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Abstract 

Main subject of this thesis is higher level software architecture of TUT nanosatellite’s attitude 

determination and control system. Secondary subject is to develop a software application 

programming interface for further development of software and simulation environment of this 

system. 

The architecture is developed based on attitude determination and control system’s hardware 

design, gathered software requirements and experience from previous student nanosatellite 

missions. Software is written in C, based on hardware design of development board being used 

This thesis is written in English and is 38 pages long, including 5 chapters and 9 figures. 
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Annotatsioon 
TTÜ NANOSATELLIIDI ASENDIKONTROLLISÜSTEEMI 

TARKVARA ARHITEKTUUR JA ARENDUSVAHENDITE API 

Selle töö peamine eesmärk on välja töötada tarkvara arhitektuur TTÜ nanosatelliidi 

asendikontrollsüsteemi jaoks. Teisejärguline eesmärk on välja töötada rakendusliides edasiseks 

arendustegevuseks. 

Tarkvara arhitektuur luuakse selle süsteemi riistvara disaini, kogutud nõuetele tarkvarale ja 

eelmiste tudengisatelliidi missioonide põhjal. Tarkvara arendatakse programmerimiskeeles C, 

kasutusel oleva arendusplaadi riistvarast lähtudes. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 38 leheküljel, 5 peatükki ja 9 joonist. 
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List of abbreviations and terms 

 

ADCS Attitude determination control system 

API Application programming interface 

BOM Beginning of message 

DPS Degrees per second 

ECEF Earth-centered, Earth-fixed reference frame 

ECI Earth centered inertial reference frame 

EOM End of message 

GS Ground station 

IGRF International geomagnetic reference frame 

NORAD North American Aerospace Defense Command 

OBC On-board computer 

OS Operating system 

PC Personal computer 

PCB Printed circuit board 

RXNE Receive register not empty 

SBRF Satellite body reference frame 

TLE Two line element set 

TUT Tallinn University of Technology 

TXE Transfer register empty 

UART Universal asynchronous receiver/transmitter 

USART Universal synchronous asynchronous receiver/transmitter 
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1 Introduction 

1.1 About TUT nanosatellite project 

1.1.1 Project 

Goal of TUT nanosatellite project is to provide students with theoretical and practical 

experiences of building a satellite. [1] 

Scientific/technological goal of this project is to test line-scan camera on a nanosatellite. Line-

scan camera has not yet been installed on a nanosatellite. 

1.1.2 CubeSat standard 

TUT satellite will be built according to CubeSat standard. Main characteristics of a CubeSat 

are that it’s cube-shaped, with 10 cm sides and its weight is below 1.33 kg. This standard was 

developed in 1999 by California Polytechnic University and Stanford University with purpose 

to provide access to space for small objects [2]. Those satellites are launched as secondary 

payloads on launch vehicles or put in orbit by deployers on the International Space Station. 

TUT satellite will be launched as a secondary payload on a larger satellite. 

1.1.3 Subsystems 

There will be following subsystems on board TUT satellite: 

Mechanical structures - tasked with structural integrity of the satellite and deployment of solar 

panels. 

Communications system - tasked with communication between satellite and ground station 

(GS). 

Power system - tasked with power generation, power distribution between subsystems, battery 

charging and emergency communications. 

On-board computer (OBC) - tasked with primary computing tasks and control of the satellite.  
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Attitude determination and control system (ADCS) - tasked with determining and 

controlling satellite’s attitude (orientation) in space. 

Optical payload - tasked with capturing images using line-scan camera. 

 

1.2 Goals of this work 

Primary goal of this thesis is to develop architecture and high-level application programming 

interface (API) for TUT nanosatellite’s ADCS. In order to achieve this, it is necessary to 

understand the working principles of each component of ADCS, to figure out what is the input 

and output value of each software component, what the sequence execution is and which 

components can work concurrently. 

Secondary goal is to develop application programming interface (API) for connecting 

simulation tools with ADCS development board (PCB). Code for this API is written in C. 

 

1.3 ADCS 

1.3.1 Task  

ADCS, which stands for attitude determination and control system, is a satellite’s subsystem 

tasked with determining and controlling satellite’s attitude (orientation) in space. This system 

usually has its own processor, sensors and actuators independent of the rest of the satellite’s 

subsystems. There are various different methods being used for both determining and 

controlling satellite’s attitude, most common of which are listed below. 

1.3.2 Sensors 

Various different sensors can be used to determine satellite’s attitude, more common methods 

include: 

Sun sensors - Sun sensors can tell, by intensity of light falling on photo sensors, the direction 

of Sun in satellite’s body reference frame (SBRF). By comparing sensor result with an on-board 

Solar system model, satellite’s attitude can be determined. There should be a sun sensor on each 
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side of the satellite to ensure that Sun’s direction can be tracked from all directions. Sun sensors 

are reliable, accurate, simple and lightweight, but they cannot be used during eclipse [3]. 

Gyroscopes - gyroscope is a spinning wheel, which retains the orientation of their spinning 

axis due to conservation of angular momentum. Modern gyroscopes are lightweight and 

measure angular velocity and acceleration accurately, but due to axial precession and fact that 

gyroscope doesn’t keep its orientation when it’s not spinning, gyroscopes alone cannot be used 

to determine satellite’s attitude. 

Magnetometers - magnetometers measure magnetic field and its strength in 3 dimensions. 

Comparing magnetic field reading to an on-board Earth’s magnetic field model can be used to 

determine satellite’s attitude. Magnetometers are simple lightweight devices that provide 

relatively good accuracy with respect to their mass and size [3]. 

Star trackers - star tracker is a camera mounted on board the satellite that takes pictures of 

stars and compares it to an on-board model of night sky to determine attitude. Because stars are 

very small and their position in sky changes very little, star trackers are very accurate devices 

for determining attitude. They are, however, expensive and bulky, because a baffle is needed to 

block stray light from Sun, Earth and Moon. Furthermore, star trackers need relatively large 

computational power and they need the satellite to be still, which means star tracker is usually 

not a very good option for nanosatellites. 

Horizon sensors - horizon sensors work the same way as Sun sensors, but they have a much 

narrower field of view, thus they can only tell if Earth is visible or not. Horizon sensors can, at 

the right angle, detect Earth’s horizon and thus two angles of attitude can be determined. 

 

1.3.3 Actuators 

ADCS can use following devices to control attitude: 

Thrusters - thrusters use propellant to induce force on satellite’s body. Thrusters are, compared 

to other methods, fast and effective, but heavy and take up significant amounts of space in 

satellite’s body. Because the amount of propellant that can be taken on board is limited, 

thrusters can only be used for certain amount of time. Having propellant on board also causes 
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thermal and configurations problems [3]. Because of this, thruster systems are usually not a 

favored option aboard nanosatellites. 

Gravity booms - gravity boom is a passive method that uses only satellite body’s mass 

distribution and Earth’s gravitational field to control attitude. Because Earth’s gravity decreases 

with height, a tidal force can be generated by extending a weight perpendicular to the orbit. The 

advantages of this system are low energy consumption and no propellant needed, but it is slow 

and adds considerable weight to satellite. 

Inertial wheels - idea of inertial wheels is to accelerate a body inside the satellite to create an 

opposite force to satellite’s body. This system is fast and relatively accurate and doesn’t need 

propellants, but is heavy, takes up considerable space inside satellite’s body and having moving 

parts on board may cause reliability issues. 

Magnetorquers - magnetorquer method uses magnetic coils, which generate a magnetic field. 

This magnetic field’s interaction with Earth’s magnetic field generates torque on satellite’s 

body. Magnetorquers are very reliable because they contain no moving parts, relatively 

lightweight and need no propellant. Magnetic coils are a very popular means of controlling 

attitude of nanosatellites, many student satellite missions like SwissCube [3], EstCube [4] and 

AAUSAT [5]  have used magnetorquers as actuators for their ADCS system.   



14 

 

 

2 Design of ADCS 

2.1 Hardware design 

TUT nanosatellite will be using magnetorquers method for attitude control. For attitude 

determination the ADCS will use a combination of Sun sensors, magnetometers and 

gyroscopes. 

Because losing either magnetometer or gyroscope would result in a mission failure, both of 

these sensors are duplicated for redundancy purposes. Magnetorquers are controlled by using 

digital-analog converters on board the system. For communication between subsystems, the 

satellite will have an RS485 bus. TUT satellite’s ADCS will use STM32F MCU, which is based 

on ARM Cortex M4 architecture [6]. 

ADCS’s hardware schematic is shown in Figure 1. 

 

Figure 1. ADCS hardware schematic [16] 
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2.2 Software design 

 

2.2.1 Overview 

 The end goal of ADCS’s software is to calculate currents for magnetorquers. This is done 

according to satellite’s current attitude, satellite’s desired attitude and Earth’s magnetic field’s 

state. Before currents can be calculated, attitude needs to be determined. To determine attitude, 

satellite’s location in Earth-centered, Earth-fixed inertial reference frame (ECEF) is required. 

ECEF is a Cartesian coordinate system where point [0, 0, 0] is defined as Earth’s center of mass, 

hence Earth-centered, and its axes are aligned with International Reference Pole and 

International Reference meridian, hence Earth-fixed [7]. Satellite’s position can be calculated 

from time and a model of the orbit, which, by popular convention, is represented in a two line 

element (TLE). TLE along with current time will be uploaded from GS via radio channel. When 

satellite’s location is determined, attitude can be calculated by using sensor data. Attitude 

determination is done by measuring magnetometer and Sun sensors and comparing those read 

results with on-board models of Earth’s magnetic field and Sun’s direction. Once attitude has 

been determined, it can be controlled by applying currents to magnetorquers which will 

generate torque on satellite’s body by interacting with Earth’s magnetic field. 

 Scheme for controlling attitude is shown in Figure 2. This schematic, drawn based on known 

components and requirements for this system, forms the basis for work. Rectangular shapes 

represent software components, circular shapes represent hardware components. 
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2.2.2 Requirements for attitude control software 

Based on literature and project’s work group meetings, following requirements for software of 

TUT satellite’s ADCS have been gathered author: 

Figure 2. Attitude control model. Author’s drawing. 
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1. Because the magnetic field generated by coils interferes with magnetometer reading, 

applying torque and reading from magnetometer cannot be done at the same time, 

therefore attitude control has to be done in a cycle 

2. Torque cycle should be reasonably short, (EstCube-1’s attitude control cycle was 3 Hz [4], 

a similar frequency will be estimated for TUT nanosatellite in this work), because if it 

takes too long time to calculate the currents, satellite might make a full turn and in this 

case using magnetorquers to control attitude would be impossible 

3. To fulfil all tasks required from ADCS, the system has to work in several different 

working modes, which will be specified later in this work. 

4. The system has to be able to communicate with other subsystems at all times, regardless 

of working mode or current stage in working cycle. 

5. Because latch-ups and bit-flips may occur in space due to radiation [8], the system has to 

be capable of tolerating hard resets in any given time, and the system has to be able to 

recover from a hard reset. 

6. Attitude should be determined and controlled with accuracy of at least 2 degrees [9], 

required to accomplish the satellite’s main goal, which is taking pictures of Earth. 

2.2.3 Working modes 

Due to mission requirements and hardware design, several different working modes are 

required: 

1) Detumbling/stabilizing – when the satellite is lauched, it will probably be spinning 

uncontrollably, so the first thing that needs to be done after lauch is to stabilize the 

satellite to make it possible to communicate with ground station. 

2) Charging – because TUT nanosatellite will be using deployable solar panels, for 

maxiumum charging efficiency these panels should be pointed towards the Sun 

3) Taking picture – satellite’s camera needs to be pointed towards a certain location on 

Earth and kept as sable as possible to take a picture. 

4) Cooling – when a side of satellite gets too hot due to solar radiation, it should be put in a 

controlled spin to divide heat between sides. 

5) Communication – antennas need to be turned towards the GS to ensure maximal 

communication speed. Because the satellite moves in orbit it’s orientation relative to GS 

changes constanly, which means satellite’s body needs to be put in a controlled spin to 

keep antennas pointed towards GS. 
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6) Idle – when no activity is required from ADCS, this mode should be switched on. To save 

battery, most of systems should be powered down, for example gyroscope. Some tasks, 

like orbit propagation, should still be performed. 

2.2.4 Main components 

Components of the software can be divided into larger components as following: 

Earth’s magnetic field model – Due to geographical variations in Earth’s magnetic field, the 

field’s strength and direction cannot be predicted by satellite’s location alone. This means a 

separate model for Earth’s magnetic field on board the satellite is required. Because attitude 

will be determined by comparing magnetometer reading to this model’s estimation, this model 

needs to be as accurate as possible. Input of this component is satellite’s location in ECEF. 

Outputs of this component are magnetic field’s strength and direction in ECEF. 

Orbit propagator – Knowing satellite’s location is essential for both determining and 

controlling satellite’s attitude. When orbital elements of the satellite are known, a suitable 

prediction formula can be used to estimate the satellite’s location at any given time. Orbital 

elements will be provided in the form of TLE by NORAD as a free service, which will be 

uploaded to satellite from GS. Inputs for this task are Two Line Element and real time, outputs 

are satellite’s location in ECI and ECEF. 

Sun vector model – sun sensor readings needs to be compared to an on-board model of solar 

system to assist in determining satellite location. Inputs for this component are real time and 

satellite’s location in ECEF. Output of this component is sun’s direction in ECEF. 

Attitude determination algorithm – because attitude and current calculation takes time, and 

effectiveness and accuracy of the magnetic coils relies on attitude for which the currents were 

calculated, attitude should be predicted ahead for current calculation algorithm. Inputs of this 

component are therefore attitude estimated by Sub vector and Earth’s magnetic field model, 

angular velocity from gyroscope and time (how much ahead should attitude be predicted). 

Because sun is not visible at all times, the algorithm needs to perform its tasks with data from 

magnetic field model and gyroscopes only. 

Earth’s albedo model – Earth’s albedo (light reflected from Earth’s surface and atmosphere) 

is going to interfere with sun sensor’s reading, so the reading has to be compared to an on-board 

model of Earth’s albedo to compensate for this. 
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Perturbation model – gravitational forces from Earth, Moon and possibly other bodies and 

also resistance from atmosphere and other sources are going to change the orbit of the satellite, 

which may cause erroneous predictions of satellite’s location, which would cause errors in 

attitude estimation. To avoid that, an on-board model of possible perturbations is necessary to 

take this into account. 

B-dot algorithm – after launch, the satellite is going to be in an uncontrolled spin. In this 

situation, communications cannot be established with GS. This means that the orbital elements 

cannot be uploaded to the satellite, so satellite’s location cannot be calculated. Without 

satellite’s location, most of software components cannot be used. To establish communication 

with ground station, the satellite needs to be brought to a condition of sufficiently small angular 

momentum. This process is called detumbling, and for this task a separate algorithm is needed. 

One of the most common methods for this is so-called b-dot control law which will probably 

be used in TUT satellite. Component schematic of ADCS in detumbling mode is shown in 

Figure 3. 

 

Figure 3. ADCS components in detumbling mode. Author’s 

drawing. 
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Current calculation algorithm – once all necessary information has been obtained, current 

can be calculated for the magnetic coils. Input values for this component are going to be desired 

state of satellite body, satellite’s current state (attitude and angular velocity) and magnetometer 

reading. Output values are going to be currents for the three magnetic coils. Current must be 

calculated for different desired states. For example, in taking picture mode, desired state is 

certain attitude. For cooling the satellite, desired state is a certain angular velocity. Because of 

this, there is no certain format for desired state. It may be certain attitude, certain angular 

velocity or a combination of both. For this reason, to reduce complexity of the software, a 

separate controller should be made to handle transitions between the states, and a current 

calculator which calculates the actual currents. The controller passes current calculator an 

angular acceleration vector, according to which the current calculator calculates currents to 

generate angular acceleration in desired direction. Current calculation scheme is shown in 

Figure 4. 

 

 

Controller – because sensors that are required to determine and control attitude are on board 

ADCS, only general commands, like „make satellite spin at given speed“ or „point solar panels 

towards Sun“, will be received from on-board computer. The actual numeric values of the 

desired state, like satellite’s attitude in ECEF or angular velocity should be determined by 

Figure 4. Current calculation scheme. Author’s drawing. 
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ADCS. To do this, a separate software component should be used. This component will be 

using all the data available on board ADCS, and perhaps on other subsystems, to calculate 

desired state and pass it to current calculation algorithm. 

Communication between components in normal working mode is shown in Figure 5. 

Rectangular shapes represent software components and circular shapes represent hardware 

components. 

Figure 5. ADCS components in normal working mode. Author’s drawing. 
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2.3 Operating system 

TUT satellite’s ADCS will running on FreeRTOS, which is an open-source cross platform 

real time operating system [10]. The advantages of this OS is that it is completely free, open-

source, lightweight and easy to use. Many previous student satellite missions have used 

FreeRTOS. 

 

2.4 Simulation 

A simulation environment is needed to develop and test the software. Modelling and simulation 

will be done mainly in Matlab and Simulink. The goal of simulation environment is to estimate 

the effect of currents applied by ADCS on satellite’s attitude and generate input data for the 

ADCS accordingly. Scheme of ADCS’s simulation environment is shown in Figure 6. 

Simulation software should contain following components, some of which can be reused from 

those on board the ADCS: 

ADCS – this is the component that will be simulated, it will be running on a test board, its 

inputs are going to be data from sensors and outputs are going to be currents for the magnetic 

coils. It will be connected to a PC with simulation environment through a serial port. 

Sensor emulators – emulators for Sun, magnetic field and angular velocity sensors are needed. 

Main goal of these emulators is to add noise to sensor readings to create space-like conditions 

for ADCS. Inputs for those components are therefore actual conditions that the sensors will be 

measuring and output will be what sensor’s reading would be like based on that. 

Coil model – emulator for magnetic coils is needed. Impedances of coils, satellite body’s 

influence on magnetic field and coil’s actual generated magnetic field needs to be emulated. 

Input for this component will be values written to digital-analog converters and output will be 

magnetic field generated by the coils. 

Earth’s magnetic field model – goal of this component is to generate input data for 

magnetometer emulator and torque calculation components. While Earth’s magnetic field 

model on board the satellite returns magnetic field’s vector in ECEF, this model should return 



23 

 

magnetic field’s vector in SBRF, which is why satellite’s attitude is also required as input along 

with satellite’s position. 

Orbit model – this model is going to calculate satellite’s location in this simulation. This will 

work the same way as orbit propagator on board the system. 

Sun vector model – to create input for Sun sensor emulator, a component is needed that 

calculates sun’s assumed direction based on time, satellite’s location and attitude. 

Torque calculation – to calculate torque created by interaction between coil’s magnetic field 

and Earth’s magnetic field this component is needed. Inputs are Earth’s and coil’s magnetic 

fields vectors and output will be torque vector. 

Satellite body model – to calculate effect of torque on satellite’s body, a component that 

includes model of satellite’s moment of inertia is needed. This component takes torque vector 

as input and outputs angular velocity. 

Attitude calculation – this component remembers satellite’s current attitude and updates this 

based on angular velocity of satellite’s body. Output will be satellite’s attitude in ECEF. 

Clock – for synchronization between components and because satellite’s clock and actual time 

may not be in sync, the simulation environment should have its own clock. 
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Figure 6. ADCS simulation scheme. Author’s drawing. 
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3 Tasks within operating system 

3.1 Task allocation 

The amount of different tasks should be minimal to increase efficiency of the software, but 

anything that needs to be calculated in parallel has to be in separate task. For those reasons, 

tasks within the operating system will be allocated as following 

1. Bus communication – Due to requirement 4, a task should be always listening to signals 

and data from bus and sending data out when needed. This task contains communication 

protocols for the bus and send-receve buffers for data. Whenever there’s data to be sent 

and bus is open, this task should be activated with highest priority until messages and data 

is sent. 

2. Attitude and current calculation – calculating attitude and current is going to be done in 

a sequence, which means this can be done within the same task. This task is 

computationally most consuming and also most complex, because all the working modes 

realised withing this task. 

3. Orbit propagation – satellite’s location is something that needs to be periodically 

updated and predicted, so this should be performed in a separate task. This task is going to 

be woken up after fixed time intervals, regardless of working mode, and calculates a list of 

locations where satellite is going to be within upcoming short period of time, and stays 

suspended until this period is over, to be woken up to update locations again. 

4. Coil control – a task needs to apply and maintain currents of the coils during torque cycle, 

and therefore should be a separate task to do this. When currents are calculated and ready 

to be applied, this task is woken up, currents are applied and task is put back to sleep. For 

a certain amount of time, this task is periodically woken up to make adjustments to 

currents and when this time is over, this task should is put in a suspended mode until 

woken up again by attitude and current calculation task. 

5. Sensor reading – one task should be concentrated solely on reading data from sensors, 

incase some other subsystem requires sensor data. This task should read data from all 

three different sensors, but because magnetometers are not useful when magnetorquers are 
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active, this task should have two different working modes, depending on current phase in 

torque cycle. When magnetorquers are inactive, magnetometer reading can be used and 

then magnetometers should be read, otherwise magnetometers should be ignored to save 

processing time. Because sun sensors are useless during eclipse, this task should have 

another two working modes, independent of whe first two. When the satellite is in eclipse, 

sun sensor readings should be ignored. 

Communication between tasks is shown in Figure 7. 

 

 

 

 

 

Figure 7. Communication between tasks. Author’s drawing. 
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3.2 Components within tasks 

Components should be included within OS’s tasks as following 

Attitude and current calculation task should include following components: 

Attitude determination algorithm has a central role in this task, along with current 

calculation algorithm. These components will be initiated in a sequence because current 

calculation algorithm is heavily dependent on attitude determination algorithm. 

Controller will also be included within this task because current calculation algorithm needs 

the desired state as input. 

Sun vector and Earth’s magnetic field models hold a key role in determining satellite’s 

attitude, which means they should be included within attitude and current calculation task. 

B-dot algorithm- some other components that might be required to control coils are going to 

be contained within this task, because of this the B-dot algorithm should also be included within 

this task. 

A smaller component is required for measuring time it takes to calculate attitude and current, 

to be used as input for attitude determination algorithm. 

Orbit propagation task’s task is centered on the orbit propagator. Other systems and tasks 

are only going to need satellite’s final positon. To calculate satellite’s final position, 

perturbation model should also be included within this task. 

Sensor reading task should include: 

Earth albedo model- because other tasks and systems are only going to need Sun’s direction 

and not sun sensor reading itself, Earth’s albedo should be filtered out within this task before 

sending data to other systems. 

Additional smaller components, like filters for sensors are also included sensor reading task. 
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3.3 Torque cycle  

As stated in requirement 1, attitude control needs to work in cycles. Cycle should consist of at 

least three different stages where:  

 magnetorquers are idle and Earth’s magnetic field can be accurately measured 

 magnetorquers are active to apply torque to satellite’s body 

 magnetorquers are cooling down after applying torque, which takes time due to 

magnetic inductance 

Two types of cycles have can used to control satellite’s attitude, first of which consists of four 

stages: measurements, calculation, torque and cooldown. The advantage of this cycle is that 

calculations are made with most up-to-date data and torque is applied right after calculations 

are finished, so there would be little possibility of any change happening with satellite’s attitude 

between calculations and torque, which gives this configuration good accuracy. 

Second type has three stages: measurements, torque&calculations and cooldown. Applying and 

maintaining currents on magnetorquers requires little to no processing power, but will be 

maintained for a noticeable amount of time. During this period, currents for the next torque 

cycle can be calculated, shortening overall torque cycle by the amount of time it would be 

required to calculate currents and therefore significantly increasing the speed at which satellite’s 

attitude can be changed. Trade-off of this cycle is accuracy, because currents would be 

calculated for the next cycle, by time of which the satellite’s angular velocities will have 

changed due to torques applied on current cycle. This change, however, is probably 

insignificant because the torques created by magnetic coils are very small. Another trade-off is 

slightly more complex software because satellite’s attitude would need to be predicted further 

ahead and additional variables would be required to store values for both current and next torque 

cycles. 

If accuracy loss of the second cycle is small enough, the second cycle should be used. This 

means a rough estimation of how much attitude can be changed within one cycle is required. 

The estimation will be done according to worst-case scenario, which in this case is the biggest 

possible change to satellite’s attitude during one cycle. For attitude control overall this would 
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be the best-case, but for second torque cycle this is the worst case. Magnetorquers ability to 

apply torque to satellite’s body is characterized as magnetic moment M, whose units are Am2 

(Ampere per meter squared) [11]. 

The aim for TUT satellite is to get a magnetic moment of 0.12 Am2 from the coils [9]. The 

torque produced by magnetorquers is cross product between Earth’s magnetic field strength B 

in teslas and coil’s magnetic moment [11]: 

Τ = 𝐵 × 𝑀 

Earth’s magnetic field in its strongest point is 65 microteslas. [12] Cross product is largest when 

the two vectors are perpendicular (which would be the worst-case), in which case length of the 

resulting vector is equal to product of the lengths of those two vectors: 

|Τ| = |𝐵| ∙ |𝑀| = 0.12𝐴𝑚2 ∙ 65𝜇𝑇 =  7.8 𝜇𝑁 

TUT nanosatellite will be using deployable solar panels, which significantly change and 

increase its moment of inertia, but in this calculation, for simplicity reasons and the fact that 

smallest moment of inertia is worst case, equation for a cube will be used. Moment of inertia 

of a solid cube is following [13]: 

Ι =
𝑚𝑠2

6
 

Where m is mass and s is length of a side. TUT satellite’s mass will be roughly 1.2 kg and 

length of side, as set by CubeSat standard, 0.1 meters. This means the satellite’s moment of 

inertia will be at least: 

Ι =
𝑚𝑠2

6
=

1.2 ∙ 0.12

6
= 0.002 𝑘𝑔 ∙ 𝑚2 

Equation to calculate angular acceleration is: 

𝛼 =
Τ

Ι
=

7.8𝜇𝑁

0.002𝑘𝑔 ∙ 𝑚2
=  3.9 ∙ 10−3 𝑟𝑎𝑑 𝑠2⁄ ≈ 0.223 𝑑𝑒𝑔 𝑠2⁄  

This means that even if torque phase in the cycle would last 1s (which would be a very long 

time for a torque phase), change in angular speed would be only 0.223 𝑑𝑒𝑔 𝑠⁄ , which means 

even if torque cycle would last a couple of seconds, the changes that would happen during that 
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cycle would not surpass accuracy requirement of 2 degrees. This means that the second type of 

torque cycle should be used. 

Activity of tasks within the cycle is shown in Figure 8 (this figure does not represent the relative 

durations of stages).  Bus communication and orbit propagation tasks are running in background 

during all phases of the cycle, attitude and current calculation task will be woken up at the 

beginning of calculations & torque phase, coil control is woken up at the beginning of 

calculations & torque stage as well, but running in background as only very little calculations 

are required for maintaining currents. Sensor reading&filtering task will be running as primary 

task during sensor measurements phase, because sensor measurements need to be read multiple 

times in a quick succession to get an accurate reading. During other stages, reading & filtering 

task will be running in background to update readings continuously. 

 

 

 

 

  

Figure 8. Attitude control cycle. Author’s drawing. 
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4 Developed software 

In following chapter the secondary goal of this work, which is development of software API 

for simulation and further software development, will be covered. Two different APIs are made, 

first is API for establishing communication between test board and PC with simulation 

environment and second is API for configuring and gyroscope on the test board, so actual 

gyroscope data can be used in simulations. 

4.1 Development environment 

Software is run and tested on STM32F3 Discovery development board, which is connected to 

computer through USB cable. All code for this project is written in C. 

Development is done in Eclipse IDE, which has Bleeding Edge Toolchain and GDB debugger 

installed on it. Communication with test board is established through OpenOCD software. 

Source code is compiled for ARM Cortex M4 architecture using Bleeding Edge toolchain, GDB 

connects to OpenOCD through localhost for downloading code and debugging.  

4.2 Com port API 

Before any further development can be done, communication has to be made possible between 

PC and the development board. This will be done by using Prolific PL2303 USB to UART 

Bridge, which is connected to USART3 on development board side and to USB connector on 

computer side. This device opens a COM port inside the PC which can be accessed by a variety 

different programs, like Matlab. 

4.2.1 Design 

A separate OS task is required for sending and receiving data. To save processor’s resources, 

interrupts are be used for timing and control of the task rather than polling. Interrupt handler 

disables interrupts and wakes the thread up. For flow control, transfer register empty (TXE) 

interrupt is used, which is built into USART [14]. After sending a byte, next byte is checked if 

it’s equal to zero (end of string). If it isn’t, TXE interrupt is enabled to wake the thread up once 



32 

 

current byte has been sent. If next byte is zero, transmitting buffer index is reset and TXE 

interrupt is not enabled, thread will be woken up only by a receive register not empty (RXNE) 

interrupt or call from another task. If the thread is woken up by RXNE interrupt, byte is read 

from receive register and analyzed. If it’s beginning of message (BOM) byte, read register index 

is reset, if its end of message (EOM) byte, a string receive routine is called and string is passed 

to the routine. Code for the routine should be written by user of this API. Activity diagram 

about sending/receiving data through USART is shown in Figure 9. 

 

Figure 9. USART send/receive activity diagram. Author’s drawing 
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Because multiple different threads will be using the same thread for sending data, it has to be 

guaranteed that no data is lost and all gets transmitted in correct order. To do this, a large string 

is used a send buffer. When another thread wants to send a string of data while a string is already 

being sent, new string to be sent will be written to the end of current string that is being sent in 

the buffer, so that once send buffer index reaches end the of current string, new string will be 

sent right after. 

4.2.2 API reference  

Source code for this API is written directly for FreeRTOS, which means this will only work 

when this project is based on FreeRTOS. Because this code is based on interrupts, line where 

USART3’s interrupt handler is needs to be replaced with USART3_IRQHandler in startup.c 

file in the project for this code to work. User of this API has following functions visible: 

void vComPortTask( void *pvParameters ) – this is function of the task that sends and 

receives data through USART3. The task needs to be created using xTaskCreate() provided 

by FreeRTOS’s API before any other to be used. 

extern void vStringReceiveRoutine(char []) – this function is called within vComPortTask 

when EOM byte has been received. Contents of this task have to be written user of this API, to 

parse received messages according to need. Parameter of this function is the string that has been 

received. 

int comPrintf(const char* strMessage, ...) – this function passes a string to vComPortTask 

to be sent throuch USART3 to PC’s com port. As mentioned earlier, this function is made 

thread-safe, which means this can be called by multiple different threads running in parallel 

without the risk of losing any data. The buffer where messages are queued, however, is not 

limitless which means sending a lot of data at once or spamming messages in a loop without 

delays is not advised. Returns 0 if writing the string to send buffer was successful, 1 if buffer 

was full. Parameters work the same way as for printf function contained within <stdio.h> 

library. 

4.3 Gyroscope API 

Gyroscope data can be used for testing and simulation of B-dot and attitude control algorithm 

on Earth, which is why gyroscope reading should be one of the first things to be done once 

communication with test board has been established. On STM32F3 test board, gyroscope is 
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connected to the MCU through SPI interface [14]. On SPI interface, the master first sends out 

a byte which contains address and a bit which indicates whether read or write action is going to 

be performed [15].  

4.3.1 API reference 

This API is developed to work with L3GD20 gyroscope on board STM32F3 development 

board, but can be easily reconfigured to be used for a different device and/or SPI interface. 

Code for this API is written directly for FreeRTOS, which means this will work only with this 

OS. 

Because the code works with interrupts, line where SPI1’s interrupt handler is needs to be 

replaced with SPI1_IRQHandler within startup.c file of the project before using this API.  

User of gyroscope’s API has following functions available for use: 

uint8_t gyroReadFromRegister8(uint8_t address) – returns the 8 bit value from a register of 

the device connected to SPI. Parameter address is the 7-bit address of the register to be read. 

This function should not be called from two different threads running in parallel to avoid data 

corruption.  

void gyro_WriteData(uint8_t address, uint8_t value) – writes an 8-bit value to addressed 

register. Parameter address is a 7-bit address of targeted register, parameter value is 8-bit value 

to be written to targeted register of the device. No return value. 

void gyro_setup(void) – this function configures and initiates SPI1 interface and GPIO pins to 

which the gyroscope is connected to, configures interrupt vectors and finally powers up the 

gyroscope so that it’s registers can be read. This function must be called before any of the above 

two functions are called or else the thread on which they are called will suspend and never wake 

up. 

void gyro_SetDPS(char DPS) – sets gyroscope’s degrees per second (DPS) setting. L3GD20 

has three possible DPS settings: 250, 500 and 2000. Parameter DPS can be one of either three 

values contained within header file: L3GD20_DPS_200, L3GD20_DPS_500 or 

L3GD20_DPS_2000. 

void gyro_powerup(void) – wakes gyroscope up from either sleep or power-down mode. 
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void gyro_powerdown(void) – puts gyroscope in power-down mode. 

void gyro_sleep(void) – puts gyroscope in sleep mode. 
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5 Summary 

Goal of this thesis was to develop software architecture of TUT nanosatellite’s ADCS 

subsystem. To accomplish this goal, based on TUT nanosatellite’s ADCS’s hardware design, 

requirements for software design were analyzed by examining previous student nanosatellite 

missions. In addition, datasheets of various hardware components were examined.  

Technically most challenging parts were analysis and elaboration of the details of ADCS system 

and to understand and develop general software architecture where all smaller components are 

working together. 

As a result of this work, requirements for software were gathered, main software components 

were specified, component interactions were defined, tasks within operating system were 

allocated, working cycle was specified and overall software architecture was developed. In 

addition to this, an application programming interface was developed for simulation purposes. 

Practical value of this work is a comprehensive system analysis that makes simpler future 

organization and allocation of tasks inside the ADCS development team. A simple and 

universally applicable software API has been developed. 
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