracking
3.1 Overview and motivation

This chapter delves into the intricate challenge of robustly tracking divers in dynamic un-derwater environments using the U-CAT autonomous underwater vehicle. Themotivationfor this investigation stems from the inherent complementarity of acoustic and vision-based object detection methods. By fusing visual and acoustic signals, we aim to circum-vent the limitations of each sensingmodality, offering amore comprehensive and accuratetracking solution, especially in challenging open water conditions.
The work presented herein, building upon the foundational studies in [43], seeks toharness the strengths of both visual and acoustic signals captured using cost-effective sen-sors. The diver is visually detected through a digital camera employing a streamlined em-bedded DNN. In contrast, acoustically, the diver’s relative orientation is ascertained bytracking a pinger they carry using an array of economical hydrophones. This fusion en-hances the system’s robustness and ensures successful tracking irrespective of the diver’sposition within the camera’s field of view.
When juxtaposedwith existingmethodologies, the distinct advantage of this approachlies in its heightened resilience and accuracy in diver tracking. This is achieved without es-calating costs, as the proposed solution leverages relatively low-cost sensors. The culmi-nation of this research is implementing the proposed diver tracking scheme on the under-water robot U-CAT, with its efficacy being rigorously tested in an openwater environment.

3.2 Proposed tracking algorithm
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Figure 4: Block diagramof the proposed tracking control scheme: Dashed-blue blocks are elaboratedin [Publication I]. The entire tracking scheme runs online on U-CAT’s embedded computer using ROS.([Publication I]©2020 Wiley Periodicals LLC).

The tracking algorithmproposed in this work leverages both visual and acoustic signalsto track divers robustly in underwater environments. This section presents a holistic viewof the proposed solution, emphasising the synergy between its constituent blocks.
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Figure 5: Visual detection: The goal is to centre the detected box at the centre of the image. ([Pub-lication I]©2020 Wiley Periodicals LLC).

3.2.1 Visual detection using DNN
The down-scaled DNN model, tiny-YOLOv3 [30], is employed for visual detection. Thismodel was chosen because it provides fast (approximately 20 fps) and reliable detection,even on resource-constrained systems like the U-CAT’s Jetson TX2 embedded computer.The implementation was facilitated using the Robot Operating System (ROS).The visual detection concept aims to centre the detected object within the image. Theerrors EC and EW between the centres and widths of the two boxes are computed as:

EC =

[
Xc
Yc

]
−
[

Xm
Ym

]
(22)

EW =Wc −Wm (23)
This approach facilitates three DOF tracking control. The difference between the twoboxes’ centres EC defines the desired depth and heading orientation of the robot, whilethe difference in their widths EW determines the desired distance between the robot andthe target.

3.2.2 Acoustic Detection
The acoustic detection employs a Sonotronics EMT-01-3 Pinger operating at 9.6kHz as abeacon. This beacon emits a short burst signal every second. The received signal by eachhydrophone is amplified and filtered. The phase shift for each hydrophone is then usedto compute the relative yaw angle to the robot, denoted by Ψp.The yaw angle of the pinger with respect to the robot is represented by quaternions
QΨ and QΨp . The shortest angle between these two quaternions is given by ∆Q, which isthen converted back to the desired yaw angle ϕ . This yaw angle error is further convertedto pixel coordinates error, denoted EP, using the function Φ(ϕ,a) such that:

Φ(x,a) =





0 , if x < a
ImageWidth , if x >−a
ImageWidth

2 (−x
a +1) ,otherwise ,(a ̸= 0)

(24)

The function Φ remaps the measured pinger orientation into an image’s X-coordinatepixel based on a user-defined angle a.
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3.2.3 Data-fusion schemeThe data-fusion scheme employed is based on the Kalman filter [105]. The state andmea-surement vectors are defined as:
Xt = [xt ,yt ,wt ,zt ]

T (25)
Yt = [Xm,Ym,Wm,Zm,Xp]

T (26)
Here, Xt is the state vector at time t, with xt and yt representing the estimated pixelcoordinates of the target. wt is the estimated width of a bounding box containing thetarget, while zt denotes the estimated depth of the robot. Yt is the measurement vector,where (Xm,Ym) and Wm represent the position coordinates and width of the detectedbounding box by the camera. Zm is the measured depth of the robot using the onboardpressure sensor, and Xp is the image coordinates of the detected heading measured bythe hydrophones array.The estimated state vector Xt is then used to compute the tracking errors:

Ex = Xc − xt (27)
Ey = Yc − yt (28)
Ew =Wc −wt (29)
Ez = Zdesired − zt (30)

3.2.4 Control schemeIn our efforts to ensure the diver remains centredwithin the camera’s field of view, a threedegrees of freedom (3-DOF) control scheme, encompassing surge, heave, and yaw, wasemployed. The foundation of this control strategy is a fuzzy logic Mamdani controller[106]. This controller ingests the tracking errors and their variations as inputs, subse-quently producing a force vector τ ∈ R3×1 as its output, where τ = [τx, τz, τψ ].The output generated by the controller is then transformed into fin oscillation zero-directions and amplitudes through the wrench driver, leveraging the empirical control al-locationmethod delineated in [76]. However, due to the inherent high coupling in U-CAT’sactuation across its various DOFs, a straightforward control allocation doesn’t yield a per-fect decoupling. To address this, a priority management strategy was introduced in [45].This strategy was further expanded to the 3-DOF control in our work, where Gaussianmembership functions were utilized to modulate the control of each DOF based on thespecific control objective. Given U-CAT’s inherent stability in roll and pitch, these DOFswere not considered in the current control scheme.
For a more in-depth exploration of each component, readers are referred to the an-nexed paper [Publication I].

3.3 Experimental results and discussion
To validate the proposed control scheme, a series of experiments were conducted neara small harbour in Banyuls-Sur-Mer, France (42◦ 28’ 52.0”N, 3◦ 08’ 10.0”E). These exper-iments spanned four distinct scenarios, each designed to underscore the importance ofsensor complementarity in diver tracking and to demonstrate the efficacy of the proposedtracking control scheme. This section provides an overview of the experimental setup foreach scenario, followed by a detailed presentation and discussion of the results obtained.
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(a) (b)
Figure 6: Underwater images from U-CAT’s camera in open water conditions (a) Frame examplewhere visual detection is unsuccessful due to poor visibility conditions. (b) Frame example wherethe diver is successfully detected when close enough. ([Publication I]©2020 Wiley Periodicals LLC).

3.3.1 Experimental scenarios
1. Visual tracking (Scenario 1): U-CAT relied solely on visual guidance to track the diver.The primary objectivewas to gauge the robustness of the proposed vision detectionand tracking algorithm under real-world operating conditions.
2. Acoustic tracking (Scenario 2): In this scenario, U-CAT was tasked with tracking thediver using only acoustic sensing. This test aimed to evaluate the performance ofacoustic sensing, which utilised an array of three hydrophones and a pinger for divertracking.
3. Data-fusion based static tracking (Scenario 3): This scenario tested the proposeddata-fusion tracking scheme’s capability to track a stationary target. The robot au-tonomously detected and tracked a pinger attached to a coloured waterproof lightsource, initially positioned outside its camera’s field of view. A simple colour seg-mentation detector was employed for visual detection. This scenario was repeatedthrice, with U-CAT starting from different initial positions relative to the target.
4. Data-fusion based dynamic tracking (Scenario 4): This scenario assessed the effi-ciency of the proposed diver tracking algorithm. A diver, equipped with a pinger,was instructed to move freely in open water at a depth of two meters. This depthwas chosen to facilitate reliable top-viewmonitoring of both the diver and the AUVusing a static camera. The scenario was replicated three times, with the diver start-ing from different initial positions relative to the robot.

3.3.2 Visual tracking
As depicted in Figure 7, the AUV successfully tracked and centred the detected targetwithin the image frame. However, after approximately 8 seconds, the diver exited thecamera’s field of view. Consequently, the robot continued tracking based on the last de-tected position but failed to relocate the target. Field experiments often present chal-lenges such as turbid waters and poor visibility due to light scattering and absorption.Such conditions can lead to visual detection failures, as Figure 6 illustrates. This under-scores the need for an auxiliary sensor to complement visual tracking, ensuring consistentdiver detection even when visual cues are compromised.
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Figure 7: Visual tracking (Scenario 1): experimental results describing visual detection and estima-tion using the camera to track the diver. ([Publication I]©2020 Wiley Periodicals LLC).
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Figure 8: Acoustic tracking (Scenario 2): experimental results for tracking the diver based on acous-tic signals only. ([Publication I]©2020 Wiley Periodicals LLC).

3.3.3 Acoustic tracking

In this scenario, the diver, equipped with a pinger, began a few meters away from therobot and remained stationary throughout the experiment. Given the absence of distancefeedback using the acoustic method, U-CAT continued its movement even after reachingthe diver’s vicinity. Figure 8 reveals that the remapped detected relative heading waspredominantly on the image’s left side. This behaviour can be attributed to the robot’scontinuous circling around the diver upon reaching him. The figure also highlights thenoisy nature of the acoustic data, likely due to reflections, emphasising the necessity of acomplementary visual sensor for efficient diver tracking.
3.3.4 Data-fusion based tracking

Two distinct scenarios, static and dynamic tracking, were explored to assess the perfor-mance of the proposed control tracking scheme. Scenario 3 focused on tracking a staticobject initially outside the camera’s FOV, while Scenario 4 evaluated the solution’s efficacyin dynamically tracking a diver.
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Table 2: Scenario 3: RMSE between the camera’s centre and desired width, and the object pixelslocation and its width. ([Publication I]©2020 Wiley Periodicals LLC).
RMSE (in pixels) Test 1Facingthe target

Test 2right to thetarget
Test 3left to thetargetRMSE X 42 67 72RMSE Y 17 20 21RMSE Width 12 15 8

Static tracking (Scenario 3)
For this experiment, a targetwas positioned approximately 6meters away fromU-CAT. Therobot advanced towards the target, exhibiting slight oscillations to the left and right due toacoustic detection reflections. After nearly 40 seconds, the robot aligned itself to face thetarget. Figure 10 demonstrates that the robot subsequently centred the target within thecamera’s frame using visual feedback. Given that both the target and the AUV operated atthe same depth, the target was almost already centred on the Y-axis. Any minor verticaldeviations from the camera’s centre were corrected using visual feedback. Notably, theproposed tracking scheme successfully detected and tracked a static target initially outsidethe camera’s FOV. Figure 10 further indicates that the desired width of the target withinthe camera’s frame was maintained, ensuring a consistent relative distance to the target.This underscores the robustness of combining both visual and acoustic measurements forobject tracking.

For results pertaining to scenarios where the robot began to the right and left of thetarget, readers are referred to [Publication I].
To quantify the performance of the proposed approach, Table 2 presents the error be-tween the target’s camera location and the camera’s centre for the three scenarios. Theresults indicate that once the target was visually identified, it was predominantly kept atthe camera frame’s centre. This highlights the robustness and repeatability of the pro-posed method, enabling the detection and tracking of an object initially distant from therobot, a feat unachievable with vision-only methods. The results also demonstrate therobot’s capability for station-keeping when tracking a static object.
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Figure 9: U-CAT illustrative diver tracking trajectory: description at different times. ([Publication I]©2020 Wiley Periodicals LLC).
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Dynamic tracking (Scenario 4)
In this scenario, the proposed control approach was tested for actively tracking a diver.The diver, equipped with a pinger, moved freely in a 2D trajectory at a constant depth.Given U-CAT’s relatively slow swimming velocity, the diver was instructed to move at aslow pace.As illustrated in Figure 11 the proposed solution enabled tracking of the moving diverfor over 8 minutes. The target exited the camera’s field of view multiple times, but itslocation was consistently recovered. The synergy of the proposed approach facilitatedrapid orientation towards the diver, ensuring he remained centred in the camera’s image.As shown in Figure 9, U-CAT accurately tracked the target throughout the experiment.The results underscore the robustness of the proposed approach, validated across variousscenarios, with the AUV operating in open waters under poor visibility conditions andsubject to acoustic reflections and noise.Table 3 presents the tracking performance in terms of the error between the desiredand feedback position of the diver within the camera’s frame. The more significant errorsare along the image’s X-axis, given the diver’s primary horizontal movement. Both errorsin the Y-axis and width are minimal, considering the diver maintained a constant depthand moved relatively slowly. This indicates that the diver was primarily centred on thecamera, even after exiting its FOV multiple times.The results also highlight that the proposed controller facilitates 3D tracking motion,despite the high coupling in U-CAT’s actuators. However, it’s worth noting that the pro-posed tracking algorithm is limited to 3DOF tracking.
Table 3: Scenario 4: RMSE between the camera’s centre and desired width, and the object pixelslocation and its width. ([Publication I]©2020 Wiley Periodicals LLC).

RMSE (in Pixels) Test1Diver initially closefrom the robot
Test 2Diver initially awayfrom the robot

Test 3Shorter experiment
RMSE X 119 124 106RMSE Y 37 28 33RMSE W 24 19 31

3.4 Conclusions
The primary objective of this chapter was to design and implement a cost-effective data-fusion based diver tracking control scheme. Recognizing U-CAT’s unique actuation char-acteristics and hardware capabilities, a data-fusion technique was introduced that syner-gistically combined acoustic and visual signals. This innovative approach was rigorouslytested in open-water field experiments, yielding promising results that underscored theefficacy and robustness of the proposed control algorithm. This dual-sensor approachensures that the system remains resilient, and capable of recovering the diver’s locationeven when visual detection encounters challenges.In summary, the contributions of the work described in this chapter include:

• The development and implementation of a cost-effective data-fusion based divertracking control scheme tailored for the U-CAT underwater robot.
• The integration of acoustic and visual signals to ensure robust diver tracking, evenin challenging visibility conditions.
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• Comprehensive open water field experiments that validated the effectiveness androbustness of the proposed control algorithm.
• Demonstrating the capability of the system to locate, detect, and consistently tracka target, even when positioned at a considerable distance from the robot.
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Figure 10: Data-fusion based static tracking (Scenario 3): experimental results describing static tar-get tracking based on the proposed data-fusion scheme where the AUV started facing the target.([Publication I]©2020 Wiley Periodicals LLC).
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Figure 11: Data-fusion based dynamic tracking (Scenario 4): Diver starting close to the robot. ([Pub-lication I]©2020 Wiley Periodicals LLC).

29



4 Inverse modelling of fin dynamics
4.1 Overview and motivation

Controlling fin-actuated vehicles is challenging due to the nonlinear relationship betweenfin oscillation and the thrust it produces. To control these vehicles with precision, a thor-ough understanding of this relationship is essential, along with the development of mod-els that can both predict and adjust the thrust based on how the fins oscillate.
The U-CAT robot’s actuation fins function similarly to caudal or tail fins. The oscilla-tion of a tail fin can produce thrust by pushing water backwards, creating a propulsiveflow [107]. When considering the control of robots like the U-CAT, the need for a modelthat describes how changes in fin actuation relate to the force of the thrust producedbecomes evident. With this challenge in mind, this chapter introduces a new approach.An analytical model based on drag-force generation is presented and refined using experi-mental data. Thismodel effectively describes the relationship between howafin oscillatesand the thrust it generates. Building upon this model, an inverse model has been devel-oped. The derived model allows the adjustment of oscillation amplitude and frequencyto achieve the desired thrust. It serves as a critical component in controlling fin-actuatedvehicles, with its effectiveness demonstrated using the U-CAT as an example.
But the focus isn’t solely on theory. Practical application is equally important. The de-veloped models have been tested in real-world conditions using the U-CAT robot. Theresults highlight the potential of the proposed model in enhancing the control of fin-actuated underwater robots, paving the way for more complex underwater missions inthe future.

4.2 Proposed thrust to amplitude model

Controlling fin-actuated vehicles like U-CAT involves understanding the relationship be-tween the generated thrust and the oscillation of the fins. As detailed in (15), the gen-erated thrust can be characterized by three primary parameters: i) the amplitude of os-cillations, ii) the frequency of oscillations, and iii) the zero-direction angle. This sectiondelves into how the required thrust force is converted into fins oscillating magnitude forU-CAT, given a constant oscillating frequency. Two models are discussed: a simple empir-ical model used in prior research and a more advanced nonlinear analytical model.
4.2.1 Empirical model
As used in [47], the initial fin model aimed to establish a relationship between the gener-ated thrust force and the oscillating amplitude, with the latter chosen as the control inputfor U-CAT’s hydrodynamic model. This relationship was identified experimentally usingU-CAT’s test bed, resulting in a second-order polynomial function between f th and Aosc

i .Figure 12 illustrates the evolution of the generated mean fin thrust for various actuationparameters. For an oscillating frequency of 1.1Hz, a relationship between the requiredthrust force and the oscillating amplitude was derived based on polynomial interpolation[76]:
Aosc

i =−0.01170 f th2
+0.4363 f th +0.2480 (31)

where θ represents the oscillating amplitude, and F denotes the thrust force generatedby the robot’s four fins.
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Figure 12: Evolution of the generated mean fin thrust for different actuation parameters (oscillationamplitude ranging from 0 to 60◦ and oscillation frequency ranging from 0.5Hz to 2.6 Hz). ([Publi-cation II]©2021 Elsevier Ltd).

4.2.2 The proposed fin model: A nonlinear analytical model
A more comprehensive model was developed to enhance the fin model’s fidelity. Theoscillating motion of a fin requires a rotational force that can overcome both inertia anddrag. In [108], a force balance expression was proposed for fin paddling as a simple linearmotion. To estimate the required force for fin rotation, a rotational force balance wasconsidered, leading to a torque balance between the angular momenta of the oscillatingmotion of a tail fin and the drag [109]:

I
dω
dt

= rc(Ff −D f ) (32)

D f =
1
2

Cdrot ρ(rcω)2S f =
Cdrot

2
ρV rcω (33)

where I denotes the inertia moment of the rotating fin, ω represents the angular ve-locity of the fin, Ff is the force for rotating the fin, rc is the distance between the rotationaxis and the centre of gravity of the fin, and D f is the drag acting on the fin. Cdrot standsfor the rotational drag coefficient, and S f is the projection area of the fin. Equation (33)can be reformulated to include the momentum of the transported fluid whose volume is
V . This implies that the fin converts the momentum of fluids to drag.The angular component parallel to the swimming direction of the rotational force isused as thrust F . It can be expressed by:

F = Ff sin|θ |= (
Cdrot ρV rcω

2
+

I
rc

dω
dt

)sin|θ | (34)
where θ is the angle of the fin, the angle between the fin cord line and the thrust direction.Equation (34) characterizes the instantaneous thrust generated by a rotating fin.To find the relationship between the oscillation amplitude and the generated thrust,it’s understood that a fin obtains thrust through a reaction of motion of the surroundingfluid induced by its rotation. The rotating fin translates the force of fin rotation into athrust. In drag-based thrust generation, the thrust is related to drag based on a momen-tum transfer theory [110]. The theoretical thrust generated by a rotating finwas estimatedby momentum theory:

F =
∫
(
Cdrot ρV rcω

2
+

I
rc

dω
dt

)sin|θ |dθ (35)
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Figure 13: (a): Validation of the proposed theoretical model for fin amplitude allocation, with ex-perimental data for a constant frequency f = 1.1Hz. (b): Evolution of the RMS error between theproposed theoretical model and the experimental data for different frequencies (in green f = 1.1Hz,is the robot’s fins’ constant oscillating frequency used within our control scheme .) ([Publication II]©2021 Elsevier Ltd).
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where F stands for time-averaged theoretical thrust during one cycle. This can be furthersimplified to:
F = 2

∫ θmax

0
(Cdrot ρV rcω)sin(θ)dθ (36)

From equation (36), the thrust can be deduced:
F =−2(Cdrot ρV rcω)(cos(θmax)−1) (37)

Inverting equation (37) gives the expression of the control input (i.e. the oscillating am-plitude) in terms of the required thrust force:
θmax = arccos

( −F
2Cdrot ρV rcω

+1
)

(38)
Given thatV = S f ωrc, equation (38) can be expressed in terms of the required thrust
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F and the oscillating frequency f as:
θmax = arccos

( −F
8CdρS f (rcπ f )2 +1

)
(39)

Table 4: Summary of the fin’s parametric values of the theoretical model.
ρ (kg/m3) S f (m2) Rc (m)
997 0.02 0.1

In equation (39), all constants are known (as summarised in Table 4), and the coeffi-cient Cd was identified based on the experimental fins’ thrust data [111]. A minimal RMSerror between the experimental assessment of the fins and the proposed analyticalmodelis obtained forCd = 0.23. Figure 13a depicts the evolution of the oscillating amplitude ver-sus the horizontal thrust. The proposed inverse solution matches the experimental data,with an RMS error of 1.154◦. Moreover, the proposed analytical inverse model is validfor various frequencies, as illustrated in Figure 13b, where the RMS error between theproposed model and the gathered experimental data is less than 3◦ for all the studiedfrequencies.
4.3 Experimental Results and Discussion
2-DOF (depth and yaw) trajectory trackingwas considered to validate the proposedmodel.By integrating the proposed inverse model with a fuzzy logic controller and an empiricallydescribed control allocation, the controller output was converted to fins zero directionand fins thrust. Details about the fuzzy logic controller and the control allocation can befound in [Publication II]. Subsequently, the proposed model was used to determine thefins amplitudes.Various experimental scenarios were executed to assess the control scheme’s effec-tiveness. These scenarios include:

• Scenario 1 (Nominal case): the robot operates without any external disturbancesor uncertainties. The aim was to validate the proposed fin model. This scenariowas repeated five times, each with a different oscillating frequency: (0.8Hz, 1.1Hz,
1.4Hz, 1.7Hz, 2.0Hz).

• Scenario 2 (Robustness test): A buoyancy foam was attached to the robot, increas-ing its buoyancy. This setupwas designed to test how the control lawwould respondto such an unexpected change. The oscillating frequency for this test was kept con-stant at 1.1Hz.
• Scenario 3 (External disturbances rejection): In this setup, the robot faced an ex-ternal disturbing force, primarily affecting its yaw angle. The oscillating frequencyfor this test was also set at 1.1Hz.
It’s important to highlight that once tuned for the nominal case, the controller parame-ters remained unchanged across all scenarios. In Scenario 2, the primary variable was therobot’s buoyancy B. For Scenario 3, the external disturbance was introduced in a mannerthat predominantly influenced the vehicle’s yaw angle.
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Figure 15: (a) Obtained experimental results using the proposed finmodel and a fuzzy-logic controllerin the nominal case (at an oscillating fin frequency of 1.1Hz). (b) RMS tracking errors for the nominalcase using different fins oscillating frequencies. ([Publication II]©2021 Elsevier Ltd).

4.3.1 Experimental scenario 1: Control in nominal case
The RMSerrors for depth and yaw tracking are presented in Figure 15b. As can be observedfrom Figure 15b, the proposed fin model yields satisfactory results across all tested oscil-lating frequencies, spanning from 0.8Hz to 2Hz. The optimal performance was achievedwith the fin’s oscillating frequency set to 1.1Hz, recording RMS errors of 0.15m for depthand 4.01◦ for yaw tracking. Using an oscillating frequency of 1.1Hz, the tracking resultsare illustrated in Figure 15a. Figure 15a shows that the proposed control scheme performswell under nominal conditions. The robot adeptly tracks the desired trajectories, evenwhen both degrees of freedom are simultaneously in flux. The associated control signalfor depth exhibits high-frequency variations, leading tominor adjustments in fin direction,yet the control performance remains unaffected. In this scenario, both control signals staywithin the permissible range of the robot’s actuators.
4.3.2 Experimental scenario 2: Robustness test towards buoyancy change
For this test, a buoyancy foam of volume 300cm3 was affixed to the robot’s top centre,increasing its buoyancy. In this configuration, the robot ascends to the water’s surfacewhen the fins remain inactive, indicating a loss of the robot’s neutral buoyancy. The re-sults from this scenario are displayed in Figure 16. Despite the augmented buoyancy, therobot successfully tracks the desired trajectories for depth and yaw. Minor oscillations inyaw tracking are evident, attributed to the robot’s continuous fin adjustments to counter-balance the heightened buoyancy. The RMS errors for this test are 0.29m for depth and
10.42◦ for yaw tracking. Even with the added buoyancy, the robot maintains a commend-able tracking accuracy.
4.3.3 Experimental scenario 3: External disturbances rejection
During this test, the robot encountered an external disturbance. A stick was employed toperturb the robot twice, reorienting it at arbitrary angles. An initial, milder disturbancewas applied as the robot dived, followed by a more pronounced disturbance once therobot achieved a stable depth. The outcomes are showcased in Figure 17, with the dis-turbance timings highlighted in the top right plot of Figure 17. After the first disturbance,the robot realigned to the desired yaw angle, even while diving (with vertically positioned
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Figure 16: Experimental results obtained with the proposed fuzzy-logic controller under increasedbuoyancy conditions. The top plots illustrate the trajectory tracking time series and the bottomplots show the controller output for depth and yaw, respectively. ([Publication II] ©2021 ElsevierLtd).
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Figure 17: experimental results using the proposed fuzzy-logic control in an external disturbancesrejection scenario. Top plots focus on the trajectory tracking time series, while bottom plots revealthe controller output for depth and yaw, respectively. ([Publication II]©2021 Elsevier Ltd).
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fins). The robot exhibited a swifter recovery following the second, more intense distur-bance. It was attributed to its fins’ horizontal orientation during non-diving phases, gener-ating a more substantial torque force from all four fins. The RMS errors for this test standat 0.17m for depth and 14.64◦ for yaw tracking.
4.4 Conclusions
The challenge of dynamic modelling and control of fin-actuated underwater vehicles iscomplex, and this chapter aims to address it comprehensively. A significant focus wasplaced on deriving a dynamic model that aptly represents the robot’s fins. The introducedmodel offers a nonlinear analytical relationship that links the amplitude and frequency ofoscillations to the thrust force required for controlling fin-actuated vehicles. Experimentalvalidation was a vital component of this work, and the proposed model was rigorouslytested against thrust generated across various operating frequencies. The outcomes werepromising, underscoring the model’s applicability across different oscillating frequencies.Moreover, the practical implementation of the proposed model and its inverse on afin-actuated AUV was a testament to its real-world relevance. The experiments show-cased the potential of amplitude modulation, with a set constant frequency, as a viablecontrol mechanism for a fin-actuated AUV. The results indicated the model’s efficacy androbustness across diverse oscillating frequencies.Specifically, the contributions of this chapter include:

• The introduction of a nonlinear analytical model that captures the relationship be-tween oscillation amplitude and frequency and the required thrust force for fin-actuated vehicles.
• Experimental validation of the proposed model across various oscillating frequen-cies, confirming its accuracy and relevance.
• Demonstrating the real-world applicability of the model and its inverse on a fin-actuatedAUV, highlighting the potential of amplitudemodulation as a controlmech-anism.
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5 Control allocation for 6-DOF control of fin-Actuated AUVs

5.1 Overview and motivation

Fin-actuated AUVs, such as the U-CAT, have the unique capability of using fins for thrustgeneration and vectoring. This feature enhancesmanoeuvrabilitywhile reducing the num-ber of actuators required for full 6-DOF control. However, the dual-purpose nature ofthese fins introduces complex control challenges distinct from those faced by propeller-based systems.
Traditional control allocation methods designed for propeller-based actuation are notdirectly applicable to fin-actuated vehicles. Fins require rotation to change the thrust di-rection, introducing delays and disturbances in control response. Unlike tiltable thrusters,which can produce thrust throughout rotation, fins halt thrust generation during rotation.These characteristics necessitate tailored control allocation methods that account for thespecific dynamics of fin-actuated vehicles.
In previous sections, control allocation was primarily based on empirical models, lim-iting the robot’s control capabilities to 3-DOF. This section introduces an analytic controlallocation method designed explicitly for fin-actuated AUVs to address these challenges.Themethod integrates a state-of-the-art adaptive hybrid feedback controller to enable anAUV with only four actuators to achieve accurate 6-DOF trajectory tracking.
The proposed method has been rigorously assessed through extensive Monte Carlosimulations and validated by real-world pool experiments. These assessments focus onevaluating the proposed control allocation method’s performance, energy efficiency, andcomputational speed in full 6-DOF trajectory tracking.
In summary, this section aims to contribute a novel control framework that balancesperformance, energy efficiency, and computational speed, thereby advancing the field of6-DOF tracking for under-actuated underwater robots.
To enable 6-DOF control for the U-CAT, the control allocation problem τ = BX mustbe addressed, as formulated in Equation 40 and detailed in Section 2.5.
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Figure 18: Proposed autonomy architecture consisting of: 1) trajectory generation module in blue,2) control module including hybrid adaptive 6-DOF controller and control allocation in red, 3) stateestimation module with sensors and EKF in green.
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Figure 19: Illustration of the different fin configurations for controlling the U-CAT robot in each de-gree of freedom, using two or four fins. The fins responsible for actuation in each configuration aremarked with a red dot.

5.2 Solving the control allocation problem

τ =




τx
cψ f
τy

sψ f

τz
τΦ
y f
τΘ
x f
τΨ
Ma




=




1 −1 −1 1 0 0 0 0
−1 −1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 −1 −1
0 0 0 0 −1 1 1 −1
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(40)

Several methods exist to solve the problemmentioned above. A naive pseudo-inverseapproachoffers a straightforwardbut suboptimal allocation strategy. Alternatively, optimization-based techniques, such as quadratic programming [61], aim for an optimal distribution ofcontrol efforts. However, this work introduces a novel control allocation method that fo-cuses onminimising fin rotations. The hypothesis behind this approach is that reduced finrotations should result in fewer delays and minimal disturbances in the control response.
5.2.1 Direct solution
The matrix B is full-rank, allowing for a non-unique solution via the Moore-Penrose in-verse, expressed as X = BT (BBT )−1τ . Given the symmetric configuration of the fins,denoted i = 1, . . . ,4, the solution can be formulated as follows, where the forces andorientations of the fins remain coupled:

cφ0,i f th
i =

1
4

(
τx

cψi
+

τy

sψi
+

sign(ψi) τΨ
Ma

)
, (41)

sφ0,i f th
i =

1
4

(
τz +

τΦ

yi
− τΘ

xi

)
. (42)

To simplify, the sums of wrenches in Equations (41) and (42) are defined in terms ofhorizontal f hor
i and vertical f ver

i contributions:
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f hor
i =

τx

cψi
+

τy

sψi
+

sign(ψi) τΨ
Ma

, (43)
f ver
i = τz +

τΦ

yi
− τΘ

xi
. (44)

By dividing Equation (42) by Equation (41), the zero direction φ0,i for each fin is de-duced:
φ0,i = arctan2

(
f ver
i , f hor

i

)
. (45)

The required thrust forces for each fin are then calculated by squaring and summingEquations (41) and (42):
f th

i =
1
4

√
( f hor

i )2 +( f ver
i )2. (46)

It should be noted that in this control allocation method, termed CAinv, all four finsare actuated irrespective of the controller’s output τdes. This can result in undesirable finrotations, causing significant disturbances when changing the fin’s orientation.
5.2.2 Optimization-based solution
An alternative to the direct solution for the control allocation problem is to employ opti-mization techniques that can be executed near real-time. The constraints in Equation (40)are modified to relax the trigonometric functions, leading to the following optimizationproblem:

min
f th

J = f thT
f th (47)

Subject to:
τx = cψ f

(
Γopt

1 f th
1 −Γopt

2 f th
2 −Γopt

3 f th
3 +Γopt
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4

)
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2 fth,2 +Γopt
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τΨ = Ma

(
−Γopt
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4

)

1 = Γopt
i2 +Λopt

i2 i = 1 . . .4

−1 ≤ Γopt
i ≤ 1 i = 1 . . .4

−1 ≤ Λopt
i ≤ 1 i = 1 . . .4

0 ≤ f th
i ≤ Fmax i = 1 . . .4

(48)

The cost function aims to minimize the exerted force. Notably, the optimization doesnot include a term for minimizing zero-direction change, as it led to non-convergenceissues.
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Sequential Quadratic Programming (SQP) [112] is used to solve the optimization prob-lem to find [ f th,Γopt ,Λopt ] during runtime, with initial conditions for all parameters set tozero. The zero-directions φ0 are then calculated using:
φ0,i = atan2(Λopt

i ,Γopt
i ) i = 1 . . .4 (49)

This optimization-based approach has its limitations. It does not explicitly aim tomini-mize zero-direction change, which may not guarantee an optimal solution for this specificcriterion. Additionally, the iterative nature of the optimization algorithm demands morecomputational resources, posing a challenge for real-time executionwithin hardware con-straints.For the remainder of this paper, this optimization-based control allocation method isdenoted as CAopt .
5.2.3 Proposed analytic solution
Addressing the shortcomings of CAinv and CAopt , a new analytic method is introduced.This method aims to solve the control allocation problem while minimizing the change inzero-direction.Given U-CAT’s symmetrical fin configuration, it becomes evident that for specific de-grees of freedom—surge, sway, heave, and yaw—only two fins might be sufficient to gen-erate the necessary thrust vector, as depicted in Fig. 19.The control allocation equations (45) and (46) are adapted to account for the desirednumber nd of fins used for each degree of freedom. This adaptation employs Heavisideunit step functions H(·) [113, p. 61].

f hor
i (τ,nd) =

hH(τx,cψi,nd)

cψi
+

hH(τy,sψi,nd)

sψi
+

hH(τΨ,ψi,nd)

Ma
(50)

f ver
i (τ,nd) = hH(τz,−ψi,nd)+

τΦ

yi
− τΘ

xi
(51)

hH(τ,s,nd) =

{
2 H (sign(s)τ) τ nd = 2
τ nd = 4

(52)

φ0,i = arctan
(

f ver
i (τ,nd)

f hor
i (τ,nd)

)
(53)

f th
i =

1
4

√
f hor
i (τ,nd)2 + f ver

i (τ,nd)2 (54)
Moreover, the symmetry of the fins is used to further minimize the change in zero-direction. When controlling forces and torques in the vertical plane, the fins are orientedat angles of ±π

2 according to equation (53). To counteract the non-linearity in the arctanfunction, opposing horizontal forces are introduced that naturally cancel each other out,as shown in Fig. 20.
f th

i =
1
4

√(
fcomp + f hor

i (τ,nd)
)2

+ f hor
i (τ,nd)2 (55)

fcomp = αcomp ∑
j
(1− f norm

j )| f norm
j | (56)
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Figure 20: Illustration of the horizontal force compensation principle to minimize the fins’ zero-direction change when controlling vertical forces.

with j = z,Θ,Ψ and f norm
j =

|τ j |
f th

max
, it’s worth noting that the compensation term is

omitted in two specific scenarios: when f norm
j = 0 and when f norm

j = 1. The scalar αcompserves to balance the impact of the introduced term fc, aiming to reduce zero-directionchangewhile potentially increasing oscillation amplitudes. This control allocationmethodis henceforth referred to asCAprop.
5.3 Method assessment
The primary objective of this work is to assess the performance of the proposed con-trol allocation method in comparison to two existing methods: the pseudo-inverse andoptimization-based solutions. However, it’s important to note that these control alloca-tion methods are integrated into a broader autonomy framework for the U-CAT AUV. Thisframework, as illustrated in Figure 18, includes a trajectory generator, a hybrid adaptivecontroller derived from the work of [84], an inverse fin model—elaborated upon Section2.4, a Central Pattern Generator (CPG) algorithm, and a state estimator based on an Ex-tended Kalman Filter (EKF) as presented in [114].For those interested in a comprehensive understanding of how each of these compo-nents synergizes to achieve precise 6-DOF control, a detailed description is available in[Publication IV].
5.3.1 Simulation setup
The simulation framework is crafted in Python for rapid deployment. It is based on Fos-sen’s vectorial dynamics model [115] and incorporates the lift and drag model describedin Section 2.4 for simulating fin forces. Monte Carlo Simulations are executed with 500iterations for each of the three control allocation methods: CAinv,CAopt , andCAprop.Two distinct trajectory scenarios are considered: full 6-DOF trajectory tracking (6T)and 3-DOF trajectory tracking (surge, heave, yaw) with roll and pitch stabilization (3T2S).Within these scenarios, two types of trajectories are randomly selected: Ellipse and Lis-sajous. To emulate real-world sensor noise, white Gaussian noise is added to the sensorreadings in the simulation.Inspired by the work ofManhaes et al [116], a comprehensive set of evaluationmetricsis employed to rigorously assess the performance of the control allocationmethods understudy. These metrics are detailed further in [Publication IV]
5.3.2 Experimental setup
Validation experiments are conducted in a swimming pool to corroborate the simulationfindings. The experimental setup illustrated in Figure 21 includes a fabric grid with ArUcomarkers to provide positionmeasurements. Two control allocationmethods are subjected
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Figure 21: Experimental setup at Keila swimming pool (Estonia).

to testing: the proposed analytic method (CAprop) and the optimization-based method(CAopt ). The naive control allocationmethod (CAinv) was excluded from these experimen-tal trials due to its demonstrated ineffectiveness for fin-actuated robots, as evidenced bythe simulation results that will be presented in section 5.4.1.For each of the two control allocationmethods, five trials are conducted for each of thetwo trajectory types (Ellipse and Lissajous), making a total of 10 trials for eachmethod. The6T scenario was not considered in these experiments due to the potential loss of ArUcomarker-based position feedback when controlling roll and pitch. Additionally, the distri-bution of centre of mass and centre of buoyancy created a passively stabilizing systemwhich would have disturbed the controller and potentially exceeded the available controlauthority. Due to the inherent limitations of the experimental setup, not all simulationmetrics are directly transferrable. Nonetheless, RMSE tracking errors are recorded, alongwith root mean square metrics for demanded forces/torques. Computation times for thecontrol allocation are also recorded.
5.4 Results and discussions
This section provides a detailed analysis of the results from the simulations and experi-ments.
5.4.1 Simulation results
Control allocation comparative results
First, simulation tests were conducted to assess the performance of the control allocationmethods under study. A desired 6-DOF wrench vector was set to switch its sign every 5seconds. The mean body forces produced by the fins for each control allocation methodare shown in Fig. 22.Fig. 22 reveals that CAprop closely follows the desired wrenches without any over-shoot, a result of its design to minimize zero-direction change. However, a minor delay inresponse is observed for heave, roll, and pitch. Table 5 shows that CAprop outperformsthe other methods in terms of both linear MAElin and angular MAEang allocation errors.

CAopt , on the other hand, responds quickly but experiences significant overshoot. Thisis primarily due to abrupt changes in the fins’ zero-direction angles, which lead to higher
MAElin and MAEang values compared toCAprop.

CAinv proves to be ineffective for fin-actuated control. All fins contribute to all DOF,
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Figure 22: Comparison of the studied control allocation approaches for tracking a desired controlinput.

disregarding zero-direction change, leading to substantial overshoots in body forces asseen in Fig. 22.The data clearly indicate the superior performance ofCAprop in minimizing force allo-cation errors. This is attributed to its analytical design focus on minimizing zero-directionchange. WhileCAopt does not explicitly consider zero-direction change in its optimizationfunction, it tends to stay close to the initial fin conditions, offering better performancethanCAinv.
Table 5: Comparison of control allocation methods (CAprop, CAopt , and CAinv) in terms of meanallocation errors for linear (MAElin) and angular (MAEang) DOF.

CAprop CAopt CAinv

MAElin [N] 0.293 1.369 2.451
MAEang [Nm] 0.206 0.467 2.613

Trajectory tracking simulation - 6T Scenario
Table 6 provides a comprehensive summary of the simulation results for the 6T scenario.Across most evaluation metrics, the proposed CAprop method surpasses CAinv and CAopt .Specifically, CAprop registers the lowest RMSE values for both linear and angular degrees offreedom, indicating superior tracking performance. The contrast in performance is partic-ularly starkwhen comparing CAprop to CAinv, with the latter showing substantial deviationsin tracking—up to 1.15 m and 103 deg.The inadequacy of CAinv stems from its inability to minimize disturbances during finrotations, a problem addressed in CAprop through selective fin usage and force compen-sation. Although CAopt does not explicitly minimize fin rotations, it appears to do so im-plicitly, resulting in better performance than CAinv but still falling short of CAprop.In terms of energy efficiency, as measured by MAW, MAElin, and MAEang, CAprop alsooutperforms the other methods. Notably, CAinv demands actuator forces well beyond the
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maximum wrench magnitude of 12.5 N, indicating an unsustainable operational require-ment.Regarding computational efficiency, CAinv leads due to its simpler computational struc-ture. However, CAprop offers a significant advantage over CAopt , requiring approximately40 times less computation time. This efficiency is crucial for systems with limited compu-tational resources and high update rates, where CAopt could become a bottleneck.In summary, the results affirm the capability of CAprop and CAopt to enable preciseand efficient 6-DOF trajectory tracking with a limited actuator set, when paired with astate-of-the-art hybrid adaptive controller.
Table 6: Summary statistics represented by median (IQR), of defined evaluation metrics for MonteCarlo simulation framework with 500 trials in the 6T scenario. Results are presented for 3 differentcontrol allocation scenarios: CAprop, CAopt , CAinv.

Summary Statistic CAprop CAopt CAinv

RMSElin [m] 0.04 (0.02) 0.05 (0.01) 1.15 (0.3)
RMSEang [rad] 0.06 (0.003) 0.07 (0.008) 1.83 (0.18)
MEMlin [m] 0.15 (0.01) 0.15 (0.01) 2.4 (0.72)
MEMang [rad] 0.53 (0.04) 0.55 (0.06) 4.42 (0.48)
MAW [N] 1.34 (0.28) 1.69 (0.17) 6.93 (1.02)
MW [N] 4.19 (0.22) 4.34 (0.28) 38.68 (6.52)
MCT [ms] 0.08 (0.002) 3.3 (0.19) 0.07 (0.002)
MAElin [N] 0.48 (0.04) 0.71 (0.03) 5.0 (0.34)
MAEang [Nm] 0.32 (0.03) 0.42 (0.03) 1.37 (0.11)

Trajectory Tracking Simulation - 3T2S ScenarioTable 7 summarizes the simulation outcomes for the 3T2S scenario. Consistent with the6T scenario, CAprop and CAopt demonstrate robust performance, whereas CAinv falls shorton multiple fronts. Specifically, CAinv registers high RMSE values and inefficient medianactuation efforts, with maximum demanded wrenches surpassing the 12.5 N limit.For CAprop and CAopt , the metrics remain largely unchanged between the 6T and 3T2Sscenarios. This consistency suggests effective sway compensation in the trajectory gener-ation, affirming the framework’s potential for precise 3D trajectory tracking with roll andpitch stabilization in non-holonomic vehicles equipped with only four actuators.In summary, the simulation results for both 6T and 3T2S scenarios reinforce the effi-cacy of the proposed CAprop method. It offers a balanced solution that excels in trackingperformance, actuator efficiency, and computational demands, making it a viable controlallocation strategy for fin-actuated underwater robots in various operational scenarios.
5.4.2 Experimental ResultsFig. 23a presents the ellipse trajectory tracking results from a single trial. Both CAprop andCAopt deliver satisfactory tracking performance across all controlled degrees of freedom(DOF). The line-of-sight implementation also enables tracking of the non-directly com-manded sway component. Passive stability in roll and pitchDOF keeps their tracking errorsnear zero, albeit with minor oscillations due to the oscillatory actuation.Fig. 23b displays a whisker plot summarizing five runs in the ellipse trajectory track-ing scenario. The data suggests that CAopt slightly surpasses CAprop in tracking accuracy.
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Table 7: Summary statistics, represented by median (IQR), of defined evaluation metrics for MonteCarlo simulation frameworkwith 500 trials in the 3T2S scenario. Results are presented for 3 differentcontrol allocation scenarios: CAprop, CAopt , CAinv.
Summary Statistic CAprop CAopt CAinv

RMSElin [m] 0.04 (0.02) 0.05 (0.02) 2.1 (1.21)
RMSEang [rad] 0.06 (0.02) 0.09 (0.05) 1.74 (0.12)
MEMlin [m] 0.13 (0.03) 0.15 (0.05) 4.17 (2.14)
MEMang [rad] 0.34 (0.49) 0.7 (0.67) 3.22 (0.07)
MAW [N] 1.27 (0.24) 1.6 (0.15) 4.87 (2.07)
MW [N] 4.09 (0.12) 3.86 (0.34) 34.35 (6.87)
MCT [ms] 0.08 (0.009) 3.8 (0.55) 0.07 (0.002)
MAElin [N] 0.42 (0.02) 0.63 (0.06) 4.66 (1.12)
MAEang [Nm] 0.34 (0.03) 0.47 (0.04) 1.37 (0.15)
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Figure 23: (a) Experimental tracking results for the 3D ellipsoidal trajectory: In the dotted black line isthe desired trajectory. In the red line is the performed trajectory using the proposed solution CAprop.In the blue line is the performed trajectory using the optimal solution CAopt . (b) Box-plot of trackingerrors for the 3D ellipse trajectory.

Specifically, the median error in surge tracking for CAprop stands at 33 cm, compared to
22 cm for CAopt . This discrepancy arises from the controller gains, set to prevent the robotfrom overtaking the desired trajectory xd and thereby avoiding a full turn.

Fig. 24a shows results from a single Lissajous trajectory tracking trial. Similar to theellipse scenario, both control allocation methods perform well. The passive stability inroll and pitch DOF remains effective, keeping their tracking errors close to zero.
Fig. 24b offers a box plot of five runs in the Lissajous scenario. Here, CAprop records amedian error of 41 cm in surge tracking, while CAopt registers 25 cm. The controller gainsare again the contributing factor, set to prevent the robot from surpassing the desiredtrajectory.
It’s worth noting that tracking errors in the experiments are significantly higher than insimulations. This discrepancy is attributed to several factors. First, the simulations do notaccount for low-level motor control imperfections or time lags in fin actuation. Second,the fin model used in simulations, denoted by (14), does not capture complex fluid-body
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Figure 24: (a) Experimental tracking results for the 3D Lissajous trajectory: In the dotted black line isthe desired trajectory. In the red line is the performed trajectory using the proposed solution CAprop.In the blue line is the performed trajectory using the optimal solution CAopt . (b) Box-plot of trackingerrors for the 3D Lissajous trajectory.

Table 8: Computation times for CAprop and CAopt methods
CAprop CAoptTrajectory type Ellipse Lissajous Ellipse LissajousMean time (ms) 0.0068 0.0067 22.2779 21.0504Max time (ms) 0.3199 0.1588 3931.6030 1812.4072

interactions. Third, environmental disturbances, such as pool activities during the exper-iments, introduce additional variables not present in the simulations. These factors alsopotentially explain why CAopt outperforms CAprop in the experimental setting, contrary tosimulation results.In terms of tracking performance, our maximal RMSEs stand at 8.5 cm for depth and
11◦ for yaw. When compared to previous works, such as 2.22 cm in depth set point sta-bilization and 2.91◦ in yaw tracking [45], our performance appears less accurate. How-ever, these studies often focused on fewer DOFs, making our work more comprehensivein scope. This suggests that the currentwork significantly advances the state-of-the-art forfin-driven, turtle-like AUVs by expanding the tracked DOF while maintaining comparableaccuracy.Comparing our results to the hybrid adaptive controller from Basso et al. [84] is alsoinstructive. While they did not report numerical metrics, the figures suggest our track-ing performance is in a similar range. Notably, we achieve this with half the number ofactuators and on a functionally non-holonomic system. Additionally, our starting valuesfor adaptive parameters are approximations, unlike in [84] where they are derived froman identified dynamics model. This underscores the robustness and applicability of ourapproach, even when compared to more specialized systems.Fig. 25 presents a box plot of the root mean square (RMS) of the generated controlleroutputs (τdes) for both CAprop and CAopt . The data indicates that CAprop requires slightlyhigher forces in linear directions and lower torque for yaw. This is attributed to the forcecompensation term fcomp (56), which minimizes changes in zero-direction angle but ne-cessitates higher forces. This highlights a trade-off between minimizing disturbances andactuator energy efficiency, a consideration that will be application-specific.
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Figure 25: Box-plot of root mean square forces and torques. Left: During ellipse trajectory. Right:During Lissajous trajectory.

Table 8 compares the computation times for CAprop and CAopt on the Jetson TX2 em-bedded computer. The mean times for CAprop are around 0.0068 ms and 0.0067 ms forellipse and Lissajous trajectories, respectively. The maximum times are well below 1 ms.In contrast, CAopt requires mean times of 22 ms and 21 ms and maximum times reachingup to 3931 ms and 1812 ms for the two trajectories. The computational burden is no-tably higher on the embedded system compared to a laptop, emphasizing the efficiencyof CAprop.
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Figure 26: Mean accumulated rotation of U-CAT’s four fins per experiment for a) the ellipse trajectoryand b) the Lissajous trajectory.
Fig. 26 a) and b) show the mean accumulated fin rotations for both trajectories. Thedata indicates that CAprop requires less actuation effort, enhancing energy efficiency.There are limitations to the current work. Roll and pitch stabilization were not testeddue to the U-CAT’s inherent passive stability in these DOFs. While simulations accountedfor these factors, the mechanical reconfiguration needed to test them was beyond thescope of this study. Additionally, the maximum tested velocities were around 0.2 m/s,which may be insufficient in strong currents. This limitation is due to both the experimen-tal setup and the current fin design, but we see these as engineering challenges ratherthan fundamental issues.
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Despite these limitations, the results offer a thorough evaluation of the proposedmethods. The data confirms the effectiveness of CAprop in tracking complex 3D trajec-tories with minimal error, efficient actuation, and reduced computational time.
5.5 Conclusions
This chapter presents a comprehensive investigation into the challenges and solutionsassociated with 6-DOF tracking control for under- and fin-actuated AUVs. The focal pointof this work is the development and validation of an innovative analytic control allocationmethod, CAprop, specifically tailored for fin-actuated AUVs. This method was designed toaddress the unique challenges posed by fin-based actuation, offering a balance betweencomputational efficiency and actuator energy usage.The proposed control allocation method was rigorously tested in both simulation andreal-world environments. In simulation, themethod demonstrated superior performancein terms of tracking accuracy and actuator efficiency when compared to other existingmethods. Real-world experiments in a semi-controlled environment further corroboratedthese findings. The method was tested using complex 3D trajectories. The results consis-tently indicated that CAprop is both robust and efficient, making it a promising solutionfor fully autonomous 6-DOF navigation in fin-actuated AUVs. The key contributions of thiswork are:

• Rigorous development and validation of a novel analytic control allocation method,CAprop, optimized for fin-actuated AUVs.
• Comprehensive testing of the proposed method in both simulated and real-worldsettings, confirming its robustness, efficiency, and suitability for 6-DOF tracking infin-actuated AUVs.
• A detailed comparative analysis against existing control allocation methods, high-lighting the advantages of CAprop in terms of tracking accuracy, actuator efficiency,and computational demands.
• First-ever demonstration of 6-DOF control in an under-actuated AUV, establishing anew benchmark in the field.
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6 Fault-tolerant control for fin-actuated AUVs
6.1 Overview and Motivation
The need for fault-tolerant control in underwater robotics is not just academic; it’s essen-tial for real-world missions. Underwater conditions are harsh and unpredictable, makingactuator failures likely. For a fin-actuated AUV like U-CAT, a single fin failure can seriouslyaffect the vehicle’s ability to navigate and complete tasks. Developing a reliable fault-tolerant control scheme for fin-actuated AUVs is not just an engineering problem; it’s arequirement for successful missions.This chapter focuses on an active fault-tolerant control scheme for a four-fin-actuatedAUV. The key feature is a control allocation switching mechanism that can adaptively re-distribute control forces among the fins if a failure occurs. The scheme uses the columnelimination method [117, 118], adapted to handle the specific challenges of fin-based ac-tuation, which is nonlinear and highly coupled.Two different control strategies are used to test the proposed fault-tolerant controlmethod: PID and Sliding Mode control. These tests aim to provide a thorough evaluationunder different conditions.By addressing the need for more research on fault-tolerant control for fin-actuatedAUVs, this work aims to contribute to the field significantly. The goal is to improve thereliability and resilience of these specialised underwater vehicles.
6.2 Proposed FTC scheme
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Figure 27: Block Diagram illustration of the proposed fault-tolerant control strategy. ([PublicationIII]©2023 Elsevier Ltd).

A recapitulation of the control allocation in the nominal case is warranted before delv-ing into the fault-tolerant control scheme, as illustrated in Fig. ??. In a scenario whereall fins are fully functional, the equation system in (40) can be compactly expressed as
B[Hc,Vc]

T = τn. This is mathematically represented as:
C1

h C2
h C3

h C4
h C1

v C2
v C3

v C4
v






1 −1−1 1 0 0 0 0
−1−1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 −1−1
0 0 0 0 −1 1 1 −1
−1 1 −1 1 0 0 0 0

[
Hc
Vc

]
= τn (57)
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The system in (57) is virtually over-actuated, given the infinite number of possible finconfigurations. A straightforward approach involves using the Moore-Penrose inverse[119], such that [Hc,Vc]
T = B†τn. The Moore-Penrose inverse B† = BT (BBT )−1 is givenby:

B† =
1
4




1 −1 0 0 0 −1
−1 −1 0 0 0 1
−1 1 0 0 0 −1
1 1 0 0 0 1
0 0 1 1 −1 0
0 0 1 1 1 0
0 0 1 −1 1 0
0 0 1 −1 −1 0




(58)

This leads to a solution where the fins’ forces and orientations remain coupled. Theequations are as follows:

cφi,0 f th
i =

1
4

(
Ei,1

τx

cψ f
+Ei,2

τy

sψ f
+Ei,6

τΨ
Mψ

)
(59)

sφi,0 f th
i =

1
4

(
Ei,3τz +Ei,4

τΦ

MΦ
+Ei,5

τΘ
Mθ

)
(60)

Where Ei, j denotes the element located at row i and column j of the matrix B†. Bydividing equation (59) by equation (60), the zero-direction angles φi,0 can be deduced:

φi,0 = atan


 Ei,3τz +Ei,4

τΦ
MΦ

+Ei,5
τθ
Mθ

Ei,1
τx

cψ f
+Ei,2

τy
sψ f

+Ei,6
τψ
Mψ


 (61)

The forces f th
i are then derived by summing and squaring equations (59) and (60):

f th
i =

1
4

√(
Ei,1

τx

cψ f
+Ei,2

τy

sψ f
+Ei,6

τΨ
Mψ

)2

+

(
Ei,3τz +Ei,4

τΦ

MΦ
+Ei,5

τΘ
Mθ

)2 (62)
The solution derived above for controlling the fins’ orientations and thrust forces, asdiscussed in Section 5.2.1, lacks optimization for accurately tracking time-varying trajec-tories. Specifically, all four fins must be actuated regardless of the control input τ . Thiscould, for example, result in a 180-degree rotation of all fins when the surge componentchanges its sign. Taking advantage of the symmetrical configuration of U-CAT fins offers asolution. For forces and torques produced in the horizontal plane of the body-fixed frame,such as surge, sway, and yaw, only two fins are necessary for movement in one direction.The control allocation can thus be reformulated as follows:

φi,0 = atan




Ei,3τz +Ei,4
τΦ
MΦ

+Ei,5
τθ
Mθ

2
(

Ei,1
H(τx)τx

cψ f
+Ei,2

H(−τy)τy
sψ f

+Ei,6
H(−τψ )τψ

Mψ

)


 (63)

50



f th
i =

1
4

√
2
(

Ei,1
H(τx)τx

cψ f
+Ei,2

H(−τy)τy

sψ f
+Ei,6

H(−τΨ)τΨ
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)2

+

(
Ei,3τz +Ei,4

τΦ
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τΘ
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)2

(64)
This study focuses solely on fin failure as a fault condition, assuming that such a faultcan be both identified and isolated. Additionally, it’s assumed that only one actuator fail-ure occurs at a time. For the remainder of this section, a "faulty" fin refers to a completelynonfunctional fin.Upon the occurrence of an actuation failure, the elimination of columnmethod adaptsthe control allocation system. Specifically, the matrix B from equation (21) is reduced bytwo columns, contingent on which fin is identified as faulty (see Fig. 1b for illustration).The columns to be eliminated are as follows:
• C1

h andC1
v , if the fin FR is faulty

• C2
h andC2

v , if the fin RR is faulty
• C3

h andC3
v , if the fin RL is faulty

• C4
h andC4

v , if the fin FL is faulty
After identifying and eliminating the appropriate columns, the reduced matrix, de-noted asAr ∈R6×6, becomes a full-rank squarematrix. In a faulty fin scenario, this impliesthat Ar is invertible, and a unique fin configuration exists that solves the control allocationproblem. The inverse of this matrix, A−1

r , can be generalized for all the faulty cases listedabove:

B−1
r =




H1
1 H2

1 0 0 0 V 1
1

H1
2 H2

2 0 0 0 V 1
2

H1
3 H2

3 0 0 0 V 1
3

0 0 H1
4 V 1

4 V 2
4 0

0 0 H1
5 V 1

5 V 2
5 0

0 0 H1
6 V 1

6 V 2
6 0




(65)

The values of B−1
r for all faulty fin scenarios are summarized in [Publication III].Following the same solving procedure detailed in equations (59) to (62), both the re-quired forces and zero-direction angles for the three healthy fins can be deduced:

f th
i cos(φi,0) = H1

i
τx

cψ f
+H2

i
τy

sψ f
+V 1

i
τΨ
Mψ

= Γh
i (i = 1 . . .3) (66)

f th
i sin(φi,0) = H1

i+3τz +V 1
i+3

τΦ

MΦ
+V 2

i+3
τθ
Mθ

= Γv
i (i = 1 . . .3) (67)

The required zero-direction angles and forces are then derived and expressed as:

f th
i =

√
Γh

i
2
+Γv

i
2 (i = 1 . . .3) (68)

φi,0 = tan−1
(

Γv
i

Γh
i

)
(i = 1 . . .3) (69)
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(a) Illustration of the experimental setup. (b) Top view of the water tank.
Figure 28: The experimental setup used for real-time experiments at LIRMM laboratory (Montpellier,France). ([Publication III]©2023 Elsevier Ltd).

The computed forces f th
i are transformed into fin oscillation amplitudes Aosc

i usingthe proposed inverse model in [Publication II].The resulting fin oscillating amplitudes and zero-direction angles are allocated to therespective fins in an ascending order of i:
• RR, RL, and FL, when the FR fin is faulty.
• FR, RL, and FL, when the RR fin is faulty.
• FR, RR, and FL, when the RL fin is faulty.
• FR, RR, and RL, when the FL fin is faulty.

6.3 Experimental results and discussions
A series of validation experiments were performed in a laboratory pool with a depth of
1.30m (c.f. Fig. 28a). The setup includes a large grid of dimensions 3m×4m (cf. Fig 28b).The onboard camera captures images at a frequency of 10Hz. Detected markers serve asthe basis for actual position measurements in the Earth fixed frame Rn.Given the shallow depth of the pool, constraints were placed on the range of motionfor certain degrees of freedom. This limitation also impacts vision-based odometry, asmarker detection becomes unreliable at greater depths. Consequently, a planar elliptictrajectory was selected as the reference trajectory for tracking.It’s crucial to underline that the FTC scheme doesn’t operate in isolation but is partof a more comprehensive autonomy framework for the U-CAT AUV. As depicted in Figure27, this framework encompasses a trajectory generator and two alternative controllers forcomparative evaluation against the FTC controller: PID and Sliding Mode. Once the zero-direction angles and forces are ascertained via the FTC controller, these forces undergoconversion into oscillation amplitudes, courtesy of the model delineated in Section 4. Toguarantee smooth transitions, a 2nd-order filter is employed for both the zero-directionangles and the oscillation amplitudes.For readers keen on amore in-depth grasp of how these elements coalesce to facilitateprecise control, additional insights are provided in [Publication III].To assess the fault-tolerant control (FTC) scheme in conjunction with PID and SM con-trollers, a series of experimental scenarios were designed. These scenarios aim to eval-uate the tracking performance of the proposed control allocation method under varyingfin conditions. The scenarios are as follows:
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• Scenario 1 (Nominal): In this case, all fins are operational, serving as the baselinefor performance evaluation.
• Scenario 2 (RR): Here, the rear right fin is rendered nonfunctional, introducing afault into the system.
• Scenario 3 (RL): In this scenario, the rear left fin is considered faulty.
• Scenario 4 (FL): The front left fin is assumed to be nonfunctional.
• Scenario 5 (FR): Lastly, the front right fin is considered to be out of operation.

(a) XY trajectory tracking performance.

(b) Depth tracking performance.
Figure 29: Trajectory tracking results across the different experimental scenarios using the PID con-troller. ([Publication III]©2023 Elsevier Ltd).

In the first scenario, where all fins are operational, tracking of the desired trajectory isachieved with both PID and SM controllers, as evidenced by Figures 29 and 30. Notableis the increased oscillation in the zero-direction angle of the rear right fin when utilizingthe PID controller, a phenomenon that primarily affects depth adjustments (Figure 31). Incontrast, the SM controller exhibits reduced oscillations in the same parameter, leadingto an improvement in tracking performance in terms of root mean square errors (RMS),as depicted in Figure 33.For the second scenario, involving a faulty rear right fin, a decline in tracking perfor-mance is observed with the PID controller (Figure 29). This decline manifests as an offsetin depth tracking accompanied by oscillations, attributable to the robot’s positive buoy-ancy and the fins’ limitations in generating adequate heave force without a configurationswitch (Figure 31). On the other hand, the SM controller maintains relatively better track-ing performance under the same faulty conditions, as shown in Figure 30. While depthtracking is somewhat compromised, the overall trajectory tracking remains within accept-able limits. A smoother profile for fin zero-directions is also observed (Figure 32).In the third scenario, featuring a faulty rear left fin, a notable decline in tracking per-formance across all degrees of freedom is observed with the PID controller, as shown in
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(a) XY trajectory tracking performance. ([Publication III]©2023 Elsevier Ltd).

(b) Depth tracking performance.
Figure 30: Trajectory tracking results across the different experimental scenarios using the SMCcontroller. ([Publication III]©2023 Elsevier Ltd).

Figure 29. Given the rear left fin’s crucial role in heading adjustments for a clockwise tra-jectory, the PID controller compensates by generating control inputs that induce oscilla-tory behaviour in the fins’ zero-directions. Contrarily, the SMcontrollermaintains superiortracking performance, as evidenced in Figures 30 and 33.
For the fourth scenario, which involves a faulty front left fin, a slight degradation intracking performance relative to the nominal case is noted with the PID controller (Figure29). As the front left fin is chiefly responsible for generating surge force, its loss predom-inantly affects the tracking of x, as indicated in Figure 33. Moreover, Figure 31 revealsthat the rear right fin alters its orientation to π to compensate for the surge force andheading yaw adjustments. In contrast, the SM controller maintains commendable depthcontrol and overall trajectory tracking (Figure 30). The zero-directions generated are no-tably smoother, contributing to improved performance, as depicted in Figure 32.
In the fifth scenario, characterized by a faulty front right fin, tracking the referencetrajectory proves challenging for the PID controller, as evidenced in Figure 29. Given thefront right fin’s dual role in surge force generation and heading adjustment for a clockwisetrajectory, the remaining fins find it difficult to adequately compensate for the PID inputs.This is further illustrated in Figure 31, where the front left fin’s zero-direction undergoesfrequent sign changes after the first 50 seconds, coinciding with a hard turn. Conversely,the SM controller manages to improve tracking performance across all degrees of free-dom, as shown in Figure 30. While the front-right fin’s significance in tracking this specifictrajectory is evident, the SM controller navigates the challenge more effectively than thePID controller.
In summary, the SM controller, when integrated with the proposed FTC scheme, yieldssatisfactory tracking performance evenwhen fin failures occur. The outcomes validate therobot’s capability to adhere to the reference trajectory using only the three remaining,highly-coupled fins, eliminating the need for controller gain adjustments.
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Figure 31: Time-series of the generated zero-direction angles and amplitudes for the different exper-imental scenarios using the PID controller. ([Publication III]©2023 Elsevier Ltd).

Furthermore, the results attest to the efficacy of the proposed FTC scheme in manag-ing actuation failures, even under themost challenging conditions for tracking the studiedreference trajectory. This holds particular relevance for symmetrical robots with symmet-rical designs, as the worst-case scenarios can be inferred based on the nature of the ref-erence trajectory. Such insights are valuable for the development of high-level controllersthat can adapt the reference trajectory to avoid worst-case scenarios.
6.4 Conclusions
This chapter addresses the complex issue of fault-tolerant control in a fin-actuated AUV, asystem characterized by high coupling between actuators. An active fault-tolerant controlscheme has been developed, featuring a control allocation switching mechanism. Thismechanism effectively allocates control forces to operational fins in the event of a fault.Experimental validation was conducted through trajectory tracking tasks, employing twodistinct control laws: PID and Sliding Mode Control. The findings suggest that the integra-tion of a robust controller, such as Sliding Mode Control, with the proposed fault-tolerantcontrol scheme, yields improved performance in handling faults, compared to using PIDcontrol alone. While the primary focus of this study is on the fault-tolerant control alloca-tion strategy, it is acknowledged that real-world applications may involve specific distur-

Figure 32: Time-series of the generated zero-direction angles and amplitudes for the different ex-perimental scenarios using the SM controller. ([Publication III]©2023 Elsevier Ltd).
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Figure 33: Bar plot of the RMS errors for trajectory tracking of all the studied scenarios. The errorsfor the position and orientation, expressed in meters and radians, respectively, are reported for asingle trial for each case. ([Publication III]©2023 Elsevier Ltd).

bances, such as sea currents. Although the current experimental setup does not explic-itly account for such external disturbances, the analysis offers valuable insights into thescheme’s performance and robustness under actuator failure conditions.The main contributions of this work are as follows:
• Development of an active fault-tolerant control scheme with a control allocationswitching mechanism for a fin-actuated AUV with highly coupled actuators.
• Experimental validation of the proposed scheme through trajectory tracking tasksin a controlled environment.
• Comparative analysis of the scheme’s performancewhenusing twodifferent controllaws: PID and Sliding Mode Control.
• Provision of insights into the scheme’s robustness and performance under actuatorfailure conditions.
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7 Conclusions and future work
The primary aim of this thesis was to explore the complexities and offer solutions withinthe scopes of control, navigation, and fault tolerance for fin-actuated AUVs. The workis documented across Publications I to IV, corresponding to Sections 3 through 6 of thisthesis.Publication I and Section 3 addressed the challenge of diver tracking in underwaterenvironments. A data-fusion-based control scheme was developed, integrating acous-tic and visual signals. The work presented in this thesis offers a distinct advantage overexisting methods [34, 35]. Specifically, the proposed data-fusion-based control schemedemonstrates increased robustness in tracking divers, irrespective of their presence inthe camera’s field of view (FOV). This is a notable improvement over the solutions pre-sented in [43, 36], which rely on more expensive sensor setups. The proposed schemeunderwent rigorous validation through open-water field experiments, providing evidenceof its robustness and resilience.In Publication II and Section 4, the nonlinear analytical model introduced in this the-sis fills a gap in the existing literature. While previous studies [74] have proposed validfunctions only within specific mass flow rate ranges, the model presented here is moreuniversally applicable. Additionally, unlike the computational fluid dynamics approachesused in [53, 120], the proposed model is computationally efficient enough to run in real-time on robots with limited computing capabilities.Publication IV and Section 5 presented a pioneering analytic control allocationmethodfor fin-actuated AUVs. Most existing studies [56, 65, 66] have focused on propeller-basedactuation systems andoften involve over-actuatedAUVs. In contrast, the proposedmethodis the first to fully control an under-actuated AUV in 6-DOF, marking a significant advance-ment in the field. The method underwent comprehensive testing in both simulated andreal-world environments. The results indicated that the proposed solution balances com-putational efficiency and actuator energy usage for 6-DOF tracking in fin-actuated AUVs.Publication III and Section 6 focused on the critical issue of fault tolerance in fin-actuated AUVs. An active fault-tolerant control scheme, among the first for fin-actuatedAUVs, was developed, featuring a control allocation switching mechanism. While somework has been done on fault-tolerant control for bio-inspired robots [96], the study hasbeen limited to heading control. The fault-tolerant control scheme proposed in this thesismanages control in 4DOFs, making it a more comprehensive solution.While each chapter has its unique focus and contributions, they form a cohesive bodyof work that advances the understanding of fin-actuated AUVs. Although the experimentsdid not account for specific external disturbances like sea currents, the findings offer valu-able insights into the performance and robustness of the proposed methods.In summary, the thesis contributes to the existing literature by providing tested andvalidated methods for controlling and navigating fin-actuated AUVs. These contributionslay the groundwork for future research to developmore robust, efficient, and fault-tolerantunderwater vehicles.The research journey embarked upon in this thesis has illuminated several promis-ing avenues for future exploration, particularly in the field of fin-actuated AUVs. One ofthe most compelling directions for future work lies in adaptive diver tracking. The data-fusion-based diver tracking scheme developed in this thesis has shown significant promisein enhancing the U-CAT AUV’s capabilities. However, the system could benefit from incor-porating adaptive algorithms that dynamically adjust the weighting between acoustic andvisual signals basedon real-timeenvironmental conditions. Such an adaptive systemcouldoffer amore robust and reliable trackingmechanism, especially in challenging underwater
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conditions where visibility is limited or acoustic signals are distorted.Another intriguing area for future investigation is the concept of dynamic stiffness ad-justment in the fins of the AUV. The nonlinear analytical model developed in this researchprovides a solid foundation for understanding the relationship between oscillation am-plitude and frequency and the required thrust force. Extending this model to includedynamic stiffness adjustment mechanisms would allow the AUV to adapt its fin charac-teristics to varying underwater conditions in real-time. This could lead to significant im-provements in the AUV’s performance and energy efficiency, addressing one of the cur-rent limitations in fin-actuated AUV design.The proposed control allocation method developed in this thesis has proven effectivefor 6-DOF tracking in fin-actuated AUVs. However, there’s still room for further research inthis context. One intriguing direction for futurework is reconsidering the adoptedmethodof minimising fin rotation. The research has shown that lateral fin forces are often morepredominant than the generated thrust forces. This observation suggests that these lat-eral forces could be harnessed to enhance the AUV’s manoeuvrability rather than beingtreated as a limitation to be minimised. Incorporating these lateral forces into the controlallocationmodel could offer amore comprehensive understanding of the AUV’s dynamicsand provide new opportunities for control. This approach could lead to developing con-trol schemes that take full advantage of the AUV’s unique actuation capabilities, enablingexceptional manoeuvrability and adaptability in complex underwater environments. Suchan advancement could be particularly beneficial in scenarios that require agile navigationand rapid decision-making.
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Abstract
Traditional propeller-driven AUVs have been instrumental for underwater applications,but their limitations in agility are becoming increasingly evident. This thesis rigorouslyinvestigates the capabilities of fin-actuated AUVs, which draw inspiration from the loco-motion principles of marine life.The thesis begins by addressing a critical challenge in underwater operations: the ro-bust and accurate tracking of divers. Existing methodologies often need better visibilityconditions and can be expensive. A diver tracking system that capitalises on fin-actuatedAUVs’ agility and safety advantages is introduced to overcome these limitations. By syner-gistically integrating visual and acoustic data from low-cost sensors, the system achievesenhanced tracking accuracy, making it both cost-effective and safe for operations involvingdivers.Transitioning from diver tracking, the thesis addresses a gap in the current literatureconcerning the locomotion dynamics of fin-actuated AUVs. Specifically, models that re-late fin actuation parameters to generated thrust that can be easily inverted for controlpurposes are lacking. A nonlinear dynamic model is proposed to capture the relationshipbetween fin thrust and its oscillation parameters. Empirically validated, this model servesas the foundation for developing an inverse model, offering a novel approach to vehiclecontrol.Control precision is a critical aspect of AUV operations. Traditional AUVs face chal-lenges in achieving 6-DOF (Degrees of Freedom) control, particularly when constrainedby a limited number of actuators. A novel 6-DOF control method tailored for fin-actuatedAUVs is presented. This method enables intricate underwater motions, achieving 6-DOFcontrol with only four actuators, a significant advancement in the field.The necessity for fault-tolerant control in underwater robotics extends beyond aca-demic interest; it is critical for real-world missions. Given the harsh and unpredictable un-derwater conditions, actuator failures are not uncommon. A single fin failure can severelyimpede the vehicle’s operational capabilities for fin-actuated AUVs. The thesis introducesan active fault-tolerant control scheme designed explicitly for fin-actuated AUVs. Thescheme features a control allocation switching mechanism that adaptively redistributescontrol forces among the fins in the event of a failure.In conclusion, the thesis offers a comprehensive study on fin-actuated AUVs, cover-ing perception, modelling, and control aspects. Each contribution addresses a specificchallenge and lays the groundwork for future advancements in underwater robotics. Theexperimentally validated results underscore the potential utility of fin-actuated AUVs incomplex underwater exploration and operations.

69



Kokkuvõte
Traditsioonilised propelleritega autonoomsed veealused sõidukid (AVS) onolnud veealusterakenduste jaoks tähtsad, kuid nende liikuvuse puudujäägid muutuvad üha ilmsemaks.Käesolevas väitekirjas uuritakse põhjalikult uimetäituritega AVSi võimeid, mis on ammu-tanud inspiratsiooni mereelustiku liikumisviisidest.Käesolev doktoritöös võetakse esmalt vaatluse alla veealustes operatsioonides kri-itilise tähtsusega väljakutse: sukeldujate robustne ja täpne jälgimine. Olemasolevatemee-todite puudujääkideks on otsene sõltuvus nähtavusest ning nende kallidus. Nende pi-irangute ületamiseks tutvustatakse antud töös sukeldujate jälgimissüsteemi, mis kasutabära uimedegaAVS eeliseid liikuvuse ja ohutuse osas. Odavate visuaalsete ja akustiliste sen-sorite andmete sünergilise integreerimisega loodi süsteem, mis oli suurema jälgimistäp-susega ning muutis selle sukeldujatega seotud operatsioonide jaoks nii kulutasuvamakskui ka ohutumaks.Sukeldujate jälgimise järel adresseeritakse käesolevas töös lünka kirjanduses,mis käsitlebuimedegaAVSide liikumisviisi dünaamikat. Täpsemalt, puuduvadmudelid,mis seoks omava-hel uime käitamise parameetreid tekitatud tõukejõuga ningmida saab juhtimise eesmärgilhõlpsasti inverteerida. Antud töös luuakse mittelineaarne dünaamiline mudel, mis seobomavahel uime tõukejõud ja selle võnkeparameetri. Empiiriliselt valideeritud mudel onaluseks pöördmudeli väljatöötamisel, mis pakub uudset lähenemist antud töös käsitletudallveesõidukite juhtimisel.Juhtimise täpsus on AVSide opereerimisel kriitiline aspekt. Traditsiooniliste AVSidepuhul on 6-vabadusastmeline juhtimise saavutamine keeruline, eriti piiratud arvu aktu-aatorite korral. Antud töös pakutakse uudne 6-vabadusasmteline juhtimismeetod, mison kohandatud uimedega AVSide jaoks. Antud meetod võimaldab saavutada keerukaidveealuseid liikumisi, saavutades 6-vabadusasmteline juhtimise vaid nelja aktuaatoriga,mis on märkimisväärne edasiminek antud valdkonnas.Vajadus tõrkekindla juhtimise järele veealuses robootikas ulatub akadeemilisest huvistkaugemale; see on kriitilise tähtsusega ka reaalsetes rakendustes. Võttes arvesse karmid jaettearvamatud veealused tingimused, ei ole aktuaatorite tõrked sugugi haruldased. Ühetäituri rike võib tõsiselt häirida uimedega AVS opereerimisvõimet. Käesolevas töös tutvus-tatakse aktiivset tõrkekindlat juhtimisskeemi, mis on loodud spetsiaalselt uimedega AV-Side jaoks. Antud juhtimisskeemsisaldab juhtimissüsteemi ümberlülitamisemehhanisme,mis jaotab vea korral täitursüsteemi tõukejõud uimedele adaptiivselt ümber.Kokkuvõtteks, pakub käesolev väitekiri põhjaliku uurimuse uimedega AVSide kohta,käsitledes seejuures tajumise, modelleerimise ja juhtimise aspekte. Iga antud töö osaadresseerib konkreetset probleemi ja paneb aluse tulevastele arendustele veealuse ro-bootika valdkonnas. Eksperimentaalselt valideeritud tulemused rõhutavad uimedega au-tonoomsete allveerobotite rakenduseeliseid keerukates veealustes uuringutes ja rakendustes.
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Appendix 1: Publication I

Publication I:Walid Remmas, Ahmed Chemori, and Maarja Kruusmaa. Diver tracking in open waters: Alow-cost approach based on visual and acoustic sensor fusion. Journal of Field Robotics,38(3):494–508, 2021
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Abstract

The design of a robust perception method is a substantial component towards

achieving underwater human–robot collaboration. However, in complex environ-

ments such as the oceans, perception is still a challenging issue. Data‐fusion of

different sensing modalities can improve perception in dynamic and unstructured

ocean environments. This study addresses the control of a highly maneuverable

autonomous underwater vehicle for diver tracking based on visual and acoustic

signals data fusion measured by low‐cost sensors. The underwater vehicle U‐CAT
tracks a diver using a 3‐degree‐of‐freedom fuzzy logic Mamdani controller. The

proposed tracking approach was validated through open water real‐time experi-

ments. Combining acoustic and visual signals for underwater target tracking

provides several advantages compared to previously done related research. The

obtained results suggest that the proposed solution ensures effective detection and

tracking in poor visibility operating conditions.

K E YWORD S

collaborative robotics, computer vision, data‐fusion, diver tracking, underwater robotics

1 | INTRODUCTION

Research on collaborative robots (Colgate et al., 1996), has brought

humans and robots to share the same workspace. Combining the high

accuracy and speed of robots with the expertise of humans, cobots

are used to reduce high‐risk and/or laborious work requiring human

intervention, thus, reducing work‐related accidents. Collaborative

robots are used in various applications, such as in industry (Hentout

et al., 2019) for manufacturing and assembling, in robotics for re-

habilitation (Aggogeri et al., 2019) nursing (Robinson et al., 2014),

and in space exploration (Bernard et al., 2018).

Underwater human–robot collaboration is another potential

application in this field of research (GomezChavez et al., 2019;

Islam et al., 2019; Mišković et al., 2015). On one side, the autonomy

of underwater robots is still limited, due to the fact that most of the

communication and localization technology developed for on‐land
applications is impractical under water. On the other side, humans

have relatively limited payload capacity, limited diving time, and

cannot risk to go in confined spaces. Therefore, autonomous

underwater vehicles (AUVs) could be used in underwater missions to

help divers, carrying extra payload, collecting data and samples,

taking footage of the inspected area, performing photogrammetry,

and so on.

A substantial component to achieve underwater human–robot

collaboration, is to detect and track a diver. Accurately tracking a

diver using small underwater vehicles would be a big step into

developing underwater companion robots that can be used for

underwater archaeology and off‐shore structures inspection

(Mišković et al., 2015; cf. Figure 1).

The research of target detection and tracking is quite mature in

land applications (Kakinuma et al., 2012; Lekkala & Mittal, 2016;

Ren et al., 2017; Yagimli & Varol, 2009; Zou & Tseng, 2012); however,

it is still a challenging topic in underwater environments. The poor

propagation of electromagnetic waves under water restricts high‐
bandwidth communication, which makes most of the communication

and localization technology developed for on‐land applications im-

practical in sea. Furthermore, the particular optical properties of light

propagation in water (absorption and diffusion phenomena, presence



of sediments, high turbidity, etc.) limits the use of vision based

methods for underwater target tracking (Duntley, 1963).

A lot of research has been done in this context, using either

vision‐based, and/or acoustic‐based methods. In spite of the limited

detection range and the difficulty of feature extraction using digital

cameras, there are situations where the visibility conditions are good,

for example, when the object is close, or when the AUV operates in

calm or shallow waters. A wide variety of vision‐based research has

been conducted, and different features can be used to detect an

object. The color as a feature was used by Yu et al. (2001), and later

by Dudek et al. (2005) to visually guide an amphibious legged un-

derwater robot. This technique is robust against scale and rotational

variations, and partial occlusions, however, the phenomenon of color

absorption in water limits the use of this technique to only clear

water and close‐range applications.

Shape as a feature for underwater object detection was used in

Han and Choi (2011) and Lee et al. (2003). However, this technique is

only robust when the target has an a priori known, and invariant

shape. A study comparing other methods such as Template Matching,

Weighted Template Matching, and Mean‐Shift based techniques

were conducted in Kim et al. (2012). Yet, template matching tech-

niques require good visibility to extract relevant features from the

image. Many other techniques exist, for instance, optical flow can be

used for underwater pipeline tracking (Cheng & Jiang, 2012), how-

ever, optical flow techniques are not well‐suited for diver tracking

applications, as using this method leads to the detection of all moving

objects in a scene. Background subtraction techniques can also be

used for detecting a moving object (Prabowo et al., 2017); never-

theless, this technique works better when having a static camera.

Sattar and Dudek (2007, 2009) proposed an algorithm based on the

periodic motion of a diver's flippers. However, this method requires

good visibility, and close distance to the flippers. Buelow and

Birk (2011) proposed an algorithm based on the Fourier Mellin In-

variant to detect moving objects, such as divers, on a moving scene.

Chavez et al. (2015) proposed a variation of the Nearest Class‐Mean

Forests to detect and track divers visually. DeMarco et al. (2013)

showed the potential of sonar imagery in detecting divers based on

computer vision segmentation techniques to detect moving objects in

the sonar image, and processing the identified blobs using cluster

classification.

Recently, enabled by the increase of computing power of GPUs'

parallel architectures, neural network modeling is widely used in

image processing (LeCun et al., 2015). Therefore, state of the art

algorithms for on‐land object detection and classification are based

on deep neural networks (DNN) architectures (Cao et al., 2019; Duan

et al., 2019; Li et al., 2019; Redmon & Farhadi, 2018). Many re-

searchers are now using DNN techniques either with digital cameras

for underwater target tracking (Islam et al., 2019; Shkurti et al.,

2017) and multitarget tracking (de Langis & Sattar, 2020; Xia &

Sattar, 2019), or with sonar imagery (Cardozo et al., 2017;

Kamal et al., 2013; Lee, 2017; Song et al., 2017). Depending on the

data‐set on which this method is trained on, it can be robust against

partial occlusions, rotations, and scale‐variations. Furthermore,

down‐scaled DNN models have been recently proposed in the lit-

erature (Howard et al., 2017; Redmon & Farhadi, 2018). Such models

can be implemented on vehicles with limited computing capabilities,

for fast and reliable target (or multitarget) detection. In spite of the

work and research developed for underwater target tracking, vision‐
based techniques still require good visibility, being in a close range to

the target, and having the target inside the camera's FOV.

All the vision techniques based either on digital camera or

acoustic imaging mentioned above suffer from the same issue; the

diver needs to be within the sensor's field of view (FOV). This limits

the diver's mobility and cognitive load as the diver has to always stay

in the camera's FOV. Moreover, during underwater missions, un-

derwater vehicles can be subject to external perturbations which

might cause losing the diver from the camera's FOV. Recovering from

such a scenario has so far not been addressed.

To address this issue, we have investigated a solution which

combines visual and acoustic signals for diver detection. Acoustic

signals enable a wider range for underwater target detection. This

solution allows to detect and track divers that can be far from the

robot, or outside its camera's FOV, allowing the diver to move freely

without being constrained to stay within a limited distance to the

robot, and allows to recover from eventual cases where the robot

loses the diver from its camera's FOV. This robust solution is also

low‐cost compared to previous studies, where a multimodal diver

detection scheme was used (Chavez et al., 2017; Mandić et al., 2016).

In underwater environments, the acoustic modality is generally

more suitable, and can be used in various ways, such as sonar ima-

ging, or accurately localizing a beacon. Many techniques and appli-

cations using sonar imagery have been developed in the literature. A

sonar‐based real‐time underwater object detection using the Ada-

Boost method was proposed by Kim and Yu (2017) which uses Haar‐
like Viola and Jones (2001) features. Zhao et al. (2009) presented a

method to detect spherical shaped objects using sonar images.

Petillot et al. (2002) proposed a robust pipeline detection and

tracking technique using side‐scan sonars and a multibeam echo‐
sounder. However, devices for sonar imaging are quite expensive,

and cannot be implemented on small size AUV's. Acoustic signals can

also be used for self‐localization (Costanzi et al., 2017) or to localize

F IGURE 1 Picture of the U‐CAT robot with a diver during lake
inspection [Color figure can be viewed at wileyonlinelibrary.com]
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an acoustic pinger using an array of hydrophones (Choi et al., 2017;

Kasetkasem et al., 2017). Still, the drawback of using acoustic sensors

is influenced by several factors, such as reflections, low operating

frequencies, aquatic life disturbance, and their efficiency is highly

affected when placed near the robot's mechanisms. Furthermore, the

physics of sound propagation differ from one underwater environ-

ment to another. Indeed, depending on the type of the environment

where the robot is operating, several factors may impact the quality

and accuracy of acoustics signals. In shallow waters, reflections on

the sea bottom and on the sea surface occur more often than in deep

waters. Moreover, the movement of the sea surface also affects the

signal and the reflections' delays. The ambient noise, such as breaking

waves, rain, bubbles, and biological sources also affects the quality of

the acoustic communication (Jensen et al., 2011; Preisig, 2007). All

these factors need to be taken into account, and an appropriate

acoustic filter needs to be used depending on the type of the un-

derwater environment.

Acoustic perception can be augmented with machine vision

techniques (Chavez et al., 2017). This study is motivated by the

complementarity of acoustic and vision based object detection meth-

ods, as illustrated in Figure 2. The fusion of visual and acoustic signals

removes their respective limitations, and provides advantages for di-

ver following compared to aforementioned approaches (Mandić et al.,

2016). In this context, the goal of this study is to track a diver (or any

other dynamic target) by fusing acoustic and visual signals acquired

from low‐cost sensors, to have a more robust, more accurate and more

complete detection in open water conditions, while taking into account

the underwater robot hardware capabilities. The advantage of the

presented work, compared to what has already been done in the

aforementioned studies, is an increased robustness towards diver

tracking, where the tracking is successful, whether the diver is on the

camera's FOV or not. Moreover, the proposed solution involves the

use of relatively low‐cost sensors, where the diver is detected visually

by a digital camera using a down‐scaled embedded DNN, and acous-

tically, by tracking a pinger carried by the diver using an array of

low‐cost hydrophones. The proposed diver tracking scheme is

implemented on the omnidirectional underwater robot U‐CAT
(Salumäe et al., 2016), and validated in an open water environment.

2 | U‐CAT BIO ‐MIMETIC AUV

Inspired by the swimming abilities of marine animals, U‐CAT
(Chemori et al., 2016; Salumäe et al., 2016) is an autonomous

underwater vehicle (AUV) actuated by four oscillating fins. It was

developed, as part of the ARROWS European project, at the Center

for Biorobotics (Tallinn University of Technology) in Estonia.

U‐CAT is a low‐cost, resource constrained robot, that has a small

size allowing it to manoeuver in confined environments (Preston

et al., 2018). Its design is user‐friendly, and its weight does not ex-

ceed 19 kg, which allows for quick and easy deployment. U‐CAT can

operate in depths up to 100m, and has a battery life of at least 6 h

(Figure 3).

Using its four flexible fins, the robot can easily move and man-

oeuver in six degrees of freedom (6 DOF). U‐CAT is equipped with an

MPU‐9150 inertial measurement unit (IMU), and low‐cost perception
sensors, such as an array of three Aquarian Audio H1c hydrophones

for establishing the heading relative to an acoustic beacon, and a

PointGrey Chameleon2 camera running at 15 frames per second.

3 | PROPOSED TRACKING CONTROL
SCHEME

This section describes the proposed control scheme for diver de-

tection and tracking using visual and acoustic signals (as illustrated in

Figure 4). The visual detection of the diver is described in Section 3.1.

The down‐scaled DNN model tiny‐YOLOv3 (Redmon & Farhadi,

2018) is used for detecting the diver visually using the on‐board
digital camera. This approach is chosen because it enables fast

(≈20 fps) and reliable detection on resource constrained computers.

The algorithm is implemented on U‐CAT's Jetson TX2 embedded

computer using robot operating system (Bjelonic, 2018). The chosen

DNN structure is a trainable model that achieves state‐of‐the‐art
performances for object detection on resource‐constrained em-

bedded systems. The data‐set for the training of the model was a

collection of diver images from previous experiments with U‐CAT in

different environments (lakes, oceans). A total of 3000 diver selected

images were manually annotated using YOLO‐annotation‐tool.
The annotated images were then augmented to 8000 images by

performing scale and rotation variations. Another no‐diver 2000

images (also collected by U‐CAT's camera in previous experiments)

were added to the data set. The performance of the model is eval-

uated and summarized in Table 1 based on mean average precision

(mAP) and intersection over union (IoU) scores.

Table 1 shows the evaluation of the detection accuracy. Indeed, the

performance of this scaled‐down DNN model is low compared

to other methods containing more hidden neural layers

F IGURE 2 Comparison of two methods of underwater
perception: Acoustic detection is more accurate and works in a wider

range, while underwater vision is more affordable, has a higher
sampling frequency and higher resolution [Color figure can be viewed
at wileyonlinelibrary.com]
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(Islam et al., 2019). The used DNN model was not compared to relative

works in the literature due to the lack of a data‐base that includes diver

images in different water types and different visibility conditions. How-

ever, experimental results show that combining visual measurements

using the implemented DNN model with acoustic measurements is en-

ough to achieve an efficient and accurate diver tracking.

Figure 5 shows an illustration of the vision detection result. The

object of interest is wrapped inside a pink bounding box. Its center's

pixel coordinates are denoted ( )X Y,m m and its widthWm. As the goal is

to track the object, the objective here is to fit the detected object

inside a virtual bounding box located at the center of the image

whose coordinates are ( )X Y,c c , and its width is Wc .
The acoustic detection approach is described in Section 3.2. A qua-

ternion based scheme using a low‐cost array of hydrophones to detect

the acoustic pinger is presented. Later on we describe the data‐fusion
scheme which is based on a model‐free Kalman Filter (Kalman, 1960),

F IGURE 3 Illustration of the earth fixed frameRn(north east down convention) and the robot's body fixed frameRb

F IGURE 4 Black diagram of the proposed tracking control scheme: Dashed‐blue blocks are described in Section 3. The proposed tracking
scheme is implemented on U‐CAT using robot operating system, and all of the steps in this figure run online on U‐CAT's embedded

computer[Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Tiny‐YOLOv3 performance

mAP (%) 54.26

IoU (%) 58.41

Frames per second 20
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since we do not have a mathematical model in disposal that captures the

diver's free motion. Moreover, this data‐fusion approach is chosen for its

implementation simplicity, and its low computational cost.

Lastly, an adaptive fuzzy logic Mamdani controller for the 3‐DOF

(surge, depth, and yaw) control of U‐CAT is described. This approach

is selected based on a previous study in which various control laws

(PID, nonlinear PID, sliding mode, adaptive state feedback, and fuzzy

control) were tested and compared on U‐CAT (Remmas, 2017). The

obtained results showed that the fuzzy logic controller gives the best

trajectory tracking results for heave and yaw control. The results are

justified by the inaccuracies in U‐CAT's dynamic model that limits the

use of model‐based control schemes, and the fact that fuzzy “ex-

pertise” based controller that gives the best results.

3.1 | Visual detection

The errors EC and EW between the two boxes centers and widths are

given by:

= ⎡

⎣⎢
⎤

⎦⎥
− ⎡

⎣⎢
⎤

⎦⎥
E X

Y
X
Y ,C c

c
m
m

(1)

= −E W W ,W c m (2)

This concept allows a 3‐DOF tracking control, such that the

difference between the two boxes' centers EC defines the desired

depth and heading orientation of the robot, and the difference

between the two boxes' widths EW defines the desired distance

between the robot and the target. The virtual box's width Wc is

customizable and allows to define how close the robot should be to

the object. In all our experiments, this parameter is chosen as

=W 60c . This value is selected so that the AUV keeps the diver

within the camera's FOV without necessarily going too close to him.

3.2 | Acoustic detection

A Sonotronics EMT‐01‐3 Pinger operating at 9.6 kHz is used as a beacon.

It transmits a short burst signal every second. The received signal by

each hydrophone is amplified and filtered. The phase shift for each

hydrophone is then used to compute the relative yaw angle to the

robot. The relative yaw angle between the pinger and the robot in the

Earth Fixed Frame Rn (cf. Figure 3) is denoted by Ψp.
Considering only the yaw angle of the pinger with respect to the

robot, let ΨQ be the quaternion representation of Ψ (yaw angle of

robot in Rn) measured by the on‐board IMU, and ΨQ p the quaternion

representation of Ψp such that:

( ) ( )= ⎡
⎣

⎤
⎦

Ψ
Ψ ΨQ cos 0 0 sin ,T
2 2 (3)

( ) ( )= ⎡
⎣

⎤
⎦

Ψ
Ψ ΨQ cos 0 0 sin .T
2 2p p p (4)

The shortest angle between these two quaternions is

given by:

Δ = [ ] = ⊗Ψ Ψ
−Q q q q q Q Q, , , ,T0 1 2 3 1p

(5)

where ⊗ denotes the quaternion multiplication, and −Q 1 is the qua-

ternion inverse of Q.

The quaternion angle error ΔQ is converted back to the desired

yaw angle φ, that is:

φ ( )= −a q q qtan 2 2 , 1 2 .0 3 32 (6)

Since the heading orientation to the pinger will be fused with

camera measurements, the heading angle error is converted to pixel

coordinates error noted φ= Φ( )E a,P such that:

( )
Φ( ) =

⎧

⎨

⎪

⎩
⎪

<

> −

+ ( ≠ )

⎞

⎠

⎟
⎟−

x a
x a

x a
a

,
0, if ,

Imagewidth, if .
1 , otherwise 0 .x

a
Imagewidth

2
(7)

The function Φ remaps the measured pinger orientation into an

image's X‐coordinate pixel as illustrated in Figure 6. In our study, we

consider π= ∕a 3.

3.3 | Proposed data‐fusion control‐scheme

One of the most popular data‐fusion and estimation techniques is the

Kalman filter. It was originally proposed by Kalman (1960) and has

been widely studied and applied since then. The used state and

measurement vectors are defined as follows:

= [ ]X x y w z, , , ,t t t t t T (8)

= [ ]Y X Y W Z X, , , , ,t m m m m p T (9)

F IGURE 5 Visual detection: The goal is to center the detected
box at the center of the image [Color figure can be viewed at

wileyonlinelibrary.com]
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where Xt is the state vector at time t . The variables xt and yt re-

present the estimated pixel coordinates of the target and wt is the

estimated width of a bounding box containing the target. The vari-

able zt represents the estimated depth of the robot. Yt is the mea-

surement vector. The variables ( )X Y,m m and Wm represent the

position coordinates and width of the detected bounding box by the

camera, Zm is the measured depth of the robot using the on‐board
pressure sensor, and Xp is the image coordinates of the detected

heading measured by the hydrophones array.

The estimated state vector = [ ]X x y w z, , ,t t t t t T is used to compute

tracking errors as follows:

= −E X x ,x c t (10)

= −E Y y ,y c t (11)

= −E W w ,w c t (12)

= −E Z z ,z tdesired (13)

Ex is the horizontal error between the center of the frame and the

estimated bounding box's center, Ey is the vertical error between the

center of the frame and the estimated bounding box's center. Ew is

the error between the virtual box's width and the estimated one, and

Ez is the error between a desired depth and the estimated depth of

the robot.

3.4 | Fuzzy logic controller

Based on the tracking errors defined in (10)–(13), a fuzzy logic

Mamdani controller (Mamdani & Baaklini, 1975) was designed to

control the robot, for the aim of tracking the diver as shown in

Figure 7. In this study, the controller's inputs are the tracking errors

and their variations, and the output is the force vector τ ∈ ×3 1 to be

applied to the robot, with τ τ τ τ= [ ]Ψ, ,x z .

The inputs are fuzzified using trapezoidal membership functions

(Figure 7). Such membership functions may lead to a steady state

error which depends on the choice of a1 and a2. Furthermore, this

type of membership functions prevents oscillations around the target

(since perfectly fitting the detected bounding box at the center of the

image is rather challenging).

The rule base for our controller is defined in Table 2, where Ei
and Ėi ( = { }i x y w z, , , ) are the tracking error vector and its first‐time

derivative:

The output is computed using the center of gravity defuzzifica-

tion method, based on the membership function of Figure 8, and the

forces are converted to fin oscillation directions and amplitudes by

the wrench driver (Salumäe et al., 2019).

3.5 | Priority management

The priority management was proposed in Salumäe et al. (2016) as a

solution to compensate for the high coupling in the actuation of the

different DOFs of U‐CAT. The proposed technique is based on

Gaussian membership functions used to moderate the control of each

DOF depending on the control objective.

To prioritize the DOFs, the universe of discourse for the de-

fuzzification process is modified through the multiplication of the

constants ci by the priority weights p p,x z , and Ψp (cf. Figure 8).

F IGURE 6 Acoustic detection: Conversion

scheme from yaw angle error in radians to error
in pixel coordinates in the camera frame [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 Fuzzification membership functions:a1 and a2 are
positive constants defining the universe of discourse for each degree
of freedom [Color figure can be viewed at wileyonlinelibrary.com]
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The priority is given to yaw control, then to depth control and finally

to surge control as follows:

σ=
−

+p e ,x
E E

2
x y2 2

2 (14)

σ=
−p e ,y

E
2 x22 (15)

σ= −Ψ
−p e1 ,E

2 x22 (16)

where σ2 is the variance of the Gaussian functions.

Since U‐CAT is relatively stable in roll and pitch, the control of

those DOFs was not taken into consideration at this stage.

4 | EXPERIMENTAL RESULTS IN OPEN
WATERS

To validate the proposed control scheme, various experiments

were conducted out near a small harbour in Banyuls‐Sur‐Mer, France

(42° 28ʹ 52.0"N, 3° 08ʹ 10.0"E). Four experimental scenarios were

tested to show the need of sensors' complementary for diver

tracking, and to highlight the efficiency of the proposed tracking

control scheme. In this section, a description of the experimental

setup for the different scenarios will be presented, followed by a

presentation and discussion of the obtained results.

• Visual tracking (Scenario 1): In this scenario, U‐CAT is only visually

guided to track the diver. The goal of this test was to assess the

robustness of the proposed vision detection and tracking algorithm

in field operating conditions.

• Acoustic tracking (Scenario 2): In this test, U‐CAT has to track the

diver using acoustic sensing only. This experiment was carried out

to evaluate the acoustic sensing based on an array of three

hydrophones and a pinger for diver tracking.

• Data‐fusion‐based static tracking (Scenario 3): In this test, the pro-

posed data‐fusion tracking scheme was tested for tracking a static

target. The robot had to autonomously detect and track a pinger

fixed to a colored waterproof source of light that was initially

positioned far from the robot and out of its camera's FOV. A simple

color segmentation detector was used to visually detect the co-

lored source of light in this case. The same scenario was conducted

three times where U‐CAT started in different initial conditions;

either facing the target, placed to its left, or its right.

• Data‐fusion based dynamic tracking (Scenario 4): In this last scenario,

the proposed diver tracking algorithm's efficiency was evaluated. A

diver carrying the pinger was asked to move freely in open water

at a known depth. The diver's depth was chosen to be 2m to

ensure more reliable top view monitoring of the diver and the AUV

from a static camera. This scenario was conducted three times,

where the diver started at different initial locations, either close

and within the robot's camera's FOV, or away and out of the

embedded camera's FOV.

4.1 | Visual tracking (Scenario 1)

Initially, the diver was in U‐CAT's camera's FOV so that he can be

detected from the beginning of the experiment. The diver then moved

freely at a constant depth. The obtained results are shown in Figure 9.

Figure 9 shows that the AUV was tracking and centering the

detected target on the image. After 8 s of tracking, the diver left the

camera's FOV. The robot was tracking the last detected value;

however, it failed to find the target. Furthermore, in field experi-

ments, where the water is often turbid, and the visibility conditions

are poor due to light scattering and absorption, visual detection often

fails (as illustrated in Figure 10), which causes the tracking to fail.

This shows the motivation behind using another sensor to comple-

ment the vision, and ensure detecting the diver when this last one's

detection fails.

4.2 | Acoustic tracking (Scenario 2)

For this scenario, the pinger was carried by the diver who was in-

itially a few meters away from the robot. The diver was asked to stay

at a stationary spot for this experiment. As there is no distance

feedback to the diver using this acoustic method, U‐CAT will move

continuously even when reaching the diver. Figure 11 shows that the

remapped detected relative heading was mostly on the left side of

the image. This is because the robot kept swimming around the diver

after reaching him. Figure 11 shows also noisy acoustic data due to

reflections. This shows clearly the need of a complementary visual

sensor to track the diver efficiently.

TABLE 2 Fuzzy controller rule base

\ ˙E Ei i Negative Zero Positive

Negative Negative Negative Zero

Zero Negative Zero Positive

Positive Zero Positive Positive

ZeroNegative Positive

F IGURE 8 Defuzzification membership functions:ci is the
maximum achievable force or torque along i axis. pi are weights for the

control priority management (more details are given in Section 3.5).
The defuzzification process is done by using the center of gravity
method [Color figure can be viewed at wileyonlinelibrary.com]
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4.3 | Data‐fusion‐based tracking

As discussed previously, two different scenarios were conducted,

namely static and dynamic tracking. The objective of Scenario 3 is to

evaluate the performance of the proposed control tracking scheme

for the case of tracking a static object that was initially placed out of

the camera's FOV. The goal of Scenario 4 is to assess the perfor-

mance of the proposed solution for dynamic diver tracking.

4.3.1 | Static tracking (Scenario 3)

In this experiment, a target was mounted next to the pinger ap-

proximately 6 m away from U‐CAT (as illustrated in Figure 12).

The robot moves towards the target, slightly oscillates left and right

due to reflections in acoustic detection, and is facing the target after

nearly 40 s. Figure 13 shows that the target was then centered on the

camera's image based on the visual feedback. Since both the target

and the AUV were operating at the same depth, the target was al-

most already centered in Y axis, and the slight vertical error to the

camera's center is corrected based on visual feedback. It is worth to

note that the proposed tracking scheme can successfully detect and

track a static target that is initially out of the on‐board camera's FOV.

Figure 13 also shows that the desired width of the target within the

camera's frame is retained, which translates into a maintained re-

lative distance to the target. This clearly shows that combining both

visual and acoustic measurements allows a more robust tracking of

the object.

F IGURE 9 Visual tracking (Scenario 1):

Experimental results describing visual detection
and estimation using the camera to track the
diver [Color figure can be viewed at

wileyonlinelibrary.com]

F IGURE 10 Underwater images from U‐CAT's camera in open water conditions. (a) Frame example where visual detection is not successful

due to poor visibility conditions. (b) Frame example where the diver is successfully detected when close enough [Color figure can be
viewed at wileyonlinelibrary.com]
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Figures 14 and 15 show the obtained results when starting re-

spectively, placed to the right, and to the left of the target. In the

experiment illustrated by Figure 14, The robot relies on acoustics at

the first 40–50 s when the target is out of the camera's visibility

reach. When the target is detected visually, the target estimated

location within the camera's frame is improved, which allows the

robot to reduce oscillations around the target, and center it in

the camera's frame. In the last experiment for this scenario, where

the robot started to the left of the target, it took longer (107 s) to

detect the target visually. This is mainly due to acoustic reflections,

and motors noise since the robot was operating at a harbour where

motorised vehicle were passing by. Nevertheless, the target was

reached successfully, and after the object was detected visually, the

robot managed to keep it in its camera's frame center.

As there is no ground truth to evaluate for the acoustic detec-

tions, we present the Table 3 that shows the error between the

target's camera location, and the camera's center, for the three case

scenarios. The results show that once the target was retrieved vi-

sually, it was mainly kept at the center of the camera's frame.

This clearly shows the robustness of the proposed method, but

also its repeatability. This allows to detect and track an object in-

itially far away from the robot, where no other method based on

vision only could succeed. The results also show that the robot

manages to do station keeping when tracking a static object.

F IGURE 11 Acoustic tracking (Scenario 2):

Experimental results for tracking the diver based
on acoustic signals only. FOV, field of view [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 12 U‐CAT illustrative trajectory when homing towards a static target using the proposed data‐fusion scheme: At time T1, the
autonomous underwater vehicle was heading towards the target based on acoustic detection. At time T2, U‐CAT has found the target by
combining both visual and acoustic sensors' data [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 13 Data fusion based static tracking (Scenario 3): Experimental results describing static target tracking based on the proposed
data‐fusion scheme where the autonomous underwater vehicle started facing the target. FOV, field of view [Color figure can be viewed at

wileyonlinelibrary.com]

F IGURE 14 Data fusion‐based static tracking (Scenario 3): Experimental results describing static target tracking based on the proposed
data‐fusion scheme where the autonomous underwater vehicle started to the right of the target. FOV, field of view [Color figure can

be viewed at wileyonlinelibrary.com]
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4.3.2 | Dynamic tracking (Scenario 4)

In this last scenario, we tested the proposed control approach to

actively track a diver. The diver was carrying the pinger and moving

freely in a two‐dimensional trajectory at a constant depth. As the

robot can only swim at relatively slow velocity, the diver was asked

to also move slowly.

When the diver starts within the camera's FOV, the robot has a

better estimate of its location based on both visual and acoustic

detections, as shown in Figure 16. When the diver starts out of the

camera's FOV, as shown in Figure 17, it takes longer at the beginning

to accurately detect and track the diver. But in both cases, the pro-

posed solution allowed to track the moving diver for more than

8min. The target left the camera's FOV several times, nevertheless,

its location could always be recovered. The complementarity of the

proposed approach allows to quickly head towards the diver, and

keep him centered in the camera's image.

A shorter experiment was conducted for better data‐clarity, and
for illustrating the trajectory of both the robot and the diver

graphically. As illustrated in Figure 18, U‐CAT was accurately

tracking the target throughout this experiment. Figure 19 shows

clearly how the diver left the camera's FOV several times. The pro-

posed tracking control approach allows to recover the diver location

within the camera's FOV, and allows to center it within the camera's

frame, and within a desired bounding box width. The presented re-

sults show the robustness of the proposed approach, where experi-

mental results were validated throughout different scenarios, and

where the AUV was operating in open‐waters at poor visibility

conditions, and subject to acoustic reflections and noise.

Table 4 shows the tracking performance in terms of error be-

tween desired and the fed‐back position of the diver within the

camera's frame. The higher errors are along the image X axis, since

the diver was moving mainly horizontally. Both errors in Y and width

are low considering the diver was keeping his depth constant, and

moving relatively slowly. This shows that the diver was mainly cen-

tered in the camera, despite leaving its FOV numerous times.

The results also illustrate that the proposed controller allows to

achieve a three‐dimensional tracking motion, in spite of the high

coupling in U‐CAT actuators.

5 | CONCLUSION AND FUTURE WORKS

The aim of this study was to design and develop a low‐cost data‐
fusion‐based diver tracking control scheme and to implement it on a

highly manoeuvrable underwater robot U‐CAT. Taking into account

U‐CAT's actuation characteristics and hardware capabilities, a data‐
fusion based technique combining acoustic and visual signals was

proposed. The proposed control strategy was validated through

F IGURE 15 Data fusion‐based static tracking (Scenario 3): Experimental results describing static target tracking based on the proposed
data‐fusion scheme where the autonomous underwater vehicle started to the left of the target. FOV, field of view [Color figure can be

viewed at wileyonlinelibrary.com]

TABLE 3 Scenario 3: RMSE between the camera's center and

desired width, and the object pixels location and its width

RMSE (in
pixels)

Test 1 facing
the target

Test 2 right to
the target

Test 3 left to
the target

RMSE X 42 67 72

RMSE Y 17 20 21

RMSE Width 12 15 8

Abbreviation: RMSE, root mean square error.
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F IGURE 16 Data‐fusion based dynamic tracking (Scenario 4): Diver starting close to the robot. FOV, field of view [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 17 Data‐fusion based dynamic tracking (Scenario 4): Diver starting away from the robot. FOV, field of view [Color figure can be
viewed at wileyonlinelibrary.com]
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open water field experiments. Promising results were obtained,

demonstrating the effectiveness and performance of the proposed

data‐fusion‐based control algorithm. The proposed solution de-

monstrates also that the target can be found, detected, and tracked,

even if it is initially far away from a robot operating in poor visibility

conditions.

Combining acoustic and visual signals for underwater detection

and tracking shows a robust performance in harsh field conditions,

F IGURE 18 U‐CAT illustrative diver tracking trajectory: Description at different times [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 19 Data‐fusion based dynamic
tracking (Scenario 4): This shorter experiment is

presented for plot clarity. FOV, field of view
[Color figure can be viewed at
wileyonlinelibrary.com]
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and the ability to recover the diver's location when visual detection

fails.

Further work will be carried out in future, which will include

testing at larger trial areas, and improving of the acoustic detection

accuracy, considering 3‐DOF orientation detection with the hydro-

phones instead of heading orientation only, which will allow a diver

tracking at any depth. The visual detection part will also be improved

with the advancement of real‐time object detection algorithms. An-

other interesting idea would be the implementation of a gesture

recognition algorithm to allow a more efficient underwater human‐
robot collaboration.
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A B S T R A C T

Fin-actuated underwater robots usually control motion by changing the locomotion primitives of the fins,
such as frequency, amplitude, phase shift, or in more complicated cases also the angle of attack. Modelling
the generated thrust by an oscillating fin results in a highly non-linear model, thus making it difficult to
derive a respective inverse model. In this work, we derived a dynamic model relating the generated thrust
to the fins oscillating amplitude and frequency, and proposed the associated inverse-model. The proposed
model’s accuracy is evaluated by comparing both the theoretical and measured generated thrust for various
frequencies. Furthermore, using the proposed fin model, we demonstrate hovering experimental results with
the robot U-CAT. The results demonstrate the possibility to control fin-actuated vehicles using the proposed
model to generate the fins oscillation amplitudes as control input.

1. Introduction

Underwater vehicles are capable of operating in different environ-
ments considered to be beyond the reach of human divers. Moreover,
they can be used in hazardous environments and can operate as long
as needed when tethered. Bio-inspired Autonomous Underwater Vehi-
cles particularly, have received considerable consideration (Triantafyl-
lou et al., 2004; Mannam et al., 2020), as they promise to harness
optimization over millions of years of evolution.

Biorobotic technology has become one of the hot-spots in under-
water robotics research in recent years (RB et al., 2018; Scaradozzi
et al., 2017). Inspired by the speed and agility of marine animals, the
robotics community has created new propulsion systems that are able
to imitate nature. Airfoil propulsion is common for many species. Flying
animals (birds, bats, insects) generate both thrust and lift with flapping
motions, while certain marine species use fin flapping to generate
thrust mainly. Much effort has recently been made in the design of fin-
actuated robots (Morgansen et al., 2007; Wen et al., 2011; Georgiades
et al., 2009; Licht et al., 2004).

Bio-inspired propulsion offers various advantages over conven-
tional propellers: (i) Fin-actuated vehicles offer better locomotion
efficiency (Yu and Wang, 2005). (ii) Biomimetic fins are environ-
mentally benign, whereas screw propellers or turbines may harm the
aquatic vegetation and animals (Kruusmaa et al., 2020). (iii) Fins can
be used for propulsion, maneuvering, and motion stabilization (Wey-
mouth, 2016). Fin-actuated underwater vehicles (Licht, 2008) usually

∗ Corresponding author at: Department of Computer Systems, Tallinn University of Technology, Tallinn, Estonia.
E-mail addresses: walid.remmas@taltech.ee (W. Remmas), ahmed.chemori@lirmm.fr (A. Chemori), maarja.kruusmaa@taltech.ee (M. Kruusmaa).

control motion by changing the locomotion primitives of the fins, such
as frequency, amplitude, phase shift, or in more complicated cases also
the angle of attack, stiffness or surface area. Previously, fin-actuated
robots have been controlled using adaptive control (Plamondon and
Nahon, 2013), PID control (Geder et al., 2013b), RISE control (Chemori
et al., 2016), fuzzy logic control (Remmas et al., 2021), prioritization-
based control (Salumae et al., 2016) and bio-inspired CPG control (Yao
et al., 2013; Bal et al., 2019).

To effectively control fin-actuated robots, a dynamic model relating
the fin’s actuation parameters (fin oscillations’ amplitude, angle of
attack, and frequency) to the generated thrust is essential. Several
studies have been carried out in the literature to model the generated
thrust by a flapping foil. In Plamondon and Nahon (2009), the authors
defined the average thrust as a function of the mass flow rate. The
amplitude and frequency of the oscillating paddle are computed based
on an optimization function. However, the proposed function is valid
only for a certain range of mass flow rates. Authors in Giguere et al.
(2006) proposed a model based on lift force generated by the fins.
The proposed model was used to simulate the robot’s dynamics. The
studies in Ramasamy and Singh (2010), Singh et al. (2004) and Geder
et al. (2013a) uses computational fluid dynamics to parameterize the
forces generated by a mechanical flapping foil. The drawback is that
the proposed model cannot run in real-time on robots with constrained
computing capabilities. Authors in Harper et al. (1998) proposed a

https://doi.org/10.1016/j.oceaneng.2021.109883
Received 20 April 2021; Received in revised form 19 August 2021; Accepted 17 September 2021



Ocean Engineering 239 (2021) 109883

2

W. Remmas et al.

Fig. 1. View of U-CAT bio-mimetic AUV operating in real conditions in Rummu Lake
in Estonia. The flippers (flexible green parts) are made of Silicon and actuated with
Brushless DC (BLDC) motors. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

model which is presented as a low-order set of ordinary differen-
tial equations. Nevertheless, the approach in the paper involved only
open-loop control.

In the present paper we propose a solution that allows the control
of fin-actuated vehicles. A nonlinear analytical model based on drag-
force generation is proposed and identified using experimental data.
Most importantly we derived its associated inverse model, to control
the generated thrust through amplitude and frequency modulation. The
model is validated experimentally to control two degrees of freedom
of a fin-actuated underwater robot U-CAT (Salumäe et al., 2014). The
main contributions of this paper are as follows:

(1): An analytical model relating the fins’ generated thrust force to
the fins oscillating amplitudes and frequency is investigated.

(2): An associated inverse model is also derived, discussed, and val-
idated experimentally. The proposed inverse model is used to compute
the required fins oscillating amplitude and frequency to control the
robot.

(3): The proposed fin-model is implemented and validated experi-
mentally for various operating conditions on the real fin-actuated robot
to control its depth and yaw angle using amplitude modulation with
various oscillating frequencies as control input.

The rest of the paper is organized as follows. Section 2 introduces
the description and modelling of U-CAT biomimetic underwater vehi-
cle. Then, Section 3 is devoted to the proposed nonlinear analytical
model for U-CAT soft fins, as well as the thrust control allocations.
The controller is discussed in Section 4 and the obtained experimental
results are presented and discussed in Section 5. The paper ends with
some concluding remarks and future work directions, in Section 6.

2. U-CAT biomimetic AUV: Description and modelling

This section is devoted to the description of U-CAT biomimetic AUV,
as well as its dynamic modelling.

2.1. Description of U-CAT biomimetic AUV

U-CAT (cf. Fig. 1) is an autonomous biomimetic underwater robot
developed within the European Union 7th Framework project AR-
ROWS (Salumae et al., 2014) (Archaeological Robot Systems for the
World Seas). As opposed to other bio-inspired underwater vehicles, the
four-finned design of this vehicle is motivated solely by the end-user
requirements and environmental constraints of the tasks in shipwreck

Table 1
Main technical specifications of the U-CAT robot.

Technical specification Specification/Description

Attitude sensor MPU-6050 IMU
Depth sensor GEMS 22CS Series Pressure Sensor
Batteries 4× HP Compaq NX8200 8cell batteries
Maximal speed (surge) 0.25 m/s
Maximal depth 100 m
Autonomy ∼6 h
Mass 19 kg
Dimensions 560 mm × 329 mm × 258 mm
Fins’ material Zhermack Elite Double 22

Fig. 2. Definition of the four fins and illustration of their initial configuration in hover
mode.

inspection. Among others, it should closely video-inspect underwater
objects. To fulfil the needs of shipwreck inspection for archaeological
applications, U-CAT has been developed with the following main de-
sign requirements (Salumäe et al., 2014): (i) The main interest is the
video footage from the interior of the shipwreck to identify objects of
interest, (ii) The robot has to penetrate in confined spaces, accordingly,
it should be small and highly maneuverable, (iii) The vehicle must
also be capable of silent motion in order to not disturb the bottom
sediments that would make visual observations impossible, (iv) The
vehicle has to be untethered as the cable would significantly constrain
the vehicle motions inside the wreck, (v) The cost of the vehicle has
to be affordable for archaeologists with a limited budget. U-CAT has
been specifically designed to meet all these end-user requirements
of underwater archaeologists. Consequently, a 4-flipper design was
emerged to control its six DOFs. The four motors actuating the fins
are oriented as illustrated in Fig. 2. This configuration allows the robot
to be holonomic. The fins were designed to point outwards to have
more force generated in surge direction, as control in sway direction
is only used for slow and precise movements within confined spaces.
Moreover, the robot’s centre of mass is positioned slightly below its
centre of buoyancy, which makes U-CAT naturally stable in roll in
pitch. The four independently driven flippers are used to achieve a high
maneuverability in six DOFs, as illustrated in Fig. 3. Further technical
specifications about U-CAT are detailed in Table 1.

2.2. Hydrodynamic model of the vehicle

Through considering inertial generalized forces, gravity and buoy-
ancy, hydrodynamic effects and generalized forces, the dynamic model
of an underwater vehicle (Fossen, 2002) may be expressed as follows:

𝑀�̇� + 𝐶(𝜈)𝜈 +𝐷(𝜈)𝜈 + 𝑔(𝜂) = 𝜏 (1)

�̇� = 𝐽 (𝜂)𝜈 (2)

where 𝜂 = [𝑥, 𝑦, 𝑧, 𝜑, 𝜗, 𝜓]𝑇 , 𝜈 = [𝑢, 𝑣,𝑤, 𝑝, 𝑞, 𝑟]𝑇 represent the vectors
of the vehicle positions in the earth-fixed frame 𝑅𝑒 and the velocities
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Fig. 3. Illustration of how the four independently driven flippers are used to separately actuate the six DOFs of the robot. The DOFs framed in red are the subject of the actual
study regarding control (i.e. depth and yaw).

Fig. 4. Illustration of the Earth Fixed Frame 𝑅𝑛 (North East Down convention) and
the robot’s Body Fixed Frame 𝑅𝑏.

in the body-fixed frame 𝑅𝑏 respectively (cf. Fig. 4). 𝐽 (𝜂) ∈ R6×6

represents a transformation matrix, mapping from the body-fixed frame
to the earth-fixed frame. The matrices 𝑀 , 𝐶, and 𝐷 denote the in-
ertia including the added mass, the Coriolis-centripetal including the
added mass, and the damping respectively. The vector 𝑔 represents the
gravitational/buoyancy forces and moments. The term 𝜏 represents the
vector of control inputs.

Eq. (1) describes the dynamics of the system in six DOFs, including
the three translations and the three rotations. The input vector 𝜏 ∈ R6

considers six actions on the system to fully control it. The hydrody-
namic parameters of this model have been experimentally identified
on U-CAT prototype.

3. Fin modelling and thruster control allocation

U-CAT has a special four-fin actuation system, different from other
fins-based biomimetic actuated robots. In this section we are interested
in explaining how the robot fins are modelled using mathematical
equations as well as the thrust control allocation. These mathemati-
cal relationships should be able to relate the control action (i.e. the
amplitude of oscillations of the fins or their frequency) to the thrust
generated forces by the fins.

3.1. Fin modelling

The thrust generation by fins can be classified into drag-based and
lift-based propulsion (Vogel, 2003). The amazing quick fish motions
are mainly generated by an impacting force caused by a viscous drag
known as drag-based thrust related to vortex generation (Ahlborn et al.,
1997). However, lift-based thrust is not very suited for quick motions,
since it is generated in a continuous flow with an appropriate angle of
attack of the fins, as observed in large fish with high-speed swimming.
In the case of U-CAT, its actuation fins can be considered as caudal
fins (i.e. tail fins). The oscillatory locomotion of a tail fin may generate
thrust by a propulsive flow that is directed backward (Sfakiotakis
et al., 1999). When it comes to the problem of control of such robots
(i.e. biorobotic flapping fin-actuated robots), the need of a model
characterizing the relationship between the fin actuation parameters
and the generated thrust force, can be noticed.

As illustrated in Fig. 5, three main parameters can fully characterize
the generated thrust; namely (i) the amplitude of oscillations, (ii) the
frequency of oscillations, and (iii) the angle of attack. In the sequel, an
analysis is made to clearly explain how a needed thrust force is con-
verted into fins oscillating magnitude (assuming a constant oscillating
frequency), for the case of U-CAT. Two models will be introduced, a
simple empirical model and nonlinear analytical model.

3.1.1. The first fin model: A simple empirical fin model
The first proposed fin model was used in Chemori et al. (2016) for

the case of depth control of U-CAT. The idea behind the proposed fin
model was to find a relationship between the generated thrust force and
the oscillating amplitude, since this last one was chosen as the control
input of the hydrodynamic model of the vehicle. This relationship was
experimentally identified on the test-bed of U-CAT leading to a second
order polynomial function between 𝐹 and 𝜃. The experimental proce-
dure consists in generating oscillations of the fin for different values
of the amplitude and the frequency and measure the generated thrust
force. As reported in Salumäe et al. (2019), the obtained experimental
results are summarized in the curves of Fig. 6. For instance, for the
case of an oscillating frequency of 1.1 Hz, the following relationship
between the required thrust force and the oscillating amplitude was
obtained based on a polynomial interpolation (Chemori et al., 2016):

𝜃 = −0.01170
(𝐹
4

)2
+ 0.4363

(𝐹
4

)
+ 0.2480 (3)
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Fig. 5. Illustration of the oscillating motion on one fin and its main characteristics.

Fig. 6. Evolution of the generated mean fin thrust for different actuation parameters
(oscillation amplitude ranging from 0 to 60◦ and oscillation frequency ranging from
0.5 Hz to 2.6 Hz) (Salumäe et al., 2019).

where 𝜃 denotes the oscillating amplitude, and 𝐹 stands for the gener-
ated thrust force by the four fins of the robot.

3.1.2. The proposed fin model: A nonlinear analytical model
In the aim of improving the model of the fins and its fidelity, a

more advanced model had to be computed. We investigate a drag-based
force model to estimate the generated thrust by an oscillating fin. In the
oscillating motion of a fin (as illustrated in Fig. 5), the rotational force
must be sufficient to overcome the inertia and drag. In Azuma (2006)
the author proposed a force balance expression for fin paddling as a
simple linear motion. Accordingly, to estimate the fin rotation required
force, a rotational force balance had to be considered. Then the force
balance of a rotating fin was expressed as a torque balance between the
angular momenta of the oscillating motion of a tail fin and the drag as
follows (Kikuchi et al., 2014):

𝐼 𝑑𝜔
𝑑𝑡

= 𝑟𝑐 (𝐹𝑓 −𝐷𝑓 ) (4)

𝐷𝑓 = 1
2
𝐶𝑑𝑟𝑜𝑡𝜌(𝑟𝑐𝜔)

2𝐴𝑓 =
𝐶𝑑𝑟𝑜𝑡
2

𝜌𝑉 𝑟𝑐𝜔 (5)

where 𝐼 denotes the inertia moment of the rotating fin, 𝜔 represents
the angular velocity of the fin, 𝐹𝑓 is the force for rotating the fin, 𝑟𝑐 is
the distance between the rotation axis and the centre of gravity of the
fin, and 𝐷𝑓 is the drag acting on the fin. 𝐶𝑑𝑟𝑜𝑡 stands for the rotational
drag coefficient, and 𝐴𝑓 is the projection area of the fin. Eq. (5) can be
reformulated differently to include momentum of the transported fluid
whose volume is 𝑉 . In other words, this implies that the fin converts
the momentum of fluids to drag. The angular component in parallel to
the swimming direction of the rotational force is used as thrust F. It
can be expressed by the following relationship:

𝐹 = 𝐹𝑓 𝑠𝑖𝑛|𝜃| = (
𝐶𝑑𝑟𝑜𝑡𝜌𝑉 𝑟𝑐𝜔

2
+ 𝐼
𝑟𝑐
𝑑𝜔
𝑑𝑡

)𝑠𝑖𝑛|𝜃| (6)

where 𝜃 is the angle of the fin, being the angle between the fin cord
line and the thrust direction. Eq. (6) characterizes the instantaneous
thrust generated by a rotating fin. The lift component is neglected

in our modelling approach since the main generated thrust for bio-
inspired robots with low swimming velocities is drag-based. Moreover,
neglecting the lift component makes the derivation of the inverse model
analytically possible, and its implementation in real-time feasible.

Now the idea is to find the relationship between the oscillation
amplitude and the generated thrust. A fin obtains the thrust force
through a reaction of motion of the surrounding fluid induced by its
rotation. The rotating fin translates the force of fin rotation into a
thrust. In drag-based thrust generation, the thrust is related to drag,
which is based on a momentum transfer theory (Schlichting, 1979). In
fact, the fluid surrounding a rotating fin is pushed out at a velocity
corresponding to the fin velocity, which accordingly enables the fin to
obtain a drag as thrust. The theoretical thrust generated by a rotating
fin was estimated by momentum theory, and can be expressed as
follows (Kikuchi et al., 2014):

𝐹 = ∫ (
𝐶𝑑𝑟𝑜𝑡𝜌𝑉 𝑟𝑐𝜔

2
+ 𝐼
𝑟𝑐
𝑑𝜔
𝑑𝑡

)𝑠𝑖𝑛|𝜃|𝑑𝜃 (7)

where 𝐹 stands for time-averaged theoretical thrust during one cycle.
Eq. (7) can be rewritten as follows:

𝐹 = 2∫
𝜃𝑚𝑎𝑥

−𝜃𝑚𝑎𝑥
(
𝐶𝑑𝑟𝑜𝑡𝜌𝑉 𝑟𝑐𝜔

2
+ 𝐼
𝑟𝑐
𝑑𝜔
𝑑𝑡

)𝑠𝑖𝑛|𝜃|𝑑𝜃 (8)

and due to symmetry, Eq. (8) can be rewritten as follows:

𝐹 = 4∫
𝜃𝑚𝑎𝑥

0
(
𝐶𝑑𝑟𝑜𝑡𝜌𝑉 𝑟𝑐𝜔

2
+ 𝐼
𝑟𝑐
𝑑𝜔
𝑑𝑡

)𝑠𝑖𝑛(𝜃)𝑑𝜃 (9)

In the case of U-CAT control, we consider that the oscillating
frequency is constant and we use the oscillation amplitude as a control
input. Consequently, the angular acceleration 𝑑𝜔

𝑑𝑡 will be equal to zero.
Then, Eq. (9) may be reduced to:

𝐹 = 2∫
𝜃𝑚𝑎𝑥

0
(𝐶𝑑𝑟𝑜𝑡𝜌𝑉 𝑟𝑐𝜔)𝑠𝑖𝑛(𝜃)𝑑𝜃 (10)

From Eq. (10), one can deduce the thrust:

𝐹 = −2(𝐶𝑑𝑟𝑜𝑡𝜌𝑉 𝑟𝑐𝜔)(𝑐𝑜𝑠(𝜃𝑚𝑎𝑥) − 1) (11)

Now, the inversion of Eq. (11) leads to the expression of the control
input (i.e the oscillating amplitude) in terms of the required thrust
force, as follows :

𝜃𝑚𝑎𝑥 = arccos

(
−𝐹

2𝐶𝑑𝑟𝑜𝑡𝜌𝑉 𝑟𝑐𝜔
+ 1

)
(12)

knowing that 𝑉 = 𝐴𝑓𝜔𝑟𝑐 we can express equation (12) in function
of the needed thrust 𝐹 and the oscillating frequency 𝑓 as follows:

𝜃𝑚𝑎𝑥 = arccos

(
−𝐹

8𝐶𝑑𝜌𝐴𝑓 (𝑟𝑐𝜋𝑓 )2
+ 1

)
(13)

In Eq. (13), all constants are known (as summarized in Table 2),
and the coefficient 𝐶𝑑 was identified based on the experimental fins’
thrust data (Gkliva et al., 2018). A minimal RMS1 error between the

1 RMS: Root Mean Square.
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Fig. 7. (a): Validation of the proposed theoretical model for fin amplitude allocation, with experimental data for a constant frequency 𝑓 = 1.1 Hz. (b): Evolution of the RMS error
between the proposed theoretical model and the experimental data for different frequencies (in green 𝑓 = 1.1 Hz, is the robot’s fins’ constant oscillating frequency used within our
control scheme.)

Fig. 8. Estimated single fin needed oscillating amplitude versus the required thrust for
different oscillating frequencies.

Table 2
Summary of the fin’s parametric values of the theoretical model.
𝜌 (kg/m3) 𝐴𝑓 (m2) 𝑅𝑐 (m)

997 0.02 0.1

experimental assessment of the fins and the proposed analytical model
is obtained for 𝐶𝑑 = 0.23. Fig. 7a depicts the evolution of the oscillating
amplitude versus the horizontal thrust. It can be noticed that the
proposed inverse solution matches the experimental data, with an RMS
error of 1.154◦. Moreover, the proposed analytical inverse model is
valid for various frequencies, as illustrated in Fig. 7b, where the RMS
error between the proposed model and the gathered experimental data
is less than 3◦ for all the studied frequencies. This clearly shows that the
proposed model is able to capture the main dynamics of the generated
thrust.

Based on Eq. (11), one can plot the evolution of the required
oscillating amplitude versus the thrust force and for different values
of the oscillating frequency. The obtained result is displayed in Fig. 8,
where we can observe different curves, each one corresponds to a
chosen frequency. From this result, it can be noticed that for a given
needed thrust force, the higher is the frequency the lower is the needed
amplitude of oscillations. Using Eq. (13), a 3D plot of the needed
control input (i.e. the fin oscillating amplitude) in function of the
required thrust force and the fins oscillating frequency can be depicted.
The obtained result is displayed in Fig. 9a. Besides, using Eq. (11), one
can also plot in 3D the evolution of the thrust force versus both fins

oscillating amplitude and frequency. This result is illustrated in the 3D
plot of Fig. 9b. According to the results of Fig. 9b, one can observe that
low oscillation frequencies are not able to produce enough thrust force
whatever the oscillating amplitude. However, with higher frequencies,
one can have a fast thrust increasing with the oscillating amplitude.

In the sequel we will be interested in the thrust control allocation
used in the proposed control scheme and implemented in U-CAT.

3.2. Thrust control allocation

In the previous section, the model of fins was presented, it enables
to compute the needed oscillation amplitude for a given frequency
to generate a required thrust force. Now let us tackle the problem
of computation of the angle of attack in the case of multi-degrees-of-
freedom control while dealing with the saturation of the control action.
All these issues are addressed in the following.

3.2.1. Saturation
According to the fins model introduced above and particularity the

curves of Figs. 9a and 9b, the thrust force depends mainly on two
parameters, namely the oscillation frequency and the amplitude. For
instance, for a frequency of 1.1 Hz, the maximum thrust force is 7.2 N,
achievable by the four flippers of the robot (i.e. a thrust of 1.8 N
generated by each flipper). The control vector that gathers the forces
for the case of 3-DOF control (surge, depth and yaw) is denoted by
𝜏 = [𝐹𝑥, 𝐹𝑧, 𝐹𝜓 ] and the normalized vector is expressed as:

𝜏𝑛𝑜𝑟𝑚 = [𝐹𝑥𝑛𝑜𝑟𝑚 , 𝐹𝑧𝑛𝑜𝑟𝑚 , 𝐹𝜓𝑛𝑜𝑟𝑚 ].

.

3.2.2. Fins direction control
Since we are interested in the control of U-CAT AUV in hover

mode (Salumäe et al., 2019), the fins orientation is initialized as
follows:

𝛷𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = [𝛷𝑎, 𝛷𝑏, 𝛷𝑐 , 𝛷𝑑 ]𝑇 = [0,−𝜋,−𝜋, 0]𝑇 (14)

Where 𝑎 and 𝑑 stand for the right and left front fins respectively, 𝑏
and 𝑐 stand for the right and left back fins respectively (as illustrated
in Fig. 2).

Using the prioritizing functions described in the previous section,
the fins directions will be either in the same initial configuration (for
surge action), or will be reoriented vertically (upward or downward
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Fig. 9. (a): Evolution of a Single fin oscillating amplitude in function of the required thrust and the oscillating frequency. (b): Evolution of the estimated thrust generated by the
four fins in function of the oscillating amplitude and oscillating frequency.

depending on the heave action direction) using the following equation:

⎡⎢⎢⎢⎢⎣

𝛷𝑎
𝛷𝑏
𝛷𝑐
𝛷𝑑

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

0
−𝜋
−𝜋
0

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

1
1
1
1

⎤⎥⎥⎥⎥⎦
𝐹𝑧𝑛𝑜𝑟𝑚

𝜋
2

(15)

This allows the robot to be in the configuration (𝑎) illustrated in Fig. 3
when surge action is high, and to smoothly switch to configuration
(𝑐), the orientation angle varies from 𝜋

2 to −𝜋
2 depending on the heave

action. The yaw control is achieved by oscillating at the same time
either fins 𝑎 and 𝑐 or fins 𝑏 and 𝑑. Even if the yaw propulsion is
more efficient when the fins are oriented as in the initial configuration
(illustrated in Fig. 2), this equation allows to control three DOFs at the
same time (namely surge, heave, and yaw).

3.2.3. Fins oscillating amplitude control
As stated above, three main parameters can be used in motion

control of U-CAT; namely (i) the fins oscillation frequency, (ii) the fins
oscillation amplitude, and (iii) angle of attack. In this wok we consider
that the oscillation frequency is constant (equal to 1.1 Hz), the two other
parameters should be enough to control the motion of the vehicle. The
oscillation amplitude is used as a control input to define the needed
thrust force to achieve the desired motion. The angle of attack should
be computed in real-time to define the best orientation of this thrust
force as stated in the previous section. The required fins oscillating
amplitude is given by the following relationship:

𝜃(𝐹 ) = arccos

(
−𝐹

2𝐶𝑑𝑟𝑜𝑡𝜌𝑉 𝑟𝑐𝜔
+ 1

)
(16)

For instance, in the case of 3-DOF control (surge, depth, and yaw),
the vector of amplitudes of oscillation of the fins is expressed by:

⎡⎢⎢⎢⎢⎣

𝐴𝑎
𝐴𝑏
𝐴𝑐
𝐴𝑑

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

𝐻(𝐹𝑥) 1 𝐻(−𝐹𝜓 )
𝐻(−𝐹𝑥) 1 𝐻(𝐹𝜓 )
𝐻(−𝐹𝑥) 1 𝐻(−𝐹𝜓 )
𝐻(𝐹𝑥) 1 𝐻(𝐹𝜓 )

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎣

𝜃(𝐹𝑥)
𝜃(𝐹𝑧)
𝜃(𝐹𝜓 )

⎤⎥⎥⎦
(17)

where 𝑎, 𝑏, 𝑐 and 𝑑 stand for the different fins of U-CAT as illustrated
in Fig. 2, 𝐻(.) is the Heaviside function and 𝜃(.) is the function (16)
converting the propulsion force into fins oscillating amplitude.

Fig. 10. Block diagram of the proposed Fuzzy logic controller.

4. Fuzzy logic control using the inverse fin model

In this study, a Mamdani fuzzy controller is implemented for tra-
jectory tracking. The choice of this controller has been made based
on a comparative study of various control schemes in different oper-
ating conditions (nominal case, buoyancy change, external disturbance
rejection) (Remmas et al., 2017). The fuzzy controller gave the best
results for heading and depth control in terms of tracking perfor-
mance accuracy, and in terms of sudden changes (chattering) in the
control force output. U-CAT is a highly maneuverable AUV, and is
sensitively affected by sudden changes outputs. Therefore, the fuzzy
logic controller was chosen as it gave the best performance.

To synthesize a Mamdani-based fuzzy controller, it is necessary to
go through the following four steps:

• Step 1: Fuzzy knowledge base construction
• Step 2: Fuzzification of the system inputs
• Step 3: Execute all applicable rules in the rulebase
• Step 4: Defuzzification of the fuzzy outputs to get crisp values
The control architecture of the resulting fuzzy Inference System is

illustrated in Fig. 10.

4.1. Fuzzy knowledge base

The Mamdani controller is mainly based on expertise and intuition,
that can be exploited in two bases: a data base, and a rule base.

The data base includes all the fuzzy variables (the controller inputs
and outputs: in our case the inputs are the robot depth and yaw angle
𝜂 ∈ R2×1 expressed in earth frame and their first-time derivative �̇� ∈
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Fig. 11. View of the membership functions for both inputs 𝜂 and �̇� of the proposed
fuzzy controller.

Table 3
Inference table of the proposed Mamdani fuzzy controller.
𝜂 �̇� Negative Zero Positive

Negative Negative Negative Zero
Zero Negative Zero Positive
Positive Zero Positive Positive

R2×1, the output of the controller will be the needed thrust force vector
𝜏 ∈ R2×1). The membership functions are illustrated in Fig. 11 and the
rule table is summarized in 3.

The membership functions are of trapezoidal type, and are defined
as follows:

𝜂 = {[𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒,𝑍𝑒𝑟𝑜, 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒], 𝑇 𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑𝑎𝑙, [−𝑎1, 𝑎1]}

�̇� = {[𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒,𝑍𝑒𝑟𝑜, 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒], 𝑇 𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑𝑎𝑙, [−𝑎2, 𝑎2]}

According to this inference table, our controller is characterized by
a fuzzy knowledge base including the following nine rules:
R1: If 𝜂 is Negative And �̇� is Negative Then the Force is Negative.
R2: If 𝜂 is Negative And �̇� is Zero Then the Force is Negative.
R3: If 𝜂 is Negative And �̇� is Positive Then the Force is Zero.
R4: If 𝜂 is Zero And �̇� is Negative Then the Force is Negative.
R5: If 𝜂 is Zero And �̇� is Zero Then the Force is Zero.
R6: If 𝜂 is Zero And �̇� is Positive Then the Force is Positive.
R7: If 𝜂 is Positive And �̇� is Negative Then the Force is Zero.
R8: If 𝜂 is Positive And �̇� is Zero Then the Force is Positive.
R9: If 𝜂 is Positive And �̇� is Negative Then the Force is Positive.

4.2. Fuzzification process

To use the Mamdani controller, the measured data collected with U-
CAT sensors is converted into fuzzy values. To this end, the previously
defined membership functions are used. Each value of the input vectors
𝜂 ∈ R2×1 and �̇� ∈ R2×1 will have three membership degree values:
𝜇𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝜇𝑍𝑒𝑟𝑜 and 𝜇𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 where 𝜇𝑖 take real values in the interval
[0, 1].

4.3. Inference engine

In our case study for the control of the robot U-CAT, the chosen t-
norm operation is the minimum t-norm, and the used t-conorm operation
is the maximum t-conorm. The membership degrees of the nine rules are
computed using t-norm operation as follows:

⎧⎪⎪⎨⎪⎪⎩

𝜇𝑅1 = 𝑚𝑖𝑛(𝜇𝑛𝑒𝑔(�̃�), 𝜇𝑛𝑒𝑔( ̇̃𝜂))
𝜇𝑅2 = 𝑚𝑖𝑛(𝜇𝑛𝑒𝑔(�̃�), 𝜇𝑧𝑒𝑟( ̇̃𝜂))
𝜇𝑅3 = 𝑚𝑖𝑛(𝜇𝑛𝑒𝑔(�̃�), 𝜇𝑝𝑜𝑠( ̇̃𝜂))

⋮
𝜇𝑅9 = 𝑚𝑖𝑛(𝜇𝑝𝑜𝑠(�̃�), 𝜇𝑝𝑜𝑠( ̇̃𝜂))

(18)

The variable �̃� denotes the error between the current and the desired
state �̃� = 𝜂 − 𝜂𝑑 , and ̇̃𝜂 stands for its first-time derivative.

We conclude the membership degree of the output (thrust force to
be generated by the robot’s fins) using the chosen t-conorm as follows
:
⎧
⎪⎨⎪⎩

𝜇𝑛𝑒𝑔(𝜏) = 𝑚𝑎𝑥(𝜇𝑅1, 𝜇𝑅2, 𝜇𝑅4)
𝜇𝑧𝑒𝑟(𝜏) = 𝑚𝑎𝑥(𝜇𝑅3, 𝜇𝑅5, 𝜇𝑅7)
𝜇𝑝𝑜𝑠(𝜏) = 𝑚𝑎𝑥(𝜇𝑅6, 𝜇𝑅8, 𝜇𝑅9)

(19)

4.4. Defuzzification process

In the literature, the following five defuzzifying methods are the
most used:

• Centroid of area (COA) method,
• Bisector of area (BOA) method,
• Mean of maximum (MOM) method,
• Smallest of maximum (SOM) method, and
• Largest of maximum (LOM) method.

In our case we have chosen to use the Centre Of Gravity (COG) method.
Consequently, the output of the inference engine (representing the
control input of the robot) will then be computed as follows:

𝜏 =
𝑐1𝜇𝑛𝑒𝑔(𝜏) + 𝑐2𝜇𝑧𝑒𝑟(𝜏) + 𝑐3𝜇𝑝𝑜𝑠(𝜏)
𝜇𝑛𝑒𝑔(𝜏) + 𝜇𝑧𝑒𝑟(𝜏) + 𝜇𝑝𝑜𝑠(𝜏)

(20)

where 𝑐1, 𝑐2 and 𝑐3 are constants. In our case 𝑐1 = −𝑐3, 𝑐3 > 0 and
𝑐2 = 0, 𝑐3 is the maximum achievable propulsion force by the four fins
of the robot.

5. Experimental results

In this section, the obtained experimental results are presented and
discussed. The experiments were carried out in a laboratory water-tank.
The water-tank has a limited depth of approximately 1 metre, therefore,
the desired depth trajectory was generated to satisfy this constraint. For
all the presented scenarios, the desired depth trajectory varies from 0
to 0.8 m, and the desired yaw angle varies from 0 to 1.5 rads.

To demonstrate the performance and robustness of the proposed
control scheme, different experimental scenarios have been studied for
the case of 2-DOF (depth and yaw) motion control. Accordingly, the
following experimental scenarios have been conducted:

• Scenario 1 (Nominal case): In this scenario, The robot is not
subject to any external disturbance or uncertainty. To demon-
strate the validity of the proposed fin model, this scenario was
conducted five times using five different oscillating frequencies
(0.8 Hz, 1.1 Hz, 1.4 Hz, 1.7 Hz, 2.0 Hz).

• Scenario 2 (Robustness test): A buoyancy foam was attached
on the robot to increase its buoyancy in order to test the ro-
bustness of the control law towards this unexpected change. This
experiment was conducted using a constant oscillating frequency
(1.1 Hz).



Ocean Engineering 239 (2021) 109883

8

W. Remmas et al.

Fig. 12. RMS tracking errors for the nominal case using different fins oscillating
frequencies.

• Scenario 3 (External disturbances rejection): the robot is sub-
ject to an external disturbing force. This experiment was con-
ducted using a constant oscillating frequency (1.1 Hz).

It is worth to note that the parameters of the proposed controller are
tuned for the nominal case and kept the same for all the other scenarios.
The parameter to be varied for Scenario 2 is the robot’s buoyancy 𝐵.
For Scenario 3, the external disturbance is applied in such a way to
affect mainly the yaw angle of the vehicle. The sampling period (sensors
feedback sample time) was set to 100 ms. The controller’s loop runs at
a frequency of 5 Hz. The parameters of the proposed Mamdani fuzzy
controller are summarized in Table 4.

Fig. 14. U-CAT pictured with an added buoyancy foam fixed on its top.

Table 4
Summary of the universe of discourse parameters used in the membership functions.

𝑎1 𝑎2 𝐶1 𝐶2 𝐶3

Depth 𝑧 0.18 0.1 −8.5 0 8.5
Yaw 𝜓 0.24 0.08 −4.8 0 4.8

5.1. Experimental scenario 1: Control in nominal case

The RMS errors for depth and yaw tracking are depicted in Fig. 12.
Fig. 12 shows that the proposed fin model gives satisfactory results for
all the tested oscillating frequencies ranging from 0.8 Hz to 2 Hz. The
best performance was obtained when the fin’s oscillating frequency is
set to 1.1 Hz, with RMS errors of 0.15 m and 4.01◦ for depth and yaw
tracking respectively. The obtained tracking results with an oscillating
frequency of 1.1 Hz are shown in Fig. 13. We notice on Fig. 13 that
the proposed control scheme ensures satisfying results in the nominal

Fig. 13. Obtained experimental results using the proposed fin model and a fuzzy-logic controller in the nominal case (at an oscillating fins frequency of 1.1 Hz).
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Fig. 15. Obtained experimental results using the proposed fuzzy-logic controller in the case of an increased buoyancy.

Fig. 16. Obtained experimental results using the proposed fuzzy logic control for external disturbances rejection scenario.

case. The robot is able to track the desired trajectories, even when both
degrees of freedom are varying at the same time. The associated control
signal for depth varies with a high frequency, but this results in small
fins direction changes, and the control performance is not affected. In
this case, both control signals are within the admissible region of the
robot actuators.

5.2. Experimental scenario 2: Robustness test towards buoyancy change

In this scenario, a buoyancy foam of 300 cm3 was fixed on the
top centre of the robot to increase its buoyancy, as shown in Fig. 14.

The robot floats to the surface when the fins are not actuated since
the robot’s neutral buoyancy is lost in this configuration. The obtained
experimental results for this second scenario are depicted in Fig. 15.
We can notice that, despite the increased buoyancy, the robot is able
to track both desired trajectories for depth and yaw simultaneously.
Slight oscillations can be noticed for yaw tracking, which is due to
the robot’s fins constant movement to compensate for the increased
buoyancy. The depicted RMS errors for this scenario are 0.29 m and
10.42◦ for depth and yaw tracking respectively. Despite the increased
buoyancy, the robot’s tracking performance remains accurate.
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5.3. Experimental scenario 3: External disturbances rejection

In this scenario, the robot was subject to an external disturbance.
A stick was used to disturb the robot twice and orient it at a random
angle. A first slight disturbance was applied while the robot was diving,
then a stronger one was applied when robot reached a stable depth.
The results are shown in Fig. 16. The time of the disturbances is shown
in the top right plot of Fig. 16. For the first external disturbance, we
notice that the robot recovered to the desired yaw angle, even-though it
was in a diving phase (fins oriented vertically). For the second stronger
disturbance, the robot managed to recover quicker since the fins were
oriented horizontally when the robot was not in a diving phase, which
produces a greater torque force by the four fins. The depicted RMS
errors for this scenario are 0.17 m and 14.64◦ for depth and yaw tracking
respectively.

6. Conclusion and future work

In this paper, the problem of dynamic modelling and control of
fin-actuated underwater vehicles was tackled. In terms of modelling,
beyond the dynamic model of the vehicle, the idea was to find an
appropriate dynamic model representing the fins of the robot. The
proposed model is based on a nonlinear analytical relationship between
the amplitude and frequency of oscillations, and the needed thrust force
to control fin-actuated vehicles. The model was validated experimen-
tally evaluated by comparing the generated thrust for various operating
frequencies. The results confirm the validity of the proposed model for
various oscillating frequencies. The proposed model and its respective
inverse model were both implemented on a fin-actuated AUV and
several experiments were carried out and discussed. Using the proposed
model, we show the possibility to use amplitude modulation with
a predefined constant frequency to control a fin-actuated AUV. The
obtained results show the effectiveness and robustness of the proposed
model for numerous oscillating frequencies. In future work, we will
investigate the accuracy of the proposed model in different Reynold
regimes and different flow velocities. Moreover, we plan to develop
solutions that allow to use both amplitude and frequency modulation
as control inputs.
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A B S T R A C T

In this paper, we present the mathematical design and implementation of a fault-tolerant control scheme
for a bio-inspired underwater robot with four flexible fins. The proposed active fault-tolerant control scheme
re-configures the force allocation matrix using the elimination of column method, depending on which fin
actuator is faulty. The proposed method allows to decouple the 6-DOF controllable underwater vehicle using
the remaining three fins. The efficacy of the proposed method is assessed experimentally for trajectory tracking
of an ellipsoidal-shaped trajectory using two different controllers, namely PID control and Sliding Mode control.
The obtained results show that the combination of a sliding mode controller with the proposed fault-tolerant
control allocation approach ensures an efficient trajectory tracking control performance when faults occur.

1. Introduction

Autonomous Underwater Vehicles (AUVs) are often deployed in
challenging environments, where they should function reliably even in
the presence of components’ failures. Fault-tolerant Control (FTC) for
underwater robots is of high importance, as it ensures a more robust
and reliable autonomy, and reduces the risk of losing the vehicle during
its mission.

The development of effective fault-tolerant control strategies for
thruster-based underwater robots has been an active area of research
in recent years (Antonelli, 2003; Liu et al., 2022a). Researchers have
explored a range of techniques, dealing with the three main compo-
nents of FTC: (i) fault detection, (ii) fault isolation, and (iii) fault
accommodation. Fault detection involves recognizing when a failure
has occurred that prevents the vehicle from operating correctly. Fault
isolation involves identifying the cause of the failure and its location.
Fault detection and isolation have been studied extensively, and the
reader can refer to Antonelli (2003), Samy et al. (2011) and Liu
et al. (2022a) and the references therein. Finally, fault accommodation,
which is investigated in this work, involves controlling the vehicle to
execute a desired task in the presence of a failure (see Fig. 1).

Fault accommodation has been addressed in the literature using two
main approaches, namely active and passive FTC. Active fault-tolerant
control, such as control reconfiguration (Ni, 2001; Sarkar et al., 2002)
and control allocation (Omerdic and Roberts, 2004; Alwi and Edwards,
2008; bal, 2017), involves continuously monitoring the system for

✩ This work was supported by ROBOTURTLE KIM Sea & Coast Research project.
∗ Corresponding author at: Department of Computer Systems, Tallinn University of Technology, Tallinn, Estonia.
E-mail addresses: walid.remmas@taltech.ee (W. Remmas), ahmed.chemori@lirmm.fr (A. Chemori), maarja.kruusmaa@taltech.ee (M. Kruusmaa).

potential failures and implementing corrective measures to prevent
or mitigate the effects of any hardware failures. Passive fault-tolerant
control (Liu et al., 2022; Wang et al., 2015), on the other hand, relies on
the inherent redundancy and robustness of the system design to tolerate
failures and continue operating without the need for active monitoring
or intervention.

Most of the above-mentioned studies have focused on thruster-
actuated designs of AUVs. However, fin-actuated AUVs have garnered
significant attention (RB et al., 2018; Scaradozzi et al., 2017), due
to their improved locomotion efficiency (Yu and Wang, 2005) and
maneuverability (Weymouth, 2016). Despite this, the topic of fault-
tolerant control for fin-actuated AUVs has received little attention in
the literature. As far as the authors are aware, the only work on fault-
tolerant control for a bio-inspired robot was published in Yang et al.
(2018). The authors in Yang et al. (2018) proposed a passive FTC
scheme using a central pattern generator based controller to correct
the heading of fish-like robot with a multi-joint tail design.

This paper focuses on active fault-tolerant control of a four fin-
actuated AUV in the presence of actuator failures. A control allocation
switching mechanism is proposed to accurately re-distribute the fins’
forces when a failure occurs. The proposed FTC method is based on
the column elimination method (Yang et al., 1998; Podder and Sarkar,
1999; Fasano et al., 2015; Kadiyam et al., 2020), which is adapted
and applied to the specific challenges posed by the highly coupled
and highly nonlinear fin-based actuation system. The proposed FTC

https://doi.org/10.1016/j.oceaneng.2023.115327
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Fig. 1. View of U-CAT robot during an inspection mission in a submerged structure.

scheme has been experimentally evaluated for controlling three degrees
of freedom, using two different controllers: PID control and Sliding
mode control. The main contributions of this paper are as follows:

• The development and application of FTC scheme for fin-actuated
AUVs, which considers the unique challenges of highly coupled
and highly nonlinear fin-based actuation systems.

• The experimental assessment of the proposed FTC scheme in
controlling three degrees of freedom, using both PID and Sliding
mode controllers.

• A comprehensive experimental analysis is provided, including
multiple scenarios to assess the robustness and adaptability of the
proposed FTC scheme.

• The work highlights the challenges and complexities of imple-
menting fault-tolerant control on a highly coupled, under-
actuated AUV, and discusses potential directions for future re-
search in this area.

• The paper contributes to the understanding of how control al-
location switching mechanisms can be employed effectively for
fin-actuated AUVs, and can potentially serve as a foundation for
future studies on fault-tolerant control for similar systems.

• To the best of the authors’ knowledge, the presented work is the
first one dealing with active fault-tolerant control of fin-actuated
underwater robots.

The remainder of the paper is organized in the following manner:
Section 2 provides a detailed description of the fin-actuated AUV and
its dynamic model, and outlines the problem of control allocation for
such systems. In Section 3, we present our proposed fault-tolerant
control solution and the corresponding control laws that have been
implemented. Section 4 presents the experimental setup, including
the various scenarios that were studied, and presents the obtained
results. Finally, we offer some concluding remarks and suggest potential
directions for future work in Section 5.

2. Background and problem formulation

This section begins by presenting the fin-actuated AUV U-CAT (c.f.
Fig. 1), as well as its hydro-dynamic model. We also presents the
problem formulation, which outlines the specific problem that the
proposed FTC scheme aims to solve.

2.1. U-CAT biomimetic AUV

U-CAT is a biomimetic underwater vehicle able to easily move
and maneuver along six degrees of freedom using its four flexible

fins (Salumäe et al., 2014). It was designed for the inspection of
confined environments such as shipwrecks and underwater structures
autonomously or semi-autonomously. It was used in previous works for
various applications, such as vision-based navigation (Preston et al.,
2018), validation of control schemes for fin-actuated vehicles (Chemori
et al., 2016; Meurer et al., 2019; Remmas et al., 2021a; Salumäe et al.,
2016, 2019), and study of fish/robot interaction (Kruusmaa et al.,
2020). Further technical details about U-CAT can be found in Remmas
et al. (2021b).

2.2. AUV dynamic model

This subsection describes the kinematic and dynamic models of the
AUV, moving in six degrees of freedom. It can be expressed, following
Fossen’s notation, as Fossen (2011):

�̇� = 𝐽 (𝑞)𝜈
𝑀�̇� + 𝑛(𝜂, 𝜈) = 𝜏

𝑛(𝜂, 𝜈) = 𝐶(𝜈)𝜈 +𝐷(𝜈)𝜈 + 𝑔(𝜂)
(1)

where 𝜂 = [𝑥, 𝑦, 𝑧, 𝛷, 𝜃, 𝜓]𝑇 ∈ R6 represents the vector of the vehi-
cle’s position and orientation in the earth-fixed frame 𝑅𝑛, and 𝜈 =
[𝑢, 𝑣,𝑤, 𝑝, 𝑞, 𝑟]𝑇 ∈ R6 represents the vector of linear and angular veloci-
ties in the body-fixed frame 𝑅𝑏. The matrix 𝑀 ∈ R6×6 is the mass matrix
of the robot, 𝐶(𝜈) ∈ R6×6 denotes the Coriolis and centripetal matrix,
𝐷(𝜈) ∈ R6×6 is the hydrodynamic damping matrix, and 𝑔(𝜂) ∈ R6

denotes the restoring forces and moments due to buoyancy and gravity.
The generalized forces and moments on the vehicle, expressed in the
body-fixed frame, are represented by 𝜏 = [𝜏𝑥, 𝜏𝑦, 𝜏𝑧, 𝜏𝛷, 𝜏𝜃 , 𝜏𝜓 ]𝑇 .

The Jacobian 𝐽 (𝜂) is expressed, using the Euler angles notation, to
map the velocities expressed in 𝑅𝑏 to the earth-fixed frame 𝑅𝑛 such
that:

𝐽 (𝜂) =
[
𝑅(𝜂) 03×3
03×3 𝑇 (𝜂)

]
(2)

with it’s inverse as follows:

𝐽 (𝜂)−1 =
[
𝑅(𝜂)𝑇 03×3
03×3 𝑇 (𝜂)𝑇

]
(3)

where the matrices 𝑅(𝜂) and 𝑇 (𝜂) are defined as:

𝑅(𝜂) =
⎡⎢⎢⎣

𝑐𝜓𝑐𝜃 −𝑠𝜓𝑐𝛷 + 𝑐𝜓𝑠𝜃𝑠𝛷 𝑠𝜓𝑠𝛷 + 𝑐𝜓𝑠𝜃𝑠𝛷
𝑠𝜓𝑐𝜃 𝑐𝜓𝑐𝛷 + 𝑠𝜓𝑠𝜃𝑠𝛷 −𝑐𝜓𝑠𝛷 + 𝑠𝜓𝑠𝜃𝑐𝛷
−𝑐𝜃 𝑐𝜃𝑠𝛷 𝑐𝜃𝑐𝛷

⎤⎥⎥⎦

𝑇 (𝜂) =
⎡⎢⎢⎣

1 𝑠𝛷𝑡𝜃 𝑐𝛷𝑡𝜃
0 𝑐𝛷 −𝑠𝛷
0 𝑠𝛷

𝑐𝜃
𝑐𝛷
𝑐𝜃

⎤⎥⎥⎦
with 𝑐. = cos(.), 𝑠. = sin(.), and 𝑡. = tan(.).

2.3. Problem formulation of control allocation

Fin-actuated AUV’s can achieve locomotion by moving their fins
with an oscillatory profile (Low, 2011). For the motion control of
U-CAT AUV, we propose to use the following oscillatory profile:

𝜑𝑖(𝑡) = 𝐴𝑖 sin(𝜔𝑡) + 𝜙𝑖 𝑖 = 1…4 (4)

where 𝜑𝑖(𝑡) is the instantaneous angle of each fin 𝑖, 𝐴𝑖 denotes the
oscillating amplitude, 𝜔 the oscillating frequency, and 𝜙𝑖 the zero-
direction angle. The indices 𝑖 = {1, 2, 3, 4} are allocated for the Front
Right (FR), Rear Right (RR), Rear Left (RL), and Front Left (FL) fins,
respectively.

When a fin is oscillating, we assume that it generates a constant
thrust force 𝑓𝑖 along the zero-direction angle 𝜙𝑖, which is the mean
thrust force generated from one flapping cycle (Ren et al., 2015;
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Fig. 2. Illustration of the various fin configurations allowing to control the robot in each DOF using either 2 or 4 fins. The actuated fins for each configuration are highlighted
with a red dot.

Xie et al., 2018). The generated fin forces can then be mapped to
body-frame wrench 𝜏 using the following nonlinear model:

𝜏𝑥 = 𝑐𝜓𝑓
(
𝑐𝜙1 𝑓1 − 𝑐𝜙2 𝑓2 − 𝑐𝜙3 𝑓3 + 𝑐𝜙4 𝑓4

)

𝜏𝑦 = 𝑠𝜓𝑓
(
−𝑐𝜙1 𝑓1 − 𝑐𝜙2 𝑓2 + 𝑐𝜙3 𝑓3 + 𝑐𝜙4 𝑓4

)

𝜏𝑧 = 𝑠𝜙1 𝑓1 + 𝑠𝜙2 𝑓2 + 𝑠𝜙3 𝑓3 + 𝑠𝜙4 𝑓4
𝜏𝛷 =𝑀𝛷

(
𝑠𝜙1 𝑓1 + 𝑠𝜙2 𝑓2 − 𝑠𝜙3 𝑓3 − 𝑠𝜙4 𝑓4

)

𝜏𝜃 =𝑀𝜃
(
−𝑠𝜙1 𝑓1 + 𝑠𝜙2 𝑓2 + 𝑠𝜙3 𝑓3 − 𝑠𝜙4 𝑓4

)

𝜏𝜓 =𝑀𝜓
(
−𝑐𝜙1 𝑓1 + 𝑐𝜙2 𝑓2 − 𝑐𝜙3 𝑓3 + 𝑐𝜙4 𝑓4

)

(5)

The constant 𝜓𝑓 = 30◦ = 0.52 rad, denotes the fin orientation angle
in the body frame as illustrated in Fig. 3, and the constants 𝑀𝛷 = 0.15,
𝑀𝜃 = 0.26, and 𝑀𝜓 = 0.29, denote the moment arm values along roll,
pitch, and yaw axes, respectively.

The equation system described in (5) can be rewritten in a compact
matricial form as 𝐵[𝐻𝑐 , 𝑉𝑐 ]𝑇 = 𝜏𝑛, equivalent to:

𝐶1
ℎ 𝐶2

ℎ 𝐶3
ℎ 𝐶4

ℎ 𝐶1
𝑣 𝐶2

𝑣 𝐶3
𝑣 𝐶4

𝑣

⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

1 −1 −1 1 0 0 0 0
−1 −1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 −1 −1
0 0 0 0 −1 1 1 −1
−1 1 −1 1 0 0 0 0

[
𝐻𝑐
𝑉𝑐

]
= 𝜏𝑛 (6)

with 𝜏𝑛 = [ 𝜏𝑥
𝑐𝜓𝑓

,
𝜏𝑦
𝑠𝜓𝑓

, 𝜏𝑧,
𝜏𝛷
𝑀𝛷

, 𝜏𝜃𝑀𝜃
,
𝜏𝜓
𝑀𝜓

]𝑇 . The generated thrust forces,
projected on the horizontal and vertical planes of the body-fixed frame,
are denoted as follows:

𝐻𝑐 = [𝑐𝜙1𝑓1, 𝑐𝜙2𝑓2, 𝑐𝜙3𝑓3, 𝑐𝜙4𝑓4]𝑇 (7)

𝑉𝑐 = [𝑠𝜙1𝑓1, 𝑠𝜙2𝑓2, 𝑠𝜙3𝑓3, 𝑠𝜙4𝑓4]𝑇 (8)

The symbols 𝐶 𝑖ℎ and 𝐶 𝑖𝑣 (for 𝑖 = 1…4) are used as labels for the columns
of the allocation matrix.

3. Proposed fault tolerant control unit

Before describing the proposed fault-tolerant control scheme (cf.
Fig. 4), let us introduce the detailed steps to solve the control-allocation
problem in the nominal case, i.e. where all fins are fully functional.
The control allocation problem was solved in previous works following
an empirical approach (Salumäe et al., 2016). In this study we present
an analytical solution that solves the linear algebraic set of equations,
presented in (6). The system is considered to be virtually over-actuated,
since the fins have an infinite number of possible configurations. The
simplest and straightforward solution would be to take directly the
Moore–Penrose inverse (Penrose, 1955), such that [𝐻𝑐 , 𝑉𝑐 ]𝑇 = 𝐵†𝜏𝑛,

Fig. 3. Illustration of U-CAT’s fins configuration. The robot front right, rear right, rear
left, and front left are denoted by FR, RR, RL, and FL, respectively.

where 𝐵† = 𝐵𝑇 (𝐵𝐵𝑇 )−1 results in the following:

𝐵† = 1
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 −1
−1 −1 0 0 0 1
−1 1 0 0 0 −1
1 1 0 0 0 1
0 0 1 1 −1 0
0 0 1 1 1 0
0 0 1 −1 1 0
0 0 1 −1 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

This leads to the following solution where the fins’ forces and
orientations are still coupled:

𝑐𝜙1 𝑓1 =
1
4

(
𝜏𝑥
𝑐𝜓𝑓

−
𝜏𝑦
𝑠𝜓𝑓

−
𝜏𝛹
𝑀𝜓

)
(10)

𝑐𝜙2 𝑓2 =
1
4

(
−
𝜏𝑥
𝑐𝜓𝑓

−
𝜏𝑦
𝑠𝜓𝑓

+
𝜏𝛹
𝑀𝜓

)
(11)

𝑐𝜙3 𝑓3 =
1
4

(
−
𝜏𝑥
𝑐𝜓𝑓

+
𝜏𝑦
𝑠𝜓𝑓

−
𝜏𝛹
𝑀𝜓

)
(12)

𝑐𝜙4 𝑓4 =
1
4

(
𝜏𝑥
𝑐𝜓𝑓

+
𝜏𝑦
𝑠𝜓𝑓

+
𝜏𝛹
𝑀𝜓

)
(13)

𝑠𝜙1 𝑓1 =
1
4

(
𝜏𝑧 +

𝜏𝛷
𝑀𝛷

−
𝜏𝛩
𝑀𝜃

)
(14)

𝑠𝜙2 𝑓2 =
1
4

(
𝜏𝑧 +

𝜏𝛷
𝑀𝛷

+
𝜏𝛩
𝑀𝜃

)
(15)

𝑠𝜙3 𝑓3 =
1
4

(
𝜏𝑧 −

𝜏𝛷
𝑀𝛷

+
𝜏𝛩
𝑀𝜃

)
(16)

𝑠𝜙4 𝑓4 =
1
4

(
𝜏𝑧 −

𝜏𝛷
𝑀𝛷

−
𝜏𝛩
𝑀𝜃

)
(17)
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Fig. 4. Block Diagram illustration of the proposed fault-tolerant control strategy.

By dividing Eqs. (14) (15) (16) (17) by Eqs. (10) (11) (12) (13),
respectively, we can deduce the zero-direction angles 𝜙1, 𝜙2, 𝜙3 and
𝜙4 as follows:

𝜙1 = 𝑎𝑡𝑎𝑛(
𝜏𝑧 +

𝜏𝛷
𝑀𝛷

− 𝜏𝜃
𝑀𝜃

𝜏𝑥
𝑐𝜓𝑓

− 𝜏𝑦
𝑠𝜓𝑓

− 𝜏𝜓
𝑀𝜓

) (18)

𝜙2 = 𝑎𝑡𝑎𝑛(
𝜏𝑧 +

𝜏𝛷
𝑀𝛷

+ 𝜏𝜃
𝑀𝜃

−𝜏𝑥
𝑐𝜓𝑓

− 𝜏𝑦
𝑠𝜓𝑓

+ 𝜏𝜓
𝑀𝜓

) (19)

𝜙3 = 𝑎𝑡𝑎𝑛(
𝜏𝑧 −

𝜏𝛷
𝑀𝛷

+ 𝜏𝜃
𝑀𝜃

−𝜏𝑥
𝑐𝜓𝑓

+ 𝜏𝑦
𝑠𝜓𝑓

− 𝜏𝜓
𝑀𝜓

) (20)

𝜙4 = 𝑎𝑡𝑎𝑛(
𝜏𝑧 −

𝜏𝛷
𝑀𝛷

− 𝜏𝜃
𝑀𝜃

𝜏𝑥
𝑐𝜓𝑓

+ 𝜏𝑦
𝑠𝜓𝑓

+ 𝜏𝜓
𝑀𝜓

) (21)

The fins’ forces 𝑓1, 𝑓2, 𝑓3 and 𝑓4 are derived by respectively summing
and squaring the Eqs. (10) and (14), (11) and (15), (12) and (16), and
finally (13) and (17), which leads to the following expressions:

𝑓1 =
1
4

√(
𝜏𝑥
𝑐𝜓𝑓

−
𝜏𝑦
𝑠𝜓𝑓

−
𝜏𝛹
𝑀𝜓

)2
+
(
𝜏𝑧 +

𝜏𝛷
𝑀𝛷

−
𝜏𝛩
𝑀𝜃

)2
(22)

𝑓2 =
1
4

√(−𝜏𝑥
𝑐𝜓𝑓

−
𝜏𝑦
𝑠𝜓𝑓

+
𝜏𝛹
𝑀𝜓

)2
+
(
𝜏𝑧 +

𝜏𝛷
𝑀𝛷

+
𝜏𝛩
𝑀𝜃

)2
(23)

𝑓3 =
1
4

√(−𝜏𝑥
𝑐𝜓𝑓

+
𝜏𝑦
𝑠𝜓𝑓

−
𝜏𝛹
𝑀𝜓

)2
+
(
𝜏𝑧 −

𝜏𝛷
𝑀𝛷

+
𝜏𝛩
𝑀𝜃

)2
(24)

𝑓4 =
1
4

√(
𝜏𝑥
𝑐𝜓𝑓

+
𝜏𝑦
𝑠𝜓𝑓

+
𝜏𝛹
𝑀𝜓

)2
+
(
𝜏𝑧 −

𝜏𝛷
𝑀𝛷

−
𝜏𝛩
𝑀𝜃

)2
(25)

The derived solution presented above for controlling the fins’ orien-
tations and thrust forces is not optimal for accurately tracking time-
varying trajectories, since all the four fins need to be actuated regard-
less of the control input 𝜏. This may cause for instance the four fins
to rotate 180 degrees when the surge component changes its sign. To
tackle this issue, we propose to take advantage of the symmetrical
configuration of U-CAT fins. Indeed, for forces and torques produced in
the horizontal plane of the body-fixed frame such as surge, sway and
yaw, only two fins can be used to move in one direction, as illustrated
in Fig. 2. We can consequently reformulate the control allocation as
follows:

𝜙1 = 𝑎𝑡𝑎𝑛

⎛⎜⎜⎜⎜⎝

𝜏𝑧 +
𝜏𝛷
𝑀𝛷

− 𝜏𝜃
𝑀𝜃

2
(
𝐻(𝜏𝑥)𝜏𝑥
𝑐𝜓𝑓

− 𝐻(−𝜏𝑦)𝜏𝑦
𝑠𝜓𝑓

− 𝐻(−𝜏𝜓 )𝜏𝜓
𝑀𝜓

)
⎞⎟⎟⎟⎟⎠

(26)

𝜙2 = 𝑎𝑡𝑎𝑛

⎛
⎜⎜⎜⎜⎝

𝜏𝑧 +
𝜏𝛷
𝑀𝛷

+ 𝜏𝜃
𝑀𝜃

2
(
−𝐻(−𝜏𝑥)𝜏𝑥

𝑐𝜓𝑓
− 𝐻(−𝜏𝑦)𝜏𝑦

𝑠𝜓𝑓
+ 𝐻(𝜏𝜓 )𝜏𝜓

𝑀𝜓

)
⎞
⎟⎟⎟⎟⎠

(27)

𝜙3 = 𝑎𝑡𝑎𝑛

⎛
⎜⎜⎜⎜⎝

𝜏𝑧 −
𝜏𝛷
𝑀𝛷

+ 𝜏𝜃
𝑀𝜃

2
(
−𝐻(−𝜏𝑥)𝜏𝑥

𝑐𝜓𝑓
+ 𝐻(𝜏𝑦)𝜏𝑦

𝑠𝜓𝑓
− 𝐻(−𝜏𝜓 )𝜏𝜓

𝑀𝜓

)
⎞
⎟⎟⎟⎟⎠

(28)

𝜙4 = 𝑎𝑡𝑎𝑛

⎛
⎜⎜⎜⎜⎝

𝜏𝑧 −
𝜏𝛷
𝑀𝛷

− 𝜏𝜃
𝑀𝜃

2
(
𝐻(𝜏𝑥)𝜏𝑥
𝑐𝜓𝑓

+ 𝐻(𝜏𝑦)𝜏𝑦
𝑠𝜓𝑓

+ 𝐻(𝜏𝜓 )𝜏𝜓
𝑀𝜓

)
⎞
⎟⎟⎟⎟⎠

(29)

𝑓1 = 1
4

[
2
(
𝐻(𝜏𝑥)𝜏𝑥
𝑐𝜓𝑓

+ −𝐻(−𝜏𝑦)𝜏𝑦
𝑠𝜓𝑓

+ −𝐻(−𝜏𝛹 )𝜏𝛹
𝑀𝜓

)2
+

(
𝜏𝑧 +

𝜏𝛷
𝑀𝛷

− 𝜏𝛩
𝑀𝜃

)2
] 1

2
(30)

𝑓2 = 1
4

[
2
(

−𝐻(−𝜏𝑥)𝜏𝑥
𝑐𝜓𝑓

+ −𝐻(−𝜏𝑦)𝜏𝑦
𝑠𝜓𝑓

+ 𝐻(𝜏𝛹 )𝜏𝛹
𝑀𝜓

)2
+

(
𝜏𝑧 +

𝜏𝛷
𝑀𝛷

+ 𝜏𝛩
𝑀𝜃

)2
] 1

2
(31)

𝑓3 = 1
4

[
2
(

−𝐻(−𝜏𝑥)𝜏𝑥
𝑐𝜓𝑓

+ 𝐻(𝜏𝑦)𝜏𝑦
𝑠𝜓𝑓

+ −𝐻(−𝜏𝛹 )𝜏𝛹
𝑀𝜓

)2
+

(
𝜏𝑧 −

𝜏𝛷
𝑀𝛷

+ 𝜏𝛩
𝑀𝜃

)2
] 1

2
(32)

𝑓4 = 1
4

[
2
(
𝐻(𝜏𝑥)𝜏𝑥
𝑐𝜓𝑓

+ 𝐻(𝜏𝑦)𝜏𝑦
𝑠𝜓𝑓

+ 𝐻(𝜏𝛹 )𝜏𝛹
𝑀𝜓

)2
+

(
𝜏𝑧 −

𝜏𝛷
𝑀𝛷

− 𝜏𝛩
𝑀𝜃

)2
] 1

2
(33)

Once the required force for each fin is computed, it should be con-
verted to a fin-oscillating amplitude using the inverse model described
in Remmas et al. (2021b) as follows:

𝐴𝑖 = arccos

(
−𝑓𝑖

2𝐶𝑑𝜌𝑆𝑓 (𝑟𝑐𝜔)2
+ 1

)
(34)

where 𝜔 denotes the angular velocity of the fin, 𝜌 is the water density,
𝑟𝑐 is the distance between the rotation axis and the center of gravity
of the fin, 𝑆𝑓 is the projection area of the fin, and 𝐶𝑑 stands for the
drag coefficient. The drag coefficient 𝐶𝑑 was identified experimentally
in our previous work (Remmas et al., 2021b). The above mentioned
parameters are summarized in Table 1.

The resulting amplitudes 𝐴𝑖 and zero-directions 𝜙𝑖 are then filtered
using a second order filter. This is to ensure smooth and contin-
uous transitions, which may significantly reduce the effect of the
non-modeled fin lateral forces. The expressions of the used filters are
as follows:

�̈�𝑓𝑖 + 2𝛾𝐴�̇�
𝑓
𝑖 + 𝛾2𝐴(𝐴

𝑓
𝑖 − 𝐴𝑖) = 0 (35)

�̈�𝑓𝑖 + 2𝛾𝜙�̇�
𝑓
𝑖 + 𝛾2𝜙(𝜙

𝑓
𝑖 − 𝜙𝑖) = 0 (36)
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Table 1
Parametric values of the force to amplitude model (34).
𝜌 (kg∕m3) 𝑆𝑓 (m2) 𝜔 (rad∕s) 𝑟𝑐 (m) 𝐶𝑑
997 0.02 4𝜋 0.1 0.23

Table 2
Numerical values of 𝐵−1

𝑟 for all possible faulty fin cases.

FR RR

1
2

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 1
−1 1 0 0 0 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 0 −1 1 0
0 0 1 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

1
2

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −1
0 1 0 0 0 −1
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 0 1 0
0 0 0 −1 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

FL RL

1
2

⎡⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0 0 −1
−1 −1 0 0 0 0
−1 0 0 0 0 −1
0 0 1 0 −1 0
0 0 0 1 1 0
0 0 1 −1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

1
2

⎡⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0
0 −1 0 0 0 1
1 0 0 0 0 1
0 0 0 1 −1 0
0 0 1 0 1 0
0 0 1 −1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

where 𝛾𝐴 = 10 and 𝛾𝜙 = 3 are positive constants. The values of 𝜙𝑓𝑖 and
𝐴𝑓𝑖 are computed using Euler’s integration method, with a step-size of
0.01 s, and are then sent to the low-level control of the fins’ motors to
achieve the desired oscillation profile.

3.1. Control-allocation based FTC

An actuation fault may occur due to various reasons, it can be
of mechanical or electrical cause. In both cases, one or several fins
may become either malfunctioning, or totally fail to function. In this
study, we consider the case of fin failure, and assume that the fault
can be identified and isolated. We also assume that only one actuator
failure occurs at a time. Throughout the remainder of this paper, when
referring to a fin as ‘‘faulty’’, it implies that the fin is completely
nonfunctional.

When an actuation failure occurs, we use the elimination of column
method to adapt the control allocation system. The matrix 𝐵 reported
in Eq. (6) is then reduced by two columns depending on which fin
is faulty (cf. illustration of Fig. 3). The two following columns are
eliminated depending on which fin is faulty:

• 𝐶1
ℎ and 𝐶1

𝑣 , when the fin 𝐹𝑅 is faulty
• 𝐶2

ℎ and 𝐶2
𝑣 , when the fin 𝑅𝑅 is faulty

• 𝐶3
ℎ and 𝐶3

𝑣 , when the fin 𝑅𝐿 is faulty
• 𝐶4

ℎ and 𝐶4
𝑣 , when the fin 𝐹𝐿 is faulty

Once the two columns are identified and eliminated, the reduced
matrix denoted by 𝐴𝑟 ∈ R6×6 becomes a full rank square matrix. This
means that, in the case of a faulty fin scenario, 𝐴𝑟 is invertible, and
there exists only one fin configuration that solves the control allocation
problem. Moreover, its inverse 𝐴−1

𝑟 can be generalized to all the faulty
cases listed above, as follows:

𝐵−1
𝑟 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝐻1
1 𝐻2

1 0 0 0 𝑉 1
1

𝐻1
2 𝐻2

2 0 0 0 𝑉 1
2

𝐻1
3 𝐻2

3 0 0 0 𝑉 1
3

0 0 𝐻1
4 𝑉 1

4 𝑉 2
4 0

0 0 𝐻1
5 𝑉 1

5 𝑉 2
5 0

0 0 𝐻1
6 𝑉 1

6 𝑉 2
6 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(37)

The resulting values of the 𝐵−1
𝑟 for all faulty fin cases are summa-

rized in Table 2.
Following the same solving procedure detailed in Eqs. (10) to (25),

we can deduce both the required forces and zero-direction angles

required for the three healthy fins, as follows:

𝑓𝑖 cos(𝜙𝑖) = 𝐻1
𝑖
𝜏𝑥
𝑐𝜓𝑓

+𝐻2
𝑖

𝜏𝑦
𝑠𝜓𝑓

+ 𝑉 1
𝑖
𝜏𝛹
𝑀𝜓

= 𝛤 ℎ𝑖 (𝑖 = 1…3) (38)

𝑓𝑖 sin(𝜙𝑖) = 𝐻1
𝑖+3𝜏𝑧 + 𝑉

1
𝑖+3

𝜏𝛷
𝑀𝛷

+ 𝑉 2
𝑖+3

𝜏𝜃
𝑀𝜃

= 𝛤 𝑣𝑖 (𝑖 = 1…3) (39)

The required zero-direction angles and forces are then derived and
expressed as:

𝑓𝑖 =
√
𝛤 ℎ𝑖

2 + 𝛤 𝑣𝑖
2 (𝑖 = 1…3) (40)

𝜙𝑖 = 𝑎𝑡𝑎𝑛(
𝛤 𝑣𝑖
𝛤 ℎ𝑖

) (𝑖 = 1…3) (41)

The computed forces 𝑓𝑖 are then transformed into fin oscillation
amplitudes 𝐴𝑖 using (34). Finally 𝐴𝑖 and 𝜙𝑖 are filtered using (35) and
(36).

The resulting fin oscillating amplitudes 𝐴𝑓𝑖 and zero-direction angles
𝜙𝑓𝑖 are allocated to the respective fins in an ascending order of 𝑖 as
follows:

• RR, RL and FL, when the FR fin is faulty.
• FR, RL, and FL, when the RR fin is faulty.
• FR, RR, and FL, when the RR fin is faulty.
• FR, RR and RL, when the FL fin is faulty.

It is important to note that during the transition from one control
allocation matrix to another one leads to varying fin oscillation parame-
ters. This primarily results in different commanded zero-directions and
amplitudes for the fins, generating a finite amount of non-modeled ex-
ternal disturbance during rotation, which can be managed by selecting
suitable control parameters. Moreover, the coefficients 𝛾𝐴 and 𝛾𝑝ℎ𝑖 of
the second-order filters, as indicated in Eqs. (35) and (36), have been
manually adjusted to ensure smooth transitions with minimal external
disturbance during changes in fin zero-direction angles.

3.2. Implemented controllers

To study the performance of the proposed FTC scheme for trajectory
tracking, we implemented two controllers, namely a PID and a Sliding
Mode controller. Let us define the tracking error and its derivative as
follows:

�̃� = 𝜂𝑑 − 𝜂 (42)

�̃� = 𝐽−1�̇�𝑑 − 𝜈 (43)

3.2.1. PID control
A conventional PID controller was implemented as a base-line con-

trol law to assess the performance in terms of trajectory tracking using
the proposed FTC scheme. There are several variants of PID controllers
for AUVs control (Fossen, 2011). In this study we adopt the model-free
one, as we do not have a high confidence in values of the hydro-
dynamic parameters of the model defined in (1). The control input is
expressed as:

𝜏𝑃𝐼𝐷 = 𝐾𝑝�̃� +𝐾𝑑 �̃� +𝐾𝑖 ∫
𝑡1

0
�̃�(𝑡)𝑑𝑡 (44)

where the 𝐾𝑝 ∈ R6×6, 𝐾𝑑 ∈ R6×6 and 𝐾𝑖 ∈ R6×6 are diagonal
positive-definite matrices.

3.2.2. Sliding mode control
In addressing the necessity for robustness against uncertain pa-

rameters in the model, we propose the implementation of a Sliding
Mode (SM) controller. SM control is widely recognized for its supe-
rior performance in managing system uncertainties, disturbances, and
nonlinearities, as compared to traditional PID control methods. The
design methodology of the SM controller yields a closed-loop system
exhibiting insensitivity to both disturbances and uncertainties (Utkin,
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Fig. 5. The experimental setup used for real-time experiments at LIRMM laboratory (Montpellier, France).

2013; Slotine et al., 1991). A comprehensive body of research exists on
Sliding Mode control in the literature (Gambhire et al., 2021). In this
study, we focus on the design and implementation of a first-order SM
controller. To do so, we define first the sliding surface 𝑠 = �̃�+𝛼�̃�, where
𝛼 is a 6 × 6 diagonal matrix with positive coefficients. We consider then
the positive-definite Lyapunov function 𝑉 = 1

2 𝑠
2. To ensure asymptotic

stability, the control law should ensure �̇� < 0 (Edwards and Spurgeon,
1998). Which leads to the following control law:

𝜏 = 𝑛(𝜂, 𝜈) +𝑀(𝐽−1�̈�𝑑 + �̇�−1�̇�𝑑 + 𝛼(�̇�𝑑 − �̇�) +𝐾 𝑠𝑖𝑔𝑛(𝑠)) (45)

To avoid the chattering phenomena, inherent to first-order SM, and
caused by the 𝑠𝑖𝑔𝑛() function, we propose to use a hyperbolic tangent
function instead. The resulting control law becomes:

𝜏𝑆𝑀 = 𝑛(𝜂, 𝜈) +𝑀
(
𝐽−1�̈�𝑑 + �̇�−1�̇�𝑑 + 𝛼(�̇�𝑑 − �̇�) +𝐾 tanh(𝐴𝑠)

)
(46)

where 𝐾 and 𝐴 are 6 × 6 diagonal matrices with positive coefficients.

4. Real-time experiments and results

The experimental setup and tested scenarios for evaluating the pro-
posed FTC solution are presented in this section. The results obtained
from the experiments are discussed in the following subsection. All of
the conducted experiments were video-recorded, and can be visualized
in the attached complementary video.

4.1. Experimental setup

A series of validation experiments were performed in a laboratory
pool of 1.30 m depth (c.f. Fig. 5(a)) to evaluate the proposed fault-
tolerant control allocation method. These experiments include a large
grid of size 3 m × 4 m (cf. Fig. 5(b)). The grid contains 328 ArUco
markers (Garrido-Jurado et al., 2014), 72 of size 0.25 m and 216 of size
0.1 m. The onboard camera captures images at a frequency of 10 Hz,
and the detected markers are used to provide the robot with its actual
position measurements in the Earth fixed frame 𝑅𝑛.

The shallow depth of the pool restricts the range of motion of some
degrees of freedom that can be explored, it also affects the vision-
based odometry, as the tags can no longer be detected when going
deeper, therefore, the chosen reference trajectory to be tracked was
a planar elliptic trajectory. The trajectory was generated using the
second degree Ordinary Differential Equation denoted in (47). Using
a set of pre-filtered desired set-points 𝜂𝑝 = [𝑥𝑝, 𝑦𝑝, 𝑧𝑝, 𝜓𝑝], the filter
generates continuous desired positions 𝜂𝑑 = [𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑 , 𝜓𝑑 ], velocities
�̇�𝑑 = [�̇�𝑑 , �̇�𝑑 , �̇�𝑑 , �̇�𝑑 ] and accelerations �̈�𝑑 = [�̈�𝑑 , �̈�𝑑 , �̈�𝑑 , �̈�𝑑 ].

�̈�𝑑 + 2𝛾�̇�𝑑 = 𝛾2(𝜂𝑑 − 𝜂𝑝) (47)

The filter is implemented to guarantee the generation of smooth,
continuous, and feasible velocities and accelerations, even in the pres-
ence of non-linearity in the desired set-points. A double Euler integra-
tion is then performed to get the desired states 𝜂𝑑 , �̇�𝑑 and �̈�𝑑 .

Table 3
Trajectory generation parameters.
𝐿𝑥 𝜔𝑥 𝐿𝑦 𝜔𝑦 𝜁 𝛾

1.2 0.06 0.75 0.06 0.2 5.0

The pre-filtered set-points were then designed to achieve a 2D
ellipsoidal-shaped trajectory, whose time-trajectories are expressed as
follows:

𝑥𝑝(𝑡) = 𝑥𝑖 + 𝐿𝑥(− cos(𝜔𝑥𝑡) + 1) (48)

𝑦𝑝(𝑡) = 𝑦𝑖 + 𝐿𝑦 sin(𝜔𝑦𝑡) (49)

𝑧𝑝(𝑡) = 0.3 (50)

𝜓𝑝(𝑡) = 𝑎𝑡𝑎𝑛2(𝑦𝑑 (𝑡 + 𝜁 ) − 𝑦𝑝(𝑡), 𝑥𝑑 (𝑡 + 𝜁 ) − 𝑥𝑝(𝑡)) (51)

Although both of the PID and SM controllers were designed to con-
trol the robot in 6 DOFs, the robot at this stage can only be controlled in
surge, heave, and yaw DOFs. Sway movement is not efficient with the
fins positioned at 30 degrees, and this limitation can be addressed in
the future with a better mechanical design that allows a more balanced
control between all DOFs. To precisely follow a given 3D trajectory,
which is essential for underwater exploration or surveying missions, we
control the 𝑦 position indirectly by adjusting the Line of Sight in the
desired yaw 𝜓𝑝 with a look-ahead parameter 𝜁 (Fossen et al., 2003).
The robot is mechanically stable in roll and pitch by design and thus it
is not necessary to control these DOFs.

The parameter 𝛾 was tuned manually to guarantee feasible accel-
erations by the robot in the case where 𝜓𝑝 changes abruptly because
of the non-continuous 𝑎𝑡𝑎𝑛2 function (51). The parameters values for
trajectory generation are summarized in Table 3. The offset parameters
𝑥𝑖 and 𝑦𝑖 are selected based on the measured initial location of the
robot, such that the trajectory would start from that point in space.

The following experimental scenarios where evaluated for both the
PID and SM controller for the tracking of the above-defined trajectory:

• Scenario 1 (Nominal): All fins are healthy.
• Scenario 2 (RR): The rear right fin is faulty.
• Scenario 3 (RL): The rear left fin is faulty.
• Scenario 4 (FL): The front left fin is faulty.
• Scenario 5 (FR): The front right fin is faulty.

The gains for the PID and SM controllers were determined through
a process of iterative testing and adjustment to achieve optimal per-
formance in the nominal case, where all fins are functioning properly.
In order to evaluate the robustness of the two controllers, the same
set of parameters were used for all other scenarios without further
modification. The numerical values of the gains for the PID and SM
controllers are reported in Tables 4 and 5, respectively. The obtained
results are presented in the next subsection.
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Fig. 6. Trajectory tracking results across the different experimental scenarios using the PID controller.

Fig. 7. Trajectory tracking results across the different experimental scenarios using the SMC controller.

Table 4
The numerical values of the gains for the PID controller.

𝐾𝑝 𝐾𝑑 𝐾𝑖

Surge 1.15 1.2 0.18
Heave 6.2 1.4 0.7
Yaw 0.35 1.5 0.8

4.2. Obtained results and discussion

In this section, we present the experimental results obtained from
implementing the proposed FTC scheme with PID and SM controllers

Table 5
The numerical values of the gains for the SMC controller.

𝐾 𝛼 𝐴

Surge 1.4 0.8 1
Heave 1.3 2.95 1
Yaw 0.9 1.7 1

for the previously described scenarios. The performance of each con-
troller is assessed based on a single complete lap of the elliptical
trajectory.

For Scenario 1 (nominal), both the PID and SM controllers enable
the robot to accurately track the desired trajectory, as shown in Figs. 6
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Fig. 8. Time-series of the generated zero-direction angles and amplitudes for the different experimental scenarios using the PID controller.

Fig. 9. Time-series of the generated zero-direction angles and amplitudes for the different experimental scenarios using the SM controller.

Fig. 10. Bar plot of the RMS errors for trajectory tracking of all the studied scenarios. The errors for the position and orientation, expressed in meters and radians, respectively,
are reported for a single trial for each case.

Fig. 11. Tracking errors of 𝑥 and 𝑦 positions for all the studied scenarios. The errors are depicted for each scenario, illustrating the performance of the control strategies in various
fault conditions.
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and 7, respectively. The PID controller displays increased oscillations
in the zero-direction angle of the rear right fin, which primarily con-
tributes to depth adjustments, as illustrated in Fig. 8. In contrast, the
SM controller demonstrates reduced oscillation in the zero-direction
angle of the rear right fin as shown in 9, resulting in improved tracking
performance in terms of root mean square errors (RMS), as displayed in
Fig. 10. The tracking errors for 𝑥 and 𝑦, reported in Fig. 11, reveal that
the robot lags slightly behind the reference trajectory when tracking
the long side of the ellipse but catches up when tracking the short side.

In Scenario 2 (faulty rear right fin), the tracking performance
slightly deteriorates when using the PID controller, as demonstrated
in Fig. 6. An offset in depth tracking, accompanied by oscillations,
results from the robot’s positive buoyancy and the fins’ inability to
generate adequate heave force without switching configuration, as
depicted in Fig. 8. Conversely, the SM controller facilitates better
tracking performance when the rear right fin is faulty, as exhibited in
Fig. 7. Although depth tracking performance is slightly compromised,
overall trajectory tracking remains satisfactory. The fin zero-directions
are significantly smoother, as shown in Fig. 9.

In Scenario 3 (faulty rear left fin), the tracking performance for all
degrees of freedom declines significantly when using the PID controller,
as displayed in Fig. 6. The rear left fin plays a vital role in adjusting
the heading for a clockwise trajectory, and to compensate, the PID
generates control inputs that lead to oscillatory behavior in the fins’
zero-directions. In contrast, the SM controller offers superior tracking
performance, as depicted in Fig. 7 and demonstrated in Fig. 10. A com-
parison of the tracking errors for 𝑥 and 𝑦 between the two controllers
is shown in Fig. 11, which clearly highlights the superior performance
of the SMC controller.

In Scenario 4 (faulty front left fin), tracking performance is slightly
worse compared to the nominal case when using the PID controller,
as evidenced in Fig. 6. Since the front left fin is primarily responsible
for generating surge force, the only DOF affected by its loss is the
tracking of 𝑥, as shown in Fig. 10. Additionally, Fig. 8 shows that
the rear right fin switches orientation to 𝜋 to compensate for the
required surge force and heading yaw adjustments. The SM controller,
however, ensures excellent depth control tracking and accurate overall
trajectory tracking, as displayed in Fig. 7. The generated zero-directions
are considerably smoother, as illustrated in Fig. 9, leading to better
performance.

In Scenario 5 (faulty front right fin), the PID controller fails to
correctly track the reference trajectory, as shown in Fig. 6. Since the
front right fin plays a significant role in both generating surge force and
adjusting the heading for tracking a clockwise trajectory, the remaining
fins struggle to properly compensate for this loss with the PID inputs. As
illustrated in Fig. 8, the fin zero-direction of the front left fin constantly
switches signs after the first 50 s, which coincides with making a hard
turn. On the other hand, the SM controller enables improved tracking
performance for all degrees of freedom, as depicted in Fig. 7. The
importance of the front-right fin for tracking this specific trajectory is
also noticeable, although the SM controller handles it better than the
PID.

Overall, the proposed FTC scheme with the SM controller provides
satisfactory tracking performance in the presence of fin failures. The
results demonstrate that the robot can follow the reference trajectory
using only the three highly-coupled healthy fins, without the need for
adjusting the controller gains.

These results also indicate the effectiveness of the proposed FTC
scheme in handling actuation failures, even in the worst-case scenario
for tracking the studied reference trajectory. This is particularly im-
portant for a symmetrical robot with a symmetrical design, as the
worst-case scenario can be deduced based on the type of reference tra-
jectory. This information can be utilized to design high-level controllers
that adapt the reference trajectory and bypass worst-case scenarios.

5. Conclusion and future works

In conclusion, this paper has addressed the problem of fault-tolerant
control for a highly coupled fin-actuated AUV. We have proposed an
active fault-tolerant control scheme that utilizes a control allocation
switching mechanism to properly allocate controller forces to healthy
fins in the event of a fault. The effectiveness of the proposed method
was evaluated through experimental studies involving trajectory track-
ing tasks using two different control laws: PID and sliding mode control.
The results indicate that the use of a robust controller, such as sliding
mode control, in conjunction with the proposed fault-tolerant control
scheme, allows for superior handling of faulty cases compared to
conventional PID control.

While the main focus of our work is on the fault-tolerant control
allocation strategy, which is independent of specific disturbances such
as sea currents, we acknowledge that the influence of sea currents can
be an important factor in real-world applications. Although our exper-
iments do not specifically address the impact of external disturbances
such as sea currents, our analysis provides insights into the performance
and effectiveness of the proposed control strategy under actuator failure
scenarios. As part of future work, we plan to evaluate the performance
of the proposed control strategy in environments with sea currents,
which will help to further validate the robustness and applicability of
our approach.

We also plan to extend the proposed method to more complex cases,
allowing for additional degrees of freedom control. This would enable
more comprehensive and precise trajectory tracking under demanding
conditions. Moreover, we plan to address the challenges associated with
handling multiple actuation faults simultaneously, developing adaptive
fault-tolerant strategies that can cope with various fault scenarios. This
would further enhance the reliability and performance of fin-actuated
AUVs, ensuring their safe and efficient operation in the presence of
faults.
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Control Allocation for 6-DOF Control of a Highly
Manoeuvrable Under-actuated Bio-inspired AUV

Walid Remmas∗, Christian Meurer∗, Ahmed Chemori, Senior Member, IEEE, Maarja Kruusmaa

Abstract—Fin-driven autonomous underwater vehicles (AUVs)
are distinguished by their ability to use fins for both thrust
generation and vectoring, promising enhanced maneuverability
while reducing the required actuators for six degrees of freedom
(6-DOF) control. However, these dual-purpose fins pose complex
challenges, demanding novel solutions. This study proposes a
novel analytic control allocation method for under-actuated fin-
actuated AUVs to achieve precise 6-DOF control. By integrating
a state-of-the-art adaptive hybrid feedback controller with the
proposed control allocation method, we enable an AUV with
only four actuators to perform accurate and efficient 6-DOF
trajectory tracking. This research includes extensive simulations
and real-world experiments, allowing for thorough validation
of the proposed method. In 6-DOF tracking simulations, the
proposed control allocation method significantly outperformed
state-of-the-art control allocation techniques, exhibiting superior
performance, energy efficiency, and computational efficiency. The
robustness and efficacy of the proposed methods were further
confirmed in real-world pool experiments following complex
3D trajectories. Overall, the results from this study reveal
potential for the proposed autonomy framework in enhancing the
capabilities of under-actuated fin-actuated AUVs. By offering a
compelling balance between high performance, energy efficiency,
and computational efficiency, our method paves the way for
more effective and versatile 6DOF tracking for under-actuated
underwater robots.

Index Terms—Fin-actuated robot, 6-DOF control, AUV, Con-
trol allocation, Underactuated.

I. INTRODUCTION

There is a growing demand for scalable and versatile long-
term monitoring systems as the importance of monitoring
human induced changes in underwater ecosystems becomes
increasingly relevant. Existing underwater monitoring systems
often have static locations, providing dense temporal coverage
but limited spatial coverage. To address this limitation, mobile
monitoring platforms are being sought after as a solution.
These platforms offer the potential for spatiotemporal density
in observations, which is particularly valuable for monitoring
complex and dynamic coastal underwater environments.

To be scalable and cost efficient, mobile monitoring sys-
tems should ideally operate autonomously, leading to an
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increased interest in and use of autonomous underwater vehi-
cles (AUVs). To autonomously fulfill higher level monitoring
goals in complex environments, AUVs need to be capable of
tracking trajectories in 3D space, requiring motion in several
degrees of freedom (DOF) to be controlled simultaneously.
Environmental conditions underwater are inherently dynamic
and require therefore robust control strategies for trajectory
tracking. Additionally, enabling such systems for large scale
monitoring requires energy efficient solutions in terms of
hardware and software. Classically, energy efficiency and the
control of a maximum amount of DOF for agile motion require
a trade-off between the number of employed actuators and the
energy demand for such actuation. Another important aspect
for long-term monitoring is its impact on the environment to be
monitored, especially in regions which are dense with flora and
fauna. Classic actuation relies on propellers, which can have a
significant impact on the environment due to their mechanics
and acoustics.

Designs drawing from bio-inspiration have shown promising
results aiming towards minimally invasive actuation. Espe-
cially soft fin based actuator designs have been investigated
for monitoring tasks that require a reduced impact on the envi-
ronment, such as marine archaeology [1], in-situ observations
of marine fauna [2], [3], and in monitoring scenarios where
the seafloor interface should not be disturbed [4].

A lot of focus has been aimed at the development and testing
of fish-like bio-inspired robots [5], [6], [2], which usually
employ a caudal fin driven by an oscillatory rigid or flexible
tail, which is oriented along the main body axes. Despite many
proofs of concept, the resulting designs have not yet shown
their efficacy in field applications, as their control remains
very challenging. Additionally, fish-like robot designs are quite
limited in their payload capacity, as a significant portion of the
robot is allocated for the propulsion system. In contrast to that,
"turtle-like" actuation designs, which employ four or more fins
as flippers laterally adjacent to a rigid main hull [7], [8], [9],
have shown the potential to create a highly agile system with
a sufficient amount of space for scientific and observational
payload.

Additionally, bio-inspired actuator designs can also some-
what alleviate the trade-off between agility and the necessary
number of actuators. Generally, at least one actuator is used for
each DOF to be controlled. If this is the case, the robot is said
to be fully actuated in a mechanical sense, while more than one
actuator per DOF would create an over-actuated system. While
sufficient work exists to enable under-actuated robots to track
trajectories in more DOF than they are actuated in, this has not
been shown so far for full 6-DOF trajectory tracking. Herein
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lies a great potential for bio-inspired actuator designs that
can be explored. For instance, the AUV underwater curious
archaeology turtle (U-CAT) [9] only employs four actuators
while being able to actively track all 6-DOF (see Fig. 3).
As opposed to thruster driven vehicles, which have constant
thrust vectors for each actuator or require additional actuators
to change the thrust vector, bio-inspired designs like U-CAT
can change their thrust vector freely with the same actuator.
This can significantly reduce the required energy for actuation,
compared to a standard fully actuated underwater vehicle.

However, the decrease in actuators comes at the expense of
increased control complexity, as change in thrust vector and
thrust production in a specific direction are tightly coupled and
every change of thrust vector will create disturbances. Thus the
full potential of such vehicles has not been fully utilized yet.
They have been either manually controlled [2], [3] or only few
DOF were actively controlled simultaneously [10], [11]. To
fully leverage the potential of fin based vehicles for agile 3D
motion tracking, it is thus necessary to improve their control
architecture. Specifically, state-of-the-art 6-DOF control needs
to be combined with efficient and reliable control allocation,
which takes the specific actuator dynamics into account.

To address these challenges, we have developed and tested
a novel control framework specifically designed for fin-based
AUVs, with a particular focus on turtle-like configurations.
Leveraging state-of-the-art control algorithms [12] and a
highly efficient analytic control allocation method, our control
framework enables, to the best of our knowledge, for the first
time the full potential of fin based AUVs to simultaneously
control all 6-DOF for trajectory tracking in 3D space using
only four actuators.

II. PROBLEM FORMULATION AND RELATED WORK

Turtle-like fin driven vehicles have mostly been controlled
manually or without feedback. A special focus was aimed
at open loop gait generation [13], [14], [15], [16], [17]
specifically focusing on gait generation using central pattern
generators (CPGs) [14], [15], [16]. In terms of feedback based
control, Geder et al. present a model-free control framework
for either heading or depth control [11], and in [10] attitude
control for different turning maneuvers is developed. Another
model-free controller for the angular rate is used by Siegen-
thaler et al. to stabilize forward swimming [8]. All those
solutions concentrate on one single DOF at a time, using
simple model free control frameworks which are neither robust
nor provably stable. Chemori et al. [18] investigated depth
control for the U-CAT AUV, comparing a model-free RISE
controller [19] to a standard PID control and showed that
the RISE controller had a better performance in the tested
scenario. This approach is still concentrating on a single DOF,
but employs a robust controller, shown to be effective under
external disturbances.

The control frameworks described so far have been em-
ployed for set point regulation, which indicates that path
following and trajectory tracking, inherently necessary for
monitoring tasks, are still understudied for the considered
AUV types. In [20] and [21] modeling and model based

control of the Aqua AUV are presented for trajectory tracking
control, but again only in single DOF at a time. Multi DOF
control for attitude and heave of the Auqa AUV is presented
by Giguere et al. [22]. They employed PID and PI controllers,
where problems with control range and DOF coupling are
avoided using gain scheduling. The approach resulted in ade-
quate trajectory tracking, but required 45 control parameters to
be tuned. Salumäe et el. [23] proposed a framework for the U-
CAT AUV, which enabled motion in several DOF (surge, yaw,
heave) simultaneously. However, only heave and yaw were
controlled via feedback, while surge remained an open loop
control. The authors used a model based approach, termed
inverse dynamics (ID), which utilized feedback linerization
with acceleration feedforward [24]. The proposed ID controller
was shown to outperform a standard PID controller especially
during scenarios which included external disturbances. Com-
plexities and internal disturbances due to motion coupling
were resolved by a DOF prioritization, which effectively
decoupled surge from heave motions. However, this meant that
heave and surge trajectories were not followed simultaneously.

While the approaches presented so far achieved satisfying
results in the tested scenarios, they do not fully exploit the
agility and versatility inherent in the fin based actuation.
Additionally, experimental work by Smallwood and Whitcomb
[25] convincingly concludes that adaptive model based con-
trol approaches should be favored over fixed model based
controllers. Adaptive model based control for simultaneous
tracking of 6-DOF has been thoroughly investigated and
successfully implemented for standard AUVs using propeller
based actuation [26], [27], [28].

However, the most common orientation representation for
such frameworks relies on Euler angles, which contain sin-
gularities. To derive a control framework which is prov-
ably globally stable an efficient singularity free orientation
parametrization is needed. Unit quaternions can be used to
represent 3D orientation in an efficient and singularity free
manner. Quaternion based controllers have been shown to be
effective for orientation control [29], [30]. Nevertheless, global
asymptotic stabilization can not be achieved with classical
continuous-time state feedback [31]. Fjellstad and Fossen
[32] introduced various discontinuous feedbacks to address
the problem. However, as shown in [33] this can introduce
instability to the control system. To overcome this, a hybrid
feedback with a well defined switching logic can be used
[34]. A hybrid adaptive control approach has been theoretically
and experimentally shown to be effective for surface and
underwater vehicle control by Basso et al. [12]. In their work a
BlueROV2 (BlueRobotics) in heavy configuration was used to
test the control framework. The vehicle employed 8 thrusters
to follow trajectories in surge, sway, heave and yaw, while
regulating roll and pitch to zero.

We use the hybrid adaptive control framework developed
by Basso et al. [12] and test it for two control tasks: 1)
full 6-DOF trajectory tracking, and 2) trajectory tracking for
surge, sway, heave and yaw, while roll and pitch are to be
regulated to zero. In contrast to [12] we also assume that no
sway forces are available for the second control task. To that
end, we incorporated a line-of-sight-based computation of yaw
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trajectories into the trajectory generation process. The line-
of-sight based yaw trajectory was designed to enable sway
trajectory tracking even if insufficient or no forces could
be generated in the sway DOF, which is a common issue
for under-actuated underwater vehicles or can be induced
by actuator faults. This makes the control framework more
robust and durable. Additionally, the available actuators to
realize the control commands are in our work reduced from
8 propeller driven thrusters to 4 oscillating fins requiring a
different approach to control allocation.

Unlike traditional AUVs, which are typically designed to
be either fully actuated or over-actuated, fin-actuated vehicles
offer a unique advantage; they can utilize the fins not only
for thrust generation but also for thrust vectoring, allowing
for motion control in multiple DOF with fewer actuators.
However, this advantage comes with complex challenges due
to the need for precise control of both thrust magnitude and
direction using the limited number of fin actuators. Effec-
tively managing these challenges requires the development of
specialized control allocation methods tailored to the unique
characteristics of fin-actuated vehicles.

While several studies have addressed the control allocation
problem for motion control in AUVs [35], these investiga-
tions have predominantly focused on propeller-based actuation
systems. These studies have proposed various methodologies,
such as direct control allocation [36], [37], daisy chaining [38],
[39], and real-time optimization using constrained linear or
quadratic programming [40], [41], [42], [43]. Additionally, re-
cent advancements in AUV designs with tiltable thrusters have
explored control allocation techniques to manage actuation
redundancy [44], [45]. For instance, research has demonstrated
the efficacy of pseudo-inverse control allocation methods with
predefined tilting angles for stable hovering performance in
propeller-based AUVs [44]. Decomposing the nonlinear force
input term of tilting thrusters into horizontal and vertical
directions, along with the utilization of pseudo-inverse and
null-space solutions, has proven effective in minimizing thrust
force [45].

However, it is important to acknowledge that control alloca-
tion methods developed for propeller-based actuation systems
may not be directly applicable to fin-actuated vehicles. Unlike
fixed thrusters, fins require rotation to change the direction of
thrust, leading to delays and disturbances in control response.
While tiltable thrusters need a similar amount of rotation,
they do not create the same amount of disturbances due to
the difference in geometry compared to fins, which create
a significant amount of drag when rotated. Additionally,
tiltable thrusters can theoretically produce thrust throughout
the rotation, while thrust generation is halted during rotation
for fin based actuation. These characteristics of fin actuation
necessitate the development of tailored control allocation ap-
proaches that account for the specific characteristics of fin-
actuated vehicles. We thus hypothesize, that a minimization
of necessary fin rotations and a smart choice of the number of
actuators contributing to each DOF are crucial for successful
trajectory tracking.

Based on this hypothesis, we introduce an innovative control
allocation method, enabling an under-actuated fin-actuated

Fig. 1: Illustration of the earth fixed frame Rn (NED
convention) and the body fixed frame Rb defined for the

U-CAT AUV.

AUV with only four actuators to achieve 6-DOF trajectory
tracking. We comprehensively evaluate the performance of
our proposed framework through extensive Monte Carlo sim-
ulations, assessing its effectiveness in full 6-DOF trajectory
tracking, including pitch and roll trajectories. Additionally, we
experimentally validate our approach, demonstrating success-
ful tracking in surge, heave, and yaw, as well as roll and pitch
stabilization, using a bio-inspired turtle-like AUV equipped
with only four actuators.

III. PRELIMINARIES

A. Unit quaternion arithmetic

Quaternions are an efficient orientation representation for
movements in 6-DOFs [46]. More specifically, unit quater-
nions q ∈ S3, having the property ∥q∥ = 1 are used. They
can be represented as a vector q = (µ,ε) constituting the
quaternion’s scalar µ ∈ R and vector ε ∈ R3 parts. Note that
we will follow the Hamiltonian notation for quaternions in
this paper. We define the inverse of a unit quaternion as it’s
complex conjugate:

q−1 = q̄ =

[
µ
−ε

]
∈ S3 (1)

and the unit quaternion’s identity as:

1q =

[
1

03×1

]
∈ S3 (2)

Furthermore, we can define quaternion multiplication as:

q1 ⊙q2 =

[
µ1µ2 − εT

1 ε2
µ1ε2 +[ε1]×ε2

]
(3)

where [·]× ∈ R3×3, denotes the skew symmetric matrix
representation

B. Kinematic and Dynamics modelling

The position of an underwater vehicle in the three dimen-
sional space can be uniquely defined by a vector p ∈ R3

describing the origin of the body fixed frame with respect to
a fixed inertial frame. The attitude of an underwater vehicle
in three dimensional space can be represented by a rotation
matrix R ∈ SO(3) mapping the axes of the body fixed frame
onto those of the inertial frame. The vehicles kinematics can



4

then be written by, using the linear v ∈R3 and angular w ∈R3

velocities expressed in body fixed frame, in the following
form:

ṗ = Rv

Ṙ = R[w]×
(4)

For efficient and intuitive representation the rotation matrix
can be represented by various three-parameter parametriza-
tions such as Tate-Brian or Euler angles [26]. However,
none of those parametrizations is globally non-singular, which
makes them less conducive for use of 6-DOF vehicle control.
An alternative solution is the use of the unit quaternion
[32]. The map from a unit quaternion to a rotation matrix
R(q) : S3 → SO(3) is described by:

R(q) := I3 +2µ[ε]×+2[ε]2× (5)

Based on the definition in (3) R is a group homorphism
satisfying:

R(q1)R(q2) = R(q1 ⊙q2) (6)

and additionally R−1(q) =RT (q) =R(q−1), as well as R(1q) =
R(−1q) = I3

Subsequently, the kinematic equations can be rewritten as:

ṗ = R(q)v

q̇ =
1
2

q⊙χ(w) = T (q)w
(7)

with χ : R3 → R4 defined as:

χ(w) =
[

0
w

]
(8)

and T (q) as:

T (q) =
1
2

[
−εT

µI3 +[ε]×

]
(9)

The 6-DOF kino-dynamic model, expressed in body frame,
can then be formulated following Fossen’s vectorial notation
[24] as:

Mν̇ +C(ν)ν +D(ν)ν +g(q) = τ
η̇ = J(q)ν

(10)

Where η = [p,q]T ∈ R7,ν = [v,w]T ∈ R6 represent the
vectors of the vehicle poses in the earth-fixed frame Rn and
the velocities in the body-fixed frame Rb respectively. The
Jacobian J(q) combines the linear and angular kinematic
mappings in the following way:

J(q) =
[

R(q) 03x3
04×3 T (q)

]
(11)

with it’s pseudoinverse:

J(q)† =

[
R(q)T 03x4
03×3 4T (q)T

]
(12)

Note that the map defined by (5) is not injective, as it
maps two opposite points on S3 to the same element in
SO(3), therefore the set of unit quaternions corresponding to
R(q) = I3 is q = ±1q. This creates problems in the control
design, as it needs to be decided to regulate the quaternion
based orientation either to 1q or −1q. This leads, if not

considered properly to the so called unwinding phenomenon
[31]. A commonly employed solution to this problem is the
use of discontinuous feedback as shown in [32]. However,
as shown in [33] this can introduce instability to the control
system. Sanefelice et. al [47] have theoretically and practically
shown, that a discrete memory-based switching mechanism
can be used to decide to which identity unit quaternion the
control framework should regulate. This however, transforms
the continuous time system (10) into a hybrid system.

C. Hybrid Systems

To facilitate the benefits of the quaternion switching mech-
anism we need to employ a hybrid system framework, where
continuous and discrete evolution of the system can occur.
Let x ∈ Rn be the state of a hybrid system H ( f ,G,C,D),
where the continuous evolution of the states is defined by
the flow map f : Rn → R acting as ẋ = f (x). In contrast, the
discrete evolution of the states is defined by the jump map
G : Rn → Rn acting as x+ = G(x). Furthermore, the two sets
C ⊂ Rn and D ⊂ Rn indicate where continuous and discrete
state evolution is possible respectively. Combining the given
structures provides the hybrid system:

H =

{
ẋ = f (x) x ∈C
x+ = G(x) x ∈ D

(13)

Robust stability theory is available for such systems, relying
on the notion of a solution to a hybrid system and requiring
some regularity conditions. The reader is referred to [48] for
an extensive treatment of this matter. For this paper it suffices
to introduce the notation given above, as we are implementing
the control structure shown in [12] and can thus rely on the
stability proofs given therein.

IV. AUTONOMY FRAMEWORK

The autonomy presented in this paper can be separated
into three main tasks: planning, control and state estimation.
Those tasks are in turn realized by various autonomy modules
as shown in Fig. 2. In our use-case, the planning module
will focus on creating analytic reference trajectories in all
6-DOF. Relevant parameters, such as footprint and desired
velocity, are defined by user input. To enable the robot to
follow the given trajectories, the control module employs a
state-of-the-art hybrid adaptive 6-DOF tracking controller [12].
A novel control allocation framework is then employed to
accurately and efficiently distribute the desired control action
among the given actuators and transform desired forces into fin
kinematics. Additionally, we use two state-of-the-art control
allocation methods to compare to our proposed solution. On
the actuator level, the desired fin kinematics are tracked by a
standard PID controller for each actuator. The resulting vehicle
motion is then estimated in the state estimation module, which
is based on an Extended Kalman Filter (EKF). The EKF
makes use of a simplified kinematic motion model, aided
by orientation estimates and visual feedback from fiducial
markers detected by a camera. Each of the autonomy modules
will be described in detail in the following sections. This
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Fig. 2: Proposed autonomy architecture consisting of: 1) trajectory generation module in blue, 2) control module including
hybrid adaptive 6-DOF controller and control allocation in red, 3) state estimation module with sensors and EKF in green.

description is prefaced with a short introduction to the U-CAT
AUV as it serves as the experimental and simulated platform
on which the autonomy framework with the hybrid adaptive
controller and novel control allocation are tested.

A. Brief introduction of U-CAT

U-CAT (shown in Fig. 1) is an autonomous biomimetic
underwater robot developed within the European Union 7th

Framework project ARROWS [9] (Archaeological Robot Sys-
tems for the World Seas). As opposed to other bio-inspired
underwater vehicles, the four-finned design of this vehicle
allows it to actively control all 6-DOF. The four motors
actuating the fins are oriented as illustrated in Fig. 1. This
configuration allows the robot in theory to be holonomic.
The fins were designed to point outwards to have more force
generated in surge direction, as control in sway direction is
only used for slow and precise movements within confined
spaces. The four independently driven flippers are used to
achieve a high maneuverability in 6-DOF. Further technical
specifications about U-CAT are detailed in [49].

B. Trajectory generation

To test our proposed control framework we use two distinct
trajectory tracking scenarios, full 6-DOF trajectory tracking
(6T) and 3-DOF trajectory tracking (surge, heave, yaw) with
roll and pitch stabilization (3T2S). In the 6T scenario we
assumed that the robot can generate forces in all 6-DOF,
while in the 3T2S scenario we assumed, that actuation in the
sway direction is not efficient enough to be meaningful. The
lack of available sway force makes the system non-holonomic
and we implemented a look-ahead modification based on the
respective state of the robot to generate a yaw trajectory, which
ensured that the robot could still follow the desired trajectories
without the need for sway forces. Within those two scenarios
two types of looped analytic trajectories were tested. One
trajectory is ellipsoidal, whereas the other one describes a
Lissajous infinity figure.

In the 6T scenario for both trajectory types the roll trajectory
prescribes a motion at a constant angular velocity, while the
pitch trajectory points the surge axis of the robot along the
generated positional trajectory in the vertical plane. In contrast,
in the 3T2S scenario roll and pitch are to be stabilized at
zero. The analytic description for both trajectory types in the
two scenarios can be seen in Table I. In the given equations,
Ax,y,z describe the amplitudes of the looped trajectories in
surge, sway and heave. The angular frequencies ωx,y,z correlate
with the desired velocities along the linear DOF, while p0 =
[x0,y0,z0]

T describes the starting position of the trajectory. For
the roll DOF cφ describes the roll coefficient, which specifies
the desired roll velocity. Furthermore, the look-ahead time t∗

and δ pp(t, t∗) = pp(t + t∗)− pp(t) with pp = [yp,yp,zp]
T are

used to define yaw and pitch trajectories that point the robot’s
orientation along the positional trajectories in the horizontal
and vertical plane respectively.

The analytic trajectories ηp = [xp,yp,zp,φp,θp,ψp]
T are

then filtered through a pair of second order ordinary differ-
ential equations (ODEs) producing desired positions ηd =
[xd ,yd ,zd ,ψd ]

T , velocities η̇d = [ẋd , ẏd , żd , ψ̇d ]
T and acceler-

ations η̈d = [ẍd , ÿd , z̈d , ψ̈d ]
T .

η̈d1 +2γ1η̇d1 = γ2
1 (ηd1 −ηp) (14)

η̈d +2γ2η̇d = γ2
2 (ηd −ηd1) (15)

The ODE filters are implemented to guarantee the gen-
eration of smooth, continuous, and feasible velocities and
accelerations, even in the presence of non-linearity, potentially
induced by the lookahead components in yaw and pitch,
in the desired set-points. The parameters γ1 and γ2 have
been selected manually to guarantee feasible accelerations
by the robot. A double Euler integration is then performed
to get the desired states ηd , η̇d and η̈d . To conform with
the 6-DOF tracking control framework the desired orientation
represented by the Euler angles [φd ,θd ,ψd ]

T as well as their
derivatives [φ̇d , θ̇d , ψ̇d ]

T and [φ̈d , θ̈d , ψ̈d ]
T are transformed into

unit quaternions [24].
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Fig. 3: Illustration of the different fin configurations for controlling the U-CAT robot in each degree of freedom, using either
two or four fins. The fins responsible for actuation in each configuration are marked with a red dot.

TABLE I: Ellipsoid and Lissajous trajectory functions for 6T and 3T2S scenarios.

DOF Scenario 6T Scenario 3T2S

Ellipsoid

xp(t) Ax(−cos(ωxt)+1)+ x0

yp(t) Ay(sin(ωyt))+ y0

zp(t) Az(−cos(ωzt)+1)+ z0

φp(t) cφ t 0

θp(t) π
2 − arccos( −δ zp(t,t∗)

||δ pp(t,t∗)|| ) 0

ψp(t) atan2(δyp(t, t∗),δxp(t, t∗)) atan2(yp(t + t∗)− y, xp(t +
t∗)− x)

Lissajous

xp(t) Ax(−cos(lxωxt)+1)+ x0

yp(t) Ay(sin(lyωyt))+ y0

zp(t) Az(−cos(ωzt)+1)+ z0

φp(t) cφ t 0

θp(t) π
2 − arccos( −δ zp(t,ζ )

||δ pp(t,ζ )|| ) 0

ψp(t) atan2(δyp(t, t∗),δxp(t, t∗)) atan2(δyp(t + t∗),δxp(t + t∗))

C. Trajectory tracking controller

To show the efficacy of the proposed control allocation
schemes and the autonomy framework we set up the control
problem as trajectory tracking of 6-DOF.

1) Error System and Control Problem: Given a desired
pose ηd = (pd ,qd), velocity η̇d and acceleration η̈d , as well
as the instantaneous pose η = (p,q) and velocity ν we can
then define the configuration error as:

ηe =

(
pe
qe

)
=

(
R(qd)

−1(pd − p)
q−1

d ⊙q

)
(16)

and the velocity error as:

νe = ν − J(qd)
†η̇d (17)

where νr = J(qd)
†η̇d can be seen as the desired velocity in

the inertial frame η̇d expressed in the vehicle frame. Based
on the assumption of slow movement we can define the time
derivative of νr as:

ν̇r = J†(qd)η̈d (18)

The error dynamics then become:

N :

{
ġe = ge[νe]×
ν̇e = fe(ηe,νe, η̈d)

(19)

where

fe(ηe,νe, η̈d) := M−1(τ −C(ν)ν +D(ν)ν +g(q))− J†(qd)η̈d
(20)

Now the control problem can be formulated in the following
way [12]: For a given reference trajectory (ηd , η̇d , η̈d), design
a hybrid feedback control law with output τdes ∈R6 such that
every solution to N is bounded and converges to the compact
set

B = {(ηe,νe) : ηe ∈ {pe = 0, qe =±1q},ve = 0} (21)

2) Hybrid Adaptive Controller: We employ an adaptive
hybrid feedback control law to solve the control problem. The
control law is functionally equivalent with the one presented
in Basso et al. [12] with slight differences in notation. Thus,
we only briefly describe the used controller. For an in-depth
analysis and stability proof the interested reader is referred
to [12] and references therein. The control law will consist
of an adaptive part based on Lyapunov design to estimate
the system dynamics [50], of a potential function, also based
on Lyapunov stability design, which includes a hysteretic
switching mechanism [33], and of a proportional feedback
part acting on a reference velocity error [12]. All parts are
encoded by the flow and jump sets and the jump map of the
resulting control system, which is essentially equivalent to a
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PD+ control law [51] augmented by the histeretic switching
mechanism, which leads to a hybrid control structure. To
construct the hybrid adaptive controller we first introduce a
modified reference velocity νm ∈ R6 and the corresponding
reference velocity error ζν = νm −νr, to ensure convergence
to the set B. The reference velocity error is characterized by
the differential equation:

Λζ̇ν =−dVq(ηe)−diag(Kd)ζν (22)

Where Kd ∈R6 is a vector of strictly positive control gains,
Λ ∈ R6×6 is a diagonal matrix of strictly positive gains and
Vq(ηe) is potential function based on Lyapunov design [33]:

Vq(ηe) = 2k(1−hµe)+
1
2

pT
e diag(Kp)pe (23)

with k > 0 and Kp ∈ R3 are strictly positive control gains.
Furthermore, µe describes the real part of the quaternion error
qe and h is the hysteretic switching variable. Given the set
Q := {−1,1} and by defining the hysteresis half-width ς ∈
(0,1) we can define the flow and jump sets of the controller
by:

C := {(ηe,h) ∈ R3 ×S3 ×Q : hµe ≥−ς} (24)

D := {(ηe,h) ∈ R3 ×S3 ×Q : hµe ≤−ς} (25)

and the jump map is subsequently defined by:

G(h) =−h (26)

Using (22) the velocity error can now be redefined as:

δ = ν −νm = νe −ζν (27)

which reverts to δ = νe for ζν = 0. Therefore, the velocity
tracking objective is achieved for (δ ,ζν) = 0. This error
definition is suggested to be advantageous in cases where the
configuration error encoded by dVq is large while the velocity
error νe is zero [12].

To make the controller adaptive, we assume that there exists
a vector of l unknown model parameters θ ∈Rl and a known
multidimensional function of data Φ : R3 × S3 ×R6 ×R6 →
R6×l so that [26]:

Mν̇m +C(ν)νm +D(ν)νm +g(q) = Φ(ηe,ζ , ζ̇ ,δ ,νr, ν̇r)θ
(28)

The dynamics model (10) can be defined with l = 23
parameters to be estimated, so that the restoring forces can
be described by:

g(q) =
[

−R(q)T e3θ1
−[e3]×R(q)T θ2:4

]
(29)

with e3 = [0,0,1]T . Assuming symmetries in port/starboard
and fore/aft directions and assuming the centre of gravity
coincides with the origin of the body frame except in heave
direction, the inertia matrix can be described by:

M =




θ5 0 0 0 θ11 0
0 θ6 0 −θ11 0 0
0 0 θ7 0 0 0
0 −θ11 0 θ8 0 0

θ11 0 0 0 θ9 0
0 0 0 0 0 θ10




(30)

leading to the following formulation of the matrix for Coriolis
and centripedal forces:

C(ν)=
[

03×3 [θ5:7 ◦ v]×− [w]×[θ11e3]×
[θ5:7 ◦ v]×− [θ11e3]×[w]× [θ8:10 ◦w]

]

(31)
where ◦ denotes the element wise product. The hydrodynamic
damping matrix can be defined by:

D(ν) =−diag(θ11+ j)−diag(θ17+ j)|ν | (32)

with j ∈ {1, . . . ,6}.
Now we define θ̂ ∈R23 to be the estimate of θ and θ̃ = θ̂ −

θ to be the estimation error. By assuming that the parameter
estimation vector θ is constant, i.e ˙̃θ = ˙̂θ we can define a
parameter update law based on Lyapunov design [50]:

˙̂θ =−Γ−1Φ(ηe,ζν , ζ̇ν ,δ ,νr, ν̇r)
T δ (33)

where Γ = diag(γ) ∈ R23×23,γ > 0 is the adaptation gain
matrix.

To ensure that the parameter estimation stays bounded, we
further assume that θ has known lower and upper bounds

¯
θ

and θ̄ . Now we can define the convex set:

Pε := {θ̂ ∈ R23 :
¯
θ − ε ≤ θ̂ ≤ θ̄ + ε}, (34)

where ε ∈ R23 is a vector of strictly positive boundary layer
lengths for each interval consisting of lower and upper bound.
The introduction of the boundary layers is necessary to ensure
smoothness of the parameter estimation. Now we can define
the projection operator Pro j : R23 ×Pε → R23 as [52]:

Pro j( f (), θ̂) :=

{
f () i f f () ∈ TR,[

¯
θ ,θ̄ ](θ̂)

(1−g(θ̂)) f () i f f () /∈ TR,[
¯
θ ,θ̄ ](θ̂)

(35)

where g(θ̂) is defined by:

g(θ̂) =





0 i f θ̂ ∈ (
¯
θ , θ̄)

min{1, ¯
θ−θ̂

ε } i f θ̂ ≤
¯
θ

min{1, θ̂−θ̄
ε } i f θ̂ ≥ θ̄

(36)

and TR,[
¯
θ ,θ̄ ](θ̂) represents the extended tangent cone to each

interval:

TR,[
¯
θ ,θ̄ ](θ̂) :=





[0,∞) i f θ̂ ≤
¯
θ

(−∞,∞) i f θ̂ ∈ (
¯
θ , θ̄)

(−∞,0] i f θ̂ ≥ θ̄
(37)

Finally the adaptive hybrid control law can be defined by
combining (22), (23), (26), (33) and (35):




ζ̇ν = Λ−1(dVq(ηe)+diag(Kd)ζν)

˙̂θ = Pro j(−Γ−1Φ(ηe,ζν , ζ̇ ,δ ,νr, ν̇r)
T δ , θ̂)

}
(ηe,h) ∈C

h+ ∈ G(h) (ηe,h) ∈ D
τdes = Φ(ηe,ζν , ζ̇ν ,δ ,νr, ν̇r)θa −dVq(ηe)−Kdδ

(38)
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D. Control allocation

In this section, we present the control allocation process for
our framework, which involves converting the desired control
inputs into appropriate commands for the fin actuators. We
begin by introducing the forward model of control allocation,
which serves as the basis for our analysis.

Next, we discuss three different solutions to the control
allocation problem (inverse models). The first solution is a
naive pseudo-inverse approach, which provides a straightfor-
ward but less optimal allocation strategy. The second solution
is an optimization-based approach, which aims to find an
optimal distribution of control efforts using quadratic program-
ming [40]. Finally, we introduce our proposed novel control
allocation which minimises the change of fin rotations. We
hypothesize that this minimization should lead to significantly
less delays and minimal disturbances in control response.

We then present a model that enables the conversion of
desired fin forces into oscillation amplitudes. This model
takes into account the specific parameters of the fin actuators,
allowing for precise control allocation.

Additionally, we incorporate a CPG algorithm, which plays
a crucial role in smoothly driving the fin actuators. The CPG
algorithm generates rhythmic patterns of oscillations, ensuring
coordinated and synchronized movements of the fins.
Forward model:

To produce the wrenches required to control the 6-DOF
body motions, U-CAT’s actuation follows an oscillatory move-
ment described by:

ϕosc(t) = Aosc sin(ωosct +ϕosc
o f f )+φ0 (39)

with the oscillation amplitude Aosc, the oscillation rate ωosc,
the phase offset ϕosc

o f f and the zero direction of the oscillation
φ0.

To simplify the modeling, the instantaneous thrust f th(ϕosc)
produced by each fin can be averaged over one oscillation
period Tosc [53]:

f th(ϕosc) =
1

Tosc

∫ Tosc

0
f th(ϕosc,τ int)dτ int (40)

with τ int being the integration time variable. Given the
averaged thrust of each fin, the control vector that describes the
resulting wrenches in body frame τ = [τx,τy,τz,τΦ,τΘ,τΨ]

T

can be derived by a concatenated frame transformation of the
thrust described as a vector along the ith fin’s zero direction
fthi = [ f th

i,0,0,0,0,0]
T :

τ =
n

∑
m=0

[AdTm,b ] R(φ0,m) fthm (41)

with n being the total number of fins. R(φ0,i) is the two
dimensional rotation matrix for fin i which maps the thrust
produced along φ0,i to horizontal and vertical forces in the
rest frame of the fin.

R(φ0,i) =




cφ0,i 0 sφ0,i
0 1 0 03x3

−sφ0,i 0 cφ0,i

03x3 03x3




(42)

with s∗ .
= sin(∗) and c∗ .

= cos(∗). Furthermore, [AdTi,b ] is
the adjoint representation of the homogeneous transformation
matrix Tf ,b that is used to map wrenches produced in the static
fin frame to the robot’s body frame:

[AdTi,b ] =

[
R(Φ f in

i ) 03x3

[p f in
i ]×R(Φ f in

i ) R(Φ f in
i )

]
(43)

with p f in
i = [x f in

i ,y f in
i ,z f in

i ] being the fin coordinates relative
to the centre of the vehicle and with R(Φi) being the rotation
matrix mapping from fin to body frame based on the orienta-
tion vector of the fin rest frame Φ f in

i = [φ f in
i ,θ f in

i ,ψ f in
i ]T :

R(Φ) =




cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ
sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ
−sθ cθsφ cθcφ




(44)
The fin frames are arranged symmetrically (shown in Fig.

3) such that ψ f in
1 = −ψ f in

2 − π = −ψ f in
3 = ψ f in

4 + π , x f in
1 =

−x f in
2 =−x3 = x f in

4 , and y f in
1 = y f in

2 =−y f in
3 =−y f in

4 . Now by
using (41) and defining ψ f in = |ψ f in

1 |, x f in = x f in
1 and y f in =

y f in
1 we can define the resulting wrenches as a system of six

algebraic equations with the fins’ zero directions φ0,1−4 and
thrusts f th

1−4 as independent variables written in matrix form
AX = B:




1 −1 −1 1 0 0 0 0
−1 −1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 −1 −1
0 0 0 0 −1 1 1 −1
−1 1 −1 1 0 0 0 0







cφ0,1 f th
1

cφ0,2 f th
2

cφ0,3 f th
3

cφ0,4 f th
4

sφ0,1 f th
1

sφ0,2 f th
2

sφ0,3 f th
3

sφ0,4 f th
4




=




τx
cψ fτy
sψ f

τz
τΦ
y fτΘ
x fτΨ
Ma




with Ma = x f in cψ f in − y f in sψ f in.

Inverse model:
Here, we present the three studied control allocation solu-

tions that allows to control the robot in 6-DOF simultaneously.
1) Direct solution: Since the matrix A is of full rank, a

non-unique solution for the system using the Moore-Penrose
inverse exists, hence X = AT (AAT )−1B. Given the aforemen-
tioned symmetric configuration of the i = 1, ...,4 fins, the
solution can be expressed in the following form, where fin
forces and orientations are still coupled:

cφ0,i f th
i =

1
4

(
τx

cψi
+

τy

sψi
+

sign(ψi) τΨ
Ma

)
(45)

sφ0,i f th
i =

1
4

(
τz +

τΦ

yi
− τΘ

xi

)
(46)

By defining the sums of wrenches in (45) and (46) in terms
of horizontal f hor

i and vertical f vert
i contributions respectively

as:
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f hor
i =

τx

cψi
+

τy

sψi
+

sign(ψi) τΨ
Ma

(47)

f ver
i = τz +

τΦ

yi
− τΘ

xi
(48)

and then dividing equation (46) by equation (45), we can
deduce the zero direction φ0,i for each fin as follows:

φ0,i = arctan2
(

f vert
i , f hor

i

)
(49)

The thrust forces required by each fin are then derived by
squaring and adding equations (45) and (46):

f th
i =

1
4

√
( f hor

i )2 +( f vert
i )2 (50)

For this control allocation method, denoted as CAinv, it
is important to note that all four fins need to be actuated
regardless of the controller’s output τdes. This characteristic
can lead to undesired fin rotations, such as all four fins
rotating 180◦ when the surge component changes its sign.
These rotations result in significant disturbances caused by
the fin movements when changing the fin’s orientation.

2) Optimization based solution: An alternative approach to
solve the control allocation problem involves employing near
real-time optimization techniques. In this optimization-based
solution, the constraints presented in in Equation (IV-D) are
reconfigured to relax the trigonometric functions involved as
follows:

min
f th

J = f thT
f th (51)

Subject to:

τx = cψ f

(
Γopt

1 f th
1 −Γopt

2 f th
2 −Γopt

3 f th
3 +Γopt

4 f th
4

)

τy = sψ f

(
−Γopt

1 f th
1 −Γopt

2 fth,2 +Γopt
3 fth,3 +Γopt

4 f th
4

)

τz = Λopt
1 f th

1 +Λopt
2 f th

2 +Λopt
3 f th

3 +Λopt
4 f th

4

τΦ = y f

(
Λopt

1 f th
1 +Λopt

2 f th
2 −Λopt

3 f th
3 −Λopt

4 f th
4

)

τΘ = x f

(
−Λopt

1 f th
1 +Λopt

2 f th
2 +Λopt

3 f th
3 −Λopt

4 f th
4

)

τΨ = Ma

(
−Γopt

1 f th
1 +Γopt

2 f th
2 −Γopt

3 f th
3 +Γopt

4 f th
4

)

1 = Γopt
i2 +Λopt

i2 i = 1 . . .4

−1 ≤ Γopt
i ≤ 1 i = 1 . . .4

−1 ≤ Λopt
i ≤ 1 i = 1 . . .4

0 ≤ f th
i ≤ Fmax i = 1 . . .4

(52)

The objective of the cost function is to minimize the force
exerted. It is worth noting that the optimization process does
not include an additional term to minimize the zero-direction
change, as it was found to be counterproductive and led to
non-convergence of the algorithm.

The optimization problem is solved during runtime to
find the optimal parameters [ f th,Γopt ,Λopt ] using Sequential
Quadratic Programming (SQP) [54]. The initial conditions for

all parameters are set to 0. The zero-directions φ0 are then
computed using the following formula:

φ0,i = atan2(Λopt
i ,Γopt

i ) i = 1 . . .4 (53)

This optimization-based solution for control allocation
presents certain limitations. Firstly, it does not explicitly in-
clude the minimization of zero-direction change in its objective
cost function, which will not guarantee finding the optimal
solution for minimum zero-direction change. Secondly, the use
of an iterative optimization algorithm requires more compu-
tation resources and capabilities to ensure timely execution
within the hardware constraints.

Throughout the rest of the paper, the optimization-based
control allocation method will be referred to as CAopt .

3) Proposed analytic solution: To address the limitations of
the two control allocation methods discussed, namely CAinv
and CAopt , we propose a novel approach that analytically
solves the control allocation problem while considering the
minimization of the zero-direction change.

Taking advantage of the symmetrical configuration of U-
CAT’s fins, we observe that for certain degrees of freedom
such as surge, sway, heave, and yaw, it is possible to only
employ two fins to provide a thrust vector to move in certain
directions, as illustrated in Fig. 3.

In the following we derive the control allocation equations
(49) and (50) as functions of the desired numbers nd of fins
used for the surge, sway, heave and yaw degrees of freedom,
by utilizing Heaviside unit step functions H(·) [55, p. 61]. We
re-define the sums of wrenches from equations (47) and (48)
as:

f hor
i (τ,nd) =

hH(τx,cψi,nd)

cψi
+

hH(τy,sψi,nd)

sψi
+

hH(τΨ,ψi,nd)

Ma
(54)

f vert
i (τ,nd) = hH(τz,−ψi,nd)+

τΦ

yi
− τΘ

xi
(55)

with heav(·) determining the fin usage with Heaviside
functions as:

hH(τ,s,nd) =

{
2 H (sign(s)τ) τ nd = 2
τ nd = 4

(56)

By inserting (54), (55) in (49) and (50) the zero direction
and thrust force for each fin can be described by:

φ0,i = arctan
(

f ver
i (τ,nd)

f hor
i (τ,nd)

)
(57)

f th
i =

1
4

√
f hor
i (τ,nd)2 + f ver

i (τ,nd)2 (58)

The proposed control allocation scheme described above
allows the robot to have more flexibility in terms of movement.

Moreover, we can again exploit the fins symmetrical con-
figuration to minimize the change in zero direction control.
Indeed, when controlling forces and torques around the vertical
plane, then the fins are oriented with angle of ±π

2 according
to equation (57). To avoid the non-linearity in the arctan
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Fig. 4: Illustration of the horizontal force compensation
principle to minimize the fins’ zero-direction change when
controlling vertical forces.

function, we can introduce two opposing horizontal forces that
are naturally compensated, as illustrated in Fig. 4. We add a
term fcomp such that:

f th
i =

1
4

√(
fcomp + f hor

i (τ,nd)
)2

+ f hor
i (τ,nd)2 (59)

with

fcomp = αcomp ∑
j
(1− f norm

j )| f norm
j | (60)

with j = z,Θ,Ψ and f norm
j =

|τ j |
f th

max
. This means that the

compensation is not introduced in two cases: when f norm
j = 0

and when f norm
j = 1. The parameter αcomp is a scalar that

weighs the effect of the the introduced term fc to minimize
the zero-direction change, at the expense of higher oscillation
amplitudes.

The proposed control allocation method will be referred to
as CAprop.

E. Force to amplitude

Once the required thrust f th
i for each fin is computed, it

is converted to a fin-oscillating amplitude using the inverse
model described in [49] as follows:

Aosc
i = arccos

(
− f th

i

2CdρS f (rcωosc)2 +1

)
(61)

where ωosc denotes the angular rate of the fin, ρ is the
water density, rc is the distance between the rotation axis
and the center of gravity of the fin, Cd stands for the drag
coefficient, and S f is the projection area of the fin. The
resulting amplitudes Aosc

i and zero-directions φ0,i are then
filtered using a Central Pattern Generator (CPG) algorithm.

F. CPG algorithm

The CPG is used to ensure smooth and continuous tran-
sitions, which significantly reduces the effect of the non-
modelled fin lateral forces. The equations of the CPG used
in our study are adopted from [56]:

ζ̇CPG
i = ωosc

i (62)

ÄCPG
i = Kamp

(
Kamp

4
(Aosc

i −ACPG
i )− ȦCPG

i

)
(63)

φ̈CPG
0,i = Kzd

(
Kzd

4
(φ0,i −φCPG

0,i )− φ̇CPG
0,i

)
(64)

φCPG
i = φCPG

0,i +ACPG
i cos(ζCPG

i ) (65)

where φCPG
i is the zero-direction angle (in radians) ex-

tracted from the oscillator and ζCPG
i , ACPG

i and φCPG
0,i are

state variables that encode the phase, amplitude and the zero-
direction offset of the oscillations (in radians), respectively.
The parameters ωosc

i , Aosc
i and φ0,i are control parameters

for the desired angular rate, amplitude and offset of the
oscillations generated by the control allocation.

G. State estimation

To provide the control framework with reliable information
about the robot’s state, we are using an EKF as presented in
[57]. Position in the inertial frame p ∈R3 and linear velocities
v ∈ R3 are the states estimated by the filter ξ = [p,v]T ∈ R6.
A kinematic vehicle model assuming constant velocity is used
in the filters prediction. The constant velocity assumption is
justified for slow moving vehicles, and thus applicable in our
scenario. Orientation information is assumed to be an input
to the model. The filter prediction at time step k can be then
described by:

ξ−
k =

[
pk−1 +R(qk)

(
vk−1 t +nk−1

t2

2

)

v+nacc
k−1 t

]
(66)

with nacc ∈ R3 representing zero-mean white Gaussian
acceleration noise. The acceleration noise covariances are
then represented by the system noise covariance matrix Q =
diag(σ2

nacc) ∈ R3×3

and the prediction covariance:

P−
k = AEKF

k Pk−1AEKF
k

T
+W EKF

k QEKFW EKF
k−1

T
(67)

with AEKF and W EKF being Jacobians of (66) with respect
to the filter states and system noises respectively. The predic-
tion is followed by the standard EKF correction step:

Kk = P−
k HT (HP−

k HT +REKF)−1

ξk = ξ−
k +Kk(zk −Hkξ−

k )

Pk = (I −KkHk)P−
k

(68)

using asynchronous measurement updates zk = Hkξk + sk,
which make use of a variable size allocation for the observa-
tion matrix Hk as shown in Palomeras et al. [57] and where sk
is the measurement noise. Additionally, the standard notation
applies with Kk being the Kalman gain and REKF describing
the measurement covariance matrix.
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V. NUMERICAL SIMULATIONS

We employed a simulation framework to provide a practical
and efficient method for evaluating the presented autonomy
framework, with specific focus on controller and control
allocation, using U-CAT as test-platform. The simulation is
purely written in Python for fast deployment, and is based
on Fossen’s vectorial dynamics model (10). Furthermore, a
lift and drag based model is utilized to simulate the forces
produced by the fins. Trajectory generation, control and state
estimation are simulated according to the descriptions shown
in the previous sections. To attain robust and reliable estimates
of the performance of our proposed control allocation solution
in comparison to the presented state of the art solutions
Cprop and Cinv solutions we use Monte Carlo Simulations in
combination with a set of assessment metrics. Those metrics
are used to estimate tracking performance as well as, physical
and computational efficiency. All simulations were run on a
laptop with a 11th generation Intel Core i7-1165G7 processor
and 16 GB RAM, running Ubuntu 20.04.6 LTS.

The following paragraphs detail the structure of simulation
framework, including the models used to simulate the
dynamics of the robot and fins, the Monte Carlo setup
including modeled sensor noise, and the methodology for
tuning the control system’s hyper-parameters.

A. Dynamics simulation

The simulation of U-CAT’s dynamics was performed us-
ing Fossen’s hydrodynamic model presented in (10). The
differential equations derived from this mode were solved
using the 4th order Runge-Kutta algorithm with a step size
of 0.01 s. This approach enabled the accurate representation
of U-CAT’s behaviour in controlled underwater environment,
taking into account the various hydrodynamic parameters, and
the effect of the fins’ oscillations. The relevant parameters
were identified with an approach described in [23].

The dynamic model used to simulate the fins of U-CAT
was based on the rigid paddle model [59]. The validity of this
model was demonstrated and validated in previous research
[58] when simulating the underwater hexapod robot AQUA
[60].

Fin joint

inflow

velocity
normal

velocity

fx

sim

fz

sim

x

z

aoa

Fig. 5: Visualization of forces on ith fin based on simple lift
and drag model (model and figure adopted from [58]).

The fins of U-CAT are simulated to generate horizontal
f sim
x and vertical f sim

z forces relative to the fin’s rest frame,
as depicted in Fig. 5 through the following expressions:

f sim
x = D f sin(β )+L f cos(β )

f sim
z =−L f sin(β )+D f cos(β )

(69)

Where β represents the direction of flow impinging on the
fin, and D f and L f denote the lift and drag forces, respectively.
These forces are defined as:

L f = 0.5ρU2
f S fCLmax sin(2αaoa)

D f = 0.5ρU2
f S fCDmax(1− cos(2αaoa))

(70)

where αaoa is the angle of attack, and U f is the velocity
of the flow impacting the fin. Additionally, CLmax and CDmax
are the maximum lift and drag coefficients of the paddle,
respectively, over the full 360◦ range of the angle of attack.
The coefficients were tuned so that the resulting simulated
thrust output was quantitatively similar to the output from
laboratory experiments shown in [23].

Finally the resulting simulated wrenches in body frame can
be computed by:

τsim =
n

∑
m=0

[AdTm,b ] fsim
m (71)

with fsim = [ f sim
x ,0, f sim

z ,0,0,0]T being the vector of fin forces
in the fin’s rest frame, and [AdTm,b ] defined as in (43). For a
more in-depth discussion of the simulation of fin forces, the
reader is encouraged to consult [58].

B. Monte Carlo Framework

We ran 500 iterations in a Monte Carlo simulation frame-
work for the 3 studied control allocation methods, namely
CAinv, CAopt and CAprop, while keeping the other modules of
the autonomy framework constant. In each run of the Monte
Carlo simulations both a trajectory scenario (6T or 3T2S) and
type (Ellipse or Lissajous) are picked at random. The relevant
parameters for the specific trajectory are uniformly sampled
from a bounded set as shown in Table II. Each trajectory
tracking simulation is run for 400 s. Additionally, to ensure a
more realistic trajectory tracking evaluation, we simulated the
sensor suite shown in Fig. 2, including an IMU for orientation
estimation, a pressure sensor for depth estimation and a camera
based position estimator. For all sensors the true simulated
state of the robot was used as basis and white Gaussian noise
(WGN) with a zero mean was added. The variances for the
WGN additions are chosen to reflect the sensor characteristics
of the real vehicle used in subsequent experiments and are also
shown in Table II. The controller gains provided by the GA
were kept constant for each simulation run. The flowchart in
Fig. 6 describes the full setup of the Monte Carlo simulation
framework.
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TABLE II: Permissible ranges of trajectory generation and
sensor simulation parameters for Monte Carlo Simulations.

Ellipsoidal Lissajous
Trajectory generation

[x0,Ax,ωx] [0.3, 0.5 - 2.5, 0.01 - 0.05]
lx / 0.5 - 2.0

[Ay,ωy] [0.5 - 2.5, 0.01 - 0.05]
ly / 0.5 - 2.0

[Az,ωz,cφ ] [0.1 - 0.5, 0.01 - 0.05, 0.05 - 0.15]
t∗ 0.1

[γ1,γ2] [7.06×1,1.06×1]
Sensor simulation

σWGN
pose [0.002,0.002,0.002,0.0017,0.0017,0.0017]T

State estimation
σQ [0.01,0.01,0.01,0.02,0.02,0.01]T

σR [0.002,0.002,0.002]T

C. Data Analysis

We defined several evaluation metrics, inspired by sugges-
tions of Manhaes et al [61], to characterize the performance
of our proposed control framework. Based on the tracking
error with the orientation error represented by Euler angles
Φηe, j = [pe, j,Φe, j]

T the following evaluation metrics were
defned and used:

• Root Mean Squared Error between desired and estimated
robot trajectory for linear and angular DOF [RMSElin and
RMSEang]

RMSE =

√√√√√√√

N

∑
j=1

ΦηT
e, j

Φηe, j

N
(72)

• Maximum Error Magnitude between desired and es-
timated robot trajectory for linear and angular DOF
[MEMlin and MEMang]

MEM = max
{∥∥Φηe,1

∥∥ ,
∥∥Φηe,2

∥∥ , . . . ,
∥∥Φηe,N

∥∥} (73)

n <= k
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Sample trajectory at

time t
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t = t + dt

t <= t_max

Stop Trajectory

Trackig Simulation

No

Yes State Estimation

(EKF)

Trajectory Tracking

Simulation for t = t_max

Generate Trajectory

Fig. 6: Flowchart for Monte Carlo Simulations.

• Mean Absolute Wrench [MAW]

MAW =
1
N

N

∑
n=1

∥∥∥∥
τsim

n

corrMa

∥∥∥∥ (74)

• Maximum Wrench [MW]

MW = max
{∥∥∥∥

τsim
1

corrMa

∥∥∥∥ ,
∥∥∥∥

τsim
2

corrMa

∥∥∥∥ , . . . ,
∥∥∥∥

τsim
n

corrMa

∥∥∥∥
}

(75)
• Median Computation Time for control allocation [MCT]

MCT = med {dtca
1 ,dtca

2 , . . . ,dtca
N } (76)

• Mean Allocation Error for linear and angular degrees of
freedom [MAElin and MAEang]

MAE =
1
N

N

∑
j=1

∣∣∣τdes
j − τsim

j

∣∣∣ (77)

Here N is defined as the number of data points for a specific
simulation or experimental run. Furthermore, τdes

j describes
the commanded wrench, which is produced by the hybrid
adaptive controller (38), whereas τsim

j describes the wrenches
produced by the simulation of the oscillating fins (71). To
correctly represent the wrench related metrics, the torques in
the simulated wrenches τsim are converted into forces using
the respective moment arms corrMa = [0,0,0,x f in,y f in,Ma]

T .
The time it takes, given τdes

j , for the respective control
allocation algorithm to assign the fin kinematics is described
by dtca

j = tca
0, j − tca

j .
RMSE and MEM describe average and maximum errors

and thus an estimate of tracking performance, while MEM
and MW provide a measure of energy consumption in terms of
physical action demanded by the tested allocation frameworks.
MCT in turn provides a measure of computational energy
demanded by the allocation algorithms. Finally MAE can be
used to evaluate the accuracy of the allocation algorithms
which are tested. All evaluation metrics are computed for each
single simulation run in the Monte Carlo framework and then
the median with interquartile range (IQR) is computed over
all runs, to provide a robust estimate of overall performance.

D. Hyper-parameters tuning

This section describes the hyper-parameters tuning pro-
cess in numerical simulations for all the autonomy modules
described in Section IV. The coefficients γ1 and γ2 of the
trajectory generator were manually adjusted to ensure that the
generated velocities and accelerations fall within the physically
feasible range for the robot. The gain matrix Λ = I6 was
defined in accordance to [12]. The boundaries and boundary
layers for the adaptive model estimation were defined to keep
each variable within a range that is still physically plausible.
To define the starting parameters of the adaptive part of
the controller, model parameters identified in previous work
[23] were taken as guiding values. However, to reflect the
uncertainty in the identification process and to better estimate
the quality of the adaptive part of the controller, parame-
ters provided by model identification [23] were rounded and
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decreased to base values like 10.0, 100.0 or 5.0. Finally,
the adaptation gain matrix Γ was tuned manually based on
simulation results. The numeric values for each parameter can
be found in Table III.

To make the process of tuning the control gains Kp and
Kd less arbitrary and to some extend repeatable, optimal
gains were identified by using a genetic algorithm. For this
automated tuning process we defined a combined reference
trajectory consisting of both, an ellipse type and Lissajous
type trajectory (see Fig 7). The parameters for both trajectory
types were selected to be mean values of the parameter ranges
used in the Monte Carlo simulations (see Table II)). Based
on this reference trajectory, we employed a geneticalgorithm
package [62] to implement the Genetic Algorithm (GA) op-
timization technique for tuning the gains of the controller.
We used the following GA algorithm parameters: a maximum
number of iterations of 50, a population size of 20, a mutation
probability of 0.45, an elitism ratio of 0.01, a crossover
probability of 0.5, a parents portion of 0.25, and a uniform
crossover type.

We defined a cost function ϒ to be minimized such that:

ϒ =

√√√√ 1
N

N

∑
j=1

Φηe, jQGA Φηe, j + τsim
j RGAτsim

j (78)

Where N is the total number of iterations, QGA

and RGA are positive-definite weighting matrices such
that QGA = diag([100,100,100,50,50,50,50]) and RGA =
diag(0.5,0.5,0.5,0.5,0.5,0.5). Finally, the optimization was
constrained by predefined boundaries for Kp and Kd of 0.1 to
50.0.
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Fig. 7: Trajectory used for controller gain tuning with genetic
algorithm. The trajectory is a combination of the ellipsoid and
Lissajous trajectories presented in Table I.

To tune the parameters for the control allocation modules,
we followed the following approach: The CPG parameters
Kamp, Kzd and αcomp were tuned by running simulations
with gains in range [1− 15], [1− 15], [0− 150] respectively,
and assessing the allocation errors AElin and MAEang for
the three studied control allocation methods. Studying the
effect of α was relevant only for the case of the proposed
control allocation method CAprop. The numeric values for the
parameters found are summarized in Table III. Moreover, the
parametric values for the force to amplitude model denoted in
(61) are summarized in Table IV.

Finally, the covariance matrices REKF and QEKF for the
EKF were hand-tuned based on data from simulations and
preliminary experiments.

VI. EXPERIMENTS

A. Experimental Setup

A series of validation experiments were conducted in a
swimming pool to validate the control allocation methods (see
Fig 8). The experimental setup included a fabric grid of size
3 m by 6 m containing 324 ArUco markers [63]. The grid
consisted of 108 markers of size 0.25 m and 216 markers of
size 0.1 m. These markers were used to provide the robot with
position measurements in the Earth-fixed frame Rn using the
onboard Chameleon PointGrey camera. The robot’s EKF is
updated with position measurements from the detected ArUco
markers with a frequency of 10 Hz and with angular states
from the onboard MPU-6050 IMU with a frequency of 100 Hz.

Two different control allocation methods were tested in
these trials: the proposed analytic control allocation (CAprop)
and the state-of-the-art optimization-based control allocation
(CAopt ). The SQP required for the optimization is provided
by the library ALGLIB [64]. The naive control allocation
method (CAinv) was excluded from these experimental trials
due to its demonstrated ineffectiveness for fin-actuated robots,
as evidenced by the simulation results that will be presented
in section VII-A.

The experiments were performed for the 3-degrees-of-
freedom tracking scenario with roll and pitch stabilized
(3T2S), employing two different trajectory types: ellipse and
Lissajous. For each trajectory type and for each of the two
tested control allocation methods, five trials were conducted,
resulting in a total of 20 trials overall. The 6T was not
considered in these experiments due to the potential loss of
ArUco marker-based position feedback when controlling roll
and pitch. Additionally, the distribution of centre of mass
and centre of buoyancy created a passively stabilizing system
which would have disturbed the controller and potentially
exceeded the available control authority.

Many of the metrics used in simulation could not be directly
transferred to the evaluation of the experimental results as
essential parameters such as forces produced by the fins
could not be measured. Therefore, the tracking errors for
each DOF are presented as well as a root mean square
metric for demanded forces/torques for every DOF. Finally,
we provide mean and maximum computation times for the
control allocation.

B. Hyper-parameter tuning in experiments

Starting from the identified values in the simulation, the
controller parameters Kp and Kd were adjusted using a manual
tuning process based on pool trials with CAprop. The same
parameters were then tested directly with the optimization-
based control allocation method. Observations indicated that
the values required no additional adjustments and provided
a satisfactory performance. The controller parameters for
both control allocation methods were therefore defined as
Kp = [1.9,0.1,3.7,1.6] and Kd = [8.5,0.5,8.8,1.16,2.58,3.5].
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TABLE III: Controller and control allocation parameters used in the simulation.

CAprop CAopt CAinv
Kp [3.81,3,39,3.76,3.93] [4.25,3.04,2.794.14] [17.45,4.31,7.41,14.65]
Kd [3.46,4.59,4.41,2.01,3.39,4.68] [2.8,4.0,4.35,1.89,3.43,3.7] [16.02,48.5,8.83,18.35,6.07,42.41]

Kamp 10 5
Kzd 3 2

αcomp 30 -
f th

max 5
Λ [1.0,1.0,1.0,1.0,1.0,1.0,1.0]
Γ [1.023×1]

θstart [04×1,50.03×1,1.03×1,0.1,−5.0,−50.0,−10.0,02×1,−0.5,−10.0,−100.0,−200.0,−1.02x1,−0.1]

¯
θ [−2.0,−1.03×1,06×1,−5.0,−10.0,−50.0,−10.0,−5.02×1,−0.5,−50.0,−500.02×1,−2.0,−5.0,−1.0]
θ̄ [2.0,1.03×1,100.03×1,5.04×1,012×1]
ε̄ [0.14×1,10.03×1,0.53×1,0.1,1.03×1,0.13×1,5.0,10.02×1,0.13×1]
ς 0.1

TABLE IV: Parameters for simulating fin dynamics and force
to amplitude conversion.

ρ (kg/m3) S f (m2) ωosc ( rad
s ) rc (m) Cd CLmax CDmax

997 0.02 4π 0.1 0.24 1.65 3.2

Fig. 8: Experimental setup at Keila swimming pool (Estonia).

The adaptive, control allocation, trajectory generation and
EKF parameters obtained during the simulation tuning process
(summarized in TIII) were kept the same in experiments.

VII. RESULTS AND DISCUSSION

In this section, we present and analyze the results obtained
from the performed simulations and experiments. The first
subsection is dedicated to a thorough comparison of the
available control allocation strategies independently from of
the overarching control framework. Subsequently, we present
and discuss the results of our Monte Carlo simulations of the
whole autonomy framework for two separate trajectory track-
ing scenarios; 6T and 3T2S. Finally, we present and discuss
experimental results of the whole control framework for the
3T2S scenario with two different trajectory types (ellipse and
Lissajous). All trajectory tracking results are discussed in light
of the relevant performance metrics to quantify the various
aspects of the tested solutions. Our goal is to thoroughly
evaluate the performance of the proposed solution and provide
a comprehensive analysis of its strengths and limitations.

A. Control allocation comparative results

The performance of the investigated control allocation
methods was first evaluated in the simulation environment
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Fig. 9: Comparison of the studied control allocation ap-
proaches for tracking a desired control input.

in isolation by establishing a desired 6-DOF wrench vector,
τdes = [0.5,0.5,0.5,0.2,0.2,0.2]T , programmed to switch sign
every 5 seconds, as depicted in Fig. 9. The mean body forces
produced by the fins under the influence of the various control
allocation methods are displayed in Figure 9.

As displayed in Fig. 9, CAprop generates body forces that
align with the desired wrenches τdes without any overshoot.
This can be attributed to the minimization of the zero-direction
change implemented in this method. A slight response delay
can be noted for heave, roll, and pitch. In terms of MAElin
and MAEang, as presented in Table VI, the proposed method
CAprop yields the most effective results.

In contrast, CAopt exhibits a rapid response in the generated
body forces and torques, but with a significant overshoot. This
is mainly due to the lateral fin forces that emerge when the
fins’ zero-direction angles change abruptly, which results in
greater linear MAElin and angular MAEang allocation errors,
compared to the proposed control allocation method CAprop.

Regarding CAinv, the obtained results indicate that this
method is not well-suited for fin-actuated vehicle control.
This is because all fins contribute to wrenches in all DOF,
without considering the change in the zero-direction angle.
Fast or large changes in zero direction then cause a substantial
overshoot in body forces, as evidenced in Figure 9.

These findings highlight the superior performance of the
proposed method CAprop over the other two control allocation
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TABLE V: Numeric values of trajectory parameters used in experiments

x0 Ax ωx Ay ωy Az ωz t∗ γ1 γ2
Ellipsoidal 0.3 1.75 0.06 1.0 0.06 0.2 0.03 0.2 7.0 1.0
Lissajous 0.3 1.5 0.045 0.7 0.045 0.25 0.03 0.2 7.0 1.0

methods in terms of force allocation errors. This superior
performance is due to the fact that CAprop is analytically
designed to minimize the change in zero-direction angle. For
CAopt , even though the change in zero-direction angle is not
considered in the optimization cost function, the optimization
algorithm tends to favor the solution closest to the initial
conditions of the fins’ zero-directions. This results in notably
better performance compared to the pseudo-inverse method
CAinv.

TABLE VI: Comparison of control allocation methods
(CAprop, CAopt , and CAinv) in terms of mean allocation errors
for linear (MAElin) and angular (MAEang) DOF.

CAprop CAopt CAinv

MAElin [N] 0.293 1.369 2.451
MAEang [Nm] 0.206 0.467 2.613

B. Trajectory tracking simulation - 6T Scenario

Table VII summarizes the results for the 6T scenario. For the
majority of evaluation metrics, the proposed method (CAprop)
outperformed the two other methods. It achieved the lowest
RMSE in both linear and angular measures, implying better
tracking performance. The difference in tracking performance
between CAprop and CAinv is very notable, going from small
errors of 4.3 cm and 3.4 deg to significant deviations of 1.15 m
and 103 deg. The simple pseudo-inverse based control allo-
cation is clearly inadequate to provide satisfactory tracking.
CAinv creates too much disturbance during fin rotations, be-
cause all fins are considered for providing propulsion in each
DOF. This is minimized by explicitly choosing the number of
fins to contribute to each DOF and the introduced force com-
pensation in CAprop, leading to significantly better tracking.
In CAopt , the minimization of fin rotations is not explicitly
defined, but seems to be implicitly taken into account.

Furthermore, CAprop demonstrated the smallest median ac-
tuation efforts (MAW, MAElin, MAEang), which suggests more
efficient energy usage compared to the other tested methods.
Again, the differences to CAinv are significant, whereas the
differences to CAopt are close or within the variability of the
reported metrics.

Furthermore, CAprop and CAopt demanded significantly
less forces with better tracking results compared to CAinv.
CAprop had the smallest MAW while CAopt had the smallest
MW, although the differences are very small in both cases.
CAinv, however, had maximum wrench demands that were
well outside of the maximum wrench magnitude of 12.5 N
indicating that actuators were demanded to operate above their
limits.

In terms of computation time for control allocation CAinv
is the fastest, which can be expected as it includes the least
amount of computations. Even though not the fastest, CAprop’s

MCT is significantly less than the CAopt , highlighting the main
advantage of our proposed approach over the optimization
based solution. Especially for resource constraint systems, the
roughly 40 fold decrease in computation time can be very
relevant. Additionally, at high update rates, a median MCT
of 3.33 ms can create a computational bottleneck for systems
using CAopt when other computationally resource heavy al-
gorithms for navigation and planning are to be employed too.
Moreover, the much higher MCT also leads to a significantly
higher effort to compute the controller gains with the GA
significantly increasing run-time and energy consumption.

Generally, the results for CAprop and CAopt show that it is
possible to precisely and efficiently track trajectories in 6-DOF
with only four available actuators, by combining a state-of-the-
art hybrid adaptive controller with smart control allocation.

TABLE VII: Summary statistics for represented by median
(IQR), of defined evaluation metrics for MonteCarlo simula-
tion framework with 500 trials in the 6T scenario. Results are
presented for 3 different control allocation scenarios: CAprop,
CAopt , CAinv.

Summary Statistic CAprop CAopt CAinv

RMSElin [m] 0.04 (0.02) 0.05 (0.01) 1.15 (0.3)
RMSEang [rad] 0.06 (0.003) 0.07 (0.008) 1.83 (0.18)
MEMlin [m] 0.15 (0.01) 0.15 (0.01) 2.4 (0.72)
MEMang [rad] 0.53 (0.04) 0.55 (0.06) 4.42 (0.48)
MAW [N] 1.34 (0.28) 1.69 (0.17) 6.93 (1.02)
MW [N] 4.19 (0.22) 4.34 (0.28) 38.68 (6.52)
MCT [ms] 0.08 (0.002) 3.3 (0.19) 0.07 (0.002)
MAElin [N] 0.48 (0.04) 0.71 (0.03) 5.0 (0.34)
MAEang [Nm] 0.32 (0.03) 0.42 (0.03) 1.37 (0.11)

C. Trajectory tracking simulation - 3T2S Scenario

Table VIII presents the results for the 3T2S scenario.
Similar to the 6T scenario, CAprop and CAopt performed
equally well, while the naive control allocation method CAinv
showed no satisfactory performance with a significantly high
RMSE and inefficient median actuation efforts. Additionally,
the maximum demanded wrenches for CAinv again exceeded
the maximum wrench magnitude of 12.5 N. For CAprop and
CAopt the metrics show no discernible difference between the
two tracking scenarios, indicating that the trajectory based
sway compensation was successful in compensating the lack
of sway forces. The simulation results show, that the employed
trajectory generation, control and control allocation framework
has very promising potential for efficient and precise 3D
trajectory tracking with roll and pitch stabilization for non-
holonomic vehicles with only four actuators.

The results for both tracking scenarios suggest that the pro-
posed CAprop control allocation method offers a compelling
balance between high performance and actuator efficiency,
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with considerable advantages in computational efficiency com-
pared to CAopt . This makes CAprop a promising solution for
both 6T and 3T2S scenarios for fin-actuated underwater robots.

TABLE VIII: Summary statistics, represented by median
(IQR), of defined evaluation metrics for Monte Carlo simula-
tion framework with 500 trials in the 3T2S scenario. Results
are presented for 3 different control allocation scenarios:
CAprop, CAopt , CAinv.

Summary Statistic CAprop CAopt CAinv

RMSElin [m] 0.04 (0.02) 0.05 (0.02) 2.1 (1.21)
RMSEang [rad] 0.06 (0.02) 0.09 (0.05) 1.74 (0.12)
MEMlin [m] 0.13 (0.03) 0.15 (0.05) 4.17 (2.14)
MEMang [rad] 0.34 (0.49) 0.7 (0.67) 3.22 (0.07)
MAW [N] 1.27 (0.24) 1.6 (0.15) 4.87 (2.07)
MW [N] 4.09 (0.12) 3.86 (0.34) 34.35 (6.87)
MCT [ms] 0.08 (0.009) 3.8 (0.55) 0.07 (0.002)
MAElin [N] 0.42 (0.02) 0.63 (0.06) 4.66 (1.12)
MAEang [Nm] 0.34 (0.03) 0.47 (0.04) 1.37 (0.15)

D. Experimental Results

Fig. 10 shows the ellipse trajectory tracking result of one
trial. The results demonstrate that both the proposed and
optimal control allocation solutions provide good tracking
performance for all controlled DOF. Moreover, the line of sight
implementation allowed for the tracking of the non-directly
commanded sway component of the trajectory. While the roll
and pitch components were not actively tracked, the robot’s
passive stability in these DOF maintained their tracking error
close to zero with slight oscillations due to the oscillatory
actuation method.
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Fig. 10: Experimental tracking results for the 3D ellipsoidal
trajectory: In dotted black line is the desired trajectory. In
red line is performed trajectory using the proposed solution
CAprop. In blue line is performed trajectory using the optimal
solution CAopt .

Fig. 11 shows the whisker plot of all 5 runs for the
ellipse trajectory tracking scenario. The results indicate that
the optimal solution CAopt slightly outperformed the proposed
solution CAprop in terms of tracking accuracy. The median
error in tracking the surge component was higher for the pro-
posed solution (33 cm) than for the optimal solution (22 cm).

This was due to the choice of controller gains, which were set
to prevent the robot from overtaking the desired trajectory xd ,
which would have resulted in the robot making a full turn.

Similarly, Fig. 12 shows the Lissajous trajectory tracking
result of one trial, indicating good tracking performance for
all controlled DOF with the non-directly commanded sway
component of the trajectory also being tracked due to the line-
of-sight implementation. The robot’s passive stability in roll
and pitch DOF maintained their tracking error close to 0 with
slight oscillations due to the oscillatory actuation method.
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Fig. 11: Box-plot of tracking errors for the 3D ellipse trajec-
tory.

Fig. 13 provides a box plot of all five runs for the Lissajous
trajectory tracking scenario, showing that both solutions have
good trajectory tracking performance. The largest median error
was observed in tracking the surge component, with CAprop
having a median error of 41 cm and CAopt having a median
error of 25 cm. This can be again attributed to the specific
controller gains employed to avoid the robot from surpassing
the desired trajectory, resulting in the robot making a complete
turn. We note that CAopt gave a slightly better average tracking
performance for all controlled DOF.

Generally, for both trajectories the tracking errors in
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Fig. 12: Experimental tracking results for the 3D Lissajous
trajectory: In dotted black line is the desired trajectory. In red
line is performed trajectory using CAprop solution. In blue line
is performed trajectory using CAopt solution.
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the experiments were significantly higher compared to
the simulation results. This can be explained by several
simplifications and assumptions made for the simulations.
During simulations we did not simulate the low-level motor
control and assumed perfect and instantaneous tracking of
the fin kinematics demanded by the CPG. However, for
the physical vehicle , amplitude and frequency will not be
perfectly tracked by the fin motors and each fin will exhibit
certain time-lags. Additionally, the employed fin model (70)
does not capture complex fluid-body interactions between the
flexible fins and the surrounding water. During simulations
we also did not assume any environmental disturbances.
The experiments, however, were conducted in a public bath
during regular opening hours. While one corner lane was
reserved for the experiments, activity in the neighbouring
lanes could affect the tracking experiments, specifically at
low speeds. This is also a potential explanation for the
superior performance of CAopt compared to CAprop, which
is in contrast to the simulation results. During tests with
CAopt the amount of people in other lanes of the swimming
pool and subsequent disturbances were less compared to tests
with CAprop. While such an effect should be fairly limited,
the differences between the two control allocation algorithms
was between 10 cm to 15 cm and below 1◦ making this a
plausible explanation.

When comparing our RMSEs of maximal 8.5 cm in depth
tracking and 11◦ in yaw tracking to the errors reported by
previous control attempts for U-CAT or similar vehicles,
2.22 cm in depth set point stabilization and 2.91◦ in yaw
tracking [65], 2.28 cm [18] in depth tracking and 1.2 cm ±
5.3 cm again for depth tracking only, our depth and yaw
tracking is slightly less accurate. However, in [18] and [22]
only regulation to a constant depth without any tracking
in other DOF was considered, while in [65] depth was
again only regulated to a set-point and yaw was effectively
decoupled from surge and heave. Taking this into account we
show here a similar performance, while tracking more DOF
than before. This comparison shows that the work presented
here constitutes a significant step forward in terms of utilizing
the agility and full potential of fin driven turtle like AUVs by
expanding the tracked DOF while maintaining a similar level
of accuracy compared to the state-of-the-art.

Given that we implemented the hybrid adaptive controller
from Basso et al. [12], it makes sense to compare to their
experimental results as well. Unfortunately, no numerical
metrics for tracking performance are reported. However, based
on the provided figures it seems that our tracking performance
lies in a similar range, albeit slightly less accurate. When
comparing the setup to Basso et al. [12] it should be noted
that we can show a similar tracking performance with half
the amount of actuators (8 vs 4) on a functionally non-
holonomic system that lacks sway actuation. Additionally, we
used a very rough approximation of the identified dynamics
model [23] to populate the starting values for the adaptive
parameters, whereas in [12] the starting values for the adaptive
parameters where directly derived from an identified dynamics

model. We therefore conclude, that our results show a very
satisfactory performance compared to the state-of-the-art in
terms of control. Furthermore, we see a significant contribution
of our work in the independent and successful replication of
the work presented in [12] on a more complex system in terms
of actuation. Additionally, we extended the applicability of the
controller proposed by Basso et al. to non-holonomic systems.
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Fig. 13: Box-plot of tracking errors for the 3D Lissajous
trajectory.

Fig. 14 shows the box-plot of the root mean square (RMS)
of the generated controller outputs (τdes) for both control
allocation methods. The results indicate that the controller
generated slightly higher forces in the linear directions surge
and heave for CAprop, and slightly lower torque for yaw. This
can be explained by the introduction of the force compensation
term fcomp (60) that minimizes change in zero-direction angle
at the cost of an increase in necessary forces to compensate
for the change in the thrust vector. This confirms a trade-
off between disturbance minimization and energy efficiency
regarding the actuators, which needs to be considered for each
specific application.
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During ellipse trajectory. Right: During Lissajous trajectory.

The computation times for the two control allocation
methods were calculated on the robot’s Jetson TX2 embedded
computer and are compared in Table IX. For the CAprop
method, the mean computation times for both ellipse
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TABLE IX: Computation times for CAprop and CAopt methods

CAprop CAopt
Trajectory type Ellipse Lissajous Ellipse Lissajous
Mean time (ms) 0.0068 0.0067 22.2779 21.0504
Max time (ms) 0.3199 0.1588 3931.6030 1812.4072

and Lissajous trajectories were very similar, approximately
0.0068 ms and 0.0067 ms respectively. The reported maximum
computation time for both trajectories was less than a third
of a millisecond. In contrast, the CAopt method needed
considerably longer computation times. The mean times
were about 22 ms and 21 ms for the ellipse and Lissajous
trajectories respectively. The maximum times increased
drastically for the CAopt method, with ≈ 3931 ms for
the ellipse and ≈ 1812 ms for the Lissajous trajectory.
The difference in computation times is higher than in the
simulations, given that the the Jetson TX2 as embedded
computer has less computational capacity compared to a
laptop. This highlights the big advantage of our proposed
control allocation method further. Finally, Fig. 15 a) and
Fig. 15 b) show the mean accumulated rotations by the four
fins for the ellipse and Lissajous trajectories, respectively.
The results indicate that CAprop demands less in terms of
actuation efforts, which results in better energy efficiency.

A limitation of the presented experimental setup is that
roll and pitch tracking or stabilization could not be tested.
The standard configuration of centre of mass and centre of
buoyancy of U-CAT created restoring moments to passively
stabilize pitch and roll. However, in conjunction with
unaccounted internal and periodic disturbances due to the fin
oscillations this passive restoration seemed to have interfered
with the ability for active stabilization, possibly exceeding
the available control authority of the actuators. Nevertheless,
active stabilization was possible in the simulations although
the oscillation disturbances were taken into account by
the fin dynamics simulation (71). We therefore conclude
that the removal of passive restoring forces should enable
active roll and pitch stabilization. However, the mechanical
re-configuration of the vehicle to achieve the alignment of
centre of mass and centre of buoyancy was beyond the scope
of the current work. Another limitation of the work presented
here lies within the tested velocities for tracking. Maximum
tested velocities approached 0.2 m/s, which can be sufficient
for many intended monitoring tasks. However, in the presence
of strong water currents this limit can constitute a problem.
One reason for the limited velocities tested was the available
experimental setup, which did not allow the motion over
bigger areas, implicitly limiting achievable velocities. Another
limitation is the thrust output that can be generated by the
current fin design. However, those limitations are mainly the
results of engineering challenges and can be overcome. We
don’t see any fundamental limitations of the presented work
in regards to attainable velocities within certain bounds.

Notwithstanding the present limitations we constitute that
the obtained simulation and experimental results present a

comprehensive analysis of the proposed solution, highlighting
its effectiveness and potential for further improvement. The
experiments demonstrate that the proposed solution yields
good tracking performance for all controlled DOF. Specif-
ically, the methods are shown to effectively track complex
3D trajectories with minimal tracking error while maintaining
efficient control, actuation efforts, and minimal computational
time.

VIII. CONCLUSION AND FUTURE WORK

This study presented an in-depth investigation into 6-DOF
tracking control using an under- and fin-actuated AUV. The
core of our work was the development of an innovative
analytic control allocation method for din-driven AUVs. The
allocation is supplemented by the adaptation and extention of
a state-of-the-art hybrid adaptive controller, which facilitates
globally stable 6-DOF trajectory tracking control. The novel
control allocation method allows for simultaneous control of
all six DOF using only four actuators. By addressing the
specific challenges posed by fin-based actuation, our proposed
method achieves both computational and energetic efficiency,
enabling accurate trajectory tracking and improved efficiency

The developed hybrid controller exhibits significant poten-
tial for enabling simultaneous 6-DOF control for an under-
actuated fin-actuated AUV, thereby advancing the field to-
wards more sophisticated and versatile underwater robots. This
method was tested and validated through extensive Monte
Carlo simulations and real-world experiments in a semi-
controlled environment (public swimming pool), employing
two types of 3D complex trajectories (ellipse and Lissajous) in
three-degrees-of-freedom tracking and two-degrees-of-stability
scenarios. The proposed analytic control allocation solution
(CAprop) was found to be robust and efficient in both the
simulation and experimental settings, bringing us one step
closer to realising fully autonomous 6-DOF navigation for fin-
actuated AUVs.

In terms of future work, our goal is to extend this research to
include fault-tolerant control for fin-actuated AUVs. Moreover,
we intend to conduct real-world experiments in diverse under-
water environments to further validate and refine our approach
under varying conditions and challenges. To further optimise
the efficiency and performance of control allocation for fin-
actuated vehicles, the integration of advanced reinforcement
learning techniques will be explored.

This research signifies a significant milestone in the field of
under-actuated fin-actuated AUVs. By continuously striving to
refine and expand upon this work, we aim to pioneer novel
solutions that advance the capabilities of AUVs, making them
more versatile and efficient for a broader range of underwater
missions.
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