
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Department of Software Science

Ivan Uvarov 164228 IAPB

ENHANCEMENT AND AUGMENTATION OF DRAWING

TESTS FOR DEEP LEARNING BASED DIAGNOSTICS OF

NEUROLOGICAL DISORDERS
Bachelor Thesis

Supervisor
Sven Nõmm

PhD
Co-supervisor

Elli Valla
MSc

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Tarkvarateaduse instituut

Ivan Uvarov 164228 IAPB

ANDMEKOGUMITE RIKASTAMINE NEUROLOOGILISTE

HAIGUSTE TUVASTAMISEKS SÜGAVÕPPE MUDELITEGA
Bakalaureusetöö

Juhendaja
Sven Nõmm

PhD
Kaasjuhendaja

Elli Valla
MSc

Tallinn 2021

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Ivan Uvarov
(signature)

Date: June 14th, 2021

i

Abstract

Parkinsons’ disease (PD) is a neurodegenerative disease often associated with symptoms
such as tremor, bradykinesia, rigidity. Early detection of PD is difficult; however, in recent
years, digital written tests using tablet computers have allowed us to collect kinematic and
pressure features, which could also be analysed and help early detection of PD.

The primary goal of this thesis was to combine geometry based assessment with kinematic
and pressure-based approaches. Enhancement and augmentation of the existing dataset
of Archimedean spiral tests was performed, which was then used in CNN training. An-
other objective of this thesis was to find the most suitable enhancement combinations of
parameters that would produce the highest accuracies in PD prediction using selected CNN
architectures. In order to accomplish this goal a program was created, which would gener-
ate images from existing data and enhance these images with kinematic and pressure-based
features, then augment the dataset and train the CNNs, with all training and evaluation
data being logged.

The main results of this thesis are multiple enhancement combinations leading the deep
neural network models to recognize PD with over 95% accuracy. Baseline architecture
AlexNet returned 84.9% accuracy and after hyper-parameter tuning produced 95.4%
accuracy. Also, pretrained model Xception had top 4 enhancement combinations all reach
over 94% accuracy, the highest being 99.2% accuracy.

The results show that the enhancement of datasets, combining the geometric and feature-
based approaches, can be a viable method in helping with the prediction of PD using
CNNs.

The thesis is written in English and contains 25 pages of text, 4 chapters, 33 figures, 8
tables.

ii

Annotatsioon

Parkinsoni tõbi (inglise keeles Parkinsons’ disease - PD) on kesknärvisüsteemi haigus,
mille peamisteks sümptomiteks on värinad, liigutuste aeglustumine ning lihaste jäikus.
Parkinsoni tõve varajane tuvastamine on keeruline, kuid digitaalsete kirjutamis- ja joonis-
tustestide kogumine tahvelarvutitega on andnud võimaluse koguda ka kinemaatilisi ja muid
parameetreid, mida saab samuti analüüsida ning mis võivad olla abiks PD tuvastamisel.

Lõputöö põhieesmärgiks oli kombineerida geomeetrial baseeruv hindamine koos kine-
maatiliste ja survepõhiste parameetrite lähenemisega. Selleks rikastatati ja suurendati
(inglise keeles augment) olemasolev andmekogu Archimedeuse spiraali testidest, mida sai
edasi kasutada konvolutsioonilise närvivõrgu treenimisel. Lisaeesmärk oli ka leida kõige
sobivamad rikastamise parameetrite kombinatsioonid, mis annaks kõige kõrgema täpsuse
ja tulemuse PD tuvastamisel väljavalitud konvolutsiooniliste närvivõrkude arhitektuuridega.
Nende eesmärkide saavutamiseks loodi programm, mis genereeris algandmetest pildid
ning rikastas need testide pildid kinemaatiliste ja survepõhiste parameetritega, seejärel and-
mekogu suurendati erinevate augmenteerimisvõtetega ning kasutati närvivõrgu treenimisel.
Kõik treeningute andmed ja tulemused salvestati.

Lõputöö tulemused tõid esile mitmeid rikastamise kombinatsioone, mis andsid üle 95%
täpsuse PD tuvastamisel. AlexNeti arhitektuur andis algselt 84.9% täpsuse ning peale
hüper-parameetrite tuunimist andis kuni 95.4% täpsuse. Lisaks eeltreenitud (inglise keeles
pre-trained) närvivõrgu mudel Xception andis 4 rikastamise kombinatsiooni, mille täpsused
olid kõik üle 94% ning millest kõige kõrgem oli 99.2%.

Tulemused näitavad, et andmekogumite rikastamine, mis kombineerib nii geomeetrilist kui
ka parameetrite põhist lähenemist, on abiks PD tuvastamisel.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 25 leheküljel, 4 peatükki, 33
joonist, 8 tabelit.

iii

List of abbreviations and terms

PD Parkinsons’ disease
HC Healthy control
CNN Convolutional Neural Network
JSON JavaScript Object Notation
IDE Integrated development environment
PNG Portable Graphics Format
RGB Red Green Blue color model

iv

Table of Contents

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Problem statement . 2

2 Implementation 3
2.1 Overview . 3
2.2 Image generation and enhancement . 5
2.3 Augmentation . 7
2.4 CNNs . 8

3 Results 13
3.1 AlexNet . 13
3.2 LeNet5 . 17
3.3 Xception . 20
3.4 Comparison . 21

4 Conclusion 24

Bibliography 27

Appendices 30

Appendices 30

v

List of Figures

1 Full workflow . 5
2 Sample drawing test data in a JSON file 5
3 Original images of Archimedean spiral performed by a HC subject (a) and

the PD patients (b, c) . 6
4 Example of the polygon drawing process 6
5 Enhanced image of an Archimedean spiral with combination pres-

sure_diff+velocity performed by a HC subject (a) and the PD patient
(b) . 7

6 Augmented images with OpenCV - original image (a), rotation (b), flipping
(c), scaling (d, e) . 8

7 Augmented images with Augmentor (shear and contrast are exaggerated
for this figure) - original image (a), distortion (b), shear (c), contrast (d) . 8

8 Splitting of data into train, validation and test sets. 9
9 AlexNet architecture [17] . 10
10 LeNet5 architecture [18] . 11
11 Xception architecture [19] . 11

12 Train and validation accuracy of the best enhancement combination in

AlexNet . 13
13 Train and validation loss of the best enhancement combination using AlexNet 14
14 Validation accuracy of top performing combinations using AlexNet 14
15 Validation loss of top performing combinations using AlexNet 14
16 Train and validation accuracy of the best enhancement combination using

AlexNet after tuning . 15
17 Train and validation loss of the best enhancement combination using

AlexNet after tuning . 15
18 Validation accuracy of top performing enhancement combination using

AlexNet after tuning . 16
19 Validation loss of top performing enhancement combination using AlexNet

after tuning . 16
20 Training and validation accuracy of the best enhancement combination

using LeNet5 . 17
21 Training and validation loss of the best enhancement combination using

LeNet5 . 17
22 Validation accuracy of top performing combinations using LeNet5 18

vi

23 Validation loss of top performing combinations using LeNet5 18
24 Training and validation accuracy of the best enhancement combination

using modified LeNet5 . 19
25 Training and validation loss of the best enhancement combinations using

modified LeNet5 . 19
26 Validation accuracy of top performing combinations using modified LeNet5 19
27 Validation loss of top performing combinations using modified LeNet5 . . 20
28 Train and validation accuracy of the best enhancement combination for

Xception . 20
29 Train and validation loss of the best enhancement combination for Xception 21
30 Train and validation accuracy for altitude+jerk_y using Xception 22
31 Train and validation loss for altitude+jerk_y using Xception 22
32 Train and validation accuracy for pressure_diff+crackle using Xception . 23
33 Train and validation loss for pressure_diff+crackle using Xception 23

vii

List of Tables

1 Sample subset of vector features. 4

2 Top 10 enhancement combinations by test accuracy using AlexNet 13
3 Top 10 enhancement combinations by test accuracy for tuned AlexNet model 16
4 Top 10 enhancement combinations by test accuracy using LeNet5 17
5 Top 10 enhancement combinations by test accuracy using modified LeNet5 19
6 Top 10 enhancement combinations by test accuracy for Xception) 20
7 Top metrics for each tested architecture 22
8 Comparison with related works . 23

viii

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that mainly affects the motor
system. It is the second most common neurodegenerative disorder with millions affected
worldwide [1]. The most obvious symptoms of PD include tremor (involuntary muscle
contractions), bradykinesia (slowness of movement) and rigidity. The cause of PD is
unknown and currently there is no cure for PD [2]. However findings show that early
treatment improves quality of life for the patients and caregivers [3].

Currently diagnosis of PD is based on the occurrence of the main symptoms such as
tremor, bradykinesia and ruling out any other potential diseases with similar symptoms,
which makes early detection of PD very difficult [2]. One of the ways to diagnose PD are
handwritten tests such as writing sentences, drawing spirals, drawing Luria patterns [4].
Nowadays the data of such tests can be collected digitally with the use of tablet computers.
This digital data gives access to more information behind the patients movements apart
from the geometry of the drawing or text, which also helps in identifying PD.

In recent years machine-learning has become more prominent in diagnosis of PD. Multiple
studies of written tests using machine-learning have shown promising results in identifying
PD [5, 6, 7, 8]. Some studies have been based on kinematic parameters [5] and some on
the geometry of tests [8].

The primary goal of this thesis was to combine geometry-based assessment with the novel
approaches based on kinematic and pressure parameters registered during the drawing
process and evaluate applicability of different CNN models to distinguish between the PD
patients and HC subjects. Multiple parameters and enhancement combinations were found
which produced good results.

The main outcomes of this thesis are enhancement combinations that provide up to 99.2%
accuracy in PD prediction. Further comparison of different enhancement combinations
and CNN architectures is also provided.

The thesis is divided into following parts. Introduction consists of the overview on the PD
and a problem statement. Implementation section describes the implementation process

1

to this thesis and technologies used. Results section provides the main outcomes of the
CNNs with different enhancement combinations and also provides a comparison between
the results of different CNNs used. Conclusion summarizes the thesis and its’ results and
explores possible improvements for future studies.

1.1 Problem statement

The present research aims to combine geometry-based assessment (used by a human
practitioners) with the kinematic and pressure parameters-based approach (frequently used
by machine learning shallow classifiers). This problem requires the following sub-problems
to be solved.

1. Encode kinematic and pressure parameters into the drawn spiral image without
affecting the geometry (shape of the drawing). Find the best subsets of the kinematic
and pressure parameters to be encoded.

2. To avoid over-parameterization, find the suitable way for the data augmentation.
3. Evaluate the performance of a few most suitable deep CNN architectures for the

case of the particular problem.

In order to encode parameters into the images a program was created, which would
generate the image from the JSON data file and then enhance the image with two selected
parameters. One of the parameters would indicate the width of the spiral and the other one
would be used for the coloring of the spiral segments.

The data augmentation methods were manually tested and were then chosen for the
augmentation flow with specified ranges.

Two famous CNN architectures, AlexNet and LeNet5, and a pre-trained model Xception,
which is available in the Keras library, were chosen to be tested in this thesis. The results
of all the trainings were logged and analysed using TensorBoard and then a comparison
was done between the architectures.

2

2. Implementation

2.1 Overview

The data acquisition is described in detail in [9]. The data consisted of files describing
HC (healthy control) and PD (patients with Parkinson’s disease). The original set of data
contained many different drawing tests per each person, but for this thesis only tests of
Archimedean spirals were used, of which there were 31 for the HC group and 20 for the
PD group, 51 samples in total.

All test data was in JSON format and contained recorded data of the drawing tests,
which included metadata (session id, test type, anonymous identification number) and an
array of data records containing dynamic features. The following dynamic features (time-
sequences) were captured by the tablet: X-coordinate (mm); Y-coordinate (mm); timestamp
(sec); pressure (arbitrary unit of force applied on the surface: [0,..., 6.0]); altitude (pen
inclination, rad); azimuth (pen orientation, rad). Using these dynamic features, additional
features could be extracted such as different derivatives of position, pressure and angles.

3

Feature set Feature Description

Spatial-temporal features displacement di =
√
(xi − xi−1)2 + (yi − yi−1)2

Kinematic features

velocity Rate of change of displacement with respect to time.
First time derivative of the displacement.

acceleration Rate of change of velocity with respect to time.
Second time derivative of the displacement.

jerk Rate of change of acceleration with respect to time.
Third time derivative of the displacement.

snap Rate of change of jerk with respect to time.
Fourth time derivative of the displacement.

crackle Rate of change of snap with respect to time.
Fifth time derivative of the displacement.

pop Rate of change of crackle with respect to time.
Sixth time derivative of the displacement.

Pressure features

pressure_diff Change of the pressure between points [pi, pi+1]

yank Change in pressure change between points [pi, pi+1].
First time derivative of the force applied on the surface.

tug Change in yank between points [pi, pi+1].
Second time derivative of the force applied on the surface.

snatch Change in tug between points [pi, pi+1].
Third time derivative of the force applied on the surface.

shake Change in snatch between points [pi, pi+1].
Fourth time derivative of the force applied on the surface.

Angular features

altitude_diff Change in altitude between points [pi, pi+1]

azimuth_diff Change in the altitude acceleration between points [pi, pi+1]

alphas_diff Change in the alpha angle between points [pi, pi+1]

yaw_diff Change in the yaw angle between points [pi, pi+1]

Table 1. Sample subset of vector features.

The implementation was done using the Python programming language in the PyCharm
IDE. The following are the additional libraries which were used extensively in the imple-
mentation:

1. NumPy and Pandas - open-source libraries for more effective computation in Python.
These libraries were used for data storage, manipulation and overall utility [10, 11,
12].

2. MatPlotLib – a Python library used for visualization of data. This was the main
library used for generating and enhancing images [13].

3. OpenCV – an open-source computer vision and machine learning software library.
This was one of the libraries used in the augmentation of images, namely for rotation,
scaling and flipping of images [14].

4. Augmentor – a Python library designed for augmentation and artificial generation
of images for machine learning tasks. This library was also used in the image
augmentation process [15].

5. TensorFlow – an open-source software library for machine learning. This library
was mainly used for building and training the neural networks [16].

The full workflow consisted of removing any duplicate files in the dataset, then splitting the

4

dataset into three separate subsets for the CNN training later on - training set, validation
set and test set. This was done early in the workflow in order to avoid mixing images from
the same patients in these subsets. After splitting the dataset, the JSON files were parsed
and the images were generated and enhanced. Then all the images were augmented and we
were left with a larger set of data. The augmented training set and validation set were then
used to train and validate the CNN model. The training and validation results were logged
after each epoch (iteration) of training. Finally after training, the model was evaluated
using the test data and the results were logged into a separate file.

Figure 1. Full workflow

2.2 Image generation and enhancement

The generation and enhancement of images was accomplished using Matplotlib library.
The JSON data of a file was parsed into a Pandas dataframe and all additional features
were then calculated. Two parameters were chosen for the enhancement – one for the
width and the other for the color of the spiral. Both parameter arrays were normalized
and a simple moving average calculation was applied to smoothen the transitions between
drawn objects.

Figure 2. Sample drawing test data in a JSON file

5

(a) HC (b) PD1 (c) PD2

Figure 3. Original images of Archimedean spiral performed by a HC subject (a) and the
PD patients (b, c)

The drawing of the spiral consisted of getting pairs of consecutive points and getting a line
connecting these points. Additionally on the level on enhancing, finding perpendicular
lines at both points and then finding vertices a width parameter away from the original
points, finally connecting these points to create a polygon. These found vertices were then
used in the next iteration with the next point to create the next polygon.

Figure 4. Example of the polygon drawing process

For the coloring of the polygons a Matplotlib colormap "summer" was chosen since
the colors stood out from the black background and also could easily be converted to a
grayscale image without losing much information. However any other sequential colormap
from Matplotlib could also potentially be used as long as the colors of the colormap don’t
match the background of the image.

Once all the points were explored and all polygons were drawn, a solid black background
was applied and the image was exported as a PNG file.

6

(a) HC (b) PD

Figure 5. Enhanced image of an Archimedean spiral with combination pres-
sure_diff+velocity performed by a HC subject (a) and the PD patient (b)

2.3 Augmentation

With the images generated and enhanced, the next step was the augmentation of the dataset.
In order to augment the images OpenCV and Augmentor libraries were used. The main
augmentation techniques used were rotation, scaling and flipping using the OpenCV library
[14] and additionally distortion, contrast and shear using the Augmentor library [15]. Since
the shape of the spiral itself was also important, it was crucial to minimize the scale of
changes to the overall geometry of the spiral.

Rotation was first done with 24 steps, each being 15 degrees, resulting in a range [0, 360)
in the augmentation flow. Flipping was done horizontally, vertically and with both, which,
including the image without flipping applied, produced 4 different images. However
rotation was later changed to a range of [-30, 30] degrees with 13 steps, each step being 5
degrees, since some enhancement combinations were shown to depend on the orientation
of the image.

Scaling consisted of compressing and stretching the image horizontally and vertically and
then padding the resulting rectangular image with black borders in order to preserve the
aspect ratio of the image. However, since this augmentation method made large changes
to the overall geometry of the image, the scale of these changes was kept to a minimum.
Scaling was done with 9 steps in range [0.8, 1.2], with the modifier showing the image
width multiplier.

7

(a) (b) (c) (d) (e)

Figure 6. Augmented images with OpenCV - original image (a), rotation (b), flipping (c),
scaling (d, e)

Augmentor library was also added later and has multiple different augmentation methods,
however distortion was mainly used, with contrast and shear methods also used, but
minimally. Distortion works by applying random elastic distortions to the image whilst
preserving the size and aspect ratio of the image. The magnitude of these elastic distortions
was kept to a minimum in order to preserve the overall geometry of the original image.
Contrast was just changing the contrast of image. Shear consisted of sliding the top
and bottom of the image in separate directions, transforming the square image into a
parallelogram form and then coloring in the background.

(a) (b) (c) (d)

Figure 7. Augmented images with Augmentor (shear and contrast are exaggerated for this
figure) - original image (a), distortion (b), shear (c), contrast (d)

Once the augmentation process was finished we were left with roughly 30000 augmented
images to be used in CNN training.

2.4 CNNs

Convolutional neural network (CNN) are a class of deep neural network commonly used in
image recognition and classification problems. CNNs, like other artificial neural networks,
are inspired by biological neural networks of animals, using neurons and synapses. Major
advantage of CNNs over other traditional algorithms is that CNNs use automated learning

8

to optimize their filters, thus feature extraction is done by the CNN itself without prior
knowledge and human intervention.

TensorFlow library was used to build and train the CNN models. TensorFlow is a powerful
library created and used by Google for machine-learning related tasks [16]. Furthermore
TensorBoard, a TensorFlow visualization toolkit, was used for the visualization of training
results. The trainings initially ran for 10 epochs (full iteration over all samples), which
was later changed to 20 epochs and also a few runs were tested with 50 epochs, however it
was decided that all subsequent models would be trained for 20 epochs, since 10 epochs
was too little to collect enough information about the trainings and 50 epochs didn’t really
produce any noticeable improvements compared to 20 epoch runs.

For training two famous CNN architectures and a single pre-trained model were chosen.
Models were evaluated using the test subset of data, which CNNs had not seen during the
training, and with accuracy and binary cross-entropy loss metrics.

Figure 8. Splitting of data into train, validation and test sets.

Accuracy showed how often the predictions equaled labels using the formula

Acc = (TP + TN)/(TP + FP + FN + TN) (2.1)

where TP - true positives, TN - true negatives, FP - false positives and FN - false negatives.

9

Binary cross-entropy, which is usually a go-to loss function for binary classification
problems, showed loss between true labels and predicted labels and is calculated with the
equation

L(ŷ, y) = −(y log ŷ + (1− y) log(1− ŷ)) (2.2)

where ŷ is predicted value and y is true value.

The first CNN architecture used for the training was AlexNet and was a benchmark for
other models later. AlexNet is a CNN architecture designed by Alex Krizhevsky et al.
first published in the paper "ImageNet Classification with Deep Convolutional Neural
Networks" in the year 2012. In 2012 AlexNet won the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) and helped popularize CNNs. AlexNet takes the input
images of size 227x227x3 (227x227 resolution with 3 RGB channels) and is made up
of eight layers. The first five are convolutional layers, of which some are followed by
max-pooling layers, and the last three are fully connected layers [17].

For this thesis the output layer (last layer in the architecture) was changed to 1 neuron,
since we are dealing with a binary problem. Furthermore, the activation function for the
last layer was changed from softmax to the sigmoid function, which tends to perform better
for binary classification problems.

Figure 9. AlexNet architecture [17]

The second CNN architecture used was LeNet5, which inspired AlexNet. LeNet5 was
introduced in the research paper “Gradient-Based Learning Applied To Document Recog-
nition” in the year 1998 by Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner.
LeNet-5 takes the input of 32x32x1 (32x32 resolution with 1 RGB channel) and is made
up of 7 layers, which consist of 3 convolutional layers, 2 subsampling layers and 2 fully
connected layers [18]. Similarly to AlexNet, the output layer was changed to 1 neuron
with sigmoid activation function.

10

Figure 10. LeNet5 architecture [18]

Additionally, the pre-trained model Xception in the Keras library was also used to train on
the dataset. Xception is a CNN architecture inspired by the Inception CNN architecture and
was created by the creator of Keras [19]. This Xception model was pre-trained with data
from ImageNet, which is a very large image database consisting of millions of annotated
images, designed to be used in visual object recognition software research [20]. Other
pre-trained models available in the Keras library such as VGG19, ResNet50 and Inception
v3 were also considered initially, however Xception was chosen since it had one of the
highest performances on the ImageNet validation dataset.

Figure 11. Xception architecture [19]

With Xception transfer learning was utilized, which is the reuse of a pre-trained model

11

on a new problem. This way the model exploits the knowledge gained from a previous
tasks to improve generalization when dealing with another task. For Xception model, the
images were upscaled to 299x299 resolution since the input layer required a 299x299x3
input. The output layer was also changed to 1 neuron with a sigmoid activation function.

A total of 252 different enhancement parameter combinations were tested with AlexNet
and LeNet5, but only select few combinations were tested using the Xception architecture.
The combinations for the Xception model were selected from the top performing results
obtained from AlexNet and LeNet5.

12

3. Results

This chapter gives an overview of the results obtained from CNNs using different enhance-
ment combinations. A comparison of the results is done at the end of this chapter.

3.1 AlexNet

Inital runs with AlexNet showed good results, with test accuracy over 80% for multiple
different enhancement combinations.

Combination Accuracy Loss
altitude+velocity_y 84.92% 1.63935864

shake+velocity 81.96% 1.17658496
pressure_diff+velocity 81.91% 2.05381775
pressure_diff+crackle 81.59% 2.23782539
altitude+velocity_x 80.34% 0.88364506

altitude+pop 80.10% 2.05658054
alphas+acceleration_x 79.62% 0.68236512

pressure_diff+snap 78.80% 1.12813747
altitude+crackle 78.76% 0.80387920

altitude+acceleration_y 78.35% 1.03007495

Table 2. Top 10 enhancement combinations by test accuracy using AlexNet

However, a closer look at the behaviour of validation metrics during training showed that
the model had large fluctuations in its’ validation accuracy and loss. Furthermore there
was a massive gap between training and validation metrics.

Figure 12. Train and validation accuracy of the best enhancement combination in AlexNet

13

Figure 13. Train and validation loss of the best enhancement combination using AlexNet

Figure 14. Validation accuracy of top performing combinations using AlexNet

Figure 15. Validation loss of top performing combinations using AlexNet

This showed that the model was overfitting meaning the model was learning (memorizing)
the training data too well and could not generalize to new data, thus negatively impacting
the models’ performance. This could be caused by the fact that augmented images from
the same source image are very similar and differ only marginally. In order to reduce
overfitting, adjustments were made to the augmentation process, the CNN model and the
training process.

Firstly augmentation was checked. Rotation and scaling were adjusted, since these aug-
mentation methods produced the biggest changes to the image. Rotation was changed
from a full 360 degrees, to a range of [-30, 30] degrees and scaling multipliers were
reduced. These changes were made since some enhancement combinations depended on
the orientation of the images and the initial shape of the image. Additionally Augmentor

14

library, with its’ multiple augmentation methods, was added to the workflow at this point.
This added another layer of augmentations to the dataset.

Learning rate of the model was also tuned. The training algorithms are sensitive to the
change of the learning rate, so usually in practice it is the first hyper-parameter to be tuned.
However, it is very hard to find the optimal learning rate on the first try. If the learning
rate is too low, then the model will take a long time to converge or might get stuck in a
local minimum. Conversely if the learning rate is too high, then the model might jump
over the best configurations or even diverge. To combat this issue a learning rate scheduler
was added to the model, which would start at a higher learning rate at the beginning of the
training and then would progressively decrease the learning rate after each epoch.

Furthermore, L2 regularization was added to the model layers. Regularization is a process
of introducing additional information in order to prevent overfitting.

These changes helped reduce the fluctuations in the validation accuracy and decrease the
gap between training and validation loss.

Figure 16. Train and validation accuracy of the best enhancement combination using
AlexNet after tuning

Figure 17. Train and validation loss of the best enhancement combination using AlexNet
after tuning

15

Figure 18. Validation accuracy of top performing enhancement combination using AlexNet
after tuning

Figure 19. Validation loss of top performing enhancement combination using AlexNet after
tuning

As can be observed, the fluctuations in overall validation accuracy and loss decreased. The
model was still overfitting, however the results were nevertheless much better compared to
prior results.

Combination Accuracy Loss
yaw_velocity+jerk 95.44% 1.21942651

yaw_velocity+jerk_y 92.92% 1.42715907
yaw_velocity+jerk_x 91.45% 1.74412179
azimuth_diff+jerk_y 86.32% 1.76336122
pressure_diff+jerk_y 84.54% 2.19594479

pressure_diff+velocity 84.17% 2.32450724
pressure_diff+pop 83.71% 1.75523186

snatch+jerk 83.43% 1.84873104
altitude+velocity_y 82.85% 2.41329455

alphas+acceleration_y 82.45% 2.29856396

Table 3. Top 10 enhancement combinations by test accuracy for tuned AlexNet model

After tuning all top 10 enhancement combinations managed to reach over 80% accuracy,
with 3 combinations going over 90%. Using this tuned AlexNet model the combination
of features yaw_velocity for width and jerk for color returned the best results with test
accuracy reaching 95.44% and test loss 1.2194.

16

3.2 LeNet5

LeNet5 performed worse than AlexNet, producing overall lower test accuracy, however test
loss was lower than AlexNet. Nonetheless, the top performing enhancement combination
for LeNet5 managed to reach a higher accuracy than the AlexNet model prior to tuning.

Combination Accuracy Loss
pressure_diff+jerk_y 85.55% 0.40114945
pressure_diff+crackle 75.28% 0.49678519

azimuth_jerk+jerk 75.21% 0.69773960
pressure_diff+pop 74.55% 0.54215372

pressure_diff+jerk_x 73.54% 0.50928342
azimuth_acceleration+snap 73.01% 0.88120717

pressure_diff+snap 72.28% 0.54569393
azimuth_diff+jerk_y 72.28% 0.56830901
yaw_velocity+jerk_y 71.61% 0.50966978
azimuth_diff+snap 71.56% 0.65537918

Table 4. Top 10 enhancement combinations by test accuracy using LeNet5

Figure 20. Training and validation accuracy of the best enhancement combination using
LeNet5

Figure 21. Training and validation loss of the best enhancement combination using LeNet5

17

Figure 22. Validation accuracy of top performing combinations using LeNet5

Figure 23. Validation loss of top performing combinations using LeNet5

The enhancement combination of pressure_diff for width and jerk_y for color produced
the best results with 85.55% accuracy and 0.4011 loss and was the only combination to
reach over 80% accuracy.

Further training was also conducted with a slightly altered LeNet5 architecture. The input
layer of this model was modified to receive a larger input of 227x227x1, same as AlexNet
except for the color channel, which stayed grayscale.

This modified LeNet5 model returned slightly higher average test accuracy, however the
best enhancement combination with the modified LeNet5 had a slightly lower accuracy
than the previous LeNet5 model.

18

Combination Accuracy Loss
altitude+velocity 0.84639549 1.01893830

altitude+acceleration_x 0.80572093 0.94429910
pressure_diff+acceleration_y 0.79993385 1.22108769

altitude+jerk 0.79133600 0.76885098
altitude+jerk_y 0.79001325 2.67037845

altitude+velocity_x 0.78240740 1.96160078
shake+acceleration_y 0.78009260 0.68461698

altitude+crackle 0.77959657 0.97345722
altitude+snap 0.77860451 1.20316017

shake+acceleration 0.77215606 1.81520116

Table 5. Top 10 enhancement combinations by test accuracy using modified LeNet5

Figure 24. Training and validation accuracy of the best enhancement combination using
modified LeNet5

Figure 25. Training and validation loss of the best enhancement combinations using
modified LeNet5

Figure 26. Validation accuracy of top performing combinations using modified LeNet5

19

Figure 27. Validation loss of top performing combinations using modified LeNet5

Using this modified LeNet5 model the best enhancement combination was altitude for
width and velocity for color, reaching 84.6% test accuracy and 1.089 test loss.

3.3 Xception

Xception model produced excellent results, boasting both high validation accuracy and test
accuracy for a few parameter combinations.

Combination Accuracy Loss
yaw_velocity+jerk_x 99.20% 0.61184025

snatch+jerk 99.09% 0.61153144
yaw_velocity+jerk_y 97.47% 0.62166375

pressure_diff+velocity 97.47% 0.61460805
altitude+jerk_y 95.40% 0.61937094

yaw_velocity+jerk 94.89% 0.62052906
alphas+acceleration_x 94.37% 0.61867803

pressure_diff+pop 90.14% 0.62614924
altitude+pop 87.45% 0.63023144

Table 6. Top 10 enhancement combinations by test accuracy for Xception)

Figure 28. Train and validation accuracy of the best enhancement combination for Xception

20

Figure 29. Train and validation loss of the best enhancement combination for Xception

However it can be observed, that there is still a gap between train accuracy and validation
accuracy, with validation accuracy being lower. Although this gap was not very large, it
still indicated that the model was slightly overfitting on the top performing enhancement
combination.

Using Xception model and utilizing transfer learning the best result was an enhancement
combination of yaw_velocity for width and jerk_x for color, which returned a 99.20%
accuracy and 0.6118 loss.

3.4 Comparison

The first implementation of AlexNet gave decent results, the best result being the en-
hancement combination of altitude and velocity_y giving 84.9% test accuracy. However
validation accuracy was fluctuating and the model was overfitting a lot.

After tuning, AlexNet returned better results than before, with top performing combination
of yaw_velocity and jerk reaching 95.4% test accuracy. The model was still overfitting,
but not as much as before the tuning.

The first LeNet5 model with 32x32x1 input returned by far the worst results of all the
CNNs trained, with only one combination pressure_diff and jerk_y getting over 80% test
accuracy, reaching 85.5% test accuracy.

The second LeNet5 model with larger input performed slightly better than the first LeNet5
model and was on par with the first AlexNet model, however still performed worse than the
tuned AlexNet model. This LeNet5 model had a higher average test accuracy among the
top performing enhancement combinations compared to the first LeNet5 model. However,
the best combination using altitude and velocity had a lower test accuracy (84.6%) than
the best performing combination in the first LeNet5 model (85.5%).

21

Xception returned by far the best results of all the CNNs. The top performing combination
yaw_velocity and jerk_x reached 99.2% test accuracy. The average test accuracy of top
combinations for Xception was also the highest among the CNNs trained.

Overall, both LeNet5 models and AlexNet model prior to tuning produced similar result
with highest results reaching around 85% accuracy. Xception and tuned AlexNet model
managed to get over 95% accuracy, with highest reaching 99.2% and 95.4% respectively.

Architecture Highest accuracy Best enhancement combination
Xception 99.2% yaw_velocity+jerk_x

Tuned AlexNet 95.4% yaw_velocity+jerk
LeNet5 85.5% pressure_diff+jerk_y
AlexNet 84.9% altitude+velocity_y

Modified LeNet5 84.6% altitude+velocity

Table 7. Top metrics for each tested architecture

Some of the enhancement parameters appeared in multiple top performing enhancement
combinations across all CNNs. For the width of the spiral these parameters included
altitude, pressure_diff and yaw_velocity, and for the color of the spiral jerk_y, crackle and
jerk.

It is worth mentioning that combinations altitude+jerk_y and pressure_diff+crackle were
fitting very well with the Xception model and also produced decent results.

Figure 30. Train and validation accuracy for altitude+jerk_y using Xception

Figure 31. Train and validation loss for altitude+jerk_y using Xception

22

Figure 32. Train and validation accuracy for pressure_diff+crackle using Xception

Figure 33. Train and validation loss for pressure_diff+crackle using Xception

As can be observed from figures above, the models’ training and loss metrics were very
similar when using these enhancement combinations. The combination of altitude and
jerk_y reached 95.4% test accuracy and the combination of pressure_diff and crackle
returned a slightly lower 87.2% test accuracy.

Direct comparison with state-of-the-art methods is difficult, since the dataset used in this
thesis differs from most other related works. Works of Zarembo [7] and Nõmm [21]
used the same dataset. Nonetheless, the comparison with other state-of-the-art methods
shows that the proposed workflow produces results that are on par or superior to other
state-of-the-art methods.

Diaz [5] Kamran [6] Pereira [22] Ishii [8]
Present Work

AlexNet LeNet5 Xception
94.44 99.22 90.38 79.00 95.44 85.54 99.20

Table 8. Comparison with related works

23

4. Conclusion

The primary goal of this thesis was to combine geometry based assessment and kinematic
and pressure-parameter based approaches of PD prediction. Different augmentation
methods of datasets and different CNN architectures were explored.

Enhancement and augmentation techniques used in this thesis were implemented. The
dataset of 51 samples was first enhanced using different combinations of kinematic and
pressure parameters and then augmented to roughly 30000 samples. The augmented
dataset was used in the training of selected CNNs and showed results with high accuracy.
Multiple different enhancement combinations were found, which produced high accuracy
in PD prediction. Xception architecture produced the best result, with an enhancement
combination using yaw_velocity for width and jerk_x for color producing 99.20% accuracy.

For future explorations other enhancement combinations of parameters could also be tested,
since this thesis only used pressure and angle parameters for the width of the spiral and
kinematic parameters for the coloration. Switching these around and/or mixing these
parameters (e.g. using only kinematic parameters for width and color) would add another
dimension to the settings.

Archimedean spiral tests were used in this thesis. Following the proposed workflow other
tests such as handwriting, digit drawing and Lurias’ alternating series tests could also be
analysed and tested. Additional transformations such as brightness, noise, erosion etc.
could also be used for augmentation. However some augmentation methods might not be
as useful for some tests as they were with the Archimedean spirals.

Further adjustments could also be done to the models used in this thesis. More extensive
hyper-parameter tuning could improve the results. Also, other CNN architectures such
VGG19, Inception v3, ResNet50 etc. could be tested.

In conclusion, all the sub-problems stated were resolved and the goal of this thesis was met.
Geometry based and kinematic and pressure-parameter based approaches were combined.
The datasets were enhanced and augmented with selected methods and the evaluation of
CNNs, which were trained on the datasets, produced superb results. The results achieved

24

in this thesis show that the proposed workflow could be successfully implemented in this
particular problem-domain and be applied in the analysis of other drawn and written tests.

25

Acknowledgments

I would like to thank my supervisors Sven Nõmm and Elli Valla for their help with writing
this thesis, for keeping me on the right track and for keeping me constantly motivated. I
would like to thank my family and my closest friends for their emotional support.

26

Bibliography

[1] Lorraine V Kalia and Anthony E Lang. “Parkinson’s disease”. In: The Lancet

386.9996 (2015), pp. 896–912. ISSN: 0140-6736. DOI: https://doi.org/10.
1016/S0140-6736(14)61393-3. URL: https://www.sciencedirect.
com/science/article/pii/S0140673614613933.

[2] Joseph Jankovic. “Parkinson’s disease: clinical features and diagnosis”. In: Journal

of Neurology, Neurosurgery & Psychiatry 79.4 (2008), pp. 368–376.

[3] Jack J Chen. “Parkinson’s disease: health-related quality of life, economic cost,
and implications of early treatment”. In: The American journal of managed care

16 Suppl Implications (Mar. 2010), S87–93. ISSN: 1088-0224. URL: http://
europepmc.org/abstract/MED/20297871.

[4] S. Nomm et al. “Detailed Analysis of the Luria’s Alternating SeriesTests for Parkin-
son’s Disease Diagnostics”. In: 2018 17th IEEE International Conference on Ma-

chine Learning and Applications (ICMLA) (2018), pp. 1347–1352.

[5] Moises Diaz et al. “Sequence-based dynamic handwriting analysis for Parkin-
son’s disease detection with one-dimensional convolutions and BiGRUs”. In:
Expert Systems with Applications 168 (2021), p. 114405. ISSN: 0957-4174.
DOI: https://doi.org/10.1016/j.eswa.2020.114405. URL:
https : / / www . sciencedirect . com / science / article / pii /

S0957417420310757.

[6] Iqra Kamran et al. “Handwriting dynamics assessment using deep neural network for
early identification of Parkinson’s disease”. In: Future Generation Computer Systems

117 (2021), pp. 234–244. ISSN: 0167-739X. DOI: https://doi.org/10.
1016/j.future.2020.11.020. URL: https://www.sciencedirect.
com/science/article/pii/S0167739X20330442.

[7] Sergei Zarembo et al. “CNN Based Analysis of the Luria’s Alternating Series Test for
Parkinson’s Disease Diagnostics”. In: Recent Challenges in Intelligent Information

and Database Systems. Ed. by Tzung-Pei Hong et al. Singapore: Springer Singapore,
2021, pp. 3–13. ISBN: 978-981-16-1685-3.

27

https://doi.org/https://doi.org/10.1016/S0140-6736(14)61393-3
https://doi.org/https://doi.org/10.1016/S0140-6736(14)61393-3
https://www.sciencedirect.com/science/article/pii/S0140673614613933
https://www.sciencedirect.com/science/article/pii/S0140673614613933
http://europepmc.org/abstract/MED/20297871
http://europepmc.org/abstract/MED/20297871
https://doi.org/https://doi.org/10.1016/j.eswa.2020.114405
https://www.sciencedirect.com/science/article/pii/S0957417420310757
https://www.sciencedirect.com/science/article/pii/S0957417420310757
https://doi.org/https://doi.org/10.1016/j.future.2020.11.020
https://doi.org/https://doi.org/10.1016/j.future.2020.11.020
https://www.sciencedirect.com/science/article/pii/S0167739X20330442
https://www.sciencedirect.com/science/article/pii/S0167739X20330442

[8] Nobuyuki Ishii et al. “Spiral drawing: Quantitative analysis and artificial-intelligence-
based diagnosis using a smartphone”. In: Journal of the Neurological Sciences 411
(2020), p. 116723. ISSN: 0022-510X. DOI: https://doi.org/10.1016/
j.jns.2020.116723. URL: https://www.sciencedirect.com/
science/article/pii/S0022510X20300599.

[9] Sven Nõmm et al. “Detailed Analysis of the Luria’s Alternating SeriesTests for
Parkinson’s Disease Diagnostics”. In: 2018 17th IEEE International Conference

on Machine Learning and Applications (ICMLA). 2018, pp. 1347–1352. DOI: 10.
1109/ICMLA.2018.00219.

[10] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(Sept. 2020), pp. 357–362. DOI: 10.1038/s41586-020-2649-2. URL:
https://doi.org/10.1038/s41586-020-2649-2.

[11] The pandas development team. pandas-dev/pandas: Pandas. Version latest. Feb.
2020. DOI: 10.5281/zenodo.3509134. URL: https://doi.org/10.
5281/zenodo.3509134.

[12] Wes McKinney. “Data Structures for Statistical Computing in Python”. In: Pro-

ceedings of the 9th Python in Science Conference. Ed. by Stéfan van der Walt and
Jarrod Millman. 2010, pp. 56–61. DOI: 10.25080/Majora-92bf1922-00a.

[13] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science

& Engineering 9.3 (2007), pp. 90–95. DOI: 10.1109/MCSE.2007.55.

[14] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools

(2000).

[15] Marcus D Bloice, Peter M Roth, and Andreas Holzinger. “Biomedical image aug-
mentation using Augmentor”. In: Bioinformatics 35.21 (Apr. 2019), pp. 4522–
4524. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btz259. eprint:
https://academic.oup.com/bioinformatics/article-pdf/

35/21/4522/30330763/btz259.pdf. URL: https://doi.org/10.
1093/bioinformatics/btz259.

[16] Martın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems. Software available from tensorflow.org. 2015. URL: https://www.
tensorflow.org/.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks”. In: Advances in neural information

processing systems 25 (2012), pp. 1097–1105.

[18] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In: Pro-

ceedings of the IEEE 86.11 (1998), pp. 2278–2324. DOI: 10.1109/5.726791.

28

https://doi.org/https://doi.org/10.1016/j.jns.2020.116723
https://doi.org/https://doi.org/10.1016/j.jns.2020.116723
https://www.sciencedirect.com/science/article/pii/S0022510X20300599
https://www.sciencedirect.com/science/article/pii/S0022510X20300599
https://doi.org/10.1109/ICMLA.2018.00219
https://doi.org/10.1109/ICMLA.2018.00219
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1093/bioinformatics/btz259
https://academic.oup.com/bioinformatics/article-pdf/35/21/4522/30330763/btz259.pdf
https://academic.oup.com/bioinformatics/article-pdf/35/21/4522/30330763/btz259.pdf
https://doi.org/10.1093/bioinformatics/btz259
https://doi.org/10.1093/bioinformatics/btz259
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1109/5.726791

[19] François Chollet. “Xception: Deep Learning with Depthwise Separable Convolu-
tions”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 2017, pp. 1800–1807. DOI: 10.1109/CVPR.2017.195.

[20] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE

conference on computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[21] S. Nomm et al. “Quantitative analysis in the digital Luria’s alternating series tests”.
In: 2016 14th International Conference on Control, Automation, Robotics and Vision

(ICARCV) (2016), pp. 1–6.

[22] Clayton R. Pereira et al. “Convolutional Neural Networks Applied for Parkinson’s
Disease Identification”. In: Machine Learning for Health Informatics: State-of-the-

Art and Future Challenges. Ed. by Andreas Holzinger. Cham: Springer International
Publishing, 2016, pp. 377–390. ISBN: 978-3-319-50478-0. DOI: 10.1007/978-
3-319-50478-0_19. URL: https://doi.org/10.1007/978-3-319-
50478-0_19.

29

https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1007/978-3-319-50478-0_19
https://doi.org/10.1007/978-3-319-50478-0_19
https://doi.org/10.1007/978-3-319-50478-0_19
https://doi.org/10.1007/978-3-319-50478-0_19

Appendix 1 — Lihtlitsents lõputöö
reprodutseerimiseks ja lõputöö üldsusele kätte-
saadavaks tegemiseks

Mina, Ivan Uvarov

1. Annan Tallinna Tehnikaülikoolile tasuta loa (lihtlitsentsi) enda loodud teose
"Andmekogumite rikastamine neuroloogiliste haiguste tuvastamiseks sügavõppe
mudelitega", mille juhendaja on Sven Nõmm ja kaasjuhendaja on Elli Valla
1.1. reprodutseerimiseks lõputöö säilitamise ja elektroonse avaldamise eesmärgil,

sh Tallinna Tehnikaülikooli raamatukogu digikogusse lisamise eesmärgil kuni
autoriõiguse kehtivuse tähtaja lõppemiseni;

1.2. üldsusele kättesaadavaks tegemiseks Tallinna Tehnikaülikooli veebikeskkonna
kaudu, sealhulgas Tallinna Tehnikaülikooli raamatukogu digikogu kaudu kuni
autoriõiguse kehtivuse tähtaja lõppemiseni.

2. Olen teadlik, et käesoleva lihtlitsentsi punktis 1 nimetatud õigused jäävad alles ka
autorile.

3. Kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega
isikuandmete kaitse seadusest ning muudest õigusaktidest tulenevaid õigusi.

14.06.2021

30

	List of Figures
	List of Tables
	Introduction
	Problem statement

	Implementation
	Overview
	Image generation and enhancement
	Augmentation
	CNNs

	Results
	AlexNet
	LeNet5
	Xception
	Comparison

	Conclusion
	Bibliography
	Appendices
	Appendices

