
31st Nordic Workshop on Programming Theory

NWPT 2019

Tallinn, Estonia, 13–15 November 2019

Abstracts

Department of Software Science, Tallinn University of Technology

Tallinn ◦ 2019



31st Nordic Workshop on Programming Theory
NWPT 2019
Tallinn, Estonia, 13–15 November 2019
Abstracts

Edited by Tarmo Uustalu and Jüri Vain
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Preface

This volume contains the abstracts of the talks to be presented at the 31st Nordic Workshop on
Programming Theory, NWPT 2019, to take place in Tallinn, Estonia, 13–15 November 2019.

The NWPT workshops are a forum bringing together programming theorists from the Nordic
and Baltic countries (but also elsewhere). The previous workshops were held in Uppsala (1989,
1999 and 2004), Aalborg (1990 and 2016), Göteborg (1991 and 1995), Bergen (1992, 2000
and 2012), Åbo (Turku) (1993, 1998, 2003, 2010 and 2017), Aarhus (1994), Oslo (1996, 2007
and 2018), Tallinn (1997, 2002, 2008 and 2013), Lyngby near Copenhagen (2001 and 2009),
Copenhagen (2005), Reykjav́ık (2006 and 2015), Väster̊as (2011) and Halmstad (2014).

The scope of the meetings covers traditional as well as emerging disciplines within program-
ming theory: semantics of programming languages, programming language design and program-
ming methodology, programming logics, formal specification of programs, program verification,
program construction, program transformation and refinement, real-time and hybrid systems,
models of concurrent, distributed and mobile computing, language-based security. In partic-
ular, they are targeted at early-career researchers as a friendly forum where one can present
work in progress but which at the same time produces a high-level post-proceedings compiled
of the selected best contributions in the form of a special journal issue.

The programme of NWPT 2019 includes three invited talks by distinguished researchers—
Pawe l Sobociński (Tallinn University of Technology), Ando Saabas (Bolt) and Jan von Plato
(University of Helsinki). The contributed part of the programme consists of 23 talks by authors
from Belgium, Estonia, Finland, Germany, Iceland, Norway, Poland, Russia, Sweden and the
United Kingdom.

Tarmo Uustalu and Jüri Vain

Tallinn, 11 November 2019
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Interpreting and Validating

Machine Learning Models

Ando Saabas

Bolt, Tallinn, Estonia
ando@set.ee

Machine learning (ML) models are being increasingly used in practical applications, in-
cluding in fields such as healthcare, manufacturing and transportation. These models, while
powerful, can sometimes fail in very unintuitive ways. As the size and complexity of the models
increases, it has become more and more important to understand the reasoning of the mod-
els, i.e., to validate that the interplay between specification (read: training data) and program
(read: the model) is what was intended.

In this talk, I will give an overview of the state of the art in interpreting ML models. In
particular, I will explain how tree-based models such as random forests or gradient boosted trees
can be instrumented to explain their predictions in terms of contributions from each feature in
the input feature vector.
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A Compositional Approach to

Signal Flow Graphs

Pawe l Sobociński

Dept. of Software Science, Tallinn University of Technology, Estonia
pawel@cs.ioc.ee

Signal flow graphs are a classical state-machine model of computation first proposed by
Claude Shannon, and are well-known in control theory and engineering. They have a con-
tinuous interpretation, where they compute solutions of systems of homogeneous higher-order
differential equations, and a discrete interpretation, where they compute solutions of recurrence
relations.

I will give a compositional presentation of the theory of signal flow graphs using standard
techniques of programming language semantics. String diagrams provide a rigorous graphical
syntax, and a denotational semantics is given as a monoidal functor to an appropriate category
of linear relations. Operational semantics can be given using a structural presentation.

Denotational equality will be characterised: i) axiomatically, in terms of an equational
theory that shows how the basic syntactic components “interact”, ii) and in operational terms
as contextual equivalence, via a full abstraction result that relies on recent work that extends
the setting from linear to affine relations.
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Two Centuries of Formal Computation

Jan von Plato

Dept. of Philosophy, University of Helsinki, Finland
jan.vonplato@helsinki.fi

Theories of formal computation preceded actual programmable computers by about one
hundred years. The first intimations of such computation go back even further, to one
Johann Schultz, professor of mathematics and royal court-preacher in Kant’s Königsberg, and to
Leibniz. Google Books and other online sources have made it possible to illustrate through orig-
inal sources the long way from Leibniz’ formal proof of 2 + 2 = 4 to the 1930s that represented
formal computation as a species of formal deduction.
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Axiomatizing Equivalences over Regular Monitors∗

Luca Aceto1,2, Antonis Achilleos1, Elli Anastasiadi1, Anna Ingólfsdóttir1

1 Dept. of Computer Science, Reykjavik University, Iceland
2 Gran Sasso Science Institute, L’Aquila, Italy

luca@ru.is, luca.aceto@gssi.it, antonios@ru.is, elli19@ru.is, annai@ru.is

Abstract

We study whether recursion-free regular monitors have finite equational axiomatizations
with respect to two notions of equivalence, namely verdict and ω-verdict equivalence.

1 Introduction

Equational axiomatizations provide a purely syntactic description of the chosen notion of equiv-
alence over processes and characterize the essence of a process semantics by means of a few
revealing axioms. We consider a fragment of the regular monitors described and studied by
Aceto et al. in, for instance, [1, 4]. Monitors are a key tool in the field of runtime verification
[3], where they are used to check for system properties by analyzing execution traces generated
by processes.

A monitor is an agent that observes the events occurring in a system as it progresses through
time. Two monitors are verdict equivalent when they characterize exactly the same traces as
successful and failure ones. Similarly they are ω-verdict equivalent when they characterize
the same infinite traces as successful and failure ones. Our goal in this work is to study the
equational theory of those relations. We give a ground complete axiomatization for both of those
equivalences. We also study open equations, provide an (infinite) complete axiomatization for
verdict equivalence and we argue that no finite one exists, even when the set of actions monitors
can analyze is finite. Such negative results are common in the field of process algebra [2]
although they usually occur for more expressive languages.

We present a suitable notion of normal form and use it to reduce the verdict equivalence
problem for closed monitors to equality between normal forms. We also study the complexity
of checking equivalence between two closed monitors and find it to be almost linear (off by a
constant factor) in the size of the syntax tree of the monitors. This result is in contrast with
the coNP -completeness for equality testing between star-free regular expressions [6].

Apart from their intrinsic theoretical interest, axiomatizations such as the ones we present
can form the basis for tools for proving equivalences between monitors using theorem-proving
techniques and identify valid laws of “monitor programming” in the sense of [5]. A complete
axiomatization captures all the valid laws of programming in a model-independent way. Such
laws can, for instance, be used as a set of rewrite rules to bring a monitor into an equivalent but
better (for instance, more succinct or canonical) form. Since monitors are often synthesized
automatically from specifications of monitorable properties, non-optimal representations are
very likely to arise as a result of monitor-synthesis algorithms. The availability of a complete
axiomatization of monitor equivalence indicates that, at least for monitors written in the lan-
guages being axiomatized modulo the chosen notion of equivalence, one can always synthesize
“optimal” monitors.

∗The work reported in this paper is supported by the projects Open Problems in the Equational Logic of Pro-
cesses (OPEL) (grant 196050-051) and ‘TheoFoMon: Theoretical Foundations for Monitorability’ (grant 163406-
051) of the Icelandic Research Fund. Acetos work was also partially supported by the Italian MIUR PRIN
2017FTXR7S project IT MATTERS ‘Methods and Tools for Trustworthy Smart Systems’.
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2 Background

Syntax of monitors Let Act be a set of visible actions, ranged over by a, b. Following
Milner [7], we use τ /∈ Act to denote an unobservable action. We will denote the set of infinite
sequences over Act as Actω. As usual Act∗ stands for the set of finite sequences over Act. Let
Var be a countably infinite set of variables, ranged over by x, y, z.

The collection MonF of regular, recursion-free monitors is the set of terms generated by the
following grammar:

m,n ::= v | a.m | m+ n | x v ::= end | yes | no,

where a ∈ Act and x ∈ Var . The terms end, yes and no are called verdicts. Closed monitors
are those that do not contain any occurrences of variables. For each α ∈ Act ∪ {τ}, we define

the transition relation
α−−→⊆ MonF ×MonF as the least one that satisfies the following rules:

a.m
a−→ m

m
α−−→ m′

m+ n
α−−→ m′

n
α−−→ n′

m+ n
α−−→ n′ v

α−−→ v
.

For s = a1a2 . . . an ∈ Act∗ and n ≥ 0, we use m
s

=⇒ m′ to mean that:

1. m(
τ−→)∗m′ if s = ε, where ε stands for the empty string,

2. m
ε

=⇒ m1
a−→ m2

ε
=⇒ m′ for some m1,m2 if s = a ∈ Act and

3. m
a

=⇒ m1
s′
=⇒ m′ for some m1 if s = a.s′.

If m
s

=⇒ m′ for some m′, we call s a trace of m.

Verdict and ω-Verdict Equivalence Let m be a (closed) monitor. We define:

La(m) = {s ∈ Act∗ | m s
=⇒ yes} and Lr(m) = {s ∈ Act∗ | m s

=⇒ no}.

Note that we allow for monitors that may both accept and reject some trace. This is
necessary to maintain our monitors closed under +. Of course, in practice, one is interested in
monitors that are consistent in their verdicts.

Definition 1. Let m and n be closed monitors. We say that m and n are verdict equivalent,
written m ' n, iff La(m) = La(n) and Lr(m) = Lr(n). We say that m and n are ω-verdict
equivalent, written m 'ω n, iff La(m) ·Actω = La(n) ·Actω and Lr(m) ·Actω = Lr(n) ·Actω.
These equivalences are extended to open monitors in the standard way.

Lemma 1. The following hold: (1) ' and 'ω are both congruences. (2) ' ⊆ 'ω and the
inclusion is strict when Act is finite. (3) If Act is infinite then ' = 'ω.

5
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• A1: x+ y = y + x

• A2: x+ (y + z) = (x+ y) + z

• A3: x+ x = x

• A4: x+ end = x

• E1a: a.end = end (a ∈ Act)

• Ya: yes = yes+ a.yes (a ∈ Act)

• Na: no = no+ a.no (a ∈ Act)

• D1a: a.(x+ y) = a.x+ a.y (a ∈ Act)

3 Results on axiomatizations and complexity

Our axiom system for verdict equivalence over closed monitors is Eveq, whose axioms are:

Theorem 1. Eveq is complete over closed monitors modulo '. That is if m,n are closed
monitors in MonF and m ' n then Eveq ` m = n. Moreover, Eveq is complete over closed
terms modulo 'ω when Act is infinite.

In order to capture ω-verdict equivalence when Act is finite, we extend the axiom set by:

Eω−veq = Eveq ∪ {yes =
∑
a∈Act

a.yes} ∪ {no =
∑
a∈Act

a.no}. We then prove:

Theorem 2. Eω−veq is complete over closed terms modulo 'ω. That is if m,n are closed
monitors in MonF and m 'ω n then Eω−veq ` m = n,when Act is finite.

Naturally we continue towards the relevant results for open terms. Initially we only expand
the axioms as: E ′veq = Eveq ∪ {yes+ no+ x = yes+ no} and then prove:

Theorem 3. E ′veq is complete for open terms modulo ' when Act is infinite. That is, if m,n
are open monitors in MonF and m ' n then E ′veq ` m = n.

The final part of this work is dedicated to determining an axiomatization with respect
to ' and 'ω for open equations when Act is finite and it includes an analysis on why the
axiomatization cannot be finite.

Finally regarding the complexity of determining whether two monitors are equivalent, our
completeness proof suggests that discovering a normal form for a monitor implies a somewhat
pre-defined application of our axioms. In the case of closed terms the “normalization” procedure
with respect to verdict equivalence can take place recursively and in a way mimicking the
inductive proof of the existence of a normal form. After this is done then the equality testing
of two monitors is trivially testing equality for two rooted, ordered and labelled trees. The final
complexity of the algorithm is O(n · k · log(k)) where k is the size of Act and n is the sum of
the sizes of the syntactic trees of the tested monitors. Future work includes the complexity
analysis for verdict and ω-verdict equivalence testing between open monitors and the study of
the equational theory of regular monitors with recursion.
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Axiomatising Weighted Monadic Second-Order Logic

on Finite Words

Antonis Achilleos and Mathias Ruggaard Pedersen

Dept. of Computer Science, Rekjavik University, Iceland
{antonios,mathiasrp}@ru.is

1 Introduction

Weighted automata constitute a popular and useful framework for specifying and modelling the
behaviour of quantitative systems. In order to reason about such systems, a logical description
language is often used. One such logic is monadic second-order logic (MSO), which is known
to describe exactly the behaviour of unweighted automata by a theorem of Büchi, Elgot, and
Trakhtenbrot [1, 4, 10]. A more recent result by Droste and Gastin [2] showed that a weighted
extension of MSO captures the behaviour of weighted automata in a similar fashion. While this
result has been extended in many different ways, a proper analysis of this logic in the form of
axiomatisation, satisfiability, and model checking issues has not yet surfaced.

One of the difficulties of such an analysis is that the weighted MSO (wMSO) is interpreted
over an arbitrary set of values, rather than a standard Boolean setting. This means that
each formula is a function which takes a model and returns a value, rather than something
which may or may not be satisfied by a given model. We therefore investigate how to extend
familiar concepts such as completeness, validity, and satisfiability to this non-Boolean, real-
valued setting.

We document here some of our on-going work on these issues, including presenting equa-
tional systems that give a complete axiomatisation of a fragment of weighted MSO as well as
algorithms for some of the variants of satisfiability checking in this setting.

2 Syntax and Semantics of wMSO

Following [5], we define the syntax and semantics of wMSO as follows. Consider a finite set of
first-order variables VFO, a finite set of second-order variables VMSO, a finite alphabet Σ, and an
arbitrary set R of weights. Note that we assume no structure on R, it does not even have to be
a semiring. The syntax of wMSO is given by the following grammar, divided into two layers.

ϕ ::= > | Pa(x) | x ≤ y | x ∈ X | ¬ϕ | ϕ1 ∧ ϕ2 | ∀xϕ | ∀Xϕ (MSO)

Ψ ::= r | ϕ ? Ψ1 : Ψ2 (wMSO)

Here, a ∈ Σ, r ∈ R, x, y ∈ VFO, and X ∈ VMSO. The first layer, MSO, is simply MSO on
finite words. The second layer, wMSO, allows one to condition on MSO formulas, and choose
different values of R depending on the truth of the MSO formulas.

The MSO formulas are interpreted in the standard way over words w ∈ Σ+ together with a
valuation of this word σ, which assigns to each first-order variable a position in the word and
to each second-order variable a set of such positions. We denote by Σ+

σ the set of pairs (w, σ)
where w ∈ Σ+ and σ is a valuation of w, and we denote by JϕK the set of all pairs (w, σ) ∈ Σ+

σ

that satisfies ϕ.

8
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Γ ` r ≈ r Γ ` Ψ ≈ ϕ ? Ψ : Ψ Γ ` ¬ϕ ? Ψ1 : Ψ2 ≈ ϕ ? Ψ2 : Ψ1

Γ ∪ {ϕ} ` Ψ1 ≈ Ψ2, if Γ ` Ψ1 ≈ Ψ2 Γ ` ϕ ? Ψ1 : Ψ2 ≈ Ψ1, if Γ ` ϕ↔ >
Γ ` ϕ ? Ψ1 : Ψ2 ≈ Ψ, if Γ ∪ {ϕ} ` Ψ1 ≈ Ψ and Γ ∪ {¬ϕ} ` Ψ2 ≈ Ψ

Table 1: Axioms for wMSO.

The semantics of formulas Ψ of wMSO is given by a function J·K : Σ+
σ → R, defined by

JrK (w, σ) = r Jϕ ? Ψ1 : Ψ2K (w, σ) =

{
JΨ1K (w, σ) if w, σ |= ϕ

JΨ2K (w, σ) otherwise

For a formula Ψ ∈ wMSO, a given value r ∈ R can be represented by an MSO formula that
describes all the strings on which Ψ returns the value r.

Definition 1. For Ψ ∈ wMSO and r ∈ R, we define ϕ(Ψ, r) recursively: ϕ(r, r) = > and
ϕ(r′, r) = ¬>, when r 6= r′; and ϕ(ψ?Ψ1 : Ψ2, r) = (ψ ∧ ϕ(Ψ1, r)) ∨ (¬ψ ∧ ϕ(Ψ2, r)).

Lemma 1. (w, σ) ∈ Jφ(Ψ, r)K iff JΨK (w, σ) = r.

3 Axioms

The main concern of our on-going work is to give a complete axiomatisation of wMSO. Our
axiomatisation relies on an axiomatisation of MSO (or FO) on finite strings. Since satisfiability
is decidable for both these logics, they have recursive and complete axiomatisations. For the
case of MSO, such an axiomatisation has been given in [6], although we are not aware of a
similar axiomatization for FO.

For wMSO, we first have to consider what it means to axiomatize a real-valued, non-Boolean
logic. On the syntactic side, it seems natural to give an axiomatisation in terms of an equational
system, denoted ` Ψ1 ≈ Ψ2, and on the semantic side to equate two formulas that give the
same value on all models, denoted Ψ1 ∼ Ψ2. This also agrees with the work by Mio et al. [7] on
axiomatising Riesz modal logic, which is the only other work on axiomatising real-valued logics
that we know of. We augment this definition slightly by considering a set of MSO formulas Γ
which we think of as assumptions. Then we write Γ ` Ψ1 ≈ Ψ2 if Ψ1 and Ψ2 can be derived
from the axioms under the assumptions Γ and Ψ1 ∼Γ Ψ2 if Ψ1 and Ψ2 give the same values on
all models that satisfy all the formulas of Γ.

We propose an axiomatization that includes the usual axioms for equality and the axioms
in Table 1. The main part of the axiomatisation is concerned with axiomatising the behaviour
of the conditional operator ϕ ? Ψ1 : Ψ2.

Theorem 1 (Completeness of wMSO). Ψ1 ∼Γ Ψ2 if and only if Γ ` Ψ1 ≈ Ψ2.

4 Further Concerns

Satisfiability For a real-valued, non-Boolean logic such as wMSO, familiar notions such as
satisfiability need to be redefined, since we no longer have a satisfaction relation, but each
formula is instead a function. We therefore wish to discuss and investigate how to generalise the
notion of satisfiability to the real-valued setting, and determine the decidability and complexity
of such notions. Plausible candidates for an extension of satisfiability is asking if a formula can
return a specific value, if two formulae can return the same value, or if a formula can return a
value other than a given one.

9



Axiomatising weighted MSO on finite words Achilleos and Pedersen

Complexity Each of these notions, as well as provability for the equational theory, can be
reduced to MSO satisfiability and are thus decidable. For instance, Ψ1 returns the same value
as Ψ2 iff ∨

r in Ψ1
and Ψ2

ϕ(Ψ1, r) ∧ ϕ(Ψ2, r)

is satisfiable. However, one can not really hope for efficient algorithms, since the satisfiability
problem for MSO on finite strings is already non-elementary [8], and MSO-satisfiability can be
reduced to any of the three variants of wMSO satisfiability discussed above — for instance, ϕ
is satisfiable iff ϕ ? 1 : 0 can take the value 1.

Another interesting theory would be the one of inequalities. Similarly to the above, we can
see that Ψ1 ≤ Ψ2 can be described by the MSO formula∨

r1 in Ψ1
r2 in Ψ2
r1≤r2

ϕ(Ψ1, r1) ∧ ϕ(Ψ2, r2),

and therefore, the same decidability and complexity observations can be made in this setting.

Variations Instead of using MSO formulas for conditions, one can use formulas of another
logic, such as first-order logic (FO), resulting in wFO, which leads to different representation
results [3]. Our complete axiomatization is agnostic with regard to the logic that one uses
for conditions, as long as this logic has a complete axiomatization. One may hope to obtain
better complexity results with respect to the decision problems discussed previously, by making
a different choice with regards to the base logic. However, this seems unlikely in the case of FO,
since, similarly to MSO, FO-satisfiability is non-elementary [8], and model checking for FO is
PSPACE-complete [9, 11].

The full wMSO logic described in [5] includes a third layer called core-wMSO, which allows
one to form multisets of values. This layer includes a sum over formulas indexed by a second-
order variable, which corresponds to a kind of union over multisets. This sum behaves like a
quantifier, so we hope that one can add axioms reminiscent of those for quantifiers of MSO in
order to obtain a complete axiomatisation, although this is on-going work.
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[6] Amélie Gheerbrant and Balder ten Cate. Complete axiomatizations of fragments of monadic
second-order logic on finite trees. Log. Methods Comput. Sci., 8(4), article 12, 2012.

[7] Matteo Mio, Robert Furber, and Radu Mardare. Riesz modal logic for Markov processes. In Proc.
of 32nd Ann. ACM/IEEE Symp. on Logic in Computer Science, LICS 2017, pages 1–12. IEEE
Comput. Soc., 2017.

[8] Klaus Reinhardt. The complexity of translating logic to finite automata. In Erich Grädel, Wolfgang
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1 Introduction

Binary decision diagrams (BDDs) are a canonical form for representing Boolean functions.
BDDs have found wide application in many computer aided design (CAD) tasks [7], symbolic
model checking [5, 7], verification of combinational logic [6], verification of finite-state con-
current systems [2], symbolic simulation [6], and logic synthesis and optimization. Different
operations used for providing BDDs with efficient graph representation include reduce, apply,
restrict, compose and satisfy [2]. In this paper, we investigate a new application area of BDDs
for structural coverage analysis. We propose an approach of encoding modified condition deci-
sion coverage (MC/DC) using BDDs to obtain a minimum set of test cases. According to the
definition of MC/DC [3, 9], each condition in a decision has to show an independent effect on
that decision’s outcome by: (1) varying just that condition while holding fixed all other possi-
ble conditions (Unique Cause (UC) MC/DC), or (2) varying just that condition while holding
fixed all other possible conditions that could affect the outcome (Masking MC/DC). MC/DC is
required by certification standards such as, the DO-178C [8] in the domain of avionic software
systems, as a coverage criterion for safety critical software at the conditions level. It is highly
recommended due to its advantages of being sensitive to program structure, requiring few test
cases (n + 1 for n conditions), and its uniqueness due to the independence effect of each con-
dition. If MC/DC is encoded with BDDs, a minimum set of test cases can be deduced from a
reduced ordered BDD (ROBDD) based on the shortest paths. In addition, optimization and
coupling conditions (for example B and ¬B), which are problematic for MC/DC are handled
efficiently using BDDs. We present an algorithm which, given a Boolean expression in the form
of an ROBDD, constructs a minimum set of test-cases satisfying MC/DC. Results show that
our approach is more efficient compared to selecting MC/DC test cases from a truth table. For
the rest of this paper the term BDD refers to ROBDD.

2 Minimum set of MC/DC test cases from BDDs

Theorems 1 and 2 are used to check UC MC/DC and Masking MC/DC from the BDD [1].
For both of them, there should be a pair of paths from that condition to the terminal node
1 and 0, but UC MC/DC requires strictly same path through BDD and cannot be achieved
with coupling conditions. Let f(A,B,C) = (A∧B)∨C be a Boolean function, the truth table
representing all possible MC/DC pairs is given in Table 1a. To achieve MC/DC we only need
the set of n+ 1 test cases as shown in Table 1b (one MC/DC pair for each condition).

Theorem 1. Given a decision D, a pair of test cases of D satisfies Unique Cause MC/DC for
a condition C if and only if: 1) both reach C using the same path through BDD(D); 2) their
paths from C exit on two different outcomes and do not cross each other (C excluded).

Theorem 2. Given a decision D, a pair of test cases of D satisfies Masking MC/DC for a
condition C if and only if: 1) both reach C; 2) their paths from C exit on two different outcomes
and do not cross each other (C excluded).

12



Generating test cases satisfying MC/DC from BDDs Ahishakiye, Stolz and Kristensen

B

0 1

C

A

B

0 1

C

A

B

0 1

C

A

(a) (b) (c)

Figure 1: BDD with MC/DC minimum test cases for (A ∧B) ∨ C

Nr A B C f MC/DC pairs
1 0 0 0 0
2 0 0 1 1 C(1,2)
3 0 1 0 0
4 0 1 1 1 C(3,4)
5 1 0 0 0
6 1 0 1 1 C(5,6)
7 1 1 0 1 A(3,7), B(5,7)

(a) All possible MC/DC pairs

Nr A B C f MC/DC pairs
1 0 ? 0 0
2 1 1 ? 1 A(1,2)
3 1 0 0 0 B(2,3)
4 0 ? 1 1 C(3,4)

(b) Required n+ 1 MC/DC pairs

Table 1: MC/DC pairs for f(A,B,C) = (A ∧B) ∨ C

Some conditions may have more than one pair. For instance condition C has three MC/DC
pairs, and for example if we pick C(1,2), MC/DC is achieved with five test cases (≥ n + 1).
From the truth table it is not easy to determine which one to choose. Our idea is to take those
with the shortest path in the BDD. This is useful especially for a tester, since shorter path
means that the tester has to worry about less conditions. The BDD representing f(A,B,C) is
shown in Figure 1 (where dashed line:0/false and solid line:1/true). A test case is then simply
an assignment of track-values to conditions. For an ROBDD with order C = [A,B,C], (0, ?, 1)
denotes the test case with A = 0, C = 1, and any arbitrary value for B. If we consider the
shortest paths from each node to terminal nodes 0 and 1 (shown with red arrows), the minimum
set (ψmin) of MC/DC test cases corresponds to n+ 1, equivalently to the Table 1b. Note that
the shorter path in the BDD corresponds to the short circuit evaluation ”?” in a truth-table
where the condition is not evaluated at all. We provide an algorithm that takes a BDD as input
and constructs the minimum set of MC/DC test cases. It is summarized in the following steps:

1. Given an ROBDD over the list of variables C. Initialize a set of MC/DC pairs (ψi) and
the minimum set of MC/DC pairs (ψmin) as empty. The distance from each node ui to
itself is d(ui, ui) = 0, and to a terminal node is initialized as infinity (d(ui, v) =∞). The

weight of each path σ as w[σ] =
∑k

i=1 w(ui−1, ui) where the last node ui = v is the node
0 or 1. To find the shortest path, we compare the distance as d(ui, v) > d(ui, ui)+ w[σ].

2. While the list C is not empty, find the set of two shortest paths (ψi) from each node to 1
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and 0 terminal respectively based on Theorem 1 or 2. Only new paths are added to ψmin,
to avoid overwriting test cases. For the example in Figure 1, ψ1 = {(0, ?, 0), (1, 1, ?)} for
node A is added to ψmin, ψ2 = {(1, 0, 0), (1, 1, ?)} for node B, only (1, 0, 0) will be added
to ψmin, and ψ3 = {(0, ?, 0), (0, ?, 1)} for node C and only (0, ?, 1) is added to ψmin.

3. If the list is empty, the algorithm returns ψmin = {(0, ?, 0), (1, 1, ?), (1, 0, 0), (0, ?, 1)} which
is equivalent to n+1 required MC/DC test cases as shown in Table 1. Otherwise, MC/DC
can not be achieved. The uncovered conditions will be the remaining variables on C.

In case of strongly coupled conditions (for example B and ¬B), our algorithm can still
find the minimum set satisfying Masking MC/DC. In addition, BDDs implement directly the
optimization for conditions in the decision. For example, f(A,B,C)=(A∨¬A∨B ∨C)∧A, its
BDD representation will contain only one condition (A) because conditions B and C will never
be evaluated at all and therefore, they do not appear in the BDD. The optimized representation
of BDD helps testers to observe conditions with no effect to the outcome so that there is no
need for checking MC/DC for those conditions.

3 Conclusion

This paper presents a new approach of generating test cases satisfying MC/DC from BDDs and
provides a new algorithm to deduce the minimum set of test cases satisfying MC/DC based on
the shortest path in the BDD. Our results based on small examples show that n+ 1 test cases
required to achieve MC/DC for n conditions can be found from the BDD with less overhead
compared to selecting them from the truth table. The algorithm can be implemented in Python
based on Pyeda BDD library [4]. Moreover, we investigated the formulation of unique cause
and masking MC/DC in terms of BDDs. More example results (considering coupling condition
and optimization) with the implementation and formal proof of correctness for the algorithm
will be provided in an extended paper.
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Abstract

We present an inverse to a CPS transformation for a functional programming language
with delimited control operators shift and reset, extending an earlier line of work for simpler
calculi. We also study the evaluation behaviour of corresponding programs in direct and
continuation-passing styles.

1 Background and overview

Continuation Passing Style (CPS), dating back to Fischer and Plotkin [8, 10], is a format for
functional programs where all intermediate results are named, all calls are tail-calls and programs
are evaluation-order independent [1]. In a program that adheres to CPS, all procedures take an
additional argument, a continuation, that represents “the rest of the computation” [2]. CPS may
be used, even unknowingly, as a style of hand-written code (e.g., ubiquitous callback arguments
in JavaScript) or as an intermediate language in an optimising compiler (e.g., Standard ML
of New Jersey). Usage of CPS in compilers would not be possible without a mechanical CPS
transformation. Such transformation takes an arbitrary program and produces an equivalent
program in CPS.

A natural question arises: can we recover the original, Direct Style (DS) program from its
CPS-compliant derivative? The answer, established by Danvy and extended in joint work with
Lawall, is affirmative: one can indeed apply a DS transformation to a program in CPS and
obtain its DS counterpart [2, 5] when continuations are pure or abortive. In pure CPS, the
continuation parameter is called exactly once, in a tail position somewhere inside the procedure
body. As a rule of a thumb, all deviations from this pattern should warn us that the control flow
in the procedure is nonstandard, and that the author is trying to employ some computational
effect: exceptions, Prolog-like backtracking, coroutines etc. In [5], Danvy and Lawall show that
we can render some nonstandard uses of continuations (i.e. abortive) in Direct Style by using
the call-with-current-continuation (or call/cc for short) control operator [11].

The call/cc operator is a prime example of an undelimited (or, abortive) control operator:
once called, the continuation never returns to its call site – in effect, modelling a jump. In
this paradigm, a continuation spans the entire future of the program’s execution. However,
some computational effects do not behave like jumps: one vivid example is backtracking. In
this scenario, continuations model only a fragment of the future program execution, i.e., they
are delimited, and we use them in non-tail positions, making them composable. In direct style,
this behaviour is embodied by the control operators shift and reset whose image under the
CPS translation gives rise to composable continuations [4]. The shift operator captures the
current continuation but – in contrast to the more common call/cc – one that extends only up
to the dynamically nearest enclosing reset operator. Interestingly, these operators have the
capability to express any computational effect [7] and are closely related to the recent idea of
algebraic effects [9]. However, in contrast to pure lambda calculus and abortive continuations,

∗This work was partially supported by National Science Centre, Poland, grant no. 2014/15/B/ST6/.
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the question of a direct-style transformation for a language with composable continuations has
not yet been studied.

In this work we attempt to establish such a correspondence. To this end we first introduce a
revised CPS transformation for a functional language with delimited control operators shift

and reset that preserves all language redexes. We characterise the image of the translation by
an inductive judgement, extending the approach used by Danvy, Lawall and Pfenning [3, 5, 6].
We define an effective Direct Style transformation directed by this judgement and prove that
the two transformations are mutual inverses. Moreover, we study the evaluation behaviour
of corresponding DS and CPS programs, following the work on Galois reflections for pure
call-by-value lambda calculus by Sabry and Wadler [12]. We find that together, CPS and DS
transformations establish an isomorphism between Direct Style language and the image of the
CPS transformation, where CPS terms are equipped with a custom evalution relation. We are
currently working on extending this result to general reduction.

2 Technical details

Direct Style language Our DS language λSRT is λv enriched with delimited control operators
shift/reset together with somewhat artificial but later justified throw operator. We distinguish
continuations from ordinary functions, i.e. they are not first-class. Continuations are applied
using a dedicated throw syntax.

CPS transformation Our CPS transformation comes in equivalent second- and first-order
formulations which we use interchangeably in proof developments as needed. We follow the
general ideas of the Back to direct style papers [3, 5], devising inductive judgements which are
meant to be provable if and only if a judged expression is in the range of CPS transformation.
Moreover, there is at most one matching proof for each expression. To achieve such uniqueness,
our CPS is sprinkled with explicit redexes which mark the occurences of control operators in
CPS.

DS transformation The judgements are designed so that one can effectively recover the
corresponding direct style term from a proof-term. In order to devise an effective and not only
a theoretical inverse transformation one needs to recover the proof-term from a CPS expression.
Such a procedure is neccessarily partial, as not all lambda expressions are in CPS. Most of
the cases can be easily distinguished by a shallow inspection of the expression but special care
needs to be taken with shift and reset. These two are hard to differentiate if not for a
one peculiarity: serious expressions have a different parity of outermost λ-abstractions than
continuation expressions. This subtle difference saves us from trouble and is the primary reason
for keeping continuations second-class. Otherwise, distinction would disappear and it would
be possible to disprove uniqueness of proof-terms. Uniqueness is crucial here – without it an
inverse transformation becomes multi-valued, i.e., many different DS expression might give the
same CPS expression. We do not have a decisive answer whether this problem with first-class
continuations can be overcome by a different CPS transformation.

Evaluation in CPS Seemingly redundant explicit redexes appear whenever we translate
a control operator. They allow us to clearly distinguish between operators before and after
evaluation step. This ensures that each step of evaluation in a DS expression shall be mirrored
in a CPS transform and vice versa. In order to establish a genuine lockstep between these,
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we aggregate some β-contractions in the CPS language, making it illegal to stop evaluation in
certain moments. We refine the operational semantics in the range of the CPS transformation in
order to achieve monotonicity properties; they do not seem to hold when vanilla λv evaluation
is considered.

We define a subrelation of ordinary λv reduction on the range of the CPS transformation.
Usual β-reductions are allowed only in specific syntactic positions which correspond to application
and control operators. This allows us to move along evaluation in CPS just as if we evaluated
in Direct Style and performed CPS transformation each time. In a sense, evaluation and
transformation commute, or in terms of partial orders, CPS transformation is monotone. We
conjecture it should be monotone when appropriate reduction relations are considered but this
is a topic of an ongoing work.
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Abstract

Programs containing dynamic data structures pose a challenge for static verification,
because the shape of data-structures has to be reconstructed, and invariants involving
unboundedly many heap locations have to be found. In previous work in the context
of the Java model checker JayHorn, a simple Horn encoding through object invariants
has been proposed to model programs with heap. This abstract presents ongoing work on
TriCera, a model checker for C programs with a similar representation of heap interactions.

1 Introduction

Effective handling of heap-allocated data-structures is one of the main challenges in automatic
verification approaches such as software model checking. In order to verify programs operating
on such data-structures, a verification tool has to analyse the shape of the data-structures
(which is usually not explicitly expressed in a program), and also has to find data invariants
that cover an unbounded number of heap locations. A plethora of approaches to address this
challenge has been developed over the years; for instance, separation logic [5] provides a general
verification methodology, but has mostly been successful in interactive verification systems.
In software model checkers, the most common solution is to use a low-level representation of
heap as an array; this necessitates quantified invariants to verify programs with unbounded
data-structures, which in itself is a challenging research problem.

A different methodology, inspired by refinement type systems [2] and based on instance in-
variants associated with the various classes in a program, is used in the Java model checker
JayHorn [4]. The model checker TriCera1, presented in this abstract, applies a similar heap rep-
resentation to verify C programs, but extends the method to handle also language features not
present in Java: among others, pointers to stack-allocated data, and primitive heap-allocated
data like integers.

The architecture of TriCera is given in Figure 1. TriCera encodes all programs as sets of
Horn clauses, and then uses Eldarica [3] as its backend to try and solve these. This means that
state invariants, function contracts, and object invariants are all computed automatically by
the Horn solver; in the end, making the whole process fully automatic.

Horn
EncoderC parser

C
Program

ELDARICA

TriCera

SAFE

UNSAFE

Type Checking &
Symbol Resolution

Horn Clause
Simplifier

Figure 1: TriCera Architecture

1https://github.com/uuverifiers/tricera
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1 typedef struct S1 {int f;} S1;

2 typedef struct S2 {int f1 , f2;} S2;

3
4 S1 *s1_1 = calloc(sizeof(S1));

5 S1 *s1_2 = calloc(sizeof(S1));

6 S2 *s2 = calloc(sizeof(S2));

7 s1_1 ->f = 42; //push operation

8 int t = s1_1 ->f; //pull operation

9
10 assert(t == 0 || t == 42);

Figure 2: A simple C program.

1 typedef struct S1 {int f;} S1;

2 typedef struct S2 {int f1 , f2;} S2;

3
4 S1 *s1_1 = H++; // allocation S1

5 push(s1_1 , S1(0)); //push from calloc

6 S1 *s1_2 = H++; // allocation S1

7 push(s1_2 , S1(0)); //push from calloc/

8 S2 *s2 = H++; // allocation S2

9 push(s2, S2(0,0)); //push from calloc

10 push(s1_1 , S1(42); //push from assignment

11 S1 pulled = pull(s1_1);

12 int t = pulled.f

13
14 assert(t == 0 || t == 42);

Figure 3: A simple C program where heap interac-
tions are replaced with push and pull operations.

2 Heap Encoding Using Invariants

Instead of modeling each data item precisely, a heap invariant (φType) is used to represent
each data type on the heap. These invariants capture the properties of the data type they
correspond to. They are symbolic place-holders, which are later computed automatically by
the Horn solver. Interactions with the heap are done via push and pull operations which use
these invariants.

Figure 2 shows a very simplistic C program, and Figure 3 shows its reduced version where
heap related operations are automatically replaced with push and pull operations. These
operations are then reduced into assert and assume statements using the replacement rules
given below. The final translation into Horn clauses then follows, which is straightforward.

y = pull(x) ; {assume(φType(ptr, xfresh)); y = xfresh;}
push(ptr, val) ; assert(φType(ptr, val))

C structs are encoded using the theory of algebraic data types (ADTs), meaning that they
are represented by a single value on the heap similarly to primitive data types.

Figure 4 shows how the heap would look like for the simple program given in Figure 2, and
Figure 5 shows how the heap is encoded using invariants. The properties of the objects of same
type are captured by the same invariant, as in the case of S1.

Memory allocation, in the example using calloc2, is done by assigning the value of the
heap counter H to the pointer variable, and then incrementing the value of the counter. A zero
initialized value is also pushed to that location in the case of calloc.

Assigning to a variable on the heap can be seen as updating its property, thus the heap
invariant must now satisfy the new property as well. This means that the push operation
asserts the heap invariant using the newly assigned value. On the other hand, reading from
the heap can be done by creating a fresh variable which satisfies the properties associated with
that type, by assuming that the heap invariant holds with this new variable as its argument.

3 Experiments and Results

A total of 114 benchmarks were used to evaluate the initial performance of TriCera. The
benchmarks were chosen from files located under the ReachSafety-Heap and MemSafety-Heap
categories of SVCOMP’193, and which did not contain unsupported constructs such as arrays.

2This differs from the standard C calloc function by having no argument for the number of items, as arrays
are currently not supported in TriCera.

3https://github.com/sosy-lab/sv-benchmarks/releases/tag/svcomp19
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S1 *s1 1

heap

S1 *s1 2

S2 *s2 〈f1..fn〉

〈f1..fn〉

〈f1..fn〉

Figure 4: Heap representation as a partial
function which maps locations to values

S1 *s1 1

S1 *s1 2

S2 *s2

inv S1

inv S2

Figure 5: Heap invariants which are
created for each type

The benchmark programs are provided as inputs to both TriCera (v0.1) and CPAchecker
(v1.8), using the default settings of the tools.

With a timeout of 5 minutes, TriCera could verify 25 (8 safe and 17 unsafe) out of 114
programs in 11 minutes. The rest of the programs were flagged as unsafe due to the imprecision
of the current heap encoding. For comparison, CPAchecker [1] could verify 53 (40 safe and 13
unsafe) out of 114 programs in 183 minutes. Both tools produced no unsound results.

While TriCera could verify correctly almost half of what CPAchecker could in total, it took
one tenth of the time to do so. However, this was mostly due to CPAchecker timing out trying
to verify tasks, on which TriCera gave up much earlier and produced false alarms. It is expected
that the refinements discussed in Section 4 should reduce the number of these false alarms, while
keeping a similar level of performance with respect to execution time.

4 Conclusions and Future Work

This paper presented the ongoing work with TriCera. The initial results are promising; however,
there are several planned improvements to increase the precision, such as using allocation sites
as done in JayHorn [4] and adding flow sensitivity. There are also plans to to support a wider
subset of the C language, such as arrays and pointer arithmetic.

Since the whole encoding is over-approximate, one cannot directly trust the generated coun-
terexamples. To get a genuine counterexample, the encoding can also be complemented with
an under-approximate encoding, as done in JayHorn.
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Abstract

When compared to other synchronization methods (such as locks), channels communi-
cation has arguably received lesser attention from the data race checking community. In
this talk, we will present a novel data race checker for a concurrent language featuring
channel communication as its sole synchronization primitive.

Background

Early on, the concept of race, meaning the competition for access to a shared resource, was
explored in the context of channels [12]. Memory models were absent in that setting and,
instead, agents were said to race when sending or receiving messages from the same channel
“at the same time.” Race checking was then conflated often with confluence or determinacy
checking [1], with different schedules leading to potential variations in the flow of information
through a system.

Today, more often than not, the word race is used to denote a data race, where threads
compete when performing read and write accesses to the same location in shared memory.
Because locks have become a very common mechanism for ensuring race-freedom, the contem-
porary discussion on data race checking is often devoid of the notion of channels; neither does
confluence tend to enter the picture. A notable exception is Terauchi and Aiken [17], who give a
modern treatment of confluence checking in the context of channel communication. Their work
incorporates a form of shared memory, which the authors call cell channels. Their treatment,
however, does not address data race checking as a first class property but only as a consequence
of determinacy. Although related, data-race freedom is different from determinacy and conflu-
ence. There exist non-confluent scenarios that are properly synchronized. It is interesting to
note, however, that the task of data race checking in the context of channels has received little
attention.

Even though mutual-exclusion has dominated the synchronization landscape, languages
based on message passing do have a strong footing. Take the Go programming language as
an example [7, 2]. Go has gained traction in networking applications, web servers, distributed
software and the like. “It prominently features goroutines, which are asynchronous functions
resembling lightweight threads, and buffered channel communication in the tradition of CSP [9]
(resp. the π-calculus [13]) or Occam [10]. While encouraging message passing as the prime
mechanism for communication and synchronization, threads can still exchange data via shared
variables. Go’s specification includes a memory model [5] which spells out, in precise but
informal English, the few rules governing memory interaction at the language level” [3].

Our approach

In prior work, we have given an operational formalization of a relaxed memory model inspired
by the Go memory model’s specification. We also proved what is called the DRF-SC guarantee
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[3], meaning that the memory model behaves sequentially consistently when executing data-race
free programs. We now propose a data race checker based on our relaxed memory model and
the DRF-SC result in particular.

(m, !z) ∈ Ehb Er
hb ⊆ Ehb fresh(m′) E′

hb = {(m′, !z)} ∪ (Ehb − Ehb ↓z)
R-Write

p〈Ehb , z := v′; t〉 ‖ m(|Er
hb , z:=v|) −→ p〈E′

hb , t〉 ‖ m′(|∅, z:=v′|)

E′r
hb = {(m′, ?z)} ∪ (Er

hb − Ehb ↓z)
(m, !z) ∈ Ehb fresh(m′) E′

hb = {(m′, ?z)} ∪ (Ehb − Ehb ↓z) ∪ {(m, !z)}
R-Read

p〈Ehb , let r = load z in t〉 ‖ m(|Er
hb , z:=v|) −→ p〈E′

hb , let r = v in t〉 ‖ m(|E′r
hb , z:=v|)

Figure 1: Strong operational semantics augmented for data-race detection

The detector works by recording read- (m, ?z) and write-events (m′, !z), where m, m′, etc.
are unique identifiers. These events are recorded along a variable’s memory cells and in thread-
local storage. The memory cell associated with a shared variable z takes the form m(|Er

hb , z:=v|)
where m is the identifier of the most recent write to z, Er

hb is a set holding read events for loads
that have accumulated since the most recent write to z, and v is the variable’s current value.
Threads are equipped with a set Ehb which holds information about read- and write-events
that are “known” to the thread as having happened-before. When a thread attempts to access
a memory location, the detector checks whether there exists a concurrent memory event that
conflicts with the attempted access—rules R-Write and R-Read of Figure 1. Not shown here
are the rules regarding channel communication. Communication carries over happens-before
information between threads, thereby affecting synchronization.

In this talk, we will show that the information needed for race checking is contained in
the scaffolding of the DRF-SC guarantee proof. Given our experience, we conjecture that, in
general, race checkers may be (semi-)automatically derivable from memory models and their
corresponding DRF-SC proofs. We should point out, however, that the operational semantics we
propose for data race detection is not a weak semantics. Apart from the additional bookkeeping,
the semantics is “strong” in that it formalizes a memory guaranteeing sequential consistency.
Note that, to focus on a form of strong memory is not a limitation. Given that even racy program
behaves sequentially consistently up to the point in which the first data-race is encountered, a
complete race detector can safely operate under the assumption of sequential consistency.

When it comes to channel communication, our treatment focuses on bounded channels,
including synchronous ones. While channels are often used to enforce order between events from
different threads (e.g. a send happens before the corresponding receive completes), we revisit
the link between channels and locks and discuss how the effects of a channel’s boundedness can
be used to ensure mutual-exclusion. The pervasiveness of the notion of mutual-exclusion might
explain why it is often thought that a data race involves two (or more threads) accessing memory
at the same time—or, if not at the same time, that there exists an alternate yet equivalent run
in which the conflicting accesses can be placed side-by-side. We argue that this interpretation is
misleading. Specifically, we show that there exist race conditions in which conflicting accesses
are necessarily ordered and necessarily separated in time by other operations. This observation
has interesting and subtle consequences relating back to anomalies discussed by Lamport in
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his seminal paper on vector-clocks and distributed systems [11]. In the talk, we will discuss
anomalies arising from the fact that the first-in-first-out nature of channels is not fully accounted
for in the happens-before relation as defined by the Go memory model’s description. We show
alternatives for handling the anomalies, but settle with a race detector formalization that is
faithful to the Go language specification.

Finally, we compare our approach to modern data race checkers based on vector clocks. In
particular, we contrast our work against that of Pozniansky and Schuster, which introduced an
algorithm sometimes referred to as Djit+ [14], and to Flanagan and Freund and their work on
FastTrack [4]. Such algorithms have influenced the Thread Sanitizer library [15, 16, 8] upon
which the current Go race detector [6] is implemented.
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Abstract
In this work we reconsider the concept of shared futures as used in the setting of asyn-

chronous method-oriented communication. The future mechanism offers some advantages
such as decoupling of method invocation from retrieval of the result, and sharing of the
result. However, it also has some drawbacks, including the need of garbage collection and
poor privacy protection. We here suggest a more general and more expressive notion than
futures, but without the two mentioned drawbacks. We use the term history objects for this
new concept since it encapsulates past communications in addition to the information nor-
mally found in futures. We argue that the suggested new concept has several advantages,
including support of functionalities found in smart contracts.
Keywords: Futures; Transactions; Asynchronous Communication; Smart Contracts.

Introduction
We reconsider the future concept, which has become popular in the setting of concurrent ob-
jects (or agents) communicating asynchronously. This setting is adopted in the active object
paradigm, supported by several languages [2]. Remote method calls are handled by message
passing and the result of a method invocation is placed in a future object, at which time the
future is said to resolved. The caller generates a reference to the future object and this reference
may be passed to other objects. Any object with a reference to the future object may ask for the
value, typically via a get statement, which will block when the future is not yet resolved (some
languages allow polling to check if a future is resolved). The main advantages of the future
mechanism are improved flexibility compared to the traditional blocking remote call mecha-
nism, delaying or avoiding the blocking, and providing safe sharing of results since a future is a
write-once, multiple-read data store. Without polling the future mechanism is race-free, since a
get operation waits while the future value is not there. Polling, would make an object sensitive
to the speed of object in the environment (something which is often acceptable).

However, it is not trivial to detect when a future can be discarded; and as many futures
may be generated, garbage collection is in general needed. In the active object paradigm, this
is a clear disadvantage since the active objects themselves have a long life time. If local data
inside objects is defined by data types, using a functional programming language to express and
manipulate values of the data type (such as in the Creol and ABS languages), there is no need
for general garbage collection of these values, assuming storage for values of the data types can
be retrieved efficiently. Another disadvantage of the future mechanism is that the future value
is unprotected, and an object getting the value may not know where the future came from and
what it represents. In particular, privacy aspects are unknown and the information can easily
be misused [4].

In this work we propose a new language construct to reduce these drawbacks. We propose
a “container box” for recording all calls and futures related to the interactions involving a
given object. This “container” will then hold all future values generated by the given object
in the same “box”, including present and past communications. For this reason we will call
it history object. For simplicity we consider one history object for one active object, but one
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could associate several history objects with one object, reflecting the interactions according to
different interfaces of the object. The aim of this abstract is to sketch and motivate this new
language primitive.

History objects
Notation: We consider a syntax similar to that of the Creol/ABS language family [3]. We let
v denote a variable, x a formal parameter (assumed to be read-only), o an object variable (an
object reference), f a future variable (a reference to a future object), e an expression (assumed
to be pure), and m a method. We use capitalized words for types and interfaces, while variable
and method names start with a lower-case character. We use [...] for lists and < ... > for
tuples. The statement syntax v: + e is permitted when v is a list to express that an element
e is appended to the tail of list v. This statement adheres to the write-once discipline since it
cannot change previously written elements.

As is the case in the traditional future concept, we consider three kinds of method calls:
• A blocking call has the syntax v := o.m(e), where o is the callee, m the called method, e

the (input) parameters. The method result will be assigned to v.
• A simple asynchronous call has the syntax o! m(e). The caller is not blocked and the
result value is not communicated to the caller.

• An asynchronous call has the syntax f := o! m(e) where f is a future variable declared
with type Fut[T ] where T is the return type of m. The variable f is assigned a new call
identity (a reference to the future object) uniquely identifying the call. This identity may
be communicated to other objects. The caller is not blocked. In order to obtain the value
returned from the call, the caller object (or another object that knows the future identity)
may perform v := get f where v is a program variable of type T . This statement will
block if the future is not resolved, and otherwise the result value is copied into v.

Consider now our proposed setting (a bit simplified) where we associate a history object,
history(o), to each object o called with an asynchronous call. We allow the same call op-
erations as above. But there are two major differences: In our proposed solution, the same
history object contains all future values generated by a given callee object, including those of
the past as well as future ones. This history object is therefore long-lived and need not be
garbage-collected. However, as the storage need is growing dynamically, the history objects
could be placed in a cloud. The history object could be split over several objects if needed. (In
that case for each function definition in the top level history object, the function value over the
empty history must correspond to the function value over the final history in the underlying
object.)

Secondly, we treat the history objects as normal objects, which means that one may com-
municate with the history objects when desired, using simple or blocking calls. This is following
the spirit of [5]. Moreover, the behavior of the history objects is given by interface declarations,
including a get method corresponding to reading a future value. A predefined class implemen-
tation can be given, and by means of inheritance, this class declaration may be extended and
modified in the same way as other classes. In particular one may add functionality by imple-
menting new interfaces and methods, and one may add protection mechanisms in redefined get
methods to implement security and privacy restrictions. For instance by requiring that the
caller satisfies some conditions. In the case of a two-party contract, we can require that only
the two parties may see the history (through get calls). This means that calls to the history
objects may distinguish their behavior depending on the caller (using the implicit parameter
caller and its interface).

26



Futures, histories and smart contracts Fazeldehkordi and Owe

The predefined history object contains a (private) transaction list

List[Transaction] trans = empty
// restricted by incremental-write/multiple-read access

and a predefined (hidden) put method to be used only by the underlying runtime system for
recording each new message to or from the object by appending it to the transaction list.

Void put(Transaction t) {trans :+ t} //appending t to trans

We allow read access to the transaction list. The transaction corresponding to a call f := o! m(e)
is a tuple of form

< fid, caller, method, par, result >

where fid is a future identity (the value assigned to f), caller is the caller identity, method
is the method name (m), par is the input values (the values of e), and result is the result of
the call, possibly error. This transaction is generated when the call has completed normally
or abnormally (i.e., resulted in an error). The statement return e in the body of a method
m(T x) is executed at runtime by doing history(this).put(< callid, caller, ”m”, [x], e >) where
this refers to the current object, x are the formal parameters, and where callid and caller are
implicit parameters in our setting giving the future identity of the call and the caller object,
respectively. (The put statements do not appear in the program code.) Abnormal termination
results in a put call with result error. Similarly, a history object includes a public get method
T get(Fut[T ] f) for each method result of type T . A get statement is therefore possible in our
setting as a blocking call to get on the appropriate history object.

We observe that the transaction history of an active object as given by its history object,
is sufficient to define the state of the object at the end of a method execution. The state
of an active object at its last method completion can be reconstructed from the transaction
history, and also the pre-state of method execution resulting in error. (Cooperative scheduling
would require more events to be recorded in the trans variables.) We also observe that the
history objects define the transaction history in a faithful way due to the language restriction
on the trans variables by means of incremental-write by the underlying runtime system and
is immutable for others. This restriction is also imposed on subclasses of the history classes.
This means that one may rely on the transaction histories in a way similar to smart contracts.
This is checked statically. If the runtime system also offers protection of unauthorized write
access to these variables by means of a trusted execution environment, one does not need block-
chain technology to guarantee incremental-write/multiple-read access. If not, one may use an
underlying block-chain technology at runtime to obtain full trust. An active object with an
associated history object may be used to accommodate the functionality of a smart contract,
and with immutability of the transaction history guaranteed at the software level. We support
the following aspects of smart contracts:

• Trust is provided by the reliable independent history object.
• Reliability due to the write-once (by the underlying operating system) and multiple-read
access by users.

• A way to formally specify and verify contract requirements as well as invariants using the
communication history and defining functions over the history.

• Roll-back possibility in case a transaction cannot complete.
Further details and examples will be given in an extended version of this paper, where we will
also consider an example of a smart contract for auctions [1].
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Abstract

We present a calculus for distributed programming with explicit node annotation, built-
in ports, and pure blocks. To the best of our knowledge, this is the first calculus for
distributed programming, in which the effects of certain code blocks can go unobserved,
making those blocks pure. This is to promote a new paradigm for distributed programming,
in which the programmer strives to move as much code as possible into pure blocks. The
purity of such blocks wins familiar benefits of pure functional programming.

1 Introduction

Reasoning about distributed programs is difficult. That is a well-known fact. That difficulty is
partly because of the relatively little programming languages (PL) research on the topic. But,
it also is partly due to the unnecessary complexity conveyed by the traditional conception of
distributed systems.

Reasoning about sequential programs written for a single machine, in contrast, is the bread
and butter of the PL research. Many models of functional programming, for example, have
received considerable and successful attention from the PL community. The mathematically
rich nature of those models is the main motivation.

In particular, pure functional programming, i.e., programming with no side-effects, has been
a major source of attraction to the PL community. In that setting, many interesting properties
are exhibited elegantly, e.g., equational reasoning, referential transparency, and idempotence.

The traditional conception about distributed programming, however, lacks those nice prop-
erties. In that conception, side-effects are inherent in distributed programming. The argument
is: No sensible distributed program can run without communication between nodes; and, such
communications always alter the state of the communication medium; hence, the effectfulness.

The distributed λ-calculus [6] below refutes that argument. Let a, b, c, . . . , a′, b′, c′, . . . range
over a set of nodes (N). Intuitively, ta is the term t running on the node a. The (µd) rule below
captures communication (or, mobility, hence “µ”) without side-effects.

Definition 1. The distributed λ-terms are defined as: λd 3 ta = xa | (λx.ta)b | (ta tb)c.

Reductions .
d→ . on λd follow, where common capture-avoiding measure apply:

(λx.ta)a
d→α (λy.ta[ya/x])a (αd) ((λx.ta1)a ta2)a

d→β ta1 [ta2/x] (βd)

(λx.(ta xa)a)a
d→η ta (ηd) ta

d→µ tb (µd).

Take λo for the set of ordinary λ-calculus terms and
o→ for its reductions. Distributed

λ-calculus is equivalent to the ordinary λ-calculus, and, is pure.

Theorem 2. For every node a and b, the reduction t
o
� t′ implies [[t]]+a

d
� [[t′]]+a, and, the

reduction ta
d
� t′b implies [[ta]]−

o
� [[t′b]]−.

∗This work is funded by the LightKone European H2020 project under grant agreement no. 732505.
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The distributed λ-calculus is not general enough to model all distributed programming. In
particular, it misses interaction with the outside world, e.g., human-beings. Such interactions
are the only source of effectfulness. Other node communications can be programmed purely.

But, what if the effectfulness of communication can still go unobserved and be viewed as pure
functional? That is certainly not possible universally, i.e., to every observer. Some observers
might, nonetheless, not be concerned about the given communication and its side-effects.

Noticing that possible lack of concern drives this paper. We formalise what it means for a
node not to be concerned about the side-effects of a given distributed program. Armed with
that formalism, we present a new programming paradigm, in which the programmer is urged to
mark the proportions of their code that are pure for a given node. The larger such proportions
are, the more it is possible for the given node to benefit from the purity properties of the
code. Typical benefits include the ones enumerated earlier for pure functional programming.
Of course, it remains for the language to verify the correctness of purity markings.

Mind the subtle difference with monadic programming. Meritoriously, monads pretend there
are no side-effects. They interpret an effectful computation as a state transition of a superficial
universe. That is, monads are to deny the existence of side-effects (even though their type
indicates the type of side-effects they have). In contrast, we acknowledge side-effects, yet, help
the right nodes benefit from the purity of the correctly marked code proportions.

We are not the first to notice that effectfulness depends on the observer. Even though
effectful, the Accelerate library [3] of Haskell has a purely functional interface, and, refrains
from monadic treatments. That is becaus the only side effect of evaluating an Accelerate
expression with ‘run’ is compilation and execution of the program. However, that side effect is
not observable to Accelerate’s host PL (i.e., Haskell).

In this paper, we present λ(port)◦: a variation of λ(fut) [4] with built-in ports and pure
blocks (i.e., blocks of code marked for purity). Ports are the only means for side-effects in
λ(port)◦. In essence, the λ(port)◦ ports are asynchronous communication media. They are
designed for interaction with our otherwise pure calculus. Sending to a port will add a message
to the port’s stream, which can be read by a pure expression (c.f. srv at Example 7).

One may wonder why we build on top of λ-Calculus as opposed to π-Calculus. Those two
calculi were designed for modelling computations and agent systems, respectively. As such,
exceptions [5, 1] aside, most PL results are established on top of the former. In this work we
are particularly interested in the pure functional programming results. Our aim is to reuse those
results. So, like more conventional λ-Calculi with futures [2, 4], we build on top of λ-Calculus.

We present the syntax and semantics of λ(port)◦ (Definitions 3 and 4). We formally define a
notion of observational equivalence for a given node (Definition 5). Most importantly, we give
an example where expanding a pure block goes unobserved by a node (Theorem 6). Finally, we
showcase λ(port)◦ for a client-server application with only a couple of clients (Example 7).

2 Syntax and Semantics

The λ(port)◦ syntax is tailored for our minimal working example (Example 7), in particular.

Definition 3. The λ(port)◦ expressions (E) and configurations (G) are defined below, where
this font is for keywords:

e ::= x | c | λx.e | e1 e2 | f(x) = e | e1; e2 | e :: s g ::= port pa | e | ea | g1 || g2
| match s for {x :: s′ ⇒ e} | send to pb | purea {e}
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Assume stream names s, s′, . . . , s1, s2, · · · ∈ S, where E, S, and N are disjoint. The syntax
for an expression e is mostly routine: variables, constants, λ-abstractions, function applica-
tions, named functions (f(x) = e), sequential composition, and, cons expressions. Our pattern
matching is less routine by only allowing a single match and only against cons expressions.
Marking e’s lack of side-effects for a list of nodes a, if at all, is purea {e}. Write pure {e} to
indicate universal purity of e. Purity markings are verified at runtime. Then, there are sending
to ports, and pure blocks. Configurations are port declarations, (node-annotated) expressions,
and concurrent compositions. One annotates an expression e with a node a as ea. Such an
annotation only applies to the outermost layer. Assuming port names p, p′, . . . , p1, p2, · · · ∈ P ,
our ports pa, p′a, . . . , pb, p′b, · · · ∈ P ×N = PN consist of their name and the node they belong
to. We use structural congruence for concurrent compositions: g1 || g2 and g2 || g1 are the same.
In λ(port)◦, the number of concurrent compositions is known statically.

We present a small-step operational semantics for the syntax given in § 2. Judgements
ĺ, ĺ′, · · · ∈ J of the operational semantics take the form τ : g → τ ′ : g′. Each τ is a tuple (ρ, σ),
where ρ : S ⇀ {⊥}∪(E×S) is an environment and σ : PN⇀ S is a store. ρ(s) = ⊥ denotes that
s known to ρ but unbound in the current state of the program. The clause ĺ = τ : g → τ ′ : g′

sets ĺ as an alias for τ : g → τ ′ : g′. Write ncj(ĺ) for the set of nodes (environment or store)
bindings of which were changed over ĺ. Write g → g′ as a shorthand for τ : g → τ : g′. Write
→∗ for the transitive and reflexive closure of →. Finally, fix a set of values ranged over by
v1, v2, . . . , including unit and all cs.

Definition 4. Rules of the λ(port)◦ operational semantics follow.

(λx.e1) e2 → e1[e2/x] (App-E) f e || f(x) = e′ → e′[e/x] || f(x) = e′ (App-F)

v; e→ e (Seq-1) match (e :: s) for {x :: s′ ⇒ e′} → e′[e/x, s/s′] (Mat-1)

match ⊥ for {x :: s⇒ e} → match ⊥ for {x :: s⇒ e} (Mat-2)

τ : e1 → τ ′ : e′1
(Seq-2)

τ : e1; e2 → τ ′ : e′1; e2

e→ e′

(Annot)
ea → e′a

τ : g1 → τ ′ : g′1
(Cncr)

τ : g1 || g2 → τ ′ : g′1 || g2
ĺ = τ : e→ τ ′ : e′ a /∈ ncj(ĺ)

(Pure)
τ : purea {e} → τ ′ : purea {e′}

p, s fresh
(Port)

(ρ, σ) : port pa → (ρ[s 7→ ⊥], σ[pa 7→ s]) : unit

σ(pa) = s ρ(s) = ⊥ s′ fresh
(Send)

(ρ, σ) : send e to pa → (ρ[s′ 7→ ⊥, s 7→ e :: s′], σ[pa 7→ s′]) : unit

The rules in the first four lines are standard. Inside a block that is to be pure from the
viewpoint of a, the rule (Pure) allows reductions that do not alter the parts of store that
pertain to a. That is, they do not declare new ports for a; neither do they send to any of a’s
ports. According to (Send), when an expression e is sent to pa, the respective stream s needs
to be unbound. In such a case, we reduce by allocating a fresh and unbound stream s′ and
resetting the environment binding of s to e :: s′, hence, putting e at the front of the trailing
stream.

3 Results

Write ∆∗port(τ, g) for the nodes for which new ports were declared or the existing ports of which
were sent to over τ : g →∗ : , where “ ” is our wildcard notation. Intuitively, according to
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Definition 5 below, a node observes two configurations equivalently when, for a single reduction
step of one, the other can take one step (or more) with α-equivalent impacts on the parts of
the environment and store that pertain to the node.

Definition 5. Call g1 and g2 observationally equivalent for a node a (write g1 ∼a g2) when

∀τ.

{
τ : g1 → τ1 : g′1 ⇒ ∃τ2, g2. (τ : g2 →∗ τ2 : g′2) ∧ (τ1|a

α≡ τ2|a) ∧ (g′1 ∼a g′2)

τ : g2 → τ2 : g′2 ⇒ ∃τ1, g1. (τ : g1 →∗ τ1 : g′1) ∧ (τ1|a
α≡ τ2|a) ∧ (g′1 ∼a g′2)

.

In words, the following theorem states that, when an expression is proceeded by a pure
block, if the expression has no side-effect for the nodes the proceeding block is pure for, one
can move the expression into the pure block; the result will be the same for those nodes.

Theorem 6. Let e1, e2 ∈ E and a ∈ N. Then, ∀τ. a /∈ ∆∗port(τ, e1) implies e1; purea {e2} ∼a
purea {e1; e2}. Likewise, ∀τ. a /∈ ∆∗port(τ, e2) implies purea {e1}; e2 ∼a purea {e1; e2}.

Example 7. Let N = {srv , c1, c2}, where srv is a server and c1 and c2 are clients. The internal
states of the nodes are sts, st1, and st2, respectively. Based on their own state, clients form a
query and send it to the server’s single port (psrv ). The server processes queries locally. Let fc
and fs be pure client-side and server-side functions. Let also stream(pa) denote the stream of
pa. Then, the client-server program below is pure everywhere, except upon: (1) declaring the
port, and, (2) sending queries to the server – exclusively from the viewpoint of the server.

port psrv || (srv sts stream(psrv )) || (client st1)c1 || (client st2)c2

|| client(st) = purec {send (query st) to psrv ; client (fc st)}
|| srv (st , s) = pure {match s for {q :: t⇒ srv (fs (q, st), t)}}
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1 Introduction

Most static dataflow analyses, like constant propagation or live variable analysis, are designed
for variables having primitive data types and are not applicable to arrays. For large arrays or
in case that the length of an array is not known in advance, creating variables for each array
index (array expansion) is infeasible or impossible. Treating the array as a single variable (array
smashing) leads to imprecise results, when not all array elements are treated in the same way.

2 Approach

In this paper, we tackle the problem of analyzing programs containing arrays of unknown
length and computing properties for their array elements by presenting two novelties: First, we
provide a framework to analyze arrays by extending arbitrary program analyses for primitive
variables to full arrays, based on the array segmentation domain presented by Cousot et al. [3].
Second, we develop the CLU analysis for identifying non-used array elements, as instance of the
framework. To illustrate the framework and the analysis, we use the example given in Figure 1.

2.1 Framework for Analyzing Arrays

To infer properties for array elements in programs, we make use of the array segmentation
domain defined by Cousot et al. [3]. Intuitively, an array segmentation splits an array into
several segments, such that each element from the array is associated to exactly one segment.
The information computed by an analysis is also associated with one segment and hence the
full array is covered The array segmentation domain D is defined as follows:

D = [E : ({e01, . . . }︸ ︷︷ ︸
B0

p0[?]0 B1 p1[?]1 . . . pn−1[?]n−1 {en1 , . . . }︸ ︷︷ ︸
Bn

∪ �) ∪ (⊥,>)]n

The bottom element is used to indicate unreachable path, the top element to avoid under-
approximation analysis results. A segment describes an interval in the array, having a lower
bound Bi of the segmentation being included and the upper bound Bi+1 that is not included.
Moreover, it contains some analysis information pi from the underlying domain forming a
complete lattice and a flag ′?′i, indicating if the segment may be empty. The segment bounds
are simple binary expressions over integers, are ordered ascending and all expressions present in
the same segment bound are assumed to haven an equal value. For example, the segmentation
{0} p0? {i} p1 {a.len()} may be computed during the analysis of the example program shown
in Figure 1. It states that the information p0 holds for the interval [0, i[, that might be empty
and p1 for all elements in the interval [i, a.len()[, containing at least one element.

The transfer relation used to compute successor segmentation when analyzing a program
mainly retains the relation between the expressions present in the segment bounds. When
merging or comparing two segmentation, we apply a unification algorithm. It ensure that both
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int sum(int[] a)
int res = 0;
for( int i = 0; i < a.len()−1 ; i++)

res = res + a[i ];
return res ;

Figure 1: A program, computing the sum of all array elements except the last one

segmentation contain identical segment bounds, to be able to apply the merge or comparison
segment-wise, making use of the underlying domain. The unification algorithm tries to maintain
as many segment bounds as possible while guaranteeing an unique ordering of the segment
bounds in both segmentation. Moreover, it guarantees that the number of segment bounds in
a segmentation is bounded above. Formal definitions for enhanced versions of both, transfer
function and unification algorithm can be found in the Masters Thesis of Haltermann, where
the basic ideas are taken from Cousot [4].

To compute more precises results, we extended Cousot et al.’s domain in several ways: First,
we add the explicit symbol � to indicate, that the array can be empty. Thereby, more precise
results are computed by removing doubtful ′?′’s. Second, we introduce the split-condition E
together with using multiple segmentation for one program location. A split condition states
in general an assumption on the array length, e. g. if it is less, equal or greater than a constant.
By analyzing a segmentation w. r. t. the split condition, an analysis computes multiple different
array segmentation for a single program location. Applying splitting allows us to improve
the results, i. e. when analyzing programs containing branches having constant values in their
conditions. Third, we added a strengthening mechanism using the path formula introduced
by Beyer et al. [2] to enhance the performance of the analysis. Thereby, we can again remove
doubtful ′?′’s, reducing the over-approximation of the analysis for the computed results.

2.2 CLU Analysis: Instantiation to Analyze Array Content Usage

The combined location and usage analysis CLU is an instantiation of our framework detecting
unused array elements. An array index at position i is considered as used, if there are two
program executions started with same values for all input elements except the value at index
i and returning different values. The underlying domain detecting usage consists of the two
elements Used and Not-used, where ⊥ = N v U = >. The transfer function and merge
operator designed for single elements are given in [4]. The analysis is designed as a may
analysis, hence the set of used array elements is over-approximated. Initially, every CLU analysis
is started with the empty segmentation {0}N?{a.len()}, meaning that all elements are not
used or the array is empty. When applied to the running example from Figure 1, we obtain
the segmentation {{0} U? {a.len() − 1, i} N {a.len()}, �}. Hence, we can state that all
array elements in the potentially empty interval [0, a.len()− 1[ are used and one element in the
interval [a.len()− 1, a.len()[ is not considered during computation, if the array is not empty.

In addition, we prove that any instantiation of the framework terminates, when providing
a monotone transfer function for the underlying domain. We show that the analysis can only
produce a finite number of segmentation, even for programs containing loops. During compu-
tation, a segmentation’s length is bounded above by the number of statements on the longest,
loop-free path leading to a location plus a constant value. This property of the framework is
guaranteed by the unification procedure. Moreover, we show that the CLU-analysis is correct in
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the sense that all results computed in fact over-approximates the set of used variables.

3 Implementation

We implemented the framework as a configurable analysis and the CLU analysis as instantiation
in the CPAchecker1 [1]. First evaluations on small, hand crafted examples containing loops
and branches like in Figure 1 and patterns extracted by Xiao et al. [5] during their study of
reducers, has lead to precise results. For instance, when applied to the running example, the
CLU analysis computed a precise result in around one second.

4 Conclusion and Further Work

We presented a lightweight framework usable to easily lift analyses developed for single variables
to arrays, additionally guaranteeing termination. The framework is based on the array segmen-
tation domain introduced by Cousot et al., heavily extended to obtain more precise results.
Moreover, we presented an instantiation of the framework to detect usage of array elements
and demonstrated it on a small example. Both, the framework as well as the CLU analysis are
implemented and evaluated using the CPAchecker.

In the future, we want to enhance the CLU analysis to be able to detect non-commutative
usage of array elements. Moreover, we plan to investigate if using further analyses like interval
analysis or constant value analysis, can either lead to more precise results or speed up the
computation time.
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Abstract

Here we suggest using “syntactic theory functors” (STFs) as a means to organise al-
gebraic specifications of partial data types. Algebraic specifications of partial data types
often introduce much syntactic clutter and is error prone in itself. STFs are a syntactic
structuring mechanism for specifications, allowing systematic treatment of such specifica-
tions to avoid the pitfalls. As a syntactic structuring mechanism the STF can be left in
the specification text to indicate how the partial specification will be encoded. The STF
can also be expanded to expose the full specification text with all the detail and clutter in
place.

1 Motivation

Algebraic specifications are a useful formalism for defining APIs and generic code. Such specifi-
cation formalisms include the very simple equational and conditional equational logics, the logic
of boolean expressions (quantifier free first order predicate logic) familiar to software develop-
ers, and standard first order predicate logic which is preferred by pre/post specifications. Thus
algebraic specifications subsume pre/post specifications, which are focussed on the individual
algorithm and not the API as such.

The weakness of algebraic specifications is in handling partiality or preconditions. While
algebraic specifications are good at defining properties like what is the first element of a queue,
or that two operations are inverses, like popping versus pushing an element on a stack, or
division versus multiplication, they are not good for defining special cases like the first element
of an empty queue, popping an empty stack, or dividing by zero. The former can be handled
by choosing some arbitrary designated value as the first element of an empty queue, popping
an empty stack can be kludged to be an empty stack, but division by zero has no viable answer
since zero is an absorbing element for multiplication and thus causes deeper problems.

There are many approaches to partiality in algebraic specifications, see [4] for a discussion.
These approaches turn out to introduce “syntactic clutter” in the machinery used for dealing
with partiality, making it difficult to convey the important properties of an API, and can be
very error prone in getting right. Here is a straight forward stack specification.

specification Stack = type S, E;

function new: -> S; function push: S, E -> S

function pop: S -> S; function top: S -> E

axiom s:S, e:E pop(push(s,e)) = s; axiom s:S, e:E top(push(s,e)) = e

The error algebra version deals with the problematic cases of the empty stack.

specification Stack_error = type S, E

function new: -> S; function push: S, E -> S

function pop: S -> S; function top: S -> E

% New error constants
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function error_s : -> S; function error_e : -> E

% New axioms defining the error situations

axiom pop(new()) = error_s(); axiom top(new()) = error_e()

% Error propagation axioms for each of the operations of the Stack signature

axiom s:S push(s,error_e()) = error_s(); axiom e:E push(error_s(),e) = error_s()

axiom pop(error_s()) = error_s(); axiom top(error_s()) = error_e()

% Protected axioms from the Stack specification

axiom s:S, e:E s!=error_s() && e!=error_e() => pop(push(s,e)) = s

axiom s:S, e:E s!=error_s() && e!=error_e() => top(push(s,e)) = e

Here we can deduce that pop(push(s,error_e()))=error_s(), but cannot deduce that
pop(push(s,error_e()))=s. Without this care in introducing the appropriate prerequisits,
the latter deduction would imply that s=error_s() for all stacks s.

We suggest applying “syntactic theory functors” (STFs) as a means to organise such spec-
ifications. STFs are a syntactic structuring mechanism for specifications and were introduced
at NWPT’18. They allow a systematic manipulation of declarations, adding new and modify-
ing existing axioms of a specification. As syntactic structuring mechanisms they can be kept
in the specification text thus indicating which partiality mechanism will be used, or they can
be expanded giving the correspondingly “cluttered” specification in the semantically intended
way. Careful design of the STFs will ensure the intended specification, avoiding inadvertent
mistakes.

2 Syntactic Theory Functors

Syntactic theory functors are an institution [1] independent syntactic structuring mechanism.
STFs work on discrete institutions, i.e., any logic with a model theory, e.g., a programming
system, consisting of

• Interface declarations, called signatures Sigid or APIs.

• A specification formalism for(Σ) which defines the set of formulae for each signature Σ.

• A collection of models mod(Σ) for each signature.

• A satisfaction relation |=Σ⊆ mod(Σ)×for(Σ) that defines which models satisfy a formulae.

A theory 〈Σ,Φ〉 consists of a signature Σ and a set of formulae Φ ⊆ for(Σ). A specification
structuring mechanism is syntactic if, when applied to a theory, it can by expanded (flattened)
to a theory, i.e., it can be seen as a mapping from theories to theories. The STFs are theory
mappings with additional requirements.

Definition 1 (Syntactic Theory Functor (STF)). Let Thid denote the theories of an institution.
A mapping F : Thid → Thid from theories to theories is a syntactic theory functor if the
application of F on theories can be decomposed

F (Σ,Φ) = 〈Fsig(Σ), Fbase(Σ) ∪ Ffor,Σ(Φ)〉

where

• Fsig : Sigid → Sigid is a mapping of signatures to signatures,

• Fbase : Sigid → Set is a mapping from signatures to sets of formulae with Fbase(Σ) ⊆
for(Fsig(Σ)), and
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• Ffor,Σ : for(Σ)→ for(Fsig(Σ)) is a function for every signature Σ.

STFs are additive, i.e., F (Σ,Φ1 ∪ Φ2) = F (Σ,Φ1) ∪ F (Σ,Φ2). STFs compose, i.e., given
STFs F and G, then F ;G is also an STF. Some STFs are model consistent, i.e., whenever
F (Σ,Φ) = 〈Σ′,Φ′〉, then there is a mapping µ : mod(Σ′) → mod(Σ) s.t. µ(M ′) |=Σ ϕ ⇐⇒
M ′ |= F (Σ, {ϕ})2. Model consistent STFs build institutions with non-trivial morphisms be-
tween signatures and corresponding morphisms on formulae and models. Such institutions have
a very well behaved translation of formulae and models between different signatures. STFs that
do not build institutions may have a weaker reuse of formulae, e.g., they may preserve or reflect
only some kind of formulae from one signature to another. The STFs for partial specifications
will normally not be model consistent, as the purpose is to allow models which are less con-
strained for the arguments that break preconditions than for those arguments that satisfy the
precondition—a flexibility not allowed by the source specification.

3 Approaches to partiality and corresponding STFs

In the paper [4] Peter Mosses presents succinctly a list of approaches to partial specifications:
error algebras, ok-predicates, exception algebras, labeled algebras, various forms of order sorted
algebras, and classified algebras. We will develop STFs for most of these formalisms, showing
that the notational complexity and error proneness of writing these specifications can be handled
nicely. Finally we will look into guarded algebras [2].

To illustrate the approach we will sketch an error STF. The error STF is parameterised by
a listing earg of the error constants and the axioms that returns the error element. It does the
following transformation to a specificiation.

• errorearg,sig create a new signature where the provided error constants have been added
to the signature.

• errorearg,base add the new axioms and error propagation rules for each of the existing
operations.

• errorearg,for modify each existing axiom by prepending checks for the relevant error ele-
ments.

If the given parameter list does not appropriately match the argument theory, the error STF
will provide relevant error messages. For the stack example the parameter list might be:

earg = type S, E; function error_s : -> S; function error_e : -> E % The error elements

% Axioms defining the error situations

function new: -> S; function pop: S -> S; function top: S -> E

axiom pop(new()) = error_s(); axiom top(new()) = error_e()

Expanding the error STF on the Stack specification yields the Stack_error specification above.

4 Tools for reasoning

The translations for handling partiality in algebraic specifications typically involve enlarging
the API (signatures) of the specification, adding some axioms based on the declarations, and
modifying axioms by introducing conditionals.

Now many of the standard reasoning tools have problems dealing with large sets of con-
ditional formulae. Here we discuss some of these difficulties and point to tools and methods
which alleviate these problems.
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5 Summary

In this presentation we will demonstrate how STFs can simplify writing partial specifications,
making them more readable and comprehensible by not cluttering up the specifications. We
show this for a range of approaches to partiality in algebraic specifications.

We also give examples of tool support for reasoning about such partial specifications, and
prove/disprove simple claims about the transformed specifications at the STF level.
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1 Introduction

Consider the following program representing the message-passing pattern.

x := 41; y := 1 ‖ r1 := y; r2 := x

Here the first thread stores to x the result of some computation and then sets y to 1 to indicate
that it has finished the computation. Intuitively, starting from an initial state where everything
is set to zero, this program should not reach a final state where r1 = 1 and r2 = 0. If we apply an
optimization (either in advance or at runtime) which happens to reorder the two instructions in
either of the threads, then the final state in question becomes valid. For example, the optimized
program could be the following where the instructions of the second thread have been reordered.

x := 41; y := 1 ‖ r2 := x; r1 := y

While the programs r1 := y; r2 := x and r2 := x; r1 := y give the same result in a sequential
setting, executing them in parallel with x := 41; y := 1 might give different results. Namely,
the optimized program allows the final state where r1 = 1 and r2 = 0.

The phenomenon described above where “safe” optimizations applied to individual threads
of a concurrent program leads to additional behaviours is often referred to as relaxed memory
models (relaxed in the sense that more behaviours are allowed).

In the following we describe an operational semantics which is able to capture some opti-
mizations like the one described above. The main idea is that given a program p; q we can,
under certain conditions, execute an instruction from q even when p is not yet fully executed.
This is an extension of our earlier work [2] where we defined reordering derivative-like operations
on regular expressions.

2 Preliminaries

A semicommutation alphabet is an alphabet Σ together with an irreflexive relation θ ⊆ Σ× Σ
which is called the semicommutation relation [1]. We write θ(a, b) for (a, b) ∈ θ. We extend θ
to words and letters by θ(ε, a) =df tt and θ(ub, a) =df θ(u, a) ∧ θ(b, a).

The set RES of regular expressions with shuffle over an alphabet Σ is given by the grammar:

E ::= a ∈ Σ | 0 | E + E | 1 | EE | E∗ | E ‖ E.

In the following we assume a set Σ of instructions (ranged over by a, b, c, . . .) and a set S
of machine states (ranged over by σ). The set of booleans is denoted by B. The interpretation
of instructions as (partial) state transformers is given by J K : Σ → S ⇀ S. We use the
notation (σ)a =df JaKσ and extend it to words as (σ)ε =df σ and ((σ)u)v =df (σ′)v if (σ)u =
σ′ and ⊥ otherwise. We write (σ)u↓ to express that (σ)u is defined. We consider expressions
E ∈ RES to be (concurrent) programs over the alphabet of instructions Σ.
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3 Semantics

We consider an execution of a program to be a sequence of instructions applied to the initial
state. Our goal is to describe the execution of programs in the “relaxed” manner described in
the introduction. The question now is: given a program, how to determine those instructions
that can be executed next? Intuitively, we allow to execute an instruction a before executing
the preceding instructions u when we know that both ua and au lead to the same state.

Definition 1. A semicommutation relation θ is conservative when, for every a, b ∈ Σ, we have
θ(a, b) =⇒ ∀σ.(σ)ab = (σ)ba.

It follows that if θ is conservative, then θ(u, a) implies (σ)ua = (σ)au. Thus we take θ(u, a)
to be the justification that allows us to reorder a before u in the sequence of instructions ua.
We now extend this idea to programs: given a program Ea we would like to find a program E′

such that every execution u of E′ is also an execution of E and a is reorderable with u.

Definition 2. The nullability (empty word property) of a program and the θ-reorderable part of
a program are given by the functions ε : RES→ B and Rθ : RES×Σ→ RES defined recursively
by

ε(b) =df ff Rθab =df if θ(b, a) then b else 0
ε(0) =df ff Rθa0 =df 0

ε(E + F ) =df ε(E) ∨ ε(F ) Rθa(E + F ) =df RθaE +RθaF
ε(1) =df tt Rθa1 =df 1

ε(EF ) =df ε(E) ∧ ε(F ) Rθa(EF ) =df (RθaE)(RθaF )
ε(E∗) =df tt Rθa(E∗) =df (RθaE)∗

ε(E ‖ F ) =df ε(E) ∧ ε(F ) Rθa(E ‖ F ) =df RθaE ‖ RθaF

Note that RθaE just replaces those letters b in E with 0 for which θ(b, a) does not hold.
Nullability is essentially a special case of θ-reorderability where we require θ(b, a) for every
a ∈ Σ (i.e., all letters in the expression would be replaced with 0).

Definition 3. The θ-reordering operational semantics of a program is given by the relation
→θ ⊆ S× RES× Σ× S× RES:

(σ)a↓
〈σ, a〉 →θ (a, 〈(σ)a, 1〉)

〈σ,E〉 →θ (a, 〈σ′, E′〉)
〈σ,E + F 〉 →θ (a, 〈σ′, E′〉)

〈σ, F 〉 →θ (a, 〈σ′, F ′〉)
〈σ,E + F 〉 →θ (a, 〈σ′, F ′〉)

〈σ,E〉 →θ (a, 〈σ′, E′〉)
〈σ,EF 〉 →θ (a, 〈σ′, E′F 〉)

〈σ, F 〉 →θ (a, 〈σ′, F ′〉)
〈σ,EF 〉 →θ (a, 〈σ′, (RθaE)F ′〉)

〈σ,E〉 →θ (a, 〈σ′, E′〉)
〈σ,E∗〉 →θ (a, 〈σ′, (RθaE)∗E′E∗〉)

〈σ,E〉 →θ (a, 〈σ′, E′〉)
〈σ,E ‖ F 〉 →θ (a, 〈σ′, E′ ‖ F 〉)

〈σ, F 〉 →θ (a, 〈σ′, F ′〉)
〈σ,E ‖ F 〉 →θ (a, 〈σ′, E ‖ F ′〉)

A configuration 〈σ,E〉 is terminal when ε(E). If θ is the empty relation, then we get the
ordinary operational semantics where nothing is reordered, i.e., RθaE essentially becomes the
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condition ε(E). If a derivation sequence starts with 〈σ,E〉 and ends with a terminal configura-
tion 〈σ′, E′〉, then σ′ is a final state of the program E executed from the initial state σ.

Consider as an example the program ab ‖ (c+d)ef + g and say that the next instruction we
wish to execute is e (which is not the first instruction of the second thread). If, for example,
we have θ(c, e), (σ)e↓ and ¬θ(d, e), then it is the case that

〈σ, ab ‖ (c+ d)ef + g〉 →θ (e, 〈(σ)e, ab ‖ (c+ 0)1f〉).

Note that Rθe(c + d) = (c + 0) since we have θ(c, e) but not θ(d, e). It can be shown that
ab ‖ (c + 0)1f is equivalent to ab ‖ cf . The instruction g disappeared from the expression
since the rules for + resolve the nondeterminism and the instruction d disappeared from the
expression since it was a predecessor of e and reordering e with d was not justified.

We now return to the example program from the introduction. Note that here we use ; to
denote multiplication. Assume θ such that θ(r1 := y, r2 := x) (this θ could be the concurrent-
read-exclusive-write condition) and let σ be the initial state where all variables are set to 0.
This allows the following derivation sequence (we have omitted the labels on →θ).

〈σ, x := 41; y := 1 ‖ r1 := y; r2 := x〉 →θ

〈σ[r2 7→ 0], x := 41; y := 1 ‖ r1 := y; 1〉 →θ

〈σ[r2 7→ 0][x 7→ 41], 1; y := 1 ‖ r1 := y; 1〉 →θ

〈σ[r2 7→ 0][x 7→ 41][y 7→ 1], 1; 1 ‖ r1 := y; 1〉 →θ

〈σ[r2 7→ 0][x 7→ 41][y 7→ 1][r1 7→ 1], 1; 1 ‖ 1; 1〉

Since ε(1; 1 ‖ 1; 1), we have that the program x := 41; y := 1 ‖ r1 := y; r2 := x executed from
the initial state σ leads to a final state where r1 = 1 and r2 = 0.

4 Future Work

Our plan is to extend this framework so that it is possible to describe (a large part of) the
multicopy-atomic ARMv8 memory model [3] and then check this description against the existing
litmus-tests for this memory model.

One possible extension is to include reordering actions in the framework. For example, when
θ(a, b) and we reorder b before a, then the instruction a acts on b from the left and b acts on a
from the right. Now x := 1; y := x can be reordered as y := 1;x := 1. The instruction y := x
becomes y := 1 and thus reads the value written by x := 1 before it has reached the memory.

Another extension we are considering is using a state-dependent θ, i.e., for every state σ
we may have a different semicommutation relation θσ. This is useful for describing allowed
reorderings for instructions like x := [y] which stores to variable x the value read from the
memory location whose address is given by the variable y.
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Introduction. Model-driven software engineering (MDSE) has been proven to be a successful
approach in terms of a gain in quality and effectiveness [15]. It tackles the constantly growing
complexity of software by utilizing abstractions and modelling techniques.

MDSE promotes separation of concerns to better handle the complexity of software systems,
which in turn leads to the creation of several models that need to be composed when reasoning
about the overall system. Traditional MDSE approaches such as the Eclipse Modelling Frame-
work (EMF) [14] and the Unified Modelling Language (UML) [1] are based on the two-level
modelling approach: one for (meta)models and one for their instances. This enforces model
designers to specify systems within only two abstraction levels, which in several situations
may raise challenges like model convolution and accidental complexity [5]. Multilevel modelling
(MLM) addresses these challenges by eliminating the restriction in the number of times a model
element can be instantiated. Indeed, MLM has proven to be a successful approach in areas such
as software architecture and process modelling domains [5, 2]. In this context, MLM techniques
match well with the creation of domain-specific modelling languages (DSMLs), especially when
we focus on behavioural languages since behaviour is usually defined at the metamodel level
while it is executed at least two levels below; i.e., at the instance level.
Our approach for MLM. It is based on the idea that one must be able to specify models
which are both generic and precise [8]. This encompasses not only the definition of structure but
also behaviour. We specify behaviour descriptions by defining in-place model transformations
(MTs) which are rule-based modifications of an initial model that give rise to a transition system.
We have proposed in previous work the so-called Multilevel Coupled Model Transformations
(MCMTs) as a means to overcome the issues of both the traditional two-level transformation
rules and the multilevel model transformations. While the former lacks the ability to capture
generalities, the later is too loose to be precise enough (case distinctions) [9]. We use our own
tool MultEcore [7] to specify both the structure and the semantics of multilevel hierarchies
and rely on our infrastructure which utilizes Maude as an execution engine [12]. The Maude
specification automatically created by MultEcore can be used for simulation and analysis [11].
It is also possible to further conduct reachability analysis and model checking. While the former
can be done by means of strategies [4], the latter can be performed through the model checker
that Maude implements.
Composition of MLM DSMLs. One of the most successful techniques in MDSE is the
definition of DSMLs. Even though they aimed to specific domains, many of them share certain
commonalities coming from similar modelling patterns [10]. Needless to say, composition is key
in achieving interoperability among these DSMLs. In this paper, we focus on the theoretical
constructions for composition of multilevel DSMLs by presenting two approaches (depicted in
Fig 1). Our framework is founded on graph transformations and category theory. The compo-
sition of modelling hierarchies would be carried out by pushout construction in the category of
graph chains (see [6]), while the composition of the transformation rules (MCMTs) would be
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carried out by the amalgamation of these rules. We plan to formalise the latter by extending
our formalisation through an adaptation of the constructions in [3] where the amalgamation of
two-level DSMLs is formally described.

Several approaches pursue composition of languages by defining a merge operator. Intu-
itively, “the common elements are included only once, and the other ones are preserved”. Fig.
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Figure 1: Conventional merge vs supplementary referencing composition

1a depicts how merge would be defined over two multilevel hierarchies, each one representing
a DSML. The Merged Hierarchy is the result of merging the involved multilevel hierarchies.
Instance models can now instantiate elements (dashed arrows represent typing graph homomor-
phisms) that come from the merging process. These instances can be executed producing the
Transition system which is obtained by applying the rules that come from the amalgamation of
the rule sets (RS) of each hierarchy (RS1⊎RS2).
Our approach for composition. In our approach, the modeller typically works with a
multilevel hierarchy which we identify as the application hierarchy. Application hierarchies can
optionally include an arbitrary number of supplementary hierarchies which add new dimensions
to the application one. In [13] we show how several supplementary hierarchies are applied to
domain-specific Coloured Petri Nets. This allows model elements to have at least one type from
the levels above in the application hierarchy and potentially one other type per incorporated
supplementary hierarchy. Although the use of supplementary hierarchies was a design choice
to facilitate the addition of supplementary features to a functional main language, we are now
investigating how to extend and formalize their usage for the composition of structure and
behaviour of MLM hierarchies. We consider our approach as a realization of the composition
process by taking advantage of the supplementary hierarchies and double typing. This is shown
in Fig. 1b, where we aim to build the composition by assigning more than one type to elements
in the Instance level. In this case, Hierarchy 2 is considered supplementary and its elements can
be used to add additional types to elements in the Instance model.

When it comes to structure composition, we can compare the use of supplementary hier-
archies to the Aggregation scenario depicted in [10], where a language uses some constructs
provided by other languages. With our approach, the additional languages (provided by the
supplementary types) can be added/removed consistently which provides a strong separation
of concerns and strengthen reusability. Hence, we use a “virtual” merge in which we achieve
composition by relying on type combinations. Our goal now is to further investigate and decide
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which of the approaches depicted in Fig. 1 suits best.
When it comes to behaviour (MCMTs) composition, we analyse which two types (from

each hierarchy) are used to double-type an element, and use this information to guide the
amalgamation of the rules at runtime. The amalgamation process is based on double-typing
which in turn is equivalent to type-sameness (commonality model for constructing the pushout)
on which traditional merging is found.

Our next steps towards the formalization of the composition of multilevel DSMLs is twofold:
(1) to determine which of the techniques shown in Fig. 1 is more convenient; and (2) to define
which rules can be amalgamated, identify limitations and corner cases of the approach and
determine coordination mechanism for the application of the rules.
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Abstract

Profunctor optics [PGW17, BG18] are a family of composable bidirectional data ac-
cessors. They provide a powerful abstraction over many data transformation patterns
in functional programming described in libraries such as Kmett’s lens library [Kme18].
Generalizing a result by Pastro and Street [PS08], we get a new proof of the equivalence
between existential and profunctor representations of the optics. This extends to the case
of mixed optics proposed by Riley [Ril18]. We collect derivations from the existential to
the concrete form, including many original ones. In particular, we present an elementary
derivation of the optic known as traversal, solving a problem posed by Milewski [Mil17].
We discuss a novel approach to composition of optics, based on both distributive laws and
coproducts of monads. This is work in progress.

1 Optics

In functional programming, optics are a modular representation of bidirectional data accessors.
Boisseau and Gibbons’ profunctor representation theorem [BG18] proves that they can be
equivalently written as functions polymorphic over profunctors. This profunctor representation
is convenient because it turns composition of optics into ordinary function composition.

Example 1.1. Lenses are type-changing getter/setter pairs, defined as Lens((A,B), (S, T )) :=
(S → A) × (S × B → T ) for any four types A,B, S, T . Prisms are data accessors enabling
alternatives, defined as Prism((A,B), (S, T )) = (S → A + T ) × (B → T ) for any four types
A,B, S, T . Both are optics, in the sense of the following Definition 1.2, which means they can
be written in profunctor form, thanks to Theorem 1.3, and composed using ordinary function
composition. The following code uses a prism (postal) to parse a string into a postal address.
The prism is then composed with a lens that accesses the street subfield inside the postal address
(street). The composite optic can view and update the street field inside the string.

let address = "45 Banbury Rd , OX1 3QD , Oxford"

address ^. postal

-- {Street: "45 Banbury Rd", Code: "OX1 3QD", City: "Oxford "}

address ^. postal.street

-- "45 Banbury Rd"

address ^. postal.street %~ "7 Banbury Rd"

-- "7 Banbury Rd, OX1 3QD, Oxford"
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A first unified definition of optic was proposed by Milewski [Mil17], who also suggested its
monoidal constraints. This definition has been presented using submonoids of endofunctors by
Boisseau and Gibbons [BG18] and using monoidal actions by Riley [Ril18]. We extend this
definition to what Riley [Ril18] suggested to call mixed optics; we also extend his proof to show
that mixed optics for a pair of monoidal actions are morphisms defining a category. The main
proof technique is (co)end calculus as described, for instance, by Loregian [Lor15].

Definition 1.2. Let M be a monoidal category and let C and D be two arbitrary categories.
Let ( ) : M → [C,C] and ( ) : M → [D,D] be two strong monoidal functors. An optic from
(S, T ) ∈ C×D with focus on (A,B) ∈ C×D is an element of the coend

Optic ((A,B), (S, T )) :=

∫ M∈M

C(S,MA)×D(MB,T ),

For this extended definition, we present an analogue of Boisseau and Gibbons’ profunctor
representation theorem [BG18]. Its proof is based on Pastro and Street’s study of doubles
for monoidal categories [PS08]; however, it generalizes tensor products to arbitrary monoidal
actions over two different categories.

Theorem 1.3 (Profunctor representation theorem, after Boisseau and Gibbons [BG18]). In
the conditions of Definition 1.2,∫

P∈た
Sets(P (A,B), P (S, T )) ∼= Optic((A,B), (S, T )),

where た is the category of Tambara modules for the actions of M.

Our definition of Tambara module generalizes Tambara’s original one [Tam06] to arbitrary
pairs of monoidal actions. As Pastro and Street [PS08] showed for the original case, they can be
equivalently described by as coalgebras for a comonad Θ: Prof(C,D) → Prof(C,D) defined
on profunctors by

ΘP (A,B) =

∫
M∈M

P (MA,MB).

As a corollary, the category Optic is shown to be the full subcategory on representable pro-
functors of the co-Kleisli category of Θ. This opens the possibility of exploring two different
ways of composing optics of different families. The first is to consider distributive laws between
Pastro-Street comonads; the second is to consider products of comonads. We show that both,
under suitable considerations, produce again Pastro-Street comonads. This technique can be
used to get some optics present in the literature such as the affine traversal [PGW17], but
also to produce some original ones. Composition of optics of different kinds is common in
programming practice; but a justification of its correctness was missing from the literature.

2 Examples of optics

An important justification of Definition 1.2 is that it captures the common examples of optics
that occur in programming. Milewski [Mil17] showed that lenses, prisms and grates fit the
definition relying only on elementary applications of the Yoneda lemma. Boisseau and Gibbons
[BG18] and then Riley [Ril18] have shown the same for other common optics. We address the
problem of finding an elementary derivation of the traversal, as proposed by Milewski [Mil17].
A traversal from (S, T ) with focus on (A,B) is an element of C (S,

∑
nA

n × (Bn → T )). We
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describe traversals as the optic for power series functors, also called polynomial functors in one
variable [Koc09]. This is related to the more common description of traversals as optics for
traversable functors by a result of Jaskelioff and O’Connor [JO15] that characterizes traversables
as coalgebras for a certain parameterized comonad.

Proposition 2.1. Given some functor C ∈ [N,C] from the discrete category of the natural
numbers, we can define a power series functor F : C → C given by F (A) =

∑
n∈N Cn × An.

This induces a monoidal action that we call Series : [N,C] → [C,C]. Traversals are optics for
this action Series : [N,C]→ [C,C].

Proof. Unfolding the definitions, we want to prove that∫ C∈[N,C]

C

(
S,
∑
n∈N

Cn ×An

)
×C

(∑
n∈N

Cn ×Bn, T

)
∼= C

(
S,
∑
n∈N

An × (Bn → T )

)
.

The fact that there exists an isomorphism between the two sets, natural in A,B, S and T , is a
consequence of continuity of the hom-functor and the Yoneda lemma.

We collect novel derivations for many other optics. The following are some of them, together
with their generating monoidal actions.

Name Monoidal action Concrete form
Glass Product and exponential ((S → A)→ B)→ S → T

Unsorted Traversal Combinatorial species S →
∫ n∈B

An × (Bn → T )
Algebraic lens Product by a ψ-algebra (S → A)× (ψS ×B → T )
Kaleidoscope Applicative functors

∏
n∈N(An → B)→ (Sn → T )

The generalization to mixed optics allows us to consider degenerate optics. These are optics
where one of the categories is the terminal category. Degenerate optics include getters, setters
and folds; as they appear in Kmett’s lens library [Kme18]. This definition also captures some
variants of lenses and, remarkably, a generalization of lenses to an arbitrary monoidal category
proposed by Myers and Spivak [Spi19, §2.2].

3 A case study

Let us discuss an example of how our results can be used in practice. Consider the iris

dataset [Fis36], where each entry represents a flower described by its species and four real
number measurements.

Example 3.1. An algebraic lens (measurements) for the list monad is used first as an ordinary
lens to access the first element of the dataset (line 1), and then to encapsulate some learning
algorithm that classifies measurements into a species (line 2). Consider a kaleidoscope that
extends an aggregating function on the reals to the measurements (aggregateWith). Our work
has shown that both fit Definition 1.2, which allows us to use Theorem 1.3 and our results on
composition of optics to join them into a new kaleidoscope (measurements.aggregateWith, in
line 3). It is remarkable that we just use ordinary function composition.

(iris !! 1)^. measurements

-- (4.9, 3.0, 1.4, 0.2)

iris ?. measurements (Measurements 4.8 3.1 1.5 0.1)

-- Iris Setosa (4.8, 3.1, 1.5, 0.1)

iris >- measurements.aggregateWith mean

-- Iris Versicolor (5.8, 3.0, 3.7, 1.1)
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Abstract

Dynamic detectors for potential data races, based on lockset-intersection tracking, are
widely used to safety-check concurrent programs. But to make this real-world-feasible,
optimisations can be necessary whose validity has so far lacked a solid proof foundation.

We demonstrate that lockset algorithms possess a simple algebraic structure (a commu-
tative monoid), which can simplify the formalisation of optimisations in a proof assistant.

Concurrent programs require synchronisation mechanisms if shared mutable data is to be used
safely. Specifically, unrestricted concurrent mutation easily leads to data races [4], causing data
corruption which can be disastrous yet hard to detect.

Besides approaches such as Software Transactional Memory, the standard mechanism to
avoid this is using locks, which can prevent one thread from proceeding until it is safe to do
so. This can cause its own problems though, in the most extreme deadlock [1] but also simply
missed parallelism opportunities. It is thus desirable to minimise the use of locks, but the
nondeterministic nature of race conditions requires reliably detecting them, to ultimately avoid
them from being possible in production code.

Such detectors come in both static (compile-time) and dynamic (runtime) flavours. We
focus on lockset algorithms as defined in [5] (in the following called Eraser), specifically the
simple lockset algorithm.1 The way this is usually presented is as a state machine on top of
the running program: for each thread t, the set of currently-held locks is updated as locks are
taken or unlocked on that thread. Furthermore, for each shared variable v, a lockset C(v) is
kept as the protecting set. This starts out as the set of all possible locks, and whenever thread
t accesses the variable, it is intersected with the set of lock held by that thread, i.e.

C(v)← C(v) ∩ locks held(t).

If this intersection ever becomes empty, it means a thread has accessed the variable while not
holding any lock that other threads have held to ensure sovereignty over the variable when
accessing it, so the empty set indicates a potential race condition.

Since the detector does not affect the program flow itself, it can (instead of as a
simultaneously-running state machine) as well be formulated to process only a trace of the
program run[3], where “trace” can be understood as just a stream/list of actions

Op =


Lock (t : ThreadId) (l : LockId)

Unlock (t : ThreadId) (l : LockId)

Access (t : ThreadId) (v : VarId)

∗This work was partially supported by the European Horizon 2020 project COEMS under grant agreement
no. 732016 (https://www.coems.eu/).

1 The actual Eraser algorithm has additional states, but these are mostly relevant for initialisation.
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Algebraic formulation. For the actual results of the algorithm (i.e. the protecting sets and
specifically if they become empty), it is not relevant to consider individual locking or unlocking
operations. Rather, it is sufficient to keep track of only the actual lockset states, and even that
only at the times when a variable is accessed (because that will be the set which is intersected
with the protecting set). So instead of a trace of events, one can consider a trace of accesses
together with the lock states: for example, a trace for one thread, one variable, and two locks,
is compressed thus:

Lt0
l0

Lt0
l1

At0
v0

Ut0
l0

Lt0
l0

Ut0
l1

At0
v0

( 0
0 ) ( 1

0 ) (( 1
1 ),At0

v0) ( 0
1 ) ( 1

1 ) (( 1
0 ),At0

v0)

(( 1
1 ),At0

v0) (( 1
0 ),At0

v0).

In this diagram, arrows in the top line represent sequencing of the original events in the trace.
In the bottom line, the arrows represent only the transitions between states that actually need
to be considered for the race-condition checking.

The vector notation used here already suggests that it is not really necessary to consider
the states as sets. The intersection operation that the lockset algorithm applies at each access
is but a special case of a pointwise multiplication. So generically, these sets can be seen as an
instance of an algebra or more precisely a ring. Considering only the intersection operation,
it is a monoid, with the universal set (or, vector-of-all-1-s) as unit. This operation will in the
following be written simply as juxtaposition, i.e. sasb ≡ sa ∩ sb.

What the Eraser algorithm does is then left-scanning over the accesses and always applying
the held lockset to the right of the protecting set, with the monoid operation:

→ (( 1
1 ), s0( 1

1 ))→ (( 1
0 ), s0( 1

1 )( 1
0 ))

so starting from s0 = ( 1
1 ), the final state would be

( 1
1 )( 1

1 )( 1
0 ) = ( 1

1 )( 1
0 ) = ( 1

0 ).

For arbitrary locking and access operations, the sequence of relevant checking states becomes

(m0, s0m0)→ (m1, s0m0m1)→ (m2, s0m0m1m2)→ . . .

In the general setting of multiple threads, locks and variables, there needs to be one lockset for
each thread and one protecting set for each variable, so e.g.

→
(
(m0,0,m0,1, . . .), (A

t1
v0

)
)
→
(
(m1,0,m1,1, . . .), (A

t0
v1)
)
→
(
(m2,0,m2,1, . . .), (A

t1
v1)
)

is checked as(m0,0 . . .),

s0,0m0,1

s0,1
...


→

(m1,0 . . .),

 s0m0,1

s0,1m1,0

...


→

(m2,0 . . .),

 s0m0,1

s0,1m1,0m2,1

...


 .

Effectively, after an access to a variable v, its protecting state is a fold over all previous accesses
to v of the lockset state at that time of the corresponding thread.
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Computer-assisted proofs. The folding operation lends itself well to a purely-functional
implementation, which can be in a language such as Coq:

Axiom drcAlgebraic : forall tr v t, let trx := tr ++ [Access t v]

in drc trx

<-> match compressTr trx with

| inl cTr => fold_left pr (map (fun q => fst q (fst (snd q)))

(filter (VId.eqb v ◦ snd ◦ snd) cTr)

) I <> O

| inr _ => False

end.

Here, drc is an abstract notion of what a data-race checker on a trace of events is. The axiom
states that it should be equivalent to our algebraic notion, where I is the all-ones state and
O an all-zeroes state (representing the empty protecting set, i.e. a potential data race). The
algebraic form works on the compressTr form of the trace. This is actually not defined for
arbitrary traces of operations, but only for well-formed traces.2

We propose using this to prove the correctness of commonly used optimizations that com-
press or elide information from the trace only based on the underlying monoid. An advantage
of the algebraic viewpoint is that it decouples the correctness proofs from any concrete data
structure implementing Eraser, as long as an implementation (e.g. through vectors) has the
required algebraic properties. For example, we show that repetition of well-formed blocks with
balanced locks and unlocks does not add new knowledge about data races, and can hence be
elided from the trace:3

Lemma ast_balanced: forall (pre tr post: list op),

balanced tr -> wf (pre++tr++post)

-> forall n, n > 0 -> drc (pre++tr++post) <-> drc (pre++(repeat tr n)++post).

This and other equivalences can then be used to avoid the placement of redundant instru-
mentation (for related work see e.g. [2]) into a system-under-test, and hence through reduced
event generation positively affect the computation time for dynamic data race checking.
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Abstract

We study templates (i.e. control flow structures with uninterpreted functional and
predicate symbols commonly known as program schemata) for descending and ascend-
ing dynamic programming, discuss these templates from programming theory perspective
in terms of translation of recursive program schemata to iterative ones with or without
dynamic memory, suggested sufficient conditions when the recursive template can be trans-
lated into iterative program schemata with fix-size static memory.

More than 50 years passed since the “Golden Age” of Theory of Program Schemata in
1960-70’s. Great computer scientists contributed to these studies: John McCarthy, Edsger
Dijkstra, Donald Knuth, Amir Pnueli... Studies of go-to elimination (structured program
Böhm-Jacopini theorem about a translation of spaghetti-like iterative code to more under-
standable and easier to verify iterative code) and recursion elimination (i.e. how to translate
recursive program schemata and programs to iterative ones) were very popular in 1960-1970’s
[4]. Recursion elimination was very popular because it is about translation from easier to de-
sign and verify declarative code to more efficient imperative code. Many fascinating examples
of recursion elimination have been examined [3, 2, 7] (e.g. tail-recursion that is basically a
recursive variant of go-to). In the paper we study a recursion pattern that doesn’t match
the tail-recursion, but matches well the pattern of Bellman equation, a general form for re-
cursive dynamic programming. We study this pattern of recursive dynamic programming as a
template (i.e. uninterpreted or semi-interpreted program scheme with a variable arity of sym-
bols/functions/predicates) [6], discuss sufficient conditions for the interpretation of functional
and predicate symbols when the recursive scheme may be translated to iterative schemata with
(i) an associative array with a pre-computed size, (ii) an integer array with pre-computed size,
and (iii) a fix-size static memory.

Dynamic Programming was introduced by Richard Bellman in the 1950s to tackle optimal
planning problems. Bellman equation is a name for recursive functional equality for the ob-
jective function that expresses the optimal solution at the “current” state in terms of optimal
solutions at next (changed) states, it formalizes a so-called Bellman Principle of Optimality :
an optimal program (or plan) remains optimal at every stage. In the present paper we study a
class of Bellman equations that matches the following recursive pattern:

G(x) = if p(x) then f(x) elseg

(
x,
{
hi

(
x,G(ti(x))

)
, i ∈ [1..n(x)]

})
(1)

We consider the pattern as a recursive program scheme (or template) [6], i.e. a recursive control
flow structure with uninterpreted symbols:

• G is the main functional symbol representing (after interpretation of ground functional
and predicate symbol) the objective function G : X → Y for some X and Y ;
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• p is a ground predicate symbol representing (after interpretation) some known1 predicate
p ⊆ X;

• f is a ground functional symbol representing (after interpretation) some known1 function
f : X → Y ;

• g is a ground functional symbol representing (after interpretation) some known1 function
g : X × Z∗ → X for some appropriate Z (with a variable arity n(x) : X → N);

• all hi and ti (i ∈ [1..n(x)]) are ground functional symbols representing (after interpreta-
tion) some known1 function hi : X × Y → Z, ti : X → X (i ∈ [1..n(x)]).

In the sequel we do not make an explicit distinction in notation for symbols and interpreted
symbols but just verbal distinction by saying, for example, symbol g and function g.

Let us consider a function G : X → Y that is defined by the interpreted recursive scheme
(1). Let us define two sets bas(v), spp(v) ⊆ X:

• base bas(v) = if p(v) then ∅ else {ti(v) : i ∈ [1..n(v)]} ⊆ X comprises all values that are
immediately needed to compute G(v);

• support spp(v) is the set of all values that appear in the call-tree of G(v).

Note that bas(v) is always finite and if G is defined on v then the support spp(v) is finite. When
G(v) is defined, the support can be computed by the following algorithm:

spp(x) = if p(x) then {x} else {x} ∪ (
⋃

y∈bas(x)

spp(y)). (2)

Let us specify and verify the following iterative template for/of (ascending) dynamic pro-
gramming :

• Template Applicability Conditions TAC:

1. I is an interpretation for ground symbols in the scheme (1);

2. n : X → N is the arity function of interpreted g;

3. G : X → Y is the objective function, i.e. a solution of the interpreted scheme (1);

4. t1, . . . tn : X → X are functions that computes the base;

5. spp : X → 2X is the support function for G;

6. NiX 6∈ X is a distinguishable fixed indefinite value2 for X;

• Template Pseudo-Code TPC:

1. V AR LUT : assosiative array indexed by spp(v) with values in Y ;

2. LUT := array filled by NiX;

3. for all u ∈ spp(v) do if p(u) then LUT [u] := f(u);

1 i.e. that we know how to compute
2NiX — Not in X, similarly to Non a Number — NaN.
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4. while LUT [v] = NiX do
let u ∈ spp(v) be any element in spp(v)

such that LUT [u] = NiX and
LUT [ti(u)] 6= NiX for all i ∈ [1..n(u)]

in LUT [u] := g

(
u,
{
hi

(
u, LUT [ti(u)]

)
, i ∈ [1..n(u)]

})
.

Note that the template is not a standard program scheme, but a scheme augmented by
associative array (namely LUT ).

Proposition 1. Assuming TAC, the following holds for every v ∈ X:

1. if G(v) is defined then interpreted template TPC terminates after |spp(v)| iterations of
both loops, and LUT [v] = G(v) by termination;

2. if G(v) is not defined then interpreted template TPC never terminates.

The advantage of TPC is the use of an associative array that is allocated once instead of a
stack, which is required to translate general recursion. Nevertheless, a natural question arises:
is a finite static memory sufficient when computing this function? Unfortunately, in general,
the answer is no according to the following proposition by M.S. Paterson and C.T. Hewitt [6].

Proposition 2. The following special case of the recursive template (1)

F (x) = if p(x) then x else f(F (g(x)), F (h(x)))

is not equivalent to any standard program scheme (i.e. an uninterpreted iterative program
scheme with finite static memory).

Proposition does not imply that dynamic memory is always required; it just says that for
some interpretations of uninterpreted symbols p, f , g and h the size of required memory depends
on the input data. But if p, f , g and h are interpreted, it may happen that function F can be
computed by an iterative program with a finite static memory. For example, Fibonacci numbers

Fib(n) = if (n = 0 or n = 1) then 1 else F ib(n− 2) + Fib(n− 1)

matches the pattern of the scheme in the above proposition 2, but just three integer variables
suffice to compute it by an iterative program.

The following proposition states sufficient conditions when a finite static memory suffices to
compute the recursive function (1).

Proposition 3. Assume that TAC holds altogether with the following additional conditions:

• arity function n : X → N is some constant n ∈ N;

• base functions t1, . . . tn are interpreted in such a way that t1 is invertible and ti = (t1)i

for all i ∈ [1..n];

• interpreted predicate p is t1-closed in the following sense: p(u)⇒ p(t1(u)) for all u ∈ X.

Let m ∈ N be number of static variables that suffice to implement imperative iterative algorithms
to compute interpreted ground predicate and functions p, f , hi (i ∈ [1..n]), t1 and t−1 for any
input value. Then the objective function G may be computed by an imperative iterative algorithm
with 2n + m + 2 static variables.
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(Let us skip a proof of the statement because of space limitations.)
To the best of our knowledge, use of integer arrays for efficient translation of recursive

functions of integer argument was suggested first in [1]. In the cited paper this technique of
recursion implementation was called production mechanism. The essence of the production
mechanism consists in support evaluation (that is a set of integers), array declaration with a
proper index range, and fill-in this array in bottom-up (i.e. ascending) manner by values of
the objective function. Use of auxiliary array was studied also in [5]. The book [5] doesn’t
use templates but translation techniques asymptotically but is more space efficient that our
approach. (For example, if to use techniques from [5], then the length of the longest common
subsequence can be computed in linear space, while our approach needs a quadratic space.)

Nevertheless, a novelty of our study consists in the use of templates (understood as semi-
interpreted program schemata) and sematic sufficient conditions that allow recursive programs
to be computed efficiently by iterative imperative programs (with either an associative array
or just with a finite fixed size static memory).
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Abstract

Lately the demand for autonomous ships has grown substantially. Autonomous ships
are expected to navigate safely and avoid collisions following accepted navigation rules.
We model the autonomous system as a Stochastic Priced Timed Game using UPPAAL
STRATEGO. The behaviour of the controller is optimised and verified in order to achieve
the goal to safely reach the destination at a minimum cost.

1 Introduction

The demand for unmanned ships has risen aiming at reducing operation costs due to minimal
crew on board and safety at sea but also promoting remote work. Autonomous ships are
expected to make more and more decisions based on their current situation at sea without
direct human supervision. This means that an autonomous ship should be able to detect other
vessels and make appropriate adjustments to avoid collision by maintaining maritime traffic
rules. However, the existence of a ‘virtual captain’ from the shore control centre (SCC) is
still a must to perform critical or difficult operations [1]. The presence of virtual captains
also increase the chances of spotting a cyber-attacks [10]. The connectivity between ships and
SCC has to guarantee sufficient communication for sensor monitoring and remote control [5]
when SCC intervention is needed. This connectivity also plays an important role for the safety
of operations concerning collision avoidance in the remote-controlled scenarios as it needs to
be fast for transforming the data and receiving information regarding the decision from SCC.
For preventing collisions at sea, the International Maritime Organization (IMO) [6] published
navigation rules to be followed by ships and other vessels at sea which are called Convention
On the International Regulations (COLREG).

When developing the autonomous ship navigation system, quality assurance via model-
based control synthesis and verification is of utmost importance. UPPAAL STRATEGO [4] is
a branch of the UPPAAL [2] family of model checker tools. It uses machine learning and model
checking techniques to synthesize optimal control strategies. Hence, it is a good candidate for
control synthesis tool which satisfies above mentioned requirements.

In our research, we aim at adapting formal modelling with UPPAAL STRATEGO for ver-
ifying and synthesizing safe navigation of autonomous ships. As an additional contribution,
we improve the autonomous ships navigation performance regarding its safety and security at
the same time planning for optimal route and scheduling maneuvers according to COLREG
rules. Furthermore, this study relies on experience reports regarding the identified challenges
for formal modelling of autonomous systems.
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Figure 1: Autonomous Navigation of Ships

2 Related work

There have been a variety of studies on autonomous ship navigation obeying COLREGS rules.
Among these fuzzy logic [8], interval programming [3], and 2D grid map [11] could be men-
tioned. However, the previous approaches do not deal with verification for modelling safe
navigation. Moreover, non-deterministic behaviour of autonomous ship, communication delays,
sensor failure and weather feature are not considered in their models.

Recently, in MAXCMAS project [12], COLREGs rules have been implemented in collision
avoidance module (CAM) software where generates collision avoidance decision and action as
soon as collision risk is detected. In spite of their various simulation tools, verification methods
are discussed only implicitly.

UPPAAL STRATEGO has proven its relevance in several case studies, where optimal strate-
gies have been through statistical model checking and machine learning. Examples include for
instance adaptive cruise control [7].

3 Model

When modelling navigation manoeuvres of autonomous ships, we start with standard situa-
tions, addressed in COLREG. As an example, let us consider a scenario where two ships have
intersecting courses as depicted in Figure 1.

In this example, in spite of the existence of monitor from the SCC, we assume also that
ships are equipped with intelligent controllers. According to Rule 15 of COLREG [9]; when two
power driven vessels have intersecting courses with the risk of collision, the vessel which has
the other on her own starboard (right) side shall keep out of the way and avoid crossing ahead
of the other vessel. If there is a risk of collision between vessels headed for a crossing situation,
a vessel has to give way to the vessel on its starboard side. In this case the vessel giving way
should adjust its speed and/or course to pass behind the incoming vessel. The adjustment will
therefore be made to the starboard side. In the case depicted in Figure 1, Ship B should give
way while ship A maintains its direction and speed.

The controller of ship B has a choice to slow down its speed instead of altering its path to
pass ship A. By doing this, the expected arrival time might not be as late as when following a
redirected route. However, if for some reason ship A is slowing down, then the controller should
navigate ship B safely to another route.

We model the system as a Stochastic Priced Timed Game using the tool UPPAAL STRAT-
EGO where the controller of ship B should dynamically plan its maneuver, while the opponent
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(ship A) moves according to its preset trajectory forces ship B to change its route. In this game,
we define the fuel consumption (FC) as a the price to be minimized under the safe strategy.
The change in velocity of the ship is directly related to FC, so that the consumption of fuel
increases if the ship slows down or speeds up rather than changes the route, causing the price
to increase.

The goal is that the ships move to their target positions in a safe way (without the risk of a
collision) while at the same time optimizing the travel times and also the fuel consumption. We
rely on reinforcement learning and Q-learning supported via UPPAAL STRATEGO to optimize
and verify the behaviour of the controller in order to achieve the goal.

4 Conclusion

In this paper, the approach for the control synthesis has been stated as a stochastic two players
game with the goal of collision avoidance. Taking into account several practically important side
constraints such as wind, currents, navigation mistakes by adversary’s vessel, and involvement
of other obstacles (nautical signs, small boats) complicates the synthesis task and presumes
the validation of the approach under extra constraints not studied in standard game-theoretic
setting yet.
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1 Background

The Event-B formal method [1] is used for system modelling and verification, it is supported by
the Rodin IDE (Integrated Development Environment) [2]. Event-B was designed for modelling
discrete systems using a rich set theoretic modelling language; it was not designed as a general
theorem prover. This design focus resulted in some useful structures being difficult to model in
a reusable way. This was partially addressed by the introduction of the Theory Plug-in [5] which
extended the Event-B language with polymorphic recursive datatypes (allowing types such as
lists and the naturals to be easily created) and user-defined operators. User defined opera-
tors came in two flavours, axiomatically defined operators and constructively defined operators
(working more like functions in other languages, substituting arguments into expressions).

The extended Event-B syntax has been used to construct axiomatic definitions of types, e.g.,
the real numbers have been modelled as a commutative field, which has been used within Event-
B system modelling [4]. This approach results in a lot of repetition in definition and theorem
proving. For example, when constructing a field it is not possible to reuse a group construct,
which results in it being necessary to repeat the group axioms for addition and multiplication,
and repeat any group theorems and proofs. This was noted in [9], which proceeded to show
that abstract mathematical structures such as monoids could be created using the Event-B
set syntax in such a way that they could be related to concrete types (such as the naturals).
Further, the abstract types could be used to construct other abstract types (e.g., using the
group definition to facilitate the construction of a field). There were several problems noted
with this approach, such as proving a concrete type was an instance of an abstract type (e.g.,
that zero and addition form a monoid) did not automatically allow theorems to be used on
the concrete type (the user needed to manually move the theorems). It was noted that the
work-arounds to these problems were repetative enough to be done automatically, and could
be applied during a translation from another language. The B] language was proposed [10] for
this purpose, with syntactic elements designed for the construction of mathematical types in
such a way that they could be translated to the Event-B syntax, allowing them to be used by
an Event-B modeller.

2 The B] Tools

An initial implementation of the B] language has been made. This is constructed in a way
to make it compatible with the Rodin tool set. Several mathematical structures have been
implemented using the B] tool to test its effectiveness e.g.,

Class Monoid[M ] : SemiGroup (ident : M)

where ∀x : M · equ(op(x, ident), x) ∧ equ(op(ident, x), x){. . . }
(1)

This declares that a Monoid is a SemiGroup (SemiGroup is a previously defined type with
an equivalence relation equ and a binary operator op, and is referred to as the supertype of
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Monoid) with an identity (ident). The where statement introduces a series of predicates to
constrain the class, in this case they define the identity to work in the expected way. Within
the type body ({. . . }) theorems and functions are declared. For example the following theorem
about the identity:

∀x : M · equ(op(x, ident), ident)⇔ equ(x, ident) (2)

M was declared above (1), and can be used as an instance of the Monoid class anywhere within
the type body. As can the op, equ and ident members of the Monoid, they do not need to be
explicitly quantified over.

Concrete types are also constructed such as the natural numbers (Nat). The following
statement is used to show that zero and addition form a commutative monoid:

Instance CommMonoid〈pNat〉 (add, zero) addMon (3)

addMon is a name allowing the CommMonoid to be explicitly referenced in other B] state-
ments.

The B] tool uses an instance statement like (3) to produce an Event-B theorem stating
that add and zero form a CommMonoid. It also instantiates all of the theorems and functions
declared in the class bodies of the abstract types (CommMonoid and its supertypes such as
Monoid). For example (2) instantiates to:

∀x : Nat · add(x, zero) = zero⇔ x = zero (4)

This in principal needs no proof, instead the proof is done on (1) so it is true for all Monoids
and the Instance statement requires it to be proved that add and zero form a CommMonoid
(which requires them to be a Monoid).

Instantiating the theorems in this manner makes future proofs considerably easier as the
person doing the proofs does not have to manually instantiate the theorems whilst proving.
When developing theorems in B] it was found that the theorems were considerably more concise
than the equivalent theorems developed in the Event-B case study [9]. A large part of this was
due to the instantiation mechanism, however, other features of the B] language helped, including
the B] type system, and predicates not being a separate syntactic category in B] (unlike Event-
B). It was also notable that due to the IDE features built into the B] tool such as syntax aware
autocompletion and on the fly error highlighting, it was easier and faster in our opinion to
develop theories than when using the Theory Plug-in tools.

3 Discussion and Future Work

B] bears similarities to HOL [7] style languages, with a type class style feature [12]. Languages
such as Coq [3] and Isabelle/HOL [8] with similar features have been used to construct large
libraries of mathematical types. These features also have a lot in common with Algebraic
specification language [6], where parameterised programming [11] allows generic types to be
constricted to type specifications. The unique feature of this work is the translation to the set
theoretic syntax used by Event-B, and the interaction with its tools.

Developing mathematical theorems in B] highlighted problems and improvements that could
be made to the B] language. For example Instance statements infer their supertype from their
parametric context, which is the wrong way round; supertypes, if required, should be explicit.
In Class statements what constitutes a supertype needs to be extended. An attempt was made
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to create a class of all commutative monoids on the naturals with equality as the equivalence
operator, whilst this was possible it would have been easier if Instances could be supertypes.
These issues will be addressed with updates to the B] syntax.

The B] tool does not interact directly with the Rodin interactive prover (this is done through
the translation to existing Event-B and the current tools). The B] type system is not the same
as the Event-B type system, as it allows subtyping (and requires functions to explicitly state
their return types). Prover rules and tactics could be generated for the interactive prover
to allow this additional information to be used, in some cases this would allow proofs to be
discharged automatically, further reducing the proof burden on the user.
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Introduction
In response to the emerging privacy concerns, the European Union (EU) has approved the Gen-
eral Data Protection Regulation (GDPR) [1] to strengthen and impose data protection rules
across the EU. This regulation requires controllers that process personal data of individuals
within EU and EEA, to process personal information in a ”lawful, fair, and transparent man-
ner”. Article 6 and Article 9 of the regulation [1] provide the criteria for lawful processing,
such as consent, fulfillment of contractual obligation, compliance with a legal obligation etc.
The regulation treats consent as one of the guiding principles for legitimate processing, and
Article 7 [1] sets out the conditions for the processing personal data (when relying on consent).

Consent is defined as “any freely given, specific, informed and unambiguous indication of
the data subject’s wishes by which he or she, by a statement or by a clear affirmative action,
signifies agreement to the processing of personal data relating to him or her” [1]. In particular,
a data subject‘s consent reflects her choices/agreements in terms of the processing of personal
data. These privacy requirements can be expressed through privacy policies, which are used
to regulate the processing of personal data. The privacy requirements in the GDPR (as well
as other privacy regulations) are defined informally, therefore, to avoid ambiguity the policy
language equipped with a formal semantics is essential [2, 3]. We have previously studied static
aspects of privacy policies and policy compliance from a formal point of view, a brief overview
is given in [4]. Here, we look at a formal approach to address consent at the modeling level.

The aim of this work is to design a formal framework for consent management where a
data subject can change her privacy settings through predefined interface definitions, which
could be seen as part of a library system. The data subjects are seen as system users without
knowledge of the underlying program. The framework consists of predefined language constructs
for specifying privacy policies and consent, compliance and consent checking, and a semantics.
We prove a notion of compliance regarding consent. To make a general solution, we consider a
high-level modeling language for distributed service-oriented systems, building on the paradigm
of active objects [5, 6] .

Central to the design of this framework are (a) a policy definition language that allows
specification of privacy policies; (b) a formalization of policy compliance; (c) integration of
privacy policies in a programming language; (d) a run-time system for dynamic checking of
privacy compliance, with built-in consent management. The framework covers essential GDPR
aspects, providing practical means to support for privacy by design (Article 25, Recital 78 [1])
and data subject access request (Article 7, Recital 63 [1]). It is essential that the policy ter-
minology establishes precise link between the law and the program artifacts. For this, we let
privacy policies and consent definitions be expressed in terms of several predefined names, re-
flecting standard terminology (names can be added as needed). Since the data subject is not
always a legal scholar or program developer, it is necessary that the policy terminology used
towards the data subject is simple but with a formal connection to the underlying programming
elements. The rest of this abstract will provide motivation and basic notions related to privacy
and consent specification, but we will omit details for the runtime system.
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Language Setting
In the setting of active objects, the objects are autonomous and execute in parallel, communi-
cating by so-called asynchronous method invocations. An Object-local data structure is defined
by data types. We assume interface abstraction, i.e., remote field access is illegal and an ob-
ject can only be accessed though an interface. This allows us to focus on major challenges
of modern architectures, without the complications of low-level language constructs related to
the shared-variable concurrency model. The programs we consider are defined by a sequence
of declarations of interfaces (containing method declaration), classes (containing class parame-
ters, fields, methods and an initialization) and data type definitions. Classes are defined by an
imperative language and data types and associated functions by a functional language.

Interfaces may have a number of superinterfaces, letting the predefined interface Any be the
most general interface (supported by any object). We let interface Sensitive be a subinterface of
Any, corresponding to a system component (active object) with personal data. By static check-
ing it is ensured that any object receiving personal data must support the interface Sensitive [4].
And we let interface Principal be a subinterface of Any corresponding to a system user, be it a
person, an organization, or other identifiable actor. Interface Subject is a subinterface of both
Principal and Sensitive, and corresponds to what GDPR refers to as “data subjects”. Interface
Sensitive defines methods for accessing and resetting consented (and default) policies, by the
data subject. Interface Subject offers methods for consent management including functionality
for requesting and updating consent settings.

Runtime aspects
At runtime there will be a number of concurrent objects containing data values (of some type),
and communicating by method calls. Data values with personal information will be tagged.
The tags reflect associated consent information. This meta information is not directly accessible
to the programmer or system user, but is understood by the runtime system, to restrict access
to private data. Our framework includes a general solution for subjects to observe and change
their privacy settings, and a way to delete private data (soft delete). The tags include privacy
information such as identification of the subject, as well as role, purpose and access rights,
specifying who (the roles that can use the data), why (purpose for which the data can be used),
and how (kind of operation or access allowed on the data).

Formalization of Consent and Privacy Policies
We let privacy and consent definitions be expressed in terms of role, purpose and access rights
for a given subject, where each of these range over a set of names, including predefined names
reflecting standard terminology, names can be added as needed. A role is given by a name
such as Doctor, Nurse, Patient, also arranged in a directed acyclic graph with a (transitive
and anti-symmetric) less-than relation <. At the programming level, roles are reflected by
interfaces or Principals. A Principal object may implement multiple interfaces to support
several roles. A purpose is given by a name such as health_care, advertising, treatment, billing,
research. The purpose names are arranged in a directed acyclic graph with a (transitive and
anti-symmetric) less-than relation <, for instance treatment < health_care or research <
health_care. For access-rights we consider a fixed terminology for describing access rights,
with read, incr, self and write access to the data. Access rights are given by a complete lattice,
with t and u as lattice operators, with full (for full access) as top element and no (for no
access) as bottom element. Furthermore, read gives read access, write gives over-write access,
incr gives incremental access (adding an element to a list or set without reading the other
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A ::= read | incr | write | self basic access rights
| no | full | rincr | wincr abbreviated access rights
| A uA | A tA combined access rights

P ::= (I, R, A) policies
Ps ::= {P∗} | Ps u Ps | Ps t Ps policy sets
CP ::= [S,Ps] | [I,Ps] basic consent declarations
CPs ::= {CP∗} | CPs u CPs | CPs t CPs sets of consent declarations

Figure 1: BNF syntax definition of the policy language. I ranges over interface names, R over
purpose names, and S over data subjects. Superscript ∗ denotes repetition.

purpose treatm, health_care
where treatm < health_care

policy PMyDoc = (”dr.Hansen”, treatm, full) // specific policy

policy PDoc = (Doctor, treatm, rincr) // general policy

policy PNurse = (Nurse, treatm, read) // general policy

consent CPmy = [”Olaf ”, {PMyDoc,PMyDoc,PNurse}] //consent specification

Figure 2: Sample purpose, policy, and consent definitions. Subjects are identified by strings.

elements), and self gives the subject (full) access to data about itself. Thus readt incr gives a
principal read access and incremental access, but not general write access. This is quite useful
in many connections and therefore we introduce rincr, as an abbreviation for it.

The language syntax for defining access rights, privacy policies, and consent is summarized
in Figure 1 and some sample policies are found in Figure 2. A privacy policy P is given
by a who-why-how triple (I, R, A), where I, R and A range over interfaces, purposes and
access rights, respectively, each with their own hierarchy, following [4]. Policy sets form a
lattice with t and u as lattice operators and with the empty set as the bottom element. A
consent specification on data is given by the subject identity and a set of who-why-how policies
and have the form {Subject, {P∗}}. For example, we may specify consent for a patient p by
{p, {(Doctor, treatm, rincr), (Nurse, treatm, read)}}. Private data in general is tagged with a
single consent declaration, assuming the data concern the privacy of a single data subject.
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Abstract

A parallel program can be thought of as a collection of communicating tasks. When exe-
cuting such a parallel program in a distributed setting, remote data access may introduce
significant communication latency. Network contention is the main factor affecting latency.
Therefore, it is important to reduce the amount of remote data access, in terms of distance
travelled. Network contention can be significantly affected by the long distances covered
while accessing remote data in architectures such as large mesh-network or torus-network
machines. For example, BlueGene/P is a huge torus topology which may have as many
as 130k processing elements. In particular, it is important to reduce data movement on
NUMA machines based on such topologies. Several techniques have been developed for
this purpose; for example, there are different heuristics to efficiently schedule tasks given
their dependency graph.
In this work, we consider a static analysis of data locality in programs to reduce latency
of hardware communication by means of topology-aware task scheduling, and thus to im-
prove execution performance on large high performance computing systems. Our analysis
enables the automatic extraction of dependency graphs, instead of manually specifying the
communication pattern of an application or running it in a traced execution to collect this
information. Our analysis is formalised as a type and effects system, we here describe the
basic idea without explaining the details of the formalisation.

1 Motivation

The main resources in a large parallel machine are its cores and the network infrastructure. Op-
timal resources usage is key to tighten the gap between theoretical peak performance and actual
peak performance. For example, IBM BlueGene/P [6] features flat 3D torus networks where
each node connects directly to its six neighbours. Unless each node only communicates with
its physically nearest neighbours, nodes have to share network links with other communication.
Unless the physical placement of application processes matches the communication character-
istics of the application, such sharing can result in significant communication contention and
performance loss [3].

In theory any mapping of processes to cores is possible, in practice different systems have
different restrictions on what mappings they allow. For example, IBM Blue Gene/P allows
different combinations of process mappings along the X, Y , Z dimensions of the 3D torus,
and BG/P systems consist of four cores per compute node, which can be considered to be a
fourth dimension represented as T . An application can be mapped using different mappings,
such as TXYZ , XYZT , and TYXZ . Other mappings that do not form a symmetric ordering of
ranks in one of these orders are not supported. Thus, the “best performance” we can achieve
is artificially restricted by this requirement [3].

∗ADAPt: Exploiting Abstract Data-Access Patterns for Better Data Locality in Parallel Processing
(www.mn.uio.no/ifi/english/research/projects/adapt/).
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In most supercomputers, tasks are scheduled statically but they can migrate from the queue
of one core to another due to job stealing or automatic workload balancing strategies. These
strategies generally improve performance, but they may increase distances and total latency
during execution.

2 A static analysis for data access patterns

To formalise information about locality in a fine-grained way on NUMA architectures, we
propose a static analysis expressed using types and effects (e.g., [2]), which combines types
with locations for a small core language targeting parallel hardware, where each assignment,
function call or expression evaluation may involve long distance remote data access. In this
language, new locations can be dynamically created and new tasks dynamically spawned. A
task scheduling strategy decides on which core the tasks will execute. Our notion of locality is
inspired by the Partitioned Global Address Space model (PGAS) [8]. This programming model
provides a memory abstraction on parallel hardware that considers the memory partitioned in
places: each task can only access its local memory directly and a global shared space is used
across the computing nodes to share data among tasks.

Since the distances covered by remote accesses can affect the performance significantly
on large networks [4], our goal is to investigate whether making information about the data
access patterns of the different tasks available to the task scheduler can improve the overall
performance. For this purpose, information of the network topology needs to be provided to
the static analyser. A formal description of a given network with a metric capturing distances,
can be obtained by letting the metric between each pair of processors reflect, e.g., the number
of hops, the average or the expected latency of a packet. A metric based on hop-bytes (hops
per byte) can approximate the overall contention on the network [1, 5]. Although the metric
does not capture hot-spots created on specific links, it is easily derivable and correlates well
with the actual application performance when communication to computation ratio is high [4].

Consider as a simple example an assignment instruction x = y, where x and y are at
different locations in memory. These locations can be captured in a type system such that x
has a location type of the form La · T where the location La abstractly describes the memory
location that must be accessed to write the variable x on the left hand side of the assignment,
and T describes the (standard) type of the value that can be written. Similarly for y the type
may look like Lb · T ′. Again, the element Lb indicates a location in memory that we need to
read to obtain the value of y and the T ′ indicates the type of that value.

Example: computing the average of distributed data

Let us consider a task for computing the average of a large distributed array: a set of processes
have to locally reduce their array partition to the sum of all the elements. Then all those values
have to be sent to a master process that will compute and print the total average.

Many parallel languages and libraries would be suitable to code this specification on a
NUMA machine, by relying on message passing to achieve synchronisation. Nevertheless the
recent trend has been to develop languages and libraries for NUMA machines providing the
same programmability of standard programming languages [7].

In our core language such code could be implemented as in Figure 1. In this example it is
possible to estimate the cost of the assignment of the variables in the array p sums by checking
the locality information coded in their location types.
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task<LT> worker(sums:L·LT · N){
local Lp sum, L, Li, La1 , ..., La25 ;
var id: L·N;
var p sum:Lp sum · N;
var a[25]: La1...a25 · N;
var i: Li · N;

for(i=0; i<25; i++) { a[i] = random(); p sum = p sum + a[i]; };

∗sums = p sum; }
{

local Li, Lp sums1 , ..., Lp sums4 , Lavg;
var p sums[4]: Lp sums1...p sums4 · N; // initially null
var avg: Lavg · N; // initially null
var i: Li · N;

for(i=1; i<5; i++) { spawn <Lp sumsi>worker(&p sums[i]); };

for(i=1; i<5; i++) { while(p sums[i]!=null); }; // active wait for p sums

for(i=0; i<5; i++) { avg = avg + p sums[i]; };
avg = avg / 100;
print avg; }

Figure 1: Example: location types for a task computing the average of a large distributed array.

Given a sequence of five contiguous cores, the optimal scheduling is to place the master
process, calculating the average, in the middle. Such configuration will give also the minimal
total cost in our analysis.

While the distance covered by four integer values is far away to affect performances, a
common scenario in parallel programming can be having streams of data converging to a filtering
process. If few streams are enough to saturate the capacity of the network, more streams would
require another filtering process. A scheduling able to avoid intersection of streams in this case
would reduce network contention and thus latency.

Discussion and future work

When analysing a statement, we can use location types to estimate the cost of accesing data
at different locations, according to the metric of the topology. This fine level of granularity
assumes that a statement can remotely read and write variables, such that dependencies are
evaluated on an instruction basis. The analysis then collects the derived costs according to
the control flow; e.g., accumulating the cost of the two statements for sequential composition
and taking the worst case for conditionals, and iterating over a for-loop. The granularity of
the analysis and thereby the complexity of leveraging the analysis results, can be reduced as
necessary by clustering locations to obtain a simpler dependency graph from the more complex
instructions dependency graph. This way, the derived data access patterns can be simplified
enough to be exploited by a scheduling strategy with acceptable overhead.

Since the analyser knows the topology metric, it can calculate for each task the possible
cost of executing that task on the different cores. At runtime, the task scheduler can combine
these statically derived data access patterns with runtime information in order to decide on the
placement of a task. Our work so far is thus focused on how to statically derive data access
patterns, in future work we plan to investigate how to extract these patterns automatically and
to explore how they can be efficiently combined with runtime information by a task scheduling
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strategy, to improve data movement overhead on huge NUMA machines.
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1 Introduction

Different execution paths for sequential, deterministic programs are typically explored by means
of unit tests, following standard industrial practice. In contrast, concurrent and distributed
programs exhibit nondeterminism due to, e.g., message delays, message re-ordering and race
conditions. To explore the different execution paths of such programs, one needs to solve issues
of controllability, to guide the program execution along a desired path, and state-space explosion,
since the number of possible executions can be very large.

Stateless model checking is a technique to explore the execution paths of a concurrent
program [5]. While highly concurrent programs have a large number of execution paths, making
full path exploration infeasible, many operations in a program are completely independent and
can be reordered, resulting in paths that are equivalent. Only exploring one path per equivalence
class yields a significant reduction in the number of executions that need to be explored. Partial
order reduction [2] is a general technique that relates dependent events, based on a happens-
before relation, and considers paths with the same happens-before as equivalent and thereby
as members of the same Mazurkiewicz trace [7]. Dynamic partial order reduction [4] is an
algorithm for stateless model checking guaranteed to execute at least one path per Mazurkiewicz
trace. A variation of dynamic partial order reduction has been shown to achieve optimal
reduction [1]. However, dynamic partial order reduction uses backtracking, which is challenging
to parallelize. In contrast, Offline stateless model checking, developed by Huang [6], based on
maximal causality reduction for shared memory systems, allows parallel path exploration and
only requires forward execution.

We present a general framework for offline stateless model checking with partial order reduc-
tion, which allows parallel path exploration. Our work abstracts from a specific programming
language by capturing the language semantics and path equivalence in terms of execution traces.

2 Traces and Relations over Events

We consider a programming language where the execution of a program can be abstractly
captured as a trace τ , meaning a sequence of events e1 · · · en from a (possibly infinite) set of
events E , and assume an associated runtime environment (or simulator) that can both emit
such a trace and deterministically reproduce an execution that follows a given trace. If a trace
τ represents only a prefix of a complete execution, we assume that after following τ the runtime
continues non-deterministically until termination, producing a new trace.

Given some τ emitted from the runtime of a program, we are interested in the different seed
traces that lead the execution down a path distinctly different from the one represented by τ .
These seed traces can be computed from three relations over the set of events E :

ei
MHB
=⇒ ej if the event ei must happen before ej in all feasible executions

ei � ej if the order of ei and ej may affect the result of an execution.
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ei
HB
=⇒τ ej if ei happened before ej in the trace τ .

For a programming language with a trace-based semantics,
MHB
=⇒ can be stated at the level of

the language semantics, � at the program level, and
HB
=⇒τ at the execution level. Intuitively,

MHB
=⇒ ensures that the produced seed traces are possible according to the language semantics

and � is used to establish equivalence between traces; e.g., a � relation that relates all events
with each other will result in exploring all execution paths, while an empty � will result in only

running a single execution. Lastly, the
HB
=⇒τ relation encodes the trace τ as a relation.

3 An Algorithm for Path Exploration

We present an algorithm for state exploration, where the execution of a program and the
search for new execution paths are separated. Our algorithm is formulated as two procedures
(see Algorithm 1 and 2); one that interacts with a runtime and keeps track of the state of the
search, and one that generates new seed traces from a given explored trace.

Algorithm 1 Trace Exploration

1: procedure Explore(Exec, P )
2: E ← ∅
3: Q← {ε}
4: while τs ∈ Q \ E do
5: τ ← Exec(P, τs)
6: E ← E ∪ PrefixesOf(τ)
7: Q← Q ∪GenerateSeeds(τ)
8: end while
9: return E
10: end procedure

Algorithm 2 Seed Generation

1: procedure GenerateSeeds(τ)
2: R← ∅
3: for 〈ei, ej〉 ∈ �τ do
4: �′τ ← (�τ \ {〈ei, ej〉})∪{〈ej , ei〉}
5: τ ′ ← Satisfy(φMHB

=⇒
∧ φ�′

τ
)

6: if τ ′ = τs · ej · τr then
7: R← R ∪ { τs · ej}
8: end if
9: end for
10: return R
11: end procedure

The search starts by exploring an arbitrary run of a program P , which corresponds executing
the empty seed trace Exec(P, ε). From this trace, it generates new seed traces, that can be
executed in any order. By keeping track of what executions have been explored (and their
prefixes), we guarantee not to explore any execution twice. The search terminates when no
seed trace is unexplored.

When generating new seed traces, we only consider pairs in �. We define �τ =
HB
=⇒τ ∩�,

i.e. the interfering pairs in some particular trace τ , and call such pairs a conflict. For all
conflicts, the algorithm attempts to reverse the order of these two events, while maintaining

the order of all other conflicts. If we can find a trace, which respects the
MHB
=⇒ relation and the

reversed conflict, then we add it to the set of seed traces.
Concretely, we obtain the seed traces by encoding the relations as a SMT (Satisfiability

modulo theories) problem, and solving each instance with Z3 [3]. Formulas are encoded as con-
junctions of constraints V (ei) < V (ej), where V is a mapping from events to integer variables.
We only keep the prefixes of the traces generated by Z3 up to the reversed conflict, because we
cannot generally make assumptions about what executions are possible after this point in the
trace.

Several details are omitted in the presented algorithm, like measures to reduce re-
generation of the same seed traces, minimizing the length of seed traces and compar-
ing prefixes by their conflicts. An implementation of the full algorithm is available at
https://github.com/larstvei/trace-exploration.
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4 Example

r1(x) r2(x) w1(x)

r2(x) w1(x) r1(x) w1(x) r1(x) r2(x)

w1(x) r2(x) w1(x) r1(x) r2(x) r1(x)

Figure 1: All executions of a simple read/write program.

Consider a simple shared memory
language, where a process may
atomically write a value to a vari-
able, or read the current value of a
variable. In this language, there is
a direct correspondence between
the statements of a program and

the events of a trace. The
MHB
=⇒

relation only need to ensure the
thread-local ordering of events. If
two events ei, ej operate on the
same variable, and one of the op-
erations is a write, then we say

ei � ej . The
HB
=⇒ relation will re-

late an event ei to ej if ei happened before ej in the sequential trace.
Consider a simple program with three processes, where each process does one read or write

operation, r1(x), r2(x) and w1(x) respectively. We show the possible executions of this program
in Fig. 1, where the double-headed arrows indicate an equivalence with � relation as described
above. The prototype implementation the yields four non-equivalent traces using this� relation;
if we provide one where all events are in conflict, it outputs all the six execution paths.

5 Conclusion and Future Work

The presented framework for exogenous stateless model checking abstracts from any specific
programming language and only considers relations over events, as described in Section 2. We
showed how to instantiate the framework for a very simple read/write language. In future
work, we plan to study the limitations of the framework in order to answer questions about
optimality. For example, it is interesting to investigate a possible generalization to different
notions of causality (e.g. can the framework be used for both partial order and maximal
causality reduction [6]). Furthermore, we want to leverage the framework for a rich actor-based
language and evaluate a fully parallelized implementation on complex programs.
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The Nakano modality . [10] is an operator that, when added to a logic or a type system,
encodes time at the level of formulae or types. The formula .A stands for “A holds one time
step in the future”, similarly the inhabitants of type .A are the inhabitants of A in the next time
step. The Nakano modality comes with a guarded fixpoint combinator fixA : (.A → A) → A
ensuring the existence of a solution for all guarded recursive equations in any type. Logically,
this corresponds to a version of Löb’s axiom for the . modality.

Guarded recursion has been added to Martin-Löf dependent Type Theory in two different
ways: using delayed substitutions as in Guarded Dependent Type Theory (gDTT) [2] or using
ticks as in Clocked Type Theory (CloTT) [1]. In these settings, the Nakano modality is employed
for constructing guarded recursive types, i.e. recursive types in which the recursive variables
are guarded by .. These are computed using the fixpoint combinator at type U, which is the
universe of small types. For example, the guarded recursive type of infinite streams of natural
numbers is obtained as Str = fixUX.N×.X and it satisfies the type equivalence Str ' N×.Str.
Recursively defined terms of guarded recursive types are causal and productive by construction.

Dependent type theories with guarded recursion have proved themselves suitable for the
development of denotational semantics of programming languages, as demonstrated by Paviotti
et al’s formalization of PCF [11] and Møgelberg and Paviotti’s formalization of FPC in gDTT
[8]. Here we continue on this line of work by constructing a denotational model of Milner’s
early π-calculus in a suitable extension of CloTT. Traditionally, the denotational semantics
of π-calculus is developed in specific categories of (presheaves over) profunctors [3] or domains
[12, 6]. Fundamentally, the semantic domains have to be sufficiently expressive to handle the
non-deterministic nature of π-calculus processes. In domain theoretic semantics, for example,
this is achieved by employing powerdomains. Synthetic analogues of these constructions are
not available in guarded type theories such as gDTT or CloTT, but it can be constructed if we
set our development in extensions of these type systems with Higher Inductive Types (HITs),
a characterizing feature of Homotopy Type Theory (HoTT).

We work in Ticked Cubical Type Theory (TCTT) [9], an extension of Cubical Type Theory
(CTT) [5] with guarded recursion and the ticks from CloTT. CTT is an implementation
of a variant of HoTT, giving computational interpretation to its characteristic features: the
univalence axiom and HITs. Roughly speaking, the univalence axiom provides an extensionality
principle for types, allowing to consider equivalent types as equal. A HIT A can be thought
of as an inductive type in which the introduction rules not only specify the generators of A,
but can also specify the generators of the higher equality types of A. The latter are commonly
referred to as path constructors, due to the interpretation of equality proofs as paths in HoTT.
For example, here is a presentation of the countable powerset datatype as a HIT [4], that will
serve as our synthetic powerdomain:
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∅ : P∞A
a : A

{a} : P∞A

s : N→ P∞A⋃
s : P∞A

x, y : P∞A
: x ∪ y = y ∪ x

x, y, z : P∞A

: (x ∪ y) ∪ z = x ∪ (y ∪ z)
x : P∞A
: x ∪∅ = x

x : P∞A
: x ∪ x = x

s : N→ P∞A n : N
: s n ∪

⋃
s =

⋃
s

s : N→ P∞A x : P∞A

:
⋃
s ∪ x =

⋃
(λn.s n ∪ x) the 0-truncation constructor

The type P∞A has three generators: the empty subset, the singleton constructor and countable
union. Binary union x ∪ y is defined as the countable union of the sequence x, y, y, y, . . . The
path constructors are the equations of the theory of countable-join semilattices, while the 0-
truncation constructor forces P∞A to be a “set” in the sense of HoTT, that is a type with
trivial higher paths. A membership relation ∈: A → P∞A → U is definable by induction on
the second argument.

TCTT also has ticks. The Nakano modality is now indexed over the sort of ticks, .(α :
tick).A, and its inhabitants are to be thought of as dependent functions taking in input a tick β
and returning an inhabitant of A[β/α]. So ticks correspond to resources witnessing the passing
of time that can be used to access values available only at future times. We write .A for
.(α : tick).A when α does not occur free in A. The . modality is an applicative functor, its
unit is called next. Ticks allow to extend the applicative structure to dependent types.

For the specification of the π-calculus syntax, we assume the existence of a countable set
of names. Practically, for every natural number n, we assume given a type Namen, the set
containing the first n names. Each process can perform an output, an input or a silent action.
The type of actions is indexed by two natural numbers, representing the number of free names
and the sum of free and bound names, respectively. The input action binds the input name.

ch, v : Namen

out ch v : Actnn
ch : Namen

inp ch : Actn (n+ 1) τ : Actnn

The π-calculus syntax includes the nil process, prefixing, binary sums, parallel composition,
restriction, a matching operator and replication.

end : Pin
a : Actnm P : Pim

a · P : Pin

P : Pin Q : Pin

P ⊕Q : Pin

P : Pin Q : Pin

P‖Q : Pin

P : Pi (n+ 1)

νP : Pin

x, y : Namen P : Pin

guardx y P : Pin
P : Pin
!P : Pin

The processes in Pin are quotiented by a structural congruence relation ≈, which, among other
things, characterizes the replication operator in terms of parallel composition: given a process
P : Pin, we have !P ≈ P‖!P . The early operational semantics is inductively defined as a type
family − [−] 7→− : Pin→ Labelnm→ Pim→ U. Following [7], the type Labelnm of transition
labels include a silent action, free and bound outputs, and free and bound inputs.

For the denotational semantic domain, we consider the guarded recursive type

Proc := fixN→UX.λn.P∞(Step (λm. . α.X αm)n)

where StepY n := Σ(m : N). Labelnm× Y m. In other words, Procn is the type satisfying the
type equivalence Procn ' P∞(Σm : N. Labelnm × .Procm). Let Unfold be the right-to-left
morphism underlying the latter equivalence. To each syntactic process P : Pin we associate a
semantic process JP K : Procn. The interpretation respects the structural congruence relation,
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that is P ≈ Q implies JP K = JQK. The early operational semantics transitions are modelled
using the membership operation: given P [a]7→Q with a : Labelnm, we have (m, a, next JQK) ∈
Unfold JP K. Nevertheless, Proc is not closed under name substitutions. Therefore, to obtain a
sound interpretation of π-calculus, we need to move to the following domain:

PiModn := Σ(P : Π(m : N).(Namen→ Namem)→ Procm).

Π(m,m′ : N)(f : Namem→inj Namem′)(ρ : Namen→ Namem).

mapProc f (P mρ) = P m′ (f ◦ ρ)

where A→inj B is the type of injective maps between A and B, while mapProc corresponds to
the action of the functor Proc on injective renamings.

TCTT provides an extensionality principle for guarded recursive types: strong bisimilarity
is equivalent to path equality [9]. For Procn, this says that semantic early bisimilarity is
equivalent to path equality. In our work, we also define a syntactic notion of early bisimilarity
and early congruence and we prove the denotational semantics fully abstract wrt. it.

We formalized the whole development in our own version of the Agda proof assistant based
on TCTT, called Guarded Cubical Agda, an extension of Vezzosi et al’s Cubical Agda [13].

Acknowledgments Niccolò Veltri was supported by the ESF funded Estonian IT Academy
research measure (project 2014-2020.4.05.19-0001).
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1 Introduction
As multi-threaded operating systems are increasingly used in safety-critical settings, verification
and analysis techniques have had to adapt. Different approaches to analyzing concurrent pro-
grams have been proposed, but due to differences in formalism, it is not clear how they relate.
For now, we focus on (abstract) denotational semantics of concurrency via nested fixpoints [Fer-
rara, 2008]. We will reformulate the specific analysis of Miné [2012] in constraint-based form.
We preserve the key ideas, but make some simplifications for the sake of clarity. In particular,
we use the same abstract domain for the analysis as well as the communication between threads.

The use of explicit constraint system variables for thread communication makes the ideas
more clear; in particular, the parallels with rely-guarantee reasoning is transparent in our
formulation. There are, however, also practical advantages (as well as drawbacks) to constraint-
based static analysis. Mainly, as more intermediate values are preserved, it is easier to proceed
with incremental analysis. The drawback is increased memory consumption.

2 Concrete Thread-Modular Semantics
We consider programs as flow graphs: a set of nodes N and edges E of the form pu, s, vq
where u and v are the program points in N and s is an elementary instruction, i.e., either an
assignment or a conditional guard. There is also a dedicated elementary edge that initializes the
program. These instructions manipulate sets of program states, each state being an environment
mapping from variables to integers; this set we denote with ρ P D “ PpV Ñ Nq. We assume
the semantics of an instruction s is given by vsw : D Ñ D. We describe the set of states ρu that
reach a program point u as the least solution to the following constraint system:

ρu Ě vswρv pu, s, vq P E

In the concurrent setting, we assume we are given a set of threads T and each t P T has
its own flow graph pNt, Etq. The concrete semantics of a (sequentially consistent) concurrent
program can be given as the non-deterministic execution of all thread interleavings, but here we
immediately give a more thread-modular, yet concrete, view of interleaving semantics suggested
in a subsequent paper by Miné [2014]. We encode the control state within the mappings ρ by
having dedicated program counter variables pct, so that ρppctq returns the (unique ID in N
associated with) the program point in Nt that thread t will execute next. We can then apply
vsw to these extended states, leaving the program counters untouched. The essence of the
thread-modular view is that for each thread t, the effect of its execution is given by a function
It : D Ñ D. With this function, the constraint system for concurrent programs remains almost

˚This work was supported by the Estonian Research Council grant PSG61.
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unchanged:

ρv Ě vswρu pu, s, vq P Et (1)
ρu Ě tσ P It1pρuq | σppctq “ uu u P Nt, t

1 ‰ t (2)

In addition to local steps (1), we take into account the effect of other threads at each program
point (2). The second constraint relies on the program counter variables to restrict influences.
Given a complete description of the interference from other threads, the above system thus
computes the interleaving semantics. Now, this interference can also be successively built by
adding the following constraint:

It Ě tpσ, σ
1q | σ P ρu, σ

1 P vswρvu pu, s, vq P Et (3)

The idea is to solve this in a nested fashion by first stabilizing the first two equations and then
propagating the effect to other threads. This nesting is more evident in the denotational form
[Miné, 2014], but the key point is that we can now understand different abstractions of con-
current communication by considering more abstract representations of the thread-interference
space D Ñ D.

3 Interference Abstraction and Global Invariants
In this abstract, we will consider only the abstraction used in the original paper [Miné, 2012].
This is obtained by flow-insensitive and non-relational abstraction of communications. Thus,
control variables are forgotten and thread effects are collapsed to variables mapping to their
updated values, i.e., V Ñ PpNq. Using this abstraction, we can write the constraints more
informatively by using auxillary constraint variables R and G that highlight the correspondence
to rely-guarantee reasoning:

ρu Ě Rt u P Nt (4)
Gtpxq Ě ρupxq p_, s, uq P Et, x P writes (5)

ρv Ě vswρu pu, s, vq P Et (6)
Rt Ě Gt1 t1 ‰ t (7)

Each thread t can rely on what is guaranteed by all other threads, as expressed by the last
constraint and enforced upon each program point by the first. The guarantee of a thread is
computed by the second constraint, which only takes into account the values written at a given
program point. This system is sound and no less precise than the formulation by Miné [2012],
which applies the thread influences lazily; however, we can show that whenever expressions are
evaluated, the results will coincide.

4 Scheduling Abstraction and Privatization
For priorities and mutexes, we follow the scheduler model of Miné [2012]. There are a fixed
number of threads with unique priorities. The scheduler runs the thread with highest priority
that is ready. We have lock, unlock, and yield instructions that can make threads not ready. We
have previously proposed a constraint-based formulation based on privatization [Vojdani et al.,
2016] for a simpler concurrency model. We track for each variable x, the set of mutexes always
held whenever accessing x. This set is stored in Λpxq. We further assume a sound must-lockset

82



Approaches to thread-modular static nalysis Vojdani, Apinis and Saan

analysis is given that handles locks and unlocks, such that the set of locks definitely held at a
given program point u is given by lockspρuq. We can then treat shared variables protected by
locks as thread-local within critical sections. Let us attempt to use privatization to express the
scheduling-sensitive analysis of Miné [2012] in constraint-based form.

Λpxq Ď lockspρuq p_, s, uq P Et, x P writes (8)
ρupxq Ě Rtpxq u P Nt, lockspρuq X Λpxq “ H (9)
Gtpxq Ě ρupxq p_, s, uq P Et, x P writes, lockspρuq X Λpxq “ H (10)

ρv Ě vswρu pu, s, vq P Et (11)
Rt Ě Gt1 t1 ą t (12)
ρv Ě Gt1 pu, s, vq P Et, s P tyield, locku, t

1 ‰ t (13)

This system is sound with respect to the concrete scheduling semantics of Miné [2012]; however,
his abstract semantics is more precise as thread communication is propagated in and out of
critical sections in a pair-wise fashion. If two threads protect communication via a common
lock, but a third thread does not, we would no longer privatize this variable, thereby computing
influences between all threads. A more faithful representation of the interference-based approach
would be possible if we compute Rely-Guarantee invariants depending on the sets of held
mutexes. This remains as future work.

On the other hand, we are more precise by only consider flow-insensitive influence from
higher-priority threads, except at yield and locking instructions where a lower-priority thread
can potentially influence a higher-priority thread. It is not clear to us why Miné [2012] ignores
priorities in influences.

5 Weak Memory Consistency

These flow-insensitive abstractions are fairly imprecise with respect to the sequentially con-
sistent semantics. Since many architectures provide weaker consistency guarantees, flow-
insensitive abstractions are a good starting point for analyzing programs running on modern
architectures. We previously claimed that our multithreaded analysis is sound with respect
to the Linux kernel’s memory model Vojdani et al. [2016], but we provided no rigorous proof.
Suzanne and Miné [2018] have considered TSO and PSO models more rigorously. Our goal is to
compare these abstractions as well as partial-order reduction techniques from model-checking
for the analysis of concurrent programs communicating over weakly consistent memory.
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Abstract

Developing correct distributed systems is notoriously difficult. Message-passing is a
popular abstraction to simplify their implementation, supported by a number of projects
including Akka and Orleans. However, the verification of these message-passing programs
is still a challenge. There are recent works on type systems for verifying the behavior
of message-passing applications but focused on the process/actor level, keeping system
components such as transaction protocols unverified.

In this paper, we present preliminary work on ProtoMC, a type system that supports
model checking for the correctness of distributed protocols. Our goal for ProtoMC is to
compose processes verified using type-level model checking into protocols such that a well-
typed program can be directly used as a verified implementation for a specific protocol.

1 Motivation

Model-checking is widely used in many distributed protocols such as 2PC, Paxos, and Raft.
However, there might always exist a mismatch between the actual implementation and the
protocol specification that is used for verification. There are works on how to automatically
transform a specification to Implementation; however, due to the different choice of languages,
a comprehensive approach remains elusive. Effpi [3] points out a type-based method that can
specify and verify message-passing applications and ensure the type soundness of the program.

According to our experience in developing distributed systems, a more exciting target is to
verify the implementation of specific protocols and even the composition of several protocol
components. We want to extend Effpi to achieve the goal. However, the verification of complete
protocols and their composition is challenging for three primary reasons: (1) Effpi focuses on
verifying the safety/liveness properties of message-passing programs. [5] points out that 12
out of 15 projects they studied did not entirely stick to the Actor model; thus, the reasoning
about message-passing programs should integrate with other programming and concurrency
paradigms. (2) Effpi uses continuations to manipulate the “future” of the message passing, it
increases the difficulty for developing a Hoare-stype logic reasoning. (3) Composition of verified
protocols is first studied in Disel [4] in 2018 and the technique has improvement space.

2 The ProtoMC Language

ProtoMC is a programming language based on type-level model checking for distributed sys-
tems. In addition to Effpi, we add Hoare logic to check invariants guaranteed by protocols.

Example: a client-server system We write the following Effpi-style code to set up a client-
server system where the server responds to client requests.
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1 case class Req(key: Int, replyTo: ActorRef[Resp])

2 case class Resp(key: Int, res: Int, replyTo: ActorRef[Req])

3

4 def client(req: ActorRef[Req], key: Int): Actor[Resp] = {

5 send(req, Req(key, self)) >>

6 read { resp: Resp =>

7 println("Result is: " + resp.res)

8 }

9 }

10

11 def server(): Actor[Req] = {

12 forever {

13 read { req: Req =>

14 send(req.replyTo, Resp(key,f(key),self))

15 }

16 }

17 }

In the above code, a client sends a Req message containing a request key and waits for the
response from the server, and the server returns a response with the same key. Effpi can check
the safety and liveness properties of the client-server system, e.g., whether the server responds
to the client request or not; however, it cannot check whether the client receives the result for
which it previously made a request, i.e., with a matching key. For each command, we create a
Hoare triple {P}S{Q} where P is the precondition, and Q is the postcondition. The variable
pool is to record a set of requests that are going to be replied to, and m represents the received
message. For example in client:

{pool = rs ∧ key ∈ dom(f)}
send(req, Req(key, self)) >>

{pool = (key, req) ] rs}

{pool = (key, req) ] rs ∧ m = Resp(key,res,req)}
read { resp: Resp =>

println("Result is: " + resp.res)

}

{pool = rs }

We check the precondition for read statements such that the program is only correct if the
received message contains the same key that appears in the pool. In this way, we are able to
check the weak causality of the client protocol.

In order to integrate Hoare triples into a type system, we introduce Hoare types which
augment types with pre- and postconditions.

Core ProtoMC. We propose the syntax for ProtoMC which extends Effpi with separation
logic.

t ::= t t | let x = t in t′ | chan() | p | . . . terms
v ::= λx.t | C | . . . values
C ::= a,b, c . . . channel objects
p ::= end | send(t, t′, t′′) | recv(t, t′) | t||t′ processes
T ::= {P}{Q}τ Hoare types
τ ::= basic types | channel types | process types basic Effpi types

A Hoare type {P}{Q}τ is used to type a computation with a precondition P and a post-
condition Q, computing a result of type τ .

We integrate Hoare types with Effpi’s type system by extending the typing judgement with
an additional predicate. Sent and Received are two auxiliary functions for calculating the state
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{P} and {Q} after sending or receiving a message.

Γ ` send(t1, t2, t3) : τ Sent(t1, t2, t3, pr) v (P,Q)

Γ; pr ` send(t1, t2, t3) : {P}{Q}τ
(T-Send)

Γ ` recv(t1, t2) : τ Received(t1, t2, pr) v (P,Q)

Γ; pr ` recv(t1, t2) : {P}{Q}τ
(T-Receive)

3 Challenges

We are still working on completing the semantics of ProtoMC. Here, we list some challenges
for the design and implementation:

• A well-defined type system and complete soundness proof.

• Implementation of a verification system. We are currently devising the implementation
of extended Effpi.

• Case studies for popular distributed protocols such as 2PC, Paxos, and Raft. The focus
would be on creating state invariants for complex protocols.

• Experiments on the performance of such verification tools. We are considering the same
approach as used in previous work, in order to evaluate the overhead and efficiency using
well-known protocol implementations.

4 Related Work

Although session types have been studied for many years, Effpi [3] is one of the few systems
that implement session types and build on top of a solid foundation. However, as we mentioned
in the motivation section, the verification for only message passing is not enough for practical
programs.

Diesel [4] is a type system that first studies the composition of the verified protocols. It
gives us the motivation to extend Effpi with separation logic.

Actris [2] provides a functional correctness proof for concurrent programs with a mix of mes-
sage passing, it is an extension of Iris project [1] which is a higher-order concurrent separation
logic framework implemented and verified in the proof assistant Coq. [6] is another work based
on Iris provides the first completely formalized tool for verification of concurrent programs with
continuations.
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