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SISSEJUHATUS 

Närvivõrkude rakendamine näotuvastuses on mitmeid aastakümneid juba uuritud probleem olnud 

[1]. Alates konvolutsiooniliste närvivõrkude kasutuselevõtmisest on neid rakendavate 

näotuvastussüsteemide täpsus hüppeliselt tõusnud [2]. Sellest tulenevalt on närvivõrkudel 

baseeruvaid isikutuvastussüsteeme hakatud aina rohkem tarbesüsteemides rakendama. 

Käesoleva lõputöö eesmärk on koostada algoritm näotuvastust rakendava turvasüsteemi jaoks. 

Lõputöö teema on välja käidud teadur Dmitry Shvartsi poolt ning oli algselt mõeldud kui ühe 

komponendina suuremasse, nö. „tarka“ turvasüsteemi, mis rakendaks pilditöötlust ka muudel 

eesmärkidel. 

Töö teiseks eesmärgiks on ka välja töötatud algoritm implementeerida. Seda tehtakse Python 

programmeerimiskeeles, kasutades laialt levinud teeke, nagu OpenCV ja NumPy. See võimaldab 

süsteemi kerged liidestamist teiste süsteemidega ning ka kerget laiendamist ja muutmist. 

Lõputöö esimeses peatükis antakse ülevaade olemasolevast teadmusest närvivõrkude 

rakendamisel näotuvastuse eesmärkidel. Antakse üldise tausta ülevaade, kirjeldatakse täpsemalt 

eesmärgiks kasutatavate närvivõrkude struktuure ja omadusi ning tuuakse välja metoodika 

närvivõrkude rakendamisel näotuvastuseks. 

Lõputöö teises peatükis teostatakse võrdlus kahe erineva näotuvastusalgoritmi vahel. Mõlemad 

meetodid baseeruvad esimeses peatükis välja toodud alustel. Võrreldakse algoritmide täpsust, 

töökindlust ning töökiirust. Peatüki alusel valitakse töö käigus koostatud prototüüpsüsteemi jaoks 

sobiv algoritm. 

Kolmas peatükk defineerib ära prototüüpsüsteemi nõuded. Samuti kirjeldatakse ära 

prototüüpsüsteemi arhitektuuriline lahendus, mis arendati vastavalt nendele nõuetele. 

Arhitektuuris rakendatakse eelnevas peatükis valitud metoodikat. 

Neljas peatükk kirjeldab kolmandas peatükis esitletud arhitektuuri implementeerimist Python 

programmeerimiskeeles. Täpsustatakse paari tähtsama detaili rakendust, näiteks närvivõrgu 

rakendust, katsetatakse süsteemi vastavust nõuetele ning tuuakse välja ka võimalusi edasiseks 

arenduseks. 

Lõputöö lisadena on toodud viimases peatükis kirjeldatud implementatsiooni lähtekood Python 

programmeerimiskeeles. 
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INTRODUCTION 

The use of neural networks for the purposes of facial identification has been the subject of research 

for many decades [1]. The introduction of convolutional neural networks provided a noticeable 

jump in the capabilities of neural networks when applied to image processing, and this includes 

their application for facial identification [2]. 

With that in mind, goal of the present work is to develop a prototype security system that utilizes 

facial identification. An example use-case for such a system would be to secure an office or a room, 

as a replacement for other methods that may rely on passcodes or physical devices, such as RFID 

cards. The topic was proposed by research scientist Dmitry Shvarts, of the Tallinn University of 

Technology. The system was originally proposed as a key component of a smart security system, 

which relied on image processing for various tasks, one of which was the identification of people in 

a secured area. 

The software architecture developed over the course of this work will also be implemented as a 

prototype using the Python programming language. The implementation will be evaluated once 

complete, with shortcomings and points for future development identified. The Python 

programming language will be used to write most of the software in question, along with the use 

of common libraries for image processing and the use of neural networks, such as OpenCV, NumPy, 

and dlib. 

To achieve these two goals, the first chapter of the work will provide a review of associated 

literature, with the intent to identify existing methods for applying neural networks for facial 

identification. We will determine contemporary approaches toward the goal and select 

methodologies for evaluation and application in the later chapters. This includes providing an 

overview of neural network architectures and how they are applied. 

The second chapter will conduct the testing of various methods for facial identification identified 

in the first chapter. The objective is to identify which contemporary neural network architectures 

are best for creating a secure and reliable system for use in the application described. 

In the third chapter, we will be outlining the requirements for the system to be created and creating 

the system architecture based off that. We will be integrating the most appropriate pipeline, as 

identified in the second chapter, and working off the methods explored in the first chapter. The 

outcome of this chapter will be the general architecture of a system to fulfil the main goal of the 

work. 



 

10 

The fourth chapter will concern the implementation of the system as a prototype, and evaluation 

of it. The system will be evaluated with a live camera feed. Shortcomings will be identified, as well 

as the potential for future use and deployment. 

The appendices of the work will include the source code produced while implementing the 

architecture described in the third chapter of the work. 
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1. INTRODUCTION 

Facial recognition from both static images and live camera feeds has been the subject of research 

for many years. Older approaches tend to be procedural, such as processing of a face into a set of 

eigen-vectors, known as eigenfaces; or the matching of graphs [3]. And in recent years, the 

application of neural networks has become highly researched and optimal for both general image 

classification, as well as for facial recognition in specific [4] [5]. As such, we will be picking them as 

the main form of algorithm for handling facial recognition in this work. An investigation for their 

application for this specific task follows in this chapter. 

1.1 Application of neural networks in facial recognition 

As per [1], the application of neural networks for the purposes of machine face recognition has 

been investigated for close to 40 decades now. In this time, multiple different techniques have been 

used and error rates under controlled conditions have reached 1 % or less by the year 2006 [6]. 

Considering this, more recent research, such as [7], has been conducted with the intent of making 

facial identification via neural networks more robust and thus, usable under wider circumstances. 

A common modern approach to solve the issue of facial identification has been using convolutional 

neural networks [5]. Works such as [4] have iterated or specialized these designs. In parallel, CNN 

architectures using deeper construction (more layers) have also been employed, to further improve 

accuracy over a normal CNN [5]. The deeper networks are generally more difficult to train, however, 

which prompted the application of residual layers in addition to a deep CNN architecture. This 

makes training easier and allows for the minimization of error rates with deeper architectures, in 

comparison to thinner networks [8]. 

1.1.1 Convolutional neural networks 

Due to the prolific use of CNNs in the field of facial recognition [4] [5], we will be taking a closer 

look at them for use in this work. CNNs generally use multiple convolutional layers, which reduce 

the input image’s dimensionality, extract specific features, and generate a linear output vector 

based on the extracted features. Typically, multiple convolutional layers are utilized. [3] 
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Figure 1.1. A typical convolutional network [3]. 

The pipeline for employing CNNs for facial recognition is described in Figure 1.2. Depending on the 

structure of the neural network, it may be that instead of raw images being given to the neural 

network, an already processed set of descriptors is provided. Such descriptors include histograms 

of oriented gradients (HOG), and are commonly generated by handcrafted algorithms. This is 

common for shallow neural networks. Deep neural networks usually manage feature extraction 

themselves. [5] 

 

Figure 1.2. An example pipeline for using neural networks for face recognition as seen in [3]. 

The output of a CNN is a classification. Depending on how the neural network is specified, the 

classifier may be a confidence value or a more generalized output describing features of the input. 

In the case of facial recognition, in order to avoid the issue of having to retrain the network every 

time a new face is introduced, a more generalized classification approach is sought after. [2] One 

such method, suitable for the purposes of this thesis, will be described in section 1.2. 

1.1.2 Residual neural networks 

With the application of deeper CNNs in the field of image processing, it was noted that training 

them is more difficult than regular CNNs. [8] points out that a 20-layer CNN for general image 

recognition can more easily achieve a lower test error than a 56-layer deep CNN. As a solution, [8] 

proposes the usage of residual layers to help better train the deeper CNNs. 
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Figure 1.3. The principle behind deep residual learning [8]. 

As shown in Figure 1.3, the premise behind residual learning layers is the passing of an identity 𝑥 

via a so-called shortcut connection to a deeper layer’s input. This allows the solver functions used 

in training the CNN to more easily adjust the deeper layers of the neural network, without incurring 

the problems of extreme gradients while learning. [8] 

1.2 Facial embedding encoding 

The system being proposed in this thesis must be capable of matching an unknown face against a 

known set of faces within some database. There must also be some method of knowing that the 

face is not present within the database. [2] and [5] propose the usage of facial embeddings: the 

mapping of a face’s feature set into an 𝑑-dimensional space. 

The general process can be described by the expression 𝑓(𝑥) ∈ ℝ𝑑, wherein the function 𝑓(𝑥) 

maps the image 𝑥 into the 𝑑-dimensional space ℝ. The function itself is realized through the 

application of neural networks [2]. This method can achieve accuracy of well over 90 %, as per the 

results of [5]. 

Such a method also avoids the issue of one-shot training [9]. The issue would arise if we were to 

use a neural network that is simply trained to identify a specific set of faces from a camera image. 

In which case, every new face would incur the retraining of the network. The application of 

embeddings allows us to assign a specific identity to any given face, without the need to retrain the 

network. 

The resulting embeddings are also relatively compact in terms of memory utilization. The method 

outlined in [2] can produce a vector that is only 128-bytes long. This is a very good quality to have 
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for a system that runs on limited hardware, such as an embedded security system. [2] Makes the 

additional note that a larger embedding does not necessarily improve the accuracy of the neural 

network. Though, as they note, this may be since a larger embedding requires more training or a 

deeper structure of the CNN. 

1.2.1 Usage of facial embedding encoding to recognize a known face 

As pointed out by [2], the usage of such embeddings reduces the task of verifying a face (knowing 

whether or not the face on a given image is the same as another face) to finding the Euclidian 

distance between two embeddings and comparing that to a threshold. Two identical embeddings 

represent a completely identical face, and embeddings which are close to each other in the 

multidimensional space represent similar faces. 

The act of recognizing a face, that is, figuring out who is present on the picture, is a k-nearest 

neighbour problem using embeddings, wherein the known embedding nearest to the unknown 

embedding is most likely to be the face of the subject [2]. This result must also be verified as per 

the previous paragraph. 

As per the example [10], a neural network may also be applied to this problem. Doing so is a method 

of solving the k-nearest neighbour problem. It replaces the distance threshold with a confidence 

threshold against which the output of the evaluating neural network is compared. However, this 

would introduce the one-shot training problem defined in section 1.2, and is not suitable for our 

purposes. 

1.3 Conclusion 

From this chapter, we have determined that one of the most common contemporary neural 

network architectures to apply for the purpose of facial identification is the convolutional neural 

network. With the deeper variants of it, including residual networks, further increasing their 

capabilities. Based on this, we will be focusing on these architectures in our following chapters, with 

the goal being to test and evaluate existing implementations of them for use in the system that will 

be outlined later in this work. 

We also provided an overview of the idea of using facial embeddings to allow for the identification 

of any given face, as outlined in [2]. This method will be utilized by the system as the primary means 

of facial identification within this work. 
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The following chapters will now provide an overview and comparison of actual implementations of 

these ideas. With the final implementation detailed later in this work utilizing these 

implementations. 
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2. COMPARISON OF SOME AVAILABLE FACIAL RECOGNITION 

ALGORITHMS 

For the purposes of this work, ready-made facial recognition systems were selected and analysed. 

The purpose of this analysis was to learn about the different practical methods for applying neural 

networks in facial recognition. The results of this comparison will be taken into account in the design 

of the prototype system, with the prototype system’s architecture being described in chapter 3 of 

this work. 

The two examples being evaluated were [10] and [11]. Both are written in the Python programming 

language, using publicly available libraries and pre-trained neural networks. This makes the testing 

and further development of the two systems relatively easy, and allows for the rapid prototyping 

of our own system. 

Both example systems also output a 128-dimensional vector, much like was described in [2]. This 

allows us to use the same custom verification system applied to the output of either system. 

2.1 Methodology 

Both systems will be tested with the same pre-recorded input and using the same output 

verification method. The testing framework can be described with the following drawing: 

 

Figure 2.1. An UML acitivity diagram describing the framework to be used for testing. 

The pre-recorded video stream is that of the author presenting his face at various angles to the 

camera. The video stream is 422 frames long, lasts 13 seconds, and is recorded at a resolution of 

1280x720. 
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Figure 2.2. Examples of frames from the test footage, indicating the face to be identified at different angles. 

2.1.1 Embedding verification 

The algorithm used for facial verification is described more in-depth in item 3.4.2 of this work. As a 

short overview, however, we use a store of known embeddings that are pre-calculated with the 

neural network currently being tested. The Euclidean distance between the unknown embedding 

and each of the known embeddings is calculated. The first known embedding for which the distance 

is below a selected threshold is selected as a positive identification. In the case of these tests, the 

threshold distance was set to 0.6. The recommendation was based off of the documentation in 

both examples, [10] [11]. 

For the purposes of potentially catching false-positive identifications, the faces of 5 different people 

were included in the data store. 

2.1.2 Identification accuracy 

In the tests, we are concerned with the two following quantities: error rate and processing speed. 

Due to the nature of the system being developed, error rate is our first and foremost concern. In 
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our case, error rate is defined as the number of erroneous identifications over the number of total 

identifications that pass the validator’s threshold: 

𝑥𝑒𝑟𝑟𝑜𝑟 =
𝑛𝑛𝑒𝑔

𝑛𝑑𝑒𝑡
⋅ 100 %                                                           (2.1) 

where: 𝑥𝑒𝑟𝑟𝑜𝑟  is the accuracy of the system, 

 𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 is the number of erroneous identifications recorded over the course of a test, 

 𝑛𝑑𝑒𝑡 is the number of frames wherein the system detected a face. 

This measurement assists us in gauging and verifying the accuracy of both the system under test, 

as well as our identity verification method. 

Of interest, also, is the detection rate of the system, calculated as follows: 

𝑥𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 =
𝑛𝑑𝑒𝑡

422
⋅ 100 %                                                        (2.2) 

Where: 𝑥𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 is the detection rate of the system, 

 𝑛𝑑𝑒𝑡 is the number of frames wherein the system detected a face. 

And finally, we will also be comparing the reliability of the system by calculating the positive 

identification rate: 

𝑥𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑛𝑝𝑜𝑠

422
⋅ 100 %                                                      (2.3) 

Where: 𝑥𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 is the detection rate of the system, 

 𝑛𝑝𝑜𝑠 is the number of positive identifications recorded over the course of a test. 

2.1.3 Processing speed 

The second quantity being measured, as already mentioned, is the processing speed of the system 

under test. Processing speed is an important variable to ensure in the responsiveness of the system. 

In each test, the processing time of each component is recorded per frame processed, and an 

average processing time per frame is calculated from the total frames processed. This will give us 

an understanding of what components of the system are likely to produce a bottle neck, while also 

allowing us to determine if the system being tested is fast enough for real time application. 
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It should be noted that during some tests, not all frames were fully processed. Specifically, in cases 

where the facial detection algorithm fails to identify a valid face, the rest of the algorithm are 

skipped for the duration of that frame. As such, while calculating average processing speed of 

various components, only the frames that those components processed were considered. This is 

also the reason why a whole system frames per second indicator is not taken into consideration: a 

system which identifies the subject’s presence in fewer frames is likely to speed up due to the facial 

identification algorithms being skipped, thus increasing the general frames per second count. 

2.2 Overview of systems under test 

2.2.1 Libraries used 

These examples required the following Python libraries to be installed using the pip library 

manager: 

• opencv-python, version 4.0.0.21; 

• dlib, version 19.17.0; 

• imutils, version 0.5.2; 

• numpy, 1.16.2. 

2.2.2 Example 1, using OpenFace with OpenCV 

The first system evaluated was presented as an example in [10]. As per the article, the example 

uses an implementation of the FaceNet paper [2], called OpenFace [12], as its core component for 

producing facial embeddings. The whole process flow is as follows: 

 

Figure 2.3. An UML activity diagram describing the general process of the OpenFace based example system. 

Facial detection is accomplished via a smaller pretrained neural network, utilizing a pretrained 

Caffe deep learning model. The model itself is provided by the OpenCV library. The purpose of this 

smaller deep learning model is to locate and extract the locations of all faces within a frame, so that 

they may be cropped out and provided as an input to the OpenFace model. [10] 

During general testing, it should be noted that the facial detection model utilized by this example 

had an issue of falsely detecting certain geometry as faces. This would result in the OpenFace model 

processing data that it was not trained to classify, and thus providing an unknown output. 
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Figure 2.4. A false positive identification. The name indicated above the identification rectangle is incorrect. 

OpenFace, the model used for calculating the facial embeddings, is a deep CNN, based on the model 

proposed in [2], as already noted. According to the implementation’s own description at [12], the 

accuracy of these models ranges from 76.12 % to 92.92 %. The model specifically used in this 

example, “nn4.small2.v1”, is cited as having an accuracy of 92.92 % [13]. The output of the network 

is a 128-dimensional facial embedding [10] [12]. 

Identification within the example was handled by a custom trained SVM model [10]. However, this 

required that the model be retrained every time a new face was added to the database or removed. 

As such, the SVM model was removed in favour of the custom verification process. 

2.2.3 Example 2, using ResNet with dlib 

The second system to be evaluated is based on the ResNet model, originally described in [8]. The 

original implementation of this example can be found in [11]. The example was originally 

implemented as only working on static images, so some refactoring was required to make it also 

function on a video stream. The general process flow of this example is as follows: 

 

Figure 2.5. An UML activity diagram showcasing the operating logic of the second example. 

Facial detection is accomplished by using the frontal face detector embedded into the dlib library. 

As per [14], the detector utilizes HOG features which are then classified using a linear classifier with 

extra post-processing. 
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Feature extraction in the case of this model is done outside of the main classifier. In this case, a 

technique described in [15]. The model uses an ensemble of regression trees to detect up to 194 

landmarks from a provided input face. From this, we can also recognize the pose (orientation) of 

the face, which is used for aligning the face to generate what the example refers to as a face chip. 

The ResNet model then takes the extracted and aligned output of the feature extraction phase, the 

face chip, and computes from it a 128-dimensional vector. The ResNet model is a residual deep 

CNN. According to the example description [11], the pretrained model has an accuracy of 99.38 % 

when ran against the LFWB dataset. 

2.3 Overview of results 

Both systems were subjected to testing, as per the methodology described in section 2.1. The 

results are displayed and compared in the following section. 

2.3.1 Identification accuracy 

The identification specific statistics are listed in the following table. As noted previously, the footage 

itself lasted for 422 frames, and at all times, a face was present in the frame, though perhaps 

rotated at odd angles. 

Table 2.1. Accuracy and identification statistics of the tests. 

 OpenFace ResNet 

No. frames with a face detected, 𝒏𝒅𝒆𝒕 422 361 

No. positive identifications, 𝒏𝒑𝒐𝒔 133 343 

No. false-positive identifications, 𝒏𝒏𝒆𝒈 47 0 

 

As can immediately be observed, the OpenFace based system produced 47 false identifications: 

meaning that it incorrectly identified the person in frame to be someone else. 
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Figure 2.6. Comparative look at the accuracy of the two systems. 

From these statistics, we derive the following chart, using the equations specified in item 2.1.2: 

 

Figure 2.7. Aggregated system accuracy statistics. 

The most important statistics to make note of here is the fact that the OpenFace based system 

incorrectly identified the person from the footage 11,14 % of the time. Of further note is the low 

reliability, wherein only 31,52 % of the frames were correctly identified as the person required. 

2.3.2 Processing speed 

As already noted, both systems were tested against the same pre-recorded video stream. The 

results of profiling measurements were as follows: 
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Table 2.2. Component execution time profiling results. As per chapter 2.2.3, the chip creation process is only 

present in the second example. 

 OpenFace ResNet 

Avg. face detection time, 𝒕𝒅𝒆𝒕 ms 49,0 700,0 

Avg. chip creation time, 𝒕𝒄𝒉𝒊𝒑 ms N/A 2,8 

Avg. embedding creation time, 𝒕𝒆𝒎𝒃𝒆𝒅 ms 11,0 481,0 

Total test duration, 𝒕𝒕𝒐𝒕𝒂𝒍 s 27,86 472,94 

 

As can be observed, the ResNet based example is at least 16 times slower in its execution. The 

comparison between the average time-per-frame processing can be highlighted as such: 

 

Figure 2.8. A comparison of the average processing time per frame. Calculated as 𝑡 = 𝑡𝑑𝑒𝑡 + 𝑡𝑐ℎ𝑖𝑝 + 𝑡𝑒𝑚𝑏𝑒𝑑 . 

The ResNet based system ended up being roughly 20 times slower than OpenFace based one. When 

we compare based on the components, it can be seen that both the face detection model, as well 

as the embedding creation are multiple times slower for the ResNet based system than for the 

OpenFace based system. 
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Figure 2.9. A component wise comparison of the average performance of the systems under test. 

Component wise, it can be observed that both of the key components of the ResNet based system 

are multiple times slower, than the OpenFace based system. This is most likely due to the more 

complex models being employed in the former system. 

2.4 Conclusion 

There were severe differences in both the accuracy and processing speed of the two examples. As 

far as accuracy is concerned, the ResNet based system was both more reliable, at 81,28 % reliability, 

and had no false detections. As opposed to the OpenFace based system, which falsely identified 

the subject on 11,14 % of the time, and positively identified the subject on only 31,52 % of the 

frames where a face was detected. 

Though this came clearly at the cost of speed. The ResNet based system is slower by a factor of 16. 

With both the face detection model and embedding calculation model being considerably slower 

than the simpler OpenFace based ones. 

For a security-based application, the error rate is of much more importance than processing speed. 

As such, for the purposes of this work, the ResNet based model is a lot more suitable. Further, the 

processing speed approximately 1,2 seconds per frame is not all that detrimental, especially when 

the higher identification reliability is taken into consideration. 
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3. PROTOTYPE SYSTEM ARCHITECTURE 

With the methods for facial identification investigated and tested, we can now begin to build the 

architecture around this key component. The following chapter will describe the system 

architecture produced while composing this work, to accomplish the goals of the thesis. This 

architecture will then be implemented in chapter 4 of the work. 

3.1 System requirements 

The general requirements for the system are defined as the following: 

• the system must operate on a real time video feed from a camera; 

• the system must compare embeddings in a manner as described in [2]; 

• the system must hold its known embeddings in a datastore; 

• the system must output a decision based on whether or not the unknown face is positively 

identified. 

Within the confines of this work, the last aspect of the system is realized as a decision as to whether 

or not the individual stood before the camera is a known person and should be granted entry to 

the guarded area. Though in reality, this specific action could be anything, from logging, to 

unlocking a computer or a device, or whatever. 

3.2 System architecture overview 

Based on the requirements, a general system drawing was compiled. Ideally, the general 

architecture is implementation neutral. Meaning that, as long as the data structures within the 

system remain the same, the method of generating these data structures is irrelevant. This allows 

for later experimentation with other algorithms, neural networks, and database drivers. 

As per the requirements, the input of the algorithm is a camera image from the live camera feed. 

And the output is either a matching embedding, or a decision made based on that matching 

embedding. In the case of this example system, the decision is whether or not we can grant entry 

to a person to a specified area. 
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Figure 3.1. A high-level overview of the proposed system. 

3.2.1 Internal state machine 

Due to the fact that we need to retain state, at least in the case for when the system is “open”, a 

small state machine is also used when implementing the system. The state machine has three 

states, with their interaction being as follows: 

 

Figure 3.2. System state machine overview. 

3.3 System search mode 

Search mode is the “at rest” component of the program. It is meant to do minimal processing, only 

identifying the presence of a face in the camera image, and nothing else. It is expected that the 

program spends most of its time within this state. The conclusion of the search mode should always 

be the successful detection of a face from within the current camera frame, at which point 

identification of the detected face in the identification mode can proceed. 
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Figure 3.3. An outline of the system's search mode. 

The face detection is done with a method described in chapter 2, and the output has to be the faces 

identified. A minimal neural network can be used to locate and enumerate them. 

As can be seen in Figure 3.3, the condition for the system proceeding is set to only one face being 

present in the camera frame. The reason for restricting the system to just one face in view, is for 

the sake of security. A situation where multiple faces are permitted to be in frame for identification 

will cause an indeterminate situation as to which face should be checked for identification. 



 

28 

3.4 System identification mode 

Identification mode can be described as the main “work” mode of the program. This mode will 

require addressing of the embedding database, and is responsible for identifying a face. The 

conclusion of this state will either the be identification of the face, regardless of whether or not we 

identify it positively, at which point the program will proceed into the timeout mode; or the loss of 

the face from the camera frame during the identification process, at which point the program will 

transition back into the search mode. 

The “working set” mentioned in Figure 3.4 is a collection of embeddings extracted during the 

current identification cycle, to be used for filtering. Filtering, both the necessity for it and the 

potential methods for going about it, are described in item 3.4.1. It is also necessary that the 

working set be cleared after identification. 
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Figure 3.4. An outline of the program’s identify mode. 
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3.4.1 Embedding filtering 

Figure 3.4 outlines the creation of a filter that is to be applied to the embeddings. Filtering of the 

recovered embeddings can be used to minimize user annoyance while using the system. If the 

camera providing a feed to the program is at an odd angle, then it may well be that the first frame 

where a face is detected is not the best candidate for selection, due to the face being skewed on it. 

If the program was to run identification purely off of that one capture, then the system may well 

output an unknown identification and lock the user out temporarily. 

In the implementation presented in chapter 4 of this work, the filter used is a simple averaging over 

three subsequent embeddings. Another idea to implement as a filter would be to remove the frame 

with the highest standard deviation from the rest, counting it as erroneous. 

3.4.2 Embedding identification 

The identification of the embeddings is done on the count of already found embeddings, according 

to the principles described in [2]. The basic process is to iterate over every known embedding, and 

to recover the first one where the Euclidian distance to the unknown embedding is below a selected 

threshold. The methodology itself is described in chapter 1.2.1 of this work. It is expected that the 

embeddings are held within a database, or in memory, and can be accessed on demand. 
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Figure 3.5. The algorithm for matching an unknown embedding from the datastore of known embeddings. 

It should be noted that the worst-case complexity of this type of search is 𝑂(𝑛), wherein 𝑛 is equal 

to the number of embeddings within the database. This could, theoretically, bottle-neck the system 

when a large number of people are registered to within the system. However, due to the read-only 

nature of the operation, this operation is also highly scalable with the use of multiple threads. 
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3.5 System timeout mode 

The timeout mode is the conclusion of identification. Its primary function is to implement 

application specific logic. For example, if this program is applied to control an electronic door lock, 

then this mode would unlock the door upon positive identification, and keep the door unlocked for 

a short time, until the user has been able to pass through the door. In the case of a negative 

identification, the system would temporarily lock out for the user to leave and another user to enter 

the frame. After the timeout mode, the program proceeds back into the search mode. 

 

Figure 3.6. The system timeout procedure. 
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4. IMPLEMENTATION OF THE PROTOTYPE SYSTEM 

The final part of this thesis is to write up an example implementation of the algorithms described 

in chapter 3, while also applying what has been learned in chapters 1 and 2. The outcome of this 

chapter will be the implementation of a system which corresponds to the requirements listed in 

point 3.1. 

4.1 Libraries and development environment 

The system architecture was implemented using the Python programming language [16], 

specifically Python version 3.7.3. The use of Python allows for relatively easy experimentation with 

various libraries and methodologies. 

The OpenCV [17] library was used as the primary image processing and hardware camera handling. 

The library is relatively well known, and has Python bindings through the use of the opencv-python 

package. A library dependant on this, the Imutils library [18], helped further abstract the process of 

capturing frames from a generic camera device. OpenCV was also used to provide a simple GUI for 

the project. 

NumPy [19] was used to provide helpers for mathematical operations. There is also a high degree 

of interoperability between NumPy and the various machine learning and neural network libraries 

such as dlib. Meaning that for experimentation, it is very easy to swap out the machine learning 

library used in favour of another one. 

And as the key component of the system, to implement facial identification itself and the neural 

network operations required for it, the dlib library [20] was used. Much like is the case with OpenCV, 

dlib is originally a C++ library which has Python bindings, using the dlib package.  

4.2 Implementation of the prototype system architecture 

4.2.1 Storage of facial encodings 

The fulfil the requirement of persistent data storage, the embeddings of the known faces were pre-

calculated using the applied neural network and stored on disk. For the purposes of this system, 

the Python object serialization framework pickle [21] was used. This allows for the storage of a 

complete data object on disk, and the later recovery of it. 

To represent an identity tied to an embedding, the Person class is used. It has simply two variables: 

the person’s name and their corresponding identity, which is precalculated. All identities known to 
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the system are held in a PeopleDatabase class, which is the object serialized onto disk as previously 

described. A helper method, find_closest_to, is used to find the Person instance stored within a 

PeopleDatabase instance where the Euclidean distance between the unknown embedding is 

minimal. After that, a thresholding operation can be applied, as described in chapter 3.4.2. 

 

Figure 4.1. The PeopleDatabase class, along with the implementation of the find_closest_to method in 

Python. 

The serialization and deserialization itself can be done with only a few lines of code, as shown 

below. 

 

Figure 4.2. Loading of the PeopleDatabase instance from disk, using the pickle package. 

It should be noted that there are some shortcomings to this method of storing data. And if this 

system is to be considered for deployment, then an alternate method for storing data should be 

considered. Due to the nature of the embedding within NumPy, as an array, it is likely possible to 

serialize it as a byte array for use with various database engines, such as MySQL. 

4.2.2 Facial identification 

Based on the results of the experimentation done in chapter 2, the ResNet architecture and pipeline 

was selected for use within this implementation. The full pipeline can be seen in Figure 2.5. The 

library required to implement this is dlib. 
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Multiple helper classes were created to spread out and compartmentalize the various sub activities 

of the process of creating facial embeddings: the FaceChipper, FaceDettection, and 

FaceSummarizer classes. The latter class, while also generating the embeddings, handles the 

filtering of the embedding, as noted in point 3.4.1. The filtering is a very simple averaging operation 

done on the saved points using NumPy’s average method. 

Once the summarizer produces the averaged embedding during the identification cycle, it is 

matched with an entry from the PeopleDatabase described in the previous point, and a threshold 

operation is applied to the resultant distance. 

4.2.3 The main cycle 

The cycle is what implements the state machine outlined in point 3.2.1 of this work. It includes the 

camera image acquisition, the required pre-processing, and the post actions of the system, such as 

updating the GUI. 

 

Figure 4.3. The program's main loop as implemented in the Python programming language. 

Notice the usage of OpenCV to convert between the BGR and RGB colour spaces, since the Imutils 

library retrieves a camera image in the former. 

All the program’s state functions are implemented independently, and their full implementation 

can be found in the appendices. 
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4.2.4 The graphical user interface 

As noted in the beginning of this chapter, a minimal GUI was implemented to provide the user with 

feedback. The GUI is written using OpenCV, and plays back the currently processed frame, along 

with information about the current state that the program is in. 

 

Figure 4.4. An overview of the minimalistic graphical user interface. 1: the current state of the program. 2: a 

rectangle to indicate a face identified from the current frame. 

4.3 Pre-calculating embeddings 

Due to the nature of the program, we need to pre-calculate all the facial embeddings before the 

system is used to identify. A parallel program for this was created, which used pictures of the 

subjects filed into a specified folder. 

The pipeline used was like the one in the main program, with different inputs and outputs. The 

input is a series of pictures in a specific folder, with the folder named after the person whose 

identity we are saving. And the output is a compiled serialized Python object, a PeopleDatabase 

instance, which can then be used as an input for the primary program. 
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4.4 Testing of the prototype system 

With the implementation completed, the system was tested on a laptop using the laptop’s 

integrated camera. The system was provided a set of 5 faces and tested with colleagues to acquire 

examples of both successful positive and negative identifications. 

As demonstrated in the following images, the system is able to recognize and assign a name to a 

previously recorded face (Figure 4.5), and to deny a face not present in the database (Figure 4.6). 

This fulfils the basic requirements outlined for it. 

 

Figure 4.5. Output from the final prototype program. (1) displays the program in the searching state. (2) 

displays the program in the identification state, note the red rectangle around the face being identified. (3) 

displays the program after a positive identification, with the name associated with the face displayed in the 

top left of the screen. 
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Figure 4.6. The prototype system recognizing an unknown individual and forbidding entry in the timeout 

state. 

During testing, it was also observed that the system is able to identify a face from a relatively large 

distance away. Figure 4.7 demonstrates a positive identification retrieved from up to 3 meters away 

from the camera. 

 

Figure 4.7. A positive identification of a face retrieved from roughly 3 meters away. 

4.5 Identified shortcomings 

The main shortcoming that was identified with the system was the fact that it could be tricked using 

a static image of a known face. For example, directing the camera providing the feed towards a 

monitor on which a known face was displayed was followed by the system positively identifying the 

known person from the displayed image. This would potentially allow for unsecured access to the 

are secured by this system. 
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A possible solution to this problem would be to include another method to confirm that there is 

indeed a human face present on camera feed. Infrared imaging, for example. Or a more general 

depth image, to counter the use of a display or a printed sheet of paper. 

4.6 Prospects for future deployment and development 

Since the Python programming language was used, this example system can be transferred over to 

the Raspberry Pi, or other ARM processors with a Python interpreter available. This would allow for 

the deployment of this system as an embedded security measure, to control physical access to any 

given area. 

Figure 4.8 describes such a deployment, where a relatively small and non-complex security system 

based on the Raspberry Pi would be used to control a door locking mechanism which may, for 

example, provide entry to a secure area of an office. The central database could be used to 

synchronize the known and authorized embeddings, so that multiple such security systems could 

grant access to the same people. 

 

Figure 4.8. A use case diagram describing a potential deployment of the system prototype. 
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Another scenario for deployment would be the adaptation of the architecture to allow for multiple 

input streams, with a centralized, more capable server handling the image processing and face 

identification. 
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KOKKUVÕTE 

Lõputöös teostati taustauuring tänapäevastesse lahendustesse närvivõrkude rakendamisel 

näotuvastuse teostamiseks. Toodi välja olemasolev meetod nägude eristamiseks ja nende profiilide 

salvestamiseks kasutades närvivõrke ning ka kaks laialt levinud süvanärvivõrgu arhitektuuri antud 

metoodika rakendamiseks: konvolutsionaalsed närvivõrgud ning residuaalsed konvolutsionaalsed 

närvivõrgud. 

Võrreldi kahte valmistehtud algoritmi, mis rakendasid eelnevalt mainitud metoodikaid: OpenFace 

närvivõrku ja ResNet närvivõrku. Võrdluse tulemusel järeldati, et kuigi OpenFace on oma töö 

poolest kiirem, siis selle täpsus ja töökindlus jääb alla ResNet arhitektuurile. Sellest tulenevalt valiti 

ResNet arhitektuur töö käigus koostatud prototüüpsüsteemi tuumaks. 

Pärast põhikomponendi valikut teostati ülesande analüüs, määrati ära töö kaigus teostatava 

prototüüpsüsteemi nõuded ning koostati nõuetele vastav arhitektuur. Antud arhitektuur rakendab 

[2] kirjeldatud metoodikat nägude talletamiseks ja võrdlemiseks närvivõrkude abil. Meetod näeb 

ette näopildi teisendamise n-mõõtmelisse ruumi ning saadud punkti koordinaatide võrdlemist 

teadaolevate inimeste nägudest koostatud koordinaatidega. Sama inimese näod paiknevad 

tavaliselt antud n-mõõtmelises ruumis üksteisele lähedal. 

Arhitektuuriga kirjeldatud süsteem ka realiseeriti. Tarkvara kirjutati kasutades Python 

programmeerimiskeelt ning on võimeline eelnevalt salvestatud nägusi ära tundma kaamerapildist. 

Kaamerapildist tuvastatud näo põhjal on programm võimeline tegema otsuse, kas tuvastatud isik 

on tema andmevaramus või ei. 

Edasiarendusena on võimalik antud programmi rakendada ka riistvaralises lahenduses, kasutades 

näiteks Raspberry Pi platvormi. Samuti on võimalik täiustada andmevaramu kasutust, viies selle 

võrku nii, et mitme kaamera pilti saab ühe andmevaramu põhjal töödelda. 

Puudujääkidena antud süsteemis jäid ResNet-i implementatsiooni töökiirus ning ka võimalus seda 

nö. petta. Esimese vajakajäägi likvideerimiseks oleks tarvis uurida lähemalt närvivõrkude kasutust 

ning optimeerimist, teise jaoks aga lisada näiteks mingi teine, kaamerapilti toetav 

inimtuvastussüsteem. 

Üldiselt aga süsteem toimis ning seda annab rakendada sissejuhatuses mainitud targa 

turvasüsteemi edasiseks arendamiseks. 
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SUMMARY 

The thesis provided an overview of the modern approaches that are applied to facial identification. 

We presented existing methods for facial identification by method of feature extraction and 

mapping them to embeddings via the use of neural networks. We also identified and provided an 

overview of two prominent neural network architecture for conducting this embedding creation: 

deep convolutional neural networks, and residual neural networks. 

With these methods and algorithms identified, we conducted a comparison of two available 

implementations of the algorithms: OpenFace, a CNN, and ResNet, a residual neural network. The 

comparison found that, though OpenFace is a lot faster than ResNet, ResNet was able to provide a 

lot more reliability, and key of all, accuracy. As such, the ResNet based pipeline examined as used 

as the core component of our prototype system. 

Following the selection of the core pipeline, the rest of the system was detailed. Starting with the 

establishment of system requirements. With the requirements in place, the system’s architecture 

was detailed around it. The mapping of a face to a facial embedding, a point in an n-dimensional 

space, as described in [2], was used as the main device for conducting for facial identification. The 

ResNet neural network was used to produce said embeddings from a camera feed, which could 

then be compared against known embeddings for identification. 

With the architecture defined, the system was implemented. The implementation was completed 

using the Python programming language, with common libraries used for image processing and 

neural network application: OpenCV, NumPy, dlib. The implementation successfully used an on-

disk datastore to hold a selection of known faces and was able to identify known faces from a live 

camera image. 

At the conclusion of the work, the system that was implemented could easily be integrated into a 

more complex “smart” security system. Due to the libraries used, the implementation can also 

easily be applied to a capable ARM processor, such as the ones found on a Raspberry Pi. 

The main shortcoming of the system was the ability to cheat the system via the use of a previously 

capture image. Already realized solutions exist for this, as can be observed from the mobile market 

with facial identification on certain mobile phones. 
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APPENDICES 
Appendix 1 Main program code in the Python programming language 

import time 

import imutils.video 

import cv2 

import pickle 

 

from face_scanner.face_chipper import FaceChipper 

from face_scanner.face_detector import FaceDetector 

from face_scanner.face_summarizer import FaceSummarizer 

from face_scanner.frame_drawer import FrameDrawer 

from face_scanner.person_holder import * 

 

# Initialize the video streams. 

provider = imutils.video.VideoStream() 

provider.start() 

 

#  

detector = FaceDetector() 

chipper = FaceChipper("./shape_predictor_5_face_landmarks.dat") 

descriptor = FaceSummarizer("./dlib_face_recognition_resnet_model_v1.dat") 

 

# Load the PeopleDatabase from a file. 

people = pickle.load(open(".\\embeddings.pkl", "rb")) 

 

drawer = FrameDrawer() 

 

fps = imutils.video.FPS() 

fps.start() 

 

STATE_SEARCH = 0 

STATE_IDENTIFY = 1 

STATE_TIMEOUT = 2 

 

TEXT_CORNER = (10, 50) 

 

current_state = STATE_SEARCH 

timeout_started = None 

person_unlocked_for = None 

 

def do_search(frame): 

    global current_state, drawer, chipper, descriptor, detector 

 

    detections = detector.get_detections(image) 

 

    drawer.add_text("SEARCHING", TEXT_CORNER, drawer.COLOR_YELLOW) 
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    for _, detection in enumerate(detections): 

        drawer.add_rectangle(detection, drawer.COLOR_YELLOW) 

 

    if len(detections) == 1: 

        current_state = STATE_IDENTIFY 

 

def do_identify(frame): 

    global current_state, drawer, chipper, descriptor, detector 

 

    detections = detector.get_detections(image) 

 

    for _, detection in enumerate(detections): 

        drawer.add_rectangle(detection, drawer.COLOR_YELLOW) 

 

    drawer.add_text("IDENTIFYING", TEXT_CORNER, drawer.COLOR_YELLOW) 

 

    if len(detections) != 1: 

        current_state = STATE_SEARCH 

 

        descriptor.reset_embeddings() 

    else: 

        detections = detector.get_detections(image) 

        detection = detections[0] 

 

        drawer.add_rectangle(detection, drawer.COLOR_RED) 

 

        chip = chipper.get_face_chip(image, detection) 

 

        descriptor.add_embedding(chip) 

 

        if len(descriptor.embeddings) == 3: 

            current_state = STATE_TIMEOUT 

 

def do_timeout(frame): 

    global current_state, drawer, chipper, descriptor, detector, person_unlocked_for, people, 

timeout_started 

 

    if timeout_started is None: 

        averaged_embedding = descriptor.embedding_avg_position() 

 

        person, dist = people.find_closest_to(averaged_embedding) 

 

        timeout_started = time.time() 

 

        if dist < 0.5: 

            drawer.add_text(f"UNLOCKED; WELCOME {person.name}", TEXT_CORNER, 

drawer.COLOR_GREEN) 

            person_unlocked_for = person.name 

            return 
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        else: 

            drawer.add_text(f"LOCKED; NO MATCH", TEXT_CORNER, drawer.COLOR_RED) 

            return 

 

    if time.time() - timeout_started > 4: 

        person_unlocked_for = None 

        descriptor.reset_embeddings() 

        timeout_started = None 

 

        current_state = STATE_SEARCH 

    elif person_unlocked_for: 

        drawer.add_text(f"TIMEOUT, UNLOCKED FOR {person_unlocked_for}", TEXT_CORNER, 

drawer.COLOR_GREEN) 

    else: 

        drawer.add_text("TIMEOUT, LOCKED", TEXT_CORNER, drawer.COLOR_RED) 

 

while True: 

    image = provider.read() 

 

    drawer.new_frame(image) 

 

    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) 

 

    if current_state == STATE_SEARCH: 

        do_search(image) 

 

    elif current_state == STATE_IDENTIFY: 

        do_identify(image) 

 

    elif current_state == STATE_TIMEOUT: 

        do_timeout(image) 

 

    drawer.show_frame("output") 

 

    if drawer.wait_key(1) == ord("q"): 

        break 

 

    fps.update() 

 

fps.stop() 

print("[INFO] elasped time: {:.2f}".format(fps.elapsed())) 

print("[INFO] approx. FPS: {:.2f}".format(fps.fps())) 

 

cv2.destroyAllWindows() 

provider.stop() 
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Appendix 2 The Person class code used by the main program 

import numpy as np 

import dataclasses 

 

@dataclasses.dataclass 

class Person: 

    name: str 

    position: np.array 

 

    def distance_from(self, other): 

        return np.linalg.norm(self.position - other) 

 

class PersonConstructor: 

    def __init__(self, name: str): 

        self.name = name 

        self.embeddings = None 

 

    def append_embedding(self, embedding: np.array): 

        if self.embeddings is None: 

            self.embeddings = embedding 

        else: 

            self.embeddings = np.vstack((self.embeddings, embedding)) 

 

    def std_dev(self): 

        return np.std(self.embeddings, axis=0) 

 

    def average_position(self): 

        return np.average(self.embeddings, axis=0) 

 

    def to_person(self): 

        return Person(self.name, self.average_position()) 
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Appendix 3 The PeopleDatabase class code used by the main program 

from .person import Person, PersonConstructor 

 

class PeopleDatabase: 

    def __init__(self): 

        self._people = {} 

 

    def __getitem__(self, key: str): 

        return self._people[key] 

 

    def __setitem__(self, key: str, value: Person): 

        self._people[key] = value 

 

    def find_closest_to(self, other): 

        best_match = None 

        last_dist = None 

 

        for _, person in self._people.items(): 

            dist = abs(person.distance_from(other)) 

 

            if not best_match or last_dist > dist: 

                last_dist = dist 

                best_match = person 

 

        return best_match, last_dist 

 

class PeopleConstructor: 

    def __init__(self): 

        self._people = {} 

 

    def __getitem__(self, key: str): 

        if key not in self._people: 

            self._people[key] = PersonConstructor(key) 

 

        return self._people[key] 

 

    def for_all(self): 

        for key, value in self._people.items(): 

            yield key, value 

 

    def to_people_database(self): 

        people = PeopleDatabase() 

 

        for name, constructor in self._people.items(): 

            person = constructor.to_person() 

            people[name] = person 

         

        return people  
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Appendix 3 The FaceDetector class used in the main program 

import dlib 

 

class FaceDetector: 

    def __init__(self): 

        self._detector = dlib.get_frontal_face_detector() 

 

    def get_detections(self, image): 

        """ 

        Takes an image as input. Returns a set of frontal facial detections. 

        """ 

        return self._detector(image, 1) 
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Appendix 4 The FaceChipper class used by the main program 

import dlib 

 

class FaceChipper: 

    def __init__(self, face_predictor_path): 

        self._predictor_path = face_predictor_path 

        self._face_predictor = dlib.shape_predictor(self._predictor_path) 

 

    def get_face_chip(self, image, detection): 

        """ 

        Takes an image and a detection, cuts out the detection from it, and returns 

        the appropriate face chip. 

        """ 

 

        shape = self._face_predictor(image, detection) 

        return dlib.get_face_chip(image, shape) 
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Appendix 5 The FaceSummarizer class used by the main program 

import numpy as np 

import dlib 

 

class FaceSummarizer: 

    def __init__(self, face_model_path): 

        self._model_path = face_model_path 

        self._recognizer = dlib.face_recognition_model_v1(face_model_path) 

 

        self.embeddings = None 

 

    def reset_embeddings(self): 

        """ 

        Resets the current HOG embedding array. 

        """ 

        self.embeddings = None 

 

    def add_embedding(self, chip): 

        """ 

        Takes a face chip, turns it into a 256d HOG embedding, and stores it in the 

        current array. 

 

        Returns the newly acquired descriptor. 

        """ 

        descriptor = self._recognizer.compute_face_descriptor(chip) 

 

        if self.embeddings is None: 

            self.embeddings = descriptor 

        else: 

            self.embeddings = np.vstack((self.embeddings, descriptor)) 

 

        return descriptor 

 

    def embedding_std_dev(self): 

        return np.std(self.embeddings, axis=0) 

 

    def embedding_avg_position(self): 

        return np.average(self.embeddings, axis=0) 
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Appendix 6 The FrameDrawer class used by the main program 

import cv2 

 

class FrameDrawer: 

    COLOR_GREEN = (0, 255, 0) 

    COLOR_RED = (0, 0, 255) 

    COLOR_BLUE = (255, 0, 0) 

    COLOR_YELLOW = (0, 255, 255) 

 

    def __init__(self): 

        self._current_frame = None 

 

    def new_frame(self, frame): 

        self._current_frame = frame 

 

    def add_rectangle(self, rectangle, color): 

        """ 

        Adds a rectangle to be drawn. 

        """ 

        if self._current_frame is None: 

            return 

 

        start_x = rectangle.tl_corner().x 

        start_y = rectangle.tl_corner().y 

        end_x = rectangle.br_corner().x 

        end_y = rectangle.br_corner().y 

 

        cv2.rectangle(self._current_frame, (start_x, start_y), (end_x, end_y), color, 2) 

     

    def add_text(self, string, coordinates, color): 

        if self._current_frame is None: 

            return 

 

        cv2.putText(self._current_frame, string, coordinates, cv2.FONT_HERSHEY_SIMPLEX, 1, color, 

2) 

 

    def show_frame(self, frame_name): 

        cv2.imshow(frame_name, self._current_frame) 

 

    def wait_key(self, timeout): 

        return cv2.waitKey(timeout) & 0xFF 

 
 


