
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Computer Systems

IASM02/15
Tõnis Lusmägi 178217IASM

SGX - SECURITY & PERFORMANCE
EVALUATION

Master’s Thesis

Supervisor: Kolin Paul

PhD

Co-Supervisor: Peeter Ellervee

PhD

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond
Arvutisüsteemide instituut

IASM02/15
Tõnis Lusmägi 178217IASM

SGX - TURVALISUSE JA JÕUDLUSE
HINNANG

Magistritöö

Juhendaja: Kolin Paul

PhD

Kaasjuhendaja: Peeter Ellervee

PhD

Tallinn 2019

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Tõnis Lusmägi

2019-05-06

3

Abstract

Intel Software Guard Extensions (SGX) is collection of instruction set extensions and
mechanisms for memory access that provide integrity and confidentiality guarantees on
modern Intel processors. SGX is able to launch secure containers named enclaves that
remain shielded from all CPU privilege levels.

This paper approaches SGX from security perspective, studying SGX from hardware to
system level. Important security features like key hierarchy, encryption and attestation are
broken down. Security evaluation is presented based on known vulnerabilities, attacks and
exploits.

Performance of three SGX edge routine methods are benchmarked in two SGX envi-
ronments - host and guest Linux, both fully capable of running SGX. This is achieved
through experimental software offered by Intel. SGX virtualization uncovers interesting
results both from systems and security perspectives.

This thesis is written in English and is 73 pages long, including 3 chapters, 28 figures,
and 20 tables.

4

Annotatsioon

Intel Software Guard Extensions (SGX) on instruktsiooni laienduste kogum ja mälu juur-
depääsumehhanism, mis pakub andmete terviklikkuse ja konfidentsiaalsuse garantiisid
modernsetel Inteli protsessoritel. SGX on võimeline käivitama turvalisi enklaavkon-
teinereid, mis on kaitstud kõikide CPU privileegitasemete eest.

See magistritöö läheneb SGX’le turvalisuse perspektiivist, uurides SGX’i riistvara
tasemest kuni süsteemi tasemeni. Tähtsad turvafunktsioonid nagu võtmehierarhia,
krüpteering ja atesteerimine seletatakse lahti. Turvalisuse hinnang esitatakse teadaole-
vate turvanõrkuste, rünnakute ja ekspluatatsioonide analüüsil.

Kolmele erinevale SGX’i äärefunktsiooni meetodile tehakse jõudlustestid kahes erinevas
SGX’i keskkonnas - host ja guest Linuxis, mõlemad võimelised täielikult rakendama
SGX’i. See on saavutatud tänu Inteli eksperimentaalsele virtualiseerimistarkvarale.
SGX’i virtualiseerimine paljastab huvitavad tulemused süsteemi kui ka turvalisuse per-
spektiividest.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 73 leheküljel, 3 peatükki,
28 joonist, 20 tabelit.

5

List of abbreviations and terms

AES-NI Advanced Encryption Standard New Instructions

AEX Asynchronous Enclave Exit

API Application Programming Interface

ASLR Address Space Layout Randomization

BIOS Basic Input Output System

CDF Cumulative Distribution Function

CPU Central Processing Unit

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

DDoS Distributed Denial-of-Service

DH Diffie-Hellman

DHKE Diffie-Hellman Key Exchange

DRAM Dynamic Random-Access Memory

ECall Enclave Call

EDL Enclave Definition Language

eFUSE Electronically Programmable Fuse

EPC Enclave Page Cache

EPID Enhanced Privacy ID

HVM Hardware Virtual Machine

IDL Interface Definition Language

IP Intellectual Property

IPP Integrated Performance Primitives

ISR Interrupt Service Routine

ISV Independent Software Vendor

6

ISVSVN Independent Software Vendor Security Version Number

KSS Key Sharing & Separation

KVM Kernel Virtual Machine

L1D Level 1 Data Cache

L1I Level 1 Instruction Cache

L1TF L1 Terminal Fault

LE Launch Enclave

LLC Last Level Cache

MAC Message Authentication Code

ME Management Engine

MFC Microsoft Foundation Class Library

MMU Memory Management Unit

NIST National Institute of Standards and Technology

NUC Next Unit of Computing

NVD National Vulnerability Database

OCall Outside Call

ORAM Oblivious Random Access Machine

OS Operating System

PCL Protected Code Loader

PMC Performance Monitoring Counters

PSW Platform Software

PvE Provisioning Enclave

QE Quoting Enclave

QEMU Quick Emulator

ROP Return-oriented Programming

7

SDK Software Development Kit

SDM Software Developer’s Manual

SEH Structured Exception Handling

SGX Software Guard Extensions

SMM System Management Mode

SO Shared Object

SPS Server Platform Services

SSL Secure Sockets Layer

STL Standard Template Libraries

TCB Trusted Computing Base

TEE Trusted Execution Environment

TLS Transport Layer Security

TOCTTOU Time-of-Check-to-Time-of-Use

tRTS Trusted Run-Time System

TSX Transactional Synchronization Extensions

TXT Trusted Execution Technology

UEFI Unified Extensible Firmware Interface

uRTS Untrusted Run-Time System

VM Virtual Machine

VMM Virtual Machine Monitor

XEN Xenial

8

Contents

1 Introduction 14

2 Security Evaluation 16

2.1 SGX overview . 16

2.1.1 Run-time system . 18

2.1.2 Features at a glance . 21

2.2 Key hierarchy & encryption schemes . 22

2.3 Known vulnerabilities . 27

2.4 Security research . 29

2.4.1 Side-channel attacks . 29

2.4.2 Side-channel mitigations . 35

2.4.3 Speculative attacks . 36

2.4.4 ROP attacks . 36

2.5 Conclusion . 37

3 System Setup 39

3.1 SGX support . 39

3.2 Test hardware . 41

3.3 Linux system . 41

3.3.1 SGX driver . 41

3.3.2 SGX SDK & PSW . 42

3.4 Virtualized Linux system . 43

3.4.1 KVM-SGX . 44

9

3.4.2 QEMU-SGX . 45

3.4.3 Guest system . 47

3.5 Conclusion . 49

4 Performance Evaluation 51

4.1 Testing methodology . 53

4.2 Results . 55

4.2.1 HotCalls . 55

4.2.2 Switchless Calls . 58

4.2.3 Comparison . 60

4.3 Conclusion . 63

5 Summary 65

References 68

Appendix 1 – SGX instructions 74

10

List of Figures

1 Protection rings . 17

2 SGX hypothetical generic run-time system 18

3 Key hierarchy . 23

4 SGX from hardware level to system level 39

5 Fetch SGX driver . 42

6 Install the ISGX driver module . 42

7 Fetch Linux-SGX . 42

8 Build Linux-SGX . 43

9 Install SGX PSW and SGX SDK . 43

10 Working principles of KVM-SGX and QEMU-SGX 44

11 Fetch KVM-SGX . 44

12 Configure and install KVM-SGX . 45

13 Make KVM-SGX ramdisk . 45

14 Fetch QEMU-SGX . 46

15 Build and install QEMU-SGX . 46

16 Check for, and load KVM modules . 47

17 Check for, and load Virtio modules . 47

18 Install and start Libvirt daemon . 47

19 Create a virtual disk and boot a live image of Ubuntu 48

20 Launch QEMU-SGX . 48

21 Install SGX PSW on Ubuntu . 48

22 System 0: Arch Linux 5.0.0-mainline 49

23 System 1, Host: Arch Linux 5.0.0-kvm-sgx 50

11

24 System 2, Guest: Ubuntu 18.04.02 Linux 4.18.0-17-generic 50

25 Test 1, HotCalls, System 1: (a) Regular Calls, (b) HotCalls 57

26 Test 2, HotCalls, System 2: (a) Regular Calls, (b) HotCalls 57

27 Test 3, Switchless Calls, System 1: (a) Regular Calls, (b) Switchless Calls 59

28 Test 4, Switchless Calls, System 2: (a) Regular Calls, (b) Switchless Calls 59

12

List of Tables

1 Rules and limitations to SGX . 20

2 Software level transformation key types [3] 24

3 Enclaves key policy fields [3] . 24

4 Layout of KEYREQUEST data structure [3] 25

5 SGX SDK Integrated Performance Primitives (IPP) and Secure Sockets
Layer (SSL) encryption schemes and primitives [5], [11], [12] 26

6 Enclave types by build configuration [5] 26

7 Enclave signing materials [5] . 27

8 Status of known Intel SGX vulnerabilities 28

9 Microbenchmark latencies in HotCalls 56

10 Microbenchmark latencies in Switchless Calls 58

11 System 1 vs. System 2 RDTSCP overheads 60

12 System 1 vs. System 2 Regular Calls overheads 60

13 System 1 vs. System 2 HotCalls overheads 60

14 System 1 vs. System 2 Switchless Calls overheads 61

15 Regular ECalls vs. Hot ECalls . 61

16 Regular OCalls vs. Hot OCalls . 61

17 Regular ECalls vs. Switchless ECalls 62

18 Regular OCalls vs. Switchless OCalls 62

19 Hot ECalls vs. Switchless ECalls . 62

20 Hot OCalls vs. Switchless OCalls . 62

13

1 Introduction

Intel Software Guard Extensions (SGX) is a Trusted Execution Environment (TEE) for
modern Intel processors. More specifically, SGX is a set of Central Processing Unit
(CPU) instructions and mechanisms for encrypted memory access made available to the
user through an extensive software stack [1]. SGX has a strong security model with
multiple protection layers, offering security guarantees for confidentiality and integrity of
data [1].

SGX technology, available since 6th generation Intel Core processors, is a change of di-
rection for Intel, moving away from Trusted Execution Technology (TXT), the previous
platform security technology [2]. SGX is considered quite new, although a second it-
erations of the technology, SGX2 and SGX Software Development Kit (SDK) v2.5 are
currently available [3], [1]. There isn’t a paradigm change in the new revision, additional
features and enhanced security are introduced, while at it’s core, still built on top of SGX1,
which by it’s own offers the full set of security guarantees [3].

SGX is suitable for cloud computing and offers additional security against malicious enti-
ties by cutting the cloud service provider out of the chain of trust [1]. Implementing SGX
into cloud computing comes at a price. An additional virtualization layer to SGX is re-
quired, currently not natively available in SGX [3], [4]. Intel offers preliminary patches to
support virtualization, while native instructions remain reserved for future CPUs [3], [4].
Virtualization of SGX remains a hot topic in computer engineering and cyber security.

SGX is supported on most modern Operating Systems (OS). Compatible SGX hardware
is harder to find. Setting up SGX environments can be a complex procedure, especially for
new adopters. The complexity rises exponentially when SGX virtualization is introduced,
aimed for advanced users, still unambiguous.

SGX implies performance penalties for users. Research on SGX performance is scarce,
but significant advances have been made. A recent addition to SGX software adds the
ability to use a faster function call method [1]. While it is well tested and considered
secure, wide-scale research into SGX function calls performance is lacking.

Topic of the thesis is SGX - Secuity and Performance Evaluation, presented in three chap-
ters. The goals of this thesis are to analyze and assess SGX’s security through hardware,

14

software and systems aspects. By evaluating SGX, a better understanding of relevant
SGX vulnerabilities are obtained, which serves as an input to develop better protection
mechanisms in future revisions of SGX, and may lead to development of new SGX ap-
plications, even integration of SGX into existing applications in need of better security.
SGX performance evaluation gives a conclusive answer of the best calls method.

Problems to solve: SGX architecture and security research, SGX environments setup,
programming microbenchmarks and testing with conclusive results.

Chapter 1 covers the full set of SGX’s security features from hardware level to software
level. Intel’s documentation and publicly available information on vulnerabilities are used
to assess SGX’s security guarantees. Extensive literature review will uncover known SGX
vulnerabilities. Chapter 2 focuses on system setup and covers all the bases to find com-
patible SGX hardware, and set up environments. Special focus is on SGX virtualization,
which is in rapid development. Chapter 3 is performance evaluation, where SGX func-
tion calls performances are compared against each-other and against themselves across
two SGX environments - guest and host Linux.

15

2 Security Evaluation

Intel SGX promises confidentiality and integrity for users data. To harness SGX’s full
potential, it should be understood first. This section looks at SGX’s security features as
stated by Intel. Through extensive literature review, SGX’s real-world security properties
are evaluated.

Evaluation starts from the CPU and works through the software stack. SGX is powered
by a rich cryptosystem, which will be one of the main focus points of this paper. By
understanding the cryptosystem and derivation of secure keys, potential vulnerabilities
and attack vectors can be started to unravel. SGX intentionally doesn’t protect against all
types of attacks, the reasons for this are unknown, they are left for the user to solve.

This section presents a classification of known attacks on SGX, some of them disclosed
publicly and mitigated, others, disregarded by Intel.

2.1 SGX overview

SGX is a set of instructions and mechanisms for memory access that provide integrity and
confidentiality guarantees on Intel architecture processors [3]. Intel SGX encompasses
three collections of instruction extensions, referred to as SGX1, SGX2 and OVERSUB
[3]. SGX1 extensions enable an application to instantiate a protected container, named
an enclave, which resides in an encrypted memory area (table 1) [3]. SGX2 extensions
allow additional flexibility in runtime management of enclave resources and thread ex-
ecution within an enclave (table 2) [3]. OVERSUB extensions enable Virtual Machine
Monitors (VMMs) or other executives to manage the Enclave Page Cache (EPC) space
more efficiently on the platform between virtualized entities (table 3) [3].

The virtual address space of the encrypted memory area - EPC has an upper limit of 128
MB and may vary depending on hardware [5]. EPC pages have 4 KB granularity [1].
Although there is no limit on the number of instantiated enclaves, Trusted Computing
Base (TCB) size is still limited by the EPC size [5].

Intel 64 and IA-32 Architectures Software Developer’s Manual (SDM) recognizes four
privilege levels in IA-32 architecture’s protection mechanism (figure 1) [3]. A greater
level indicates less privilege [3]. Using protection levels improves the reliability of op-

16

erating systems, preventing programs or tasks operating at lesser privilege level from
accessing a segment with a greater privilege [3]. Privilege levels can be interpreted as
protection rings [3].

Level 0

Level 1

Level 2

Level 3

Kernel

Device drivers

Device drivers

Applications

Protection Rings

Highest privilege

Lowest privilege

Figure 1. Protection rings.

Intel SGX is designed to protect against software attacks [5]. SGX enclave memory
cannot be read or written from outside the enclave regardless of privilege level and CPU
mode. This shields the enclave from the OS (ring 3 and ring 0), System Management
Mode (SMM) and VMM, or another enclave [5]. Enclaves can be debugged with intel
SGX debugger [5]. Enclaves cannot be entered via unauthorized function calls, jumps,
register- or stack manipulation [5]. Only 32 or 64 bit CPU modes are supported to execute
enclave code [5].

Protection against known hardware attacks include: enclave encryption using industry-
standard encryption algorithms with replay protection, tapping the memory or connecting
the Dynamic Random-Access Memory (DRAM) module to another system, regeneration
of random memory encryption key after a power cycle and storing it into the CPU [5].

Other design considerations include side channel attacks or reverse engineering, from
which Intel offers no security guarantees [5]. Protection against these attacks are left for

17

the developers to solve [5].

These software and hardware adversaries and countermeasures form the SGX security
model [6].

2.1.1 Run-time system

SGX brigs new programming constructs and principles best described as a hypothetical
generic run-time system, consisting of following elements (figure 2) [1]:

� Untrusted Run-Time System (uRTS);

� Trusted Run-Time System (tRTS);

� Edge Routines;

� 3rd Party Libraries.

3rd party libraries

EDL

tRTSuRTS

E
d
g
e
ro
u
ti
n
es

ECALL

OCALL E
d
g
e
ro
u
ti
n
es

Figure 2. SGX hypothetical generic run-time system.

uRTS describes the code that executes outside of the enclave environment, and has func-
tions like loading and managing enclaves, making calls to an enclave and receiving calls
from within an enclave. tRTS describes the code that executes within an enclave, and

18

has functions like receiving calls into the enclave and making calls outside of an enclave,
management of the enclave, and uses standard C/C++ libraries and run-time environment.
The interface between the uRTS and the tRTS is formed by edge routines - Enclave Call
(ECall) and Outside Call (OCall) functions that bind incoming and outgoing functions of
the application with the enclaves (or vice versa). The Edger8r tool, supplied with SGX
SDK, generates user specified edge routines automatically. The last element, 3rd party
libraries describe any library that has been tailored to work inside an enclave [1].

SGX hypothetical generic run-time system implies rules and limitations to SGX (table 1)
[5].

Enclave functions rely on special versions of the C/C++ runtime libraries, Standard Tem-
plate Libraries (STL), synchronization and many other trusted libraries that are made
available in the SGX SDK [5]. SGX allows to import 3rd party libraries into the enclave
[5]. To be considered secure, libraries inside the enclave must follow rules that comply
with internal enclave functions [5]. SGX developer reference manual includes a guide on
enclave library porting and development [5].

Dynamic linking of enclave libraries is strictly prohibited by the enclave loader [5]. This
restriction comes from the core security mechanism of SGX - enclave measurement [5].
This means that static linking remains the only option to include libraries inside the en-
clave, and furthermore, these libraries should not have any dependencies [5]. SGX SDK
also includes trusted and untrusted simulation libraries, which don’t require SGX hard-
ware, but simulate SGX instructions instead [5].

Library functions inside the enclave which need to make ECalls and/or OCalls, need to
be explicitly declared in proxy files named Enclave Definition Language (EDL) files [5].
These files are used by the Edger8r tool to create wrapper functions for enclave exports
(used by ECalls) and imports (used by OCalls) [5]. Some trusted libraries come paired
with their untrusted counterparts and EDL files [5].

19

Table 1. Rules and limitations to SGX.

Feature Support Comment

Languages o Native C/C++, interface functions limited to C

C/C++ calls to other
Shared Objects (SOs)

7 Explicitly by OCalls

C/C++ calls to system
provided C/C++/STL
libraries

7 Only SGX trusted version of these libraries

OS Application
Programming Interface
(API) calls

7 Explicitly by OCalls

C++ frameworks 7 Microsoft Foundation Class Library (MFC), QT,
Boost

Call C++ class methods 3 Including C++ classes, static and inline functions

Intrinsic functions o Only supported functions included in the SDK

Inline assembly o Same as previous

Template functions o Only supported in enclave internal functions

Ellipse (. . .) o Same as previous

Varargs (va_list) o Same as previous

Synchronization o Only SGX SDK spin-lock, mutex and condition
variables

Threading support o Threads that run inside the enclave must be created
within the untrusted application, support for thread
synchronization within the enclave

Thread local storage o Only implicit via_thread

Dynamic memory
allocation

3 Maximum heap size set at enclave creation

C++ exceptions 3 With performance impact

Structured Exception
Handling (SEH)
exceptions

7 SDK API allows to register exception handlers that
handle limited set of hardware exceptions

Signals 7 Not supported inside the enclave

20

2.1.2 Features at a glance

Intel SGX can be described by it’s collection of unique security features. While the tools
to develop secure enclaves are made readily available, SGX’s strongest features are un-
locked only in direct collaboration with Intel [5]. Features like attestation, provisioning
and sealing form the outer-layer of SGX’s security [5].

Attestation is the process of validating currently running software against it’s platform
to be identical to their initially established identities [1]. Intel provides two attestation
mechanisms with SGX: local- and remote attestation [1]. Successful attestation offers
security guarantees for provisioning secrets into the secure enclave [1].

Local (intra-platform) attestation is a mechanism where software and platform identities
are verified on the user’s platforms (enclave to enclave) [1].

Remote (inter-platform) attestation is a mechanism where software and platform identi-
ties are verified remotely by a third party (Intel) [1], [7]. Remote attestation is performed
by Intel’s attestation service through an encrypted Transport Layer Security (TLS) con-
nection between the attestation server and the user’s SGX application [1]. The user is
verified using a special Launch Enclave (LE) running on the user’s platform, containing
the remote attestation service license [5]. After a successful license check, the attestation
server launches a special type of enclave in the user’s application named Quoting Enclave
(QE), that requests a report from the application’s enclave [1]. QE authenticates the re-
port and converts it into Enhanced Privacy ID (EPID) -signed quote which is delivered to
the attestation server along with a manifest [1]. Attestation server uses EPID verification
service to verify the quote’s EPID signature [1]. The attestation server then compares
the quote against a trusted configuration, verifying it’s identity [1]. Attestation server
launches another special enclave in the user’s application, named Provisioning Enclave
(PvE), which is used to provision secrets into the user’s enclave [1].

Sealing is an extended SGX feature, which enables to encrypt and store secrets to disk
or the cloud [1], [8]. Sealing can be initiated locally, or remotely by the attestation ser-
vice, that launches a seal enclave in the user’s application, performing sealing on user’s
enclaves such as Intellectual Property (IP) enclaves (Protected Code Loader (PCL)) [1],
[5]. Sealing enables yet another SGX feature - the ability for enclaves to survive power
transitions [1]. Every enclave generates a token (EINITTOKEN) for the SGX application
during build time [5]. This token is used to verify that an enclave is permitted to launch,

21

and secures that secrets in the enclave, remain accessible only to the enclave that created
it [5].

Other extended SGX features are Switchless Calls and Key Sharing & Separation (KSS)
[5]. The first is a fast ECall/OCall method and the latter is part of key derivation, adding
additional control over the key derivation process [5].

Lastly, SGX uses a new programming language named EDL based on Interface Definition
Language (IDL) family, and acts as a static proxy between the trusted and untrusted SGX
constructs [5]. This includes linking the enclave with trusted headers and libraries, and
defining trusted functions that can enter and exit enclaves [5].

2.2 Key hierarchy & encryption schemes

SGX provides software with access to keys unique to each CPU that are rooted into the
package during manufacturing [3]. While largely undocumented, it is know that these
keys are the root provisioning key and the root seal key [9] - embedded into the proces-
sors internal hardware registers (CREGs) - Electronically Programmable Fuses (eFUSEs),
named CR_SEAL_FUSEs, which are 128 bits and part of the CPU package [3], [10].

The root provisioning key is randomly generated by a special purpose offline key gener-
ation facility, delivered to Intel via a secure factory network [9]. This key proves to the
TCB that it’s a genuine SGX CPU [9]. The root seal key is generated and programmed
into the eFUSE during the manufacturing of the processor [9]. While the root provision-
ing key is known and retained by Intel, the root seal key is not - it’s generated by an
internal automated process and is only known to the specific CPU itself [9]. All keys
except the root provisioning key include the root seal key in their derivations, rendering
them unknown to Intel [9]. The root provisioning key, the root seal key and Independent
Software Vendor Security Version Number (ISVSVN) together form the hardware TCB,
which is the first key transformation that cascades into subsequent key derivations (figure
3) [9].

Each enclave requests keys using the EGETKEY leaf function. This key is based on
enclave parameters such as measurement, the enclave signing key, security attributes of
the enclave and the hardware TCB key [3]. This second key transformation happens on
the software level [9]. By using a key derivation mechanism based on enclave properties,

22

Root Seal KeyRoot Provisioning Key

Key Recovery

Transformations

EGETKEY DerivesEGETKEY Derives

ISVSVN

Enclave
Measurements
and Metadata

Provisioning

Provisioning
Service

Attestation
Key

EINIT

Provision
SealSeal

Report
Token

Figure 3. Key hierarchy.

it is guaranteed that each enclave requesting a key gets a unique key, only accessible by
the respective enclave [3]. It also guarantees that an enclave gets the same key at different
request [3].

Table 2 lists the key types that can be generated with EGETKEY leaf function, and table
3 lists the enclave key policy fields, which become the basis for key derivation [3], [5],
[9]. EGETKEY combines the values of these two tables using a pseudo random function
that populates the KEYREQUEST data structure and generates the derived key (table 4)
[9]. Enclave keys can be derived from common key policy fields, e.g., when multiple
enclaves request keys based on common signing identity (MRSIGNER), then that group
of enclaves can use the same key [3]. Key sharing and derivation in SGX is handled by
Diffie-Hellman Key Exchange (DHKE) [5].

23

Table 2. Software level transformation key types [3].

Key name Description

EINITTOKEN_KEY Key used to calculate the Message Authentication Code (MAC)
on EINITTOKENs. Tokens are verified in the EINIT leaf
function

PROVISION_KEY Key used by attestation provisioning software to prove to the
remote party that the CPU is genuine and identify the current
executing TCB

PROVISION_SEAL_KEY Same as previous, but key is used for sealing data to disk

REPORT_KEY Used to calculate the MAC on the REPORT structure.
EREPORT leaf function calculates the MAC and destination
enclave uses the report key to verify the MAC

SEAL_KEY General purpose key for the enclave, used to encrypt and
calculate MAC of secrets on disk. There are two types of seal
keys. One is based on MRENCLAVE, other on MRSIGNER.

Table 3. Enclaves key policy fields [3].

Field Description

MRENCLAVE SHA-2 hash measurement of the enclave calculated at build
(enclave identity)

MRSIGNER SHA-2 hash of the public key used to sign the enclave’s
SIGStruct (signing identity)

NOISVPRODID Independent Software Vendor (ISV) Product ID assigned by
enclave signer through the SIGStruct. This field indicates that
Product ID will not be used

CONFIGID Enclave configuration ID

ISVFAMILYID ISV assigned Family ID

ISVEXTPRODID ISV extended Product ID

RESERVED Must be zero

24

Table 4. Layout of KEYREQUEST data structure [3].

Field Description

KEYNAME Key type

KEYPOLICY Key policy input used in key derivation

ISVSVN ISVSVN used in key derivation

RESERVED Must be zero

CPUSVN CPU’s SVN used in key derivation

ATTRIBUTEMASK Mask to define ATTRIBUTES bits used in key derivation

KEYID Key wear-out protection

MISCMASK Mask to define MISCSELET bits used in key derivation

CONFIGSVN Enclave configuration’s SVN used in key derivation

RESERVED Must be zero

SGX SDK provides an enclave signing tool named sgx_sign, which is used to sign the
enclaves using cryptography primitives provided in the SGX SDK crypto libraries (table
5) [5]. SGX signing tool is able to sign and launch all enclaves using a 1-step signing
process, except production enclaves (table 6) [5]. Production enclaves must follow a 2-
step signing process [5]. First step uses sgx_sign tool at the end of the enclave build
process, where it generates the enclave signing materials (table 7) [5]. ISV takes the
signing materials to an external signing platform/facility retaining a private key, which is
used for signing, then taken back to the build platform [5]. At the second step, ISV runs
the sgx_sign tool with a special command, that populates the enclave’s metadata section
with a public key hash and a signature [5]. Enclave’s metadata is stored in dedicated EPC
pages [2]. These pages are not mapped to any of the enclave’s address spaces, but mapped
separately to be used by the SGX software [2]. SGX can furthermore harness the CPU’s
Advanced Encryption Standard New Instructions (AES-NI) [5].

SGX attestation uses Intel EPID, which is an anonymous group signature scheme for
remote authentication and secret provisioning [1], [7]. EPID allows platforms to crypto-
graphically sign objects while preserving the signers privacy [1]. In EPID, each signer
has a unique private key, while verifiers use a common public key (EPID Group ID key)
to verify individual signatures. This ensures user privacy, as they cannot be uniquely
identified [1]. EPID never exposes the CPU outside of the platform [1].

25

Table 5. SGX SDK IPP and SSL encryption schemes and primitives [5], [11], [12].

Name Usecases

AES-CTR Encryption and decryption of input data stream. CTR primitive
increments a counter on successful calls, increment block is used
on subsequent operations on the same data

AES-GCM Encryption and decryption of data, utilizes AES-NI. PCL

CMAC Hash calculation of dataset

ECC Shared key generation for two participants of the cryptosystem

ECC-ECDSA Encryption and decryption of data, key exchange

HMAC Hash calculation of input data buffer

RSA-PKCS #1 v1.5 Signing enclave material

SHA-1 Hash calculation of input data buffer

SHA-2 Hash calculation of input data buffer, PCL

Table 6. Enclave types by build configuration [5].

Type Description

Simulation Simulated enclave does not need an SGX processor

Debug Intel SGX debugger can connect to debug enclaves. Debug flag can be set in
parallel with all enclave types

Prerelease Prerelease enclave is identical to production enclave, but requires only 1-step
signing by sgx_sign tool

Release Production enclave requires 2-step signing, the latter, with a white-listed key
by Intel

EPID signature scheme allows to overcome well-known privacy concern of standard
asymmetric cryptographic signature algorithms, where a key is associated with specific
hardware performing the quoting operation [1]. Usually a small number of keys are used
during the life-cycle of the platform, that make it possible for third parties to collude and
track users [1].

Intel PCL is intended to protect the confidentiality of the enclave code [5]. SGX guaran-
tees integrity of code and confidentiality and integrity of data at run-time [5]. To provide
confidentiality of offline binaries, PCL is used, that symmetrically encrypts the enclave
shared object at build time and decrypts at enclave load time [5].

26

Table 7. Enclave signing materials [5].

File Format Description

Enclave file Shared
object

Standard shared object

Signed enclave file Shared
object

Enclave file with a signature, signed by sgx_sign

Configuration file XML Enclave configuration file

Key file PEM Contains unencrypted RSA 3072-bit key with public
exponent of 3

Enclave hex file RAW Dump of all enclave signing material to be signed with the
private RSA key

Signature file RAW Dump of the signature generated by ISV’s external signing
facility using RSA-PKCS #1 v1.5 and SHA-2 hash

Metadata file RAW Dump of SIGStruct metadata of the signed enclave. This file
is used by Intel to to whitelist production enclaves

PCL encryption/decryption is handled by Intel remote attestation service [5]. The sealed
enclave becomes the IP enclave [5]. While PCL does not encrypt end-to-end, it encrypts
the relevant IP sections [5]. The sections remaining unencrypted are detailed in SGX
developers reference manual, and should be taken into consideration by the developers
[5]. PCL uses modified code snippets from OpenSSL1.1.0g library, which become part
of the IP enclave’s TCB [5].

2.3 Known vulnerabilities

National Institute of Standards and Technology (NIST) National Vulnerability Database
(NVD) lists following Common Vulnerabilities and Exposures (CVE) in Intel SGX [13],
[14]:

� CVE-2019-0122 Double free in Intel(R) SGX SDK for Linux before version 2.2
and Intel(R) SGX SDK for Windows before version 2.1 may allow an authenti-
cated user to potentially enable information disclosure or denial of service via local
access.

� CVE-2018-18098 Improper file verification in install routine for Intel(R) SGX SDK

27

and Platform Software for Windows before 2.2.100 may allow an escalation of
privilege via local access.

� CVE-2018-3615 Systems with microprocessors utilizing speculative execution and
Intel software guard extensions (Intel SGX) may allow unauthorized disclosure of
information residing in the L1 data cache from an enclave to an attacker with local
user access via a side-channel analysis.

� CVE-2018-3689 AESM daemon in Intel Software Guard Extensions Platform Soft-
ware Component for Linux before 2.1.102 can effectively be disabled by a local at-
tacker creating a denial of services like remote attestation provided by the AESM.

� CVE-2018-3626 Edger8r tool in the Intel SGX SDK before version 2.1.2 (Linux)
and 1.9.6 (Windows) may generate code that is susceptible to a side channel poten-
tially allowing a local user to access unauthorized information.

� CVE-2017-5691 Incorrect check in Intel processors from 6th and 7th Generation
Intel Core Processor Families, Intel Xeon E3-1500M v5 and v6 Product Families,
and Intel Xeon E3-1200 v5 and v6 Product Families allows compromised system
firmware to impact SGX security via incorrect early system state.

� CVE-2017-5736 An elevation of privilege in Intel Software Guard Extensions Plat-
form Software Component before 1.9.105.42329 allows a local attacker to execute
arbitrary code as administrator.

Table 8 pairs CVEs with Intel IDs and lists the status of each vulnerability along with a
Common Vulnerability Scoring System (CVSS) V3 score [15].

Table 8. Status of known Intel SGX vulnerabilities.

CVE Intel ID CVSS V3 Status

2019-0122 SA-00217 7.1 Mitigated

2018-18098 SA-00203 7.3 Mitigated

2018-3615 SA-00161 6.4 Mitigated

2018-3689 OSS-10004 5.5 Mitigated

2018-3626 SA-00117 4.7 Mitigated

2017-5691 SA-00076 9.0 Mitigated

2017-5736 SA-00117 8.8 Mitigated

28

Intel, and nearly the entire technology industry, follows a practice called Coordinated
Disclosure [16], under which a cybersecurity vulnerability is generally publicly disclosed
only after mitigations are deployed [17].

Majority of CVEs are mitigated with SGX SDK and SGX Platform Software (PSW)
updates [18], [19], [20], [17]. CVE-2018-3615 is caused by speculative execution
side-channel method called L1 Terminal Fault (L1TF), similar vulnerability to Spec-
tre/Meltdown, mitigated by a set of firmware, OS and microcode updates [21], [22], [23],
[24]. CVE-2017-5691, rated critical, identified a problem in Intel Server Systems, Next
Unit of Computing (NUC), and Compute Stick firmwares, mitigated by firmware updates
for affected products [25].

2.4 Security research

This section covers all known and researched SGX vulnerabilities and mechanism to
break the confidentiality and integrity of enclaves [26]. Mitigations and workarounds
are also discussed. Vulnerabilities are categorized and assessed.

2.4.1 Side-channel attacks

AsyncShock: Exploiting Synchronization Bugs in Intel SGX Enclaves research paper
discusses an attack model, where the adversary has full control over the SGX environ-
ment, full control of the OS and code prior to transferring control over to the enclave.
Adversary can interrupt and resume SGX threads, which is the main attack vector ex-
ploited in the paper. Adversary’s goal is to compromise the confidentiality and integrity
of the SGX enclave. Crashing the thread is not part of the attack [27].

AsyncShock is a tool for exploiting synchronization bugs of multithreaded code running
in the enclave by manipulating thread scheduling used to execute an enclave. Atomic-
ity bugs exploited are Use-After-Free and Time-of-Check-to-Time-of-Use (TOCTTOU)
[27].

Use-After-Free can be considered a parent to double free bug [28], which is mitigated in
the SGX SDK (CVE-2019-0122) [18].

TOCTTOU bug delays the writer thread to interrupt enclave execution after the check,

29

and then letting the writer thread to proceed. This timing-based attack window opens
after delaying the writer thread for empirically determined time between check and use.
This allows to extract the data buffer from within the enclave [27].

Only protection against TOCTTOU is prohibiting threading or decoupling of enclave and
user threads. Nevertheless, AsyncShock can still be used to force an Asynchronous En-
clave Exit (AEX) [27].

Controlled-Channel Attacks: Deterministic Side Channels for Untrusted Operating
Systems research paper introduces controlled-channel attacks able to extract complete
text documents, and outline JPEG images from enclaves. Researchers attack SGX through
Haven and uncover a page-fault vulnerability applicable to all SGX enclaves [29].

SGX leaves all page tables under the control of the host OS, and implements an indepen-
dent memory protection mechanism. Memory access will fail if disallowed under either
of the mechanisms. Researchers’ attack code enables access to page tables. By editing
page tables accordingly, the code inside the enclave will cause a page-fault [29].

Page-fault causes SGX to relinquish control over page-fault handler to the OS. SGX re-
veals the page number of the faulting address to the OS, but not the offset within the page.
The OS is called to map and unmap these memory regions in the enclave and change their
page-access permissions. This uncovers the map of the enclaves memory layout with
loading addresses and -times of binaries. That information is used to trigger the attack on
an enclave [29].

Researchers attach a malicious page-fault handler to an enclave to reliably extract data
from within. Text documents and JPEG images are successfully extracted [29].

Telling Your Secrets without Page Faults: Stealthy Page Table-Based Attacks on
Enclaved Execution research paper discusses a page table-based attack without forcing
a page-fault. Page faults are already known to be a major vulnerability in SGX, allowing
adversaries to extract enclave secrets. While this is true, multiple state-of-the-art defenses
have been deployed to mitigate them [30].

However, it is shown that page table-based attacks go beyond page faults, and it is pos-
sible to observe enclaved page accesses by exploiting other side-effects of the address
translation process. Two attack vectors are uncovered, first infers enclaved memory ac-

30

cesses from page table attributes, second attack vector does the same thing through the
cache. This allows to recover EdDSA session keys from the SGX cryptography library
[30].

Attack model assumes a standard SGX threat model, where the adversary has full control
over the OS’s thread scheduler in a classic Memory Management Unit (MMU) based
system architecture that hides enclave page faults from system software, and OS controls
enclave page mappings [30].

The adversary infers page access patterns from an enclaved execution that never suffers
a page fault. Adversary extracts the information from an enclave with a single run that
remains undetected to Intel’s remote attestation service. This attack was implemented as
an extension to Graphene-SGX and uncovered two vulnerabilities in SGX Edger8r tool
[30].

Intel publicly disclosed these vulnerabilities, and released updates to SGX SDK and SGX
PSW, mitigating the vulnerabilites (CVE-2018-3626, CVE-2017-5736) [17].

Stacco: Differentially Analyzing Side-Channel Traces for Detecting SSL/TLS Vul-
nerabilities in Secure Enclaves research paper discusses control-flow inference attacks
against the trusted SGX SSL library responsible for TLS. This man-in-the-kernel attack
collects execution traces of enclave programs at the page level, cacheline level or branch
level while acting as a middleman between the trusted and untrusted parts of the SGX
program. The entity in the middle is a differential analysis framework named STACCO,
that dynamically analyses the SSL/TLS implementation and detects vulnerabilities used
to exploit the SSL library using a Bleichenbacher attack, which targets RSA-PKCS #1
v1.5 [31].

STACCO, implemented in Graphene-SGX, was used to successfully break the SSL li-
brary’s PreMasterSecret encrypted by a 4096-bit RSA public key. While it took close to
60 000 queries, other libraries like GnuTLS and mbedTLS-SGX took roughly 50 000 and
25 000 queries respectively to break a single block of AES ciphertext [31].

STACCO authors suggest countermeasures in three layers of SGX. First countermeasure
is prevention of control-flow inference attacks in page-level, cache-level and branch-level.
Second countermeasure is to patch vulnerabilities in SSL/TLS implementations, specif-
ically, eliminate the error call function from RSA-PKCS #1 v1.5 padding check and de-

31

cryption functions. Third countermeasure is elimination of the root cause of Bleichen-
bacher attack, the RSA-based key exchange from the SSL implementation, moving to
Diffie-Hellman (DH) instead [31].

CacheZoom: How SGX Amplifies The Power of Cache Attacks research paper pro-
poses an attack tool named CacheZoom, which is able to track all memory access of SGX
enclaves. Authors hypothesize that Intel’s disregard for side-channel attacks in SGX am-
plifies cache-based attacks. Researchers demonstrate how CacheZoom is able to recover
AES keys used for enclave data encryption, completely compromising SGX’s security
[32].

CacheZoom creates a high-resolution side channel in SGX by monitoring L1 data and
instruction caches (or Last Level Cache (LLC)) and retrieving maximum leakage using
a Prime+Probe attack. This forces an interrupt in enclave’s execution and identifies en-
clave’s memory accesses. L1 cache is virtually addressed, by knowing the enclave’s page
boundary, the accessed set is revealed [32].

High-Resolution Side Channels for Untrusted Operating Systems research paper
presents two side channels in the untrusted OS. These attacks are solely based on the
page-fault channel. High-precision timer and cache misses are used to open up spacial
and temporal high-resolution channels. The OS can break into the application before and
after an enclaved memory access [33].

Researchers were able to break into the enclaved MapReduce application and Libjpeg
library, successfully retrieving text documents and images [33].

Authors suggest mitigations by partitioning caches in a way that malicious programs can-
not access the sensitive parts. Another defense mechanism is introduction of noise that
conceals cache misses and obfuscates it’s cause, effectively masking a real cache miss as
a random memory access. These mitigations are not widely used because of high cost
and availability of cryptography. Demonstrated side channels highlight that a broader
codebase might be the subject of attacks when the OS is the adversary. Authors discuss
a mitigation technique called T-SGX which disables side channels based on page-faults
and interrupts, but adds a noticeable overhead [33].

Cache Attacks on Intel SGX research paper discloses enclave vulnerabilities against
cache-timing attacks. A case study is presented using an access-driven cache-timing at-

32

tack on AES running inside an enclave. Researchers practically demonstrate that an AES
key can be retrieve in less than 10 seconds using Neve and Seifert’s elimination method to-
gether with a cache probing mechanism powered by Intel Performance Monitoring Coun-
ters (PMC) [34].

The attack is launched at root-level, from which SGX is specifically designed to protect
against. The case study targets an older version of OpenSSL with Gladman AES imple-
mentation, which is not used in the SGX SDK [34].

Current version of SGX SDK 2.5 uses AES-GCM, which protects enclaves from software-
based side channel attacks [5].

Malware Guard Extension: Using SGX to Conceal Cache Attacks research paper
demonstrates a software-based side channel attack, where a malicious code runs inside an
enclave and targets co-locating enclaves of the same hardware. This malware is designed
to break through the hypervisor into other tenants’ enclaves. Researchers demonstrate the
attack in a native environment and also across multiple Docker containers. Prime+Probe
cache side channel is used to break through the SGX enclaves to extract 96% of an RSA
private key, leaving a single trace, and the full key leaving 11 traces within 5 minutes. The
targeted RSA implementation uses a constant-time multiplication primitive (mbedTLS)
[35].

The attack further exploits the DRAM timing difference, and uses the DRAM mapping
function to map physical address bits. DRAM is alternately accessed at two virtual ad-
dresses of the same bank, but different rows. Memory is scanned sequentially to cause a
row conflict. In doing so, exact cache set for the two virtual addresses can be obtained
[35].

Researchers suggest countermeasures such as eliminating timers, adding the cloud
provider to the root of trust, and an additional secure memory module. Researchers
discuss elimination of timers as not a viable countermeasure, because a high-resolution
Prime+Probe attack can be mounted without them. The discussion continues with adding
cloud providers to the root of trust. While it enables the cloud provider to scan enclaves
for malware, this defeats the purpose of SGX. Researchers suggest a signature-based virus
scanner for enclaves, but the methods how to securely implement the feature are not de-
tailed. The most viable countermeasure of an additional secure memory module can be
easily implemented into the SGX driver [35].

33

Researchers conclude that SGX is ideal to conceal malware, as SGX shows no enclave
activity in system’s performance counters. This core security feature prevents SGX
software-based side channel attacks, also hides malicious code in a similar manner, mak-
ing it undetectable [35].

Software Grand Exposure: SGX Cache Attacks Are Practical research paper focuses
on uncovering more side channel attacks on SGX. Page-fault is recognized as the most
dangerous SGX side channel method, but raises the question of other cache vulnerabilities
such as cache access pattern monitoring. The goal of the research is to design a practical
cache attack that is hard to mitigate using know defenses. To succeed, researchers need
to keep enclave execution uninterrupted and implement a low-noise cache monitoring
technique. This method is able to efficiently extract the entire RSA-2048 key during RSA
decryption along with data from within the enclave [36].

Sophisticated Prime+Probe attack together with enclave isolation is used to reduce cache
noise and extract enclave’s secrets [36].

Noise isolation techniques are used such as self-pollution that leverages the L1 cache
structure which is divided into Level 1 Data Cache (L1D) and Level 1 Instruction Cache
(L1I) and never maps to cache lines of interest for the attacker [36].

Uninterrupted execution of enclaves prevents AEXs, which normally invoke the OS’s
Interrupt Service Routine (ISR) and induces noise into cache line. By making the enclave
execution uninterrupted, the enclave remains unaware of the attack. This is achieved by
rerouting the interrupt controller’s data-path such, that interrupts never reach the attack
core the enclave is isolated to. Only exception to this is the dedicated CPU core timer,
that can only handle interrupts on the specific core itself. This is overcome by reducing
the interrupt timers frequency to 100Hz. This give a 10ms window during which an
undetected attack can be launched [36].

To further reduce noise, clever cache monitoring is used. Prime+Probe determines cache
evictions by measuring the time required for accessing memory that maps to cache lines.
Successful cache misses and hits can be determined, but reading the data from the L1
and L2 caches introduces noise. Researchers use Intel PMC to monitor cache evictions.
However, Prime+Probe code is still used to prime the cache lines. The victim evicts the
cache, resulting in a cache miss. PMC identifies the misses and determines the victims
cache lines [36].

34

PMC is an expensive operation in the Prime+Probe cycle. To detect all cache misses and
learn the victims complete cache access pattern, PMC must execute at a high frequency
[36].

Inferring Fine-grained Control Flow Inside SGX Enclaves with Branch Shadowing
research paper explores a new, critical side channel attack against SGX, named - branch
shadowing attack, which reveals fine-grained control flows (branches) of an enclave. This
attack exploits SGX’s mechanisms, where after a secure context switch, branches are not
cleared, leaving fine-grained traces into the branch-prediction side channel [37].

While this exploit is not straightforward, researchers develop novel exploitation tech-
niques which even break Oblivious Random Access Machine (ORAM) schemes, Sanc-
tum, SGX-Shield, and T-SGX - the state-of-the-art side-channel mitigations [37].

2.4.2 Side-channel mitigations

T-SGX: Eradicating Controlled-Channel Attacks Against Enclave Programs re-
search paper proposes a mitigation solution to controlled-channel attacks. T-SGX lever-
ages a commodity component of modern Intel CPU’s - Transactional Synchronization
Extensions (TSX), which implements a restricted hardware transactional memory that
forces an abort in an ongoing transaction when unusual events are detected. TSX abort
suppresses the notification of errors to the OS. This can be used to eradicate all known
controlled-channel attacks, including the page-fault attack [38].

Researchers implemented T-SGX as compiler-level scheme that automatically transforms
the enclave into a secure one. T-SGX’s security properties are evaluated and demonstrated
that it indeed mitigates all known controlled-channel attacks. While it is secure, it also
promises less overhead than other state-of-the-art mitigations [38].

Strong and Efficient Cache Side-Channel Protection using Hardware Transactional
Memory research paper proposes another TSX-based side channel protection named
Cloak. Cloak promises protection against all known cache-based side channel attacks
with low performance overhead. Vulnerable code can be retrofitted with Cloak and it can
be applied to code within an enclave, blocking all side channels [39].

35

2.4.3 Speculative attacks

FORESHADOW: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution research paper uncovered a speculative execution bug in mod-
ern Intel CPU’s, which is exploited to leak plaintext enclave secrets from the L1 cache.
Researchers completely break SGX, by extracting full cryptographic keys from Intel’s
architectural enclaves and validate them by launching rogue production enclaves and
forging arbitrary attestation responses. Researchers use Foreshadow to extract remote
attestation keys, compromising millions of devices [22].

Intel acknowledged Foreshadow and disclosed it as L1 Terminal Fault (L1TF), a
speculative execution side channel cache timing vulnerability [24], [22]. L1TF is a
hardware/architecture-level vulnerability in the CPU associated with infamous Spectre
and Meltdown bugs [22], [24], [40], [41]. Foreshadow was mitigated in CVE-2018-3615
[21].

Researchers also discuss a second version of Foreshadow (Next Generation), which af-
fects Virtual Machines (VMs), VMMs, OS kernel memory, and SMM memory, also mit-
igated in CVE-2018-3615 [23], [21].

2.4.4 ROP attacks

Hacking in Darkness: Return-oriented Programming (ROP) against Secure En-
claves exploits memory corruption vulnerabilities in enclave code, exploring new ex-
ploitation techniques, different from known vulnerabilities [42].

Researchers develop Dark-ROP, which exploits memory corruptions in the enclave soft-
ware. Dark-ROP differs significantly from traditional ROP attacks because of SGX’s
secure hardware-level implementation [42].

Dark-ROP cleverly overcomes SGX’s security techniques and completely breaks the en-
clave’s memory protections, tricking SGX hardware into leaking enclave secrets, defeat-
ing even remote attestation [42].

Dark-ROP relies on page-faults and demonstrates how to break into enclaves using AEXs
[42].

36

Practical Enclave Malware with Intel SGX researchers disclose possibilities to
stealthily place malware inside an enclave, that impersonates its host application. This
type of concealed malware can steal or encrypt data for extortion, send phishing emails
or mount Distributed Denial-of-Service (DDoS) attacks [43].

SGX-ROP uses TSX primitives to construct a code-reuse attack from within an enclave
- executed by the host application. SGX-ROP can bypass Address Space Layout Ran-
domization (ASLR), stack canaries, and address sanitizers. Researchers demonstrate that
SGX’s security threats outweigh its protections [43].

2.5 Conclusion

Intel SGX’s security stems from the physical hardware. Intel programs two keys into the
CPUs hardware registers, the root provisioning key known to Intel, and the root seal
key known only to the CPU. This alleviates privacy concerns in using SGX, as the key
derivation process transforms the hardware keys along with a serial number to form the
hardware TCB. The root seal key is present in all subsequent key derivations, making
them unknown to Intel.

SGX uses modern encryption schemes and primitives, mostly considered secure. Ad-
ditional layer of security and acceleration is given by Intel AES-NI. RSA and AES are
known to be vulnerable to exploitations. This raises the question of the useful life-cycle
length of encryption primitives. With advances in quantum computing promising to break
modern encryption, new techniques and algorithms must be considered, such as AI-based,
blockchain-based and quantum cryptography [44].

Research on known SGX vulnerabilities offers some insight into the future of SGX. Intel
SGX does not protect against all side channels, acting as an open invitation to researchers
and adversaries.

Attacks on SGX fall into three categories: side channel, speculative and ROP. Usually,
a combination of attacks are used. Researchers believe that Intel’s disregard for side
channel attacks amplify them, which is shown to be true. Literature review uncovered how
software bugs, SGX’s intended mechanisms, cache architecture, DRAM and speculation
are used to open side-channels, and completely breaks SGX - steal data and keys - even
from Intel’s remote attestation service, compromising millions of devices.

37

SGX vulnerabilities stemming from bugs in the software stack, and from speculation, are
mitigated by Intel. The most devastating attacks exploit SGX’s intended mechanisms,
such as AEX, which is used to force page faults, now become the main vulnerability in
SGX.

Mitigation techniques and additional security for side channels are offered through third
parties - researchers trying to develop novel, secure, and easy to use methods - securing
users against SGX vulnerabilities that Intel doesn’t.

TSX offers protections against side channels, able to close them from within an enclave.
Others use TSX to put malicious code inside an enclave, completely concealing it from
the platform and anti-virus software. Changes in Intel’s CPU architecture are needed,
which must offer better security guarantees not only for SGX, but for the whole platform.

ROP is expected to be the next major SGX attack vector, focusing on alternatives to side-
channel methods.

38

3 System Setup

SGX setup can be straightforward or complex. The user has to keep in mind that not all
hardware is suitable for SGX.

This section details how to set up SGX environments from native to virtualized platforms.
This includes SGX software installation on an unofficial Linux distribution, and setting
up Intel’s experimental software. While SGX comes with an installation manual, there are
gaps in-between. This section shows how to build SGX software from sources, offering
additional security guarantees for SGX’s authenticity.

Previous chapter looked at SGX’s hypothetical run-time system, this chapter focuses on
SGX from hardware level to system level (figure 4). This is uncovered by practically
setting up SGX environments that will form the basis for performance evaluation in the
next chapter.

SGX EnclaveSGX Application

E
d
g
e
ro
u
ti
n
es

ECALL

OCALL E
d
g
e
ro
u
ti
n
es

CPU HW reserved RAMHW

OS

Figure 4. SGX from hardware level to system level.

3.1 SGX support

Determining SGX-capable hardware might not be the easiest thing. It is true that SGX
lies within the Intel CPU, but the CPU alone doesn’t guarantee the system can run SGX.

39

SGX is supported on most modern Intel processors starting from 6th generation Core
series. While the Core series is widely popular, SGX is also supported on Xeon, Pentium
and Celeron series processors [45], [46]. SGX runs in conjunction with other Intel sub-
systems such as Intel Management Engine (ME), and in some cases, Server Platform
Services (SPS) [45], [46].

To expose SGX to the OS, a capable system firmware (Basic Input Output System
(BIOS)/Unified Extensible Firmware Interface (UEFI)) is needed [47]. Some system ven-
dors opt not to enable this feature in the firmware, rendering the device unable to harness
SGX [47].

SGX is supported on modern Windows and Linux distributions [48], [49]:

� Ubuntu 16.04 LTS 64-bit Desktop version

� Ubuntu 16.04 LTS 64-bit Server version

� Ubuntu 18.04 LTS 64-bit Desktop version

� Ubuntu 18.04 LTS 64-bit Server version

� Red Hat Enterprise Linux Server release 7.4 64bits

� CentOS 7.5 64bits

� Fedora 27 Server 64bits

� SUSE Linux Enterprise Server 12 64bits

� Microsoft Windows 7 64-bit version

� Microsoft Windows 10 November Update (version 1511) or later.

To harness SGX on the system-level, Intel provides a software stack consisting of SGX
driver, SGX SDK and SGX PSW [50], [51].

Best method to check the hardware SGX support, is running the cpuid program, that
checks for SGX from the CPU [52]. There is another, simplified version of this program,
named SGX-hardware [47]. In a useful manner, SGX-hardware’s readme file maintains
an up-to-date list of known SGX hardware [47].

40

3.2 Test hardware

Dell XPS 9560 laptop has SGX support from factory and is the testbed for two SGX
environments. The first environment is host Linux, the second, guest Linux in VMM.

System Specifications:

� Intel Core i7-7700HQ,

� 16 GB DDR4 RAM @ 2400MHz,

� 512GB NVMe SSD,

� Arch Linux, Ubuntu 18.04.02,

� Intel ME disabled from factory,

� 128MB EPC,

� BIOS/UEFI version 1.14.2.

3.3 Linux system

Arch Linux 5.0.0-mainline was chosen for the native SGX environment, while it is not
officially supported, it is demonstrated that is can efficiently run SGX software. This part
serves as a practical guide on how to install SGX software.

The outline of work done is: installation of SGX driver, SGX PSW, SGX SDK and SGX
Eclipse plugin. The order of installation is exact, and everything, except the Eclipse
plugin, will be built from source. In this guide, SGX software version 2.5 is installed.

3.3.1 SGX driver

SGX driver sources are readily available on Intel’s GitHub [50]. Driver build and installa-
tion is fairly standard procedure. The first thing is to acquire the sources (figure 5). Intel’s
SGX driver repository holds all version of the driver since v1.6 to current version.

41

$ git clone https://github.com/intel/linux-sgx-driver.git
$ cd linux-sgx-driver
$ git tag -l
$ git checkout sgx_driver_2.5

Figure 5. Fetch SGX driver.

Driver installation is a bit more complex procedure, where the ISGX module (driver) is
installed into the current kernel (figure 6). It should be kept in mind that ISGX module is
only tied with the current kernel and needs reinstalling if the kernel is changed.

$ make
$ sudo mkdir -p "/lib/modules/"‘uname -r‘"/kernel/drivers/intel/sgx"
$ sudo cp isgx.ko "/lib/modules/"‘uname -r‘"/kernel/drivers/intel/sgx"
$ sudo sh -c "cat /etc/modules | grep -Fxq isgx || echo isgx » /etc/modules"
$ sudo /sbin/depmod
$ sudo /sbin/modprobe isgx

Figure 6. Install the ISGX driver module.

3.3.2 SGX SDK & PSW

Intel provides the full Linux SGX software stack on GitHub [51]. This repository is used
to build and install the SGX SDK and SGX PSW. First, correct version of sources are
acquired via git (figure 7).

$ git clone https://github.com/intel/linux-sgx.git
$ cd linux-sgx
$ git tag -l
$ git checkout sgx_2.5

Figure 7. Fetch Linux-SGX.

SGX SDK needs additional libraries which have to be downloaded using the provided
script [51]. Install binaries can be built for different Linux distributions. In this case,
standard binary packages are built both for the SGX SDK and PSW [51]. Built binaries
can then be found in the bin directory (figure 8).

42

$./download_brebuilt.sh
$ make
$ make sdk_install_pkg
$ make psw_install_pkg
$ cd linux/installer/bin

Figure 8. Build Linux-SGX.

The installation procedure is fairly standard, but installation order is important. SGX PSW
needs to be installed first, as it sets up the aesmd service, which starts system services
linked with the SGX driver [51]. SGX SDK can then be installed. The installation path
can be chosen by the user. In this case, the default path (/opt/intel) was used, which is also
used by the SGX PSW and driver. After installation, the installer prints the environment
variable for SGX SDK, which needs to be set by the user (figure 9).

$ sudo ./sgx_linux_x64_psw_2.5.100.49891.bin
$ sudo ./sgx_linux_x64_sdk_2.5.100.49891.bin
$ source /opt/intel/sgxsdk/environment

Figure 9. Install SGX PSW and SGX SDK.

The Eclipse plugin is available for download on SGX’s website [53], or it can be built from
Linux-SGX sources [51]. The installation follows a standard Eclipse plugin installation
procedure, detailed in SGX’s installation guide [48].

3.4 Virtualized Linux system

Intel provides preliminary patches to support SGX virtualization for Kernel Virtual Ma-
chine (KVM) and Xenial (XEN) [4]. These patches are for experimental purposes, and
under active development [4]. SGX virtualization is also used in Graphene, Scone and
Haven [4], [54].

This paper focuses on KVM-SGX and QEMU-SGX, which form the SGX environments
used for performance evaluation. KVM-SGX [55] is a special Linux kernel that exposes
SGX functions to an equally special VMM - QEMU-SGX [56] (figure 10).

43

HW RESERVED 128MBRAMCPU

BIOS

IA32_FEATURE_CONTROL MSR

.SGX_ENABLE(bit 18) & .LOCK(bit 0)

KVM-SGX-v5.0.0-r1

OS
KVM_INTEL MODULE

INTEL_SGX_CORE

etc/msr_feature_control
fw_cfg

SGX-ENABLE 1

.LOCK 1
QEMU-SGX-v3.1.0-r1

SEABIOS FEATURES SEABIOS

GUEST OS
SGX PSW

SGX SDK

SGX DRIVER

SGX APP VIRTUAL EPC 128MB

HW

Figure 10. Working principles of KVM-SGX and QEMU-SGX.

3.4.1 KVM-SGX

KVM-SGX is a custom Linux kernel [56]. Depending on the Linux distribution, kernel
building process might vary. In this paper, KVM-SGX v5.0.0-r1 is compiled for Arch
Linux (figure 11) [57].

$ git clone https://github.com/intel/kvm-sgx.git
$ cd kvm-sgx
$ git tag -l
$ git checkout sgx-v5.0.0-r1

Figure 11. Fetch KVM-SGX.

KVM-SGX needs to be correctly configured. To build a reliable configuration, currently
running Linux 5.0.0-mainline configuration is taken as the basis for the new kernel.

Configuration file needs some manual intervention, the name of the new kernel needs to
be set, and two SGX modules should be enabled to expose SGX functions to the VMM
[56]. When built, accompanying kernel modules must be installed, too, and the new kernel
image must be copied to the boot directory (figure 12) [56].

44

$ zcat /proc/config.gz > .config
$ vi .config

CONFIG_LOCALVERSION="-kvm-sgx"
CONFIG_INTEL_SGX_CORE=y
CONFIG_INTEL_SGX_DRIVER=y

$ make LOCALVERSION=
$ sudo make modules_install
$ sudo cp -v arch/x86_64/boot/bzImage /boot/vmlinuz-linux-kvm-sgx

Figure 12. Configure and install KVM-SGX.

Finally, KVM-SGX ramdisk can be built that is used to initialize the new kernel. It is a
fairly standard procedure, where a preset file is created containing needed boot configura-
tions. This preset file can be based on the previous kernel’s preset, but should match with
the new kernel’s file name in the boot directory (figure 13).

$ vi /etc/mkinitcpio.d/linux-kvm-sgx.preset
--
mkinitcpio preset file for the ’linux-kvm-sgx’ package
ALL_config="/etc/mkinitcpio.conf"
ALL_kver="/boot/vmlinuz-linux-kvm-sgx"

PRESETS=(’default’ ’fallback’)

#default_config="/etc/mkinitcpio.conf"
default_image="/boot/initramfs-linux-kvm-sgx.img"
#default_options=""

#fallback_config="/etc/mkinitcpio.conf"
fallback_image="/boot/initramfs-linux-kvm-sgx-fallback.img"
fallback_options="-S autodetect"
--
$ sudo mkinitcpio -p linux-kvm-sgx

Figure 13. Make KVM-SGX ramdisk.

The new KVM-SGX kernel is ready for use.

3.4.2 QEMU-SGX

To take advantage of KVM-SGX features, an equally capable VMM is needed. QEMU-
SGX is a VMM specifically designed to work with KVM-SGX [56]. QEMU-SGX con-
tains patches, enabling options such as EPC management and allocation to the guest OS,
VM migration, nested SGX virtualization, launch control, and explicit SGX feature and
sub-feature controls [56].

45

QEMU-SGX’s documentation states that KVM-SGX and QEMU-SGX only work to-
gether with specific software versions [56]. QEMU-SGX v3.1.0-r1 is compatible with
previously installed KVM-SGX v5.0.0-r1 (figure 14) [56].

$ git clone https://github.com/intel/qemu-sgx.git
$ cd qemu-sgx
$ git tag -l
$ git checkout sgx-v3.1.0-r1

Figure 14. Fetch QEMU-SGX.

Regular Quick Emulator (QEMU) installation is quite complex by itself. To make the pro-
cedure of building and installing QEMU-SGX easier, a known good package of QEMU
was taken as the basis, and QEMU-SGX was build and installed on top of it [58]. This
method ensures that dependencies are satisfied, guaranteeing a successful default build.
QEMU-SGX is a single executable binary that can be copied in place of the regular
QEMU executable (figure 15).

$./configure -target-list=x86_64-softmmu
$ make
$ sudo pacman -S qemu
$ sudo cp -v x86_64-softmmu/qemu-system-x86_64 /usr/bin/qemu-system-x86_64

Figure 15. Build and install QEMU-SGX.

On the kernel level, QEMU-SGX additionally depends on KVM and Virtio modules, and
Libvirt virtualization tools, API’s and services (software) to launch QEMU-SGX.

KVM is a hypervisor built into the Linux kernel [59]. KVM is also a special operating
mode of QEMU, capable of hardware-assisted virtualization (Hardware Virtual Machine
(HVM)) [59]. KVM modules are available in Linux kernel since Linux 2.6.20 [60]. Two
KVM modules need to be enabled in the host OS - kvm and kvm_intel, the second, specific
to Intel CPUs [59].

Figure 16 demonstrates the procedure to check the CPUs VT-x (Virtualization Technol-
ogy) support, and if KVM modules are present in the kernel (they can be disabled during
compilation). Finally, modules are loaded and their state verified.

46

$ LC_ALL=C lscpu | grep Virtualization
$ zgrep CONFIG_KVM /proc/config.gz
$ sudo modprobe kvm
$ sudo modprobe kvm_intel
$ lsmod | grep kvm

Figure 16. Check for, and load KVM modules.

Virtio is a virtualization standard for network and disk device drivers that reveal their
virtualized nature to the hypervisor [61]. Virtio enables high performance network and
disk operations on the guest OS [61]. Virtio modules are usually available in the kernel
or easily added at build time.

Figure 17 demonstrates the procedure to check for Virtio modules in the kernel, load
them, and verify their state.

$ zgrep VIRTIO /proc/config.gz
$ sudo modprobe virtio-net
$ sudo modprobe virtio-blk
$ sudo modprobe virtio-scsi
$ sudo modprobe virtio-balloon
$ lsmod | grep virtio

Figure 17. Check for, and load Virtio modules.

The final piece of the puzzle is Libvirt. Libvirt is a collection of software that provides
tools for easy management of VMs, virtual storage, and network interfaces [62]. QEMU-
SGX needs the Libvirt daemon (figure 18) [62].

$ sudo pacman -S libvirt
$ sudo systemctl start libvirtd

Figure 18. Install and start Libvirt daemon.

3.4.3 Guest system

Guest OS was specifically chosen from the list of officially supported SGX OSs. Ubuntu
18.04.02 satisfies all requirements and is usually ready out-of-the-box [63]. This part
demonstrates the capabilities of QEMU-SGX, and final preparation of the virtualized en-
vironment.

First, a disk image is prepared for the virtualized environment. A fairly long QEMU-SGX

47

command is used to boot from a live image of Ubuntu with attached devices needed to
install the OS (figure 19) [64].

$ qemu-img create -f qcow2 Ubuntu 16G
$ qemu-system-x86_64 -boot d -cdrom ubuntu-18.04.2-desktop-amd64.iso -drive
file=Ubuntu -m 8192 -enable-kvm -cpu host -smp $(nproc)

Figure 19. Create a virtual disk and boot a live image of Ubuntu.

After installation, guest OS can be booted with SGX features enabled [56]. QEMU-SGX
GitHub repository provides a sufficient manual to to get SGX features up and running
[56]. Through experimentation, it was determined that a maximum of 92MB can be
allocated to the EPC.

QEMU-SGX needs explicitly configuration, (1) CPU, SGX and cache pass-through, (2)
assign all available CPU threads, (3) create a static EPC of 92MB, allocate to the VM
[56], [64], [65]. QEMU-SGX allows to partition the EPC and statically allocated it to the
VM, or just map it, and not allocate it (figure 20) [56].

$ sudo qemu-system-x86_64 Ubuntu -m 8192 -enable-kvm -cpu host, +sgx,
host-cache-info=on -smp $(nproc) -object memory-backend-epc,id=mem1,size=92M
-sgx-epc id=epc1,memdev=mem1
--
(1) -cpu host, +sgx, host-cache-info=on
(2) -smp $(nproc)
(3) -object memory-backend-epc, id=mem1, size=92M -sgx-epc id=epc1, memdev=mem1

Figure 20. Launch QEMU-SGX.

Lastly, SGX software stack is set up. The process is similar to the native Linux system.
The only difference is that SGX PSW driver is installed through a .deb package [51]. The
virtualized SGX environment runs the same versions of SGX software as the native Linux
environment (figure 21).

...
$ make deb_pkg
$ cd linux/installer/deb
$ sudo dpkg -i ./libsgx-urts_2.5.100.29891-bionicl_amd64.deb
./libsgx-enclave-common_2.5.100.49891-bionicl_amd64.deb

Figure 21. Install SGX PSW on Ubuntu.

48

3.5 Conclusion

This section covers SGX setup from hardware level to system level. It was found out that
SGX support is not only determined by the CPU, but the system as a whole. This sec-
tion introduced test hardware and planned environments. Setup procedure was described
in detail. The result was three SGX systems, from which, the host and guest will be
benchmarked in the next chapter.

System 0 is native Arch Linux 5.0.0-mainline with SGX support (figure 22). System
0 has mitigations for Spectre v1 and v2, Meltdown v3 and v4, Foreshadow-NG (OS)
and Foreshadow-NG (VMM). Mitigations are not deployed for Meltdown v3a and Fore-
shadow (SGX).

Figure 22. System 0: Arch Linux 5.0.0-mainline.

49

System 1 is a host Arch Linux 5.0.0-kvm-sgx, similar to system 0, but running a custom
KVM-SGX kernel, which exposes SGX functions to the VMM (figure 23). System 1 has
mitigations for Spectre v1, Meltdown v3 and v4, Foreshadow-NG (OS) and Foreshadow-
NG (VMM). Mitigations are not deployed for Spectre v2, Meltdown v3a and Foreshadow
(SGX).

Figure 23. System 1, Host: Arch Linux 5.0.0-kvm-sgx.

System 2 is guest Ubuntu 18.04.02 Linux 4.18.0-17-generic running in VMM - QEMU-
SGX, and supports all SGX features just like System 1 (figure 24). Guest has same spec-
ulative execution vulnerability mitigations as host.

Figure 24. System 2, Guest: Ubuntu 18.04.02 Linux 4.18.0-17-generic.

50

4 Performance Evaluation

Intel SGX is a hardware based secure execution technology, which enables user-space
(ring 3) code to create trusted memory regions named enclaves [66], [67]. The CPU de-
fends the enclaves using a combination of memory access control and transparent memory
encryption [67]. Enclaves are shielded from the OS, VMM, and SMM, offering a strong
security guarantee, ensuring vulnerabilities and malicious code in any of these layers
should not compromise the confidentiality and integrity of the secure-enclaves [66], [67].

The SGX hypothetical generic run-time system describes a typical SGX program. Al-
though SGX programming paradigm is similar to conventional software, developers must
follow the enclave programming model, which simply stated means partitioning the pro-
gram into trusted and untrusted regions [1]. This raises the question on how to bring up
rich applications on SGX, as some of them cannot be fully ported to run inside an enclave
due to limited EPC size, and possibly exhibit higher system calls frequency [54], [66].

This brought on rapid development of library OSs and shims, such as Graphene-SGX,
Scone, Haven and Panoply, which enable to quickly deploy applications in SGX, harness-
ing virtualization or API layers that wrap the application in an SGX-capable container
[54]. Using a library OS or a shim is arguably impractical, both in performance overhead
and TCB bloat, but research paper on Graphene-SGX demonstrates that these concerns
are exaggerated, and that Graphene-SGX remains the best method to quickly bring up
unmodified applications on SGX [54].

While research on porting applications to SGX has benefited the adoption of SGX tech-
nology, few have focused purely on the performance of edge routines - the primary in-
terface between the trusted application and the untrusted enclave, remaining the primary
cause of performance degradation [66].

To start evaluating SGX’s performance, three edge routine methods were identified:

� Regular ECalls/OCalls [5];

� HotCalls [66];

� Switchless Calls [54], [5].

51

Regular ECall and OCall functions are the simplest of edge routine methods [5]. An
enclave must expose an API for applications to call in (ECalls) and advertise what services
provided by the untrusted domain are needed (OCalls) [1]. ECalls expose the interface
that an untrusted application may use. By reducing the number of ECalls, enclave attack
surface is reduced [1]. Enclaves have no control on which ECall is executed, or the order
in which ECalls are invoked. Thus, an enclave cannot depend on ECalls occurring in
certain order [1].

Enclaves cannot directly access OS-provided services. Instead, an enclave must make
an OCall to an interface routine in the untrusted application. Calling outside adds a per-
formance overhead without loss of confidentiality. Communicating with the OS requires
release of data or the import of non-secret data, which needs to be handled properly [1].

Regular ECalls and OCalls, as specified by SGX developer reference manual, offer the
full set of security guarantees of Intel SGX technology, although with performance impli-
cations [5], [1]. High performance overheads are associated with the number of assigned
processing threads [5]. Regular ECalls and Ocalls are intrinsically single-threaded [5].

The first comprehensive quantitative study evaluating the performance of SGX, investi-
gated the sources of performance degradation by leveraging a set of microbenchmarks for
SGX-specific operations such as ECalls and OCalls, and encrypted memory I/O access. It
was indeed discovered that the main loss in performance occurs due to expensive secure
context switches and single threaded nature of regular SGX calls. The overhead of ECalls
or OCalls is over 8000 CPU cycles, which is >50x more expensive than that of a system
call (150 cycles). This degradation was remedied by a new SGX calls architecture and
a synchronization spin-lock mechanism named HotCalls. They provide 13-27x speedup
over the default interface [66].

SGX calls rely on expensive secure context switches. HotCalls proposed a re-
quester/responder architecture that communicates via un-encrypted shared memory, em-
ploying a standby thread waiting for a call. It does so by polling a shared memory loca-
tion. The shared memory is synchronized using a spin-lock. The requester - the enclave
code makes a call and acquires the spin-lock and verifies that the responder - the untrusted
code, is not busy. If the responder is available, the requester copies the relevant data to
un-encrypted shared memory and points to that data via the *data pointer. The code that
encapsulates parameters within the data structure is the regular code automatically gener-

52

ated by the edger8r tool (regular ECall/OCall). Once the call ID and *data pointer are in
place, the requester gives a go-signal to the responder by marking it as busy and releasing
the spin-lock [66].

The proposed intricate HotCalls edge routines method indeed provided a boost in per-
formance although with a trade-off between using a complicated programming model.
HotCalls were proposed and implemented during the release of Intel SGX SDK v1.5
Beta, the first public release [66]. As of SGX SDK v2.2, this concept is improved upon,
and a newer method named Switchless Calls is merged into the main SGX SDK branch
[67], [68].

Switchless Calls use worker threads inside and outside of the enclave [5]. Switchless calls
is a trade-off between assigning fixed (potentially wasted) resources to to the application,
and minimizing the performance penalty incurred by Regular ECalls/OCalls [67].

Research paper Switchless Calls Made Practical in Intel SGX set out to create a per-
formance model that accounts for worker efficiency, static workloads and dynamic work-
loads [67]. Implementation of Switchless calls followed, with a focus on ease of use,
robustness and customization of worker management [67]. It was shown that by using
Switchless calls, latency compared to regular OCalls was reduced by 8.2x, and compared
to ECalls, 5.9x [67]. Keeping in mind the trade-off, it was proven that Switchless calls
are practical in short and frequent workloads, where they strike a balance between perfor-
mance and energy conservation [67], [5].

This section evaluates the performance of three identified edge routine methods on host
and guest environments. Different edge routine methods have practical and security im-
plications, which will be evaluated along with their performance.

4.1 Testing methodology

Testing methodology is based on Regaining Lost Cycles with HotCalls: A Fast Inter-
face for SGX Secure Enclaves research paper [66] and accompanying code [69].

Four code-bases are used for performance evaluation, from which, the first one is the
official code from the authors of HotCalls [69]. The remaining code-bases are original
work based on the HotCalls code and Intel’s Switchless Calls SDK example.

53

Code-bases:

� 1. HotCalls, warm cache [69];

� 2. HotCalls, cold cache [70];

� 3. Switchless Calls, warm cache [71];

� 4. Switchless Calls, cold cache [72].

Each of the 4 code-bases consist of 4 microbenchmarks. Each microbenchmark exe-
cutes 20 000 measurements via the RDTSCP function [3]. Measured round trip times
of SGX call functions are expressed in clock cycles. Cold cache variants of code exe-
cute CLFLUSH function on data buffers before each measurement, evicting the data from
every level of the cache hierarchy, ensuring that any modified data in the cache will be
written to memory [3]. Data will be fetched from memory before each test execution [3].

Shell script is used to execute each microbenchmark 12 times in succession with 5 sec-
ond pauses between them. First 2 sets of microbenchmark results will be discarded and
remaining 10 sets will form the final dataset for each microbenchmark.

Microbenchmarks are targeting 2 previously set up systems running identical SGX soft-
ware v2.5. System 1 is host Arch Linux 5.0.0-kvm-sgx, system 2 is guest Ubuntu 18.04.02
Linux 4.18.0-17-generic inside QEMU-SGX.

Correct benchmarking procedure was determined by experimenting with different launch
configurations. Most consistent results were achieved by building each codebase in re-
spective system and executing cold cache microbenchmark first, followed by the warm
cache microbenchmark. To eliminate unwanted context switching, Intel Turbo Boost
technology [73] was disabled by locking all cores to 2.8 GHz, networking also disabled.

Part of benchmarking was determining RDTSCP overheads for both systems. This was
done by referring to Intel’s code execution benchmark manual [74]. RDTSCP mea-
surement tool was written in C++, which measures the average RDTSCP overhead of
200 000 function executions [75]. Measured average overheads were subtracted from re-
spective systems’ results. To manage processing the huge datasets, a collection of scripts
and templates were written [76].

Final results consist of Cumulative Distribution Function (CDF) graphs, median cycles

54

and 99th percentile cycles. Final performance evaluation will be done using cold cache
median results. 99th percentile results are used to further assess the tests. Due to redundant
Regular ECall/OCall benchmarks, the worst performing median results will be used.

Hypothesis: System 1 outperforms System 2, and Switchless Calls outperform HotCalls.

4.2 Results

This section presents the full set of results for HotCalls and Switchless Calls. Results are
used to compare System 1 vs. System 2, Regular Calls vs. HotCalls and Switchless Calls,
HotCalls vs. Switchless Calls.

4.2.1 HotCalls

All conclusive measurement collected from warm cache and cold cache HotCalls code-
bases are presented [69], [70]. Results are organized into a table for easy comparison of
systems, cache types, and call types. Although warm cache results are not used for eval-
uation, they can be observed. 99th percentile results, marking the top 1% tests are also
included (table 9). Measurements are plotted to graphs 25 and 26.

55

Table 9. Microbenchmark latencies in HotCalls.

Microbenchmark System Cache Median latency
(cycles)

99th percentile
(cycles)

1 Regular ECall 1 Warm 14 400 14 119

2 Regular ECall 2 Warm 15 379 15 159

3 Regular ECall 1 Cold 14 833 14 555

4 Regular ECall 2 Cold 15 768 15 544

5 Regular OCall 1 Warm 12 628 12 522

6 Regular OCall 2 Warm 13 480 13 293

7 Regular OCall 1 Cold 13 221 12 933

8 Regular OCall 2 Cold 14 110 13 787

9 Hot ECall 1 Warm 632 602

10 Hot ECall 2 Warm 3830 280

11 Hot ECall 1 Cold 1241 1064

12 Hot ECall 2 Cold 5335 766

13 Hot OCall 1 Warm 621 600

14 Hot OCall 2 Warm 3258 201

15 Hot OCall 1 Cold 1302 1029

16 Hot OCall 2 Cold 5212 733

56

Figure 25 demonstrates Regular Calls and HotCalls cycles on Systems 1. ECalls and
OCalls (a) demonstrate consistent results. Same can be said about Hot ECalls and Hot
OCalls (b), furthermore, the results are consistent with HotCalls research [66].

8 10 12 14 16 18 20
0

0.5

1
System 1: Arch Linux 5.0.0-kvm-sgx

Ecalls

Warm cache

Cold cache

8 10 12 14 16 18 20

Cycles (x1000)

0

0.5

1

P
ro

b
a
b
ili

ty

Ocalls

Warm cache

Cold cache

(a)

0 0.5 1 1.5 2 2.5
0

0.5

1
System 1: Arch Linux 5.0.0-kvm-sgx

Hot Ecalls

Warm cache

Cold cache

0 0.5 1 1.5 2 2.5

Cycles (x1000)

0

0.5

1

P
ro

b
a
b
ili

ty

Hot Ocalls

Warm cache

Cold cache

(b)

Figure 25. Test 1, HotCalls, System 1: (a) Regular Calls, (b) HotCalls.

Figure 26, System 2, demonstrates consistent results only in Regular ECalls and OCalls
(a). HotCalls (b) exhibit undefined behavior.

8 10 12 14 16 18 20
0

0.5

1
System 2: Ubuntu 18.04.02 Linux 4.18.0-17-generic

Ecalls

Warm cache

Cold cache

8 10 12 14 16 18 20

Cycles (x1000)

0

0.5

1

P
ro

b
a
b
ili

ty

Ocalls

Warm cache

Cold cache

(a)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1
System 2: Ubuntu 18.04.02 Linux 4.18.0-17-generic

Hot Ecalls

Warm cache

Cold cache

0 2 4 6 8 10 12 14 16 18 20

Cycles (x1000)

0

0.5

1

P
ro

b
a
b
ili

ty

Hot Ocalls

Warm cache

Cold cache

(b)

Figure 26. Test 2, HotCalls, System 2: (a) Regular Calls, (b) HotCalls.

Undefined behavior may be caused by experimental KVM-SGX or QEMU-SGX, but
conclusive evidence is not found nor presented [56], [55]. Another explanation is that
background context-switching (or something else) is forcing an AEX [66]. AEX was not
monitored during testing. HotCalls research paper describes the same issue [66].

57

4.2.2 Switchless Calls

This section presents warm cache and cold cache measurement collected from Switchless
Calls codebases [71], [72]. Results are presented in table 10 with plots on graphs 27 and
28.

Table 10. Microbenchmark latencies in Switchless Calls.

Microbenchmark System Cache Median latency
(cycles)

99th percentile
(cycles)

1 Regular ECall 1 Warm 14 224 13 976

2 Regular ECall 2 Warm 15 280 15 103

3 Regular ECall 1 Cold 14 411 14 172

4 Regular ECall 2 Cold 15 413 15 196

5 Regular OCall 1 Warm 12 557 12 433

6 Regular OCall 2 Warm 13 541 13 416

7 Regular OCall 1 Cold 13 107 12 834

8 Regular OCall 2 Cold 14 062 13 781

9 Switchless ECall 1 Warm 1426 1170

10 Switchless ECall 2 Warm 1421 1284

11 Switchless ECall 1 Cold 1582 1188

12 Switchless ECall 2 Cold 1484 1277

13 Switchless OCall 1 Warm 1172 670

14 Switchless OCall 2 Warm 1171 653

15 Switchless OCall 1 Cold 1757 1283

16 Switchless OCall 2 Cold 1732 1148

58

Figure 27 demonstrates Switchless Calls measurements on System 1. ECalls and OCalls
(a) measurements are consistent with HotCalls codebase results. Switchless ECalls and
OCalls (b) have a different characteristic than HotCalls, and are generally more consistent
and stable. Results are consistent with Switchless Calls research [67].

8 10 12 14 16 18 20
0

0.5

1
System 1: Arch Linux 5.0.0-kvm-sgx

Ecalls

Warm cache

Cold cache

8 10 12 14 16 18 20

Cycles (x1000)

0

0.5

1

P
ro

b
a
b
ili

ty

Ocalls

Warm cache

Cold cache

(a)

0 0.5 1 1.5 2 2.5
0

0.5

1
System 1: Arch Linux 5.0.0-kvm-sgx

Switchless Ecalls

Warm cache

Cold cache

0 0.5 1 1.5 2 2.5

Cycles (x1000)

0

0.5

1

P
ro

b
a
b
ili

ty

Switchless Ocalls

Warm cache

Cold cache

(b)

Figure 27. Test 3, Switchless Calls, System 1: (a) Regular Calls, (b) Switchless Calls.

Figure 28 demonstrates that Switchless Calls codebases on System 2 are also consistent
and stable. ECalls and OCalls (a) results are consistent with HotCalls codebase measure-
ments. Switchless ECalls and OCalls (b) perform equally fast to their System 1 counter-
parts.

8 10 12 14 16 18 20
0

0.5

1
System 2: Ubuntu 18.04.02 Linux 4.18.0-17-generic

Ecalls

Warm cache

Cold cache

8 10 12 14 16 18 20

Cycles (x1000)

0

0.5

1

P
ro

b
a
b
ili

ty

Ocalls

Warm cache

Cold cache

(a)

0 0.5 1 1.5 2 2.5
0

0.5

1
System 2: Ubuntu 18.04.02 Linux 4.18.0-17-generic

Switchless Ecalls

Warm cache

Cold cache

0 0.5 1 1.5 2 2.5

Cycles (x1000)

0

0.5

1

P
ro

b
a
b
ili

ty

Switchless Ocalls

Warm cache

Cold cache

(b)

Figure 28. Test 4, Switchless Calls, System 2: (a) Regular Calls, (b) Switchless Calls.

Minor reduced latencies of Switchless Calls on System 2 should fall in the measurement
error. The exact cause deserves further research.

59

4.2.3 Comparison

This section compares median results against each other to validate the Hypothesis. Com-
parisons will be made in three areas: System 1 vs. System 2, Regular Calls vs. HotCalls
and Switchless Calls, HotCalls vs. Switchless Calls.

First area of interest is comparison of System 1 and System 2 overheads. System la-
tencies are compared based on RDTSCP function (table 11), Regular Calls (table 12),
HotCalls (table 13) and Switchless Calls (table 14).

Table 11 demonstrates the difference in RDTSCP overheads across two systems [75].
These results are subtracted from consecutive tests. Non-virtualized environment exhibits
1.2x speedup compared to the virtualized environment.

Table 11. System 1 vs. System 2 RDTSCP overheads.

Function System 1 System 2 Latency Speedup

RDTSCP 32 37 1.2x

Table 12 demonstrates the difference in latencies of regular ECalls and OCalls across
System 1 and 2. System 1 demonstrates 1.1x speedup in both cases.

Table 12. System 1 vs. System 2 Regular Calls overheads.

Function System 1 System 2 Latency Speedup

ECall 14 833 15 768 1.1x

OCall 13 221 14 110 1.1x

Table 13 demonstrates the difference in latencies of HotCalls across System 1 and 2.
System 1 shows 4.3x speedup in Hot ECalls and 4x speedup in Hot OCalls.

Table 13. System 1 vs. System 2 HotCalls overheads.

Function System 1 System 2 Latency Speedup

Hot ECall 1241 5335 4.3x

Hot OCall 1302 5212 4.0x

60

Table 14 demonstrates the different in latencies of Switchless Calls across System 1 and
2. System 1 shows marginally higher latencies than System 2.

Table 14. System 1 vs. System 2 Switchless Calls overheads.

Function System 1 System 2 Latency Speedup

Switchless ECall 1582 1484 1.1x

Switchless OCall 1757 1732 1.0x

Second area of interest is comparison of latencies of Regular calls to HotCalls (table 15,
table 16) and Switchless Calls (table 17, table 18).

Table 15 shows 12x speedup in Hot ECalls compared to regular ECalls on System 1 and
3x speedup on System 2.

Table 15. Regular ECalls vs. Hot ECalls.

System ECalls Hot ECalls Latency Speedup

System 1 14 833 1241 12.0x

System 2 15 768 5335 3.0x

Similar pattern continues in table 16, where Hot OCalls demonstrate a 10.2x speedup
compared to regular OCalls on System 1, and 2.7x speedup on System 2.

Table 16. Regular OCalls vs. Hot OCalls.

System OCalls Hot OCalls Latency Speedup

System 1 13 221 1302 10.2x

System 2 14 110 5212 2.7x

Very consistent results are achieved with Switchless ECalls on System 1, where 9.4x
speedup is observed, and on System 2, where 10.6x speedup is observed, shown in table
17.

61

Table 17. Regular ECalls vs. Switchless ECalls.

System ECalls Switchless ECalls Latency Speedup

System 1 14 833 1582 9.4x

System 2 15 768 1484 10.6x

Consistent results continue with Switchless OCalls, where 7.5x speedup is observed on
System 1, and 8.1x on System 2, shown in table 18.

Table 18. Regular OCalls vs. Switchless OCalls.

System OCalls Switchless OCalls Latency Speedup

System 1 13 221 1757 7.5x

System 2 14 110 1732 8.1x

Third area of interest is comparison of HotCalls to Switchless Calls (table 19, table 20).

Table 19 shows 1.3x speedup in Hot ECalls on System 1, and a 3.6x speedup in Switchless
ECalls on System 2. 99th percentile latencies demonstrate that Hot ECalls perform better
then Switchless ECalls, even on System 2.

Table 19. Hot ECalls vs. Switchless ECalls.

System Hot ECalls Switchless ECalls Latency Speedup

System 1 1241 1582 1.3x

System 2 5335 1484 3.6x

The same pattern appears in table 20, where Hot OCalls demonstrate 1.3x speedup on
System 1, and Switchless OCalls demonstrate 3x speedup on System 2. 99th percentile
latencies once again place Hot OCalls first as the fastest performing of the two.

Table 20. Hot OCalls vs. Switchless OCalls.

System Hot OCalls Switchless OCalls Latency Speedup

System 1 1302 1757 1.3x

System 2 5212 1732 3.0x

62

4.3 Conclusion

Three different edge routine methods - Regular Calls, HotCalls and Switchless Calls were
benchmarked and compared in two SGX environments - host Arch Linux 5.0.0-kvm-sgx,
and guest Ubuntu 18.04.02 Linux 4.18.0-17-generic running in VMM. An hypothesis
was presented, which states that System 1 outperforms System 2, and Switchless Calls
outperform HotCalls.

It was demonstrated that System 1 outperforms System 2 in every case, except with
Switchless Calls, although with marginal difference. Using SGX in VMM adds a per-
formance degradation up to 4.3x.

Comparison of Switchless Calls to HotCalls uncovered that HotCalls outperform Switch-
less Calls on System 1 with 1.3x speedup. System 2 demonstrated the opposite, where
Switchless Calls outperform HotCalls with 3-3.6x speedup.

First part of the hypothesis can be considered confirmed, while the second part can not.
Although...

The additional performance gains in HotCalls tests come at the expense of practicality
and security. HotCalls are susceptible to AEXs, which leave them open to side channel
attacks [36], [42]. AEX is the primary method used to force page-faults, completely
breaking SGX’s security guarantees [36], [42]. Another vulnerability is in threading, and
can be exploited, e.g., with AsyncShock [27]. Additionally, HotCalls use un-encrypted
shared memory to perform operations on secure data, completely defeating the purpose of
SGX. Based on this, HotCalls implementation is not practical nor secure for SGX users.

HotCalls was the first fast calls method, and served as an important basis for Switchless
Calls, which show negligible performance loss compared to HotCalls, but with added
security. Switchless Calls conform to high security standards set for SGX.

Switchless Calls uses an innovative, efficiency based worker scheduling algorithm that de-
termines the balance between allocating resources to the SGX application [67]. Switch-
less Calls are practical, stable, robust and highly customizable [67]. They are secured
against known synchronization bugs [27]. They use secure multithreading by decoupling
enclave and application threads [67]. Switchless Calls, along with Regular Calls, are part
of the SGX SDK.

63

Based on measurements, and compared to a typical system call (150 cycles), Regular SGX
Calls complete between 13 000 and 16 000 cycles, and cause a performance degradation
of 88-105x in Intel SGX applications. This performance degradation can be reduced to
10x by using Switchless Calls, which complete between 1400 and 1800 cycles.

There are important findings in this section. KVM-SGX and QEMU-SGX show promis-
ing results in SGX virtualization, but their security and performance properties have not
been thoroughly researched. This paper uncovered undefined behavior in edge routines
running in VMM, and suggests additional research.

64

5 Summary

The goals of this thesis are to evaluate security and performance of SGX.

Security evaluation process encompassed extensive research on SGX from hardware level
to software level with literature review of SGX vulnerabilities and exploits.

Performance evaluation encompassed research on SGX edge routine methods. Two SGX
environments were set up, one of them virtualized, which served as benchmark environ-
ments. Microbenchmarking codes were based on HotCalls research and Intel’s SGX SDK
examples. Programming for microbenchmark codes included: writing a program to mea-
sure RDTSCP overheads and implementing RDTSCP-based measurement code into SGX
applications. Variants of the codes were modified with CLFLUSH functions to take cold
cache measurements. Extensive analysis and comparison of edge routine methods, and
SGX environments followed.

This thesis presented four problems to solve: research on SGX architecture and security,
SGX environments setup, programming microbenchmarks and performing benchmarks
with conclusive results.

Research on SGX architecture and security covered the very basics of SGX up to
complex real-world examples of known exploits. SGX uses a key derivation method
stemming from CPUs hardware registers, transformed up to software level for subsequent
derivations and sharing.

On the software level, SGX SDK uses IPP and SSL libraries equipped with modern en-
cryption schemes to guarantee the confidentiality and integrity of data. Encryption library
is accelerated by Intel AES-NI. There is an open debate about quantum computing break-
ing encryption schemes, most notably RSA and AES, also used in SGX. Researchers are
calling out to create quantum-resistant algorithms today to replace the aging RSA and
AES, which are nearing the end of their useful life-cycle.

Literature review presented case studies of successful attacks on SGX, where side-channel
methods prevail. Intel publicly states that protection against all side channel vulnerabili-
ties doesn’t fall under the SGX security model. This is an open invitation to researchers
and adversaries to completely break SGX in a wide variety of ways. Vulnerabilities that
Intel mitigates are bugs in the software stack (including libraries) and speculative vul-

65

nerabilities like Foreshadow, widely associated with Spectre and Meltdown. The widest
category of side-channel vulnerabilities are left to be mitigated by third parties.

Other vulnerabilities rise from intended mechanisms of SGX such as AEX, which is an
enclave exit procedure performed by the CPU after an exception. Researchers discovered
that AEX can be used to modify page tables and force a page-fault in the enclave which
can be used to map its memory layout. It was later shown that an attack can be mounted
without a page-fault, too.

The best mitigations implement Intel TSX to protect memory areas, successfully blocking
side channels. ROP is the latest, arguably most dangerous attack method, which uses TSX
to it’s malicious intent to put undetectable malware into enclaves. Other ROP techniques
use AEX to leak enclave secrets.

To close side channels on Intel CPUs, a new architecture is called for, which not only
enhances the security of SGX, but of the whole platform.

SGX system setup covered the basis of finding SGX hardware and setting up environ-
ments. In this thesis, two environments were set up - host Arch Linux 5.0.0-kvm-sgx,
and guest Ubuntu 18.04.02 Linux 4.18.0-17-generic running in VMM. Key components
of SGX software stack were identified and successfully installed on Arch Linux. Virtual-
ized system was built using KVM-SGX v5.0.0-r1 and QEMU-SGX v3.1.0-r1. The fairly
complicated installation procedure was broken down.

Programming microbenchmarks and testing, covered extensive research into SGX
edge routine methods. Three edge routine methods were identified: Regular Calls, Hot-
Calls and Switchless Calls.

HotCalls, the first comprehensive quantitative study evaluating the performance of SGX,
implemented a fast function calls method, providing significant speedup in SGX applica-
tions. This speedup came at the expense of security.

Switchless Calls, the official fast edge routine method, implemented into the SGX SDK
v2.2, offered similar performance to HotCalls, but with added benefits of security.

Four code-bases are used for performance evaluation, from which, the first one is the
official code from the authors of HotCalls. The remaining code-bases are original work
based on the HotCalls code and Intel’s Switchless Calls SDK example.

66

Programming is not extensively described in the thesis, but the codes are available on
GitHub. The measurments were made with RDTSCP function, which measures CPU
clock cycles. Cold cache code variants use CLFLUSH to flush data buffers before each
test.

The comparison base is comprised of cold cache median results. Comparison was be-
tween two SGX environments, and between Regular Calls, HotCalls and Switchless Calls.
The last comparison set comprised of HotCalls and Switchless Calls.

An hypothesis was presented, which states that System 1 outperforms System 2, and
Switchless Calls outperform HotCalls. While this wasn’t completely proven, few inter-
esting outcomes were observed.

It was demonstrated that host SGX environment is 4.3x faster than the guest environment.
When comparing Switchless Calls to HotCalls, it was demonstrated that HotCalls are
1.3x faster on System 1. The opposite was demonstrated on System 2, where Switchless
Calls were 3-3.6x faster. When observing 99th percentile results, HotCalls outperformed
Switchless Calls in every case.

The real conclusion in declaring the best fast calls method lies in security. HotCalls
demonstrated vulnerabilities such as synchronization bugs, use of un-encrypted memory
for secure data, defeating the purpose of SGX. Based on research and tests, Switchless
Calls are declared the best method for fast SGX calls.

Based on measurements, and compared to a typical system call (150 cycles), Regular SGX
Calls complete between 13 000 and 16 000 cycles, and cause a performance degradation
of 88-105x in Intel SGX applications. This performance degradation can be reduced to
10x by using Switchless Calls, which complete between 1400 and 1800 cycles.

The important findings in this thesis are in KVM-SGX and QEMU-SGX. During testing,
it was discovered that HotCalls and Switchless Calls perform differently from other tests
in the guest environment. HotCalls research points out a similar issue, where background
context-switching (or something else) is forcing an AEX.

Reduced Switchless Calls latencies in the guest environment may fall under measurement
error, but equally surprising undefined behavior in HotCalls back up an hypothesis, that
experimental KVM-SGX and QEMU-SGX hide undisclosed vulnerabilities.

67

References
[1] Intel, Intel® software guard extensions developer guide. [Online]. Available:

https://download.01.org/intel- sgx/linux- 2.5/docs/Intel_
SGX_Developer_Guide.pdf (visited on 04/20/2019).

[2] V. Costan and S. Devadas, Intel sgx explained, Cryptology ePrint Archive, Report
2016/086, https://eprint.iacr.org/2016/086, 2016.

[3] Intel, Intel® 64 and ia-32 architectures software developer’s manual - combined
volumes: 1, 2a, 2b, 2c, 2d, 3a, 3b, 3c, 3d and 4. [Online]. Available: https://
software.intel.com/sites/default/files/managed/39/c5/325462-
sdm-vol-1-2abcd-3abcd.pdf (visited on 04/10/2019).

[4] ——, Sgx virtualization | 01.org. [Online]. Available: https : / / 01 . org /
intel-software-guard-extensions/sgx-virtualization (visited on
04/10/2019).

[5] ——, Intel® software guard extensions developer reference for linux* os. [On-
line]. Available: https://download.01.org/intel-sgx/linux-2.5/
docs/Intel_SGX_Developer_Reference_Linux_2.5_Open_Source.pdf
(visited on 04/17/2019).

[6] ——, Isca 2015 tutorial slides for intel® sgx. [Online]. Available: https://
software.intel.com/sites/default/files/332680-002.pdf (visited
on 04/29/2019).

[7] ——, Attestation service for intel® software guard extensions (intel® sgx): Api
documentation. [Online]. Available: https://software.intel.com/sites/
default / files / managed / 7e / 3b / ias - api - spec . pdf (visited on
04/28/2019).

[8] ——, Introduction to intel® sgx sealing | intel® software. [Online]. Available:
https : / / software . intel . com / en - us / blogs / 2016 / 05 / 04 /
introduction-to-intel-sgx-sealing (visited on 04/28/2019).

[9] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, Intel® software
guard extensions: Epid provisioning and attestation services. [Online]. Available:
https://software.intel.com/sites/default/files/managed/57/
0e/ww10-2016-sgx-provisioning-and-attestation-final.pdf (vis-
ited on 04/27/2019).

[10] O. Wada and T. Namekawa, Semiconductor electrically programmable fuse (efuse)
having a polysilicon layer not doped with an impurity ion and a programming
method thereof. [Online]. Available: https://patents.google.com/patent/
US8279700B2/en (visited on 04/27/2019).

[11] Intel, Intel(r) integrated performance primitives cryptography. [Online]. Available:
https://github.com/intel/ipp-crypto (visited on 04/28/2019).

[12] ——, Intel® software guard extensions ssl. [Online]. Available: https : / /
github.com/intel/intel-sgx-ssl (visited on 04/28/2019).

[13] NIST, National vulnerability database - intel sgx. [Online]. Available: https:
//nvd.nist.gov/vuln/search/results?form_type=Basic&results_
type = overview & query = Intel + SGX & search _ type = all (visited on
04/23/2019).

[14] ——, National vulnerability database - intel software guard extensions. [Online].
Available: https : / / nvd . nist . gov / vuln / search / results ? form _
type=Basic&results_type=overview&query=Intel+Software+Guard+
Extensions&search_type=all (visited on 04/23/2019).

68

https://download.01.org/intel-sgx/linux-2.5/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/linux-2.5/docs/Intel_SGX_Developer_Guide.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://01.org/intel-software-guard-extensions/sgx-virtualization
https://01.org/intel-software-guard-extensions/sgx-virtualization
https://download.01.org/intel-sgx/linux-2.5/docs/Intel_SGX_Developer_Reference_Linux_2.5_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.5/docs/Intel_SGX_Developer_Reference_Linux_2.5_Open_Source.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf
https://software.intel.com/en-us/blogs/2016/05/04/introduction-to-intel-sgx-sealing
https://software.intel.com/en-us/blogs/2016/05/04/introduction-to-intel-sgx-sealing
https://software.intel.com/sites/default/files/managed/57/0e/ww10-2016-sgx-provisioning-and-attestation-final.pdf
https://software.intel.com/sites/default/files/managed/57/0e/ww10-2016-sgx-provisioning-and-attestation-final.pdf
https://patents.google.com/patent/US8279700B2/en
https://patents.google.com/patent/US8279700B2/en
https://github.com/intel/ipp-crypto
https://github.com/intel/intel-sgx-ssl
https://github.com/intel/intel-sgx-ssl
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=Intel+SGX&search_type=all
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=Intel+SGX&search_type=all
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=Intel+SGX&search_type=all
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=Intel+Software+Guard+Extensions&search_type=all
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=Intel+Software+Guard+Extensions&search_type=all
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=Intel+Software+Guard+Extensions&search_type=all

[15] FIRST, Common vulnerability scoring system v3.0: Specification document (v1.8).
[Online]. Available: https : / / www . first . org / cvss / cvss - v30 -
specification-v1.8.pdf (visited on 04/24/2019).

[16] A. D. Householder, G. Wassermann, A. Manion, and C. King, The cert® guide to
coordinated vulnerability disclosure. [Online]. Available: https://resources.
sei.cmu.edu/asset_files/SpecialReport/2017_003_001_503340.
pdf (visited on 04/24/2019).

[17] Intel, Intel-sa-00117. [Online]. Available: https : / / www . intel . com /
content/www/us/en/security-center/advisory/intel-sa-00117.
html (visited on 04/23/2019).

[18] ——, Intel-sa-00217. [Online]. Available: https : / / www . intel . com /
content/www/us/en/security-center/advisory/INTEL-SA-00217.
html (visited on 04/23/2019).

[19] ——, Intel-sa-00203. [Online]. Available: https : / / www . intel . com /
content/www/us/en/security-center/advisory/INTEL-SA-00203.
html (visited on 04/23/2019).

[20] ——, Intel-oss-10004. [Online]. Available: https : / / 01 . org / security /
advisories/intel-oss-10004 (visited on 04/23/2019).

[21] ——, Intel-sa-00161. [Online]. Available: https : / / www . intel . com /
content/www/us/en/security-center/advisory/intel-sa-00161.
html (visited on 04/23/2019).

[22] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silber-
stein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow: Extracting the keys
to the Intel SGX kingdom with transient out-of-order execution”, in Proceedings
of the 27th USENIX Security Symposium, See also technical report Foreshadow-
NG [23], USENIX Association, Aug. 2018.

[23] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens, M. Sil-
berstein, R. Strackx, T. F. Wenisch, and Y. Yarom, “Foreshadow-NG: Breaking
the virtual memory abstraction with transient out-of-order execution”, Technical
report, 2018, See also USENIX Security paper Foreshadow [22].

[24] Intel, Intel side channel vulnerability l1tf. [Online]. Available: https://www.
intel.com/content/www/us/en/architecture- and- technology/
l1tf.html (visited on 04/24/2019).

[25] ——, Intel-sa-00076. [Online]. Available: https : / / www . intel . com /
content/www/us/en/security-center/advisory/intel-sa-00076.
html (visited on 04/23/2019).

[26] ——, Academic research. [Online]. Available: https://software.intel.
com / en - us / sgx / documentation / academic - research (visited on
04/23/2019).

[27] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza, “Asyncshock: Exploit-
ing synchronisation bugs in intel sgx enclaves”, in Computer Security – ESORICS
2016, I. Askoxylakis, S. Ioannidis, S. Katsikas, and C. Meadows, Eds., Cham:
Springer International Publishing, 2016, pp. 440–457, ISBN: 978-3-319-45744-4.

[28] MITRE, Common weakness enumeration - cwe-415: Double free (3.2). [Online].
Available: https://cwe.mitre.org/data/definitions/415.html (visited
on 04/30/2019).

69

https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://resources.sei.cmu.edu/asset_files/SpecialReport/2017_003_001_503340.pdf
https://resources.sei.cmu.edu/asset_files/SpecialReport/2017_003_001_503340.pdf
https://resources.sei.cmu.edu/asset_files/SpecialReport/2017_003_001_503340.pdf
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00117.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00117.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00117.html
https://www.intel.com/content/www/us/en/security-center/advisory/INTEL-SA-00217.html
https://www.intel.com/content/www/us/en/security-center/advisory/INTEL-SA-00217.html
https://www.intel.com/content/www/us/en/security-center/advisory/INTEL-SA-00217.html
https://www.intel.com/content/www/us/en/security-center/advisory/INTEL-SA-00203.html
https://www.intel.com/content/www/us/en/security-center/advisory/INTEL-SA-00203.html
https://www.intel.com/content/www/us/en/security-center/advisory/INTEL-SA-00203.html
https://01.org/security/advisories/intel-oss-10004
https://01.org/security/advisories/intel-oss-10004
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00076.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00076.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00076.html
https://software.intel.com/en-us/sgx/documentation/academic-research
https://software.intel.com/en-us/sgx/documentation/academic-research
https://cwe.mitre.org/data/definitions/415.html

[29] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deterministic side
channels for untrusted operating systems”, in Proceedings of the 2015 IEEE Sym-
posium on Security and Privacy, ser. SP ’15, Washington, DC, USA: IEEE Com-
puter Society, 2015, pp. 640–656, ISBN: 978-1-4673-6949-7. DOI: 10.1109/SP.
2015.45. [Online]. Available: https://doi.org/10.1109/SP.2015.45.

[30] J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx, “Telling your
secrets without page faults: Stealthy page table-based attacks on enclaved execu-
tion”, in 26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC:
USENIX Association, 2017, pp. 1041–1056, ISBN: 978-1-931971-40-9. [Online].
Available: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/van-bulck.

[31] Y. Xiao, M. Li, S. Chen, and Y. Zhang, “Stacco: Differentially analyzing side-
channel traces for detecting SSL/TLS vulnerabilities in secure enclaves”, CoRR,
vol. abs/1707.03473, 2017. arXiv: 1707.03473. [Online]. Available: http://
arxiv.org/abs/1707.03473.

[32] A. Moghimi, G. Irazoqui, and T. Eisenbarth, Cachezoom: How sgx amplifies the
power of cache attacks, Cryptology ePrint Archive, Report 2017/618, https://
eprint.iacr.org/2017/618, 2017.

[33] M. Hähnel, W. Cui, and M. Peinado, “High-resolution side channels for untrusted
operating systems”, in 2017 USENIX Annual Technical Conference (USENIX ATC
17), Santa Clara, CA: USENIX Association, 2017, pp. 299–312, ISBN: 978-1-
931971-38-6. [Online]. Available: https://www.usenix.org/conference/
atc17/technical-sessions/presentation/hahnel.

[34] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on intel sgx”, in
Proceedings of the 10th European Workshop on Systems Security, ser. EuroSec’17,
Belgrade, Serbia: ACM, 2017, 2:1–2:6, ISBN: 978-1-4503-4935-2. DOI: 10.1145/
3065913.3065915. [Online]. Available: http://doi.acm.org/10.1145/
3065913.3065915.

[35] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard, “Malware guard ex-
tension: Using SGX to conceal cache attacks”, CoRR, vol. abs/1702.08719, 2017.
arXiv: 1702.08719. [Online]. Available: http://arxiv.org/abs/1702.
08719.

[36] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.
Sadeghi, “Software grand exposure: SGX cache attacks are practical”, CoRR,
vol. abs/1702.07521, 2017. arXiv: 1702.07521. [Online]. Available: http://
arxiv.org/abs/1702.07521.

[37] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring fine-
grained control flow inside SGX enclaves with branch shadowing”, CoRR,
vol. abs/1611.06952, 2016. arXiv: 1611.06952. [Online]. Available: http://
arxiv.org/abs/1611.06952.

[38] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating controlled-
channel attacks against enclave programs”, in NDSS, 2017.

[39] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa, “Strong
and efficient cache side-channel protection using hardware transactional mem-
ory”, in 26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC:
USENIX Association, 2017, pp. 217–233, ISBN: 978-1-931971-40-9. [Online].
Available: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/gruss.

70

https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1109/SP.2015.45
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://arxiv.org/abs/1707.03473
http://arxiv.org/abs/1707.03473
http://arxiv.org/abs/1707.03473
https://eprint.iacr.org/2017/618
https://eprint.iacr.org/2017/618
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hahnel
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hahnel
https://doi.org/10.1145/3065913.3065915
https://doi.org/10.1145/3065913.3065915
http://doi.acm.org/10.1145/3065913.3065915
http://doi.acm.org/10.1145/3065913.3065915
https://arxiv.org/abs/1702.08719
http://arxiv.org/abs/1702.08719
http://arxiv.org/abs/1702.08719
https://arxiv.org/abs/1702.07521
http://arxiv.org/abs/1702.07521
http://arxiv.org/abs/1702.07521
https://arxiv.org/abs/1611.06952
http://arxiv.org/abs/1611.06952
http://arxiv.org/abs/1611.06952
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss

[40] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M.
Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks: Ex-
ploiting speculative execution”, in 40th IEEE Symposium on Security and Privacy
(S&P’19), 2019.

[41] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Man-
gard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown: Reading
kernel memory from user space”, in 27th USENIX Security Symposium (USENIX
Security 18), 2018.

[42] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi, T. Kim, M. Peinado,
and B. B. Kang, “Hacking in darkness: Return-oriented programming against
secure enclaves”, in 26th USENIX Security Symposium (USENIX Security 17),
Vancouver, BC: USENIX Association, 2017, pp. 523–539, ISBN: 978-1-931971-
40-9. [Online]. Available: https : / / www . usenix . org / conference /
usenixsecurity17/technical-sessions/presentation/lee-jaehyuk.

[43] M. Schwarz, S. Weiser, and D. Gruss, “Practical enclave malware with intel
SGX”, CoRR, vol. abs/1902.03256, 2019. arXiv: 1902.03256. [Online]. Avail-
able: http://arxiv.org/abs/1902.03256.

[44] R. Evers and A. Sweeny, Reducing the time to break symmetric keys. [Online].
Available: https://kryptera.ca/paper/2018-03/ (visited on 05/03/2019).

[45] Intel, Intel® product specification advanced search. [Online]. Available: https:
//ark.intel.com/content/www/us/en/ark/search/featurefilter.
html?productType=873&2_SoftwareGuardExtensions=Yes%20with%
20Intel%C2%AE%20ME (visited on 04/10/2019).

[46] ——, Intel® product specification advanced search. [Online]. Available: https:
//ark.intel.com/content/www/us/en/ark/search/featurefilter.
html?productType=873&2_SoftwareGuardExtensions=Yes%20with%
20both%20Intel%C2%AE%20SPS%20and%20Intel%C2%AE%20ME (visited on
04/10/2019).

[47] L. Lühr, Ayeks/sgx-hardware: This is a list of hardware which is supports intel sgx -
software guard extensions. [Online]. Available: https://github.com/ayeks/
SGX-hardware (visited on 04/10/2019).

[48] Intel, Intel® software guard extensions installation guide for linux* os. [Online].
Available: https://download.01.org/intel-sgx/linux-2.5/docs/
Intel_SGX_Installation_Guide_Linux_2.5_Open_Source.pdf (visited
on 04/10/2019).

[49] ——, Intel® software guard extensions (intel® sgx) sdk for windows* os revi-
sion: 2.3 release notes. [Online]. Available: https://software.intel.com/
sites/default/files/managed/d1/0a/Intel- SGX- SDK- Release-
Notes-for-Windows-OS.pdf (visited on 04/30/2019).

[50] ——, Intel/linux-sgx-driver: Intel sgx linux* driver. [Online]. Available: https:
//github.com/intel/linux-sgx-driver (visited on 04/10/2019).

[51] ——, Intel/linux-sgx: Intel sgx for linux*. [Online]. Available: https://github.
com/intel/linux-sgx (visited on 04/10/2019).

[52] T. Allen, Todd allen’s tools: Cpuid. [Online]. Available: http://www.etallen.
com/cpuid.html (visited on 04/30/2019).

[53] Intel, Intel sgx linux 2.5 release | 01.org. [Online]. Available: https://01.org/
intel- softwareguard- extensions/downloads/intel- sgx- linux-
2.5-release (visited on 04/10/2019).

71

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://arxiv.org/abs/1902.03256
http://arxiv.org/abs/1902.03256
https://kryptera.ca/paper/2018-03/
https://ark.intel.com/content/www/us/en/ark/search/featurefilter.html?productType=873&2_SoftwareGuardExtensions=Yes%20with%20Intel%C2%AE%20ME
https://ark.intel.com/content/www/us/en/ark/search/featurefilter.html?productType=873&2_SoftwareGuardExtensions=Yes%20with%20Intel%C2%AE%20ME
https://ark.intel.com/content/www/us/en/ark/search/featurefilter.html?productType=873&2_SoftwareGuardExtensions=Yes%20with%20Intel%C2%AE%20ME
https://ark.intel.com/content/www/us/en/ark/search/featurefilter.html?productType=873&2_SoftwareGuardExtensions=Yes%20with%20Intel%C2%AE%20ME
https://ark.intel.com/content/www/us/en/ark/search/featurefilter.html?productType=873&2_SoftwareGuardExtensions=Yes%20with%20both%20Intel%C2%AE%20SPS%20and%20Intel%C2%AE%20ME
https://ark.intel.com/content/www/us/en/ark/search/featurefilter.html?productType=873&2_SoftwareGuardExtensions=Yes%20with%20both%20Intel%C2%AE%20SPS%20and%20Intel%C2%AE%20ME
https://ark.intel.com/content/www/us/en/ark/search/featurefilter.html?productType=873&2_SoftwareGuardExtensions=Yes%20with%20both%20Intel%C2%AE%20SPS%20and%20Intel%C2%AE%20ME
https://ark.intel.com/content/www/us/en/ark/search/featurefilter.html?productType=873&2_SoftwareGuardExtensions=Yes%20with%20both%20Intel%C2%AE%20SPS%20and%20Intel%C2%AE%20ME
https://github.com/ayeks/SGX-hardware
https://github.com/ayeks/SGX-hardware
https://download.01.org/intel-sgx/linux-2.5/docs/Intel_SGX_Installation_Guide_Linux_2.5_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.5/docs/Intel_SGX_Installation_Guide_Linux_2.5_Open_Source.pdf
https://software.intel.com/sites/default/files/managed/d1/0a/Intel-SGX-SDK-Release-Notes-for-Windows-OS.pdf
https://software.intel.com/sites/default/files/managed/d1/0a/Intel-SGX-SDK-Release-Notes-for-Windows-OS.pdf
https://software.intel.com/sites/default/files/managed/d1/0a/Intel-SGX-SDK-Release-Notes-for-Windows-OS.pdf
https://github.com/intel/linux-sgx-driver
https://github.com/intel/linux-sgx-driver
https://github.com/intel/linux-sgx
https://github.com/intel/linux-sgx
http://www.etallen.com/cpuid.html
http://www.etallen.com/cpuid.html
https://01.org/intel-softwareguard-extensions/downloads/intel-sgx-linux-2.5-release
https://01.org/intel-softwareguard-extensions/downloads/intel-sgx-linux-2.5-release
https://01.org/intel-softwareguard-extensions/downloads/intel-sgx-linux-2.5-release

[54] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical library os for
unmodified applications on sgx”, in Proceedings of the 2017 USENIX Confer-
ence on Usenix Annual Technical Conference, ser. USENIX ATC ’17, Santa Clara,
CA, USA: USENIX Association, 2017, pp. 645–658, ISBN: 978-1-931971-38-6.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3154690.
3154752.

[55] Intel, Intel/kvm-sgx. [Online]. Available: https://github.com/intel/kvm-
sgx (visited on 04/10/2019).

[56] ——, Intel/qemu-sgx. [Online]. Available: https : / / github . com / intel /
qemu-sgx (visited on 04/10/2019).

[57] A. Linux, Kernel/traditional compilation - archwiki. [Online]. Available: https:
/ / wiki . archlinux . org / index . php / Kernel / Traditional _
compilation (visited on 04/10/2019).

[58] ——, Arch linux - qemu 3.1.0-2. [Online]. Available: https://www.archlinux.
org/packages/extra/x86_64/qemu/ (visited on 04/10/2019).

[59] ——, Kvm - archwiki. [Online]. Available: https://wiki.archlinux.org/
index.php/KVM (visited on 04/10/2019).

[60] D. Marshall, Kvm developer community gathers in first cross-industry event : @vm-
blog. [Online]. Available: http://vmblog.com/archive/2007/09/07/kvm-
developer-community-gathers-in-first-cross-industry-event.
aspx (visited on 04/10/2019).

[61] Libvirt, Virtio - libvirt wiki. [Online]. Available: https://wiki.libvirt.org/
page/Virtio (visited on 04/10/2019).

[62] A. Linux, Libwirt - archwiki. [Online]. Available: https://wiki.archlinux.
org/index.php/Libvirt (visited on 04/10/2019).

[63] C. G. L. [GB], The leading operating system for pcs, iot devices, servers and the
cloud | ubuntu. [Online]. Available: https://www.ubuntu.com/ (visited on
04/10/2019).

[64] QEMU, Qemu version 3.1.50 user documentation. [Online]. Available: https:
//qemu.weilnetz.de/doc/qemu-doc.html (visited on 05/01/2019).

[65] R. H. Bugzilla, 1428952 - enhance libvirt to present virtual l3 cache info for vcpus.
[Online]. Available: https://bugzilla.redhat.com/show_bug.cgi?id=
1428952 (visited on 05/01/2019).

[66] O. Weisse, V. Bertacco, and T. Austin, “Regaining lost cycles with hotcalls: A fast
interface for sgx secure enclaves”, SIGARCH Comput. Archit. News, vol. 45, no. 2,
pp. 81–93, Jun. 2017, ISSN: 0163-5964. DOI: 10.1145/3140659.3080208.
[Online]. Available: http://doi.acm.org/10.1145/3140659.3080208.

[67] H. Tian, Q. Zhang, S. Yan, A. Rudnitsky, L. Shacham, R. Yariv, and N. Milshten,
“Switchless calls made practical in intel sgx”, in Proceedings of the 3rd Work-
shop on System Software for Trusted Execution, ser. SysTEX ’18, Toronto, Canada:
ACM, 2018, pp. 22–27, ISBN: 978-1-4503-5998-6. DOI: 10.1145/3268935.
3268942. [Online]. Available: http://doi.acm.org/10.1145/3268935.
3268942.

[68] Intel, Intel sgx linux 2.2 release | 01.org. [Online]. Available: https://01.org/
intel- softwareguard- extensions/downloads/intel- sgx- linux-
2.2-release (visited on 04/17/2019).

[69] O. Weisse, V. Bertacco, and T. Austin, Oweisse/hot-calls: Fast interface for sgx
secure enclaves. based on isca 2017 hotcalls paper. [Online]. Available: https:
//github.com/oweisse/hot-calls (visited on 04/16/2019).

72

http://dl.acm.org/citation.cfm?id=3154690.3154752
http://dl.acm.org/citation.cfm?id=3154690.3154752
https://github.com/intel/kvm-sgx
https://github.com/intel/kvm-sgx
https://github.com/intel/qemu-sgx
https://github.com/intel/qemu-sgx
https://wiki.archlinux.org/index.php/Kernel/Traditional_compilation
https://wiki.archlinux.org/index.php/Kernel/Traditional_compilation
https://wiki.archlinux.org/index.php/Kernel/Traditional_compilation
https://www.archlinux.org/packages/extra/x86_64/qemu/
https://www.archlinux.org/packages/extra/x86_64/qemu/
https://wiki.archlinux.org/index.php/KVM
https://wiki.archlinux.org/index.php/KVM
http://vmblog.com/archive/2007/09/07/kvm-developer-community-gathers-in-first-cross-industry-event.aspx
http://vmblog.com/archive/2007/09/07/kvm-developer-community-gathers-in-first-cross-industry-event.aspx
http://vmblog.com/archive/2007/09/07/kvm-developer-community-gathers-in-first-cross-industry-event.aspx
https://wiki.libvirt.org/page/Virtio
https://wiki.libvirt.org/page/Virtio
https://wiki.archlinux.org/index.php/Libvirt
https://wiki.archlinux.org/index.php/Libvirt
https://www.ubuntu.com/
https://qemu.weilnetz.de/doc/qemu-doc.html
https://qemu.weilnetz.de/doc/qemu-doc.html
https://bugzilla.redhat.com/show_bug.cgi?id=1428952
https://bugzilla.redhat.com/show_bug.cgi?id=1428952
https://doi.org/10.1145/3140659.3080208
http://doi.acm.org/10.1145/3140659.3080208
https://doi.org/10.1145/3268935.3268942
https://doi.org/10.1145/3268935.3268942
http://doi.acm.org/10.1145/3268935.3268942
http://doi.acm.org/10.1145/3268935.3268942
https://01.org/intel-softwareguard-extensions/downloads/intel-sgx-linux-2.2-release
https://01.org/intel-softwareguard-extensions/downloads/intel-sgx-linux-2.2-release
https://01.org/intel-softwareguard-extensions/downloads/intel-sgx-linux-2.2-release
https://github.com/oweisse/hot-calls
https://github.com/oweisse/hot-calls

[70] T. Lusmägi, Sgx-performance/enclave-hotcalls-clflush. [Online]. Available:
https://github.com/SGX-performance/enclave-Hotcalls-clflush
(visited on 05/01/2019).

[71] ——, Sgx-performance/enclave-switchless. [Online]. Available: https : / /
github . com / SGX - performance / enclave - Switchless (visited on
05/01/2019).

[72] ——, Sgx-performance/enclave-switchless-clflush. [Online]. Available: https://
github.com/SGX-performance/enclave-Switchless-clflush (visited
on 05/01/2019).

[73] Intel, Intel® turbo boost technology 2.0. [Online]. Available: https://www.
intel.com/content/www/us/en/architecture- and- technology/
turbo-boost/turbo-boost-technology.html (visited on 04/22/2019).

[74] I. Gabriele Paoloni, How to benchmark code execution times on intel® ia-32 and
ia-64 instruction set architectures. [Online]. Available: https://www.intel.
com/content/dam/www/public/us/en/documents/white- papers/
ia - 32 - ia - 64 - benchmark - code - execution - paper . pdf (visited on
04/22/2019).

[75] T. Lusmägi, Sgx-performance/syscall-and-rdtscp-overhead. [Online]. Available:
https : / / github . com / SGX - performance / syscall - and - rdtscp -
overhead (visited on 05/01/2019).

[76] ——, Sgx-performance/benchmark-files. [Online]. Available: https://github.
com/SGX-performance/benchmark-files (visited on 05/01/2019).

73

https://github.com/SGX-performance/enclave-Hotcalls-clflush
https://github.com/SGX-performance/enclave-Switchless
https://github.com/SGX-performance/enclave-Switchless
https://github.com/SGX-performance/enclave-Switchless-clflush
https://github.com/SGX-performance/enclave-Switchless-clflush
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://github.com/SGX-performance/syscall-and-rdtscp-overhead
https://github.com/SGX-performance/syscall-and-rdtscp-overhead
https://github.com/SGX-performance/benchmark-files
https://github.com/SGX-performance/benchmark-files

Appendix 1 – SGX instructions

Table 1 lists SGX1 instructions and leaf functions available since 6th generation Intel Core
processors [3].

Table 1. Supervisor (ring 0) and User Mode (ring 3) Enclave Instruction Leaf Functions in Long-Form of
SGX1 [3].

Supervisor instruction Description

ENCLS[EADD] Add a page

ENCLS[EBLOCK] Block an EPC page

ENCLS[ECREATE] Create an enclave

ENCLS[EDBGRD] Read data by debugger

ENCLS[EDBGWR] Write data by debugger

ENCLS[EEXTEND] Extend EPC page measurement

ENCLS[EINIT] Initialize an enclave

ENCLS[ELDB] Load an EPC page as blocked

ENCLS[ELDU] Load an EPC page as unblocked

ENCLS[EPA] Add version array

ENCLS[EREMOVE] Remove a page from EPC

ENCLS[ETRACK] Activate EBLOCK checks

ENCLS[EWB] Write back/invalidate an EPC page

User instruction

ENCLU[EENTER] Enter an Enclave

ENCLU[EEXIT] Exit an Enclave

ENCLU[EGETKEY] Create a cryptographic key

ENCLU[EREPORT] Create a cryptographic report

ENCLU[ERESUME] Re-enter an Enclave

74

Table 2 lists SGX2 instructions and leaf functions reserved for future Intel Core processors
[3], known to be available in Intel NUC7CJYH and NUC7PJYH [47].

Table 2. Supervisor (ring 0) and User Mode (ring 3) Enclave Instruction Leaf Functions in Long-Form of
SGX2 [3].

Supervisor instruction Description

ENCLS[EAUG] Allocate EPC page to an existing enclave

ENCLS[EMODPR] Restrict page permissions

ENCLS[EMODT] Modify EPC page type

User instruction

ENCLU[EACCEPT] Accept EPC page into the enclave

ENCLU[EMODPE] Enhance page permissions

ENCLU[EACCEPTCOPY] Copy contents to an augmented EPC page and accept the
EPC page into the enclave

75

Table 3 lists SGX OVERSUB instructions and leaf functions reserved for future Intel Core
processors [3].

Table 3. VMX Operation (ring 0) and Supervisor Mode (ring 0) Enclave Instruction Leaf Functions in
Long-Form of OVERSUB [3].

Supervisor instruction Description

ENCLV[EDECVIRTCHILD] Decrement the virtual child page count

ENCLV[EINCVIRTCHILD] Increment the virtual child page count

ENCLV[ESETCONTEXT] Set virtualization context

User instruction

ENCLS[ERDINFO] Read information about EPC page

ENCLS[TRACKC] Activate EBLOCK checks with conflict reporting

ENCLS[ELDBC/UC] Load an EPC page with conflict reporting

76

	Introduction
	Security Evaluation
	SGX overview
	Run-time system
	Features at a glance

	Key hierarchy & encryption schemes
	Known vulnerabilities
	Security research
	Side-channel attacks
	Side-channel mitigations
	Speculative attacks
	ROP attacks

	Conclusion

	System Setup
	SGX support
	Test hardware
	Linux system
	SGX driver
	SGX SDK & PSW

	Virtualized Linux system
	KVM-SGX
	QEMU-SGX
	Guest system

	Conclusion

	Performance Evaluation
	Testing methodology
	Results
	HotCalls
	Switchless Calls
	Comparison

	Conclusion

	Summary
	References
	Appendix SGX instructions

