
Tallinn 2016

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Engineering

IDK40LT

Peeter Org 123513

SOFTWARE ARCHITECTURE AND

DEVELOPMENT TOOLS API FOR

ATTITUDE CONTROL SYSTEM OF TUT

NANOSATELLITE

Bachelor’s thesis

Supervisor: Martin Rebane

 MSc

 Lecturer

Tallinn 2016

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Arvutitehnika instituut

IDK40LT

Peeter Org 123513

TTÜ NANOSATELLIIDI

ASENDIKONTROLLISÜSTEEMI

TARKVARA ARHITEKTUUR JA

ARENDUSVAHENDITE API

Bakalaureusetöö

Juhendaja: Martin Rebane

 MSc

 Lektor

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references to the

literature and the work of others have been referred to. This thesis has not been presented for

examination anywhere else.

Author: Peeter Org

23.5.2016

4

Abstract

Main subject of this thesis is higher level software architecture of TUT nanosatellite’s attitude

determination and control system. Secondary subject is to develop a software application

programming interface for further development of software and simulation environment of this

system.

The architecture is developed based on attitude determination and control system’s hardware

design, gathered software requirements and experience from previous student nanosatellite

missions. Software is written in C, based on hardware design of development board being used

This thesis is written in English and is 38 pages long, including 5 chapters and 9 figures.

5

Annotatsioon
TTÜ NANOSATELLIIDI ASENDIKONTROLLISÜSTEEMI

TARKVARA ARHITEKTUUR JA ARENDUSVAHENDITE API

Selle töö peamine eesmärk on välja töötada tarkvara arhitektuur TTÜ nanosatelliidi

asendikontrollsüsteemi jaoks. Teisejärguline eesmärk on välja töötada rakendusliides edasiseks

arendustegevuseks.

Tarkvara arhitektuur luuakse selle süsteemi riistvara disaini, kogutud nõuetele tarkvarale ja

eelmiste tudengisatelliidi missioonide põhjal. Tarkvara arendatakse programmerimiskeeles C,

kasutusel oleva arendusplaadi riistvarast lähtudes.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 38 leheküljel, 5 peatükki ja 9 joonist.

6

List of abbreviations and terms

ADCS Attitude determination control system

API Application programming interface

BOM Beginning of message

DPS Degrees per second

ECEF Earth-centered, Earth-fixed reference frame

ECI Earth centered inertial reference frame

EOM End of message

GS Ground station

IGRF International geomagnetic reference frame

NORAD North American Aerospace Defense Command

OBC On-board computer

OS Operating system

PC Personal computer

PCB Printed circuit board

RXNE Receive register not empty

SBRF Satellite body reference frame

TLE Two line element set

TUT Tallinn University of Technology

TXE Transfer register empty

UART Universal asynchronous receiver/transmitter

USART Universal synchronous asynchronous receiver/transmitter

7

Table of Contents

1 Introduction ... 10

1.1 About TUT nanosatellite project ... 10

1.1.1 Project ... 10

1.1.2 CubeSat standard .. 10

1.1.3 Subsystems ... 10

1.2 Goals of this work .. 11

1.3 ADCS ... 11

1.3.1 Task .. 11

1.3.2 Sensors ... 11

1.3.3 Actuators .. 12

2 Design of ADCS ... 14

2.1 Hardware design .. 14

2.2 Software design ... 15

2.2.1 Overview .. 15

2.2.2 Requirements for attitude control software .. 16

2.2.3 Working modes .. 17

2.2.4 Main components ... 18

2.3 Operating system ... 22

2.4 Simulation .. 22

3 Tasks within operating system .. 25

3.1 Task allocation ... 25

3.2 Components within tasks ... 27

3.3 Torque cycle .. 28

4 Developed software .. 31

4.1 Development environment .. 31

4.2 Com port API ... 31

4.2.1 Design ... 31

4.2.2 API reference .. 33

4.3 Gyroscope API .. 33

8

4.3.1 API reference .. 34

5 Summary ... 36

9

 List of figures

Figure 1. ADCS hardware schematic [16] ... 14

Figure 2. Attitude control model. Author’s drawing. ... 16

Figure 3. ADCS components in detumbling mode. Author’s drawing. 19

Figure 4. Current calculation scheme. Author’s drawing. ... 20

Figure 5. ADCS components in normal working mode. Author’s drawing............................. 21

Figure 6. ADCS simulation scheme. Author’s drawing. .. 24

Figure 7. Communication between tasks. Author’s drawing. .. 26

Figure 8. Attitude control cycle. Author’s drawing. .. 30

Figure 9. USART send/receive activity diagram. Author’s drawing 32

10

1 Introduction

1.1 About TUT nanosatellite project

1.1.1 Project

Goal of TUT nanosatellite project is to provide students with theoretical and practical

experiences of building a satellite. [1]

Scientific/technological goal of this project is to test line-scan camera on a nanosatellite. Line-

scan camera has not yet been installed on a nanosatellite.

1.1.2 CubeSat standard

TUT satellite will be built according to CubeSat standard. Main characteristics of a CubeSat

are that it’s cube-shaped, with 10 cm sides and its weight is below 1.33 kg. This standard was

developed in 1999 by California Polytechnic University and Stanford University with purpose

to provide access to space for small objects [2]. Those satellites are launched as secondary

payloads on launch vehicles or put in orbit by deployers on the International Space Station.

TUT satellite will be launched as a secondary payload on a larger satellite.

1.1.3 Subsystems

There will be following subsystems on board TUT satellite:

Mechanical structures - tasked with structural integrity of the satellite and deployment of solar

panels.

Communications system - tasked with communication between satellite and ground station

(GS).

Power system - tasked with power generation, power distribution between subsystems, battery

charging and emergency communications.

On-board computer (OBC) - tasked with primary computing tasks and control of the satellite.

11

Attitude determination and control system (ADCS) - tasked with determining and

controlling satellite’s attitude (orientation) in space.

Optical payload - tasked with capturing images using line-scan camera.

1.2 Goals of this work

Primary goal of this thesis is to develop architecture and high-level application programming

interface (API) for TUT nanosatellite’s ADCS. In order to achieve this, it is necessary to

understand the working principles of each component of ADCS, to figure out what is the input

and output value of each software component, what the sequence execution is and which

components can work concurrently.

Secondary goal is to develop application programming interface (API) for connecting

simulation tools with ADCS development board (PCB). Code for this API is written in C.

1.3 ADCS

1.3.1 Task

ADCS, which stands for attitude determination and control system, is a satellite’s subsystem

tasked with determining and controlling satellite’s attitude (orientation) in space. This system

usually has its own processor, sensors and actuators independent of the rest of the satellite’s

subsystems. There are various different methods being used for both determining and

controlling satellite’s attitude, most common of which are listed below.

1.3.2 Sensors

Various different sensors can be used to determine satellite’s attitude, more common methods

include:

Sun sensors - Sun sensors can tell, by intensity of light falling on photo sensors, the direction

of Sun in satellite’s body reference frame (SBRF). By comparing sensor result with an on-board

Solar system model, satellite’s attitude can be determined. There should be a sun sensor on each

12

side of the satellite to ensure that Sun’s direction can be tracked from all directions. Sun sensors

are reliable, accurate, simple and lightweight, but they cannot be used during eclipse [3].

Gyroscopes - gyroscope is a spinning wheel, which retains the orientation of their spinning

axis due to conservation of angular momentum. Modern gyroscopes are lightweight and

measure angular velocity and acceleration accurately, but due to axial precession and fact that

gyroscope doesn’t keep its orientation when it’s not spinning, gyroscopes alone cannot be used

to determine satellite’s attitude.

Magnetometers - magnetometers measure magnetic field and its strength in 3 dimensions.

Comparing magnetic field reading to an on-board Earth’s magnetic field model can be used to

determine satellite’s attitude. Magnetometers are simple lightweight devices that provide

relatively good accuracy with respect to their mass and size [3].

Star trackers - star tracker is a camera mounted on board the satellite that takes pictures of

stars and compares it to an on-board model of night sky to determine attitude. Because stars are

very small and their position in sky changes very little, star trackers are very accurate devices

for determining attitude. They are, however, expensive and bulky, because a baffle is needed to

block stray light from Sun, Earth and Moon. Furthermore, star trackers need relatively large

computational power and they need the satellite to be still, which means star tracker is usually

not a very good option for nanosatellites.

Horizon sensors - horizon sensors work the same way as Sun sensors, but they have a much

narrower field of view, thus they can only tell if Earth is visible or not. Horizon sensors can, at

the right angle, detect Earth’s horizon and thus two angles of attitude can be determined.

1.3.3 Actuators

ADCS can use following devices to control attitude:

Thrusters - thrusters use propellant to induce force on satellite’s body. Thrusters are, compared

to other methods, fast and effective, but heavy and take up significant amounts of space in

satellite’s body. Because the amount of propellant that can be taken on board is limited,

thrusters can only be used for certain amount of time. Having propellant on board also causes

13

thermal and configurations problems [3]. Because of this, thruster systems are usually not a

favored option aboard nanosatellites.

Gravity booms - gravity boom is a passive method that uses only satellite body’s mass

distribution and Earth’s gravitational field to control attitude. Because Earth’s gravity decreases

with height, a tidal force can be generated by extending a weight perpendicular to the orbit. The

advantages of this system are low energy consumption and no propellant needed, but it is slow

and adds considerable weight to satellite.

Inertial wheels - idea of inertial wheels is to accelerate a body inside the satellite to create an

opposite force to satellite’s body. This system is fast and relatively accurate and doesn’t need

propellants, but is heavy, takes up considerable space inside satellite’s body and having moving

parts on board may cause reliability issues.

Magnetorquers - magnetorquer method uses magnetic coils, which generate a magnetic field.

This magnetic field’s interaction with Earth’s magnetic field generates torque on satellite’s

body. Magnetorquers are very reliable because they contain no moving parts, relatively

lightweight and need no propellant. Magnetic coils are a very popular means of controlling

attitude of nanosatellites, many student satellite missions like SwissCube [3], EstCube [4] and

AAUSAT [5] have used magnetorquers as actuators for their ADCS system.

14

2 Design of ADCS

2.1 Hardware design

TUT nanosatellite will be using magnetorquers method for attitude control. For attitude

determination the ADCS will use a combination of Sun sensors, magnetometers and

gyroscopes.

Because losing either magnetometer or gyroscope would result in a mission failure, both of

these sensors are duplicated for redundancy purposes. Magnetorquers are controlled by using

digital-analog converters on board the system. For communication between subsystems, the

satellite will have an RS485 bus. TUT satellite’s ADCS will use STM32F MCU, which is based

on ARM Cortex M4 architecture [6].

ADCS’s hardware schematic is shown in Figure 1.

Figure 1. ADCS hardware schematic [16]

15

2.2 Software design

2.2.1 Overview

 The end goal of ADCS’s software is to calculate currents for magnetorquers. This is done

according to satellite’s current attitude, satellite’s desired attitude and Earth’s magnetic field’s

state. Before currents can be calculated, attitude needs to be determined. To determine attitude,

satellite’s location in Earth-centered, Earth-fixed inertial reference frame (ECEF) is required.

ECEF is a Cartesian coordinate system where point [0, 0, 0] is defined as Earth’s center of mass,

hence Earth-centered, and its axes are aligned with International Reference Pole and

International Reference meridian, hence Earth-fixed [7]. Satellite’s position can be calculated

from time and a model of the orbit, which, by popular convention, is represented in a two line

element (TLE). TLE along with current time will be uploaded from GS via radio channel. When

satellite’s location is determined, attitude can be calculated by using sensor data. Attitude

determination is done by measuring magnetometer and Sun sensors and comparing those read

results with on-board models of Earth’s magnetic field and Sun’s direction. Once attitude has

been determined, it can be controlled by applying currents to magnetorquers which will

generate torque on satellite’s body by interacting with Earth’s magnetic field.

 Scheme for controlling attitude is shown in Figure 2. This schematic, drawn based on known

components and requirements for this system, forms the basis for work. Rectangular shapes

represent software components, circular shapes represent hardware components.

16

2.2.2 Requirements for attitude control software

Based on literature and project’s work group meetings, following requirements for software of

TUT satellite’s ADCS have been gathered author:

Figure 2. Attitude control model. Author’s drawing.

17

1. Because the magnetic field generated by coils interferes with magnetometer reading,

applying torque and reading from magnetometer cannot be done at the same time,

therefore attitude control has to be done in a cycle

2. Torque cycle should be reasonably short, (EstCube-1’s attitude control cycle was 3 Hz [4],

a similar frequency will be estimated for TUT nanosatellite in this work), because if it

takes too long time to calculate the currents, satellite might make a full turn and in this

case using magnetorquers to control attitude would be impossible

3. To fulfil all tasks required from ADCS, the system has to work in several different

working modes, which will be specified later in this work.

4. The system has to be able to communicate with other subsystems at all times, regardless

of working mode or current stage in working cycle.

5. Because latch-ups and bit-flips may occur in space due to radiation [8], the system has to

be capable of tolerating hard resets in any given time, and the system has to be able to

recover from a hard reset.

6. Attitude should be determined and controlled with accuracy of at least 2 degrees [9],

required to accomplish the satellite’s main goal, which is taking pictures of Earth.

2.2.3 Working modes

Due to mission requirements and hardware design, several different working modes are

required:

1) Detumbling/stabilizing – when the satellite is lauched, it will probably be spinning

uncontrollably, so the first thing that needs to be done after lauch is to stabilize the

satellite to make it possible to communicate with ground station.

2) Charging – because TUT nanosatellite will be using deployable solar panels, for

maxiumum charging efficiency these panels should be pointed towards the Sun

3) Taking picture – satellite’s camera needs to be pointed towards a certain location on

Earth and kept as sable as possible to take a picture.

4) Cooling – when a side of satellite gets too hot due to solar radiation, it should be put in a

controlled spin to divide heat between sides.

5) Communication – antennas need to be turned towards the GS to ensure maximal

communication speed. Because the satellite moves in orbit it’s orientation relative to GS

changes constanly, which means satellite’s body needs to be put in a controlled spin to

keep antennas pointed towards GS.

18

6) Idle – when no activity is required from ADCS, this mode should be switched on. To save

battery, most of systems should be powered down, for example gyroscope. Some tasks,

like orbit propagation, should still be performed.

2.2.4 Main components

Components of the software can be divided into larger components as following:

Earth’s magnetic field model – Due to geographical variations in Earth’s magnetic field, the

field’s strength and direction cannot be predicted by satellite’s location alone. This means a

separate model for Earth’s magnetic field on board the satellite is required. Because attitude

will be determined by comparing magnetometer reading to this model’s estimation, this model

needs to be as accurate as possible. Input of this component is satellite’s location in ECEF.

Outputs of this component are magnetic field’s strength and direction in ECEF.

Orbit propagator – Knowing satellite’s location is essential for both determining and

controlling satellite’s attitude. When orbital elements of the satellite are known, a suitable

prediction formula can be used to estimate the satellite’s location at any given time. Orbital

elements will be provided in the form of TLE by NORAD as a free service, which will be

uploaded to satellite from GS. Inputs for this task are Two Line Element and real time, outputs

are satellite’s location in ECI and ECEF.

Sun vector model – sun sensor readings needs to be compared to an on-board model of solar

system to assist in determining satellite location. Inputs for this component are real time and

satellite’s location in ECEF. Output of this component is sun’s direction in ECEF.

Attitude determination algorithm – because attitude and current calculation takes time, and

effectiveness and accuracy of the magnetic coils relies on attitude for which the currents were

calculated, attitude should be predicted ahead for current calculation algorithm. Inputs of this

component are therefore attitude estimated by Sub vector and Earth’s magnetic field model,

angular velocity from gyroscope and time (how much ahead should attitude be predicted).

Because sun is not visible at all times, the algorithm needs to perform its tasks with data from

magnetic field model and gyroscopes only.

Earth’s albedo model – Earth’s albedo (light reflected from Earth’s surface and atmosphere)

is going to interfere with sun sensor’s reading, so the reading has to be compared to an on-board

model of Earth’s albedo to compensate for this.

19

Perturbation model – gravitational forces from Earth, Moon and possibly other bodies and

also resistance from atmosphere and other sources are going to change the orbit of the satellite,

which may cause erroneous predictions of satellite’s location, which would cause errors in

attitude estimation. To avoid that, an on-board model of possible perturbations is necessary to

take this into account.

B-dot algorithm – after launch, the satellite is going to be in an uncontrolled spin. In this

situation, communications cannot be established with GS. This means that the orbital elements

cannot be uploaded to the satellite, so satellite’s location cannot be calculated. Without

satellite’s location, most of software components cannot be used. To establish communication

with ground station, the satellite needs to be brought to a condition of sufficiently small angular

momentum. This process is called detumbling, and for this task a separate algorithm is needed.

One of the most common methods for this is so-called b-dot control law which will probably

be used in TUT satellite. Component schematic of ADCS in detumbling mode is shown in

Figure 3.

Figure 3. ADCS components in detumbling mode. Author’s

drawing.

20

Current calculation algorithm – once all necessary information has been obtained, current

can be calculated for the magnetic coils. Input values for this component are going to be desired

state of satellite body, satellite’s current state (attitude and angular velocity) and magnetometer

reading. Output values are going to be currents for the three magnetic coils. Current must be

calculated for different desired states. For example, in taking picture mode, desired state is

certain attitude. For cooling the satellite, desired state is a certain angular velocity. Because of

this, there is no certain format for desired state. It may be certain attitude, certain angular

velocity or a combination of both. For this reason, to reduce complexity of the software, a

separate controller should be made to handle transitions between the states, and a current

calculator which calculates the actual currents. The controller passes current calculator an

angular acceleration vector, according to which the current calculator calculates currents to

generate angular acceleration in desired direction. Current calculation scheme is shown in

Figure 4.

Controller – because sensors that are required to determine and control attitude are on board

ADCS, only general commands, like „make satellite spin at given speed“ or „point solar panels

towards Sun“, will be received from on-board computer. The actual numeric values of the

desired state, like satellite’s attitude in ECEF or angular velocity should be determined by

Figure 4. Current calculation scheme. Author’s drawing.

21

ADCS. To do this, a separate software component should be used. This component will be

using all the data available on board ADCS, and perhaps on other subsystems, to calculate

desired state and pass it to current calculation algorithm.

Communication between components in normal working mode is shown in Figure 5.

Rectangular shapes represent software components and circular shapes represent hardware

components.

Figure 5. ADCS components in normal working mode. Author’s drawing.

22

2.3 Operating system

TUT satellite’s ADCS will running on FreeRTOS, which is an open-source cross platform

real time operating system [10]. The advantages of this OS is that it is completely free, open-

source, lightweight and easy to use. Many previous student satellite missions have used

FreeRTOS.

2.4 Simulation

A simulation environment is needed to develop and test the software. Modelling and simulation

will be done mainly in Matlab and Simulink. The goal of simulation environment is to estimate

the effect of currents applied by ADCS on satellite’s attitude and generate input data for the

ADCS accordingly. Scheme of ADCS’s simulation environment is shown in Figure 6.

Simulation software should contain following components, some of which can be reused from

those on board the ADCS:

ADCS – this is the component that will be simulated, it will be running on a test board, its

inputs are going to be data from sensors and outputs are going to be currents for the magnetic

coils. It will be connected to a PC with simulation environment through a serial port.

Sensor emulators – emulators for Sun, magnetic field and angular velocity sensors are needed.

Main goal of these emulators is to add noise to sensor readings to create space-like conditions

for ADCS. Inputs for those components are therefore actual conditions that the sensors will be

measuring and output will be what sensor’s reading would be like based on that.

Coil model – emulator for magnetic coils is needed. Impedances of coils, satellite body’s

influence on magnetic field and coil’s actual generated magnetic field needs to be emulated.

Input for this component will be values written to digital-analog converters and output will be

magnetic field generated by the coils.

Earth’s magnetic field model – goal of this component is to generate input data for

magnetometer emulator and torque calculation components. While Earth’s magnetic field

model on board the satellite returns magnetic field’s vector in ECEF, this model should return

23

magnetic field’s vector in SBRF, which is why satellite’s attitude is also required as input along

with satellite’s position.

Orbit model – this model is going to calculate satellite’s location in this simulation. This will

work the same way as orbit propagator on board the system.

Sun vector model – to create input for Sun sensor emulator, a component is needed that

calculates sun’s assumed direction based on time, satellite’s location and attitude.

Torque calculation – to calculate torque created by interaction between coil’s magnetic field

and Earth’s magnetic field this component is needed. Inputs are Earth’s and coil’s magnetic

fields vectors and output will be torque vector.

Satellite body model – to calculate effect of torque on satellite’s body, a component that

includes model of satellite’s moment of inertia is needed. This component takes torque vector

as input and outputs angular velocity.

Attitude calculation – this component remembers satellite’s current attitude and updates this

based on angular velocity of satellite’s body. Output will be satellite’s attitude in ECEF.

Clock – for synchronization between components and because satellite’s clock and actual time

may not be in sync, the simulation environment should have its own clock.

24

Figure 6. ADCS simulation scheme. Author’s drawing.

25

3 Tasks within operating system

3.1 Task allocation

The amount of different tasks should be minimal to increase efficiency of the software, but

anything that needs to be calculated in parallel has to be in separate task. For those reasons,

tasks within the operating system will be allocated as following

1. Bus communication – Due to requirement 4, a task should be always listening to signals

and data from bus and sending data out when needed. This task contains communication

protocols for the bus and send-receve buffers for data. Whenever there’s data to be sent

and bus is open, this task should be activated with highest priority until messages and data

is sent.

2. Attitude and current calculation – calculating attitude and current is going to be done in

a sequence, which means this can be done within the same task. This task is

computationally most consuming and also most complex, because all the working modes

realised withing this task.

3. Orbit propagation – satellite’s location is something that needs to be periodically

updated and predicted, so this should be performed in a separate task. This task is going to

be woken up after fixed time intervals, regardless of working mode, and calculates a list of

locations where satellite is going to be within upcoming short period of time, and stays

suspended until this period is over, to be woken up to update locations again.

4. Coil control – a task needs to apply and maintain currents of the coils during torque cycle,

and therefore should be a separate task to do this. When currents are calculated and ready

to be applied, this task is woken up, currents are applied and task is put back to sleep. For

a certain amount of time, this task is periodically woken up to make adjustments to

currents and when this time is over, this task should is put in a suspended mode until

woken up again by attitude and current calculation task.

5. Sensor reading – one task should be concentrated solely on reading data from sensors,

incase some other subsystem requires sensor data. This task should read data from all

three different sensors, but because magnetometers are not useful when magnetorquers are

26

active, this task should have two different working modes, depending on current phase in

torque cycle. When magnetorquers are inactive, magnetometer reading can be used and

then magnetometers should be read, otherwise magnetometers should be ignored to save

processing time. Because sun sensors are useless during eclipse, this task should have

another two working modes, independent of whe first two. When the satellite is in eclipse,

sun sensor readings should be ignored.

Communication between tasks is shown in Figure 7.

Figure 7. Communication between tasks. Author’s drawing.

27

3.2 Components within tasks

Components should be included within OS’s tasks as following

Attitude and current calculation task should include following components:

Attitude determination algorithm has a central role in this task, along with current

calculation algorithm. These components will be initiated in a sequence because current

calculation algorithm is heavily dependent on attitude determination algorithm.

Controller will also be included within this task because current calculation algorithm needs

the desired state as input.

Sun vector and Earth’s magnetic field models hold a key role in determining satellite’s

attitude, which means they should be included within attitude and current calculation task.

B-dot algorithm- some other components that might be required to control coils are going to

be contained within this task, because of this the B-dot algorithm should also be included within

this task.

A smaller component is required for measuring time it takes to calculate attitude and current,

to be used as input for attitude determination algorithm.

Orbit propagation task’s task is centered on the orbit propagator. Other systems and tasks

are only going to need satellite’s final positon. To calculate satellite’s final position,

perturbation model should also be included within this task.

Sensor reading task should include:

Earth albedo model- because other tasks and systems are only going to need Sun’s direction

and not sun sensor reading itself, Earth’s albedo should be filtered out within this task before

sending data to other systems.

Additional smaller components, like filters for sensors are also included sensor reading task.

28

3.3 Torque cycle

As stated in requirement 1, attitude control needs to work in cycles. Cycle should consist of at

least three different stages where:

 magnetorquers are idle and Earth’s magnetic field can be accurately measured

 magnetorquers are active to apply torque to satellite’s body

 magnetorquers are cooling down after applying torque, which takes time due to

magnetic inductance

Two types of cycles have can used to control satellite’s attitude, first of which consists of four

stages: measurements, calculation, torque and cooldown. The advantage of this cycle is that

calculations are made with most up-to-date data and torque is applied right after calculations

are finished, so there would be little possibility of any change happening with satellite’s attitude

between calculations and torque, which gives this configuration good accuracy.

Second type has three stages: measurements, torque&calculations and cooldown. Applying and

maintaining currents on magnetorquers requires little to no processing power, but will be

maintained for a noticeable amount of time. During this period, currents for the next torque

cycle can be calculated, shortening overall torque cycle by the amount of time it would be

required to calculate currents and therefore significantly increasing the speed at which satellite’s

attitude can be changed. Trade-off of this cycle is accuracy, because currents would be

calculated for the next cycle, by time of which the satellite’s angular velocities will have

changed due to torques applied on current cycle. This change, however, is probably

insignificant because the torques created by magnetic coils are very small. Another trade-off is

slightly more complex software because satellite’s attitude would need to be predicted further

ahead and additional variables would be required to store values for both current and next torque

cycles.

If accuracy loss of the second cycle is small enough, the second cycle should be used. This

means a rough estimation of how much attitude can be changed within one cycle is required.

The estimation will be done according to worst-case scenario, which in this case is the biggest

possible change to satellite’s attitude during one cycle. For attitude control overall this would

29

be the best-case, but for second torque cycle this is the worst case. Magnetorquers ability to

apply torque to satellite’s body is characterized as magnetic moment M, whose units are Am2

(Ampere per meter squared) [11].

The aim for TUT satellite is to get a magnetic moment of 0.12 Am2 from the coils [9]. The

torque produced by magnetorquers is cross product between Earth’s magnetic field strength B

in teslas and coil’s magnetic moment [11]:

Τ = 𝐵 × 𝑀

Earth’s magnetic field in its strongest point is 65 microteslas. [12] Cross product is largest when

the two vectors are perpendicular (which would be the worst-case), in which case length of the

resulting vector is equal to product of the lengths of those two vectors:

|Τ| = |𝐵| ∙ |𝑀| = 0.12𝐴𝑚2 ∙ 65𝜇𝑇 = 7.8 𝜇𝑁

TUT nanosatellite will be using deployable solar panels, which significantly change and

increase its moment of inertia, but in this calculation, for simplicity reasons and the fact that

smallest moment of inertia is worst case, equation for a cube will be used. Moment of inertia

of a solid cube is following [13]:

Ι =
𝑚𝑠2

6

Where m is mass and s is length of a side. TUT satellite’s mass will be roughly 1.2 kg and

length of side, as set by CubeSat standard, 0.1 meters. This means the satellite’s moment of

inertia will be at least:

Ι =
𝑚𝑠2

6
=

1.2 ∙ 0.12

6
= 0.002 𝑘𝑔 ∙ 𝑚2

Equation to calculate angular acceleration is:

𝛼 =
Τ

Ι
=

7.8𝜇𝑁

0.002𝑘𝑔 ∙ 𝑚2
= 3.9 ∙ 10−3 𝑟𝑎𝑑 𝑠2⁄ ≈ 0.223 𝑑𝑒𝑔 𝑠2⁄

This means that even if torque phase in the cycle would last 1s (which would be a very long

time for a torque phase), change in angular speed would be only 0.223 𝑑𝑒𝑔 𝑠⁄ , which means

even if torque cycle would last a couple of seconds, the changes that would happen during that

30

cycle would not surpass accuracy requirement of 2 degrees. This means that the second type of

torque cycle should be used.

Activity of tasks within the cycle is shown in Figure 8 (this figure does not represent the relative

durations of stages). Bus communication and orbit propagation tasks are running in background

during all phases of the cycle, attitude and current calculation task will be woken up at the

beginning of calculations & torque phase, coil control is woken up at the beginning of

calculations & torque stage as well, but running in background as only very little calculations

are required for maintaining currents. Sensor reading&filtering task will be running as primary

task during sensor measurements phase, because sensor measurements need to be read multiple

times in a quick succession to get an accurate reading. During other stages, reading & filtering

task will be running in background to update readings continuously.

Figure 8. Attitude control cycle. Author’s drawing.

31

4 Developed software

In following chapter the secondary goal of this work, which is development of software API

for simulation and further software development, will be covered. Two different APIs are made,

first is API for establishing communication between test board and PC with simulation

environment and second is API for configuring and gyroscope on the test board, so actual

gyroscope data can be used in simulations.

4.1 Development environment

Software is run and tested on STM32F3 Discovery development board, which is connected to

computer through USB cable. All code for this project is written in C.

Development is done in Eclipse IDE, which has Bleeding Edge Toolchain and GDB debugger

installed on it. Communication with test board is established through OpenOCD software.

Source code is compiled for ARM Cortex M4 architecture using Bleeding Edge toolchain, GDB

connects to OpenOCD through localhost for downloading code and debugging.

4.2 Com port API

Before any further development can be done, communication has to be made possible between

PC and the development board. This will be done by using Prolific PL2303 USB to UART

Bridge, which is connected to USART3 on development board side and to USB connector on

computer side. This device opens a COM port inside the PC which can be accessed by a variety

different programs, like Matlab.

4.2.1 Design

A separate OS task is required for sending and receiving data. To save processor’s resources,

interrupts are be used for timing and control of the task rather than polling. Interrupt handler

disables interrupts and wakes the thread up. For flow control, transfer register empty (TXE)

interrupt is used, which is built into USART [14]. After sending a byte, next byte is checked if

it’s equal to zero (end of string). If it isn’t, TXE interrupt is enabled to wake the thread up once

32

current byte has been sent. If next byte is zero, transmitting buffer index is reset and TXE

interrupt is not enabled, thread will be woken up only by a receive register not empty (RXNE)

interrupt or call from another task. If the thread is woken up by RXNE interrupt, byte is read

from receive register and analyzed. If it’s beginning of message (BOM) byte, read register index

is reset, if its end of message (EOM) byte, a string receive routine is called and string is passed

to the routine. Code for the routine should be written by user of this API. Activity diagram

about sending/receiving data through USART is shown in Figure 9.

Figure 9. USART send/receive activity diagram. Author’s drawing

33

Because multiple different threads will be using the same thread for sending data, it has to be

guaranteed that no data is lost and all gets transmitted in correct order. To do this, a large string

is used a send buffer. When another thread wants to send a string of data while a string is already

being sent, new string to be sent will be written to the end of current string that is being sent in

the buffer, so that once send buffer index reaches end the of current string, new string will be

sent right after.

4.2.2 API reference

Source code for this API is written directly for FreeRTOS, which means this will only work

when this project is based on FreeRTOS. Because this code is based on interrupts, line where

USART3’s interrupt handler is needs to be replaced with USART3_IRQHandler in startup.c

file in the project for this code to work. User of this API has following functions visible:

void vComPortTask(void *pvParameters) – this is function of the task that sends and

receives data through USART3. The task needs to be created using xTaskCreate() provided

by FreeRTOS’s API before any other to be used.

extern void vStringReceiveRoutine(char []) – this function is called within vComPortTask

when EOM byte has been received. Contents of this task have to be written user of this API, to

parse received messages according to need. Parameter of this function is the string that has been

received.

int comPrintf(const char* strMessage, ...) – this function passes a string to vComPortTask

to be sent throuch USART3 to PC’s com port. As mentioned earlier, this function is made

thread-safe, which means this can be called by multiple different threads running in parallel

without the risk of losing any data. The buffer where messages are queued, however, is not

limitless which means sending a lot of data at once or spamming messages in a loop without

delays is not advised. Returns 0 if writing the string to send buffer was successful, 1 if buffer

was full. Parameters work the same way as for printf function contained within <stdio.h>

library.

4.3 Gyroscope API

Gyroscope data can be used for testing and simulation of B-dot and attitude control algorithm

on Earth, which is why gyroscope reading should be one of the first things to be done once

communication with test board has been established. On STM32F3 test board, gyroscope is

34

connected to the MCU through SPI interface [14]. On SPI interface, the master first sends out

a byte which contains address and a bit which indicates whether read or write action is going to

be performed [15].

4.3.1 API reference

This API is developed to work with L3GD20 gyroscope on board STM32F3 development

board, but can be easily reconfigured to be used for a different device and/or SPI interface.

Code for this API is written directly for FreeRTOS, which means this will work only with this

OS.

Because the code works with interrupts, line where SPI1’s interrupt handler is needs to be

replaced with SPI1_IRQHandler within startup.c file of the project before using this API.

User of gyroscope’s API has following functions available for use:

uint8_t gyroReadFromRegister8(uint8_t address) – returns the 8 bit value from a register of

the device connected to SPI. Parameter address is the 7-bit address of the register to be read.

This function should not be called from two different threads running in parallel to avoid data

corruption.

void gyro_WriteData(uint8_t address, uint8_t value) – writes an 8-bit value to addressed

register. Parameter address is a 7-bit address of targeted register, parameter value is 8-bit value

to be written to targeted register of the device. No return value.

void gyro_setup(void) – this function configures and initiates SPI1 interface and GPIO pins to

which the gyroscope is connected to, configures interrupt vectors and finally powers up the

gyroscope so that it’s registers can be read. This function must be called before any of the above

two functions are called or else the thread on which they are called will suspend and never wake

up.

void gyro_SetDPS(char DPS) – sets gyroscope’s degrees per second (DPS) setting. L3GD20

has three possible DPS settings: 250, 500 and 2000. Parameter DPS can be one of either three

values contained within header file: L3GD20_DPS_200, L3GD20_DPS_500 or

L3GD20_DPS_2000.

void gyro_powerup(void) – wakes gyroscope up from either sleep or power-down mode.

35

void gyro_powerdown(void) – puts gyroscope in power-down mode.

void gyro_sleep(void) – puts gyroscope in sleep mode.

36

5 Summary

Goal of this thesis was to develop software architecture of TUT nanosatellite’s ADCS

subsystem. To accomplish this goal, based on TUT nanosatellite’s ADCS’s hardware design,

requirements for software design were analyzed by examining previous student nanosatellite

missions. In addition, datasheets of various hardware components were examined.

Technically most challenging parts were analysis and elaboration of the details of ADCS system

and to understand and develop general software architecture where all smaller components are

working together.

As a result of this work, requirements for software were gathered, main software components

were specified, component interactions were defined, tasks within operating system were

allocated, working cycle was specified and overall software architecture was developed. In

addition to this, an application programming interface was developed for simulation purposes.

Practical value of this work is a comprehensive system analysis that makes simpler future

organization and allocation of tasks inside the ADCS development team. A simple and

universally applicable software API has been developed.

37

 Bibliography

[1] TUT Mektory, “TUT - Mektory Nanosatellite programme,” TUT Mektory, [Online].

Available: http://www.ttu.ee/?id=115635. [Accessed 11 March 2016].

[2] R. Munakata, “CubeSat Design Specification,” California Polytechnic State University,

San Luis Obispo, 2009.

[3] “SwissCube Phase A ADCS report,” Swiss Federal Institute of Technology in

Lausanne, Lausanne, 2006.

[4] A. Slavinskis, U. Kvell, I. Sünter, H. Kuuste, S. Lätt, K. Voormansik and M. Noorma,

“High spin rate magnetic controller for nanosatellites,” ActaAstronautica, vol. 218, no.

226, pp. 1-9, 2013.

[5] D. Bhanderi, B. Ø. Andresen, C. Grøn, R. H. Knudsen, C. Nielsen, K. K. Sørensen and

D. Taagaard, “Attitude Control system for AAUSAT-II,” Aalborg University, Aalborg,

2005.

[6] ST Electronics, “STM32F3DISCOVERY - STMicroelectronics,” 21 04 2016. [Online].

Available: http://www2.st.com/content/st_com/en/products/evaluation-tools/product-

evaluation-tools/mcu-eval-tools/stm32-mcu-eval-tools/stm32-mcu-discovery-

kits/stm32f3discovery.html.

[7] J. B.-Y. Tsui, “Fundamentals of Global Positioning System Receivers: A Software

Approach,” John Wiley & Sons, Inc, 2000.

[8] F. Jordan, “SwissCube Phase A Electrical Power System Final Report,” Swiss Federal

Institute of Technology in Lausanne, Lausanne, 2006.

[9] E. Priidel, Project's work group minutes, Tallinn, 2015/2016.

[10] Real Time Engineers Ltd., “FREERTOS,” Real Time Engineers Ltd., [Online].

Available: http://www.freertos.org/. [Accessed 14 05 2016].

[11] B. Despont, “System Engineering and development and test of the ADCS breadboard

for SwissCube,” Swiss Federal Institute of Technology in Lausanne, Lausanne, 2007.

[12] C. C. Finlay, S. Maus, C. D. Beggan, T. N. Bondar, A. Chambadut, T. A. Chernova, A.

Chulliat, V. P. Golovkov, B. Hamilton, M. Hamoudi, R. Holme, R. Hulot, W. Kusang,

B. Langlais, V. Lesur, F. J. Lowes, H. Lühr, S. Macmillan, M. Mandea, S. McLean, C.

Manoj, M. Menvielle, I. Michaelis, N. Olen, J. Rauberg, M. Rother, T. J. Sabaka, A.

38

Tangborn, L. Tøffner-Clausen, E. Thébault, A. W. P. Thomson, I. Wardinski, Z. Wei

and T. I. Zvereva, “International Geomagnetic Reference Field: the eleventh

generation,” Geophysical Journal, vol. 183, no. 3, pp. 1216-1230, 2010.

[13] R. A. Serway, Physics for Scientists and Engineers, Saunders College Publishing, 1986.

[14] ST Electronics, “STM32DISCOVERY Discovery kit for STM32F303xx

microcontrollers,” 02 2013. [Online]. Available: http://www.st.com/st-web-

ui/static/active/jp/resource/technical/document/user_manual/DM00063382.pdf.

[15] ST Electronics, “L3GD20 Datasheet - production data,” ST Electronics, Singapore,

2013.

[16] M. Rebane, “Progress report- TUT MEKTORY ADCS system,” TUT, Tallinn, 2015.

