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ABSTRACT

Metabolism of microorganisms manifests remarkable flexibility by adaptation to
different environmental conditions. This is usually accompanied by a change in the
specific growth rate (u), which integrates regulation of many properties of cell
physiology e.g. cell morphology, proteome content, metabolic flux patterns. As the
majority of these processes are regulated through coordinated changes in gene
expression, a systems biology approach is needed to achieve a quantitative whole-cell
level understanding of the complex control principles of metabolism. The aim of this
thesis is to fully quantitatively characterize p-dependent multi-level dynamics of steady
state metabolism of the most-studied bacterium Escherichia coli using a systems
biology approach by integrating absolute quantitative multi-omics analyses, advanced
continuous cultivation and computational methods, with a special focus on acetate
overflow metabolism and control of protein and metabolic flux levels.

Detailed carbon balance analysis in glucose-limited accelerostat (A-stat) cultures
revealed novel carbon wasting profiles into pyrimidine pathway intermediates and
together with metabolic flux analysis (MFA) suggested that despite the ~4-fold
increased carbon wasting with p rising from 0.1 to 0.5 h™!, E. coli could maintain a
constant biomass yield through a simultaneous 36% reduction of non-growth
associated ATP production. Furthermore, high-resolution A-stat cultures precisely
captured the start of acetate overflow at u = 0.27 h™' and together with integrated
quantitative exo-metabolome, transcriptome and proteome analyses coupled to MFA
allowed to propose that acetate overflow is triggered by carbon catabolite repression-
mediated down-regulation of acetyl-CoA synthetase (Acs) resulting in decreased
assimilation of acetate produced by phosphotransacetylase (Pta) and disruption of the
PTA-ACS node. This was experimentally proven by creating an E. coli Apka AarcA
strain with postponed and 4-fold reduced acetate overflow through increased acetate
recycling capabilities and downstream throughput in the TCA cycle. In addition, this
strain is superior to previous acetate overflow-reduced E. coli strains since it does not
accumulate any other detrimental by-product and maintains pmax of wild-type.

High correlations (R ~ 0.8) between both genome-wide mRNA and protein
expression changes with rising p and concentrations were detected. Integration of
absolute quantitative transcriptome and proteome data with flux rates and statistical
covariance analysis revealed that E. coli achieved 5-time faster growth through 3.7-
fold increased apparent in vivo catalytic rates of enzymes (kapp) and 2.8-fold increased
translation rates by predominantly controlling protein abundances and flux rates at
post-transcriptional and post-translational levels, respectively. Our analysis further
showed that E. coli invests most of its proteome resource into expression of proteins
involved in biosynthesis and energy generation while enzymes carrying high fluxes
seem to be more abundant and also possess higher Kapp.

This thesis contributes to the much-needed better quantitative description and
understanding of biological systems and control principles of cell metabolism at the
whole-cell level. Additionally, it advances novel modeling approaches and metabolic
engineering of superior microbial cell factories.



KOKKUVOTE

Mikroorganismide metabolismi mérkimisvadrset paindlikkust tdestab nende vdime
kohaneda erinevate keskkonnatingimustega. Reeglina kaasneb sellega muutus rakkude
kasvuerikiiruses (y), mis integreerib mitmete rakufiisioloogia mehhanismide
regulatsiooni (nt. raku morfoloogia, proteoomi sisaldus, metaboolsete voogude muster).
Kuna enamus neid protsesse reguleeritakse 14bi koordineeritud geenide ekspressiooni
muutuste, siis on vajalik rakendada siisteemide bioloogia ldhenemist, et mdista
komplekseid metabolismi regulatsioonimehhanisme kvantitatiivselt terve raku tasemel.
Kéesoleva viitekirja eesmirk on kirjeldada kvantitatiivselt enim uuritud bakteri
Escherichia coli p-sdltuvat steady state metabolismi mitmetasandilist diinaamikat
kasutades siisteemide bioloogia lahenemist 1dbi absoluutselt kvantitatiivsete oomika-,
korgetasemeliste ldbivoolukultivatsiooni- ja arvutusmeetodite integreerimise, omades
erilist fookust atsetaadi iilevoolu metabolismil ning valkude tasemete ja voogude
suuruste kontrollmehhanismidel.

Detailne siisinikubilansi analiilis gliikoos-limiteeritud akselerostaat (A-staat)
kultuurides voimaldas tuvastada uudsed piirimidiini raja vaheiihendite siisiniku
raiskamisprofiilid ning koos metaboolsete voogude analiiiisiga (MFA) viitas sellele, et
hoolimata ca nelja-kordsest siisiniku raiskamise kasvust p tdusmisel 0.1-1t 0.5-le h™',
suutis E. coli sidilitada konstantse biomassi saagise tinu samaaegsele 36%-lisele
kasvuga mitte-seotud ATP tootmise vihendamisele. Veel enam, korge resolutsiooniga
A-staat kultuuride kasutamine vdimaldas tdpselt tuvastada atsetaadi iilevoolu alguse p
= 0.27 h™' juures ning koos integreeritud kvantitatiivsete rakuvilise metaboloomi,
transkriptoomi ning proteoomi analiiliside ja MFA-ga voimaldas piistitada hiipoteesi, et
atsetaadi iilevoolu kiivitab kataboliitse repressiooni poolt pdhjustatud atsetiiiil-CoA
siintetaasi (Acs) allaregulatsioon, millega kaasneb fosfotransatsetiilaasi (Pta) poolt
toodetud atsetaadi tarbimisvoime langus ning PTA-ACS tsiikli katkemine. Selle
hiipoteesi eksperimentaalseks tdestamiseks loodi E. coli Apka AarcA tiivi, mille puhul
neli korda metsiktiivest vdiksem atsetaadi iilevool algab ka oluliselt korgemal gliikoosi
tarbimiskiirusel tdnu kOrgemale atsetaadi tagasitarbimis- ning edasisele
metaboliseerimisvoimele TCA tsiiklis. Lisaks on tiivi parem eelnevatest vihendatud
atsetaadi 1llevooluga E. coli tiivedest, kuna ei tooda iihtegi teist kahjulikku
korvalprodukti ja omab metsiktiivedega vordset [max-i.

Viitekirjas detekteeriti korged korrelatsioonid (R ~ 0.8) nii iile-genoomsete mRNA
ja valgu ekspressiooni p-sdltuvate muutuste kui ka kontsentratsioonide vahel.
Absoluutselt kvantitatiivsete transkriptoomi ja proteoomi andmete integreerimine
voogude kiiruste ning statistilise kovariatsioonianaliilisiga tuvastas, et E. coli saavutas
5-korda kiirema kasvu ldbi 3.7-korda tousnud niivate in vivo ensiilimide kataliiiitiliste
(kapp) ja 2.8-korda kasvanud translatsiooni kiiruste, kontrollides peamiselt valkude
koguseid ning voogude kiirusi vastavalt post-transkriptsiooni ja post-translatsiooni
tasemetel. Lisaks tdheldati, et E. coli investeerib enamuse proteoomi ressursist
biosiinteesi ja energia tootmisega seotud valkude ekspresseerimisele ning et suuri
vooge kataliilisivaid ensiitime leidub rakus nii suuremal arvul, kui ka neil on kdrgemad
kapp védrtused.



Kéesolevas viitekirjas kogutud andmed voimaldavad oluliselt paremini kui varem
kirjeldada kvantitatiivselt metabolismi regulatsioonimehhanisme terve raku tasemel.
Taiendavalt edendab wviitekiri uudseid modelleerimismeetodeid ning paremate
mikroobsete tootjarakkude konstrueerimist.
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INTRODUCTION

Escherichia coli is the most-studied bacterium and also widely exploited by the
biotechnology industry as a microbial cell factory. Hence, there is great interest from
both the industry and academia to gain even more knowledge about the metabolism of
this gram-negative model-organism. Whereas a lot about E. coli metabolism is known,
there exist gaps or lack of knowledge altogether regarding some fundamental
principles of metabolic regulation.

For example, although the specific growth rate (u) is known to be central in
integrating regulation of many properties of cell physiology e.g. cell morphology [1-3],
gene expression [4—8], metabolic flux patterns [4,7-10], simultaneous regulation of
cellular metabolome, transcriptome, proteome and fluxome levels and their patterns
accompanying the change in p is not thoroughly characterized and understood. More
specifically, for example, after decades of studies the mechanism behind the regulation
of acetate overflow metabolism has not been unequivocally elucidated. Furthermore,
regulation levels of the gene expression cascade (e.g. transcriptional, post-translational)
controlling protein abundances and metabolic fluxes enabling the cells to achieve faster
growth are not known. To gain new insights into these phenomena and p-dependent
metabolism in general, the main aim of this thesis is to comprehensively and fully
quantitatively characterize p-dependent multi-level dynamics of steady state
metabolism of the most-studied bacterium E. coli using a systems biology approach by
coupling absolute quantitative multi-omics analyses with advanced continuous
cultivation and computational methods. It is important to point out that it is critical that
this biological information is acquired for cells grown in strictly defined physiological
states i.e. continuous cultures, representing steady state physiology [11,12].

This thesis advances the much-needed better quantitative description and
understanding of biological systems and control principles of cell metabolism at the
whole-cell level [13,14] in many aspects. For instance, we report novel p-dependent
carbon wasting profiles; propose a new mechanism for acetate overflow metabolism
and experimentally prove this by creating strains with reduced carbon loss into acetate;
determine that E. coli achieves faster growth by increasing catalytic and translation
rates of proteins.

15



ABBREVIATIONS

A-stat accelerostat

Acetyl-P  acetyl phosphate

AckA acetate kinase

Acs acetyl-CoA synthetase

ArcA dual transcriptional regulator for anoxic redox control
ATP adenosine triphosphate

cAMP cyclic AMP

CBASP carbamoyl-aspartate

CcCM central carbon metabolism

CCR carbon catabolite repression

Crp cAMP receptor protein

D dilution rate

D-stat dilution rate stat

DHO dihydroorotate

DNA deoxyribonucleic acid

E. coli Escherichia coli

gDCW gram dry cellular weight

GS glyoxylate shunt

Kapp apparent in vivo catalytic rate of enzyme
Keat the maximum number of reactions catalyzed per enzyme
MFA metabolic flux analysis

mRNA messenger RNA

NAA acetyl-aspartate

NADH reduced nicotineamide adenine dinucleotide
NADPH reduced nicotineamide adenine dinucleotide phosphate
nATP protein synthesis cost

PDH pyruvate dehydrogenase

PEP phosphoenolpyruvate

Pka protein lysine acetyltransferase

pm protein-per-mRNA ratio

Pta phosphotransacetylase

PPP pentose phosphate pathway

PoxB pyruvate oxidase

R Pearson correlation coefficient

RNA ribonucleic acid

TCA cycle tricarboxylic acid cycle

TR transcriptional

TL translational

Yxs biomass yield

i specific growth rate
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1. LITERATURE REVIEW

1.1. Importance of Escherichia coli

Escherichia coli is a gram-negative, rod-shaped and non-sporulating bacterium
commonly found in the lower-intestines of warm-blooded animals. It is a facultative
aerobe meaning it can easily switch between fully respiratory, fermentative and
respiro-fermentative growth. E. coli was first discovered in 1885 by a German
bacteriologist Theodor Escherich. Notably, it has been the most-studied prokaryotic
model organism both in microbiology and biotechnology. It could also be considered
the most important free-living organism since a significant part of the knowledge
regarding fundamentally conserved biological processes in living organisms at the
molecular level derive from laboratory studies of E. coli. Furthermore, this bacterium
also played a crucial role in the start of biotechnology by serving as the host for the
first recombinant DNA technology invented by Genentech, Inc. Since then, E. coli has
been vastly and successfully exploited in the biotechnology industry for the production
of recombinant proteins, low molecular weight compounds, biofuels etc., mainly
because of low manufacturing and end-product purification costs and its ability to
easily reach high cell densities [15,16]. Due to the latter and the notion that new
information regarding E. coli can be more successfully interpreted because of the vast
amount of knowledge which already exists, studying E. coli still has high relevance for
further advancement of our fundamental understanding of living organisms and the
needed innovation in the biotechnology industry.

Metabolism of E. coli is highly flexible which facilitates successful adaptation to a
wide range of environmental conditions. For example, E. coli can rapidly switch from
growing on amino acid substrates to synthesizing all the 20 amino acids necessary for
biomass proliferation if substrates are suddenly depleted. Furthermore, it can also grow
aerobically or anaerobically, survive osmotic or acidic stress etc. Realization of such
flexibility requires sophisticated and tightly controlled regulation mechanisms, about
which we still lack a complete understanding. Hence, any additional knowledge
regarding the regulation principles of cell metabolism are highly valuable for a more
comprehensive understanding of biological systems overall [13,14] and novel and
more successful biotechnology and synthetic biology efforts [17]. As adaptation to
different environmental conditions is usually accompanied by a change in the specific
growth rate (p), which integrates regulation of many properties of cell physiology e.g.
cell morphology [1-3], gene expression [4-8], metabolic flux patterns [4,7-10],
studying the metabolic responses of E. coli to perturbations in p at the most important
regulatory layers of transcriptome, proteome and fluxome can lead to elucidation of the
complex control principles of metabolism at whole-cell level.
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1.2. Specific growth rate-dependent steady state metabolism of Escherichia
coli

1.2.1. Importance of steady state cultures

The most widely-used method for studying cell growth is batch cultivation. Indeed,
batch cultures are very effective for high-throughput screening of p and maximum cell
yield in microtiter plates and shake flasks. However, batch cultures result in non-steady
state growth even during the so-called ‘balanced growth phase’ (when substrate
consumption is maximal during exponential growth) due to the constantly changing
biomass and metabolic by-product concentrations. Moreover, trying to study p-
dependent metabolism in batch cultures using different media does not allow one to
draw unequivocal conclusions regarding p-dependent metabolism since manipulating p
by varying substrates also leads to substrate specific re-organization of metabolism. It
has been concluded that batch cultures result in complex data patterns reflecting
uncontrolled changes of growth conditions, which are often difficult or even
impossible to interpret [11,12], making them unsuitable for studying p-dependent
metabolism.

To overcome the issues with batch cultures, the continuous cultivation method
chemostat was introduced in 1950 to study p-dependent metabolism in steady state
using strictly defined and controlled growth conditions [18,19]. As studying
metabolism over a wide range of p with high-resolution using chemostat cultures is
very time and resource consuming, the continuous cultivation method accelerostat (A-
stat) was later developed [3]. A-stat enables to collect vast amount of data in short time
to monitor the dynamics of metabolism with very high resolution and precisely detect
metabolic switch-points (e.g. start of acetate overflow), which could be left unnoticed
using chemostats. Importantly, quasi steady state data of A-stat describe steady state
physiology equally to chemostats if experiments are conducted properly [20-26]. In
conclusion, it is important that p-dependent metabolism is studied in strictly defined
physiological states i.e. continuous cultures, representing steady state physiology
[11,12]. Thus all the following literature review under this sub-heading considers
continuous cultures, and more specifically glucose-limited cultures.

1.2.2. Carbon flows

Carbon is the central element for every organism and understanding its metabolism
also in E. coli is instrumental for understanding its physiology. Majority of the
consumed carbon by aerobically growing E. coli is used for biomass formation and
CO, synthesis [4-7,9,10,27-32], which is mostly formed as an accompanying by-
product for generating energy and reducing equivalents. Additionally, a notable
amount of the consumed carbon is lost to several by-products excreted by the cells into
the growth environment. The main by-product in wild-type E. coli aerobic cultivations
is acetic acid [4-10,31-34]. In addition, accumulation of other compounds such as
lactate, formate, pyruvate, ethanol etc. has been observed [4,10,35]. Although
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excretion of many other compounds besides the above-mentioned ‘well-known’ ones
has been detected [4,36-38] e.g. pyrimidine pathway intermediates, these carbon
wasting outflows are generally not taken into account in carbon balance or metabolic
flux analysis (MFA) of E. coli, possibly leading to questionable conclusions. For
instance, Taymaz-Nickerel and colleagues accounted a substantial amount of ‘missing
carbon’ in the carbon balance (7-13%) of E. coli continuous cultures to cells lysis
which has not been observed before in the literature [39].

As the above-mentioned carbon flows and their relative fractions from the
consumed carbon vary with growth conditions, it is very important to quantitatively
determine the dependence of carbon flows on p. Glucose-limited continuous culture
experiments with various E. coli wild-type strains have generally shown a constant or
slightly increased carbon flow to biomass and decreased fraction allocated for CO»
synthesis with rising p [4,5,7,9,10,27,28,31,40]. Regarding the major by-product
acetate, it is quite well documented that acetate overflow is p-dependent with no
excretion at slow and high excretion at fast growth [4-10,31-34]. The p-dependent
excretion patterns of other by-products are much less clear or missing altogether.
Therefore, to obtain a more accurate description of p-dependent carbon flows and their
regulation in the metabolic network, A-stat experiments with high-resolution of
together with detailed carbon balance analysis should be carried out.

1.2.3. Metabolic fluxes and energy metabolism

Knowing carbon uptake and excretion routes gives a general understanding about
carbon catabolism but a more sophisticated method of flux analysis (fluxomics) is
necessary to quantify metabolic fluxes and their distribution within the metabolic
network. However, metabolic fluxes cannot be measured directly in vivo, but can be
estimated either with computational methods (e.g. MFA, flux balance analysis) or
experimental flux measurement techniques with stable isotope tracers (e.g. '*C-MFA)
[41,42]. These methods require a thorough knowledge of the metabolic network, its
stoichiometry and biomass composition. However, balancing the energy-metabolites
ATP, NADH and NADPH is difficult since E. coli possesses several transhydrogenases
able to interconvert NADH and NADPH [9,43], there exist ATP dissipating futile
cycles [28,44-48] and the exact efficiency of NADH to ATP conversion (P/O) in the
respiratory chain (RC) is not known [49,50]. Also the biomass composition is
dependent on growth conditions [27,39,51-53] and using the one corresponding to the
experimental state is important since it influences flux calculations as shown by
sensitivity analysis [52]. These challenges could be met by using additional constraints
based on *C-MFA [4,7,9] and experimentally determined biomass composition [52],
making fluxomics methods acceptable for predicting metabolic flux patterns and
studying energy metabolism also in E. coli [41,42].

It is difficult to conclude about the exact splitting ratio of initial glucose catabolism
between glycolysis and pentose phosphate pathway (PPP) in E. coli due to the
uncertainty about transhydrogenase activities in vivo [9,43]. Still, it seems that roughly
a 70 to 30% splitting between glycolysis and PPP occurs in E. coli glucose-limited
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continuous cultures [4,7—-10,28,54] and this ratio changes in favor for PPP with rising p,
presumably to meet the increasing NADPH demands for higher RNA synthesis with
faster growth [55-58]. In parallel, tricarboxylic acid (TCA) cycle fluxes decrease with
the concomitant start and increasing acetate overflow with rising p. Strong p-
dependent activity of the glyoxylate shunt (GS) has also been determined with high
activity at low p and no flux above p = 0.4 h™' [4,7,9]. Simultaneously, the anaplerotic
PEP carboxylase flux increases with rising L.

Quantification of metabolic flux patterns is essential for understanding the
regulation of energy metabolism. Although balancing energy-metabolites accurately to
reflect the true situation in vivo is difficult to achieve, it is generally accepted that
around half of the produced energy is spent for functions not directly related to growth
[31,44,45,59,60]. Probably the most energy-demanding processes of the latter are
turnover of macromolecules, re-establishment of ion gradients and futile cycles
[44,45,58,60,61]. This non-growth related energy production is also termed
maintenance energy and usually further divided into non-growth and growth associated
parts. However, these terms should be used with great caution due to the confusion
regarding their exact biological nature [44,45,60]. The non-growth associated
maintenance cost is assumed to be constant and generally estimated by extrapolating
the specific glucose consumption rates (qgc) measured in chemostat cultures to p = 0
h™' [9,40,44,45,60]. However, since the total non-growth related energy costs are
known to vary among growth conditions [44,45,60,62,63], constant values should be
avoided and regulation of p-dependent energy metabolism should be inferred from the
net difference between energy production and consumption, assuming that the P/O is
insensitive to 1 [39].

1.2.4. Functional-genomic responses

Adaptation of microorganisms to different environmental conditions is generally
accompanied by a change in p, which integrates regulation of many properties of cell
physiology e.g. cell morphology [1-3], metabolic flux patterns [4,7-10]. As the
majority of these mechanisms are regulated through changes in gene expression, it is
very useful to study the functional-genomic responses of E. coli to a perturbation also
in p to gain further insights into the complex control principles of metabolism. The
most available methods for this are transcriptomics and proteomics.

One could expect activation of gene expression in pathways responsible for the
production of precursors for biosynthesis and energy generation to realize the
necessary significantly higher flux throughput of these pathways for faster growth.
Although the studies of up-dependent genome-wide transcriptome analysis in the
literature differ by E. coli wild-type strains, media and other conditions [4-7], the
results in general do not exactly support the latter expectation: mRNA levels in
glycolysis are rather constant or slightly increase with rising p and in the TCA cycle
increase but drop off at faster growth. PPP transcript levels, however, uniformly
increase with faster growth. These observations at mRNA level are mostly consistent
with the only p-dependent proteome data set [4]. Data regarding mRNA expression of
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the components of the RC differ between the studies as constant, decreasing and
increasing patterns have been observed with rising p. Interestingly, however, all the
studies detected a strong increase of ndh, an NADH dehydrogenase not generating
proton motive force [64], with faster growth, possibly linked to balancing the redox
ratio which has been proposed to be an issue in faster growing E. coli [5].

Another common observation among the latter studies is the activation of carbon
catabolite repression (CCR) [65,66] with rising p, evidenced by down-regulation of the
genes associated with alternative (to glucose) substrate transport and catabolism [4-7].
This could be expected as the rising residual glucose concentration in glucose-limited
continuous cultures with faster growth could trigger CCR, which realizes the
preference of glucose over alternative carbon sources in the presence of glucose
through the repression of genes necessary for the use of alternative carbon sources
[65,66]. Closely coupled with this regulation is the strong down-regulation of GS and
gluconeogenesis at both mRNA and protein levels [4-7]. Consistent with the results of
flux analysis described above is the up-regulation of the anaplerotic PEP carboxylase
(ppc and Ppc) with rising p in all the studies, presumably activated to replenish the
decreasing pools of TCA cycle intermediates oxaloacetate and a-ketoglutarate due to
increasing demands of these precursor molecules for amino acid and nucleotide
biosynthesis with faster growth [58].

Recent reviews [67—70] have concluded that time-course analyses of bacteria and
yeast reveal large differences between mRNA and protein expression changes in
perturbed non-steady state batch cultures, indicating considerable post-transcriptional
(post-TR) regulation. Notably, the only E. coli steady state data set with simultaneous
transcript and protein profiling, though for only 56 genes, shows correlations up to R =
0.4 (Pearson correlation coefficient) between mRNA and protein changes with rising pt
[4]. The different results between non-steady state and steady state cultures highlights
the need for a more global analysis at both levels in steady state conditions to
investigate if the state of the culture could be an important factor in mRNA-protein
correlation analysis and for understanding the relevance of post-TR regulation.

1.3. Acetate overflow metabolism of Escherichia coli

As stated above, the main by-product for wild-type E. coli acrobic cultivations is acetic
acid [4-10,31-34]. Acetic acid exerts its toxicity by uncoupling the transmembrane pH
gradient and acidifying the cytoplasm [71-73]. In addition to being detrimental for
recombinant protein synthesis, acetate interferes with methionine biosynthesis and its
accumulation diverts valuable carbon from biomass formation and inhibits growth even
at as low concentrations as 0.5 g/L [15,74-78].

Acetate excretion into the growth environment is also termed acetate overflow and
it is known to be p-dependent with no excretion at slow and high excretion at fast
growth [4-10,31-34]. Acetate overflow metabolism has been studied widely over the
years and it is generally believed to be caused by an imbalance between substrate
uptake and anabolic/catabolic throughput of downstream pathways [79,80]. Several
explanations propose limitations in respiratory capacity [31,32,79], TCA cycle
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throughput [81,82], energy generation [10,72], activity of the GS [33,83], necessity for
coenzyme A replenishment [84] or membrane space [85]. Numerous attempts at
process and genetic levels have been tried to diminish acetate overflow (reviewed in
[86]). Notably, deletion of the main synthesis pathways phosphotransacetylase-acetate
kinase (PTA-ACKA) and pyruvate oxidase (POXB) [72] reduce acetate overflow but
result in several detrimental trade-offs: reduction of p and biomass yield (Yxs), and
substantially elevated carbon loss into lactate and formate [29,76,87-90]. This shows
that acetate overflow cannot be simply avoided by removing the main synthesis
pathways. It is actually not surprising that acetate overflow cannot be totally abolished
with this approach as down-regulation of the main acetate synthesis pathway genes is
observed in chemostats before the start of acetate overflow [4-6,33]. In conclusion,
none of the general theories or process/genetic efforts has been able to unequivocally
explain the mechanism and regulation behind acetate overflow.

Interestingly, a theory for acetate overflow in Saccharomyces cerevisiae proposes
that acetate accumulation is the result of insufficient acetyl-CoA synthetase (Acs)
activity for the complete functioning of the pyruvate dehydrogenase bypass because of
glucose repression of Acs at high p [91]. It seems that this theory could also be relevant
in E. coli since acetate overflow starts at a lower p in an E. coli acs knockout strain
compared to wild-type [33]. Although, no clear conclusions can be drawn from
literature data with single over-expression of acs [33,92], its over-expression together
with deletion of GS repressors ic/R and fadR reduces acetate excretion in batch cultures
[33]. Furthermore, similar to S. cerevisiae, CCR [65,66] is responsible for repression of
Acs activity in E. coli with rising p [4-6] since acetate is an alternative carbon source
to glucose. The theory that CCR-mediated repression of acs could trigger acetate
overflow is supported by the observation that an E. coli knockout strain of crp (a
central player in CCR of E. coli through activating expression of catabolic genes such
as acs in complex with cyclic AMP (cAMP) [65,66,93]) accumulates acetate also at
low p where wild-type does not [7,94]. Moreover, E. coli CRP* mutants that do not
require Crp binding to cAMP to activate the expression of catabolic genes showed ~4-
time higher acs expression and secreted substantially less acetate in xylitol producing
batch fermentations [95]. Of course, other mechanisms can be involved in Acs
repression, as, for example, an E. coli cra knockout strain shows increased acetate
production rates [96]. Still, it can be concluded that after decades of studies, the
mechanism and regulation behind acetate overflow metabolism of E. coli still remain
unclear.

1.4. Absolute quantitative —omics analyses

With the recent rapid advances in high-throughput —omics analyses such as
transcriptomics and proteomics [68], analysis of cell metabolism at absolute
quantitative levels—molecules per cell or intracellular concentrations—has become a
reality. The importance of absolute quantification can be illustrated by the following
example: if a cell increases expression of protein X 10-fold as a response to an
environmental perturbation, it does not necessarily mean that the energetic and
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expression load of protein X on metabolism is more significant than that of protein Y
which is up-regulated only 2-fold. This is because the real metabolic load of protein
expression is determined also by the protein amount and that metabolic load would be
much higher for protein Y if its abundance is 10-fold higher than that of protein X.
Furthermore, since translation is believed to be the rate-limiting process for faster
growth, at least in E. coli [97], it is highly relevant to analyze the allocation principles
of proteome resources for understanding p-dependent metabolic regulation [97,98].

Simultaneous absolute quantification of mRNA and protein levels allows to
generate protein-per-mRNA ratios (pm) which estimate translation efficiencies and
changes in pm values inform about the level of gene expression regulation (e.g. TR,
post-TR) either through protein translation or degradation [69]. Interestingly, abundant
proteins seem to be translated more efficiently than those of low abundance [99,100].
Translation efficiency can be maximized through codon bias i.e. non-random
occurrence of codons for coding amino acids [67,101], which shows genome-wide
correlation with protein expression levels [102—-107]. In addition, coupling absolute
proteome quantification with protein turnover measurements [99,108] opens a new
dimension for metabolic engineering of superior cell factories as different
routes/pathways to the target product can be evaluated in terms of their translational
load and effects of protein re-synthesis costs on energy homeostasis.

Genome-wide absolute quantification of transcriptome and proteome has been
carried out for several microorganisms in batch cultures: proteome in E. coli
[102,104,105,109] and simultaneous transcriptome and proteome in E. coli [110],
Bacillus subtilis [111], Mycoplasma pneumoniae [108] and yeast [100]. However,
batch cultures do not reflect steady state physiology as highlighted above. The only
absolute quantitative studies conducted in steady state continuous cultures of E. coli, to
the best of our knowledge, are those of genome-wide transcriptome [40] and
simultaneous quantification of concentrations of 56 transcripts and proteins [4] at
various p. The latter study shows correlations of R ~ 0.8 between mRNA and protein
concentrations. Despite these studies, we still miss p-dependent genome-wide absolute
quantitative mRNA and proteome data for E. coli. This data is valuable for a better
quantitative understanding of cellular processes at whole-cell level [13,14] and for
novel whole-cell modeling approaches where cell metabolism is simulated also as a
function of p [112-115].

1.5. Systems biology study of metabolism

Most biological studies look at a specific aspect or layer of metabolism. However, to
achieve a more systems level (whole-cell) understanding of physiological processes
and metabolic regulation, a systems biology approach of integrating transcriptome,
proteome and fluxome data coupled to models of different levels of detail is needed
[14,68,116,117]. An effort to capture a whole-cell snapshot of both the components
and the interactions between them is a tremendous challenge, but as understanding of
both the regulation levels of protein and flux levels and other molecular relationships
enabling the cells to modify p is of instrumental importance towards a more complete
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description of the control principles of cell metabolism [13,14], more accurate
modeling [112—115] and successful biotechnology and synthetic biology efforts [17],
genome-wide absolute quantitative multi-omics analysis in one study is highly needed.

Although several research groups have recently approached this challenge in
various microorganisms [108,111,118-121], each study either lacks one necessary
layer or the cells were not cultivated in steady state cultures. Similarly, many p-
dependent cellular global relationships have been determined in E. coli non-steady
state batch cultures [55] and at single layers of transcriptome [5—8,40] or fluxome [7—
9,28] in continuous cultures. There is one landmark study of E. coli, however, which
captures all the —omics levels at various p in steady state chemostat cultures [4]. Still,
this seminal work lacks a proteome-wide view as p-dependent patterns were
determined for only 56 proteins. Thus there is still a need for a study which captures p-
dependent global responses of absolute quantitative transcriptomes and proteomes of E.
coli together with flux analysis, potentially leading to elucidation of the complex
control principles of metabolism at whole-cell level.

One very interesting question what such integrated systems biology studies of
metabolism could address is: at which regulation levels of the gene expression cascade
are protein and flux levels controlled (e.g. TR, post-TR, translational (TL)) in different
metabolic pathways for achieving higher flux throughput and faster growth?
Determination of metabolic flux control levels is especially important for
understanding regulation of metabolism since they represent the integrated response of
all levels of cellular regulation [41]. Gene expression regulation of enzyme and
following metabolic flux levels is not straightforward: enzyme abundance can be
regulated through different regulation of mRNA and protein degradation, protein
translation, post-TL modification, possible functional requirement for protein binding
[67-70]; flux throughput by post-TL regulation of the catalyzing enzyme (either
through chemical modification or allosteric regulation) or change of its catalytic rate
through hyperbolic change of enzyme kinetics solely due to substrate concentration
changes [122].

Although we are missing information regarding p-dependent control levels of
protein and fluxes in E. coli, recent data uniformly reveal predominant post-TR
regulation of protein abundances in bacteria with very different growth characteristics:
M. pneumoniae [108], B. subtilis [111] and Lactococcus lactis [123]. Hierarchical
regulation analysis has mainly been used as the methodology for determining to which
extent a change in a particular flux is regulated at gene expression or post-TL levels
[124]. Most of the studies implementing this approach have studied yeast and
concluded that fluxes through glycolytic and fermentative pathways are mainly
regulated at the post-TR level (reviewed in [125]). Notably, the only p-dependent data
set shows predominant post-TL control of fluxes in L. /actis continuous cultures [123].
Indeed, it has been concluded that changes in metabolic flux patterns are not a
straightforward consequence of TR regulation of enzyme levels [116,122,126,127]. In
conclusion, a comprehensive systems biology study is needed to unequivocally
determine the regulation levels of protein and flux levels through which E. coli
achieves higher flux throughput and faster growth.
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Important parameters for whole-cell modeling and kinetic analysis of metabolism
are the catalytic rates of enzymes (k). However, a notable problem with the currently
used keat values is that they are derived from in vitro enzyme assays which might not
reflect the situation in vivo [128], even if specially developed in vivo-like medium is
used in the assay [129]. This is where absolute quantitative systems biology can help:
apparent in vivo catalytic rates for enzymes (ki) can be estimated by directly
measuring both the enzyme concentration and the flux through the enzyme by coupling
proteome and fluxome analyses. This approach has been applied to estimate ka,p, values
in E. coli [109] and M. pneumoniae [130] batch cultures and p-dependent values in L.
lactis continuous cultures [123].

In addition to the multi-omics experimental part, computational modeling is equally
important for a systems biology study since large-scale data sets are very challenging
to analyze without special tools. The above-mentioned rapid advances in high-
throughput genome-wide —omics analyses further drives the innovation of modeling
approaches by providing new data at unprecedented scale. Integration of multi-omics
data with genome-scale metabolic models has recently produced totally novel whole-
cell modeling frameworks [112,113,115]. These modeling approaches already have
[131] and will further accelerate biological discovery while also contributing to
metabolic engineering of cell factories with totally novel functions [132—135].
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2. AIMS OF THE THESIS

The main aim of this thesis is to comprehensively and fully quantitatively characterize
specific growth rate (u)-dependent multi-level dynamics of steady state metabolism of
the most-studied bacterium Escherichia coli using a systems biology approach by
coupling absolute quantitative multi-omics analyses with advanced continuous
cultivation and computational methods.

More specific aims are as follows:

I

11

111

v

High-resolution description of E. coli p-dependent carbon balance, metabolic
flux patterns and regulation of energy metabolism in steady state.

Gain new insights into the regulation of acetate overflow metabolism in E. coli
and utilize this knowledge to engineer strains with reduced carbon wasting into
acetate.

For the first time, determine p-dependent genome-wide mRNA and protein
abundances and concentrations, and their dynamics with rising p in E. coli.

Determine at which regulation levels of the gene expression cascade is control of
protein abundances and metabolic fluxes realized in E. coli for achieving higher

flux throughput and faster growth.

Estimate apparent in vivo catalytic rates for E. coli enzymes by coupling absolute
quantitative proteomics and flux analysis.
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3. MATERIALS AND METHODS

Detailed descriptions of materials and methods are available in the publications
forming this thesis. The following brief sections are provided to make the thesis more
accessible to the reader.

3.1. Bacterial strains
Escherichia coli K-12 strains were used in cultivation experiments as follows:

Publication I, II and IV - E. coli K-12 MG1655 (A- F- rph-1 Fnr+; Deutsche
Sammlung von Mikroorganismen und Zellkulturen (DSMZ), DSM No.18039)

Publication III - E. coli K-12 BW25113 (lacl? rrnB3 AlacZ4787 hsdR514
A(araBAD)567 A(rhaBAD)568 rph-1) and its single-gene knockout strains—Aacs,
Apka, AcobB, AarcA—originate from the Keio collection [136]. The single acs and acs
over-expression in Apka background (Apka acsOE), and Apka AarcA double-knockout
strains were constructed in the BW25113 background as described in Publication II1.

3.2. Growth medium

In all accelerostat (A-stat) experiments, cells were grown in defined minimal medium
supplemented with 4.5 g/L glucose with the following composition (g L™"): FeSO, x
7H,0 0.005, MgS04 x 7H,0 0.5, MnSO4 x 5H,0 0.002, CaCl, x 2H,0 0.005, ZnSO4
x 7TH,0 0.002, CoSO4 x 7H,0 0.0006, CuSO4 x 5H>0 0.0005, (NH4)sM07024 x 4H,0O
0.0026 were dissolved in 50 ml SM HCI; N-source — NH4ClI 3.5 and buffer — K;HPO4 2
were autoclaved separately and mixed together afterwards. In addition, 100 or 200 ul/L
of foam removing agent Antifoam C (Sigma Aldrich, St. Louis, MO, USA) was used.

The latter was also used as the main cultivation medium in dilution rate stat (D-stat)
experiments. The same medium additionally supplemented with acetic acid (final
concentration 5 mM) was used in one two-substrate A-stat experiment and as the
second medium in D-stats to study acetate consumption capability.

3.3. Continuous cultivation conditions

Glucose-limited continuous cultivations were carried out at 37 °C, pH 7 and aerobic
conditions ensured by agitation of 800 rpm and air flow rate of 150 mL/min. A-stat [3]
cultures were stabilized in chemostat to achieve steady state either at dilution rate (D)
0.1 or 0.2 h™" after which the A-stat phase was started with a continuous increase of D
using acceleration 0.01 h™%. The control algorithm for A-stat was: D = Dy + ap X t,
where Dy is the initial D of chemostat (h™"), ap is the acceleration of D in the A-stat
phase (h™?) and t is the time from the start of A-stat (h).

E. coli K-12 wild-type strains were cultivated in four and three independent A-stat
experiments in Publications III and I, respectively. E. coli K-12 MG1655 was also
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cultivated in one two-substrate A-stat in Publication 1. E. coli K-12 BW25113 mutant
strains AarcA and Apka AarcA were cultivated in two while other BW25113 mutants in
one independent A-stat experiment in Publication III. In D-stats, E. coli K-12 MG1655
was cultivated at D = 0.1; 0.24; 0.30; 0.45 and 0.51 h™" in four and two independent
experiments, respectively. D-stats at D = 0.19 and 0.40 h™' were single experiments.

Cultivations were operated with a ~300ml working volume in 1.25 L Biobundle
bioreactors (Applikon Biotechnology B.V., Schiedam, the Netherlands) controlled
either by an ADI 1030 or ez-Control biocontroller (Applikon Biotechnology B.V.) and
either a cultivation control program “BioXpert NT” or “BioXpert XP” (Applikon
Biotechnology B.V.). The system was equipped with OD, pH, pO,, off-gas CO; and O,
and temperature sensors.

Growth characteristics were calculated on the basis of total volume of medium
pumped out from bioreactor (L), biomass (gram dry cellular weight (gDCW)/L),
organic acid and glucose concentrations in culture broth and medium (mM), and CO»
and O concentrations in the outflow gas (mM). Detailed description of A-stat and D-
stat cultivation systems together with control algorithms and formulas used to calculate
growth characteristics can be seen in [137].

D-stat experiments in this thesis were carried out slightly differently from the
classical D-stat [137] by using two growth media (the main and the second medium;
see above) instead of smoothly changing an environmental parameter. Acetate
consumption capability was studied in these D-stats by increasing the feed rate of the
glucose and acetate-supplemented medium (second medium) while decreasing that of
the glucose-supplemented medium (main medium) after steady state had been achieved
in chemostat on the latter medium. This scheme maintained a constant D and glucose
concentration in the total feed.

3.4. Analytical methods
3.4.1. Biomass concentration and cell count determination

Biomass concentration in culture broth (X) expressed as gDCW/L was determined
gravimetrically either with the filtration or centrifugation method described in detail in
Publication III and [6], respectively. Coefficient of wvariation (CV) for the
determination of X with these methods between technical replicates was <2%.
Simultaneous measurement of X and optical density (at 600 nm) of culture broth (OD)
was done with high resolution of specific growth rate (p) to determine a reliable
correlation factor (K; K = X / OD) dependence on OD and p, so that X could be
accurately calculated also for p values where X was not directly measured.

Cell counts were measured by incubating five replicate LB-agar plates at 37 °C for
~11-12 h and expressed as CFU ml ™', equivalent to cell ml ™",

30



3.4.2. Exo-metabolome analysis

Samples of culture broth were centrifuged (14,000 x g for 5 min), and the supernatant
was collected and analyzed for glucose and organic acids by HPLC (Alliance 2795
system, Waters Corporation, Milford, MA, USA) using either a Bio-Rad HPX-87H
Aminex ion-exclusion (Bio-Rad Laboratories, Inc., Hercules, CA, USA) or Agilent Hi-
Plex H (Agilent Technologies, Santa Clara, CA, USA) column connected to RI and UV
detectors (35 °C, flow rate 0.6 mL/min). The column was eluted with 4.1 mM
sulphuric acid for glucose, carbamoyl-aspartate (CBASP), lactate and orotate and with
26.5 mM formic acid for acetate, dihydroorotate (DHO) and acetyl-aspartate (NAA)
analysis.

3.4.3. Transcriptomics

Genome-wide transcriptome analysis for 4,321 transcripts was conducted in one A-stat
experiment with six technical replicates for reference sample at u = 0.11 h™! using
Agilent DNA microarrays producing gene expression ratios between p = 0.21; 0.26;
0.31; 0.36; 0.40; 0.48 h™" and 0.11 h™' (chemostat point prior to the A-stat phase) (GEO
reference series: GSE23920). In short: after sampling, RNA degradation was halted,
total RNA extracted, cDNA synthesized and labeled and hybridized; slides were
scanned and data was processed in the R environment using global lowess
normalization.

Absolute quantification of transcriptomes (molecules per cell or per fL of biomass)
at p = 0.11; 0.21; 0.31; 0.40; 0.48 h™' was performed on the basis that oligo spot
intensities of the Agilent platform can be used as a proxy for mRNA abundances, since
spot intensities and mRNA abundances correlate perfectly (R* = 1.00; see Figure 6 in
Agilent Application Note 5989-9159EN). In short: average spot intensities were
summed corresponding to the total amount of mRNA which was converted to unit g
total mRNA per gDCW by determining p-dependent total RNA% in DCW (Table S1
in Publication IV) using the RNeasy Mini Kit (QIAGEN, Valencia, CA, USA) and
assuming mRNA content in total RNA to be 5% [138,139]; mRNA molecule numbers
in gDCW were calculated by the fraction of each mRNA’s spot intensity from the
summed spot intensities taking into account the molecular weight of each mRNA.
Finally, mRNA abundances (molecules per cell) and concentrations (molecules per fLL
of biomass) were calculated from the previous values based on determined p-
dependent biomass concentration and cell counts in the culture broth, 30% dry fraction
of wet biomass [140—142] and cell buoyant density of 1 g ml™' to estimate cell volume.

3.4.4. Proteomics
Proteome analysis in Publication I based on '“N-labelling and LC-MS/MS was
conducted in two independent A-stat experiments producing protein expression ratios

for around 1,600 proteins between p = 0.20 £ 0.01; 0.26; 0.30 + 0.01; 0.40 £ 0.00; 0.49
£+ 0.01 h™" and 0.10 = 0.01 h™' (chemostat point prior to the A-stat phase) (PRIDE
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accession numbers 12189-12199). In short: samples were flash frozen in liquid
nitrogen, total protein extracted, sample at each p was pooled together in equal
amounts with '’N-labelled E. coli biomass (‘internal standard’) and separated on gel
followed by protein digestion with trypsin, peptide extraction and LC-MS/MS analysis.
Protein expression ratios between A-stat samples and chemostat reference point at p =
0.10 £ 0.01 h™! were calculated through ratios between each cultivation sample and the
‘internal standard’. Proteins were identified and quantified for each p at a >95%
confidence interval in average from 89,303 distinct two or more high-confidence
peptides with a Mascot score >20.

Absolute quantification of proteomes (molecules per cell or per fL of biomass) was
performed in two independent A-stat experiments for 1,185 proteins in chemostat
reference points at i = 0.11 h™' using the label-free iBAQ quantification approach [99]
and published in [143]. In short: a cultivation sample was pooled together with the
Universal Proteomics Standard (UPS2; Sigma-Aldrich), which is a mixture of proteins
with known amounts, differing in size and concentrations, followed by protein
digestion, extraction and LC-MS/MS analysis. Protein concentrations in chemostat
samples were determined using precursor ion current areas and UPS2 standard curve.
Finally, intracellular protein abundances (molecules per cell) and concentrations
(molecules per fL. of biomass) were calculated from the previous values based on
determined p-dependent biomass concentration and cell counts in the culture broth,
30% dry fraction of wet biomass [140-142] and cell buoyant density of 1 g ml™' to
estimate cell volume.

Absolute quantification of proteomes (molecules per cell or per fL. of biomass) in
Publication IV for p = 0.20; 0.30; 0.40; 0.49 h™! was carried out based on absolute
quantification at u = 0.11 h™' and relative protein expression data described above
based on determined p-dependent biomass concentration, cell counts and total
protein % in DCW (Table S1 in Publication IV) measured by the Lowry method [144],
30% dry fraction of wet biomass [140-142] and cell buoyant density of 1 g ml™' to
estimate cell volume.

Details of proteome analysis conducted in Publication III can be found in the latter
publication.

3.5. Metabolic flux analysis

Metabolic flux analysis (MFA) was conducted using a simplified metabolic network
taking into account the central carbon metabolism pathways—glycolysis, pentose
phosphate pathway (PPP), tricarboxylic acid (TCA) cycle—, a part of the pyrimidine
pathway (to include CBASP, DHO and orotate) and the NAA synthesis reaction
(Figure S1 in Publication II). The reconstructed network converted into a fully
determined and calculable stoichiometric matrix consisting of 24 metabolites and 50
fluxes (24 unknown, 1 measured inflow, 7 outflow and 18 calculated fluxes based on
biomass composition and stoichiometries of anabolic pathways) taking into account
ATP, NADH and NADPH stoichiometry. A constant P/O = 2 not dependent on p was
assumed in the calculations. We also determined p-dependent biomass composition:
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RNA as described above; amino acids with UPLC [145]; lipids with an UPLC-MS
method [51] and polysaccharides based on lipids data (Table S1 in Publication II).
DNA content was taken from [55], ash and residual water in dry biomass were
calculated as residual of the latter. The only difference between MFA conducted in
Publications I and III was that oxaloacetate or pyruvate, respectively, was set as the
missing carbon outflow flux not identified experimentally. Refer to Additional file 2 in
Publication II for MFA details.

3.6. Covariance analysis

Apparent in vivo catalytic rates of enzymes (Kapp, S ') were calculated for 191 metabolic
enzymes associated with catalyzing the fluxes calculated by MFA and 52 ribosomal
proteins assuming each protein chain being catalytically active. Proteins were assigned
to fluxes according to the EcoCyc database [64]. The sum of all amino acid synthesis
fluxes was used as the flux catalyzed by ribosomal proteins. k., values were calculated
as follows:

specific flux rate; o N, x 0.3

kappi -

protein; 1012

where specific flux rate; (mol/gDCW/s) is the flux catalyzed by protein; (molecules/fL
of biomass), N, is the Avogadro number (~6.02 x 10%), 0.3 is dry fraction of one gram
of wet biomass [140-142] and 10'* is the conversion factor from fL to g assuming a
buoyant density of 1 g ml™".

We used covariance analysis to determine the relevant most and least costly
proteins using protein synthesis cost (nATP; see below for calculation) over the whole
range of p and for statistically determining the regulation levels (e.g. transcriptional
(TR), translational (TL)) as it describes both the direction and magnitude of mRNA,
protein and flux changes with increasing p making it a suitable statistical method for
analysis of absolute quantitative data.

Covariance (COV) was calculated according to the following formulas:

for nATP as:

n
1 -
COVnarp = —— > (ATP; = nATP) (u; — )
i=1

for gene expression regulation analysis at protein and mRNA level (pm) as:

1
n—1

i

COVy = (prot;/mRNA; — prot/mRNA)(u; — i0)

n
=1
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for gene expression regulation analysis at specific flux rate and protein level (Kapp) as:

n

1 _

COVi,py = mZ(spec flux; /prot; — spec flux/prot)(ui — Q)
i=1

where mRNA, prot and spec flux represent mRNA and protein concentrations, and
specific flux rates measured at their respective p.

nATP was calculated according to formula:
XnaTP = Xprot X (Xnaa — 1) X 4.306

where Xprot 18 the protein concentration measured at the respective [, Xnaa is the number
of amino acids in the protein and 4.306 represents the cost of polymerization of one
amino acid into the growing peptide chain by the ribosome in ATP [55].

Refer to Publication IV for details of covariance analysis. In short: in addition to
determination of COV values, uncertainty values of COV were calculated for the
statistical hypothesis testing using one-sided Z-test of covariance values being
statistically different or not different from zero. The significance threshold was set to
0.05 and tests were also subjected to false discovery rate (FDR) filtering at level a =
0.05 according to the Benjamini—Hochberg method [146].

According to the results of Z-test, genes were divided into three groups. One group
corresponded to genes with a covariance value statistically higher than zero. In gene
expression regulation analysis, these genes’ expression regulation level is referred to as
post-TR or TL for control of protein levels, and post-TL for control of flux levels. The
second group corresponded to genes with a covariance value equal to zero at the
statistically significant level. In gene expression regulation analysis, these genes’
expression regulation level is referred to as TR for control of protein levels, and TL for
control of flux levels. The rest of the genes (not included in the first two groups) were
described by such a high uncertainty level of covariance that it was impossible to
determine their nature towards zero.

34



4. RESULTS AND DISCUSSION

The results of this systems biology study of specific growth rate (p)-dependent
metabolism of Escherichia coli are presented and discussed in the following six
sections organized by topic.

4.1. Macroscopic growth characteristics (Publications I and II)
4.1.1. Characterization of metabolic switch-points

We chose to analyze p-dependent metabolism of E. coli by cultivating the cells in
accelerostat (A-stat) cultures [3] which allows to study the cells in strictly defined
physiological states determined by controlled growth conditions and describes steady
state physiology equally to chemostat [20—-26]. Moreover, A-stat enables to collect vast
amount of data in short time to monitor the dynamics of metabolism with very high
resolution and precisely detect metabolic switch-points (e.g. start of acetate overflow).

E. coli K-12 MG1655 was grown in three independent A-stat experiments on
defined minimal medium supplemented with 4.5 g/L glucose under aerobic conditions
at 37 °C and pH 7. Glucose-limited cultures were first stabilized in chemostat at
dilution rate (D) = 0.1 h™' to achieve steady state conditions after which the A-stat
phase was started with a continuous increase of D using acceleration 0.01 h™2.
Continuous increase of p (u = D in steady state) enabled to detect several important
changes in E. coli metabolism until cells could not keep up with the rising D after
achieving maximum specific growth rate (imax) at 0.54 £ 0.03 h™' (average + standard
deviation; n = 3), resulting in culture washout (Figure 1).

Cells reached maximum specific CO, production (qcoz2) and O, consumption rates
(qo2) at p=0.46 + 0.02 h™" after which metabolic fluctuations were observed until fimax.
The nature of these fluctuations was not studied in much detail but simultaneous and
inverse fluctuations to CO; in residual glucose levels were detected as well. We were
successful in precisely detecting the metabolic switch-point of metabolism shifting
from fermentative to respire-fermentative growth—start of acetate overflow
metabolism—at p = 0.27 + 0.02 h™' (see arrow in Figure 1). Interestingly, the high-
resolution A-stat data also detected a two-phase acetate accumulation profile: slow
accumulation started at p = 0.27 £+ 0.02 h™! with concomitant change in qco, while
faster accumulation of acetate commenced after cells had reached maximum qcoz at p
= 0.46 £ 0.02 h™'. The latter correlation between acetate and CO, fluxes can be
explained by the fact that less acetyl-CoA is available to enter the tricarboxylic acid
(TCA) cycle if carbon is lost into acetate. Notably, the faster accumulation phase of
acetate was preceded by a sharp decline of the important carbon catabolite repression
(CCR) signaling molecule cyclic AMP (cAMP) (Figure 1). It was interesting to detect
the dynamics of cAMP with rising u together with the acetate profile as cAMP could
play a role in the regulation of acetate overflow (see Acetate overflow metabolism for
details).
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Figure 1. Specific growth rate-dependent E. coli K-12 MG1655 metabolism characterization
in one A-stat cultivation. D, dilution rate; X, biomass concentration (gram dry cellular weight
(eDCW)/L); u, specific growth rate;, qcos specific CO: production rate; OAc™, acetate
concentration; Glc, glucose concentration; cAMP, cyclic AMP concentration. Arrow indicates
the start of acetate overflow. Start of vertical axes was chosen for better visualization.

As expected, the specific glucose consumption rate (qgc) increased proportionally
with rising p (R* = 0.99) from 1.47 + 0.07 to 6.35 + 0.13 mmol/(gram dry cellular
weight (gDCW) h) from p = 0.11 to 0.47 h™', respectively. This also means that the
biomass yield on glucose (Yxs) was constant at 0.41 £ 0.01 gDCW/g glucose
throughout the studied range of p.

4.1.2. Detailed analysis of exo-metabolome and carbon balance

We noted that although the total carbon flow from glucose to the ‘well-known’
products of biomass, CO», acetate and lactate almost closed the carbon balance at slow
growth (~97%), their fraction from the carbon balance decreased with rising p and
covered only ~82% near pumax. As there were no indications that the measurement
accuracy of these compounds could worsen with increasing ., the latter phenomenon
hinted that cells might increasingly divert carbon to other by-products with faster
growth. Indeed, evidence for this came from carefully studying the HPLC
chromatograms which revealed several unknown peaks increasing at faster growth. We
were able to identify these peaks using HPLC-MS as orotate, dihydroorotate (DHO),
carbamoyl-aspartate (CBASP) and acetyl-aspartate (NAA) based on the m/z values
observed for each peak and literature survey [36,37].

Accumulation of the pyrimidine pathway compounds—orotate, DHO and
CBASP——can be explained by the E. coli K-12 MG1655 genotype. This specific strain
is prone to pyrimidine starvation due to an rph frameshift mutation leading to low pyrE
(encodes PyrE protein which catalyzes orotate conversion into orotidine-5-phosphate)
expression [147], which could possibly lead to accumulation of pyrimidine pathway
precursor molecules which all the latterly mentioned compounds are (Figure 2). This

36



was proven by chemostat experiments using medium supplemented with uracil as it
almost completely abolished accumulation of pyrimidine pathway intermediates (data
not shown).

TCA cycle e » Carbamoyl-P P,
pyrB
Aspartate
CBASP
pyrC
E. coli K-12 MG1655 rph frameshift mutation
low expression l DHO
pyrD
Pyrimidine pyrE
. < Oro-5P «——— Orotate

synthesis 5pp
Figure 2. rph frameshift mutation triggered accumulation of pyrimidine pathway precursor
compounds in E. coli K-12 MGI1655. Carbamoyl-P, carbamoyl-phosphate; CBASP,
carbamoyl-aspartate; DHO, dihydroorotate; Oro-5P, orotidine-5-phosphate; TCA cycle,
tricarboxylic  acid cycle;, PPP, pentose phosphate pathway, pyrB, aspartate
carbamoyltransferase; pyrC, dihydro-orotase; pyrD, dihydro-orotate oxidase; pyrE, orotate
phosphoribosyltransferase. Gene names are in italic.

Although excretion of these pyrimidine pathway intermediates by E. coli has been
observed before [4,36,37], these carbon wasting outflows are generally not taken into
account in metabolic flux analysis (MFA) studies. Thus the metabolic network with the
missing outflows is not completely accurate possibly leading to questionable
conclusions. Therefore, determination of p-dependent carbon wasting profiles of these
pyrimidine pathway intermediates is important for more accurate description of
metabolic regulation.

Excretion of pyrimidine pathway intermediates during increase of i was detected in
three phases (Figure 3). DHO and CBASP accumulated increasingly up to the start of
acetate overflow. After this, DHO started to decline whereas orotate and CBASP
leveled off until their levels started to rise again simultaneously (Figure 3) with the
sharp decrease of cAMP and faster accumulation of acetate (Figure 1). This rise could
be explained by the high demand for RNA synthesis at higher p which leads to
precursor molecule accumulation because of the low pyrE expression. These
observations demonstrate a strong link between acetate overflow and carbon wasting
into other products. It seems probable that this CBASP-DHO-orotate bottleneck can
lead to the excretion of NAA since oxaloacetate is over-produced in the TCA cycle and
this excess carbon cannot be shunted towards the pentose phosphate pathway (PPP).

Quantification of these additional carbon wasting outflows increased the accuracy
of MFA (see Flux dynamics) and a possible limitation of pmax by RNA synthesis
through precursor accumulation and carbon wasting due to the E. coli K-12 MG1655
genotype proposes a way how to increase pmax and Yxs which is relevant for the
biotechnology industry.
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Figure 3. Specific growth rate-dependent dynamic carbon wasting profiles in three E. coli K-
12 MG1655 A-stat cultivations. y, specific growth rate. O, production of compound per
biomass (mmol/gram dry cellular weight (gDCW)): CBASP, carbamoyl-aspartate (green
triangle); DHO, dihydroorotate (blue diamond); orotate (red square); OAc™, acetate (orange
circle). Grey arrow denotes acetate overflow switch with concomitant stop of DHO and CBASP
increase whereas black arrow depicts faster acetate accumulation coupled induction of orotate
and CBASP excretion. Error bars represent standard deviation of triplicate A-stat experiments.

Detailed carbon balance analysis in A-stat showed that 47.2 + 0.8% of carbon was
used for biomass synthesis throughout the studied range of p while the fraction of
carbon used for CO; production decreased with rising p from ~49% to ~29% (Figure 4).
Importantly, inclusion of the previously non-accounted by-products orotate, DHO,
CBASP and NAA clearly improved the carbon balance throughout the studied range of
p as the carbon balance became fully closed at slowest and reached ~87% at faster
growth. The latter still points to loss of carbon into some other not detected compounds.
In detail, total carbon wasting into by-products (excluding CO,) increased from 3 to
11% from the carbon balance comparing p = 0.11 to 0.47 h™' (Figure 5). Acetate
quickly became the main excreted compound after the start of acetate overflow.

.26 .31
)

Figure 4. Specific growth rate-dependent carbon balance in three E. coli K-12 MG1655 A-
stat cultivations. u, specific growth rate. Carbon recovery % in carbon balance into: biomass
(blue); CO; (green); sum of carbon wasting into acetate, lactate, orotate, carbamoyl-aspartate,
dihydroorotate and acetyl-aspartate (red). Error bars represent standard deviation of triplicate
A-stat experiments.
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Carbon wasting % in carbon balance

Figure 5. Specific growth rate-dependent dynamic carbon wasting profiles in three E. coli K-
12 MG1655 A-stat cultivations. u, specific growth rate. Carbon wasting % in carbon balance
into: acetate (red); lactate (orange); acetyl-aspartate (green); orotate (grey); dihydroorotate
(blue); carbamoyl-aspartate (violet). Error bars represent standard deviation of triplicate A-
stat experiments.

4.1.3. A-stat reproducibility and comparison with chemostat

Our three A-stat cultures were highly reproducible, evidenced by the less than 10%
variation among the detected switch-points and other macroscopic growth
characteristics highlighted above (Table 1). Also the protein concentrations and their p-
dependent dynamics in two independent A-stat cultures showed high reproducibility
(see below).

Table 1. A-stat reproducibility and comparison of A-stat and chemostat growth
characteristics

p=024h"' p=030h" pu=040h" p=051h" K =0.10-0.47 h”
Chemostat A-stat Chemostat A-stat Chemostat A-stat Chemostat A-stat A-stat RSD, %
Yxs® 044 040 + 0.01 046 041 £ 001 044 042 + 0.00 043 041 £ 0.01 20
YOA(.b NDE NDE 0.53 090 £ 032 1.70 156 + 023 325 335+ 082 ND
Y eanp” 347 359 + 039 325 355 +032 270 217 £ 007 0.86 071° 9.1
szd 2756 3012 £ 204 27.55 2719+ 1.22 26.24 2386 + 141 ND 2119 £ 019 56

A-stat values represent the average of three independent experiments and standard deviation
follows the * sign. Chemostat values from one experiment. u, specific growth rate. NDE, not
detected. ND, not determined. RSD, relative standard deviation. ¢, biomass yield (gram dry
cellular weight (gDCW)/g glucose). b, acetate production per biomass (mmol/gDCW). ¢, cAMP
production per biomass (mmol/gDCW). ¢, CO; production per biomass (mmol/gDCW).¢, data
from one A-stat experiment.

An important parameter in A-stat cultivations is the selected acceleration of D. If
the appropriate value is chosen, A-stat data could be considered to describe steady state
physiology equally to chemostat. The acceleration 0.01 h™* used in all A-stats reported
in this thesis yielded quantitatively comparable results with chemostat cultures at the
level of both macroscopic growth characteristics (Table 1 & Table 2), and
transcriptome and proteome levels (Figure S3 in Publication I and [25]). Thus all the
quasi steady state data of A-stat covered in this thesis can be considered to represent
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steady state physiology similar to chemostats, as also concluded before for different
organisms if the appropriate acceleration is chosen [20-26].

Table 2. Comparison of carbon wasting in A-stat and chemostat

p=010h" u=024h" p=030h" u=045h"
Chemostat A-stat Chemostat A-stat Chemostat A-stat Chemostat A-stat
Ocpasp 0188 0.139 + 0047 0089 0.218 + 0018 0.195 0.268 + 0026 0.188 0.299 + 0026
OpHo 0.131 0146 + 0021 0117 0.181 £ 0.043 0.091 0.135 £ 0029 0.065 0.078 + 0008
Qlactate ND 0021 + 0005 0034 0.041 + 0003 0034 0049 + 0006 0046 0059 + 0,002
Onaa ND ND 0006 ND 0034 0057 £ 0013 0069 0111 £ 0021
Ourotate 0091 0137 + 0047 0193 0.171 £ 0.041 0.115 0.171 £ 0037 0344 0.229 + 0012

U, specific growth rate. A-stat values represent the average of three independent experiments
and standard deviation follows the * sign. Chemostat values from one experiment. ND, not
detected. O, production of compound per biomass (mmol/gram dry cellular weight (gDCW)).
CBASP, carbamoyl-aspartate; DHO, dihydroorotate; NAA, acetyl-aspartate.

4.2. Metabolic flux dynamics and energy metabolism (Publication II)

To gain insights into p-dependent regulation of metabolic flux dynamics and energy
metabolism in E. coli, we conducted a simplified MFA to map carbon flows through
central carbon metabolism (CCM) with two advantages over classical MFA studies.
Firstly, we included the novel carbon wasting routes in our MFA obtained by detailed
carbon balance analysis which makes our MFA more accurate as the missing carbon is
usually accounted as a flux to a single excreted compound. Although the absolute
amount of these excreted substances in the carbon balance is not substantial (less than
5%), linking their accumulation dynamics to p and metabolic routes is relevant for
acknowledging the potential imbalance between pyrimidine metabolism, acetate
recycling and non-growth associated ATP production (see below). If orotate, DHO,
CBASP and NAA by-product outflows would be excluded from MFA and missing
carbon accounted solely as pyruvate outflow, pyruvate dehydrogenase (PDH), TCA
cycle and PEP carboxylase fluxes would deviate by 11, 24 and 60%, respectively, at p
= 0.47 h™' from the values calculated by our model (Table S6 in Publication II).
Secondly, rarely is biomass composition experimentally determined in MFA studies
but taken from the literature [4,9,27,39]. Furthermore, dependence of biomass
composition on growth conditions [27,39,51-53] is also neglected, and both of the
latter could possibly lead to distorted MFA results and equivocal conclusions.
Therefore, we experimentally determined p-dependent biomass composition of amino
acids, RNA, lipids and polysaccharides (Table S1 in Publication II). Inclusion of p-
dependent biomass composition in MFA was important as highlighted by up to a 15%
difference in flux values calculated using either p-dependent or constant biomass
composition (Table S2 in Publication II), also shown before by sensitivity analysis [52].

Our simplified fully determined metabolic network (Figure S1 in Publication II)
consisted of three main CCM pathways—glycolysis, PPP, TCA cycle—, a part of the
pyrimidine pathway (to include CBASP, DHO, orotate) and the NAA synthesis
reaction with 50 fluxes and 24 metabolites taking into account ATP, NADH and
NADPH stoichiometry.
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4.2.1. Metabolic flux dynamics

All specific flux rates increased with faster growth. However, to have a better
description of changes in carbon flow distribution within the metabolic network, we
compared fluxes in units of flux per biomass (mmol/gDCW). In addition to
quantitatively describing the flux magnitude per cell biomass, it also characterizes the
carbon flow through the flux relative to total consumed carbon in these experiments
since Yxs (gDCW/g glucose) varied only 2% over the range of u i.e. flux per biomass
is equivalent to flux per consumed carbon.

It is clearly seen from MFA that acetate overflow plays an important role in overall
flux patterns since major carbon flux re-distribution was initiated with the start of
acetate overflow at p = 0.27 £ 0.02 h™' with simultaneous change in qco> (Figure 1).
Acetate overflow reduced the carbon flow from glycolysis and acetate recycling in the
phosphotransacetylase-acetyl-CoA synthetase (PTA-ACS) node (see Importance of
PTA-ACS node) to acetyl-CoA and CCM, triggering the reduction of TCA cycle fluxes
(Figure 6). Decrease of TCA cycle throughput was also seen by the decline of the
proportion of CO, and NADH produced by the TCA cycle (Additional file 3 in
Publication II). Start of acetate overflow and reduction of TCA cycle throughput
subsequently led to the induction of PPP fluxes, reduction of glycolysis (Figure 6) and
ATP produced from it (Figure 8), most probably to meet the increasing NADPH
demands for higher RNA synthesis with faster growth [55-58]. Although the above-
mentioned E. coli p-dependent patterns of TCA cycle, glycolysis and PPP have also
been observed in general using glucose-limited chemostat cultures and “C-MFA
analysis [4,7-9], the switch-point in flux dynamics can exactly be captured only with
A-stat cultures.

An important branch point flux in CCM—PDH—reached its maximum throughput
at p = 0.42 h™! with concomitant slight increase in glycolysis fluxes also resulting in
accelerated carbon wasting into by-products (Figure 3 & Figure 6). In addition,
decrease of flux through pyruvate kinase (Pyk) with increasing PEP carboxylase (Ppc)
and Vprod (missing carbon outflow flux from oxaloacetate in our model) fluxes during
slow growth until the start of acetate overflow shows that some of the consumed
carbon was in excess and excreted as oxaloacetate through the Ppc flux (Figure 6).
These observations demonstrate a strong link between acetate overflow and carbon
wasting into other products.
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Figure 6. Metabolic flux, protein and mRNA dynamics in E. coli K-12 MG1655 central
carbon metabolism with rising specific growth rate in three A-stat cultivations. y, specific
growth rate. A. Flux or expression fold change (log2) is calculated for each u compared to u =
0.10 h™!; grey box depicts missing value; Acs flux was switched to Pta after u = 0.31 h™' in
MFA since acetate excretion exceeds its production accompanying biosynthesis. Error bars
represent standard deviation of triplicate A-stat experiments. B. Selected glycolysis, TCA cycle,
PPP, anaplerotic and acetate related fluxes.
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4.2.2. Energy metabolism

The part of unaccounted ATP in MFA calculations for the analysis of energy
metabolism is always an intriguing aspect. It is important to point out that we refer to
this imbalance between ATP production in catabolism and consumption for anabolism
as non-growth associated ATP production (ATP spilling; mmol of ATP/gDCW). We
use ATP spilling and avoid using terms maintenance or non-growth associated and
growth-associated maintenance due to the confusion regarding their exact biological
nature [44,45,60].

It became clear from MFA calculations that acetate overflow also plays an
important role in energy metabolism as disruption of the ATP-wasting PTA-ACS node
resulting in acetate overflow at p = 0.27 + 0.02 h™' reduced ATP spilling by 36% with
rising p (Figure 7). This response in energy metabolism was detected in this study
since the futile PTA-ACS cycle (an equivalent amount of ATP to acetate is wasted
with acetate recycling) shown to operate in vivo in Publications I and III (see below for
details) and in [33,34] was included into the model network.
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Figure 7. Specific growth rate-dependent ATP spilling and biomass yield in three E. coli K-12
MG1655 A-stat cultivations. u, specific growth rate; gDCW, gram dry cellular weight; ATP
spilling, non-growth associated ATP production (blue square); Yxs, biomass yield (red triangle).
Error bars represent standard deviation of triplicate A-stat experiments.

Decrease of ATP spilling (40 mmol/gDCW in total) might indicate increase of Yxs,
however, it remained constant at 0.41 £ 0.01 gDCW/g glucose throughout the studied
range of p (Figure 7). This apparent discrepancy between the decrease in ATP spilling
and constant Yxs (Figure 7) could be explained by the fact that carbon wasting
increased from 3 to 11% with rising p (Figure 5) as follows. As acetate recycling by
synthesis and assimilation in the PTA-ACS node (Publication I and III) is a futile cycle,
an equivalent amount of ATP to acetate is simultaneously wasted with synthesis and
assimilation of acetate (see Importance of PTA-ACS node for the explanation of its
biological relevance). Hence, accumulation of acetate likely triggers a 36% decline of
ATP spilling (Figure 7) since re-assimilation of acetate (wasting 1 molecule of ATP)
decreases with rising p after the start of acetate overflow. This energy save is, however,
counteracted by the increase of carbon wasting in the carbon balance from 3 to 11%,
which results in constant Yxs. However, E. coli might also possess additional
mechanisms to maintain constant Yxs under increasing carbon wasting conditions.
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Expectedly, the total specific ATP production rate (qatp) increased with rising p but
changed its slope after the start of acetate overflow (Figure 8). The non-growth
associated maintenance cost is assumed to be constant and generally estimated by
extrapolating qg. measured in chemostat cultures to p = 0 h™' [9,40,44,45,60], based on
the belief that energy production or substrate consumption is linear with p. However,
our A-stat data (Figure 8) clearly demonstrates that this ‘extrapolation’ method is not
accurate. This is because the non-growth associated maintenance cost estimated as
explained above using data points from before or after the start of acetate overflow p =
0.27 +0.02 h™' yield very different values of ~3 and ~19 mmol/(gDCW h), respectively.
Although these values are within the estimates found in the literature
[10,39,44,45,60,148], the 6-fold difference between the estimated values demonstrates
that even high-resolution data of A-stat should not be used for estimating non-growth
associated maintenance costs using the ‘extrapolation’ method.
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Figure 8. Specific growth rate-dependent total specific ATP production rate and proportion
of ATP production by glycolysis in three E. coli K-12 MG1655 A-stat cultivations. u, specific
growth rate; gDCW, gram dry cellular weight; qarp, total specific ATP production rate (blue
squares); ATP production by glycolysis (red triangle). Error bars represent standard deviation
of triplicate A-stat experiments.

4.3. Transcriptome and proteome dynamics (Publication I)

Adaptation of microorganisms to different environmental conditions is usually
accompanied by a change in p and of many properties of cell physiology e.g. cell
morphology [1-3], gene expression [4-8], metabolic flux patterns [4,7-10]. The
majority of these mechanisms are regulated through changes in gene expression. Hence,
to gain detailed insights into p-dependent regulation of gene expression, we carried out
simultaneous functional-genomics analyses of transcriptome and proteome in the same
A-stat cultures described above.

DNA microarray analysis of 4,321 transcripts was conducted with the Agilent
platform using samples from one A-stat cultivation. Gene expression ratios between
=0.21;0.26; 0.31; 0.36; 0.40; 0.48 h ' and 0.11 h™' (chemostat point prior to the A-stat
phase) were calculated. Using a '*N-labelling and LC-MS proteome approach, E. coli
protein expression ratios for around 1,600 proteins were generated by comparing two
independent A-stat cultures at p = 0.20 = 0.01; 0.26; 0.30 £ 0.01; 0.40 = 0.00; 0.49 +
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0.01 h™" with 0.10 £ 0.01 h™' (chemostat point). High reproducibility of both A-stat
cultures and our proteome approach is demonstrated by high correlations of R = 0.8—
0.9 (Pearson correlation coefficient) between protein expression changes in two
independent cultures (Figure 9A).

R=0917
R=0782

log; protein expression ratio A p = 0.4/01h 1

Average lag, protein expression ratio j=0.49/0.11h""

8 -4 -2 0 2 4 8

logz protein expression ratio B i =0.4/0.11 h™’' log; gene expression ratio y = 0.48/0.11 h'

Figure 9. Reproducibility of proteome dynamics, and correlation of transcriptome and
proteome changes in E. coli K-12 MG1655 A-stat experiments. y, specific growth rate. R,
Pearson correlation coefficient. Data for all u is in Additional file 1 in Publication I. A.
Correlation between log2 protein expression changes between u = 0.4 and 0.1 h™' in two
independent A-stats. A and B represent duplicate experiments. B. Correlation between log?2
mRNA and protein expression changes between u = 0.4 and 0.1 h™!. Average protein expression
ratio is from two independent A-stats. Genes with coefficient of variation smaller than 20%
among its multiple spots on DNA microarrays were included for analysis.

4.3.1. Correlation of transcriptome and proteome dynamics

Analyzing the correlation between changes in mRNA (transcriptome) and protein
(proteome) levels can point to levels of gene expression regulation (e.g. transcriptional,
post-transcriptional). Several recent reviews [67—70] have highlighted that time-course
analyses of bacteria and yeast reveal large differences between mRNA and protein
abundance changes in perturbed systems indicating considerable post-transcriptional
regulation. Hence, they conclude that understanding of perturbed systems is still
incomplete and requires further analysis. Interestingly, our perturbed E. coli cultures
show high correlations up to R = 0.8 between mRNA and protein changes with rising pt
(Figure 9B).

Investigating the effects of —omics data processing to correlations revealed that the
initially observed correlations (R up to 0.8) are maximum for our data since neither
increasing threshold limits in mRNA and protein measurements, nonlinear
transformation nor removing outliers improved correlations (data not shown). As cells
in the studies analyzed by the reviews [67—70] were mostly cultured in non-steady state
conditions, the high mRNA-protein correlations observed in our dynamic experiments
conducted under strictly defined and controlled growth conditions might imply that the
state of the culture for analysis (steady state vs. non-steady state) could be an important
factor for mRNA-protein correlation determination. In line with this are the good
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mRNA-protein correlations observed for 56 genes in E. coli [4] and at global scale also
in Lactococcus lactis A-stat cultures [26].

Interestingly, recent time-dependent analysis in yeast cells subjected to osmolarity
[149] and oxidative stress [150] revealed good correlations between mRNA and
protein expression changes only for up-regulated genes. However, other studies in
yeast and bacteria have not detected this kind of behavior [70]. Our results are in
accord with the latter as we did not detect differences in mRNA-protein correlation
between up- and down-regulated genes. We did not observe different correlations
between enzymatic, non-enzymatic and genes with hypothetical protein functions (data
not shown).

4.3.2. Functional-genomic responses in central carbon metabolism

Although flux changes reflect the re-organization of metabolism, knowing the
preceding gene expression dynamics of both flux catalyzing enzymes and other
proteins is important for deciphering the complex cellular regulation patterns enabling
the cells to achieve faster growth [13,14].

The major sugar transport system in FE. coli is the phosphoenolpyruvate:
carbohydrate phosphotransferase system (PTS) enabling fast glucose uptake also under
glucose-limitation [55,151,152]. Interestingly, our -omics data showed down-
regulation of both mRNA and protein of the glucose-specific PTS permease ptsG near
Umax (Figure 6) while glucose consumption per biomass was maintained constant. This
means that the reduced glucose uptake by the PTS system is likely compensated
through increasing alternative non-PTS glucose transport. Indeed, we detected up-
regulation of alternative glucose transporter galactose permease (ga/P) and predicted
transporter tsgA4 (also seen in [6]). However, the former is not a strong candidate as a
PTS substitution since expression of glucokinase (glk), which is responsible for
catalyzing glucose phosphorylation after it is transported into the cell by GalP, was
repressed with rising p. Thus it remains unknown through which mechanism(s) glucose
transport is increased at high L.

In contrast to a change in glucose transport mechanism(s) across the studied range
of p, expression of both mRNAs and proteins in glycolysis were rather insensitive to
increasing p (Figure 6). Constant enzyme expression under strongly increasing flux
throughput (5-fold increase of p in these A-stats) alludes to post-translational
regulation of fluxes (see Control of protein and flux levels to achieve faster growth for
analysis). Expression of PPP components, however, increased with faster growth, most
probably to meet the higher NADPH demands (Figure 6). Notably, most of the TCA
cycle gene and protein levels were maintained or even increased up to p = 0.40 h™!
followed by sudden repression (Figure 6 & Figure 10A), concomitant with achieving
maximum qco at p = 0.46 = 0.02 h™' (Figure 1). This may suggest that there is no
limitation at the TCA cycle expression level before p = 0.40 h™' to process the carbon
from glycolysis, thus making the hypothesis of TCA cycle bottleneck triggering acetate
overflow [81,82] questionable. These observations are in general consistent with the
literature [4—7].
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Comparison of p-dependent mRNA and protein expression changes of our A-stat
cultures with the only other p-dependent transcriptome and proteome data set
determined in continuous cultures by Ishii ef al. 2007 [4] showed good correlations of
R ~ 0.5 at both levels. Correlating our mRNA expression data with other published -
dependent transcriptome data sets acquired in continuous cultures showed moderate (R
~ 0.3) and very weak correlations (R ~ 0.1) with [40] and [5], respectively, though, we
observed a >70% overlap with [5] in the direction of mRNA expression changes.
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Figure 10. Specific growth rate-dependent TCA cycle, glyoxylate shunt, glyconeogenesis and
carbon catabolite repressed protein expression changes in E. coli K-12 MG1655 A-stat
cultures. u, specific growth rate. A. TCA cycle (average of proteins from the same operon are
depicted as one point e.g. AcnAB). B. Glyoxylate shunt (AceA, AceB) and glyconeogenesis. C.
Carbon catabolite repressed proteins. Protein data points are average of two independent A-
stat experiments, error bars are not shown for better visualization (refer to Additional file 2 in
Publication I for standard deviations).
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4.3.3. Activation of carbon catabolite repression

It is well known that the presence of glucose often prevents the use of other, secondary,
carbon sources and this preference for glucose is realized through carbon catabolite
repression (CCR) [65,66]. More specifically, CCR is defined as a regulatory
phenomenon by which the expression of functions for the use of secondary carbon
sources and the activities of the corresponding enzymes are reduced in the presence of
a preferred carbon source [65,66]. It is plausible that the increasing residual glucose
concentration accompanying smooth rise of p in A-stat could trigger CCR.

Indeed, we observed the beginning of CCR induction prior to the start of acetate
overflow. This was indicated by down-regulation (3-fold on average) of CCR-
mediated components: alternative (to glucose) substrate transport and utilization
systems like galactose (MglAB), maltose (MalBEFKM), galactitol (GatABC), L-
arabinose (AraF), D-ribose (RbsAB), Cs-dicarboxylates (DctA) and acetate (ActP,
YjcH) (Figure 10C). Moreover, expression of transcription activator Crp (cyclic AMP
receptor protein) and Cra (catabolite repressor activator) were reduced 1.5 and 2-time
(Figure 11), respectively, similarly to carbon catabolite repressed proteins mentioned
above. Simultaneously, components of the gluconeogenesis pathway (Pck, MaeB, Pps)
and glyoxylate shunt (GS) enzymes AceA, AceB were repressed with increasing p
(Figure 10B). These results are consistent with transcriptome data of the literature [4—
7]. This shows that E. coli is exerting CCR leading to the preference of glucose with
faster growth even under glucose-limitation.

4.3.4. Expression dynamics of acetate metabolism-related genes

As it is known that acetate overflow is a p-dependent phenomenon with no excretion of
acetate at slow and high excretion at fast growth [4—10,31-34], it is interesting to look
into the gene expression dynamics of the main pathways involved in acetate production
and consumption around the start of acetate overflow in detail in A-stat cultures.

Since the common theories regarding the cause of acetate overflow assume
activation of acetate synthesis pathways [10,31,32,79-82], it was surprising to see in
our A-stats a 2-fold down-regulation both on mRNA and protein levels of the two main
known acetate synthesis pathways [72]—phosphotransacetylase-acetate kinase (PTA-
ACKA) and pyruvate oxidase (POXB)—initiated before the start of acetate overflow
(Figure 11). A similar pattern has also been seen in chemostat cultures but without
emphasizing the possible physiological consequences [4,5,33]. At the same time, we
observed a 10-fold repression of the acetate utilization enzyme acetyl-CoA synthetase
(Acs) expression (Figure 11). This substantial 5-fold stronger repression of the acetate
consuming Acs in comparison with acetate synthesizing PTA-ACKA suggests
disruption of acetate recycling at the PTA-ACS node (highlighted in red in Figure 11).
The importance of these observations for the elucidation of the regulation of acetate
overflow metabolism will be discussed in the next section.
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Figure 11. Specific growth rate-dependent acetate synthesis and utilization pathways’,
selected TCA cycle and carbon catabolite repressed mRNA and protein expression levels in E.
coli K-12 MG1655 A-stat experiments. u, specific growth rate. PTA, phosphotransacetylase;
ACKA, acetate kinase; ACS, acetyl-CoA synthetase; POXB, pyruvate oxidase; PDH, pyruvate
dehydrogenase complex; TCA, tricarboxylic acid cycle; GS, glyoxylate shunt; Crp, cyclic AMP
receptor protein;, Cra, catabolite repressor activator,; Icd, isocitrate dehydrogenase; SucD,
succinyl-CoA synthethase; SdhB, succinate dehydrogenase. Thickness of red arrows denotes
level of ACS and PTA-ACKA pathway repression (thicker line represents stronger repression).
Protein data points are average of two independent A-stat experiments, error bars are not
shown for better visualization (refer to Additional file 2 in Publication I for standard
deviations). mRNA names are in italics.

4.4. Acetate overflow metabolism (Publications I and III)

Several explanations for acetate overflow metabolism in E. coli propose limitations in
respiratory capacity [31,32,79], TCA cycle throughput [81,82], energy generation
[10,72] or activity of the GS [33,83]. Despite these and other studies over many years,
the mechanism and regulation of acetate overflow still remain unclear. Thus one of the
more specific aims of this thesis was to gain new insights into the regulation of acetate
overflow metabolism using a p-dependent quantitative multi-omics approach and
utilize this knowledge to mitigate carbon wasting into acetate.

4.4.1. Importance of PTA-ACS node

A very important observation in our experiments was the 5-fold stronger repression of
the acetate consuming Acs in comparison with acetate synthesizing PTA-ACKA
(Figure 11) together with a decline in TCA cycle fluxes (Figure 6) since it suggests
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disruption of acetate recycling at the phosphotransacetylase-acetyl-CoA synthetase
(PTA-ACS) node. While this node may seem only as a futile cycle (an equivalent
amount of ATP to acetate is wasted with acetate recycling), the fact is that numerous
metabolic tasks involving the intermediate molecules of this cycle—acetyl phosphate
(acetyl-P) and acetyl-AMP (Figure 11)—are essential for E. coli growth (Figure 12).
For example, both molecules play a critical role in chemotaxis regulation [153—155]
and in acetylation of many proteins [156—158], while acetyl-P is additionally vital in
pathogenesis [159], protein degradation [160] and can influence the regulation of
almost 100 genes in E. coli [161]. It is important to note that the only known pathway
in E. coli for acetyl-P synthesis is the PTA-ACKA [72,155]. Utilizing both acetyl-P
and acetyl-AMP in these metabolic tasks through dephosphorylation results in acetate
formation. Hence, acetate should be synthesized and consumed simultaneously during
growth (not only at fast growth) to maintain proper homeostasis of these metabolites in
the PTA-ACS node. Thus we proposed that acetate overflow is triggered by the strong
repression of Acs resulting in disruption of the PTA-ACS node due to decreased
consumption of acetate by Acs relative to its production by Pta. In fact, a similar
hypothesis for acetate overflow has been proposed for Saccharomyces cerevisiae [91].

P-assimilation Virulence Pathogenesis
PhoB-PhoR AIDC, ompR OmpR, RssB, ResB, NtrC

N-assimilation Protein degradation
NRI \ / Mizrahi ef al.
PTA

Ac-CoA Acetyl-P Acetate

/ x \ Gene expression

Survival in natural environments ) Wolfe et al.
and in starvation Flagella Chemotaxis
Anfora ef al., Shi and Kuzminov, Nystrom ~ OmpR, ResB CheY

Figure 12. Acetyl phosphate as an important signaling molecule. Ac-CoA, acetyl-CoA; Acetyl-
P, acetyl phosphate; PTA, phosphotransacetylase. Roles of acetyl-P in other processes than
stated in the text are also shown — refer to Publication I for detailed explanation.

4.4.2. Experimental proof of the novel hypothesis for acetate overflow
metabolism

We first sought out to experimentally test the latter hypothesis by analyzing p-
dependent acetate consumption capability of E. coli using dilution rate stat (D-stat) and
two-substrate (glucose + acetic acid) A-stat cultivations. Two substrate A-stat and D-
stat experiments directly proved that acetate consumption capability of E. coli is p-
dependent as acetate consumption started to decrease from p = 0.25 h™' (Figure S2 in
Publication I) and acetate consumption capability rapidly decreased 12-fold around the
start of acetate at u = 0.27 £ 0.02 h™' (Figure 13), respectively. The good correlation
between loss of acetate consumption capability and Acs down-regulation is further
evidence to the hypothesis of Acs repression causing disruption of PTA-ACS node and
triggering acetate overflow (Figure 13).
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Figure 13. Dilution rate-dependent acetate consumption capability in E. coli K-12 MG1655
D-stat cultures. gDCW, gram dry cellular weight, Koa.-, acetate consumption per biomass (red
triangle); OAc—, acetate concentration in chemostat before the start of acetic acid
supplemented medium addition (violet circle); cAMP, cyclic AMP concentration (blue square);
Acs, acetyl-CoA synthetase protein expression levels from A-stat (green diamond). Error bars
represent standard deviation from two independent D-stat experiments.

Next, it is reasonable to ask what could cause Acs repression? As acetate is a
secondary and less-preferred carbon source compared to glucose [65,66], it is possible
that CCR is responsible for the repression of its high affinity scavenging enzyme Acs
[93], as also proposed earlier [162]. We saw simultaneous activation of CCR and
repression of Acs prior to the start of acetate overflow (Figure 10 & Figure 11). As it is
well known that CCR is initiated by the presence of glucose in the environment [65,66],
we assumed that the increasing residual glucose concentration accompanying smooth
rise of 1 in A-stat could trigger Acs down-regulation by CCR. The cAMP-Crp complex
is one of the major players in CCR of E. coli as cAMP binding to Crp drastically
increases its affinity towards activating the promoters of catabolic enzymes, including
Acs [65,66,93]. We measured a 1.5-fold decrease in Crp expression with increasing p
(Figure 11) and a strong decline of cAMP levels after the start of acetate overflow
close to zero by u=0.45 h™' (Figure 1) where acetate consumption capability in D-stats
was totally lost (Figure 13). As a result of all the previous observations, we proposed a
novel hypothesis that acetate overflow is triggered by CCR-mediated Acs repression
resulting in decreased consumption of acetate produced by Pta and disruption of the
PTA-ACS node.

4.4.3. Coordinated activation of PTA-ACS and TCA cycles strongly reduces
acetate overflow

To test if our proposed hypothesis for acetate overflow can also lead mitigation of
carbon wasting to acetate, we carried out analysis of several E. coli mutant strains. For
this, we switched to E. coli K-12 BW25113 wild-type (WT), so we would have an
appropriate wild-type reference strain for comparing our results obtained with Keio
collection single-gene knockout strains [136] and other mutant strains affecting
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acetate-related pathways constructed by ourselves. The strains were analyzed in A-stats
under identical growth conditions as in the experiments described above (only
exception being culture stabilization in chemostat at D = 0.2 h™' in some A-stats) with
absolute quantitative exo-metabolome and proteome analyses coupled to MFA. WT
and AarcA, Apka AarcA strains were cultivated in four and two independent A-stat
experiments, respectively. Other strains were cultivated in single A-stat experiments.
We note that here growth characteristics of different strains are compared relative to
Jelc, instead of p, since glucose uptake is known to regulate the magnitude of CCR
[65,66], as described above, possibly triggering Acs repression and acetate overflow.
We first wanted to verify the hypothesis that E. coli actually synthesizes acetate
also at low p but acetate is not excreted because of sufficient consumption by Acs. For
this, we analyzed growth of WT with deleted acs (Aacs), which should lead to
disruption of the PTA-ACS node and loss of acetate recycling. Indeed, the PTA-ACS
node disruption in Aacs led to acetate overflow at all qg. values studied, while no
acetate accumulated in WT up to qgc ~ 4.2 mmol gDCW ™' h™' (Figure 14A). This
phenotype of Aacs is consistent with previous observations [33,34] and confirms the
hypothesis that acetate is constantly synthesized in vivo at all p. This data estimates
that ~0.8 mmol gDCW ' h™' of acetate is constantly recycled in the PTA-ACS node of
wild-type E. coli to enable rapid regulation of the acetyl-P and acetyl-AMP pools.
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Figure 14. Specific glucose consumption rate-dependent carbon flow to acetate in E. coli K-
12 BW25113 wild-type and its Acs-related mutants. gDCW, gram dry cellular weight; qg,
specific glucose consumption rate. Carbon flow to acetate is percentage from consumed
glucose. Lines for each strain are best-fit splines of 9-36 acetate and glucose concentration
measurements in each experiment. Error bars represent standard deviation of four independent
A-stat experiments. [Publication III] - Reproduced by permission from Springer Science and
Business Media.

As we proposed that acetate overflow is triggered by Acs repression, we next tested
the effect of increasing Acs expression on acetate excretion by constructing an acs
over-expression strain (acsOE). However, acetate overflow started at a lower Qg in
acsOE and the strain also excreted more carbon as acetate than WT at all the qg.
studied (Figure 14A). Unfortunately, no clear conclusions could be drawn from
literature data with acs over-expression strains [33,92]. The lack of a positive effect of
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acs over-expression on mitigating acetate overflow could possibly be a result of either
the negative effects of too high protein over-expression and/or due to most of the Acs
protein pool being inactive. Hence, we next concentrated on the effects regulating Acs
protein activity.

Two enzymes in E. coli are known to regulate the activity of Acs protein: protein
lysine acetyltransferase (Pka) inactivates Acs by acetylation [163], while the NAD"-
dependent regulator protein deacetylase CobB can release Acs from repression by
deacetylating it [164]. Thus, to investigate the effects of altered protein acetylation on
acetate metabolism, we analyzed growth of Pka (Apka) and CobB (AcobB) single-gene
knockout mutants of E. coli. AcobB cells, which cannot reactivate Acs by deacetylation,
excreted acetate at all qgc studied and more compared to WT (Figure 14B), similarly to
Aacs. This further confirms the importance of the state of the Acs pool and an active
PTA-ACS node in acetate metabolism. Deletion of Pka should eliminate or at least
substantially decrease the fraction of inactivated Acs protein in the cell, possibly
leading to higher recycling of acetate in the PTA-ACS node and delayed acetate
overflow. Indeed, Apka showed a postponed start of acetate overflow at qgc = 5.5
compared to ~4.2 mmol gDCW ' h™! in WT (Figure 14B).

Due to the positive effect of pka deletion on mitigating acetate metabolism, we next
introduced pka knockout into the acsOE background (Apka acsOE) to test if the lack of
a positive effect of acs over-expression on diminishing acetate overflow could have
arisen from a substantial part of the Acs pool being inactive in the acsOE strain. This
did not seem plausible since acetate overflow was not decreased in Apka acsOE
compared to WT (Figure 14B) because this acs over-expression strain should possess a
fully active Acs pool.

We next hypothesized that acetate overflow could be further reduced in Apka if Acs
levels would be slightly higher, but not too high as in Apka acsOE. Moreover, even if
Apka cells could recycle more acetate due to higher levels of active Acs, downstream
pathways such as TCA cycle could still be limiting in processing the recycled acetyl-
CoA in diverting carbon away from acetate. Deletion of the dual transcriptional
regulator for anoxic redox control (ArcA) increases both TCA cycle gene expression
[5,165] and flux throughput [166]. As arcA deletion also leads to about a 2-fold higher
expression of acs [167], it seemed that deleting arc4 in the Apka would hit two birds
with one stone by increasing both levels of active Acs and downstream throughput in
the TCA cycle. Indeed, the double-knockout strain (Apka AarcA) showed even further
diminished acetate overflow as the onset of acetate overflow was delayed until qgc~ 6
mmol gDCW ™' h™' compared to qgec ~ 4.2 mmol gDCW ™' h™! in WT, and more
remarkably, carbon wasting into acetate was more than 4-fold lower compared to WT
(2 vs. 8% of total carbon) at maximum qg. (Figure 15A). Absolute quantitative
proteome analysis confirmed that Acs expression had increased ~1.7-fold in response
to arcA deletion (Figure 4 in Publication III). Notably, more CO; instead of acetate was
produced in Apka AarcA (2-8% more than WT) (Figure 15B). Furthermore, MFA
showed that higher CO, production was the result of increased TCA cycle fluxes
(Figure 15C), as expected from an arcA deletion [166], while PPP throughput was
reduced (Figure 15D).
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Figure 15. Specific glucose consumption rate-dependent carbon flow through metabolism in
E. coli K-12 BW25113 wild-type and its acetate overflow-reduced mutants. gDCW, gram dry
cellular weight; qg., specific glucose consumption rate; TCA, TCA cycle; PPP, pentose
phosphate pathway. The percentage of carbon flow from glucose to acetate (A) and CO; (B).
The percentage of carbon flow from glucose through TCA cycle (C) and PPP (D) represented
by suc and gnd fluxes, respectively, expressed as the C-molar percentage of flux through the
reaction from consumed carbon. Lines for each strain are best-fit splines of 13—43 glucose and
product concentration measurements in each experiment. Error bars represent standard
deviation of four and two independent A-stat experiments for wild-type and AarcA, Apka AarcA,
respectively. [Publication IlI] - Reproduced by permission from Springer Science and Business
Media.

As acetate overflow could be postponed by a single arcA4 deletion in E. coli K-12
MG1655 [5], we also analyzed AarcA in our BW25113 background to check if the
diminished acetate overflow in Apka AarcA could actually arise from only the arcA
deletion. This was not the case as acetate overflow started earlier in AarcA compared to
WT (qaic ~ 3.5 vs. ~ 4.2 mmol gDCW ™" h™") (Figure 15A).

It is important to note that the Apka AarcA strain with greatly diminished acetate
overflow did not accumulate any other harmful by-product, maintained pm.x of WT
(Figure 15A) and displayed only ~5% lower Yxs compared to WT. This makes it
superior to previous acetate overflow-reduced E. coli strains of deletions in main
acetate synthesis pathways (pta + ack4 or poxB) due to their greatly elevated lactate
and formate excretion, reduced p or Yxs [29,76,87-90]. Furthermore, the Apka AarcA
strain would permit the production of target molecules in the absence of acetate at
higher glucose uptake rates, presumably leading to higher volumetric productivities
(~22% higher gDCW L' h™' compared to WT based on this work).
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One of the textbook theories is that acetate overflow in E. coli is triggered by
limitations in respiratory capacity [31,32,79], meaning that cells start to excrete acetate
after reaching maximum qo2. However, our high-resolution A-stat data clearly showed
that although there is a change in the slope of qo» with the start of acetate overflow, no
saturation of respiratory capacity is observed (Figure 16).

10 1 8
L]
..I...!
~ 8 r anm® A
= —..l... 6
= g
8 6 | - A —
()] .l.. %
= s A 4 =
° = 5
x A g
£ A
E A4 2
2 A
uA
A
aA
A
0 L aaaddddddddAAk aA 0
0.15 0.25 0.35 0.45 0.55 0.65
u(h)

Figure 16. Specific growth rate-dependent respiratory capacity and acetate overflow in E. coli
K-12 BW25113 wild-type. 1, specific growth rate; gDCW, gram dry cellular weight, qoo,
specific O, consumption rate (blue square); OAc™, acetate concentration (red triangle).

It can be concluded from this study of acetate overflow metabolism that a fine-
tuned coordination between increasing the recycling capabilities of acetate in the PTA-
ACS node through a higher concentration of active acetate-scavenging Acs and
downstream metabolism throughput in the TCA cycle leads to greatly reduced acetate
overflow in E. coli.

4.5. Absolute quantification of transcriptome and proteome (Publication
IV)

To have a more comprehensive understanding of cellular processes, a systems biology
approach of integrating transcriptome, proteome and fluxome data coupled to models
of different levels of detail is needed [14,68,116,117]. This may seem as an immense
challenge, but as understanding of both the regulation levels of protein and flux levels
and other molecular relationships enabling the cells to modify p is of instrumental
importance towards a more complete description of the control principles of cell
metabolism [13,14], more accurate modeling [97,112,113] and successful
biotechnology and synthetic biology efforts [17], genome-wide absolute quantitative
multi-omics analysis in one study is highly needed. For instance, absolute quantitative
proteome (e.g. proteins per cell or cell volume) data is required to analyze the
allocation principles of cellular proteome resources, the energetic and expression load
of certain proteins or pathways, estimate apparent in vivo catalytic rates of enzymes
and ribosomes etc. What is more, p-dependent genome-wide absolute quantitative
mRNA and proteome data for E. coli are missing altogether. Thus we performed p-
dependent absolute quantification of transcriptome and proteome in E. coli K-12
MG1655 A-stat cultures.

55



4.5.1. Global specific growth rate-dependent absolute proteome and
transcriptome

Both the intracellular abundance (molecules per cell) and concentration (molecules per
fL of biomass) for all the quantified mRNAs and proteins were determined taking into
account p-dependent cell counts and volume, and total RNA and protein fractions in
the biomass (Table S1 in Publication IV). Absolute quantification of proteome was
performed for 1,185 proteins in chemostat at p = 0.11 h™' using the iBAQ approach
[99] and published in [143]. Correlation and coefficient of variation (CV) between two
independent A-stat experiments were R = 0.99 and 11%, respectively. Absolute
quantification for p = 0.20; 0.30; 0.40; 0.49 h™' was carried out based on relative
protein expression data obtained in Publication I which also showed high
reproducibility. High confidence of our absolute quantitative proteome data set is
indicated by the fact that the sum of all quantified proteins by iBAQ was on average
only 10% lower than the cellular total protein concentration determined by Lowry
analysis. Genome-wide absolute quantitative transcriptome data for p = 0.11; 0.21;
0.31; 0.40; 0.48 h! were determined for around 4,300 mRNAs from the DNA
microarray data of Publication I. CV between six DNA microarray technical replicates
was 11%. All the following data can be found in Table S2 of Publication I'V.

Proteomic coverage of protein-coding quantified mRNAs reached 100% with
higher mRNA concentrations (Figure 17A) which is consistent with the proposed ‘lazy
step function’—the ability to detect proteins rising at higher mRNA levels—of protein
identification in E. coli, Bacillus subtilis and higher organisms [70,167]. Both mRNA
and protein concentrations spanned approximately three orders of magnitude (Figure
17B) while protein concentrations were on average 1,000-fold higher than their
respective mRNAs. A larger dynamic range of protein abundances has been observed
in yeast [100] and mammalian cells [70].

56



600
EEm 0.1l h' mRNA
B 0.1 b protein

p=0.48h" mRNA
[ p=049h' protein

300

%
g
S

2
=
=]
X

N
3
=

50%

=
3
X

IS}

S

S
w
3
=

100

Number of different nRNAs
Proteomic coverage of transcriptome

[
S]
SIS

10%

L 0% 0
; 10° 102 100 100 10' 102 : ¢ 105

NS
8 o & 8 8 & & 5
S & 3 = = & + *
concentration (molecules/fL) mRNA and protein concentration (molecules/fL)

Ei

Lo}

Figure 17. Global absolute proteome and transcriptome characteristics. 1, specific growth
rate. A. Proteomic coverage of protein-coding quantified mRNAs at u = 0.11 h™!. All quantified
protein-coding mRNAs are binned by their concentration. The number of different mRNAs and
mRNAs with respectively quantified translation product—protein—belonging to a particular
bin is indicated in blue and red, respectively. Black circles denote the proteomic coverage of
transcriptome. B. mRNA and protein concentration dynamic range at low and high u.
[Publication IV] - Reproduced by permission of The Royal Society of Chemistry.

As expected with increasing cell size, the sum of mRNAs and proteins per cell
increased 4.2- and 2-fold, respectively, from p = 0.11 to 0.49 h™' (Figure S2A in
Publication 1V). This is in line with the increase of RNA-to-protein mass ratio with
rising p also observed previously in E. coli [97,168]. However, the sum of intracellular
mRNA and protein concentrations (molecules per fL.) showed a different behavior: 1.8-
fold increase for mRNAs and 1.2-fold decrease for proteins was observed (Figure S2B
in Publication IV). Similarly, opposite p-dependence of protein abundances and
concentrations has also been observed for unregulated constitutive genes in E. coli
[114]. The latter indicates a faster increase of cell volume compared to protein
abundance with faster growth. Furthermore, the different p-dependent mRNA and
protein abundance and concentration behavior is an important observation for in silico
modeling approaches where cell metabolism is simulated as a function of p [112-114].

4.5.2. Correlation of transcriptome and proteome levels

One would expect strong correlation between mRNA and protein levels based on the
central dogma of molecular biology, especially for prokaryotes due to simultaneous
transcription and translation. So far, correlations of R ~ 0.4—0.7 have been noted in the
literature for bacteria, yeasts and multi-cellular organism at population level studies
looking either at a small number of genes or lacking direct measurements of both
mRNA and protein concentrations (reviewed in [67-70]). Lately, simultaneous
quantification of mRNA and protein abundances in Mycoplasma pneumoniae [108]
and E. coli at single cell level [110] revealed correlations of R = 0.52 and 0.77,
respectively. Our genome-wide mRNA and protein concentration data show high and
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increasing correlations from R = 0.62 to 0.78 in the range of u studied (Figure 18A),

similar to the other E. coli continuous culture data set, though for only 56 genes [4].

These values are maximum for our data since correlations were neither improved using

nonlinear transformation nor removing outliers (data not shown). Interestingly, mRNA

and protein levels correlated better in longer transcription units and for genes located at

the 5' end (Figure S18 in Publication IV), similar to M. pneumoniae [108].
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Figure 18. Correlation of protein concentrations with mRNA concentrations and protein-per-
mRNA ratios in E. coli K-12 MG1655. p, specific growth rate; R, Pearson correlation
coefficient; #, number of compared genes; pm, protein-per-mRNA ratio. Red line shows the 3
order polynomial best fit. Data for all yin Figure S1 and S3 in Publication IV. [Publication IV]
- Reproduced by permission of The Royal Society of Chemistry.

The part of protein abundances which cannot be explained by the correspondence
between transcript and protein abundances can be caused by different regulation of
mRNA and protein degradation, protein translation, post-translational modification and
possible functional requirement for protein binding [67—70]. Of course, experimental
and biological noise emerging from the inherent gene expression stochasticity [169]
cannot be excluded either [67].

Comparison of absolute proteome data with the literature showed the highest
overlap with another E. coli steady state study [4] (detailed comparison in [143]). Our
transcript abundances correlated highly with other genome-wide E. coli calculated
values using DNA microarrays in chemostat (R ~ 0.8) [40] and batch cultures (R =
0.91) [102], and modestly (R = 0.52) with recent single cell analysis [110] (data not
shown).

4.5.3. Protein-per-mRNA characteristics

The protein-per-mRNA ratio (pm) estimates translation efficiency and changes in pm
give indications about the level of gene expression regulation either through protein
translation or degradation making it an important molecular characteristic [69]. Values
of pm for ~1,200 genes ranged from around 100 to 10,000 at low p compared to 50 to
4,000 at high p (Figure 18B) pointing to different levels of post-transcriptional
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regulation [67-70] and explain the non-perfect mRNA and protein correlations.
Plotting pm values against protein concentrations showed that abundant proteins
possess ~100-time higher pm values than low abundant ones regardless of u with
values saturating at around 4,000 and 2,500 at low and high p, respectively (Figure
18B). A similar difference in pm values between low and high abundant proteins and
the saturation effect are seen in yeast [100] and for translation rates in mammalian cells
[99]. Median pm decreased 2.3-fold from 1,532 to 656 with p increasing from 0.11 to
0.48 h™'. The lower ratio determined at p = 0.48 h™' is close to those of log-phase E.
coli cells [102,110]. The finding of non-constant translation rates is important and
already included in recent in silico simulations of p-dependent gene expression [112].

Codon bias i.e. non-random occurrence of codons for coding amino acids, is a
mechanism for the cell to maximize translation efficiency [67,101] and recently
genome-wide correlation between codon adaptation index (CAI) [170], a common
estimate for codon bias, and protein expression levels has been shown for E. coli [102—
106]. However, experiments using synthetic genes show that neither local nor global
codon bias have significant effects on mRNA or protein levels [171], although these
results have later been objected [172]. Our results are in accord with the previous
genome-wide studies as CAI values correlated with protein concentration and pm
(Figure S12 in Publication 1V), and interestingly increased slightly with rising p
alluding to possible growing pressure for higher translation efficiency for achieving
faster growth.

It has been stated that the pm may vary between genes with different function and
also change under different conditions [69], as proved by the higher pm ratios for
metabolic genes in mammalian cells [173]. We observed that genes belonging to
clusters of orthologous groups (COG) [174] of translational machinery (J), energy
generation (C) and post-translational modification (O) showed higher pm ratios (Figure
S4 in Publication IV) indicating the importance of efficient translation of these
enzymes. However, pm values decreased uniformly for all COGs with rising u (data
not shown).

Variable patterns of pm can be affected by protein half-lives known to be
influenced by particular amino acids present at the N-terminal end of proteins (the N-
end rule) [67]. This has also been reported for E. coli with the destabilizing amino
acids being Arg, Lys, Leu, Phe, Tyr and Trp [175]. Our analysis of whole protein
sequences throughout the range of p confirms the latter as Arg, Leu, Trp and Glu
showed statistically significant enrichment (p-value < 0.05) in proteins with both the
lowest pm ratios and concentration (Figure S10 in Publication IV), demonstrating the
influence of protein degradation on pm levels.

Our data set did not show significant correlations between pm (translation
efficiency) and gene length, protein molecular weight, mRNA levels opposite to what
has been proposed previously [69]. Furthermore, weak correlations were found
between pm and mRNA half-lives determined in the literature [40,110,176,177] (data
not shown).
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4.5.4. Characteristics of proteome resource allocation

Knowing that a cell increases expression of protein X 10-fold as a response to an
environmental perturbation does not necessarily mean that the expression load of
protein X on metabolism is more significant than that of protein Y which is up-
regulated only 2-fold. This is because the real metabolic load of protein expression is
determined also by the protein amount and that metabolic load would be much higher
for protein Y if its abundance is 10-fold higher than that of protein X. Since
translational capacity is believed to be rate-limiting for faster growth of E. coli [97], it
is useful to analyze the allocation principles of proteome resources.

As expected, the most abundant proteins on average over the studied range of p
were involved in translation (elongation factor TufA, ribosomal proteins) and CCM
(glycolysis, TCA cycle and PPP) (Table S2 in Publication IV). To find out which
proteins are the most and least costly for E. coli to express for achieving faster growth,
we calculated the protein synthesis cost in ATP (nATP; protein concentration x protein
length x 4.306 ATP) for each protein and applied covariance analysis to statistically
detect the most and least relevant proteins (see Materials and methods for details). The
most costly protein for E. coli by far with increasing p was MetE (Figure 19), probably
expressed to counteract the detrimental accumulation of homocysteine [78] after the
start of acetate overflow leading to increasing acid stress. MetE was followed mainly
by ribosomal and amino acid metabolism-related proteins. On the other hand, E. coli
‘saved’ the most energy at higher p by repression of GS enzymes AceA and AceB,
acetate scavenging Acs, enzymes involved in utilization of alternative substrates and
several stress response proteins, pointing to the rationale of CCR for regulating
proteome resources [178].

Covariance

Figure 19. Covariance analysis of protein synthesis cost for the 20 most and least costly
proteins for E. coli to achieve faster growth. nATP, protein synthesis cost. Covariance values
are calculated between each protein’s nATP values and u. Red and blue colored bars indicate
increasing and decreasing nATP, respectively, with rising u. Change of nATP is statistically
significant for all shown proteins since their covariance values are different from zero. Refer to
Figure 21 legend for description of error bars and statistical analysis. [Publication IV] -
Reproduced by permission of The Royal Society of Chemistry.
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To obtain a functional picture of proteome allocation and expression costs, we
grouped all proteins into COG functional classes [174]. Although, translational
machinery proteins (J) were by far the most abundant COG group (23-36% of total
proteome; p < 0.0001), nATP of group J proteins was increasingly exceeded with
rising p by the cost of proteins related to energy generation (C), carbohydrate (G) and
amino acid (E) metabolism (Figure 20A; p < 0.0011). This is expected since increased
substrate utilization, amino acid synthesis and energy generation are needed for faster
growth. Turning attention to pathways, proteins of glycolysis, TCA cycle, GS and
purine synthesis accounted for both the highest concentration (~19%) and nATP
(~27%) of the total proteome (Figure 20B).
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Figure 20. Proteome resource allocation in E. coli K-12 MG1655. nATP, protein synthesis
cost. A. Distribution of protein concentrations and nATP among COG functional classes at y =
0.49 h™!. Areas of slices are proportional to absolute values. COG nomenclature: O, post-
translational modification; K, transcription; F, nucleotide transport and metabolism; H,
coenzyme transport and metabolism,; Rest, sum of COGs not shown with independent slices; see
text for others. B. Pathways with highest nATP from total proteome synthesis cost at u = 0.11
h™!. Percent shows fraction from total cost. See Table S7 in Publication IV for the genes
assigned to pathways according to the EcoCyc database [64]. Data for all u in Figure SI and
S3 in Publication 1V. [Publication 1V] - Reproduced by permission of The Royal Society of
Chemistry.

A Pareto principle—top 20% of proteins by abundance accounting for 80% of total
protein mass—of proteome resource allocation has been observed in yeast [179],
Leptospira interrogans [180] and M. pneumoniae [108] while the top 20% comprise
above 90% in mammalian cells [181,182]. Our data is similar to that of
microorganisms, as the top 20% accounted for 76% of protein mass. Interestingly, the
20 most prominent proteins accounted for 19% of protein mass while slightly higher
mass fractions of top 20 proteins were reported in all the latterly referred studies (data
not shown).

As cells have evolved under energy-limited conditions, the amino acid composition
of the proteome should be biased towards containing more amino acids with lower
nATP. Indeed, highly expressed proteins in E. coli and B. subtilis contain more ‘cheap’
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(Glu, Asp, Gly) and less ‘costly’ (Trp, Phe, His, Cys, Leu) amino acids [183]. Our
proteome-wide data show the same as the most and least abundant proteins contained
more ‘cheap’ and more ‘costly’ amino acids, respectively (Figure S11 in Publication
V).

Ribosomes, mainly composed of ribosomal proteins and rRNA, are one of the most
important molecules enabling the cells to grow bigger and faster. It has been concluded
that ribosomal protein levels are insensitive to p [184]. However, our data demonstrate
3.4-fold higher median ribosomal protein abundances (7,164 vs. 24,509 molecules per
cell) in faster growing cells while accounting for 9-16% of the total protein mass
which is close to the estimated value of 21% previously reported for fast growing log-
phase E. coli cells [55]. Also, our data shows close stoichiometry for ribosomal
proteins at all p values (Figure S7A in Publication IV) and confirms the previously
described dimerization of the acidic ribosomal protein RplL [185], also known as
RpL7/L12 by being present in roughly double the abundance of other ribosomal
proteins at all p. We also noted 2-fold higher abundance for a 30S subunit ribosomal
protein RpsP.

4.5.5. Efficiency of energy generation pathways

Quantification of both p-dependent absolute proteome and flux values enables to gain
unique insights into regulation of energy metabolism by calculating efficiency of
energy generation (Earp) for energy generating pathways. We define Earp as ATP
produced in the pathway per ATP spent for the synthesis of the pathway proteins
(molecules-ATP/molecules-ATP) and analyze Eatp dynamics with rising p for the
main energy generating pathways under aerobic growth of E. coli: glycolysis, acetate
synthesis and the TCA cycle coupled to the respiratory chain (RC) (Table 3). Protein
synthesis costs of the ATP producing pathways might be a relevant factor in
optimization of the overall strategies of energy generation since ~50% of total ATP for
cell proliferation is used for protein synthesis [44,56].

The most efficient energy generating pathway over the studied range of p was the
TCA cycle + RC, for which Esrp varies within 105-152 and is ~5- to 7-fold higher
compared to glycolysis (Table 3). In addition, E. coli starts to generate additional ATP
through acetate overflow after disruption of the PTA-ACS cycle at p = 0.27 h™' and
this seems to be beneficial for E. coli since Eatp from acetate synthesis exceeds
glycolysis at u = 0.4 h™' and even surpasses TCA cycle + RC near pmax (141 vs. 132).
This provides a new angle for the potential rationale of acetate overflow for energy
generation [10,72] at whole-cell level and is a good example of how new biological
knowledge can emerge from integration of genome-wide multi-level quantitative data.
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Table 3. Specific growth rate-dependent efficiency of energy production pathways (Earp) for
the main ATP generating pathways under aerobic growth of E. coli K-12 MG1655.

Pathway p=0.11h"' p=0.20h" p=030h"' p=0.40h"' p=0.49 h!

Glycolysis 22.6 21.2 20.3 18.8 19.7
TCA cycle + RC 151.1 116.9 105.5 105.5 132
Acetate synthesis ND ND 7.3 41.9 141.2

Eurp is calculated as ATP produced in the pathway per ATP spent for synthesis of the pathway
proteins (molecules—ATP/molecules—ATP). ATP produced in the pathway was calculated based
on all the ATP producing and consuming fluxes based on MFA. ATP spent for synthesis of the
pathway proteins was calculated as a sum of nATPs of all the quantified proteins in the
pathway. See Table S7 in Publication IV for the genes assigned to pathways according to the
EcoCyc database [64]. u, specific growth rate; RC, respiratory chain; ND, not determined
since the calculation would be inaccurate due to lack of accurate data for both Pta-AckA and
Acs fluxes in the PTA-ACS node before the start of overflow metabolism of acetate at u = 0.27
h™! while functioning only as an intracellular futile cycle. [Publication 1V] - Reproduced by
permission of The Royal Society of Chemistry.

4.6. Control of protein and flux levels to achieve faster growth
(Publication IV)

Cells have to increase throughput of metabolic fluxes to grow faster. It has become
clear, however, that changes in metabolic flux patterns are not a straightforward
consequence of transcriptional regulation of enzyme levels [116,122,126,127].
Furthermore, control mechanisms of metabolic fluxes are instrumental for
understanding regulation of metabolism since they represent the integrated response of
all levels of cellular regulation [41]. Thus one of the aims of this thesis was to
determine at which regulation levels of the gene expression cascade (transcriptional
(TR), translational (TL), post-TR, post-TL) is control of protein and fluxes levels in
different E. coli metabolic pathways realized for achieving faster growth.

Our experimental approach was novel since we coupled absolute quantitative global
transcriptome and proteome with flux analysis under steady state growth conditions to
statistically determine the gene expression regulation levels enabling an organism to
grow faster. We used covariance analysis for statistically determining the regulation
levels as it describes both the direction and magnitude of mRNA, protein and flux
changes with increasing p making it a suitable statistical method for analysis of
absolute quantitative data (see Materials and methods for details).
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4.6.1. Control of protein concentrations

Impact of TR, post-TR or TL regulation on controlling protein concentrations for E.
coli to achieve faster growth was quantitatively determined by calculating covariance
between each gene’s pm (protein-per-mRNA ratio) and p. The generated covariance
values were subjected to statistical hypothesis testing of being significantly (p-value <
0.05) not different or different from zero (all tests were subject to correction by false
discovery rate filtering according to the Benjamini—Hochberg procedure [146] at level
a=0.05).

A covariance value not different from zero represents TR regulation of protein
levels by the pm being constant at all p. Strikingly, from the total of 1,112 analyzed
genes with both quantified mRNA and protein concentrations, only 25% (275) showed
TR regulation (Table S3 in Publication IV). Genes involved in GS, NADH metabolism
and various degradation pathways showed high fraction of TR regulation (Table S4 in
Publication IV). However, for the majority of genes (56%; 627), protein concentrations
were controlled at the post-TR level determined by their covariance value being
negative and different from zero (Figure 21A), meaning decreasing pm with rising p
(protein concentrations increase less than those of mRNA or decrease more than
mRNA). Particularly high enrichment of post-TR regulated genes was observed in
COGs of cell cycle (D), translation (J), amino acid metabolism (E) (Table S5 in
Publication IV) and amino acid synthesis pathways (Table S4 in Publication IV). Also
the protein levels in the pathways carrying the highest flux—glycolysis and TCA
cycle—were regulated at post-TR level for >60% of genes. We detected only four
genes (0.4%) with TL level regulation indicated by positive covariance values different
from zero, meaning increasing pm with rising p (protein concentrations increase more
than those of mRNA or decrease less than mRNA). The small number of proteins
which levels were controlled at TL level could be considered as an indication for the
faster increase of transcription rate compared to translational rate with growing p [114].

Similar domination of post-TR regulation of protein concentrations at mRNA and
protein levels was lately reported in a study of the fermentative bacterium L. lactis
[123]. Furthermore, post-TR regulation is the predominant mechanism for controlling
pm ratios in M. preumoniae [108], mammalian cells [99] and also for ~37% of genes
in B. subtilis [111]. Transcription was also shown to have limited control over
capacities of key central metabolism enzymes in E. coli with faster growth in
chemostat cultures [8]. Thus it seems that post-TR regulation of protein levels is
significant in organisms with very different growth characteristics, and practically in
all the main metabolic subsystems.
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Figure 21. Covariance analysis of protein and flux control levels. pm, protein-per-mRNA
ratio; kqpp, apparent in vivo catalytic rate of enzyme. Error bars denote 95% confidence
intervals of covariance values. p-values represent the results of the statistical hypothesis testing
of covariance values being statistically significantly different or non-different from zero. A.
Covariance analysis of protein control levels for 50 randomly chosen genes. Covariance values
are calculated between each gene’s pm values and u. Red and blue colored bars indicate
increasing and decreasing pm with rising u, respectively. Color of gene name indicates control
level: red, post-TR; blue, TR; black, measurement error too large for determination of control
level. Data for all genes can be seen in Data S1 in Publication IV. B. Covariance analysis of
Sflux control levels for 50 randomly chosen genes. Covariance values are calculated between
each gene’s kqyy, values and p. Red colored bars indicate increasing kay,p with rising u. Color of
gene name indicates control level: red, post-TL; blue, TL; black, measurement error too large
for determination of control level. Data for all genes can be seen in Data S2 in Publication IV.

[Publication IV] - Reproduced by permission of The Royal Society of Chemistry.
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4.6.2. Control of metabolic flux rates

Next, we moved one layer up to determine the regulation levels of metabolic fluxes for
E. coli to achieve faster growth. Measurement of both protein concentrations and flux
rates in this study enabled to quantitatively determine the impact of change in protein
concentration and its catalytic rate for realizing higher flux throughput. For this, we
calculated apparent in vivo catalytic rates of enzymes (kaypp, s ') from the ratio of
specific flux rate (mmol/(gDCW h)) and protein concentration (mmol/gDCW). Flux
control levels—TL or post-TL—were determined by covariance analysis of changing
Kapp and L.

Covariance value being statistically not different from zero represents protein
control of flux (TL regulation) as protein concentration increases proportionally to the
specific flux rate with rising p (i.e. constant kapp). Only 9% (18) out of 191 genes under
analysis showed flux control through protein levels (TL regulation) (Table S6 in
Publication 1V) which included genes from glutamine and nucleotide synthesis
pathways (Table S4 in Publication IV). Notably, for 10 out of these 18 genes, flux
control is at the TR level as both of their pm and k., covariance values were not
different from zero. Recently, transcriptional regulation of fluxes was shown in the
TCA cycle, GS and acetate excretion but not in PPP using transcription factor mutant
strains of E. coli [186]. The 10 genes for which we detected TR level control of fluxes
did not, however, belong to any of these pathways.

Flux throughput was controlled at the post-TL level for the great majority of genes
(81%; 154) shown by positive covariance values different from zero, meaning
increasing kapp with rising p (Figure 21B). For nearly all the genes organized into
COGs of energy production and conversion (C), translation (J) and high flux
pathways—TCA cycle and glycolysis—flux control was achieved through post-TL
regulation (Tables S4 and S5 in Publication I'V). These are all highly abundant proteins
(over 5,000 copies per cell) indicating, similarly to control of protein levels, that E. coli
has to implement additional regulatory processes for increasing their enzymatic
capacities to fulfill the demands of rising biomass and energy synthesis throughput
with faster growth. This is also reflected by the observation that the average protein
abundance and synthesis cost for post-TL compared to TL-regulated genes were ~2-
fold higher (5,190 vs. 2,923 molecules per cell and 6.2 x 10° vs. 3.1 x 10° ATP
molecules per cell, respectively). Thus it seems to be energetically favorable for E. coli
to increase the catalytic capacity of abundant proteins through post-TL processes and
save ATP from lower protein synthesis costs. These results are in contrast to an in
silico study which proposed that low-cost enzymes in E. coli are less likely to be post-
TR regulated [187].

Predominant post-TL control of several central metabolism fluxes in E. coli has
been reported using in vitro enzyme assays when cells were shifted from low to high D
in chemostats [8]. Our results are also in accord with an E. coli study based on EcoCyc
database [64] information on gene expression regulation, which showed coupling of
energy generating reactions to enzymatic regulation, important for short-term
maintenance of energy homeostasis [188]. In addition, several studies on yeast using

66



hierarchical regulation analysis [124] have also concluded that fluxes through
glycolytic and fermentative pathways are mainly regulated at the post-TR level [125].
Furthermore, prevalence of post-TL regulation in controlling flux throughput through
CCM was also observed in L. lactis [123] and has been recently concluded to be
probably the primary flux controlling mechanism based on numerous studies [116,126].
Post-TL regulation includes modifications of proteins after translation (post-TL
chemical modification or allosteric regulation) or change of its catalytic rate through
hyperbolic change of enzyme kinetics solely due to substrate concentration changes
[122]. As a substantial amount of quantitative evidence for the importance of post-TL
regulation in flux control has accumulated by now, it will be highly relevant in the
future to further dissect the specific post-TL regulation mechanisms in action when a
reliable non-targeted intracellular metabolome method for E. coli continuous cultures,
and considerable amount of information on protein specific post-TL modifications and
allosteric regulation by reactant metabolites becomes available [116,122,126,127,189].

4.6.3. Apparent in vivo catalytic rates of enzymes in central carbon metabolism

Control of fluxes at post-TL level indicates increasing enzymatic capacities through
catalytic rates. Indeed, we detected a median 3.7-fold increase of kapp of 191 CCM and
biosynthetic enzymes (Figure 22) compared to non-changing median protein
concentration with rising p confirming that higher flux throughput for faster growth in
E. coli is mainly achieved through increased catalytic rates of enzymes.

3.7x median increase

a5F T T l T l T T ™

B 1-0.11h"k,, ]
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I 1=0.49 h™ kap, ]

10 10" 10° 10! 102 10°
Kapp(s™)
Figure 22. Dynamic range of 191 central carbon metabolism and biosynthetic enzyme
apparent in vivo catalytic rates at low and high u. 1, specific growth rate; kay,p, apparent in
vivo catalytic rate of enzyme. Blue and red vertical lines with arrowheads above the chart
denote the median at u = 0.11 and 0.49 h™', respectively. [Publication IV] - Reproduced by
permission of The Royal Society of Chemistry.

The same principle for flux control also applies to the most important pathways for
aerobic growth of E. coli: the average protein concentrations of glycolysis, the TCA
cycle, the pentose phosphate pathway (PPP) and acetate synthesis were maintained
constant or even decreased with rising p, and higher flux throughput was clearly
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realized through increasing catalytic rates of enzymes (Figure 23). This further
supports the conclusion of the relevance of post-TL regulation in metabolic control as
these are the pathways carrying the highest flux and responsible for feeding precursor
molecules into energy generation and biosynthetic pathways. Our results are in line
with a similar recent report for L. lactis where a 3.6-fold increase of average kapp for
CCM and biosynthetic enzymes was detected with 5-time faster growth [123].

When comparing the actual values of kap, among the most important pathways, one
can see that the average values for the TCA cycle (49-156 s™' from n=0.11t0 0.49 h™
respectively) are higher than for glycolysis (34-110 s ') and PPP (4-88 s ') (Figure 23)
indicating that pathways with higher contribution of ATP production to the total ATP
pool also possess enzymes with higher catalytic rates. Notably, these ka,p values
closely match the range of ke, values for CCM enzymes of E. coli measured in vitro
[190].
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Figure 23. Flux control in the most important pathways for aerobic growth of E. coli. 1,
specific growth rate; gDCW, gram dry cellular weight; k.., apparent in vivo catalytic rate of
enzyme. Each circle represents the average value of the pathway if not otherwise noted. See
Table S7 in Publication IV for the genes assigned to pathways according to the EcoCyc
database [64]. [Publication IV] - Reproduced by permission of The Royal Society of Chemistry.
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Also at the COG functional class level, ki, values for energy metabolism enzymes
(C) were an order or two higher than those of biomass monomer synthesis (E, F, H, I)
(Figure S6 in Publication IV). Similar higher (~30-fold) catalytic rates for CCM
compared to secondary metabolism enzymes is seen when ~2,000 kcoc values measured
in vitro for prokaryotes and eukaryotes were analyzed [190]. Hence, cells maintain
higher abundance of proteins required for biomass synthesis (translational machinery,
monomer precursor synthesis) whereas enzymatic capacities for energy generating
proteins are more likely to be increased through post-TL regulation. Interestingly, we
also noted that the pathways carrying the highest flux—glycolysis, TCA cycle and
PPP—showed both higher protein concentration and k., compared to biosynthetic
pathways (Figure 24). This refers to an evolutionary push towards proteins carrying
high flux being more abundant and possessing higher catalytic rates to reduce the cost
of protein production, as proposed previously [190,191].

Overall, it seems that under strong nutrient limitation at low p, metabolism of E.
coli is on ‘standby’ mode: protein abundances are high and catalytic rates not saturated
for biomass and energy generation so that cells could quickly respond to changing
environmental conditions by modifying protein catalytic rates without wasting time for
increasing their levels. An analogy for this could be drawn from drag racing: drivers
‘pump up’ the revolutions of the engines of their cars before the start signal so they
could instantly take off with full torque once the light turns green. The same
phenomenon is also demonstrated by glucose-pulse experiments where cells are able to
rapidly increase p 3-fold after a substrate pulse [30,192], clearly pointing to the ability
to immediately increase catalytic rates if needed.
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Figure 24. Protein concentrations and their apparent in vivo catalytic rates in pathways
carrying the highest flux compared to biosynthetic pathways. k., apparent in vivo catalytic
rate of enzyme, See Table S7 in Publication IV for the genes assigned to pathways according to
the EcoCyc database [64]. [Publication IV] - Reproduced by permission of The Royal Society of
Chemistry.
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Our quantitative data enable us to investigate patterns of protein catalytic rates
within many pathways. In L. lactis, first enzymes in central pathways tend to have
lower abundances and, hence, higher ki, values [123], also seen indirectly in yeast
[193]. This hints for possible allosteric control of feedback regulation through the
product of the pathway to precisely control the flux [187]. Our data are in accordance
with the latter and provide further pathway-specific observations. Both initial enzymes
of glycolysis and PPP, Pgi and Zwf, respectively, possess higher kay, values compared
to subsequent enzymes probably for enabling strict distribution of carbon flow between
these pathways for fast switching between the need for more ATP (glycolysis) or
NADPH (PPP). One would expect that a biosynthesis pathway is activated when its
product is needed and flux is controlled by its first enzyme. However, a difference
among biosynthetic pathways was observed: longer pathways (e.g. purine, aromatic
amino acids, Arg, Lys) showed higher ki, values for their first enzymes which was not
seen for shorter ones (e.g. Ser, Thr, Leu, His). It might be useful for the cell to control
flux through initial enzymes in longer pathways to realize a fast response as opposed to
a time-consuming situation where all the enzyme levels are maintained low and
increased uniformly once the pathway capacity has to be enhanced. More detailed
analysis could be found in Publication IV.

4.6.4. Ribosomal translation rate

Faster growing cells are bigger since they need more ‘catalytic units’ to process
nutrients and synthesize biomass faster. For this, a cell needs to increase its
translational capacity with rising u for maintaining the necessary concentrations of
enzymes, the cellular ‘workhorses’. How is this achieved?

In our experiments, the median ribosomal protein concentration increased only 1.5-
fold with 5-time faster growth (Figure S7A in Publication IV) indicating the need for
higher translation rates to maintain sufficient translational capacity. Indeed, estimating
ribosomal translation rates by calculating ke, for ribosomal proteins revealed 2.8-time
(median; CV = 11% among 52 quantified ribosomal proteins) higher values with
increasing p (Figure S7B in Publication IV), demonstrating that increasing the
concentration of ribosomal proteins is not sufficient for achieving faster growth and,
therefore, also translation rates have to be increased. The observation of increased
translation rates in faster growing cells is in concordance with the literature using
indirectly calculated values [55,168,194].
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5. CONCLUSIONS

The main conclusion of this thesis is that the developed comprehensive systems
biology approach of absolute quantitative multi-omics analyses coupled to advanced
continuous cultivation and computational methods was validated in elucidation of
novel regulation principles of cell metabolism which allows further successful
metabolic engineering of strains with superior characteristics at a new level.

Other more specific conclusions resulting from this thesis are:

|

11

I

v

VI

It was confirmed that highly reproducible accelerostat (A-stat) cultures precisely
detect metabolic switch-points (e.g. start of acetate overflow), elucidate the
dynamics of metabolism and describe steady state physiology equally to
chemostat, making A-stat suitable for steady state physiology studies and
screening bioprocesses.

Detailed carbon balance analysis and experimentally determined p-dependent
biomass composition increased accuracy of metabolic flux analysis and enabled
to propose that despite increasing carbon wasting with rising p, E. coli could
maintain a constant biomass yield through simultaneous reduction of non-growth
associated ATP production.

We propose a novel hypothesis that acetate overflow metabolism in E. coli is
triggered by carbon catabolite repression-mediated acetyl-CoA synthetase (Acs)
repression resulting in decreased consumption of acetate produced by Pta and
disruption of the phosphotransacetylase-acetyl-CoA synthetase (PTA-ACS) node.

Fine-tuned coordination between increasing the recycling capabilities of acetate
in the PTA-ACS node through a higher concentration of active acetate-
scavenging Acs and downstream metabolism throughput in the TCA cycle
strongly reduces acetate overflow in E. coli.

E. coli K-12 BW25113 Apka AarcA strain with increased acetate recycling and
TCA cycle throughput is superior to previous acetate overflow-reduced E. coli
strains since it does not accumulate any other detrimental by-product and
maintains Umax Of wild-type presumably leading to higher volumetric
productivities in bioprocesses in the absence of acetate.

High correlations (R ~ 0.8) between both genome-wide mRNA and protein
expression changes with rising p and concentrations observed under strictly
defined and controlled growth conditions suggest that the state of the culture
could be an important factor in mRNA-protein correlation analysis. We also
conclude that E. coli achieves faster growth through increasing catalytic and
translation rates of proteins by predominantly controlling protein abundances and
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VII

metabolic flux rates at post-transcriptional and post-translational levels,
respectively. This serves the basis for the development of more sophisticated
whole-cell models through including the complex regulation layers of gene
expression and metabolic fluxes dependent on the physiological state of the cell.

E. coli enzymes carrying high fluxes seem to be more abundant and also possess

higher apparent in vivo catalytic rates, suggesting an evolutionary push to reduce
protein synthesis costs.
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Abstract

regulation mechanisms still remain unclear.

accumulation of acetate.

Background: The biotechnology industry has extensively exploited Escherichia coli for producing recombinant
proteins, biofuels etc. However, high growth rate aerobic E. coli cultivations are accompanied by acetate excretion
i.e. overflow metabolism which is harmful as it inhibits growth, diverts valuable carbon from biomass formation
and is detrimental for target product synthesis. Although overflow metabolism has been studied for decades, its

Results: In the current work, growth rate dependent acetate overflow metabolism of £. coli was continuously
monitored using advanced continuous cultivation methods (A-stat and D-stat). The first step in acetate overflow
switch (at g = 027 £ 002 h™") is the repression of acetyl-CoA synthethase (Acs) activity triggered by carbon
catabolite repression resulting in decreased assimilation of acetate produced by phosphotransacetylase (Pta), and
disruption of the PTA-ACS node. This was indicated by acetate synthesis pathways PTA-ACKA and POXB
component expression down-regulation before the overflow switch at p = 0.27 + 0.02 h™" with concurrent 5-fold
stronger repression of acetate-consuming Acs. This in turn suggests insufficient Acs activity for consuming all the
acetate produced by Pta, leading to disruption of the acetate cycling process in PTA-ACS node where constant
acetyl phosphate or acetate regeneration is essential for E. coli chemotaxis, proteolysis, pathogenesis etc. regulation.
In addition, two-substrate A-stat and D-stat experiments showed that acetate consumption capability of £. coli
decreased drastically, just as Acs expression, before the start of overflow metabolism. The second step in overflow
switch is the sharp decline in cAMP production at g = 045 h™' leading to total Acs inhibition and fast

Conclusion: This study is an example of how a systems biology approach allowed to propose a new regulation
mechanism for overflow metabolism in E. coli shown by proteomic, transcriptomic and metabolomic levels
coupled to two-phase acetate accumulation: acetate overflow metabolism in E. coli is triggered by Acs down-
regulation resulting in decreased assimilation of acetic acid produced by Pta, and disruption of the PTA-ACS node.

Background

Escherichia coli has not only been the prime organism
for developing new molecular biology methods but also
for producing recombinant proteins, low molecular
weight compounds etc. in industrial biotechnology for
decades due to its low cost manufacturing and end-
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product purification and its ability to reach high cell
densities grown aerobically [1,2]. However, a major pro-
blem exists with aerobic E. coli cultivation on glucose at
high growth rates-formation and accumulation of con-
siderable amounts of acetic acid i.e. overflow metabo-
lism. In addition to being detrimental for target product
synthesis, accumulated acetate inhibits growth and
diverts valuable carbon from biomass formation [3,4].
The acetate synthesis and utilization pathways [5] can
be seen in Figure 1: acetate can be synthesized by

© 2010 Valgepea et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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Figure 1 Effect of specific growth rate on acetate synthesis and utilization pathways, selected TCA cycle and carbon catabolite
repressed gene and protein expression levels in E. coli A-stat experiments. PTA, phosphotransacetylase; ACKA, acetate kinase; ACS, acetyl-
CoA synthetase; POXB, pyruvate oxidase; PDHC, pyruvate dehydrogenase complex; TCA, tricarboxylic acid cycle; GS, glyoxylate shunt; Crp, cyclic
AMP receptor protein; Cra, catabolite repressor activator; Icd, isocitrate dehydrogenase; SucD, succinyl-CoA synthethase; SdhB, succinate
dehydrogenase; , specific growth rate (h"). Thickness of red arrows denotes level of ACS and PTA-ACKA pathway repression (thick line
represents stronger repression). Protein data points are average of two independent experiments, error bars are not shown for better
visualization. Gene names are italicized. Refer to Additional file 2 for standard deviations and all the data.

phosphotransacetylase (PTA)/acetate kinase (ACKA)
and by pyruvate oxidase (POXB). Acetic acid can be
metabolized to acetyl-CoA either by the PTA-ACKA
pathway or by acetyl-CoA synthetase (ACS) through an
intermediate acetyl-AMP. The high affinity (K, of 200
puM for acetic acid) ACS scavenges acetate at low con-
centrations whereas the low affinity PTA-ACKA path-
way (K, of 7-10 mM) is activated in the presence of
high acetate concentrations [6].

The phenomenon of overflow metabolism has been
studied widely over the years and it is commonly
believed to be caused by an imbalance between the
fluxes of glucose uptake and those for energy produc-
tion and biosynthesis [7,8]. Several explanations such as
the saturation of catalytic activities in the tricarboxylic

acid (TCA) cycle [9,10] and respiratory chain [7,11,12],
energy generation [5,13] or the necessity for coenzyme
A replenishment [14] have been proposed. In addition
to bioprocess level approaches [1,15], various genetic
modifications of the acetate synthesis pathways exten-
sively reviewed in De Mey et al. [15] have been made to
minimize acetic acid production. For instance, it has
been shown that deleting the main acetate synthesis
route PTA-ACKA results in a strong reduction (up to
80%) of acetate excretion, maximum growth rate (ca
20%) and elevated levels of formate and lactate (ca 30-
fold) [4,16-18], whereas poxB disruption causes reduc-
tion in biomass yield (ca 25%) and loss of aerobic
growth efficiency of E. coli [19]. The latter indicates that
acetate excretion cannot be simply excluded by
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disrupting its synthesis routes without encountering
other unwanted effects. Unfortunately, no clear conclu-
sions could be drawn from batch experiments with an
acs knock-out strain [4]. It should be noted that studies
with E. coli genetically modified strains engineered to
diminish acetate production in batch cultures have not
fully succeeded in avoiding acetate accumulation
together with increasing target product production
yields and rates [15]. Additionally, these studies have
not allowed elucidating the mechanism of overflow
metabolism unequivocally [4,20,21].

Acetate overflow is a growth rate dependent phenom-
enon, but no study has specifically focused on growth
rate dependency of protein and gene expression regula-
tion, intra-and extracellular metabolite levels using also
metabolic modeling. Describing the physiology of an
organism on several ‘omic levels is the basis of systems
biology that facilitates better understanding of metabolic
regulation [22]. In this study, E. coli metabolism at pro-
teomic, transcriptomic and metabolomic levels was
investigated using continuous cultivation methods prior
to and after overflow metabolism was switched on.
Usually, chemostat cultures are used for steady state
metabolism analysis, however, we applied two changestat
cultivation techniques: accelerostat (A-stat) and dilution
rate stat (D-stat), see Methods section for details [23,24].
These cultivation methods were used as they provide
three advantages over chemostat. Firstly, these changestat
cultivation techniques precisely detect metabolically rele-
vant switch points (e.g. start of overflow metabolism,
maximum specific growth rate) and enable to monitor
the dynamic patterns of several metabolic physiological
responses simultaneously which could be left unnoticed
using chemostat. Secondly, it is possible to collect vast
amount of steady state comparable samples and by doing
so, save time. Thirdly, both A-stat and D-stat enable to
quantitatively study specific growth rate dependent co-
utilization of growth substrates. Latter advantage was
applied for investigating acetic acid consumption capabil-
ity of E. coli at various dilution rates in this study. Com-
bining changestat cultivation methods enables to study
metabolism responses of the same genotype at different
physiological states in detail without encountering the
possible metabolic artifacts accompanied when using
genetically modified strains.

Results obtained by studying specific growth rate
dependent changes in E. coli proteome, transcriptome
and metabolome in continuous cultures together with
metabolic modeling allowed us to propose a new theory
for acetate overflow: acetate excretion in E. coli is trig-
gered by carbon catabolite repression mediated down-
regulation of Acs resulting in decreased assimilation of
acetate produced by Pta, and disruption of the PTA-
ACS node.
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Results

E. coli metabolic switch points characterization

In all accelerostat (A-stat) cultivation experiments, after
the culture had been stabilized in chemostat at 0.10 h™*
to achieve steady state conditions, continuous increase
in dilution rate with acceleration rate (a) 0.01 h™> (0.01
h™ per hour) was started. Continuous change of specific
growth rate resulted in detecting several important
changes in E. coli metabolism as demonstrated in Figure
2. Firstly, in A-stat cultivations where glucose was the
only carbon source in the medium, acetic acid started to
accumulate (i.e. overflow metabolism switch) at u = 0.27
+0.02 h! (average + standard deviation) and a two-
phase acetate accumulation pattern was observed (dis-
cussed below; Figure 2). Cells reached maximum CO,
production and O, consumption at y = 0.46 + 0.02 h™!
and metabolic fluctuations were observed at p = 0.49 +
0.03 h'* followed by washout of culture at g = 0.54 +
0.03 h! (corresponding to maximum specific growth
rate at given conditions). The nature of these fluctua-
tions will be studied further and not covered in the cur-
rent publication. All A-stat results were reproduced
with relative standard deviation less than 10% with the
exception of acetate production per biomass (Yoac.)
(Table 1 and Figure S1 in Additional file 1).

Metabolomic responses to rising specific growth rate

A-stat cultivation enabled to study acetic acid accumula-
tion profile in detail with increasing specific growth rate.
Interestingly, a two-phase acetate accumulation pattern
was observed (Figure 2). Slow accumulation of acetic

D OAc P 1y, X cAMP Glo
1 LM mM

' mM h' mmolla DCW h 9 DCW/
06 127068 1g 25 |70 |10
I’“\ L)
059 10059 1 1% / \‘\ — o |56 |8
X
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0.05 0.17 0.29 0.41 0.53 0.65
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Figure 2 Increasing dilution rate dependent E. coli metabolism
characterization in one A-stat cultivation (a = 0.01 h). D,
dilution rate (h™"); X, biomass concentration (g dry cellular weight
(DCW)/L); w, specific growth rate (h); reos, specific CO, production
rate (mmol/g DCW h); OAC, acetate concentration (mM); Glc,
glucose concentration (mM); CAMP, cyclic AMP concentration (UM).
Arrow indicates the start of overflow metabolism. Start of vertical
axes was chosen for better visualization.
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Table 1 A-stat and chemostat growth characteristics comparison and A-stat reproducibility over the studied specific
growth rate range for three independent experiments

u=024h" u=030h" u=040h" u=051h" W =0.10-047 h™
Chemostat A-stat Chemostat A-stat Chemostat A-stat Chemostat A-stat A-stat RSD, %
Yys® 044 040 + 0.01 046 041 £ 001 044 042 + 0.00 043 041 +0.01 20
Yonc.” NDE NDE 053 090 + 0.32 1.70 156 £ 0.23 325 335+ 082 ND
Yeamp” 347 359 +0.39 325 355+ 032 2.70 217 + 007 0.86 0.71¢ 9.1
Y(Ogd 27.56 3012 + 204 27.55 2719 £ 122 26.24 2386 + 141 ND 21.19 £ 0.19 56

A-stat values represent the average from three independent experiments and standard deviation follows the + sign. Chemostat values from one experiment.

NDE, not detected. ND, not determined. RSD, relative standard deviation.

“Biomass yield is given in g dry cell weight (DCW)/g glucose consumed (g DCW/g glucose).

PAcetic acid production per biomass is given in mmol acetic acid/g DCW.
“cAMP production per biomass is given in pmol cAMP/g DCW.

dCarbon dioxide (CO,) production per biomass is given in mmol CO,/g DCW.
“Data from one A-stat experiment.

acid started at g = 0.27 + 0.02 h™' with concomitant
change in specific CO, production rate (Figure 2). Faster
accumulation of acetate was witnessed after cells had
reached maximum CO, production at y = 0.46 + 0.02 h™".
Quite surprisingly, production of the important carbon
catabolite repression (CCR) signal molecule cAMP
(Ycamp) rose from steady state chemostat level 2.45 +
0.26 pmol/g dry cellular weight (DCW) (i = 0.10 h™) to
3.55 + 0.32 pmol/g DCW (i = 0.30 h™') after which it
sharply decreased to 1.30 + 0.44 umol/g DCW at p = 0.45
h' (Figure S1 in Additional file 1). This abrupt decline
took place simultaneously with the faster acetate accumu-
lation profile described above (Figure 2 and Figure S1 in
Additional file 1). In addition, similar two-phase acetate
accumulation phenomenon was observed in a two-
substrate (glucose + acetic acid) A-stat during the decrease
of cAMP around specific growth rate 0.39 h™" (Figure S2 in
Additional file 1).

Significant fall in two of the measured pentose phos-
phate pathway intermediates ribose-5-phosphate (R5P)
and erythrose-4-phosphate (E4P) was detected with
increasing specific growth rate which could point to
possible limitation in RNA biosynthesis during growth
(Figure 3A). PTA-ACS node related compound nones-
terified acetyl-CoA (HS-CoA) level declined two-fold
simultaneously with cAMP after acetate started to
accumulate (Figure 3B). This indicates the possible
increase of other CoA containing compounds e.g. suc-
cinyl-CoA. Accumulation of TCA cycle intermediates
a-ketoglutarate and isocitrate (Figure 3B) with increas-
ing dilution rate could be associated with pyrimidine
deficiency and decrease of ATP expenditure in the
PTA-ACS cycle. Concurrently, intracellular concentra-
tions of fructose-1,6-bisphosphate (FBP) and glyceral-
dehyde-3-phosphate (GAP) from the upper part of
energy generating glycolysis increased 6- and 3-fold,
respectively (Figure 3C).

Functional-genomic responses to rising specific growth
rate

The two main known pathways for acetate synthesis
phosphotransacetylase-acetate kinase (PTA-ACKA) and
pyruvate oxidase (POXB) were down-regulated, both
on gene and protein expression levels, from p = 0.20
h™ ie. before acetate overflow was switched on. At the
same time, there was a concurrent 10-fold repression
of the acetic acid utilization enzyme acetyl-CoA
synthetase (Acs). This substantial difference (5-fold)
between the acetate synthesis and assimilation path-
ways expression suggests that the synthesized acetic
acid cannot be fully assimilated with increasing growth
rates (Figure 1).

We observed the beginning of carbon catabolite
repression (CCR) induction prior to acetate accumula-
tion in parallel with Acs down-regulation. This was indi-
cated by down-regulation (3-fold on average) of CCR-
mediated components: alternative (to glucose) substrate
transport and utilization systems like galactose (MglAB),
maltose (MalBEFKM), galactitol (GatABC), L-arabinose
(AraF), D-ribose (RbsAB), C,-dicarboxylates (DctA) and
acetate (ActP, YjcH) (Figure 4C and Additional file 2).
Moreover, expression of transcription activator Crp
(cyclic AMP receptor protein which regulates the
expression of Acs transcribing acs-yjcH-actP operon)
and Cra (catabolite repressor activator; a global tran-
scriptional protein essential for acetic acid uptake [25])
were reduced 1.5 and 2 times, respectively, in like man-
ner to carbon catabolite repressed proteins mentioned
above (Figure 1). Simultaneously, components of the
gluconeogenesis pathway (Pck, MaeB, Pps) and glyoxy-
late shunt enzymes AceA, AceB (vital for acetate con-
sumption) were repressed with growth rate increase
(Figure 4B and Additional file 2). It should be empha-
sized that most of the TCA cycle gene and protein levels
were maintained or even increased up to y = 0.40 h™'
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Figure 3 Dilution rate dependent intracellular metabolite patterns in one E. coli A-stat experiment. D, dilution rate (h). (A) Pentose
phosphate pathway metabolites. RSP, ribose-5-phosphate concentration (black diamond); E4P, erythrose-4-phosphate concentration (open circle).
(B) TCA cycle metabolites and co-factor free CoA. a-KG, a-ketoglutarate concentration (black diamond); Cit/Ici, citrate/isocitrate pool
concentration (open circle); HS-CoA, co-factor free CoA level (grey triangle). (C) Glycolysis (upper part) metabolites. FBP, fructose-1,6-bisphosphate
concentration (black diamond); GAP, glyceraldehyde-3-phosphate concentration (open circle).

followed by sudden repression simultaneous to achieving
maximum specific CO, production rate (u = 0.46 *
0.02 h'', see above; Figure 1 Figure 2 and Figure 4A).
This may allude to no limitation at the TCA cycle level
around the specific growth rate where overflow metabo-
lism was switched on.

Acetic acid consumption capability studied by dilution
rate stat (D-stat) and two-substrate A-stat cultivations
The beginning of a strong decrease in acetate assimila-
tion enzyme Acs expression before overflow switch
point implies to a possible connection between acetate

assimilation capability and overflow metabolism of acet-
ate (Figure 1). Therefore, specific growth rate dependent
acetic acid consumption capabilities were investigated
using D-stat and two-substrate A-stat methods. It was
shown by D-stat experiments at various dilution rates
that more than a 12-fold reduction in acetate consump-
tion capability took place around overflow switch point,
and its total loss was detected between dilution rates
0.45 and 0.505 + 0.005 h! (Figure 5). Acetic acid con-
sumption and production was also studied in a single
experiment using two substrate (glucose + acetic acid)
A-stat cultivation (Figure S2 in Additional file 1) which
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Figure 5 Dilution rate dependent acetic acid consumption
capability in E. coli D-stat cultures. Koa-, acetic acid
consumption per biomass (red triangle); OAC, acetate concentration
in chemostat before the start of acetic acid supplemented medium
addition (violet circle); cAMP, cyclic AMP concentration (blue
square); Acs, acetyl-CoA synthetase protein dilution rate dependent
expression levels from A-stat (green diamond). Error bars represent
the standard deviation from two independent D-stat experiments.

demonstrated that acetic acid consumption started to
decrease at pt = 0.25 h™ and was completely abolished at
i = 0.48 h™' which fits into the range of dilution rates
observed in D-stat.

A-stat comparison with chemostat

As could be seen from Table 1 major growth character-
istics such as biomass yield (Yxs), acetate (You..), cyclic
AMP (Y amp) and carbon dioxide (Ycoy) production per
biomass from A-stat and chemostat are all fully quanti-
tatively comparable. The latter results enable to use A-
stat data for quantitative modeling calculations. In addi-
tion, the two continuous cultivation methods were
examined at transcriptome level using DNA microar-
rays. Transcript spot intensities from quasi steady state
A-stat sample at g = 0.48 h™' and chemostat sample at
i = 0.51 h'* showed an excellent Pearson product-
moment correlation coefficient R = 0.964 (Figure S3 in
Additional file 1; Additional file 3). This indicates good
biological correlation between E. coli transcript profiles
at similar specific growth rates in chemostat and A-stat.
These results showed that our quasi steady state data
from A-stat and D-stat cultures are steady state
representative.

Proteome and transcriptome comparison

E. coli protein expression ratios for around 1600 pro-
teins were generated by comparing two biological repli-
cates at specific growth rates 0.20 + 0.01; 0.26; 0.30 *
0.01; 0.40 + 0.00; 0.49 + 0.01 h™! with sample at p =
0.10 + 0.01 h' (chemostat point prior to the start of
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acceleration in A-stat) which produced Pearson correla-
tion coefficients for two biological replicates in the indi-
cated pairs of comparison in the range of R = 0.788-
0.917 (Figure S4 in Additional file 1).

DNA microarray analysis of 4,321 transcripts was con-
ducted with the Agilent platform using the samples
from one A-stat cultivation. Gene expression ratios
between specific growth rates 0.21; 0.26; 0.31; 0.36; 0.40;
0.48 h™ and y = 0.11 h™' (chemostat point prior to the
start of acceleration in A-stat) were calculated. Compari-
son of gene and protein expression changes (between
respective specific growth rates) revealed that compo-
nents of the PTA-ACS node were regulated at transcrip-
tional level as the absolute majority of the studied
transcripts and proteins indicated by the good correla-
tion between transcriptome and proteome expression
profiles (Figure 1 and Figure S5 in Additional file 1).

Most recent studies have either failed to find a signifi-
cant correlation between protein and mRNA abun-
dances or have observed only a weak correlation
(reviewed in [22]). It has been suggested that the main
reasons for uncoupling of mRNA and protein abun-
dances are protein regulation by post-translational mod-
ification, post-transcriptional regulation of protein
synthesis, differences in the half-lives of mRNA and pro-
teins, or possible functional requirement for protein
binding [22]. As the cells in these studies were mostly
cultured in non steady state condition, our steady state
data with very good correlation between transcriptome
and proteome implies that the physiological state of the
culture (steady state vs. non steady state) could be an
important factor in terms of mRNA and protein correla-
tion determination. Transcriptome and proteome data
are presented in Additional file 2 and at NCBI Gene
Expression Omnibus and PRIDE database (see Methods
for details), respectively.

Discussion

To gain better insights into the regulation of acetate
overflow metabolism in E. coli, we studied specific
growth rate dependent proteomic, transcriptomic and
metabolomic patterns combined with metabolic model-
ing using advanced continuous cultivation methods,
which has not been carried out before. Continuous
monitoring of the specific growth rate effect on E. coli
metabolism enabled us to precisely detect important
metabolic shift points, the most important being the
start of acetate overflow at p = 0.27 + 0.02 h™ (Figure
2), and changing patterns of a number of important
metabolites e.g. acetate, CAMP. Quite surprising was the
down-regulation of the known acetate synthesis path-
ways, PTA-ACKA and POXB expression before overflow
switch with increasing growth rate (Figure 1). A similar
pattern has been seen before in chemostat cultures



Valgepea et al. BMC Systems Biology 2010, 4:166
http://www.biomedcentral.com/1752-0509/4/166

but without emphasizing the possible physiological
consequences [26-28]. A 10-fold repression of the acetic
acid utilization enzyme acetyl-CoA synthetase (Acs)
expression was observed concurrently with the down-
regulation of the PTA-ACKA pathway indicating that
acetic acid synthesis might exceed its assimilation (Fig-
ure 1). Our two substrate A-stat and D-stat experiments
directly proved that acetate consumption capability of
E. coli is specific growth rate dependent as acetate con-
sumption started to decrease at p = 0.25 h™' (Figure S2
in Additional file 1) and acetate consumption capability
decreased 12-fold around overflow switch growth rate
w = 027 + 0.02 h™', respectively (Figure 5). In addition,
it was shown that activation of carbon catabolite repres-
sion (CCR) and repression of Acs take place simulta-
neously prior to the start of overflow metabolism
(Figure 1 Figure 4 and Figure 5). As a result, it is pro-
posed that acetate overflow metabolism in E. coli is trig-
gered by Acs down-regulation resulting in decreased
assimilation of acetic acid produced by Pta, and disrup-
tion of the PTA-ACS node.

We showed that Acs was concurrently down-regulated
five times more compared to the acetate synthesis path-
ways (Figure 1). In addition, the TCA cycle flux decrease
as shown by change in CO, production at overflow
switch growth rate indicates that carbon is not metabo-
lized by the TCA cycle after the start of acetate accumu-
lation with pre overflow switch rates (Figure 2 and
Additional file 4). The latter is caused because the
amount of acetyl-CoA entering the TCA cycle decreases
after carbon is lost into excreted acetate. Stronger
repression of the acetate consuming Acs in comparison
with acetate synthesizing PTA-ACKA together with a
decline in TCA cycle flux suggest disruption of acetic
acid cycling at the PTA-ACS node (Figure 1). While this
node may seem as a futile cycle, the fact is that numer-
ous metabolic tasks involving the intermediate mole-
cules of this cycle-acetyl phosphate (acetyl-P)
and acetyl-AMP-are essential for proper E. coli growth
(Figure 6). For instance, these molecules play a crucial
role in bacterial chemotaxis regulation in which flagellar
rotation is controlled by the activation level of the
response regulator CheY [29] through either phospho-
transfer from CheA [30,31] or acetyl-P [31,32], acetyla-
tion by acetyl-AMP [33,34] or co-regulation of both
mechanisms [29]. It has been also demonstrated that
acetyl-P synthesis is vital for EnvZ-independent regula-
tion of outer membrane porins [35], pathogenesis [36]
and regulation of several virulence factors [5]. Further-
more, it has been presented that acetyl-P interacts with
phosphate concentration regulators PhoB-PhoR [37] and
NRI protein which is part of a complex nitrogen sensing
system [38]. Acetyl-P is critical for efficient degradation
of unfolded or damaged proteins by ATP-dependent
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Figure 6 Acetyl-P as an important signal molecule. Ac-CoA,
acetyl-CoA; PTA, phosphotransacetylase; refer to text for other
abbreviations.

proteases [39]. Altogether, acetyl-P can influence the
regulation of almost 100 other genes [40]. Finally, pta
and/or ackA mutations were shown to affect repair-defi-
cient E. coli mutants [41] and a pta mutant has been
reported to be impaired in its ability to survive during
glucose starvation, while the ackA mutant survived as
well as the parent strain [42]. It is important to note
that the only known pathway in E. coli for acetyl-P
synthesis is the PTA-ACKA [5,31]. Taking all the pre-
vious into account, we conclude that acetyl-P as well as
acetyl-AMP are essential for cellular growth of E. coli,
and as acetic acid formation is the result of their depho-
sphorylation, acetic acid should be synthesized and con-
sumed simultaneously during growth to maintain proper
balance between metabolites of the PTA-ACS node.
This is in agreement with Shin et al. [28] who proposed
that wild-type E. coli constitutively synthesizes acetate
even when growing on non-acetogenic carbon source
succinate or at low growth rates in carbon limited cul-
tures. It also has to be mentioned that acetic acid is a
by-product in the synthesis of cysteine, methionine and
arginine, covering around 0.4 mmol/g DCW (Additional
file 4). Based on our experimental and literature data,
production and re-assimilation of acetate might be over
1 mmol/g DCW at p = 0.2 h™" (Text S2 in Additional
file 1) which further supports the hypothesis of the
necessity for constant acetic acid synthesis.

A similar regulation for overflow metabolism of acet-
ate was posed for Saccharomyces cerevisiae by Postma
and co-workers: they postulated that acetate accumula-
tion is the result of insufficient acetyl-CoA synthetase
activity for the complete functioning of the pyruvate
dehydrogenase bypass because of glucose repression of
ACS at high growth rates [43]. The hypothesis proposed
here is also consistent with the observation that an acs
mutant of E. coli accumulated acetate in chemostat cul-
tures at dilution rate (D) 0.22 h™! whereas acetate
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overflow was started in wild-type at a higher D = 0.35 h™*
[28]. Furthermore, it has been shown that over-expression
of acs [44] and constitutively expressed acs together with
glyoxylate shunt repressors icIR and fadR mutant resulted
in a significant reduction in acetate accumulation in glu-
cose batch fermentations [28]. Adams and co-workers
showed that as a result of micro-evolution, E. coli
increased acetate consumption capability by over-expres-
sing Acs (not AckA) [45,46], further supporting the con-
nection between Acs activity and acetate accumulation.

As Acs down-regulation is responsible for triggering
overflow metabolism and the resulting accumulation of
acetate is detrimental to cellular growth, it bears ques-
tioning why E. coli has not evolved towards maintaining
sufficient Acs levels for acetate assimilation in all growth
conditions. Growth conditions in E. coli native environ-
ments are rough as concentrations of utilizable carbon
sources including acetate are in the low mg L' range
and access to nutrients is troublesome [47]. These harsh
conditions force E. coli to make its metabolism ready
for scavenging all possible carbon sources including
acetate. However, in nutrient rich laboratory conditions,
E. coli focuses on anthropic growth [48] and biomass
production rate, primarily realized by enhancing readily
oxidizable substrate (glucose) uptake kinetics which in
turn results in Acs repression through CCR and thus,
acetate accumulation [46]. This indicates that an active
Acs is not essential for rapid growth for E. coli. It seems
that maintaining high expression levels of acetate assim-
ilation components (and also other alternative substrates
ones) is energetically not favorable at higher growth
rates. Moreover, as the space on cell membrane is lim-
ited and as E. coli achieves more rapid growth probably
by increasing the number of glucose transport machin-
ery components on the membrane, using area for alter-
native substrate transport proteins is not beneficial for
faster growth. Interestingly, even in one of its natural
environments-urinary tract-where a continuous dilution
of acetate occurs, it has been shown that metabolizing
acetate to acetyl-CoA by Acs is not essential for normal
E. coli colonization as PTA-ACKA pathway and mainte-
nance of a proper intracellular acetyl-P concentration
are necessary for colonizing murine urinary tract [32].

Based on all the points discussed above, PTA-ACS
might function as a futile cycle to provide rapid regulation
of acetyl-P concentration in the cell for an active chemo-
taxis that is vital in natural nutrient-depleted environ-
ments, fighting against other organisms (acetate
production), pathogenesis, biofilm formation etc. This
hypothesis is consistent with the fact that the flagellar
assembly and regulation operon (tar-tap-cheRBYZ) was
more intensively expressed at lower growth rates (Addi-
tional file 2) where residual glucose concentration is
smaller.
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Concerning Acs down-regulation, it is possible that
CCR is responsible for its repression as proposed by
Treves et al. [46] showing the link between ACS expres-
sion level and acetate accumulation. In our experiments,
it was shown that activation of CCR and repression of
Acs take place simultaneously prior to the start of over-
flow metabolism (Figure 1 and Figure 4). As it is well
known that CCR is initiated by the presence of glucose
in the medium [49,50], we propose that increasing resi-
dual glucose concentration accompanying smooth rise
of dilution rate in A-stat triggers Acs down-regulation
by CCR. The cAMP-Crp complex is one of the major
players in CCR of E. coli as cAMP binding to Crp dras-
tically increases its affinity towards activating the pro-
motors of catabolic enzymes, including Acs [6,49,50].
We measured a 1.5-fold decrease in Crp expression with
increasing growth rate (Figure 1) that is in agreement
with the data in the literature [51]. In addition, when E.
coli mutant defective in the gene crp was cultivated in
glucose-limited chemostat at a low D = 0.10 h', it accu-
mulated acetate whereas the wild-type did not [52].
Furthermore, it exhibited a 34% higher biomass yield
relative to the wild-type-this increase might be explained
by reduced ATP wasting in the acetate futile cycle,
which can be directed to biomass synthesis. Moreover,
Khankal et al. [53] noted that E. coli CRP* mutants that
do not require Crp binding to cAMP to activate the
expression of catabolic genes showed lowered glucose
effect on xylose consumption, 3.6 times higher acs
expression levels and secreted substantially less acetate
in xylitol producing batch fermentations. The connec-
tion between cAMP concentration and acetic acid con-
sumption capability, together with the two-phase acetate
accumulation profile observed in A-stat and D-stat cul-
tures (Figure 2 and Figure 5) suggests a correlation
between increasing residual glucose concentration
mediated cAMP-Crp repression and acetate accumula-
tion. Thus, cAMP-Crp dependent regulation of Acs
transcribing acs-yjcH-actP operon might be a reason for
acetate excretion, as also proposed by Veit et al. [10].
Our hypothesis of the CCR mediated acetate overflow
metabolism is as well in agreement with the fact that
rising glucose lowers the intracellular Crp level through
the autoregulatory loop of the crp gene [54]. However,
other mechanisms can also be involved in Acs down-
regulation, for example by Cra (Figure 1). Indeed, Sarkar
and colleagues have shown that glucose uptake and
acetate production rates increased with a decrease of
acetate consumption in an E. coli cra mutant [55].

What could be the biological relevance of the disrup-
tion of the PTA-ACS node? Firstly, decline of the ATP-
spending PTA-ACS cycle throughput with increasing
growth rate points to possible lower ATP spilling (our
model calculations). Secondly, disruption of the PTA-
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ACS node decreases the energy needed for expression of
this cycle’s components. As the disruption of PTA-ACS
cycle is CCR-mediated, repression of other alternative
substrate transport and utilization enzymes by CCR
enables to save additional energy. This could all lead to
the decrease of ATP production as was indicated by the
diminishing TCA cycle fluxes (Figure 2). Hence, it is
plausible that cells repress (by CCR) the expression
levels of alternative substrate utilization components
(including Acs) for making space on the cell membrane
for more preferred substrate (glucose) utilization and
ATP producing components to achieve faster growth
(see above).

Finally, it was demonstrated that highly reproducible
A-stat data are well comparable to chemostat at the
level of major growth characteristics and transcriptome,
hence quasi steady state data from A-stat can be consid-
ered steady state representative (Table 1; Figure S1 and
Figure S3 in Additional file 1). Furthermore, as shown
also by Postma et al. for S. cerevisiae [43], chemostat is
not fully suitable for characterization of dilution rate
dependent metabolic transitions, whereas A-stat should
be considered an appropriate tool for this. A-stat is
especially well suited for the studies of the details of
transient metabolism processes. Dynamic behavior of
acetate, CAMP etc. with increasing specific growth rate
(Figure 2 Figure 3 and Figure S1 in Additional file 1)
and change in acetic acid consumption capability in the
two-substrate A-stat (Figure S2 in Additional file 1)
could be cited as good examples of the latter.

Conclusion

This study is an excellent example of how a systems
biology approach using highly reproducible advanced
cultivation methods coupled with multiple ‘omics analy-
sis and metabolic modeling allowed to propose a new
possible regulation mechanism for overflow metabolism
in E. coli: acetate overflow is triggered by carbon catabo-
lite repression mediated Acs down-regulation resulting
in decreased assimilation of acetate produced by Pta,
and disruption of the PTA-ACS node. The practical
implications derived from this could lead to better engi-
neering of E. coli in overcoming several metabolic obsta-
cles, increasing production yields etc.

Methods

Bacterial strain, medium and continuous cultivation
conditions

The E. coli K12 MG1655 (A" F~ rph-1Fnr*; Deutsche
Sammlung von Mikroorganismen und Zellkulturen, Ger-
many) strain was used in all experiments. Growth and
physiological characteristics in accelerostat (A-stat)
cultivations were determined using a defined minimal
medium as described before by Nahku et al. [51], except
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4.5 g/L a-(D)-glucose and 100 ul L™ Antifoam C (Sigma
Aldrich, St. Louis, LO) was used. The latter was also
used in dilution rate stat (D-stat) experiments as the
main cultivation medium. In addition, a second medium
was used in D-stat where the main medium was supple-
mented by acetic acid and prepared as follows: 300 ml
medium was withdrawn from the main cultivation med-
ium and supplemented with 3 ml of glacial acetic acid
(99.9%). One A-stat experiment (referred to as two-sub-
strate A-stat) was carried out with the same medium as
other A-stats, but in addition supplemented with acetic
acid (final concentration 5 mM).

The continuous (both A-stat and D-stat) cultivation
system consisted of 1.25 L Biobundle bioreactor (Appli-
kon Biotechnology B.V., Schiedam, the Netherlands)
controlled by an ADI 1030 biocontroller (Applikon Bio-
technology B.V.) and a cultivation control program
“BioXpert NT” (Applikon Biotechnology B.V.). The sys-
tem was equipped with OD, pH, pO,, CO, and tem-
perature sensors. The bioreactor was set on a balance
whose output was used as the control variable to ensure
constant culture volume (300 + 1 mL). Similarly, the
inflow was controlled through measuring the mass of
the fresh culture medium.

A-stat cultivation system and control algorithms used
are described in more detail in our previous works
[24,51,56]. Dilution rate stat (D-stat) is a continuous
cultivation method where dilution rate is constant as in
a chemostat while an environmental parameter is
smoothly changed [24]. The D-stat experiments in this
study were carried out with a slight modification:
instead of changing an environmental parameter, two
different media were used to keep dilution rate constant.
After achieving steady state conditions in chemostat
using minimal medium supplemented with glucose,
addition of the second medium complemented with glu-
cose and acetic acid was started. The feeding rate of the
initial medium was decreased at the same time, resulting
in constant glucose concentration in the feed. The acetic
acid concentration in the bioreactor as a result of inflow
has to be determined to enable precise acetic acid con-
sumption/production rate calculation for the bacteria.
Hence, increase of acetic acid concentration in bioreac-
tor was calculated and validated in duplicate non-
inoculatedD-stat test experiments producing an average
standard deviation of 1.24 mM between calculated and
measured acetic acid concentrations.

All continuous cultivation experiments were carried
out at 37°C, pH 7 and under aerobic conditions (air
flow rate 150 ml min™') with an agitation speed of 800
rpm. Four A-stat cultivations were performed with
acceleration rate (a) 0.01 h™2. Duplicate D-stat experi-
ments were performed at dilution rates 0.10; 0.30; 0.505
+ 0.005 h! and single experiments at 0.19; 0.24;
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0.40; 0.45 h'. The acetic acid addition profile was set to
achieve 32 + 6 mM and 58 + 5 mM in 7 hours inside
the bioreactor for experiments at dilution rates 0.10-
0.24 h™* and 0.30-0.51 h'', respectively. The growth
characteristics of the bacteria were calculated on the
basis of total volume of medium pumped out from bior-
eactor (L), biomass (g DCW), organic acid concentra-
tions in culture medium (mM) and CO, concentration
in the outflow gas (mM). Formulas were as described in
a previous study [24]. It should be noted that the abso-
lute CO, concentrations could be error-prone due to
measurement difficulties. However, this does not influ-
ence the dynamic pattern of specific CO, production
rate (rcop) during specific growth rate increase.

Analytical methods

The concentrations of organic acids (lactate, acetate and
formate), ethanol and glucose in the culture medium
were determined by HPLC and cellular dry weight
(expressed as DCW) as described by Nahku et al. [51].

Protein expression analysis

Refer to Text S1 in Additional file 1 for detailed
description. Shortly, protein expression ratios for
around 1600 proteins (identified for each growth rate at
a > 95% confidence interval in average from 89,303 dis-
tinct 2 or more high-confidence peptides) were gener-
ated from mass spectrometric spectra by firstly
calculating the ratios between continuous cultivation
samples at specific growth rates 0.10 + 0.01 h™* (chemo-
stat point prior to the start of acceleration in A-stat);
0.20 + 0.01; 0.26; 0.30 + 0.01; 0.40 + 0.00; 0.49 +
0.01 h™" and batch sample grown on medium containing
1>N'H,4Cl as the only source of ammonia. Secondly, the
ratios between the mentioned specific growth rates with
chemostat point (i = 0.10 + 0.01 h™) for two biological
replicates were calculated to yield protein expression
levels for respective specific growth rates. Protein (and
gene) expression measurement results are shown in
Additional file 2. Proteomic analysis data is also avail-
able at the PRIDE database [57]http://www.ebi.ac.uk/
pride under accession numbers 12189-12199 (username:
review74613, password: Ge9T48e8). The data was con-
verted using PRIDE Converter http://code.google.com/
p/pride-converter [58].

Gene expression profiling

DNA microarray analysis of 4,321 transcripts was con-
ducted with the Agilent platform using the data from
one A-stat cultivation (a = 0.01 h™®), and gene expres-
sion ratios between specific growth rates 0.21; 0.26; 0.31;
0.36; 0.40; 0.48 h™* and p = 0.11 h™* were calculated.
Transcript spot intensities of chemostat sample (sample
from D-stat prior to acetic acid addition) from p = 0.51
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h™ and A-stat p = 0.48 h™" were used for the two meth-
od’s comparison at transcriptome level. Gene (and pro-
tein) expression measurement results are shown in
Additional file 2. DNA microarray data is also available
at NCBI Gene Expression Omnibus (Reference series:
GSE23920). The details of the procedure are provided in
Text S1 in Additional file 1.

Metabolome analysis

Sampling was carried out by the rapid centrifugation
method. Acquity UPLC (Waters, Milford, MA) together
with end-capped HSS C18 T3 1.8 um, 2.1 x 100 mm
column for compound separation coupled to TOF-MS
with an electrospray ionization (ESI) source was used
for detection (LCT Premiere, Waters). The details of the
procedure are provided in Text S1 in Additional file 1.

Additional material

Additional file 1: Detailed Methods (Text S1); calculation of acetate
reconsumption (Text S2); Supplementary Figures 51-S5.

Additional file 2: Growth rate dependent gene (one A-stat) and
average protein expression changes of two A-stat experiments with
Escherichia coli K12 MG1655. Transcriptome and proteome analysis
results, also with standard deviations.

Additional file 3: Gene spot intensities of A-stat at p = 0.48 h™' and
chemostat at p = 0.51 h™' experiments with Escherichia coli K12
MG1655. Data for A-stat and chemostat transcriptome comparison.

Additional file 4: Simplified metabolic flux analysis. Detailed
description of model calculations with simplified metabolic flux analysis.
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Abstract

Background: Growth substrates, aerobic/anaerobic conditions, specific growth rate (u) etc. strongly influence
Escherichia coli cell physiology in terms of cell size, biomass composition, gene and protein expression. To
understand the regulation behind these different phenotype properties, it is useful to know carbon flux patterns in
the metabolic network which are generally calculated by metabolic flux analysis (MFA). However, rarely is biomass
composition determined and carbon balance carefully measured in the same experiments which could possibly
lead to distorted MFA results and questionable conclusions. Therefore, we carried out both detailed carbon balance
and biomass composition analysis in the same experiments for more accurate quantitative analysis of metabolism
and MFA.

Results: We applied advanced continuous cultivation methods (A-stat and D-stat) to continuously monitor £. coli
K-12 MG1655 flux and energy metabolism dynamic responses to change of p and glucose-acetate co-utilisation.
Surprisingly, a 36% reduction of ATP spilling was detected with increasing pu and carbon wasting to non-CO, by-
products under constant biomass yield. The apparent discrepancy between constant biomass yield and decline of
ATP spilling could be explained by the rise of carbon wasting from 3 to 11% in the carbon balance which was
revealed by the discovered novel excretion profile of E. coli pyrimidine pathway intermediates carbamoyl-
phosphate, dihydroorotate and orotate. We found that carbon wasting patterns are dependent not only on p, but
also on glucose-acetate co-utilisation capability. Accumulation of these compounds was coupled to the two-phase
acetate accumulation profile. Acetate overflow was observed in parallel with the reduction of TCA cycle and
glycolysis fluxes, and induction of pentose phosphate pathway.

Conclusions: It can be concluded that acetate metabolism is one of the major regulating factors of central carbon
metabolism. More importantly, our model calculations with actual biomass composition and detailed carbon
balance analysis in steady state conditions with -omics data comparison demonstrate the importance of a
comprehensive systems biology approach for more advanced understanding of metabolism and carbon re-routing
L mechanisms potentially leading to more successful metabolic engineering.

Background

Escherichia coli exerts a very different gene and protein
expression profile under different growth substrates [1],
aerobic/anaerobic conditions [2] etc. Specific growth
rate (i) has been shown to be one of the most definite
parameters influencing E. coli cell physiology as shown
by studies of cell size [3,4], biomass composition [5-7],
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energy metabolism [5,8], transcriptome and proteome
[9-11] etc..

To gain insights into the regulation and control
mechanisms behind these different phenotype proper-
ties, it is useful to know carbon flow patterns in the
metabolic network. A widely used tool to calculate
quantitative flux values and thereby describe the carbon
flow is metabolic flux analysis (MFA). Essentially, MFA
calculations need a metabolic network with its stoichio-
metry, biomass amount and composition, measured
steady state carbon influx and outflow-usually as CO,

© 2011 Valgepea et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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and by-products. Flux distributions can also be calcu-
lated for batch cultures-however, the obtained values
have to be considered with great care as the physiologi-
cal state of cells is constantly changing during growth
(e.g. 1, by-product production rates). Therefore, MFA is
generally carried out with steady state input data from
chemostat cultures which provide reproducible and
strictly defined physiological state of cells [7,9,12-14].

E. coli mainly uses the consumed carbon for biomass
formation and substantial amount of it goes to CO; pro-
duction. The flux (loss) of carbon to CO, is closely asso-
ciated with energy generation (spilling). Carbon usage for
biomass synthesis and CO, in the carbon balance can be
directly measured in situ [7,13-15]. However, a notable
amount of carbon is lost to many by-products excreted
by the cells. The main by-product for most E. coli strains
in aerobic cultivations is acetic acid [11,13,16]. In addi-
tion, accumulation of other compounds such as lactate,
formate, pyruvate, ethanol etc. has been observed
[7,13,17]. Although excretion of many other compounds
besides ‘well-known’ ones e.g. pyrimidine pathway inter-
mediates has been detected [9,18,19], no attention has
been drawn on carefully measuring these carbon wasting
substances in MFA studies, meaning also that the used
metabolic network could be not completely accurate.
This can result in a non-closed carbon balance subse-
quently leading to questionable conclusions. For instance,
Taymaz-Nickerel et al. accounted a substantial amount
of ‘leftover carbon’ in the carbon balance (7-13%) of E.
coli continuous cultures to cells lysis which has not been
observed before in the literature [7]. Comprehensive car-
bon balance analysis is, hence, essential for an accurate
description of carbon flow and its regulation in the meta-
bolic network under study.

Besides carbon inflow and outflow, biomass composi-
tion is another important input parameter in terms of
MFA solutions also shown by sensitivity analysis [5].
However, rather than determining it in the same experi-
ments, input values are usually taken from across the lit-
erature [7,9,12,15]. Since biomass composition varies
under different growth conditions [5-7,15,20] obtaining
its values from other studies, with various environmental
conditions using various strains of E. coli, is another
step in addition to a non-comprehensive carbon balance
analysis that could possibly lead to distorted MFA
results and drawing incorrect conclusions in terms of
metabolic regulation. Therefore, we carried out both
detailed carbon balance and biomass composition analy-
sis in the same experiments to produce more accurate
metabolic flux calculations. What is more, important
metabolic switch points and regulation dynamics can be
missed when using chemostat cultures. To continuously
monitor the flux and energy metabolism dynamic
responses to change in y, we applied the accelerostat
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(A-stat) [4] continuous cultivation technique which has
lately been demonstrated to produce a new regulation
mechanism for overflow metabolism of acetate in E. coli
[11] and an interesting growth efficiency strategy for
Lactococcus lactis [21]. In addition to A-stat, dilution
rate stat (D-stat) method [22] was used to study the
effect of glucose-acetate co-utilisation capability on car-
bon wasting and metabolic flux patterns since this char-
acteristic is proposed to be the key player in E. coli
overflow metabolism [11].

In short, we detected a 36% reduction of ATP spilling
in E. coli continuous cultures with increasing p and car-
bon wasting under constant biomass yield (Yxs). We
propose hypotheses about Yxs maintenance mechanisms
and maximal growth limitations for E. coli K-12
MG1655. Furthermore, our study revealed novel carbon
wasting profiles into pyrimidine pathway intermediates
and acetate metabolism governed metabolic flux
dynamics that are dependent on p and glucose-acetate
co-utilisation capability.

Results

We carried out three replicate A-stat and four D-stat
continuous cultivation experiments at various dilution
rates with E. coli K-12 MG1655 which growth character-
istics are described in detail in Valgepea et al. [11]. Car-
bon balance and biomass composition was carefully
determined and the acquired data was used in MFA to
obtain better understanding about carbon flow in the
metabolic network.

Metabolomic responses to rising p in A-stat

We detected a two-phase acetate accumulation profile in
A-stat which started at = 0.27 + 0.02 h™" (average + stan-
dard deviation) (Figure 1 &2A). Faster accumulation of
acetate that took place simultaneously with the abrupt
decline in cAMP was witnessed after E. coli had reached
maximum CO, production at y = 0.46 + 0.02 h™! (Figure
1). Additionally, we observed considerable excretion of
pyrimidine pathway intermediates during increase of g in
three phases (Figure 2A). Dihydroorotate (DHO) and car-
bamoyl-aspartate (CBASP) accumulated increasingly up to
the start of acetate overflow. After overflow switch, DHO
started to decline whereas orotate and CBASP levelled off
until their levels started to rise again simultaneously (Fig-
ure 2A) with the sharp decrease of cAMP and faster accu-
mulation of acetate (Figure 1). Interestingly, in addition to
lactate excretion, we observed increased accumulation of a
compound once noted in the literature-acetyl-aspartate
(NAA)-with rising p (Figure 2B).

Metabolic flux dynamics with increasing p
We used data from p dependent detailed carbon balance
and biomass composition analysis to carry out MFA for
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Figure 1 Increasing dilution rate dependent E. coli K-12
MG1655 metabolism characterization in one A-stat cultivation.
D, dilution rate (h"); X, biomass concentration (g dry cellular weight
(g DCW)/L); 1, specific growth rate (h™); reos, specific CO,
production rate (mmol/g DCW h); OAC’, acetate concentration (mM);
Glc, glucose concentration (mM); cAMP, cyclic AMP concentration
(UM). Arrow indicates the start of overflow metabolism. Start of
vertical axes was chosen for better visualization. Reproduced by
permission from Valgepea et al. [11].

describing the carbon flow in our metabolic network.
Biomass composition was dependent on p (Table S1 in
Additional file 1) and its incorporation into MFA calcu-
lations was important as shown by up-to 15% difference
in flux values compared to using constant biomass com-
position at different p (Table S2 in Additional file 1).
Our simplified metabolic network (Figure S1 in Addi-
tional file 2) consisted of three main pathways-glycolysis,
pentose phosphate pathway (PPP), tricarboxylic acid
(TCA) cycle-, a part of pyrimidine pathway (to include
CBASP, DHO, orotate) and NAA synthesis reaction
with 50 fluxes, 22 metabolites taking into account ATP,
NADH and NADPH stoichiometry (see Methods and
Additional file 2 for details). MFA results for both A-
stat and D-stat experiments are given in Additional file
1 (Tables S3-5). Start of acetate overflow triggered
reduction of TCA cycle fluxes (Figure 3) also seen by
decline of the proportion of CO, and NADH produced
by TCA cycle (Additional file 3). This subsequently led
to induction of PPP fluxes, reduction of glycolysis (Fig-
ure 3) and ATP produced from it (Additional file 4). An
important central carbon metabolism branch point flux,
pyruvate dehydrogenase reaction, reached its maximum
throughput at p = 0.42 h™* with concomitant slight
increase in glycolysis fluxes resulting in accelerated car-
bon wasting into by-products (Figure 2 &3). Decrease of
Pyk and increase of Ppc and Vprod (excess carbon out-
flow flux from oxaloacetate in our model) fluxes until
acetate accumulation shows that some up-taken carbon
was still in excess and excreted as Vprod through Ppc
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flux (Figure 3). mRNA and protein p dependent expres-
sion dynamics are illustrated as heat maps for all the
central carbon metabolism fluxes, see Figure 3A. Corre-
lations between mRNA, protein and flux fold changes
and possible metabolic regulation mechanisms will be
discussed in a subsequent article. Surprisingly, a strong
32% reduction of ATP spilling (non-growth associated
ATP production) was observed after disruption of the
PTA-ACS cycle [11] resulting in acetate overflow switch
(Figure 4). Reduction of ATP spilling was witnessed
since the futile PTA-ACS cycle was included into the
model network, see Discussion. Overall ATP production
rate increased with p rise but changed its slope after
overflow switch (Additional file 4).

Carbon balance analysis in A-stat

Detailed carbon balance analysis in A-stat showed that
most of carbon was used for biomass generation and its
proportion relative to CO, production increased with
rising p (Figure 5). It can be seen that the carbon bal-
ance was not fully closed especially at higher p which
points to loss of carbon into some other not detected
compounds. Carbon wasting into by-products increased
from 3 to 11% in the carbon balance within the studied
p range (Figure 5 &6). Acetate quickly became the main
excreted compound by amount after overflow switch.

Carbon wasting and metabolic flux dynamics in D-stat

In addition to A-stat, we carried out four D-stat experi-
ments at various dilution rates to study the effect of glu-
cose-acetate co-utilisation capability on carbon wasting
and metabolic flux patterns. Capability of E. coli to co-
utilise acetate simultaneously with glucose was strongly
repressed with increasing dilution rates (Figure 7). We
observed that carbon wasting patterns into orotate,
DHO, CBASP, NAA and lactate changed under different
co-utilisation properties (Table S5 in Additional file 1).
It is interesting to note that the percentage of overall
carbon wasting (sum of orotate, DHO, CBASP, NAA
and lactate) in the carbon balance was similar (ca 5.5%)
at the studied dilution rates under very different maxi-
mal glucose-acetate co-utilisation capability values (Fig-
ure 7). As expected, MFA calculations with D-stat data
revealed that acetate consumption fluxes together with
glyoxylate shunt and gluconeogenesis were higher under
higher glucose-acetate co-utilisation values (Table S5 in
Additional file 1). Concomitantly, glycolysis fluxes were
down-regulated at lower co-utilisation conditions simi-
larly with pyruvate dehydrogenase.

A-stat comparison with chemostat

A-stats have been shown to produce quantitatively com-
parable results with chemostats at the level of E. coli
and Lactococcus lactis major growth characteristics (e.g.
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Figure 3 E. coli K-12 MG1655 central carbon metabolism flux, protein and mRNA dynamics with rising specific growth rate in three A-
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Figure 4 Specific growth rate dependent ATP spilling and
biomass yield in three E. coli K-12 MG1655 A-stat cultivations.
u, specific growth rate (h); ATP spilling, non-growth associated ATP
production (blue square); Yys, biomass yield as gram dry cellular
weight per gram consumed glucose (red triangle). Error bars

L represent standard deviation of triplicate A-stat experiments.

Yxs, by-product production per biomass) [11,21] and E.
coli transcriptome [11]. Our detailed carbon balance
analysis further confirmed that A-stat and chemostat
data are quantitatively comparable (Table 1) which
enables to use quasi steady state data from A-stat for
steady state modeling calculations.

Discussion

We applied a systems biology approach to study E. coli
metabolic flux dynamics and possible growth limiting
factors. Detailed carbon balance and biomass composi-
tion analysis were carried out in A-stat and D-stat cul-
tures to examine the dynamic responses of metabolic
fluxes and energy metabolism to change of p and glu-
cose-acetate co-utilisation capability. A simplified MFA

Carbon recovery (%)

0.11 0.16 021 0.26 031 036 0.41 0.46
W)

Figure 5 Specific growth rate dependent carbon balance in
three E. coli K-12 MG1655 A-stat cultivations. |1, specific growth
rate (h™'). Carbon recovery % in carbon balance into: biomass (blue);
CO5 (green); sum of carbon wasting into acetate, CBASP, DHO,
lactate, NAA, orotate (red). Error bars represent standard deviation of
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Figure 6 Specific growth rate dependent dynamic carbon
wasting profiles in three E. coli K-12 MG1655 A-stat
cultivations. I, specific growth rate (h™'). Carbon wasting % in
carbon balance into: acetate (red); lactate (orange); NAA, acetyl-
aspartate (green); orotate (grey); DHO, dihydroorotate (blue); CBASP,
carbamoyl-aspartate (violet). Error bars represent standard deviation
of triplicate A-stat experiments.

triplicate A-stat experiments.
.

was conducted to map the carbon flow through central
carbon metabolism.

We detected a two-phase acetate accumulation profile
in A-stat which started at y = 0.27 + 0.02 h™* (Figure 1).
After linear increase, acetate probably starts to accumu-
late exponentially because of total repression of acetate
consuming enzyme, acetyl-CoA synthetase, by carbon
catabolite repression [11]. It became clear from MFA
calculations that acetate excretion plays an important
role in overall flux patterns and ATP metabolism.
Firstly, start of acetate excretion reduces carbon flow
from the PTA-ACS cycle to acetyl-CoA and central
metabolism triggering reduction of TCA cycle fluxes
(Figure 3) that can be also seen by decline of the pro-
portion of CO, and NADH produced by the TCA cycle
(Additional file 3). This was paralleled with induction of
PPP, possibly for NADPH regeneration, and reduction
of glycolysis (Figure 3). These shifts have been observed
in chemostat cultures as well [9,12-14,23]. Secondly, dis-
ruption of the PTA-ACS node resulting in acetate over-
flow strongly reduced ATP spilling (non-growth
associated ATP production) which declined 32% with
increasing of p (Figure 4). What is more, slope of the
overall ATP production rate changed right after over-
flow switch (Additional file 4). It can be concluded from
the latter that acetate metabolism is one of the major
regulating factors of central carbon metabolism which is
in good agreement with abundance of literature data.

Decrease in ATP spilling (32%) after overflow switch in
A-stat was shown by MFA calculations (Figure 4) and
decline of the ATP-spending PTA-ACS node throughput
by acetate excretion (Figure 2A). This response in energy
metabolism was detected in this study since the futile
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PTA-ACS cycle was included into the model network.
Additionally, change in ATP production rate was also seen
with increasing p (Additional file 4). We have to note that
the possibility of our ATP calculations being distorted due
to carbon imbalance at higher specific growth rates (Figure
5) cannot be excluded which could lead to underestima-
tion of ATP production. However, this seems rather unli-
kely since CO, measurement precision is constant for all
u. Furthermore, theoretically no other pathway besides the
TCA cycle cannot by far produce enough energy under
these carbon imbalance conditions so that decrease of

ATP spilling would not be observed. We additionally have
to point out that our calculations could also overestimate
ATP production since a theoretical ratio for ATP genera-
tion efficiency in oxidative phosphorylation (P/O = 2) was
chosen which can be higher than the in vivo value. In any
case, the P/O ratio per se does not affect the main conclu-
sions of the manuscript since the ratio between ATP spil-
ling and its overall production is independent from the P/
O ratio value.

Decrease in ATP spilling (40 mmol/g dry cellular
weight (DCW)) might indicate increase of Yxs, however,

Table 1 A-stat and chemostat non-CO, by-product production comparison

u=0.10h" u=024h" u=030h" u=045h"
Chemostat A-stat Chemostat A-stat Chemostat A-stat Chemostat A-stat
Ocgasp 0.188 0.139 + 0.047 0.089 0218 £ 0018 0.195 0.268 + 0.026 0.188 0.299 + 0.026
Opro 0.131 0.146 + 0.021 0.117 0.181 £ 0.043 0.091 0.135 £ 0.029 0.065 0.078 + 0.008
Olactate ND 0.021 + 0.005 0.034 0.041 £ 0.003 0.034 0.049 + 0.006 0.046 0.059 + 0.002
Onaa ND ND 0.006 ND 0.034 0.057 + 0.013 0.069 0.111 £ 0.021
Oorotate 0.091 0.137 £ 0.047 0.193 0.171 £ 0.041 0.115 0.171 £ 0.037 0.344 0229 + 0012

Unit is mmol/g DCW. A-stat values represent the average from three independent experiments and standard deviation follows the + sign. Chemostat values from

one experiment. Refer to text for abbreviations. ND, not detected.
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it remained constant in our experiments (Figure 4). This
apparent discrepancy between the decrease in ATP spil-
ling and constant Yys (Figure 4) could be explained by
the fact that carbon wasting increases from 3 to 11%
with rising p (Figure 6) as follows. As the acetate synth-
esis/assimilation PTA-ACS is a futile cycle, an equiva-
lent amount of ATP to acetate is concomitantly wasted
with production and re-consumption of acetate. There-
fore, accumulation of acetate likely triggers a 32%
decline of ATP spilling (Figure 4) since re-consumption
of acetate (wasting 1 molecule of ATP) decreases with
rising p after overflow switch. This energy save is, how-
ever, counteracted by the increase of carbon wasting in
the carbon balance from 3 to 11% which results in a
constant Yyg. However, E. coli might possess additional
mechanisms to maintain a constant Yxg under increas-
ing carbon wasting conditions during p increase.

In addition to metabolic flux dynamics, we described
novel carbon wasting profiles in E. coli K-12 MG1655
into pyrimidine pathway intermediates orotate, DHO,
CBASP, and NAA with rising p (Figure 2) and under
various glucose-acetate co-utilisation capabilities (Table
S5 in Additional file 1). Excretion of orotate [18,19],
DHO [19], CBASP [19] and NAA [9] by E. coli has been
noted before. Accumulation of the pyrimidine pathway
compounds-orotate, DHO and CBASP-can be explained
by the E. coli K-12 MG1655 genotype. This specific
strain is prone to pyrimidine starvation due to a rph fra-
meshift mutation leading to low pyrE (encodes PyrE
protein which catalyses orotate conversion into oroti-
dine-5-phosphate) expression [24] which could possibly
lead to accumulation of precursor molecules which all
the latterly mentioned compounds are (Additional file
5). Excretion of a considerable amount of CBASP, DHO,
orotate and NAA besides acetate shows that overflow
metabolism actually consists of more products than
acetate, as generally believed. Detailed by-product mea-
surements enabled us to precisely detect carbon outflow
routes for MFA calculations which usually are taken
into account predictively either from pyruvate, oxaloace-
tate, o.-ketoglutarate or other potential precursors. For
instance, if these product outflows will be excluded
from MFA and carbon wasting predicted as pyruvate
outflow, pyruvate dehydrogenase, TCA cycle and PEP
carboxylase fluxes would deviate by 11, 24 and 60%,
respectively, at p = 0.47 h™ from the values calculated
by our model (Table S6 in Additional file 1). Although
the absolute amount of these excreted substances in the
carbon balance is not substantial (less than 5%), linking
their accumulation dynamics to p (or metabolic routes)
is relevant for acknowledging the potential imbalance
between pyrimidine metabolism, carbon re-consumption
and ATP spilling.

Page 8 of 11

DHO and CBASP accumulated increasingly up to the
start of acetate overflow (Figure 2A). After overflow
switch, DHO started to decline whereas orotate and
CBASP levelled off suggesting that carbon flow from the
PTA-ACS cycle to acetyl-CoA and central metabolism
declines indicated by carbon loss to excreted acetate
and decreasing TCA cycle flux patterns (Figure 2A &3).
Finally, orotate and CBASP levels started to increase
again simultaneously (Figure 2A) with the sharp
decrease of cAMP and faster accumulation of acetate
(Figure 1). Firstly, this rise could be explained by the
high demand for RNA synthesis at higher p which leads
to precursor molecule accumulation because of the low
pyrE expression. On the other hand, pyruvate dehydro-
genase flux reached its maximum at p = 0.42 h™' with
concomitant slight increase in glycolysis fluxes that sub-
sequently resulted in accelerated carbon wasting (Figure
3). These observations demonstrate a strong link
between overflow metabolism of acetate and carbon
wasting into other products.

We validated and quantified, for the first time to our
knowledge, excretion of NAA which levels constantly
increased with p in A-stat experiments (Figure 2B).
Neither has NAA yet been registered in EcoCyc Ver
15.0 [25] nor there exists a protein catalysing its synth-
esis for E. coli K-12 MG1655 in KEGG Release 58.0
[26]. Based on homology analysis with the available
aspartate N-acetyltransferase protein sequences (human
and mouse), we propose that a predicted acetyltransfer-
ase YjgM could catalyse the formation of NAA in E. coli
(Additional file 6). This is supported by the fact that
YjgM is expressed within the studied p range [11]. We
hypothesise that since oxaloacetate is over-produced in
the TCA cycle and this excess carbon cannot be
shunted towards PPP because of the discovered
‘CBASP-DHO-orotate’ bottleneck, the excess carbon is
excreted as NAA.

To our knowledge, dilution rate dependent carbon
wasting profiles in terms of two-substrate (glucose and
acetic acid) co-utilisation has not been studied before.
We found that carbon wasting patterns are dependent
not only on p as shown by A-stat, but also on glucose-
acetate co-utilisation capability (Figure 7). This finding
could be useful for bioprocess development since
mixed-substrate growth is commonly used there and
loss of carbon is unwanted. What is more, overall car-
bon wasting into the carbon wasting products in the
carbon balance was similar (ca 5.5%) under very differ-
ent maximal glucose-acetate co-utilisation capability
values (Figure 7). The latter implies that the quantitative
carbon flow through the carbon wasting pathways does
not depend on the consumption of additional (to glu-
cose) carbon sources, such as acetate in our case.
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Overall carbon wasting in the carbon balance
increased with rising p (Figure 5 &6). Carbon wasting to
other substances than acetate e.g. orotate, DHO, CBASP,
NAA may be caused by an imbalance between the sup-
ply of precursors, intermediates of central metabolic
network and insufficient use of them for the synthesis of
biomass monomers and macromolecules which could be
the result of energy limitations. Levels of metabolites
from the upper part of energy generating glycolysis,
fructose-1,6-bisphosphate and glyceraldehyde-3-phos-
phate, and TCA cycle components increased with the
rise in p [11], indicating no limits in energy supply at
these steps. However, there might be competing futile
cycles wasting ATP, and leading to energy limitations,
for instance in glycolysis [27] and the PTA-ACS cycle
proposed by us [11]. In addition to the pyrimidine
synthesis pathway compounds-orotate, DHO and
CBASP-, we observed TCA cycle intermediates o-keto-
glutarate and isocitrate accumulation, and decline in
intracellular ribose-5-phosphate and erythrose-4-phos-
phate metabolite levels, which are also intermediates of
pyrimidine synthesis [11]. This might result in growth
limitation by RNA synthesis and ribosome assembly,
especially at higher p. The latter is supported by the fact
about the genotype of E. coli K-12 MG1655 (rph frame-
shift mutation leading to low pyrE expression) which
leads to pyrimidine starvation as described above. The
latter proposal is in agreement with RNA concentration
measurements which showed that RNA amount
increased together with p until 0.40 h™ after which it
levelled off (Table S1 in Additional file 1). The possible
limitation of maximal u by RNA synthesis and carbon
wasting due to the E. coli K-12 MG1655 genotype
revealed by this study proposes a way how to increase
maximal p and Yys which is relevant for the biotechnol-
ogy industry. Furthermore, all the data referred above
show that the details of the regulatory mechanisms of
cellular growth need further studying using comprehen-
sive systems biology approaches.

Conclusions

In this work, we described a novel carbon wasting strategy
to pyrimidine pathway intermediates and acetate metabo-
lism governed metabolic flux dynamics in E. coli continu-
ous cultures dependent on p and glucose-acetate
consumption capability. More importantly, MFA calcula-
tions with actual biomass composition revealed a 36%
reduction of ATP spilling with increasing p and carbon
wasting to non-CO, by-products under constant Yys. Our
model calculations with actual biomass composition and
detailed carbon balance analysis in steady state conditions
with -omics data comparison demonstrate the importance
of a comprehensive systems biology approach for more
advanced understanding of carbon re-routing mechanisms.
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Methods

Bacterial strain, medium and continuous cultivation
conditions

E. coli K-12 MG1655 (A-F-rph-1Fnr+; Deutsche Samm-
lung von Mikroorganismen und Zellkulturen (DSMZ),
DSM No.18039) was used in A-stat and D-stat experi-
ments under the following conditions: temperature 37°
C, pH 7, agitation speed of 800 rpm, and aerobic condi-
tions (air flow rate 150 ml/min). Three A-stat cultiva-
tions were performed with acceleration rate 0.01 h™ and
four D-stat experiments at dilution rates 0.10; 0.24; 0.30;
0.45 h'™'. A detailed description of medium and cultiva-
tion conditions in these experiments has been reported
previously [11]. In short, defined minimal medium with
4.5 g/L a-(D)-glucose was used in A-stat experiments.
The latter was also used in D-stat experiments as the
main cultivation medium, additionally the main medium
was supplemented with acetic acid and prepared as fol-
lows: 300 ml medium was withdrawn from the main
cultivation medium and supplemented with 3 ml of gla-
cial acetic acid (99.9%).

Analytical methods
Biomass concentration was determined gravimetrically
as dry cellular weight (expressed as DCW) described by
Nahku et al. [10].

Samples of culture medium for extracellular metabo-
lome analysis were centrifuged at 14,000 x g for 5 min,
supernatant were collected and analysed immediately or
stored at -20°C until analysis. Glucose and organic acids
were analysed by HPLC (Alliance2795 system, Waters,
Milford, MA) using a BioRad HPX-87H Aminex ion-
exclusion column connected to RI and UV detectors
(35°C, flow rate 0.6 ml/min). The column was eluted
with 4.1 mM sulphuric acid for glucose, CBASP, lactate,
orotate and with 26.5 mM formic acid for acetate, DHO
and NAA analysis.

Metabolic flux analysis (MFA)

Simplified metabolic network of E. coli K-12 MG1655 for
MFA was reconstructed taking into account main meta-
bolic pathways-glycolysis, PPP, TCA cycle-, one pathway
from pyrimidine metabolism (to include CBASP, DHO,
orotate) and NAA synthesis reaction (Figure S1 in Addi-
tional file 2). Our network involved only fluxes (reac-
tions) between branching points (metabolites) whereas
linear pathway chains were lumped together. Fully deter-
mined and calculable stoichiometric matrix consisted of
22 metabolites and 50 fluxes (24 dependent fluxes, one
measured inflow, seven outflow fluxes and 18 calculated
fluxes based on biomass composition and stoichiometries
of biosynthetic pathways). Biomass composition was
shown to be dependent on p (Table S1 in Additional file
1). Cofactors ATP, NADPH and NADH were considered
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in calculations. Refer to Additional file 2 for detailed
description for reaction stoichiometries and calculation
of biomass composition dependent fluxes. MFA results
for both A-stat and D-stat experiments are given in Addi-
tional file 1 (Table S3-5).

Additional material

-
Additional file 1: Specific growth rate dependent biomass
composition and metabolic flux analysis results of triplicate E. coli
K-12 MG1655 A-stat experiments. Specific growth rate dependent E.
coli K-12 MG1655 biomass monomer composition (Table S1); Effect of
specific growth rate dependent biomass composition on MFA results
(Table S2); MFA results for triplicate £. coli K-12 MG1655 A-stat
experiments (Table S3); MFA average results and standard deviations of
triplicate E. coli K-12 MG1655 A-stat experiments (Table 54); MFA results
of four E. coli K-12 MG1655 D-stat experiments (Table S5); Effect of taking
novel carbon wasting routes into account in £ coli K-12 MG1655 A-stat
experiments’ MFA (Table S6).

Additional file 2: Metabolic flux analysis. Detailed description of
model calculations with simplified metabolic flux analysis; Simplified
metabolic network scheme of £ coli K-12 MG1655 (Figure S1).

Additional file 3: E. coli K-12 MG1655 proportion of CO, and NADH
production by TCA cycle with rising specific growth rate in three A-
stat cultivations. i, specific growth rate (h ). CO, production (blue
square); NADH production (red triangle). Error bars represent standard
deviation of triplicate A-stat experiments.

Additional file 4: Specific growth rate dependent overall ATP
production rate and proportion of ATP production by glycolysis in
three E. coli K-12 MG1655 A-stat cultivations. (i, specific growth rate
(h™). Overall ATP production (blue squares); ATP production by glycolysis
(red triangle). Error bars represent standard deviation of triplicate A-stat
experiments.

Additional file 5: E. coli K-12 MG1655 pyrimidine pathway rph
frameshift mutation triggered accumulating precursor compounds.
Carbamoyl-P, carbamoyl-phosphate; CBASP, carbamoyl-aspartate; DHO,
dihydroorotate; Oro-5P, orotidine-5-phosphate; TCA cycle, tricarboxylic
acid cycle; PPP, pentose phosphate pathway; pyrB, aspartate
carbamoyltransferase; pyrC, dihydro-orotase; pyrD, dihydro-orotate
oxidase; pyrE, orotate phosphoribosyltransferase. Gene names are
italicised.

Additional file 6: Homology analysis for E. coli acetyltransferase

prediction. BLAST results for homology analysis with Homo sapiens and
Mus musculus aspartate N-acetyltransferases.
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Abstract Elimination of acetate overflow in aerobic cultiva-
tion of Escherichia coli would improve many bioprocesses as
acetate accumulation in the growth environment leads to
numerous negative effects, e.g. loss of carbon, inhibition of
growth, target product synthesis, etc. Despite many years of
studies, the mechanism and regulation of acetate overflow are
still not completely understood. Therefore, we studied the
growth of E. coli K-12 BW25113 and several of its mutant
strains affecting acetate-related pathways using the continuous
culture method accelerostat (A-stat) at various specific glu-
cose consumption rates with the aim of diminishing acetate
overflow. Absolute quantitative exo-metabolome and prote-
ome analyses coupled to metabolic flux analysis enabled us to
demonstrate that onset of acetate overflow can be postponed
and acetate excretion strongly reduced in E. coli by coordi-
nated activation of phosphotransacetylase-acetyl-CoA synthe-
tase (PTA-ACS) and tricarboxylic acid (TCA) cycles. Four-
fold reduction of acetate excretion (2 vs. 8 % from total
carbon) at fastest growth compared to wild type was achieved
by deleting the genes responsible for inactivation of acetyl-
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CoA synthetase protein (pka) and TCA cycle regulator arcA.
The Apka AarcA strain did not accumulate any other detri-
mental by-product besides acetate and showed identical z4,,«
and only ~5 % lower biomass yield compared to wild type.
We conclude that a fine-tuned coordination between increas-
ing the recycling capabilities of acetate in the PTA-ACS node
through a higher concentration of active acetate scavenging
Acs protein and downstream metabolism throughput in the
TCA cycle is necessary for diminishing overflow metabolism
of acetate in E. coli and achieving higher target product
production in bioprocesses.

Keywords Acetate overflow - Acs - Continuous culture -
Absolute proteomics - Acetylation

Introduction

Acetate is the major by-product in bioprocesses using
Escherichia coli and glucose as the carbon source. Acetate
excretion or overflow during fast growth/glucose uptake aer-
obic fermentations of E. coli has been studied for a long time,
and it is known to lead to decreased biomass formation,
inhibition of recombinant protein and low molecular weight
compound production (Mazumdar et al. 2010; Shiloach et al.
2010; Wolfe 2005).

Acetate overflow is generally believed to be caused by an
imbalance between substrate uptake and anabolic/catabolic
throughput of downstream pathways, and many theories about
different possible limitations in metabolism have been pro-
posed: limitation in tricarboxylic acid (TCA) cycle (Majewski
and Domach 1990; Veit et al. 2007), respiratory chain (Han
et al. 1992; Paalme et al. 1997; Varma and Palsson 1994) or
glyoxylate shunt (GS) activity (Shin et al. 2009; Waegeman
et al. 2011) and competition for membrane space (Zhuang
et al. 2011). Several process level and genetic manipulations
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have been tried to mitigate acetate overflow (reviewed in De
Mey et al. 2007). It has been shown that disruption of the main
acetate synthesis pathway—phosphotransacetylase-acetate ki-
nase (PTA-ACKA)—reduces acetate excretion but results in
lower specific growth rate (1), biomass yield (Yy) and sub-
stantially elevated lactate and formate excretion (Castafio-
Cerezo et al. 2009; Contiero et al. 2000; Dittrich et al. 2005;
El-Mansi and Holms 1989; Yang et al. 1999), while deletion
of the second major route for acetate production through
pyruvate oxidase (PoxB) causes loss of acrobic growth effi-
ciency (Abdel-Hamid et al. 2001). These results demonstrate
that acetate overflow cannot be simply avoided by removing
the main synthesis pathways without any negative side effects.
Furthermore, none of the theories or process/genetic efforts
has been able to unequivocally explain the mechanism of
acetate overflow.

Recently, a new perspective on the long-studied phenom-
enon has emerged as it is proposed by several groups that
E. coli actually synthesises acetate constantly at all ;4 under
aerobic conditions and no acetate overflow occurs at low g
since acetate is fully recycled in the phosphotransacetylase-
acetyl-CoA synthetase (PTA-ACS) node (Fig. 1) (Renilla
et al. 2011; Shin et al. 2009; Valgepea et al. 2010). Further-
more, we have proposed a new theory for the cause of acetate
overflow: acetate excretion in fast growing cells is closely
related to the loss of acetate-glucose co-utilisation capability
and triggered by carbon catabolite repression-mediated down-
regulation of acetyl-CoA synthetase (Acs) leading to disrup-
tion of the PTA-ACS node (Valgepea et al. 2010).

Glucose
y Acs”®
Pka
Pyruvate [Acetyl-AMP] CobB
l Acs Acs
Acetyl-CoA Acetate

Chemotaxis
Pathogenesis
Biofilm formation

Fig. 1 Simplified overview of glucose metabolism, PTA-ACS node and
regulation of Acs by Pka and CobB in E. coli. Acetate is mainly generated
from: (a) acetyl-CoA by Pta and AckA enzymes via the high energy
intermediate acetyl-phosphate (acetyl-P); (b) acetyl-P during different
cellular regulation processes (see Wolfe 2005 and Valgepea et al. 2010
for details); (¢) pyruvate by PoxB. Acetate in the PTA-ACS node is
reactivated by recycling it back to acetyl-CoA by the high-affinity Acs
enzyme. Activity of Acs is essential for functioning of the PTA-ACS
node: protein lysine acetyltransferase (Pka) inactivates Acs by acetylation
(Acs™), while the NAD"-dependent protein deacetylase CobB
reactivates Acs by deacetylating it. Pta phosphotransacetylase, AckA
acetate kinase, Acs acetyl-CoA synthetase, PoxB pyruvate oxidase, 7CA
tricarboxylic acid cycle, GS glyoxylate shunt
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Known regulators involved in the control of acs expression
in E. coli are cAMP receptor protein (CRP), factor for inver-
sion stimulation (Fis), integration host factor (IHF) (Wolfe
2005) and possibly the dual transcriptional regulator for an-
oxic redox control (ArcA) (Covert et al. 2004). Besides tran-
scriptional regulation, Acs protein activity in bacteria is regu-
lated by the Pat/CobB system which was first described in
Salmonella enterica (Starai et al. 2002; Starai and Escalante-
Semerena 2004). An identical system is present in E. coli:
protein lysine acetyltransferase (Pka) inactivates Acs by acet-
ylation (Castafio-Cerezo et al. 2011), while the NAD"-depen-
dent regulator protein deacetylase CobB releases Acs from
repression by deacetylating it (Zhao et al. 2004) (Fig. 1).
Interestingly, increased Acs activity together with derepres-
sion of GS enzymes decreases acetate accumulation in E. coli
batch cultures (Shin et al. 2009) pointing to the importance of
Acs and its active/inactive pools in acetate metabolism.

As regulation of Acs and PTA-ACS node seems to have an
important role in acetate overflow, the aim of this work was to
gain further understanding of the relevance of the PTA-ACS
node in overflow metabolism possibly leading to reduction of
acetate overflow in aerobic E. coli cultivations. For this, we
studied the growth of E. coli K-12 BW25113 and several of its
mutant strains affecting acetate-related pathways in continu-
ous cultures (accelerostat (A-stat); Paalme et al. 1995) at
various specific glucose consumption rates (ggic) using abso-
lute quantitative exo-metabolome and proteome analyses
coupled to metabolic flux analysis (MFA). Furthermore, as
repression of the high-affinity acetate scavenging enzyme Acs
seems to be central in acetate overflow regulation through the
loss of acetate-glucose co-utilisation capability (Valgepea
et al. 2010), we focused this study on Acs-related inhibition
of acetate overflow by improving acetate recycling
capabilities.

We chose A-stat (Paalme et al. 1995) for the cultivation
method since it allows accurate detection of metabolic switch
points (e.g. start of acetate overflow) and high-resolution
description of metabolism dynamics (e.g. acetate accumula-
tion) which are both instrumental for a system-wide study of
acetate overflow regulation in E. coli (Valgepea et al. 2010).
A-stat experiments produce comparable results with
chemostats at the level of major growth characteristics in
E. coli and Lactococcus lactis (Lahtvee et al. 2011; Valgepea
etal. 2010, 2011) and at transcriptome (Valgepea et al. 2010)
and proteome (Nahku 2012) levels in E. coli.

In this work, we show that acetate overflow in aerobic
E. coli cultivations can be remarkably reduced by coordinated
activation of PTA-ACS and TCA cycles which was achieved
by deleting the Acs-inactivating gene pka and TCA cycle
regulator arcA. We conclude that a fine-tuned coordination
between increasing the recycling capabilities of acetate in the
PTA-ACS node through a higher concentration of active
acetate scavenging Acs protein and downstream metabolism
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throughput in the TCA cycle is necessary for diminishing
overflow metabolism of acetate in E. coli.

Materials and methods

Bacterial strains, growth medium and continuous culture
conditions

Bacterial strains used in this work were E. coli K-12
BW25113 wild type (WT) and its single-gene knockouts
obtained from the Keio collection (Baba et al. 2006) or con-
structed using homologous recombination. Strains overex-
pressing acs (acsOE and Apka acsOE) were constructed by
swapping the native acs-yjcH-actP promoter region of the
parent strain (WT and Apka, respectively) with a Pfet promot-
er sequence (Veit et al. 2007). The Ptef promoter sequence was
first annealed with a kanamycin resistance gene from a pCP13
plasmid (Datsenko and Wanner 2000) by PCR after which this
construct was used to swap the native promoter region using
homologous recombination as described by Datsenko and
Wanner (2000). For the construction of Apka AarcA double
knockout strain, arc4 gene was deleted from the Apka strain
using a homologous recombination method that uses pSIM6
plasmid instead of pKD46 (Sharan et al. 2009). The strains
constructed in this work are deposited in the public strain
collection of the Collection of Environmental and Laboratory
Strains (University of Tartu, Estonia) with reference numbers
shown in Table 1. All strains used in this work with their
abbreviations are listed in Table 1.

All A-stat experiments were carried out using a defined
minimal medium supplemented with glucose (4.5 g/L) as
described before by Valgepea et al. (2010). Glucose-limited
cultures were grown in 1.25 L BioBundle bioreactors
(Applikon Biotechnology B.V., Schiedam, the Netherlands)
controlled by an ez-Control biocontroller (Applikon Biotech-
nology B.V.) and a cultivation control program “BioXpert
XP” (Applikon Biotechnology B.V.). The system was

Table 1 E. coli K-12 strains used in this work

equipped with OD, pH, pO,, off-gas O, and CO, and temper-
ature sensors.

A-stat experiments were carried out at 37 °C, pH 7 and
aerobic conditions ensured by agitation of 800 rpm and air
flow rate of 150 mL/min. Glucose-limited cultures were
stabilised in chemostat at dilution rate (D) 0.1 or 0.2 h™" after
which A-stat with a continuous increase of D (acceleration of
0.01 h™?) was initiated. The control algorithm for A-stat was:
D=Dy+ap*t, where Dy is the initial D of chemostat (hfl), ap
is the acceleration of the A-stat phase (h™2) and ¢ is the time
from the start of A-stat (h).

WT and AarcA, Apka AarcA strains were cultivated in
four and two independent A-stat experiments, respectively.
Other strains were cultivated in single A-stat experiments.
Growth characteristics in A-stat were calculated using the
formulas described in a previous study (Kasemets et al.
2003) on the basis of total volume of medium pumped out
from bioreactor (L), biomass (gram dry cellular weight
(gDCW)/L) and organic acid concentrations (mM) in culture
broth and CO, concentration in the off-gas (mM). We note
that in CO, production calculations, also the CO, and HCO3
dissolved in the culture broth were taken into account as
described by Taymaz-Nikerel et al. (2013).

Analytical methods

Exo-metabolome analysis for a more complete carbon balance
was carried out as described previously in Valgepea et al.
(2011). In short, samples of culture broth were centrifuged
(14,000 % g for 5 min), and the supernatant was collected and
analysed for glucose and organic acids by HPLC (Alli-
ance2795 system, Waters Corporation, Milford, MA, USA)
using either a Bio-Rad HPX-87H Aminex ion-exclusion (Bio-
Rad Laboratories, Inc., Hercules, CA, USA) or Agilent Hi-
Plex H (Agilent Technologies, Santa Clara, CA, USA) column
connected to RI and UV detectors (35 °C, flow rate 0.6 mL/
min). The column was eluted with 4.1 mM sulphuric acid for
glucose, carbamoyl-aspartate, lactate and orotate and with

Strain Genotype Reference Abbreviations

BW25113 lacl? rrB3 AlacZAT787 hsdR514 A(araBAD)567 Datsenko and Wanner (2000) WT
A(rhaBAD)568 rph-1

JW4030 [BW25113] Aacs::kan Baba et al. (2006) Aacs

JW2568 [BW25113] Apka::kan Baba et al. (2006) Apka

JW1106 [BW25113] AcobB::kan Baba et al. (2006) AcobB

TW4364 [BW25113] AarcA::kan Baba et al. (2006) AarcA

RV02 [BW25113] acspl, acsp2::Ptet This work acsOE

RV03 [BW25113] Apka::kan; acspl, acsp2::Ptet This work Apka acsOE

RV04 [BW25113] Apka::kan; AarcA::kan This work Apka AarcA
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26.5 mM formic acid for acetate, dihydroorotate and acetyl-
aspartate analysis.

Biomass concentration (X) in the experiments with WT,
AarcA and Apka AarcA was determined gravimetrically and
expressed in gram dry cell weight per liter. Approximately
15 ml of culture broth was collected, weighed and transferred
onto a pre-weighed glass fiber filter (S-Pak Membrane Filter
White gridded 0.45 um, EMD Millipore Corporation, Biller-
ica, MA, USA) which was mounted on a vacuum filtration
device. Special care was taken to ensure that all the culture
broth was transferred onto the filter. Next, the filter was heated
in an oven at 105 °C for >24 h after which the filter with dried
biomass was cooled in a desiccator for >1 h and finally
weighed to determine the dry biomass weight. Coefficient of
variation for the determination of X with this method between
technical replicates was <1 % (three technical replicates in 27
sample points). The developed method was used to determine
the correlation factor (K) for all p values between X and
optical density (at 600 nm) of culture broth (OD), (K=X/
OD). The obtained linear p-dependent relationship of K=
—0.2309x 11 +0.4534 for WT was used to calculate X for the
experiments with strains AcobB, Aacs, Apka, acsOE and
Apka acsOE based on measured OD values.

Metabolic flux analysis

MFA using strain-dependent growth characteristics and exo-
metabolome data for AarcA, Apka AarcA and WT was car-
ried out as described previously (Valgepea et al. 2011) except
that pyruvate instead of oxaloacetate was set as the metabolite
characterising carbon outflow that was not identified experi-
mentally. In short, the simplified metabolic network contained
the main central carbon metabolism pathways—glycolysis,
TCA cycle, pentose phosphate pathway (PPP)—one pyrimi-
dine synthesis pathway (to include the excreted carbamoyl-
aspartate, orotate and dihydroorotate) and the acetyl-aspartate
synthesis reaction. The reconstructed network converted into a
fully determined and calculable stoichiometric matrix
consisting of 24 metabolites and 50 fluxes (24 unknown, 1
measured inflow, 7 outflow and 18 calculated fluxes based on
biomass composition and stoichiometries of anabolic path-
ways). The same metabolic network, stoichiometric matrix
and other MFA parameters were used for all the three analysed
strains, since, to the best of our knowledge, neither arc4 nor
pka deletion should affect MFA characteristics compared to
WT.

Proteome analysis
Sample preparation

One milliliter of WT, Apka, AarcA and Apka AarcA culture
broth was harvested at z=0.4 h ' and centrifuged (14,000 xg
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for 1 min at 4 °C), and the pellet was washed once with
phosphate buffered saline (PBS), flash frozen with liquid N,
and kept at —80 °C until further processing. Frozen pellets
were melted on ice after which 100 pg of the sample biomass
was mixed with 100 pg of stable isotope labeling by amino
acids in cell culture (SILAC)-labeled (Ong et al. 2002) E. coli
biomass (internal standard) and frozen at —80 °C. Cell pellets
were suspended in 100 puL SDS lysis buffer (4 % SDS/
100 mM Tris-HCI pH 8/100 mM DTT) and heated at 95 °C
for 5 min. Cell lysates were sonicated with ultrasound for a
few pulses and pelleted by centrifugation. Cell lysates were
digested with trypsin according to the Filter Aided Sample
Preparation protocol (FASP) (Wisniewski et al. 2009) and
purified with C-18 StageTips (Rappsilber et al. 2007).

Sample analysis

Sample analysis was done as in Arike et al. (2012) with the
exception of running one technical replicate for WT cells
(triplicate for mutant strains). In short, LC-MS/MS analysis
was performed using an Agilent 1200 series nanoflow system
(Agilent Technologies) connected to an LTQ Orbitrap mass
spectrometer (Thermo Electron, San Jose, CA, USA)
equipped with a nanoelectrospray ion source (Proxeon, Oden-
se, Denmark). Peptides were separated with a 240-min gradi-
ent from 2 to 40 % B (A—0.5 % acetic acid, B—0.5 % acetic
acid/80 % acetonitrile) using a flow rate of 200 nL/min. The
mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the PRIDE partner repository
(Vizcaino et al. 2013) with the dataset identifier PXD000556.

Data analysis

Data analysis of raw MS files was performed by the
MaxQuant software package version 1.3.0.5 (Cox and Mann
2008). Peak lists were searched using the Andromeda search
engine (built into MaxQuant) against an E. coli database
(downloaded on September 5, 2013 from http://www.
uniprot.org/) which was supplemented with common
contaminants (e.g. human keratin, trypsin). Full tryptic
specificity, a maximum of two missed cleavages and a mass
tolerance of 0.5 Da for fragment ions, was specified in the
MaxQuant search. Carbamidomethylation of cysteine was set
as a fixed modification, and methionine oxidation and protein
N-terminal acetylation were set as variable modifications. The
required false discovery rate was set to 1 % for both peptide
and protein levels and the minimum required peptide length
was set to seven amino acids. “Match between runs” option
with a time window of 2 min was allowed. To increase peptide
identification by “Match between runs” function, additional
26 WT E. coli raw proteome MS files were supplemented to
the MaxQuant search.
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Relative and absolute proteome quantification

Since each sample was mixed with equal amounts of SILAC-
labeled E. coli internal standard, relative protein expression
differences for >1,000 proteins between mutants and WT
could be calculated from expression differences between each
sample and the internal standard. All protein ratios were
normalised assuming a median expression change of 1 since
equal amounts of labeled internal standard and unlabeled
sample were mixed together.

Absolute proteome quantification to determine intracellular
protein concentrations (protein copies/fLL of biomass) was per-
formed using a label-free protein quantification method termed
the total protein approach (Arike et al. 2012; Wisniewski et al.
2012). This method assumes that most of the proteins are
detected by MS and this is usually the case as the top 1,000
proteins make up more than 90 % of the protein mass (Milo
2013; Valgepea et al. 2013). For each protein, its relative
fraction from the total proteome can be derived from the ratio
of its individual LFQ intensity (reported by MaxQuant) to the
total MS signal. This ratio can be converted into protein con-
centration (copies/fL) by dividing with the protein’s molecular
weight and multiplying with the Avogadro constant and the
protein concentration in a cell (g protein/mL cell volume) (Milo
2013). We determined the protein concentration using mea-
sured biomass concentration and protein fraction of dry bio-
mass, cell buoyant density of 1.1 g/mL (Baldwin et al. 1995;
Loferer-Krossbacher et al. 1998) and dry fraction of wet bio-
mass of 30 % (Cayley et al. 1991). As SILAC-labeling is more
sensitive and reproducible than label-free quantification (Asara
et al. 2008; Hendrickson et al. 2006), we determined protein
concentrations using the above-described method only for a
WT sample from the A-stat experiment at ;=04 h™ . All the
reported protein concentrations in this work were calculated by
multiplying the values of the latter sample with the relative
protein expression differences between each sample and the
SILAC-labeled E. coli internal standard to maintain the high
accuracy of SILAC labeling for relative comparison of strains.
Protein concentrations instead of abundances per cell were
calculated because cell size can vary between conditions and
strains (Milo 2013; Valgepea et al. 2013).

Gene expression analysis

Real-time PCR for acs expression analysis was carried out as
described before (Nahku et al. 2010) except that the primer
concentration used in this work was 20 pM.

Results

Glucose-limited cultures were first stabilised in a chemostat at
either D=0.1 or 0.2 h"" to achieve steady-state conditions after

which the A-stat phase with a continuous increase of D was
started using an acceleration of 0.01 h™2. This yielded steady-
state representative growth until cells could not keep up with
the rising D after achieving i, resulting in culture washout.
E. coli BW25113 wild-type (WT) and AarcA, Apka AarcA
strains were cultivated in four and two independent A-stat
experiments, respectively. Other strains were analysed in sin-
gle experiments since the data of strains cultivated in multiple
replicates confirmed the high reproducibility of A-stat data
(Lahtvee et al. 2011; Valgepea et al. 2010). We note that
growth characteristics of different strains are compared rela-
tive to gy instead of y in this study since glucose uptake is
known to regulate the magnitude of carbon catabolite repres-
sion (Gorke and Stiilke 2008; Narang 2009) possibly trigger-
ing the down-regulation of Acs and acetate overflow
(Valgepea et al. 2010).

Effect of Acs deletion and overexpression on acetate
metabolism

We first wanted to verify the hypothesis that E. coli
synthesises acetate also at low p using WT with deleted acs
(Aacs) which should lead to disruption of the PTA-ACS node
and loss of acetate recycling. Indeed, as expected, the PTA-
ACS node disruption in Aacs led to acetate excretion at all
qg1c values studied, while no acetate accumulated in WT up to
qgie~42 mmol gDCW ™' h™' (Fig. 2a). This phenotype of
Aacs is consistent with previous observations (Renilla et al.
2011; Shin et al. 2009) and confirms the hypothesis that
acetate is constantly synthesised at all ;2 (Renilla et al. 2011;
Shin et al. 2009; Valgepea et al. 2010). As Aacs constantly
directed more carbon to acetate, a lower maximum ggc
(Fig. 2a) and on average 5 % lower Yy (0.42+0.00 vs. 0.44
+0.01 gDCW/g glucose; average of the gy, range+standard
deviation) were observed compared to WT.

As one of the proposed reasons for acetate overflow is the
repression of Acs (Valgepea et al. 2010), we tested the effect
of increasing Acs expression on acetate excretion. Hence, acs
was overexpressed (acsOE) by swapping the native promoter
of the acs-yjcH-actP operon by a strong constitutive promoter
Ptet (Veit et al. 2007) to maintain recycling of acetate in the
PTA-ACS node also at faster growth. A 114+10.3- and 9+
0.6-fold higher expression of acs messenger RNA (mRNA) in
acsOE compared to WT was measured by real-time PCR at
£1=0.5h"" (¢gie~6 mmol gDCW ' h™") and 1=0.2 h™" (ggic~
3 mmol gDCW71 h"), respectively. However, acetate over-
flow started at a lower g in acsOE, and the strain also
excreted more carbon as acetate than WT at all the g, studied
(Fig. 2a). Similar to Aacs, lower maximum ggjc and £y, Were
achieved in acsOE compared to WT. The fact that higher
expression of the acetate-consuming gene acs led to earlier
onset of acetate overflow and higher carbon wasting to acetate
could possibly be a result of either the negative effects of too
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Fig. 2 Specific glucose consumption rate (gg.)-dependent carbon flow
to acetate in £. coli K-12 BW25113 wild type and its Acs-related mutants.
The percentage of carbon flow from glucose to acetate: a in wild type
(blue solid line), acsOE (pink dashed line), Aacs (green dotted line); b in
WT (blue solid line), AcobB (pink dashed line), Apka (green dotted line),

high protein overexpression (see “Discussion’) and/or due to
most of the Acs protein pool being inactive. Hence, we next
concentrated on the effects regulating Acs protein activity.

Protein acetylation plays an important role in acetate
metabolism

Two enzymes in E. coli are known to regulate the activity of
Acs protein: Pka inactivates Acs by acetylation (Castafio-
Cerezo et al. 2011), while CobB can release Acs from repres-
sion by deacetylating it (Zhao et al. 2004) (Fig. 1). Moreover,
it has been shown in vitro that Acs can autoacetylate itself in
the presence of acetate and ATP (Barak et al. 2004), further
demonstrating the importance of acetylation in determining
Acs protein activity. Hence, to investigate the effects of altered
protein acetylation on acetate metabolism, we analysed
growth of Pka (Apka) and CobB (AcobB) single-gene knock-
out mutants of E. coli.

AcobB cells, which cannot reactivate Acs by deacetylation,
excreted more acetate (Fig. 2b) and showed on average 28 %
lower Yys (0.32+0.01 vs. 0.44+0.01 gDCW/g glucose) com-
pared to WT at all studied g, values. Similar to the Aacs
strain, a relatively constant fraction from the carbon balance
was directed to acetate up to gg.~4 mmol gDCW ! h!
(Fig. 2b). This further confirms the importance of the state
of the Acs protein pool and an active PTA-ACS node in
acetate metabolism.

Next, we analysed the growth of a strain lacking Pka
(Apka), known to inactivate Acs in S. enterica (Starai and
Escalante-Semerena 2004) and E. coli (Castafio-Cerezo et al.
2011), which should eliminate or at least substantially de-
crease the fraction of inactivated Acs protein in the cell,
possibly leading to higher recycling of acetate in the PTA-
ACS node and postponed acetate overflow. Indeed, Apka
showed a postponed start of acetate overflow at ggc=5.5
compared to ~4.2 mmol gDCW ' h™! in WT (Fig. 2b). We
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wanted to verify if the diminished acetate overflow in Apka
was indeed caused by higher Acs activity in vivo. However,
this hypothesis cannot be unfortunately tested since, to the
best of our knowledge, there exists no assay to unequivocally
determine the in vivo activity of Acs in E. coli cells expressing
proteins of both acetate-consuming pathways (ACKA-PTA
and Acs). Since all the strains studied in this work express
the three enzymes of the acetate-consuming pathways (AckA,
Pta and Acs) at considerable concentrations as can be seen
from the absolute quantitative proteome data described below,
in vivo activity of Acs cannot be unequivocally determined in
any of the strains.

As we saw a positive effect of pka deletion on diminishing
acetate metabolism, we next introduced pka deletion into the
acsOE background (Apka acsOE) to test if the lack of a
positive effect of acs overexpression on mitigating acetate
accumulation could have arisen from a substantial part of the
Acs protein pool being inactive in the acsOE strain (see
above). This was not the case as acetate overflow was not
postponed in Apka acsOE compared to WT (Fig. 2b). There-
fore, we searched for other means to further postpone the
onset and decrease the magnitude of acetate overflow.

Strong reduction of acetate overflow by higher levels of active
Acs and TCA cycle throughput

Our results showed that strong overexpression of acs had no
positive effects on relieving acetate overflow. However, since
we saw diminished overflow of acetate in Apka which altered
the levels of active Acs, we surmised that acetate overflow
could be further reduced in Apka if Acs levels would be
slightly higher, but not too high as in Apka acsOE (see
“Discussion”). Furthermore, it could be plausible that even if
the Apka cells could recycle more acetate due to higher levels
of active Acs, downstream pathways (e.g. TCA cycle) could
still be limiting in processing the recycled acetyl-CoA to
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divert carbon away from acetate. Hence, we also looked for
ways to increase downstream throughput for the recycled
acetate.

Deleting ArcA induces expression of TCA cycle genes
(Covert et al. 2004; Vemuri et al. 2006) and flux throughput
(Perrenoud and Sauer 2005). Interestingly, Covert et al. (2004)
also detected ~2-fold higher expression of acs in the arcA
deletion mutant compared to WT. Hence, it seemed that an
arcA deletion would hit two birds with one stone for us, and
therefore, we deleted arcA in the Apka background (Apka
AarcA) in order to concurrently increase the levels of active
Acs and downstream throughput of the TCA cycle to further
diminish acetate overflow. Remarkably, the double-knockout
strain showed even further reduced acetate overflow as the
onset of acetate accumulation was postponed until gy~
6 mmol gDCW ' h™" (ggic~4.2 mmol ¢DCW ' h™! in WT),
and more importantly, carbon wasting into acetate in Apka
AarcA was more than 4-fold lower compared to WT (2 vs.
8 % of total carbon) at maximal g, (Fig. 3a).

Carbon balance showed that Apka AarcA primarily pro-
duced more CO, instead of acetate (2—8 % more than WT)
(Fig. 3b). In addition, MFA revealed that the higher CO,
production was the result of increased TCA cycle fluxes as

expected from an arcA deletion (Fig. 3c; Supplementary
Table S1). MFA also showed that while more CO, was pro-
duced in the TCA cycle, less CO, was produced through PPP
in Apka AarcA, demonstrating the relevance of balancing
TCA cycle and PPP also in acetate metabolism (Fig. 3d;
Supplementary Table S1). Compared to acetate overflow-
reduced strains of acetate synthesis pathway deletions (pta+
ackA and poxB) which show reduced 1, Y, and substantially
elevated lactate and formate excretion (see above), our Apka
AarcA strain with strongly reduced overflow did not accumu-
late any other detrimental by-product, maintained /i,,,x of WT
(Fig. 3a) and exhibited only ~5 % lower Y, (0.42+0.00 vs.
0.44+0.01 gDCW/g glucose) compared to WT.

The results of the study of Vemuri et al. (2006) indicated
that acetate overflow could be postponed by a single arcA
knockout in E. coli K-12 MG1655. Hence, we also analysed
the growth of AarcA in our E. coli K-12 BW25113 back-
ground to check if the arcA knockout effect could be strain-
dependent and whether the positive effects of Apka AarcA on
diminishing acetate overflow could actually arise only from an
arcA deletion. It is evident that the arcA deletion alone could
not be accounted for the reduced overflow in Apka AarcA in
our BW25113 background as acetate overflow started even
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Fig. 3 Specific glucose consumption rate (gg.)-dependent carbon flow
through metabolism in E. coli K-12 BW25113 wild type and its acetate
overflow-reduced mutants. The percentage of carbon flow from glucose
to acetate (a) and CO, (b). The percentage of carbon flow from glucose
through TCA cycle (¢) and pentose phosphate pathway (PPP) (d) repre-
sented by suc and gnd fluxes, respectively, expressed as the C-molar
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percentage of flux through the reaction from the consumed carbon. Wild
type (blue solid line), AarcA (pink dashed line), Apka AarcA (green
dotted line). Lines for each strain are best-fit splines of 13-43 glucose and
product concentration measurements in each experiment. Error bars
represent standard deviation of four and two independent A-stat experi-
ments for wild type and AarcA, Apka AarcA, respectively
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earlier (ggc~3.5 vs. ~4.2 mmol gDCW ' h™") in Aarcd
compared to WT (Fig. 3a). Interestingly, accumulation of
acetate was slower and AarcA wasted ~4 % less carbon into
acetate compared to WT near maximal gy (Fig. 3a). As
expected, AarcA diverted less carbon to CO, compared to
Apka AarcA (Fig. 3b; Supplementary Table S1), which is
possibly due to an active PTA-ACS node in Apka AarcA that
provides the TCA cycle with more acetyl-CoA through higher
acetate recycling compared to AarcA. The latter points to the
importance of Apka in facilitating higher TCA cycle through-
put by supplying it with more acetyl-CoA through higher
acetate recycling in the PTA-ACS node.

Proteomic response to different genetic disruptions

We carried out absolute quantitative proteomics analysis of
WT and several mutant strains yielding intracellular protein
concentrations to find out if the different metabolic flux pat-
terns could be described by proteome expression profiles. For
this, we used SILAC-labeled E. coli biomass as an internal
standard (see “Materials and methods™) to compare the
proteomes in single A-stat experiments of Apka, AarcA and
Apka AarcA with WT at p=0.4 h™" (Fig. 4 and Supplemen-
tary Table S2). We chose to compare the proteome expression
profiles at 4=0.4 h™!' corresponding to Ggic values of 5.55,
5.25, 5.44 and 5.01 mmol gDCW ' h™! for Apka, AarcA,
Apka AarcA and WT, respectively, since significant differ-
ences in acetate overflow characteristics between the strains
had occurred by that high 1 (ggic). Proteome analysis for WT
was carried out also at z=0.2 and 0.51 h™" in two independent
A-stat experiments yielding an average coefficient of variation
of protein expression changes over the quantified >1,000
proteins to be <7 %. The latter means that protein expression
differences >14 % between a mutant strain and WT could be
considered significant. Proteome-wide data for protein con-
centrations and expression changes between strains is in Sup-
plementary Table S2.

Based on the observation that acs expression is increased
~2-fold in AarcA compared to WT (Covert et al. 2004), we
introduced arcA deletion into Apka strain with the expectation
of increasing the levels of active Acs protein. Indeed, our
proteome analysis confirmed the latter as expression of Acs
increased ~1.7-fold in response to arcA deletion both in
AarcA and Apka AarcA strains (Fig. 4; all comparisons
relative to WT). This demonstrates that the total Acs protein
concentration, most probably together with the levels of its
active form, plays a role in acetate metabolism as acetate
overflow was strongly reduced in Apka AarcA (see above).

We detected increased carbon fluxes through the TCA
cycle resulting in higher CO, fraction from the carbon balance
in Apka AarcA (Fig. 3b, ¢). This was confirmed also on the
translational level as expression of the TCA cycle enzymes
was enhanced in Apka AarcA (on average 1.19-fold
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compared to WT; p~0.001, paired two-tailed 7 test) (Fig. 4).
Notably, although TCA cycle fluxes in AarcA were lower
compared to Apka AarcA at the proteome data points of
Ggic~5 mmol gDCW ! h™!, protein concentrations in the
pathway were elevated in AarcA (on average 1.25-fold,
p<107). The result of lower flux throughput with higher
protein concentrations (comparing AarcA to Apka AarcA)
points to non-constant catalytic rates of enzymes exerted
through post-translational regulation. This observation is in
line with recent bacterial studies (Adamberg et al. 2012;
Valgepea et al. 2013) which demonstrate that post-
translational control of fluxes through alteration of catalytic
rates of enzymes is the prevalent mode of flux regulation in
E. coli and L. lactis.

Deletion of arcA leads to a strong 7-fold expression in-
crease of the TCA cycle and respiratory chain mRNAs in
E. coli chemostat cultures at D=0.4 h™' (Vemuri et al. 2006).
However, protein concentrations in the TCA cycle were in-
creased only 1.50-fold in our AarcA strain at the same D
(Fig. 4). Moreover, instead of a 7-fold increase, we detected
lower expression of cytochromes (CyoABD and CydA) both
in AarcA and Apka AarcA and small changes in NADH
dehydrogenase complexes NDH I and NDH II (Fig. 4). The
difference between our results and those of Vemuri et al.
(2006) highlights the importance of protein measurements as
analysing only mRNA data could lead to equivocal
conclusions.

Shin et al. (2009) report that expression of GS in addition to
Acs has to be increased for reducing acetate overflow in
E. coli batch cultures. However, we detected lower expression
of GS proteins AceA and AceB in Apka AarcA (Fig. 4), and
yet this strain showed strongly reduced acetate overflow. This
discrepancy could possibly be explained by different E. coli
strains (W3110 in Shin et al. 2009) and growth conditions of
glucose limitation in our case and glucose excess in the
experiments by Shin et al. (2009).

Regarding other possibly relevant protein expression
changes for reduced acetate overflow, expression of PoxB
(converts pyruvate and ubiquinone to acetate and ubiquinol)
was considerably lower in all analysed mutants (Fig. 4). Al-
though this could be relevant for lower acetate accumulation
at faster growth since PoxB is suggested to be the main
enzyme synthesising acetate at high p (Nahku et al. 2010),
the protein concentration of PoxB in all the mutants was low
compared to other PTA-ACS node proteins (Supplementary
Table S2). In addition, we detected a very strong up-
regulation, 2—6-fold in Apka AarcA and 5-30-fold in Apka
and AarcA, of proteins related to chemotaxis and flagellar
assembly (Supplementary Table S2). However, this has been
seen before: highly frequent insertions of insertion sequence
elements to the regulatory region of fliD cause expression
changes of these genes (Barker et al. 2004; Ishii et al. 2007,
Nahku et al. 2011).
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Discussion

In this work, we studied the growth of E. coli K-12 BW25113
and several of its mutant strains affecting acetate-related path-
ways with the aim of further understanding the relevance of
the PTA-ACS node in overflow metabolism and mitigating
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acetate overflow in aerobic E. coli cultivations. Firstly, our
results confirm the notion that acetate is synthesised in vivo
also at low 1 (Renilla et al. 2011; Shin et al. 2009; Valgepea
et al. 2010) as strains defective in acetate re-utilisation (Aacs
and AcobB) excreted acetate during slow growth where WT
did not (Fig. 2a, b). This further supports the idea that an
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active Acs pool prevents acetate overflow during slow growth
of WT E. coli since acetate is fully recycled in the PTA-ACS
node. Moreover, the PTA-ACS node is also relevant for
growth efficiency since the higher acetate excretion in both
of the mutants with disrupted PTA-ACS node (Aacs and
AcobB) leads to lower Y, compared to WT. Both Aacs and
AcobB mutations seem to have further negative effects on Yy
in addition to carbon loss to acetate as the increase of carbon
flux to acetate cannot solely explain the lower Yy  values
observed. For example, the substantially larger fraction of
acctate in the carbon balance of AcobB compared to WT at
high g values (Fig. 2b) shows that Acs is not the only
protein specifically regulated by CobB, as also shown before
(Weinert et al. 2013).

An intermediate molecule of the PTA-ACS cycle—acetyl-
phosphate (acetyl-P)—plays a critical role in the acetylation of
many proteins (Weinert et al. 2013) and regulation of chemo-
taxis (Barak et al. 1998; Klein et al. 2007; Mayover et al. 1999),
pathogenesis (Anfora et al. 2008), protein degradation (Mizrahi
et al. 2009), etc. in E. coli (Fig. 1). Based on the experiment
with Aacs, we propose that ~0.8 mmol gDCW ' h™! (corre-
sponding to 2 % from the carbon balance in Aacs) of acetate is
constantly recycled in the PTA-ACS node of WT E. coli to
enable rapid regulation of the acetyl-P pool. This value is higher
compared to the calculated value of ~0.3 mmol gDCW ' h ™" at
£=0.2 h ! based on chemotaxis needs and in vivo synthesis of
acetate as a by-product during synthesis of cysteine, methionine
and arginine (Valgepea et al. 2010), possibly due to the fact that
requirement of acetyl-P for protein acetylation was not taken
into account in these calculations.

The fact that lack of (active) Acs causes acetate overflow at
low 1 (Fig. 2a) and the hypothesis that acetate accumulation
with increasing gy is triggered by Acs repression (Valgepea
etal. 2010) obviously lead to the idea that higher expression of
Acs should reduce acetate overflow. Although acs overex-
pressing strains have been constructed (Lin et al. 2006; Shin
etal. 2009), no steady-state data at different g values exists.
Moreover, the data in the literature is somewhat contradictory.
Shin et al. (2009) showed that both higher activity of GS and
acs overexpression are necessary, whereas only higher expres-
sion of Acs was concluded to be sufficient by San and co-
workers (Lin et al. 2006) to decrease acetate accumulation in
E. coli batch cultures. We, however, saw no reduction of
acetate overflow in the constructed acsOE strain in our con-
tinuous cultures (Fig. 2a). Furthermore, the possibility of
inactivation of the higher Acs pool in acsOE was ruled out
by introducing deletion of the gene—pka—responsible for
Acs inactivation in E. coli (Castano-Cerezo et al. 2011) in
the latter strain since the double mutant strain (Apka acsOE)
accumulated more acetate than WT (Fig. 2b). As both acs
overexpression mutants accumulated more acetate than WT
and had a lower maximal g, we propose that the 114-fold (at
high 1) acs overexpression evoked a strong metabolic burden
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on the cells either by causing the PTA-ACS node to deplete
the ATP pool (it is a futile cycle) and/or by significantly
altered energy homeostasis through increased energy de-
mands for Acs protein synthesis due to the overexpression.
Both of the proposed mechanisms severely hurt the ATP
balance which may trigger the cells to excrete acetate at a
lower g4 for energy generation purposes (Valgepea et al.
2013).

Our results confirm the hypothesis of Acs repression trig-
gering acetate overflow (Valgepea et al. 2010) as deleting the
Acs-inactivating gene pka resulted in postponed acetate over-
flow (Fig. 2b). Our proteome analysis of Apka showed lower
Acs protein concentration and no major changes in central
carbon metabolism compared to WT (Fig. 4). Therefore, it
seems most probable that the reduced acetate overflow in the
Apka strain arises from a higher pool of active Acs which
enables increased acetate recycling capability in the PTA-ACS
node.

The latter results indicated that acetate overflow could
probably be further diminished if the level of active Acs would
be slightly higher, but not too high as in Apka acsOE. Ap-
proximately 1.8-fold higher expression of Acs in Apka back-
ground was achieved by arcA knockout (Fig. 4), which is
consistent with the increased acs expression of E. coli AarcA
during exponential growth (Covert et al. 2004). Remarkably,
the Apka AarcA double-knockout showed strongly reduced
acetate overflow by the postponed onset of acetate excretion
and 4-fold lower carbon flux to acetate compared to WT at
maximal g (Fig. 3a). The fact that Apka AarcA synthesised
more CO, due to increased TCA cycle throughput (Fig. 3b)
instead of acetate demonstrates an important point: directing
higher amounts of recycled acetyl-CoA in the PTA-ACS node
further into the TCA cycle is essential for diminishing acetate
overflow. Positive effects of arc4 knockout on TCA cycle
gene expression (Covert et al. 2004; Vemuri et al. 2006) and
flux throughput (Perrenoud and Sauer 2005) are expected and
were also confirmed on the translational level by our proteome
analysis (Fig. 4). It is important to note that the Apka AarcA
strain would enable the production of target compounds in the
absence of acetate at considerably higher values of g, most
probably resulting in higher volumetric productivities (~22 %
higher gDCW L' h™! compared to WT). Moreover, this strain
accumulated no other detrimental by-product and showed
identical ftmax and only ~5 % lower Y, compared to WT. This
work demonstrates that a simple genetic overexpression does
not work in all cases for achieving the desired effects, but the
expression level of the relevant fraction of the protein pool
(active Acs in this case) has to be fine-tuned together with
downstream throughput (TCA). To the best of our knowledge,
this is the first successful application of the modification of
protein acetylation for metabolic engineering in E. coli.

Several explanations for acetate overflow propose limita-
tions in respiratory capacity (Han et al. 1992; Paalme et al.



Appl Microbiol Biotechnol (2014) 98:5131-5143

5141

1997; Varma and Palsson 1994), TCA cycle throughput
(Majewski and Domach 1990; Veit et al. 2007) or activity of
the GS (Shin et al. 2009; Waegeman et al. 2011). Our results
suggest that none of these pathways is limiting and triggering
acetate overflow in WT E. coli per se since we detected lower
expression of cytochrome and GS proteins in Apka AarcA
compared to WT and higher acetate excretion in AarcA with
up-regulated TCA cycle protein expression compared to
Apka AarcA and WT (Figs. 3a and 4). More recently, Zhuang
et al. (2011) proposed that acetate overflow could result from
the competition for membrane space between respiratory
chain enzymes and glucose transporters. However, this hy-
pothesis has been questioned (Huberts et al. 2012), and also
our proteomic data of this (Fig. 4) and of a previous study
(Valgepea et al. 2010) are not consistent with Zhuang et al.
(2011) as expression of respiratory chain and TCA cycle
enzymes showed different behaviour. Hence, we conclude
that a fine-tuned coordination between increasing the
recycling capabilities of acetate in the PTA-ACS node through
a higher concentration of active acetate scavenging Acs pro-
tein and downstream metabolism throughput in the TCA cycle
is necessary for diminishing overflow metabolism of acetate
in E. coli. We see this work being a good example for proving
the value of systems biology study of metabolism since the
strains with potential interest to industrial use reported in this
work were created based on the results of previous system-
wide studies of E. coli metabolism (Valgepea et al. 2010,
2011, 2013).
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Escherichia coli achieves faster growth by increasing
catalytic and translation rates of proteinst

Kaspar Valgepea,** Kaarel Adamberg,?*® Andrus Seiman® and Raivo Vilu®

Regulation levels of the gene expression cascade controlling protein levels and metabolic fluxes for cells
to achieve faster growth have not been elaborated in acceptable detail. Furthermore, there is need for
specific growth rate (u) dependent absolute quantitative transcriptome and proteome data to
understand the molecular relationships for enabling cells to modify x. We address these questions, for
the first time, by presenting regulatory strategies for more efficient metabolism of Escherichia coli at
higher p by statistical covariance analysis of genome-wide intracellular mRNA and protein
concentrations coupled to metabolic flux analysis in the steady state range of u = 0.11-0.49 h~". Our
analyses show dominating post-transcriptional control of protein abundances and post-translational
control of flux rates. On average, E. coli achieved five-times faster growth through 3.7-fold increase of
apparent catalytic rates of enzymes (kapp) and 2.5-fold increased translation rates, demonstrating the
relevance of post-translational regulation for increasing flux throughput. Interestingly, pathways carrying
the highest flux showed both high protein abundance and k,p,, values. Furthermore, co-regulation analysis
of enzymatic capacities revealed tightly coupled regulatory dependencies of protein synthesis and RNA
precursor synthesis, substrate utilization, biosynthetic and energy generation pathways carrying the highest
flux. We also observed metabolic pathway and COG specific protein and metabolic flux control levels,
protein expression costs and genome-wide principles for translation efficiency and transcription unit
polarity. This work contributes to the much needed quantitative understanding of coordinated gene
expression regulation and metabolic flux control. Our findings will also advance modeling and meta-
bolic engineering of industrial strains.

subsequent changes in metabolic flux patterns are, however, not
a straightforward consequence of transcriptional regulation as

Most microorganisms can grow under very different environ-
mental conditions and use a wide range of substrates, which
presents a significant challenge to the flexibility of their meta-
bolism. Adaptation to different environmental conditions is
usually accompanied by a change in the specific growth rate (u),
which integrates regulation of many properties of cell physiology,
e.g. cell size, metabolic flux patterns, energy production. The
majority of these mechanisms are regulated through changes in
gene expression. Gene expression regulation of enzymes and
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once thought." The gene expression cascade is under multi-level
regulation: transcription can be regulated through molecular
modifications of DNA (e.g. methylation); binding of transcription
factors; regulation of translation through mechanisms directly
interacting with the ribosome or its associated initiation pro-
teins; mRNA and protein degradation; post-translational
chemical modification of proteins (e.g. phosphorylation, ubiqui-
tination), etc. As cells have to increase throughput of metabolic
fluxes to grow faster, the question—at which regulation levels of
the gene expression cascade (transcriptional (TR), translational
(TL), post-TR, post-TL) is control of metabolic fluxes in different
metabolic pathways realized for achieving faster growth—emerges
as highly important. Control mechanisms of metabolic fluxes, i.e.
in vivo reaction rates, are central to understanding regulation of
metabolism since they represent the integrated response of all
levels of cellular regulation.?

So far, mainly hierarchical regulation analysis has been used
as the methodology for determining to which extent a change

This journal is © The Royal Society of Chemistry 2013
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in a particular flux is regulated by either gene expression or
metabolism (enzyme activities).” Most of the studies imple-
menting this approach have investigated yeast and concluded
that fluxes through glycolytic and selected fermentative path-
ways are regulated in a diverse and subtle way with post-TR
regulation being the dominant mechanism (reviewed in van
Eunen et al.*). A notable study using this approach is that of
glycolysis metabolism perturbation by the absence of oxygen
and the presence of ATP-depleting benzoic acid compared to
aerobic conditions in Saccharomyces cerevisiae, where the
authors were able to dissect gene expression regulation in
glycolysis into five layers: TR, TL, post-TL, mRNA and protein
degradation.” However, these and other studies in the litera-
ture, to the best of our knowledge, have not been carried out to
study global p-dependent protein abundance and flux control
levels, thus not producing genome-wide quantitatively reliable
data which could be used for the elucidation of the principles
of growth regulation and quantitative modeling. Hence, a more
comprehensive approach is needed.

Although many p-dependent cellular global relationships
have been determined in E. coli batch cultures,® high-quality
experimentally determined quantitative interdependencies of u
and the most relevant cellular characteristics including trans-
criptome,”® metabolome and fluxome,*'®*" proteome,'*"?
biomass composition,'"'* and cell volume'*** are scarce. What
is more, p-dependent genome-wide absolute quantitative
mRNA and proteome data (molecules per cell and concentra-
tions) for E. coli are missing altogether. A comprehensive
understanding of the physiological processes in cells calls for
a systems biology effort of integrating high-quality absolute
quantitative transcriptomic, proteomic and metabolomic data
coupled to models of different levels of detail.’**® This may
seem as an immense challenge, but as understanding of both
the regulation levels of metabolic fluxes and other molecular
relationships enabling the cells to modify u is of instrumental
importance towards a more complete description of the control
principles of cell metabolism'®'® and successful biotechnology
and synthetic biology efforts,”® genome-wide absolute quanti-
tative multi-level analysis in one study is highly needed. More-
over, it is important that this biological information is acquired
from cell cultures in strictly defined physiological states, i.e.
continuous cultures.”"** Exactly this has been achieved in the
present paper.

We previously carried out triplicate pu-dependent glucose-
limited continuous culture (accelerostat (A-stat)**) experiments
with E. coli K-12 MG1655 coupled to relative mRNA and protein
expression and metabolic flux analyses.’"** These experiments
allowed us to propose a new theory for overflow metabolism of
acetate'® and detect decreased energy spilling with rising x and
carbon wasting."* To understand the observed phenomena and
regulation of metabolism further we performed in this study an
absolute quantitative in vivo biochemistry analysis; i.e. count-
ing of mRNAs and proteins per cell and measuring their
intracellular concentrations; characterization of translational
efficiencies by protein-per-mRNA ratios; determination of pro-
tein and flux control levels by statistical covariance analysis;

14,15
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estimation of in vivo catalytic rates of enzymes, etc. More
specifically, the aim of this work was to determine genome-
wide p-dependent gene expression regulation levels for control-
ling protein abundances and flux rates in E. coli for achieving
faster growth. Flux changes were evoked by the A-stat method,*’
which enables study of the cells in strictly defined physiological
states determined by controlled physico-chemical conditions
and continuous monitoring of the dynamic adaptation of cells
under the conditions of changing p. Determination of protein
abundance and flux control levels, and quantitative description
of various molecular, energetic and metabolic aspects of the
gene expression cascade and different metabolic pathways was
realized through integration of absolute transcriptome and
proteome data with calculated in vivo flux rates published
previously™! in the range of u = 0.11-0.49 h™".

Results and discussion
Global p-dependent absolute proteome and transcriptome

We determined both the intracellular abundance (molecules
per cell) and concentration (molecules per fL of biomass) for all
the quantifitd mRNA and protein molecules taking into
account also the change in cell volume, and total RNA
and protein concentration in the biomass with increasing u
(Table S1, ESIT). Genome-wide absolute quantitative transcrip-
tome data for u = 0.11; 0.21; 0.31; 0.40; 0.48 h™' were deter-
mined using DNA microarrays for around 4300 mRNAs.
Coefficient of variation (CV) between six DNA microarray tech-
nical replicates at ¢ = 0.11 h™" was 11%. Absolute proteome
quantification was performed for 1185 proteins at = 0.11 h™*
using the iBAQ approach®® and published in Arike et al*®
Pearson correlation coefficient (PCC) and CV between two
independent A-stat experiments were R = 0.99 and 11%, respec-
tively.>® Protein abundances for u = 0.20; 0.30; 0.40; 0.49 h™*
were calculated based on relative data published previously in
Valgepea et al.'* which also showed high correlation between
independent experiments (R = 0.79-0.92 and CV = 11%). High
confidence of our absolute quantitative proteome data set is
indicated by the fact that the sum of all quantified proteins by
iBAQ was on average only 10% lower than the cellular total
protein concentration determined by Lowry analysis at all u
(Table S1, ESIT). The complete gene-specific data set of absolute
and relative mRNA, protein and specific flux values, covariance
values and other parameters used in calculations can be found
in Table S2 (ESIY).

The proteomic coverage of protein-coding quantified
mRNAs reached 100% with higher mRNA concentrations
(Fig. 1A) being in line with the proposed ‘lazy step function’
(i.e. the ability to detect proteins rising at higher mRNA levels)
of protein identification in E. coli, Bacillus subtilis and higher
organisms.”**” Both mRNA and protein concentrations spanned
approximately three orders of magnitude (Fig. 1B) while protein
concentrations were on average 1000-fold higher than corre-
sponding transcripts. A larger dynamic range of protein abun-
dances has been observed in yeast*® and mammalian cells.>” Our
genome-wide mRNA and protein concentration data show
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significant and increasing correlations of R = 0.62-0.78 with
rising p (Fig. S1, ESIT).

As expected with increasing cell size, the sum of mRNAs and
proteins per cell increased 4.2- and 2-fold, respectively, from
1=0.11to 0.49 h™" (Fig. S2A, ESI{). This is in concordance with
the increase of the RNA-to-protein mass ratio with rising u also
observed previously in E. coli.***° The sum of intracellular
mRNA and protein concentrations (molecules per fL) showed
a different behavior: 1.8-fold increase for mRNAs and 1.2-fold
decrease for proteins was observed (Fig. S2B, ESI{). Similarly,
opposite p-dependence of protein abundances and concentra-
tions has also been observed for unregulated constitutive genes
in E. coli** This indicates a faster increase of cell volume
compared to protein abundance with faster growth. This dif-
ferent y-dependent mRNA and protein abundance and concen-
tration behavior is an important physiological observation and
essential for taking into account in in silico modeling
approaches where cell metabolism is simulated as a function
of H-31'32

Majority of protein levels are controlled at the post-TR level

To address the main question of this study—at which regula-
tion levels of gene expression does E. coli control its protein
levels and metabolic fluxes for achieving faster growth—we
integrated our quantitative proteome and transcriptome data
with previously published flux measurements from the same
experiments." We used covariance analysis to statistically
determine the regulation levels of gene expression—TR, post-
TR, TL, post-TL—as it describes both the direction and magni-
tude of mRNA, protein and flux changes with increasing u
making it a suitable statistical method for analysis of absolute
quantitative data (see Experimental).

Firstly, we analyzed the impact of TR, post-TR and TL
regulation on protein abundance levels for E. coli to achieve

2346 | Mol. BioSyst, 2013, 9, 2344-2358

faster growth using the protein-per-mRNA ratio (pm). This ratio
estimates translation efficiency and the changes give indica-
tions about the level of gene expression regulation either
through protein translation or degradation making it an impor-
tant molecular parameter. Values of pm for ~1200 genes
ranged from around 100 to 10 000 at low u compared to 50 to
4000 at high p (Fig. S3, ESIf) pointing to different levels of
regulation among genes through translation and protein degra-
dation, post-translational modification and possible functional
requirements for protein binding,**** and explain the non-
perfect mRNA and protein correlations. Plotting pm values
against protein concentrations showed that abundant proteins
possess about 100-times higher pm values than low abundant
ones regardless of u (Fig. S3, ESIT). It was also observed that
genes belonging to clusters of orthologous groups (COG)*® of
translational machinery (J), energy generation (C) and post-
translational modification (O) showed higher pm ratios (Fig. $4,
ESIT) indicating the importance of efficient translation of these
enzymes. Interestingly, pm values saturated at around 4000 and
2500 at low and high p, respectively (Fig. S3, ESIf). A similar
translation efficiency difference between low and high abundant
proteins and the saturation effect are seen in yeast®® and for
translation rates in mammalian cells.** Median pm decreased
2.3-fold from 1532 to 656 with x increasing from 0.11 to 0.48 h™ .
The lower ratio determined at u = 0.48 h™* is close to those of
log-phase E. coli cells.*”*® This is an important finding for
modeling u-dependent gene expression since constant transla-
tion rates have previously been used in simulations.*"

TR, post-TR and TL regulation of protein abundances was
quantitatively described by calculating covariance between
each gene’s pm and u. The obtained covariance values were
subjected to statistical hypothesis testing of being significantly
(p-value < 0.05) not different or different from zero (all tests
were subject to correction by false discovery rate filtering

This journal is © The Royal Society of Chemistry 2013
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according to the Benjamini-Hochberg procedure at level
o = 0.05). Data for all genes with covariance, p-values and
respective mRNA and protein expression burden with rising u
can be seen in Data S1 (ESIT). A covariance value not different
from zero represents TR regulation of gene expression by the
pm ratio being constant at all u. We note here that TR regula-
tion can also be attained through changing mRNA degradation
rates but the mechanism through which mRNA concentrations
are controlled does not affect the calculation of pm values and
the respectively derived regulation levels. Strikingly, from the
total of 1112 analyzed genes with both quantified mRNA and
protein concentrations, only 25% (275) showed TR regulation
(Table S3, ESIf). Genes involved in glyoxylate shunt (GS), NADH
metabolism and various degradation pathways showed high
fraction of TR regulation (Table S4, ESIf). However, for the
majority of genes (56%; 627), protein concentrations were
controlled at the post-TR level determined by their covariance
value being negative and different from zero (Fig. 2A), meaning
decreasing pm with rising u (protein concentrations increase
less than mRNA ones or decrease more than mRNA). Particu-
larly high enrichment of post-TR regulated genes was observed
in COGs of cell cycle (D), translation (J), amino acid metabolism
(E) (Table S5, ESIf) and amino acid synthesis pathways
(Table S4, ESIT). Also the protein levels in the pathways carrying
the highest flux—glycolysis and TCA cycle—were regulated at
post-TR level for >60% of genes. We detected only four genes
(0.4%) with TL level regulation indicated by positive covariance
values different from zero, meaning increasing pm with rising u
(protein concentrations increase more than mRNA ones or
decrease less than mRNA). This small number could be con-
sidered as an indication for the faster increase of the transcrip-
tion rate compared to the translational rate with growing u.**

Similar domination of post-TR regulation of protein con-
centrations at mRNA and protein levels was lately reported in a
study of the fermentative bacterium Lactococcus lactis.>®
Furthermore, post-TR regulation is the predominant mecha-
nism for controlling pm ratios in Mycoplasma pneumoniae,*’
mammalian cells** and also for ~37% of genes in B. subtilis.**
Transcription was also shown to have limited control over
capacities of key central metabolism enzymes in E. coli with
faster growth in chemostat cultures.”” In addition, several
studies on yeast using hierarchical regulation analysis have
also concluded that protein expression in glycolytic and fermen-
tative pathways is mainly regulated at the post-TR level.*” Thus it
seems that post-TR regulation of protein levels is significant in
organisms with very different growth characteristics, and practi-
cally in all the main metabolic subsystems.

Flux control is mainly exerted through post-TL regulation

Next, we moved one layer up to determine the regulation levels
of metabolic fluxes for E. coli to achieve faster growth. Measure-
ment of both protein concentrations and flux rates in this study
enabled us to quantitatively determine the impact of change in
protein concentration and its catalytic rate for realizing higher
flux throughput. For this, catalytic rates of enzymes were
calculated as the ratio of specific flux and protein concentration

This journal is © The Royal Society of Chemistry 2013
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and defined as the apparent catalytic rate (kapp, s ). Flux
control levels—TL or post-TL—were determined by covariance
analysis of changing k,p, and u. Post-TL regulation includes
modifications of proteins after translation (post-TL chemical
modification or allosteric regulation) or change of protein
activity due to hyperbolic change of enzyme kinetics solely
due to substrate concentration changes.*® As, to the best of
our knowledge, no reliable intracellular metabolome quantifi-
cation method yet exists for E. coli continuous cultures, it was
not possible to experimentally investigate the latter possibility
and differentiate between the two types of regulation mechan-
isms of enzymatic activities.

Covariance value being statistically not different from zero
represents protein control of flux (TL regulation) as protein
concentration increases proportionally to the specific flux rate
with rising p (i.e. constant k,pp). Only 9% (18) out of 191 genes
under analysis showed flux control through protein levels (TL
regulation) (Table S6; Data S2, ESIT) which included genes from
glutamine and nucleotide synthesis pathways (Table S4, ESIY).
Notably, for 10 out of these 18 genes flux control is at the TR
level as both of their pm and &, values were not different from
zero. Recently, transcriptional control of fluxes was shown in
the TCA cycle, GS and acetate excretion but not in PPP using
transcription factor mutant strains of E. coli.** The 10 genes for
which we detected TR level control of fluxes did not, however,
belong to any of these pathways. Flux throughput was con-
trolled at the post-TL level for the great majority of genes (81%;
154) shown by positive covariance values different from zero,
meaning increasing k,p, with rising u (Fig. 2B). For nearly all
the genes organized into COGs of energy production and
conversion (C), translation (J) and high flux pathways—TCA
cycle and glycolysis—flux control was achieved through post-TL
regulation (Tables S4 and S5, ESIf). These are highly abundant
proteins (over 5000 copies per cell) indicating, similarly to
protein abundance control (see above), that E. coli has to
implement additional regulatory processes for increasing their
enzymatic capacities to fulfill the demands of rising bio-
mass and energy synthesis throughput with faster growth.
This is also reflected by the observation that the average
protein abundance and synthesis cost for post-TL compared
to TL-regulated genes were ~ 2-fold higher (5190 vs. 2923 mole-
cules per cell and 6.2 x 10°vs. 3.1 x 10° ATP molecules per cell,
respectively). Thus it seems to be energetically favorable for
E. coli to increase the catalytic capacity of abundant proteins
through post-TL processes and save ATP from lower protein
synthesis costs. These results are in contrast to an iz silico study
which proposed that low-cost enzymes in E. coli are less likely to
be post-TR regulated.*®

Predominant post-TL control of several central metabolism
fluxes in E. coli has been reported using in vitro enzyme assays
when cells were shifted from low to high dilution rates in
chemostats.*> Our results are also in accord with an E. coli
study based on EcoCyc database®® information on gene expres-
sion regulation, which showed coupling of energy generating
reactions to enzymatic regulation, important for short-term
maintenance of energy homeostasis.?” Furthermore, prevalence
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Fig. 2 Covariance analysis of protein concentration and flux control levels. (A) Covariance analysis of control of protein concentrations for 50 randomly chosen genes.
Covariance values are calculated between each gene’s pm values and u. Red and blue colored bars indicate increasing and decreasing pm with rising g, respectively.
Colors of gene names: red denotes covariance value being statistically significantly different from zero, meaning post-TR control of protein concentration; blue denotes
covariance value being statistically significantly not different from zero, meaning TR control of protein concentration; black denotes genes with too large measurement
error for regulation determination. Data for all genes can be seen in Data S1 (ESIt). Error bars denote 95% confidence intervals of covariance values. Error bars have
been calculated using error propagation principles and individual errors of mRNA and protein concentrations. p-values represent the results of the statistical
hypothesis testing of covariance values being statistically significantly different or non-different from zero. Refer to Experimental for detailed description of covariance
calculation, error analysis and statistical significance testing. (B) Covariance analysis of flux control for 50 randomly chosen genes. Covariance values are calculated
between each gene’s k,pp, values and . Red colored bars indicate increasing kap, With rising . Colors of gene names: red denotes covariance value being statistically
significantly different from zero, meaning post-TL flux control; blue denotes covariance value being statistically significantly not different from zero, meaning TL flux
control; black denotes genes with too large measurement error for regulation determination. Data for all genes can be seen in Data S2 (ESIt). Refer to Fig. 2A legend

for description of error bars and statistical analysis.

of post-TL regulation in controlling central metabolism flux
throughput was also observed in L. lactis,*® and has been recently
concluded to be probably the primary flux controlling mechanism
based on numerous studies.'® As a substantial amount of quanti-
tative evidence for the importance of post-TL regulation in flux

2348 | Mol. BioSyst, 2013, 9, 2344-2358

control has now accumulated, it will be highly relevant in the
future to further dissect the specific post-TL regulation mechan-
isms in action when a considerable amount of information on
protein specific post-TL modifications and allosteric regulation by
reactant metabolites becomes available.'®**%

This journal is © The Royal Society of Chemistry 2013
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Apparent catalytic rates (k,p,) of central metabolism enzymes

E. coli had to increase its specific flux rates ~ 5-fold for achieving
faster growth in the studied range of u = 0.11-0.49 h™". Higher
flux throughput can be realized by increasing enzymatic capa-
cities either through increased protein abundances or catalytic
rates. Fluxes in E. coli were predominantly controlled through
post-TL regulation as presented above. Indeed, we detected a
median 3.7-fold increase of k.pp of 191 central metabolism and
biosynthetic enzymes (Fig. S5, ESI) compared to non-changing
median protein concentration with rising x confirming that
higher flux throughput for faster growth in E. coli is mainly
achieved through increased catalytic rates of enzymes. The same
principle for flux control also applies to the most important
pathways for aerobic growth of E. coli: the average protein
concentrations of glycolysis, the TCA cycle, the pentose phos-
phate pathway (PPP) and acetate synthesis were maintained
constant or even decreased with rising 1 and higher flux through-
put was clearly realized through increasing enzyme k,p,, (Fig. 3).
This further supports the conclusion of the relevance of post-TL
regulation in metabolic control as these are the pathways carrying
the highest flux and responsible for feeding precursor molecules
into energy generation and biosynthetic pathways. The rising kapp
values possibly contribute to the increased metabolic efficiency
for enabling E. coli to maintain a constant biomass yield under
increased carbon wasting with rising u.'* Our results are in line
with a similar recent report for L. lactis where 3.6-fold increase of
average k., for central metabolic and biosynthetic enzymes with
5-fold faster growth contributed to rising biomass yield.*

Molecular BioSystems

When comparing the actual values of k,p, among the most
important pathways, one can see that the average values for the
TCA cycle (49-156 s ' from u = 0.11 to 0.49 h™ ', respectively) are
higher than for glycolysis (34-110 s~ ') and PPP (4-88 s )
(Fig. 3) indicating that pathways with higher contribution of
ATP production to the total ATP pool also possess enzymes with
higher catalytic rates. Notably, these k,p,, values closely match
the range of k., values for central carbon metabolism enzymes
in E. coli measured in vitro.*® The same can be observed at the
COG functional class level as k.pp, values of energy metabolism
enzymes (C) were an order or two higher than those of biomass
monomer synthesis (E, F, H, I) (Fig. S6, ESIf). Similar higher
(~30-fold) catalytic rates for central compared to secondary
metabolism enzymes is seen when ~ 2000 k., values measured
in vitro for prokaryotes and eukaryotes were analyzed.® Hence,
cells maintain higher abundance of proteins required for
biomass synthesis (translational machinery, monomer precursor
synthesis) whereas enzymatic capacities for energy generating
proteins are more likely to be increased through post-TL regula-
tion. Interestingly, we also noted that the pathways carrying the
highest flux—glycolysis, TCA cycle and PPP—showed both
higher protein concentration and k,p, compared to biosynthetic
pathways (Fig. 4). This refers to an evolutionary push towards
proteins carrying high flux being more abundant and possessing
higher catalytic rates to reduce the cost of protein production, as
also proposed previously.> Overall, it seems that under strong
nutrient limitation at low i, metabolism of E. coli is on ‘standby’
mode: protein abundances are high and catalytic rates not
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Fig. 3 Flux control of the most important pathways for aerobic growth of E. coli. Each circle represents the average value of the pathway if not otherwise noted.
See Table S7 (ESIt) for the genes assigned to pathways according to the EcoCyc database.*® gDCW, gram of dry cell weight.
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Fig. 4 Protein concentration and their k,,, values for pathways carrying the
highest flux compared to biosynthetic pathways. See Table S7 (ESIt) for the genes
assigned to pathways according to the EcoCyc database.*®

saturated for biomass and energy generation so that cells could
quickly respond to changing environmental conditions by modify-
ing catalytic rates of proteins without wasting time for increasing
their levels. An analogy for this could be drawn from drag racing:
drivers ‘pump up’ the revolutions of the engines of the cars before
the start signal so they could instantly take off with full torque
once the light turns green. The same phenomenon is also demon-
strated by glucose-pulse experiments where cells are able to rapidly
increase y 3-fold after a substrate pulse,”>”" clearly pointing to the
ability to immediately increase catalytic rates if needed.

Our genome-wide quantitative data enable us to investigate
patterns of protein catalytic rates within many pathways. In
L. lactis, first enzymes in central pathways tend to have lower
abundances and, hence, higher k,p,, values,* also seen indir-
ectly in yeast.” This hints for possible allosteric control of
feedback regulation through the product of the pathway to
precisely control the flux.*® Our data are in accordance with the
latter and provide further pathway-specific observations. Both
initial enzymes of glycolysis and PPP, Pgi and Zwf, respectively,
possess higher k,p, values compared to subsequent enzymes
probably for enabling strict distribution of carbon flow between
these pathways for fast switching between the need for more
ATP (glycolysis) or NADPH (PPP). One would expect that a
biosynthesis pathway is activated when its product is needed
and flux is controlled by its first enzyme. However, a difference
among biosynthetic pathways was observed: longer pathways
(e.g. purine, aromatic amino acids, Arg, Lys) showed higher kp;
values for their first enzymes which was not seen for shorter
ones (e.g. Ser, Thr, Leu, His). It might be useful for the cell to
control flux through initial enzymes in longer pathways to realize
a fast response as opposed to a time-consuming situation where
all the enzyme levels are maintained low and increased uni-
formly once the pathway capacity has to be enhanced.

Ribosomal translation rate and regulation of transcription

An important parameter that cells have to adjust with adapta-
tion to changing environmental conditions is the protein
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synthesis rate. For example, faster growing cells are bigger
since they need more ‘catalytic units’ to process nutrients and
synthesize biomass faster. For this, a cell needs to increase its
translational capacity with rising ¢ for maintaining the neces-
sary concentrations of enzymes, the cellular ‘workhorses’. How
is this achieved? In our experiments, the median ribosomal
protein concentration in E. coli increased only 1.5-fold with five
times faster growth (Fig. S7A, ESIf) indicating the need for
higher translation rates (k... of ribosomes) to maintain suffi-
cient translational capacity. Indeed, calculating k,pp, for riboso-
mal proteins, which is a good estimate for the translation rate,
revealed 2.8-times (median; CV = 11% among 52 quantified
ribosomal proteins) faster ribosomal translation rates with
increasing p, clearly demonstrating higher translational capa-
city in faster growing cells (Fig. S7B, ESIT). This experimental
evidence is of particular importance since it confirms a pre-
viously postulated hypothesis that translational capacity is rate-
limiting for faster growth of E. coli.** Hence, our results show
that increasing the concentration of ribosomal proteins
(equivalent to ribosomes) is not sufficient for achieving faster
growth and, therefore, also translation rates and k,pp, values of
metabolic enzymes have to be raised. The observation of increased
translation rates in faster growing cells is in concordance with the
literature using indirectly calculated values.®**

Another crucial parameter for modifying concentrations of
both mRNAs and proteins is the transcription rate of RNA
polymerase (RNAP). The same principle as with the translation
rate applies here: faster growing cells need to increase their
transcriptional capacity which can be achieved through increasing
RNAP concentration and/or its synthesis rate. In the literature,
varying abundances from 2000 to 5000 RNAP molecules per
genome equivalent exist.”> Abundances of the RNAP subunit
proteins B and B’ determined in this study fall within this
range with per cell values of 2577 and 2230 at u = 0.11 h™'
and increasing to 6576 and 5559 at u = 0.49 h™', respectively
(Table S2, ESIf). As the sum of mRNA abundances increased
over 4-times with 5-fold faster growth (Fig. S2A, ESIT), it
becomes obvious that the ~2.5-fold rise in RNAP abundance
is not sufficient to meet the demands for faster RNA synthesis
with increasing pu. Indeed, calculation of the RNAP synthesis
rate (see Experimental) revealed that transcription speed in
E. coli is increased ~ 8-fold to enable five times faster growth
(1 =0.49 vs. 0.11 h™"). This implies a very extensive regulation
of RNAP, possibly through o-factors and the alarmone ppGpp
or other proteins.

Co-regulation of protein synthesis and metabolic pathways

Cells have to successfully couple substrate utilization, biomass
monomer synthesis, energy generation etc. to protein synthesis
in order to realize the doubling of cell mass during the cell
cycle. After looking separately at the regulation of enzymatic
capacities over pathways and approximate translation rate for
ribosomes, we next studied the co-regulation principles of
metabolic pathways and protein synthesis. Since we observed
that patterns in changes of k,pp, with rising u (Fig. 3; Fig. S7B,
ESIt), we applied correlation analysis of all genes’ relative kypp,
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curves (kypp at each p compared to reference y = 0.11 h™") to
understand which pathways work jointly and are coupled to
translation.

One can see clearly that enzymatic capacities of ribosomal
proteins are co-regulated with RNA precursor synthesis—pyrimidine
and purine—pathways (red to green squares in Fig. 5) since kqpp
of proteins in these pathways and for ribosomal proteins changed
similarly with increasing u. Interestingly, both latter pathways
contain genes whose k,p, values increased more than k,p, values
of ribosomal proteins (green). Also the majority of amino acid
synthesis pathway proteins were co-regulated with translation
(e.g lysine, threonine, cysteine) while proline and alanine synth-
esis pathways showed even faster increase of k,,, compared to
ribosomal proteins. These co-regulations are expected since RNA
and amino acid synthesis have to work coherently with transla-
tion for realizing faster synthesis of proteins and cell mass with
rising .

Also the enzymatic capacities in substrate utilization, bio-
synthetic and energy generation pathways carrying the highest
flux—glycolysis and the TCA cycle—are tightly coupled (red to
green) to protein synthesis (Fig. 5) i.e. change in the concentra-
tions of intermediates of these pathways is coordinated. An
interesting case is PPP which is also co-regulated with protein
synthesis since all its proteins’ k,p, values increase substan-
tially faster compared to ribosomes (green). Actually, PPP ki,
values increased more than for almost all other proteins (green
area of PPP in Data S3, ESIT). The details behind these observa-
tions can be related to NADPH metabolism and will be inves-
tigated in further studies.

Correlation analysis can also reveal the uniformity of protein
regulation within pathways. A good example for a very homo-
geneous pathway is PPP as all its k., values increased equally
(all green within the pathway in Fig. 5) with faster growth,
showing tightly controlled regulation over the whole pathway.
However, glycolysis seems to have three groups of enzymes with
different regulation principles: two groups of enzymes with
similar (red) or faster (green) increase of k,p, values compared
to ribosomal proteins and one for which k,p, showed no change
at all. This confirms that control of glycolysis is realized
through different levels and distributed over several parts to
successfully balance the needs for substrate uptake, biomass
monomer synthesis and energy generation, as generally
believed. Another example of divergent protein regulation
within a pathway is that of purine synthesis which possesses
two large groups (red and green) and two small sets of genes.
Currently, we have no possible explanation for the presence of
these groups. This will be analyzed further in detail since it
might be an important observation as the need for NADPH
through purine synthesis pathways increases with rising u'*
and hence, the question arises: why does the PPP pathway
facilitate unequal regulation?

Efficiency of energy production pathways (Esrp)

Increasing transcription and translation rates with rising k,pp
of metabolic enzymes at faster growth contribute to the
increase of metabolic efficiency (see above). To gain further
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insights into regulation of energy metabolism, we calculated
the efficiency of energy production pathways (Exrp)—ATP pro-
duced in the pathway per ATP spent for synthesis of the path-
way proteins (molecules-ATP/molecules-ATP)—for the main
ATP yielding pathways under aerobic growth of E. coli: glyco-
lysis, acetate synthesis and the TCA cycle coupled to the
respiratory chain (RC) (Table 1). We believe that the cost of
protein synthesis of the ATP producing pathways might be a
relevant factor in optimization of the overall strategies of
energy production since >45% of total ATP for cell proliferation
is used for protein synthesis.> The most efficient energy
generating pathway over the studied range of u is the TCA
cycle + RC, for which Earp varies between 105-152 molecules-
ATP/molecules-ATP and is ~5- to 7-fold higher compared to
glycolysis (Table 1). In addition to these pathways, E. coli starts
to generate additional ATP through acetate excretion after
disruption of the PTA-ACS cycle at = 0.27 h™"."* Interestingly,
carbon wasting into acetate seems to be beneficial for E. coli
since Exrp from acetate synthesis exceeds glycolysis at p =
0.4 h™" and even surpasses TCA cycle + RC near fiyay (141 vs.
132 molecules-ATP/molecules-ATP). The abrupt increase in
Exrp Of acetate synthesis between u = 0.4 and 0.48 h™' is
possibly coupled to the similar fast increase of the pathway’s
average kpp (Fig. 3). This observation provides a new angle for
the potential rationale of acetate excretion for ATP genera-
tion®®” at the level of the whole cell and is a good example
of how new biological knowledge can emerge from integration
of genome-wide multi-level quantitative data.

Analysis of COG functional classes, pathways, individual genes
and pm characteristics

We further analyzed our omics data in more detail by grouping
all the quantified mRNAs, proteins and synthesis costs for each
protein (nATP, see Experimental) into COG functional classes.*®
Although, translational machinery proteins (J) were by far the
most abundant COG group (23-36% of total proteome; p <
0.0001), synthesis cost of group J proteins was exceeded at all u
by the cost of proteins related to energy generation (C), carbo-
hydrate (G) and amino acid (E) metabolism (Fig. S8, ESLT p <
0.0011). This is expected since increased substrate utilization,
amino acid synthesis and energy generation are needed for
faster growth. The distribution of mRNA abundances was
similar to proteins.

Turning attention to pathways, proteins of glycolysis, the
TCA cycle, GS and purine synthesis accounted for both the
highest concentration (~19%) and synthesis cost (~27%) of
the total proteome (Fig. S9, ESIf). In agreement with flux
measurements®'*'" and rising demands for energy generation
and nucleotide synthesis for faster growth, protein expression
in GS, gluconeogenesis and the TCA cycle, purine synthesis was
down- and up-regulated, respectively, with rising p.

Ribosomes, mainly composed of ribosomal proteins and
rRNA, are one of the most important molecules enabling the
cells to grow bigger and faster. It has been stated that ribo-
somal protein levels are insensitive to growth rate.>® However,
our data demonstrate 3.4-fold higher median ribosomal protein
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abundances (7164 vs. 24509 molecules per cell) in faster
growing cells while accounting for 9-16% of the total protein
mass which is close to the estimated value of 21% previously
reported for faster growing log-phase E. coli cells.®

We applied covariance analysis also to calculate and com-
pare nATP of different proteins for E. coli to achieve faster
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growth (Fig. 6). The most costly protein for E. coli by far with
increasing u was MetE, probably expressed to counteract the
detrimental accumulation of homocysteine®® due to increasing
acid stress after acetate overflow switch.'> MetE was followed
mainly by ribosomal and amino acid metabolism-related pro-
teins. On the other hand, E. coli ‘saved’ the most energy by
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Table 1 Efficiency of energy production pathways (Eare) for the main ATP
generating pathways under aerobic growth of E. coli

Pathway u=0.11h™' ©=020h""' 1=030h"" yu=040h"" yu=049h"

Glycolysis 22.6 21.2 20.3 18.8 19.7
TCA 151.1 116.9 105.5 105.5 132
cycle + RC

Acetate ND ND 7.3 41.9 141.2
synthesis

Earp is calculated as ATP produced in the pathway per ATP spent for
synthesis of the pathway proteins (molecules-ATP/molecules-ATP). ATP
produced in the pathway was calculated based on all the ATP producing
and consuming fluxes in the respective pathway previously determined
by metabolic flux analysis."" ATP spent for synthesis of the pathway
proteins was calculated by summing all the quantified protein concen-
trations in the pathway, assuming an average protein length of 300
amino acids and 4.306 ATP for the cost of polymerization of one amino
acid by the ribosome.* See Table S7 (ESI) for the genes assigned to
pathways according to the EcoCyc database.’® RC, respiratory chain.
ND, not determined since the calculation would be inaccurate due to
lack of exact data for both Pta-AckA and Acs fluxes in the PTA-ACS cycle
before the start of overflow metabolism of acetate at u = 0.27 h™*,**
while functioning only as an intracellular futile cycle.

Covariance

Fig. 6 Covariance analysis of protein synthesis cost (nATP) for the 20 most and
least expensive proteins for £. coli to achieve faster growth. Covariance values are
calculated between each protein’s nATP values and p. Red and blue colored bars
indicate increasing and decreasing nATP, respectively, with rising . Change of
nATP is statistically significant for all shown proteins since their covariance values
are different from zero. Refer to Fig. 2A legend for description of error bars and
statistical analysis.

repression of GS enzymes AceA and AceB, acetate scavenging
Acs and enzymes involved in utilization of alternative sub-
strates, and several stress response proteins. This is in line
with the activation of carbon catabolite repression mediated
decrease of flux through GS and disruption of acetate cycling
with increasing u.*'®'® Data for all genes are provided in
Table S2 (ESIf).

Non-constant transcription rate and variable patterns of pm
shown above can be influenced by half-life of proteins.**
Stability of proteins is affected by particular amino acids
present at the N-terminal end of proteins, known as the
N-end rule. This has also been reported for E. coli with the
destabilizing amino acids being Arg, Lys, Leu, Phe, Tyr and
Trp.>® Our analysis of whole protein sequences throughout the
range of u confirms the latter as Arg, Leu, Trp and Glu showed
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statistically significant enrichment (p < 0.05) in proteins both
with the lowest pm ratios and concentration (Fig. S10, ESI}),
demonstrating the influence of protein degradation on pm
levels.

As cells have evolved in energy-limited conditions, the
amino acid composition of the proteome should be biased
towards containing more amino acids with lower synthesis
costs. Indeed, highly expressed proteins in E. coli and B. subtilis
contain more ‘cheap’ (Glu, Asp, Gly) and less ‘costly’ (Trp, Phe,
His, Cys, Leu) amino acids.®® Our proteome-wide data show the
same as the most and least abundant proteins contained more
‘cheap’ and more ‘costly’ amino acids, respectively (Fig. S11,
ESIT). This bias is also seen in the amino acid distribution of
E. coli biomass which includes more ‘cheap’ amino acids.""

Codon bias (i.e. non-random occurrence of codons for
coding amino acids) is believed to be the main mechanism
for the cell to maximize translation efficiency®' and lately
genome-wide correlation between codon adaptation index
(CAI),°> a common estimate for codon bias, and protein expres-
sion levels has been presented for E. coli.*”**"®” However,
experiments using synthetic genes show that neither local nor
global codon bias have significant effects on mRNA or protein
levels,®® although these results have later been objected.®® Our
results are in accord with the previous genome-wide studies
as CAI values correlated with protein concentration and pm
(Fig. S12, ESIT), and interestingly increased slightly with rising
w alluding to possible growing pressure for higher translation
efficiency for achieving faster growth.

Analysis of mRNA and protein dynamics organized in
transcription units and protein complexes

As both transcriptome and proteome data were quantified, we
analyzed expression levels of mRNAs and proteins organized in
transcription units (TUs) and protein complexes.”® Firstly, we
looked if mRNAs and proteins associated with TUs have less
variance within their abundances compared to the whole data
set at all 4. CV among all quantified mRNAs and proteins was
around 4- and 3-fold higher than the CV within TUs, respec-
tively (Fig. S13, ESIT) like in Leptospira interrogans.”® Protein
concentrations within protein complexes are similarly 3-fold
less noisy compared to the whole proteome (Fig. S14, ESIT), also
seen in yeast.”' The same phenomena for both cases can also
be seen when comparing the differences in expression change
(Fig. S13 and S14, ESIY).

Next, we asked if mRNA and protein abundances associated
with E. coli TUs show a similar kind of ‘staircase-behavior’ of
higher transcript expression at the 5’ end of operons seen in
half of the 139 polycistronic operons in M. pneumoniae’” and
globally in Streptomyces coelicolor.”* At the protein level, staircase-
like expression exists only for ~5% of L. interrogans operons.”
We detected staircase-like expression for 28 and 51% of poly-
cistronic TUs on average over the studied range of y at mRNA and
protein levels, respectively (Fig. S15, ESIT). Dividing TUs accord-
ing to their staircase-behavior type (see Experimental, and
Fig. S16, ESIT) showed close proportions between groups ‘down’,
‘up’ and ‘others’ (Fig. S15, ESIT) whereas no ‘up’-like expression
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was specifically detected for M. pneumoniae operons.”” Interest-
ingly, E. coli does not seem to compensate the observed ‘operon
polarity’ of transcripts on the protein level (Fig. S17, ESIT) as
seen in M. pneumoniae.*® These results further demonstrate the
additional regulatory flexibility of transcription in bacteria
similar to eukaryotes. Further evidence for these gene expres-
sion regulation mechanisms being conserved in bacteria came
from the observation that mRNA and protein concentrations
correlated better in longer TUs and for genes located at the 5’
end (Fig. S18, ESI{), similar to M. pneumoniae.*®

Experimental

Bacterial strain, growth medium and continuous cultivation
conditions

E. coli K-12 MG1655 (A- F- rph-1Fnr+; Deutsche Sammlung von
Mikroorganismen und Zellkulturen (DSMZ), DSM No.18039)
strain was grown on a defined minimal medium® with 4.5 g L™"
o-(p)-glucose. Three independent A-stat> continuous cultivation
experiments were performed under the following conditions:
temperature 37 °C, pH 7, agitation speed of 800 rpm, and aerobic
conditions (air flow rate 150 ml min~"). The A-stat algorithm used
was: D = Dy + ap X t, where D, is the initial dilution rate of
chemostat (0.1 h™"), ap, is the acceleration rate in the A-stat phase
(0.01 h™2), and ¢ is the time from the start of acceleration (k). A
detailed description of cultivation conditions and growth char-
acteristics in these experiments has been reported previously."®

Experimental data

Specific flux rates (mmol gDCW ' h™") determined by meta-
bolomics and metabolic flux analysis in the same cultivation
experiments were taken from Valgepea et al.'’ All flux values
used in calculations except fluxes directly depending on bio-
mass monomer composition are average of three A-stats.
Genome-wide transcriptome analysis at x4 = 0.11; 0.21; 0.31;
0.40; 0.48 h™"' was performed previously using Agilent DNA
microarrays (GEO reference series: GSE23920) for around 4300
mRNAs." Transcriptome analysis was conducted in one A-stat
with six technical replicates for reference sample at p =
0.11 h™". Oligo spot intensities of the Agilent platform can be
used as a proxy for mRNA abundances, since spot intensities
and mRNA abundances correlate perfectly (R* = 1.00; see Fig. 6
in Agilent Application Note 5989-9159EN). Therefore, for each
microarray, average spot intensities of three different mRNA
oligos were summed excluding ribosomal and transport RNA
oligos corresponding to the total amount of mRNA. To convert
this value from the spot intensity unit into g total mRNA per g
of dry cell weight (DCW), total RNA % in DCW was determined
(Table S1, ESIf) since it is difficult to accurately determine
mRNA % in DCW. Recently, mRNA % from total RNA was
shown to be 4.9% in late-exponential E. coli BW25113 cells’*
and constant in exponential, stationary phase and heat shock-
treated E. coli K-12 MG1655 cells using RNA-seq in both cases.”®
In addition, we have measured a 5% yield of cDNA synthesis
with poly-A primers from total RNA in S. cerevisiae continuous
cultures at various u. Therefore, we assumed the best estimate
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for mRNA content in total RNA to be 5% under the studied
range of u. mRNA molecule numbers in gDCW were calculated
by the fraction of each mRNA’s spot intensity from the summed
spot intensities (described above) corresponding to the esti-
mated total amount of mRNA in gDCW taking into account the
molecular weight of each mRNA. Finally, mRNA abundances
(molecules per cell) were calculated from the previous values
using biomass concentration and cell counts in the culture
broth. Biomass concentration expressed as gDCW L' was
determined gravimetrically as described by Nahku et al.® Cell
counts were measured by incubating five replicate LB-agar
plates at 37 °C for ~11-12 h and expressed as CFU ml ",
equivalent to cell ml™'. Data can be seen in Table S1 (ESIT).
Only mRNAs which spot intensities had a signal-to-noise ratio
higher than three (spot intensity > 100) were used in covariance
and staircase-behavior type analyses to exclude genes with high
fold changes between different u caused by very low spot
intensities.

Absolute proteome quantification was performed for 1185
proteins at u = 0.11 h™' in two A-stats using the iBAQ
approach®® and published in Arike et al.>® Protein abundances
(molecules per cell) for u = 0.20; 0.30; 0.40; 0.49 h™' were
calculated based on relative protein expression data published
previously in Valgepea et al.'® covering a u range of 0.11-0.49 h ™!
taking into account p-dependent cell counts and total protein %
in DCW (Table $1, ESIT) measured by the Lowry method.”® All
protein abundances and concentrations used in calculations are
mean of two independent A-stats.

mRNA and protein abundances (molecules per cell) were
converted into intracellular concentrations (molecules per fL of
biomass) using cell volume at all u estimated from biomass
concentration and cell counts (Table S1, ESIf) as follows:

fL

_ abundance molecules o 1
—and cell cell volume (fL)

Calculations

. . molecules
intracellular concentration | ———

®

Protein-per-mRNA (pm) ratios were calculated for all genes with
quantified mRNA and protein concentrations as follows:
__ protein,

Pm = RNA, @)

where protein; and mRNA; are individual mRNA and protein
concentrations (molecules per fL), respectively.

Apparent catalytic rates (Kapp, s™') were calculated for 191
metabolic enzymes associated with catalyzing the fluxes calcu-
lated previously by metabolic flux analysis** and 52 ribosomal
proteins assuming each protein chain being catalytically active.
Proteins were assigned to fluxes according to the EcoCyc
database.*® The sum of all amino acid synthesis fluxes was
used as the flux catalyzed by ribosomal proteins. k,p, values
were calculated as follows:

Na x 0.3

specific flux rate;
P T3, ()

protein;

kupp, =
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where specific flux rate; (mol gDCW ' s ') is the flux catalyzed
by protein; (molecules per fL of biomass), N, is the Avogadro
number (~6.02 x 10>%), 0.3 is the fraction of dry cell mass in
one gram of biomass and 10" is the conversion factor from fL
to g assuming a buoyant density of 1 g ml~" for an E. coli cell.

RNAP synthesis rate (nucleotides per RNAP molecules per s)
at each p was calculated as follows:

0.3

total mRNA length x N
ST,

RNAP

RNAP synthesis rate =

where total mRNA length (nucleotides per gDCW) is the sum of
all quantified and hence transcribed mRNA lengths, u (s7') is
specific growth rate, RNAP (molecules per fL of biomass) is the
average concentration of the two RNAP [ subunit proteins RpoB
and RpoC, 0.3 is the fraction of dry cell mass in one gram of
biomass and 10> is the conversion factor from fL to g assum-
ing a buoyant density of 1 g ml~* for an E. coli cell.

Covariance analysis

1. Covariance. We applied covariance as a measure of how
gene expression levels (MRNA and protein concentrations)
change with rising u since covariance describes both the
direction and magnitude of the changes, making it a more
suitable statistic in this work since absolute quantitative data
were acquired. Firstly, we used covariance to estimate mRNA
and protein expression burden with increasing u for E. coli.
Secondly, covariance was used to calculate protein synthesis
costs (nATP) over the whole range of . Lastly, covariance
analysis was applied to determine the regulation levels of gene
expression using mRNA, protein and specific flux rates (e.g. TR,
post-TR, TL, post-TL) as described below.

Covariance (COV) was calculated according to the formula:

l n B B
COV =3 (v = D) - 7) )
i=1
for mRNA expression burden as:
I ¢ — _
COVpnrna = F; (mRNA; - mRNA) (g, =) (6)

for protein expression burden as:

1 - I
COVprotein = ~— > _ (prot; = proD)(w, = 1) (7)
i=1
for nATP as:
1 2 _ _
COVanrp =-—— Z (nATP; — nATP) (y; — ) (8)

i=1

for gene expression regulation analysis at protein and mRNA
level (pm) as:

1 n B

COVp = —— ; (prot, JmRNA; — prot/mRNA) (4 — )

©
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for gene expression regulation analysis at specific flux rate and
protein level (kypp) as:

1 & _
COVy,,, = le (spec flux; /prot; — spec ﬂux/prot) (uj — 1),
=1

(10)

where mRNA, prot and spec flux represent mRNA and protein
concentrations, and specific flux rates measured at their respec-
tive u. See below for nATP calculation.

2. Uncertainty of covariance. Covariance analysis requires
uncertainty values of covariance for the statistical hypothesis
testing of covariance values being statistically different from
zero or being statistically zero. Uncertainty of covariance was
calculated according to the covariance formula shown above.

The relative uncertainty of covariance can be found by:

- g(“‘j+ZQﬁb>

S EER6)6)

where u is the absolute uncertainty.
As mean values of x and y are calculated according to
formulas:

Ucov
COV

(1)

1 n
T=-) x 12
AP BE (12)
and
l n
-3y, 13
, ;y (13)
then the uncertainty of mean value can be found by:
U= n u 2
== = 14
5 G) s
and
uy uy,
2= i 15
) 6

Therefore, the relative uncertainty of covariance is equal to:
n 2 n 2
u u,

The uncertainty of u is considered to be zero since all the
compared data (mRNA and protein concentration, specific flux
rate) were acquired at the same p. Therefore, the member with y
in the second half of the equation becomes zero.

As pm and kyp,, are ratios between protein and mRNA, and
specific flux and protein, the uncertainty of pm or k,p;, is made
of uncertainty estimations of the members of the particular
ratio. Uncertainty of mRNA concentrations was expressed

Ucov _
Cov

(16)
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through 95% CI calculated for each mRNA based on six
technical replicates at p = 0.11 h™'. Uncertainty of protein
concentrations was expressed through average absolute devia-
tion calculated for each protein based on proteome quantifica-
tion in two independent cultivation experiments. As the
uncertainty of the specific flux rate was not available for all
the genes (biomass monomer composition was not determined
in all independent A-stat experiments) it was not taken into
account in the uncertainty value of kpp, as otherwise it would
have given unequal statistical preference to the genes in which
uncertainty of the specific flux rate was not estimated.

Therefore, uncertainty estimations of pm and k,p, were the
following:

UCOV - ( X mlr> YmRNA,
— =2 2 +2 17
Covpm ; Xprot,i Z XmRNA,i ( )
ucovkdpp _ i <”xpro|., )2 (18)
COVy App =1 \Xproti
nATP was calculated according to the formula:
XnaTP = Xprot X (anA - 1) % 4.306, (19)

where X, is the protein concentration measured at the
respective (i, X,aa is the number of amino acids in the protein
and 4.306 represents the cost of polymerization of one amino
acid into the growing peptide chain by the ribosome in ATP.”*
As the length of the protein is considered a constant value, the
uncertainty of nATP (x,arp) is equal to relative uncertainty of
protein expression:

Ux,atp _ Unpror (20)

XnATP Xprot

Uncertainty of nATP covariance is the following:

UCOV ptp

n 2 2

”xnm.,> < xpm\,>
s 123 - 2§ 21
COV,a1p -1 <X71ATPJ' —1 Xprot,i ( )

3. Test of significance. Calculated covariance values were
subjected to statistical hypothesis testing. Firstly, the hypoth-
esis that absolute values of covariance are different from zero at
a statistically significant level was tested. One sided Z-test was
applied to compare absolute values of covariance to zero.
Uncertainty estimation calculated as described above was used
as a nuisance parameter. Genes with significance levels below
0.05 were considered as possibly statistically significant from
zero and subjected to false discovery rate (FDR) filtering at level
0.05 according to the Benjamini-Hochberg method.””
Genes with significance levels below the threshold value of
FDR filtering were considered statistically significantly differ-
ent from zero. The rest of the covariance values do not differ
significantly from zero. This group of genes is made of genes
either whose covariance value is zero, or have very high uncer-
tainty values. To determine which covariance values are actually

o =
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equal to zero, additional hypothesis testing was applied. Firstly,
it was expected that in most of the cases when a covariance
value does not differ from zero at a statistically significant level,
it is because of the fact that the covariance value is actually zero
and not because the uncertainty value of covariance is very
high. Probability density of absolute values of covariance is
expected to follow one sided normal distribution. Covariance
values below 95% CI of this distribution are considered zeros.
The Z-test was applied to test the hypothesis that absolute
values of covariance are below the confidence interval. Results
of the Z-test were again subjected to FDR filtering. The covar-
iance value was considered to be zero if the value was below the
threshold limit of FDR filtering.

Eventually genes were divided into three groups. One group
corresponded to genes with a covariance value statistically
higher than zero. In gene expression regulation analysis, these
genes’ expression regulation level is referred to as post-tran-
scriptional or translational for protein and mRNA, and post-
translational for specific flux rate and protein regulation levels.
The second group corresponded to genes with a covariance
value equal to zero at the statistically significant level. Again in
gene expression regulation analysis, these genes’ expression
regulation level is referred to as transcriptional for protein and
mRNA, and translational for specific flux rates and protein
regulation levels. The rest of the genes were described by such a
high uncertainty level of covariance that it was impossible to
determine their nature towards zero. Identical hypothesis test-

ing was applied to covariance values of pm and kqpp.

Analysis of staircase-behavior type gene expression in TUs

Analysis of staircase-behavior type gene expression in TUs was
analyzed only for polycistronic TUs. All quantified mRNAs and
proteins were divided into TUs according to the EcoCyc data-
base®® using a script developed in-house. TU mRNA and protein
expression levels were divided into ‘“no staircase’” and staircase-
like expression behavior types “up”, “down” and “others” (see
Fig. S16, ESIf for a visual description). A TU was classified as
“no staircase” if at least half of its consecutive genes did not
show statistically significant expression difference at signifi-
cance level p < 0.05 in a Z-test. Uncertainties of mRNA and
protein concentrations used in the Z-test as nuisance para-
meters are described in the Covariance analysis section above.
All the remaining TUs were considered to show a staircase-like
expression. Staircase-behavior type was classified as “up” or
“down” if at least half of its consecutive genes were differen-
tially expressed at higher or lower levels, respectively, in the
mRNA emerging direction in transcription (5 — 3’). The
remaining TUs were classified as showing an “others” staircase-
behavior type.

Conclusion

This first u-dependent absolute quantitative E. coli multi-omics
data set generated new knowledge about genome-wide regula-
tion levels of gene expression for protein and flux control, their
mRNA and protein synthesis burden, and various other molecular,

This journal is © The Royal Society of Chemistry 2013
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energetic and metabolic aspects of the gene expression cascade.
More importantly, we showed that cells achieve faster growth
predominantly by increasing catalytic and translation rates of
proteins which supports the recent conclusion that transcriptional
control in metabolism might not be as dominant as once
thought."®***% These observations together with the observed
increase in efficiency of energy generation most probably contri-
bute to the ability of E. coli to maintain constant biomass yield
under increased carbon wasting with rising u through increased
metabolic efficiency.'* We believe that these findings together with
our multi-level quantitative data set determined in defined phy-
siological states of E. coli can advance modeling approaches (e.g.
addition of non-constant transcription and translation rates into
growth-rate coupled models such as those presented in Scott
et al*® and Lerman et al.*?) and add valuable information to the
much needed better description and understanding of growth rate
regulation through coordinated operational processes at the whole
cell level'® and quantitative understanding of biological systems
overall." Conclusively, the observations reported in this study
could also lead to more efficient metabolic engineering of indus-
trial strains since new knowledge regarding protein and flux
control levels was presented.
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