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Abstract 

The internet of things (IoT) domain is poised to grow multifold in the near future. This 

will lead to wider deployments of connected embedded devices. System manufactures 

would like to upgrade the firmware in field to improve system functionality, provide bug 

fixes or respond to security threats. During the development, one might use Join Test 

Action Group (JTAG) or Serial Wire Debug (SWD) interface to program system memory, 

however due to cost-effectiveness reasons, development hardware is generally not 

shipped with the end product. The ability to upgrade the firmware in the field is even 

more challenging for itinerant embedded systems or, for those having large quantities of 

deployments.  

This work concentrates on design considerations and implementation of highly portable 

bootloader for fail-proof firmware upgrade over the air for resource constrained 

embedded devices. In this thesis, a bootloader was developed for STM32 series system 

on chip that allows firmware upgrade over GSM/GPRS and Wi-Fi network. Though the 

implementation is for STM32, generic design considerations for bootloaders for fail-

proof firmware update is also presented here. Hence, I believe that the ideas presented 

here can be readily adopted to similar Embedded systems project. 

At first, over the air firmware upgrade process, its challenges and associated system 

components are explained in brief. Then the implementation specific details are 

explained. Based on the System architecture, various individual components are 

discussed in detail. One of the main focus of the thesis is discussion about the 

dependability and fault tolerance of the firmware upgrade process. The implementation 

is validated by performing number of experiments.  Thesis outcome is a successful 

implementation on a commercial embedded systems product. 

This thesis is written in English and is 67 pages long, including 6 chapters, 39 Figures 

and 6 Tables. 
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Annotatsioon 

Eksimiskindel eetri kaudu tehtav püsivara uuendus sardsüsteemidele 

Seadmete Interneti (IoT) domeen laieneb lähitulevikus mitmetesse suundadesse. See 

juhatab meid erinevatesse sardsüsteemide kasutusvaldkondadesse. Süsteemi 

funktsionaalsuse parandamise, vigade kõrvaldamise ja turvalisuse tõstmise eesmärgil 

sooviksid tootjad uuendada seadme püsivara üle eetri ja hoides seda installeerituna 

seadme asukohas. Arenduse käigus on võimalik süsteemi mälu programmeerimiseks 

kasutada Ühendatud Testimisrühma (JTAG) või Seerialiidese Siluri (SWD) liidest. Toote 

omahinna alandamise eesmärgil ei anta tavaliselt arendusriistvara lõpptootega kaasa. 

Süsteemide puhul, mis on pidevalt liikumises, või suurte hulkade seadmete puhul on 

püsivara uuendamise teostamine veelgi suurem väljakutse.  

Käesolevas lõputöös keskendutakse portatiivse alglaaduri disaini valikutele ja 

implementeerimisele teostamaks piiratud võimalustega seadmetes töökindlat püsivara 

uuendust üle eetri. Töö käigus arendati välja alglaadur STM32 tüüpi mikrokontrollerile, 

mis võimaldab püsivara uuendust üle GSM/GPRS ja WIFI võrgu. Samuti on käsitletud 

üldisi alglaaduri disaini võimalusi töökindla püsivara uuenduse teostamiseks. Seetõttu 

usun, et siin esitatud ideid on võimalik kasutusele võtta teistes taolistes sardsüsteemide 

projektides.  

Esiteks esitletakse üle eetri teostatava püsivara uuenduse protsessi, väljakutseid ning 

sellega seotud süsteemi komponente. Järgmisena selgitatakse implementatsiooniga 

seotud detaile ning seadmete üksikosadega seotud detaile, mis on setud süsteemi 

arhitektuuriga. Üks peamisi fookuseid käesolevas töös on töökindluse ja veakindluse 

tagamine püsivara uuenduse käigus. Implementatsiooni käigus teostati erinevaid 

eksperimente demonstreerimaks püsivara uuenduse töö- ja veakindlust. Töö käigus 

arendati välja kommertsiaalsele tootele sobiv püsivara uuendamise lahendus. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 67 leheküljel, 6 peatükki, 39 

joonist, 6 tabelit. 
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Table of abbreviations and terms 

IAP In-Application Programming. It is the ability of the 

 application to erase and program code memory. 

ISP In-System Programming. It is the ability of dedicated 

 hardware circuitry to program the microcontroller or 

 similar programmable logic device after it’s been soldered 

 on a PCB. 

JTAG Join Test Action Group. It is a IEEE 1149.1 standard that 

 specifies the specification for  performing boundary-scan 

 hardware testing at the IC level. 

SoC System on Chip. A system on a chip or system on chip is an 

 integrated circuit (IC).  

SWD  Serial Wire Debug. It is a 2 pin alternative to a traditional 

IEEE 1149.1 compliant (JTAG) interface.  

HAL Hardware Abstraction Layer is software abstraction layer, 

 consisting, application programming interface to interact with 

 underlaying hardware. 

TE Terminal Equipment.  

TA Terminal Adapater 

MT Mobile Termination 

CR Carriage Return. ASCII code in hexadecimal format is 0xD 

LF Line Feed, ASCII code in hexadecimal format is 0xA 

OTP One Tme Programmable. 

MCU Microcontroller Unit 

USART  Universal Synchrononus Asynchronous Receiver 

Transmitter 
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UART Universal Asynchronous Receiver/TSransmitter. A serial 

 communication protocol 

I2C I-Squared-C. A serial communication protocol 

ROM Read Only Memory. 

SRAM Static Random Access Memory 

ASCII American standard code for information interchange 

OTA Over The Air 

CMSIS Cortex Microcontroller Software Interface Standard is a 

 vendor-independent hardware abstraction layer for the 

 Cortex-M processor series and defines generic tool 

 interfaces [19] 

HTTP Hypertext trasfer protocol 

HTTPS Hypertext trasfer protocol secure 

SD Secure digital. A non-volatile memory card format. 

RTOS Real Time Operating System 

CAN Controller Area Network.  

IRQ Interrupt Request 

ISM Industrial, Scientific and Medical 
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1. Introduction 

According to joint research by IT research firm IDC, Intel and United nations [1], 200 

billion connected things will be in use by 2020. The driver to the extraordinary growth of 

IoT domain is the service offerings by the end user organizations and vendors. In their 

already deployed IoT systems, device firmware update over the air is one of the key 

enabler for the system manufacturers to offer new features or cater to the new feature 

requirements from their customer. 

The impressive growth of IoT has seen various organizations and vendors compete for 

the similar product/service offerings. To stay competitive, the time to market should be 

kept as low as possible. The sooner, one integrates its offerings, better are its chances on 

capitalizing the market. However, this could lead to partially tested systems, resulting in 

critical software defects in field. System manufacturers would like to provide patches to 

fix those software defects, however applying software update on tiny embedded systems 

is rather complex for three main reasons: 

 The programming tools for microcontrollers such as those popular in IoT domain 

are generally not shipped with the product. Typically, it requires dedicated 

circuitry such as Join Test Action Group (JTAG) or Serial Wire Debug (SWD) 

interface to program the main memory of microcontroller. 

 Embedded systems are generally deployed in very large numbers and hence it 

makes it difficult to manually update the software on each. 

 Many a times, programmable logic devices could be deeply embedded in the 

system, requiring a lot of effort in physically accessing the system. 

For these reasons, the ability to update the software in field in timely and cost effective 

manner is immensely attractive to system manufacturers. 

Due to the connected technology, a system flaw is easier than before to exploit. Security 

breach can have serious consequences and at the very least may render the system useless 

for significant amount of time. Over the air update could potentially enable the vendors 

to avert cyber-attacks or respond quickly to security threats. 
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1.1. Motivation 

Over the air update is not a new topic; this area has been researched and different forms 

of implementation already exist at the market. For example, the firmware update of 

Android or iOS-based cellphones or update of mobile applications. However, the major 

difference between these forms of over the air update with the target System on Chips 

(SoCs) of this thesis is that the latter is extremely resource constrained, is typically more 

deeply embedded, have budgetary restrictions and could operate in critical applications. 

A fail-proof, over the air firmware update of resource constrained embedded systems is a 

challenging task and is of more relevance for critical applications. It is surprisingly easy 

to render the system useless, if the software update process is not handled properly. In 

most cases, it could lead to revenue loss, but it can have dire consequences as well. 

Technological advances are bringing myriad of applications in large number of system 

deployments. System manufacturers would like to bring the turnaround time and time to 

market to a minimum, while not overlooking the safety and functionality requirements. 

This is more of an engineering challenge and is implementation specific, but nonetheless 

a portable software is hugely appreciated. 

Therefore, a portable solution for over the air upgrade of firmware for resource 

constrained embedded systems is an interesting area of research. 

1.2.    Scope 

Firmware upgrade over the air is quite an extensive topic, so the following goals were 

specified and accordingly work flow was planned: 

 Study In-Application Programming (IAP) technique. 

 Implement IAP technique to program STM32F051 Microcontorller Unit (MCU). 

STM32 series MCUs are one of the most popular MCU [2] in the IoT market 

today. 

 Develop a bootloader. 

 Extend bootloader to support firmware update over GSM/GPRS network. 

 Develop Hardware Abstraction Layer (HAL). 



14 

 Using this HAL, port bootloader and application on different MCUs 

(STM32F407VG and STM32F072CB) 

 Extend bootloader to support firmware update over Wi-Fi. 

1.3.    Thesis organization 

Thesis work is divided into 6 chapters. The problem statement is introduced in chapter 1. 

Basic concepts of the studied area are presented. A short overview on the complexity of 

the problem giving explanations why current problem is valuable. After that, goals of 

thesis are identified. 

Chapter 2 covers the basic definitions and concepts of major components of this thesis 

work. 

In chapter 3, implementation specific, systems architecture is discussed. It lays 

foundatation for the later chapters. 

Various system components are covered in length in chapter 4. This chapter starts with 

generic concepts behind bootloader and the design considerations for a fail-safe system. 

The system requirements and implementation details for the co-existance of bootloader 

and application firmware in the main flash memory of the MCU is then discussed. The 

firmware file format is then discussed in brief. The rest of the chapter covers data 

communication details and software portability and reusability. 

Chapter 5 summarizes the result of the thesis. 

Finally, Chapter 6 addresses unsolved problems and possible future studies. 
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2. Theoratical backgorund 

2.1.    Device firmware update over the air 

Device Firmware Update Over The Air (DFU OTA) refers to various methods of 

distributing software updates. Though, a software update could be as simple as some 

simple configuration changes that does not require reprogramming the main flash 

memory or halting the normal operation of the system, this thesis focuses on more 

engaging firmware update process, that would typically halt the normal execution of the 

system and repogram certain areas of main flash memory. 

 

Figure 1. Device firmware update over the air. 

A sample firmware update process in its most basic form is shown in Figure 1. As shown 

in Figure, software update is released from the factory and uploaded to cloud. The target 

system gets notification of the software update availability, downloads the software 

image/firmware and updates the software running on itself. However, during this entire 

process, many things can go wrong. Some of the most common problems are shown in 

Figure 2, 3 and 4. 

It is assumed that the over the air firmware upgrade process can can get interrupted due 

to intermittent network failure. Similarly, various other network issues can be seen and 

are summarized in Figure 2. 
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Figure 2. Network error during firmware update. 

As shown in Figure 3, It is possible that a power reset or a system shutdown during the 

upgrade process is applied. It will also interrupt the fimware upgrade process.  

 

Figure 3. Power outage during firmware update. 

Another software upgrade failure scenario is the firmware file corruption.  It can happen 

due to multiple reasons; the firmware file could be corrupted at the source itself or could 

get corrupted at the destination due to either of the issues shown in Figure 2 and 3. This 

scenario is shown in Figure 4. 

In the presence of such errors, an incorrectly designed system, may report undefined 

behvaior or in worst-case, could have catastrophic consequences. Therefore these issues 

and other failure issues should be handled properly by the overall system. 
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Figure 4. Firmware image corruption during network download. 

2.2.    Embedded systems 

An embedded system is a special-purpose system in which the computer is completely 

encapsulated by the device it controls. Unlike a general purpose computer, an embedded 

system performs pre-defined tasks, usually with very specific requirements. Card readers, 

Calculators, Smoke detectors etc. are all examples of Embedded Systems. Since the 

system is dedicated to specific tasks, such systems are highly optimized for size and cost.    

2.3. In-application programming 

Flash memory is a special type of non-volatile memory that stores the application. It can 

be either integrated into the MCU or is soldered on the Printed circuit board (PCB) 

externally. There are two programming methods to reprogram this memory area; In-

System Programming (ISP) and IAP. With ISP, the device can be re-programmed in the 

circuit by using specialized hardware such as JTAG or SWD interface. The re-

programming process is started manually, during which processor is halted. It requires 

special circuitry. IAP on the other hand allows the running application to re-program the 

on-chip Flash memory. During the IAP process, the application continues to run. With 

IAP, it is possible to implement applications that can be updated remotely without the 

need of physical presence of a technician. IAP allows a cost-effective method to perform 

a software enhancement, once the system has been already shipped. The central theme of 

this thesis is to use IAP techniques to build a robust and portable bootloader that facilitates 

re-programming the on-chip Flash memory over different communication channel such 

as GSM/GPRS network and Wi-Fi. 
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2.4.    Firmware 

Firmware is a software program that typically runs on Embedded devices. It is responsible 

for overall Embedded Systems functioning. It is often stored on the on-chip Flash 

memory. The ability to upgrade the Firmware over the air, in the field, is the central theme 

of this thesis. 

2.5.    Bootloader 

Bootloader is an application whose primary purpose is to allow a system software to be 

updated without the use of specialized hardware such as a JTAG programmer or SWD 

interface. The boot-loader manages the systems images. There are many different sizes 

and flavors to embedded boot-loaders. They can communicate over a variety of protocols 

such as Universal Synchrononus Asynchronous Receiver Transmitter (USART), 

Controller Area Network (CAN), I-Squared-C (I2C), Ethernet, USB etc. Systems with 

boot-loaders have at least two program images coexisting on the same micro-controller 

and must include branch code that performs a check to see if an attempt to update software 

is in progress. 

2.6.    Flash memory 

Flash memory is an electronic non-volatile computer memory storage medium that can 

be electronically reprogrammed. Embedded devices, such as those that are used during 

this thesis work have on-chip Flash memory, which stores the bootloader and the 

application firmware. Storing data in Flash memory is quite different from Static Random 

Access memory (SRAM) and has its own nuances. Since, Flash memory is a non-volatile 

memory, it retains the data even after the power supply has been removed. Typically, an 

erase operation is needed before writes can be perfored. Based on the type of Flash 

memory, the erase block varies. For example, on NAND-type Flash memory, data may 

be written in blocks, whereas on NOR-type Flash memory, a machine word size data can 

written to an erased location or can be read after. Erase, read and write granularity of 

MCUs used in this thesis is shown in Table 2 in page 27. 
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2.7.    SRAM 

Static Random Access Memory is a volatile memory that retains data bits in memory as 

long as the power is being supplied. Unlike dynamic RAM (DRAM), which stores bits in 

cells consisting of a capacitor and a transistor, SRAM does not have to be periodically 

refreshed. Static RAM provides faster access to data and is more expensive than DRAM. 

Typical applications of SRAMs are low capacity memory products such as on-chip 

memory on microcontrollers and L1, L2, L3 caches on computer. 

2.8.    GSM/GPRS 

Global System for Mobile (GSM) Communications is a standard developed by the 

European Telecommunications Standards Institute (ETSI) to describe the protocols for 

second-generation (2G) digital cellular networks used by mobile phones. As of 2014 it 

has become the default global standard for mobile communications. General Packet Radio 

Services (GPRS) is a packet-based wireless communication service that promises data 

rates from 56 up to 114 Kbps and continuous connection to the Internet for mobile phone 

and computer users. GPRS is based on Global System for Mobile (GSM) communication 

and complements existing services such circuit-switched cellular phone connections and 

the Short Message Service (SMS). For this thesis, A GSM/GPRS hardware module 

(modem) was used for downloading Firmware over the air. 

2.9.    AT+ command 

AT commands are instructions used to control a modem. Since each command starts with 

“AT”, such commands in general are called as AT+ command sets. The ETSI GSM 07.07 

(3GPP TS 27.007) specifies AT style commands for controlling a GSM phone or modem 

and The ETSI GSM 07.05 (3GPP TS 27.005) specifies AT style commands for managing 

the Short Message Service (SMS) feature of GSM. 

2.10.    Wi-Fi 

Wi-Fi is a wireless technology that uses radio waves to provide network connectivity. It 

is a wireless local area network (WLAN) technology, based on the IEEE 802.11 

standards. Generally, it operates in 2.4Ghz Industrial, Scientific and Medical (ISM) band. 
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3. System architecture 

As part of thesis work, an implementation was developed. This chapter covers the overall 

system architecture of the implementation. 

3.1. System overview 

The overall system architecture is shown in Figure 5. The center theme of this thesis work 

is to perform firmware upgrade on MCUs that do not have the ability to directly access 

the remote firmware repository. However, after interfacing a Radio Frequency (RF) 

module over serial communication interface, over the air firmware upgrade can be 

achieved on such MCUs. 

 

Figure 5. Overview of system architecture 

There are several different types of Radio Frequency (RF) modules that could be 

interfaced with the target MCU. Broadly they are classified as tramistter, receiver and 

transreceiver. The RF module should be selected, based on the the area of system 

application. Since, bi-directional communication between the remote firmware repository 

and RF module is required, transreceivers are selected. 

Remote firmware repository stores the firmware files and associated checksum. A client-

server architecture is used for communication between the RF module and the remote 

firmware repository. A fully functional server has content management, authentication 
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techniques, high availability, disaster recovery, and security features, however these 

topics are outside the scope of this thesis. As a bare minimal requiremet for this thesis, 

the remote server should be capable of responding to Hypertext Trasfer Protocol (HTTP) 

request and should be capable of storing multiple files that could be individually 

accesssed.  

As part of this thesis work, software update was performed on three different target MCUs 

over GSM/GPRS network. Software update over Wi-Fi support is planned for future 

work. Various system blocks are covered next. 

3.2. Memory overview 

Each microcontroller has on chip flash memory to store the program. This area of main 

flash memory is divided into four different regions; bootloader area, application area, 

backup application (for dual mode firmware update) area and reserved area (for storing 

few parameters). Since the bootloader is in-charge of programming the application in the 

flash memory, it is of utmost importance to understand the flash memory organization. 

On ARM-Cortex version 6 and 7 based SOC, the linear address space is 4GB. For 

example, Figure 6 shows the memory map on STM32F051 SOC which is based on ARM 

cortex M0 series processor. The addressable memory is divided in 8 main blocks, each of 

512 MB. Program memory data memory, registers and I/O ports are organized within the 

same linear address space.  

Flash is broken into divisible sections. The smallest section of flash is called page. Pages 

are grouped together into a larger structure called sectors. Sectors are combined to form 

blocks. Each microprocessor is different as to how these sections of flash can be 

manipulated. The microprocessor, selected for this thesis allow word level (32 bit) write 

and sector level write protection. In most cases the smallest section of Flash that can be 

erased is a sector, however on some, the erase granularity is page level. Flash memory 

size, alignment and access details for SoCs selected for this thesis are described in Table 

2. It should be noted that one has to erase a sector before it can be programmed. 
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Figure 6. Memory map of STM32F0xx SoC[4]. 
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Table 1. Main flash memory details 

Component MCU 

STM32F072CB  STM32F051R8  STM32F407VG  

Start address 

 

0x08000000  

 

0x08000000  

 

0x08000000  

 

End address 0x08020000  

 

0x08010000  

 

0x08100000  

 

Total flash memory  

 

128 KB  

 

64 KB  

 

1024 KB  

 

Page size  

 

2 KB  

 

1 KB  

 

N/A 

 

Number of pages  

 

64  

 

64  

 

N/A 

 

Erase sector size  

 

4 KB 4 KB Hybrid 

Initial content of the 

memory  

 

0xFF  

 

0xFF  

 

0xFF  

 

Memory Endianess  

 

Little  

 

Little  

 

Little  

 

Processor address 

space  

 

4 GB  

 

4 GB  

 

4 GB  

 

Flash write 

protection 

granularity  

 

Sector  

 

Sector  

 

Sector  

 

Erase granularity  

 

Page  

 

Page  

 

Sector  

 

Flash memory access 

alignment 

requirement  

 

Word (32 bits)  

 

Word (32 bits)  

 

Word (32 bits)  
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3.3. Serial data communication 

Serial communication over UART interface is used for communication between the RF 

module and the MCU. The STM32 MCUs used for implementation purposes have two or 

more UARTs, hence the other UART interface is used for printing debugging messages 

on serial console.  

The universal synchrononus asynchronous receiver transmitter (USART) offers a flexible 

method of full-duplex data exchange with external equipment. The communication can 

be either synchronous (by means of using a clock) or can be asynchronous (by using 

special signal along with data). The serial data is transferred one bit at a time. Because, 

the serial interfaces are relatively cheap, they are implemented on almost all MCUs. 

Any USART bidirectional communication requires a minimum of two pins (Receive data 

In (Rx) and Transmit data Out (Tx). Serial data are transmitted and received through 

certain pins (refer pinout configuration in appendix 3) on STM32 MCU. The frames are 

comprised of 

 An Idle Line prior to transmission or reception 

 A start bit 

 A data word (7, 8 or 9 bits) least significant bit first 

 1, 1.5, 2 stop bits indicating that the frame is complete 

 The USART interface uses a baud rate generator 

 A status register (USARTx_ISR) [8] 

 Receive and transmit data registers (USARTx_RDR, USARTx_TDR) [8] 

 A baud rate register (USARTx_BRR) [8] 

 A guard-time register (USARTx_GTPR) in case of smartcard mode. [8] 

The 8 bit word length is selected for this thesis and the frame format is shown in Figure 

7.  

MCU uses USART transmit pin (USART_Tx) to send AT+ command to the RF module. 

The response to the AT+ command arrive on the USART receive pin (USART_Rx). 

MCU uses interrupt mechanism for communication with the RF module. Any data sent 

from the RF module to MCU on USART receive pin generates an interrupt on MCU. 

Upon receieving an interrupt, USART specific interrupt handler gets invoked and  



25 

 

Figure 7. 8-bit frame format for USART communication. 

appropriate action is then taken on the recieved data. STM32 MCU uses on-chip Nested 

Vectored Interrupt Controller (NVIC) and peripheral specific interrupt register for 

interrupt handling. Refer, Appendix 1 for more information on NVIC and ARM 

processors.  
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4. Software architecture 

This chapter covers the bulk of the thesis work. The components necessary to develop a 

system, capable of  over the air firmware upgrade are broken into separate modules for 

ease of understanding. 

4.1. Bootloaders 

The first part of this chapter discusses Bootloader requirements. The later part of this 

section covers the bootloader itself and its behavior. 

4.1.1. Bootloader requirements 

Each Embedded Systems project will have its own requirements for the bootloader 

design, however there are few requirements that are common to all bootloaders. They can 

be grouped into seven fundamental requirements that are common to all boot-loaders. 

They are: 

Table 2: Bootloader requirements 

Requirement Sub-requirement 

Ability to switch or select the operating mode 

(Application or bootloader) 

Bootloader has the intelligence to locate the 

existence of valid application in the Flash 

memory and transfer control to application 

for normal operation. 

Bootloader has to distinguish between the 

normal operation and application firmware 

update message. 

Communication interface (USB, CAN, I2C, 

USART, etc) 

Application firmware can be transferred over 

any of the serial interface but for thisis 

purpose, UART was selected as an interface 

to RF module (GSM/GPRS or WIFI). 

Firmware file format (binary, S-Record, hex, 

intel, toeff, etc) 

The application image shall be sent in binary 

format. Benefit of using a binary file stems 

from the fact that it is significantly smaller in 

size than the Intel hex format or absolute and 

executable object file (.axf) generated by the 

armlink linker and hence it will save network 

bandwidth, when downloaded over 

GSM/GPRS network or over Wireless 

network. Although the Intel hex file format is 

straight forward, it requires additional  
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Requirement Sub-requirement 

 parsing. 

Flash system (read, write, erase) The boot-loader shall be capable of erasing 

application section of flash. Application 

section will be further divided into two 

regions; current application and backup 

application. Keeping a backup of current 

application firmware provides the possibility 

of rollback. However, the rollback will be 

completely transparent and will not require 

any explicit instruction. 

The boot-loader shall write application image 

records to flash. 

The boot-loader shall be located in the first 

few sectors of main flash memory. 

SRAM (read, write, erase) On-chip SRAM shall be used for sharing data 

between the bootloader and application. 

Application checksum Bootloader shall be capable of calculating the 

application checksum. 

Code security Bootloader will protect itself from accidental 

modification by the application. 

 

4.1.2. Bootloader behavioral models 

A bootloader is not much different than the other application. But, this is the first 

application that executes, on power-on-reset and is in charge of transferring system 

control to other application. Bootloader has the capability to erase and program a new 

application in place. On a typical embedded system, resources are scarce, especially the 

on chip memory (flash memory and SRAM) and hence bootloader designer has to be very 

judicious in deciding the bootloader features. It should use the minimum amount of 

peripherals in order to maximize the amount of flash memory space that will be available 

for the application code. 

Historically, there are two behavioral models that describe how a boot-loader can behave. 

In the first model, the boot-loading process is completely automated and self-contained 

within the system. An example of this would be an Secure Digital (SD) card boot-loader. 

The boot-loader would automatically detect the new firmware and manage its own 
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flashing process. Commands from an external source would not be required to 

successfully carry out the boot-loading process. 

In the second model, the system does not automatically handle the boot-loading process 

itself. Instead, the boot-loader initializes into an idle state and awaits instructions from an 

outside source. This source would typically be a Personal Computer (PC) based software 

application that commands the boot-loader into the different states necessary to flash a 

new image onto the system. The primary reason for the external software application to 

command the process is that in most applications without an SD card, there is not 

sufficient space to retrieve the whole software image. Instead, an external source with the 

image acts as the master of the boot-loading process Here the application on the 

embedded systems and the PC software operate in client server architecture. For this 

thesis, the first model is selected. 
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4.1.3. Bootloader classification 

Figure 8 shows three different methods to upload the code. 

 

Figure 8. Code upload method [3]. 

4.1.4. On board bootloader 

Some processors such as NXP Kinetis K8x [5] have an internal bootloader that will load 

code from an external source if the right I/O pins are set. In an ideal world, one would 

just set the I/O pin to upload the new code to the system. This could be generally triggered 

when the system powers up. The bootloader would automatically load the data into the 

code space. The new code is transferred to the processor using one of the communication 

methods (typically some serial interface such as USART). The bootloader code inside the 

chip reads the data and transfers the code in the code space. This is the simplest bootloader 

among the three. 
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4.1.5. Custom bootloader 

A custom bootloader shares the code space with the application. The benefit of custom 

bootloader is the flexibility. This is the bootloader of choice for this thesis. Programming 

Flash memory requires two step process; erase and program. Typically, Flash memory is 

divided into sectors and most of the flash memories have sector level erase granularity 

and word level program granularity. This means, that to program a word (4 bytes) at the 

same address, one has to erase an entire page (typically 2KB) first. A primitve bootloader, 

shown in Figure 9, would erase the application area from the flash memory and then 

program the new application image. 

 

Figure 9. A primitive bootloader. 

This approach has multiple issues. 

 The new application image could be corrupted from the source. 

 Application image could get corrupted due to communication errors. 

 Partial erase. 

 Programming error could happen, during the process of flashing the new 

application image. 

 Programming process could get interrupted. 
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These faults will lead to system failure. System will exhibit different behavior based on 

the fault scenario. There are multiple approaches to solve these problems. For example, a 

checksum could detect the corrupt image, a copy on write approach will make sure that 

the old application is preserved until the new application is correctly written into the flash 

memory. The bootloader developed as part of this thesis takes care of such failure 

scenarios in consideration and implements tiered approach for a failsafe firmware 

upgrade. A copy on write approach is shown in Figure 10 below. The bootloader needs 

to make a copy of current application in a different region of flash memory area. It then 

erases the application area and starts to program the new application. Bootloader 

compares the data written on the flash memory with the application buffer in every pass 

and in case, there is a programming error, bootloader can recognize it and then it has to 

initiate the recovery process by programming the older application from the backup area 

to application area and notify the application that the firmware update process has failed. 

A sample procedure that copies the current application in the backup area is shown in 

Figure 10. 

The application firmware backup routine starts with unlocking the flash controller to 

enable write access to flash memory. On a power reset, the flash memory is locked to 

prevent accidental modification to program memory. Since the flash memory requires 

erase operation before it can be programmed, the backup routine first performs erase 

operation on backup area (the memory partitioning sceheme is shown in Table 4) of the 

main flash memory. The erase granularity depends on the target MCU. Most of the MCUs 

allow sector level erase operation, however some MCUs such as STM32F051 have page 

level erase granularity (more information in Table 1). After a successful erase operation, 

a successive read operation on the same memory location returns all 0xFFs, i.e. all bits 

are set to ’1’. Application firmware is then programmed in backup area in word-sized 

chunks. The word-sized program requirement is imposed by the underlaying flash 

memory hardware. Once the programming is done and varified by reading back the 

content, flash controller is locked. At this point, flash memory has two identical copies of 

application firmware and bootloader. 
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#define BACKUP_ADDRESS          
(uint32_t)0x0800B000 

#define APPLICATION_ADDRESS     
(uint32_t)0x08007000 

#define APPLICATION_SIZE        0x4000 

int copy_image(void) 

{ 

    __IO uint32_t dst = BACKUP_ADDRESS; 

    __IO uint32_t src = APPLICATION_ADDRESS; 

    __IO int i; 

    /* Unlock the Flash Program Erase controller */ 

    FLASH_Unlock (); 

    /* page-wide erase of backup area */ 

    if (FLASH_If_Erase(dst))· 

    { 

        FLASH_Lock(); 

        return ERROR; 

    } 

    /* word-wise program */ 

    /* start copying */ 

    for (i = 0;  i < (APPLICATION_SIZE/4); ++i) 

    { 

        while (FLASH_ProgramWord(dst, *(uint32_t 
*)src) != FLASH_COMPLETE) {} 

            if ((*(uint32_t *)dst) != (*(uint32_t 
*)src)) 

            { 

                /* Lock flash */ 

                FLASH_Lock(); 

                return ERROR; 

            } 

        src += 4; 

        dst += 4; 

 

    } 

    /* Lock flash */ 

    FLASH_Lock(); 

    return SUCCESS; 

} 

Figure 10. Backup of current application. 

The corresponding, improved bootloader is shown in Figure 11. All blocks except those 

highlighted, are same as before. 
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Figure 11. An improved dual mode bootloader. 

The major benefit of dual mode bootloader is that we always have a applicaiton as a 

backup and if something goes wrong during or after the update process, bootloader could 

be instructed to initate a rollback. During a successful firmware upgrade, the main flash 

memory contents over a period of time is shown in Figure 12. Unless programmed, all 

bits in flash memory are set to ’1’. Therefore, a read operation on empty block or an 

erased block returns 0xFF, i.e. all bits set as ’1’ and is shown in the Figure as 0xFF..FF. 
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Figure 12. Flash memory contents vs time chart. 

To overcome, transient Flash programming errors, retries can also be used. This type of 

dual mode firmware update process reduces the effective area of Flash memory for 

application, but improves the overall reliability of the system. Custom bootloader is the 

focus of this thesis and is discussed in more details in this chapters. 

4.1.6. Boot from SRAM 

Sometimes, it is needed to update the bootloader itself. Recall that a bootloader is nothing 

but an application with some specific requirements. To update the resident bootloader, 

the old bootloader first download the new bootloader in SRAM, and then passes control 

to new bootloader. The new bootloader then erases the resident bootloader in flash 

memory and then program the new resident bootloader. Once the new bootloader is 

programmed, normal operation can resume. This type of bootloader is more complex and 

this type of bootloader has the possibility of making the system useless and unable to ever 

load a valid code. For example, if the power reset happens after the old resident bootloader 
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has been erased. Since updating the bootloader itself is not the topic of interest for this 

thesis, therefore, this type of bootloader will not be discussed further. 

4.2. Application firmware behavior 

The behavior of the application image is mostly not of any interest to the boot-loader 

designer except in few aspect; the application needs to be capable of receiving a command 

to enter the boot-loader, pass some parameters, such as retry counter and be able to run 

from another load address than the default load address (since the default load address is 

occupied by the bootloader). This means that the application needs to have following 

capabilities: 

 Instruct bootloader to start software update process. 

 Reset the system to initiate branching decision by bootloader. 

 Pass few parameters to bootloader 

 Inform the server (source of firmware image) about the firmware upgrade result 

 Be able to share the program memory with bootloader and a backup image 

 Be able to run from a different memory location. 

The best place for the application to store a value that can be detected by the branching 

code is on chip SRAM. SRAM in most cases exists in a memory space that can be shared 

by both the boot-loader and the application. When the application receives a request to 

enter the boot-loader, the application can write a value to SRAM and then perform the 

second function which is to reset the system. 

The reset of the system is performed by doing a soft reset. Before performing a soft reset, 

it is made sure that no I/O operations, such as access to Flash memory is in progress, 

interrupts are disabled and clock domains are shut down. There is a hazard in sharing 

information between bootloader and application in SRAM. If after setting certain 

information in SRAM by the bootloader, a power reset (power lost to the system), 

happens, that information in SRAM will get lost and hence bootloader will not take 

appropriate action. Application overcomes this problem by: 

 Keeping the time interval between updating SRAM and performing a soft reset to 

a minimum. 
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 Comparing current application firmware revision with the expected firmware 

revision. It is done by consulting with the server. 

In ARMv6-M, the Application Interrupt and Reset Control Register (AIRCR) provides a 

mechanism for a system reset. Setting the AIRCR.SYSRESETREQ [25] control bit to 1 

requests a reset by an external system resource. Setting the SYSRESETREQ bit to 1 does 

not guarantee that the reset takes place immediately. A typical assembly code sequence 

to synchronize reset following a write to the relevant control bit is shown in Figure 13. 

        DSB 

Loop    B Loop; 

Figure 13. Assembly code sequence to synchronize reset. 

The Data Synchronization Barrier (DSB) shown in Figure 13 is an instruction in ARM 

processors [26]. It is a special kind of memory barrier. It makes sure that no instruction 

in program order after this instruction executes until this instruction completes.  

System components that are reset by this request are implementation defined, hence 

another method to soft reset the system can be performed by entering into an infinite loop, 

allowing the watchdog timer to reset the system. 

4.3. Start-up branching 

Start-up process is shown in Figure 14 Reset vector is the first thing that runs at startup. 

It is a hardware specific code. It performs simple functions like setting up the processor 

into a pre-defined steady state by configuring registers etc. Then it will jump to the startup 

code. 

Startup code is the first software-specific code that runs. Its job is basically to set up the 

software environment so that C code can run on top. For example, C code assumes that 

there is a region of memory defined as stack and heap. These are usually software 

constructs instead of hardware. Therefore, this piece of start-up code will define the stack 

pointers and heap pointers Interrupt Request Lines (IRQs) and such. Variables that need 

to be initialized and also certain parts of memory that need clearing are done here. 

Basically, everything that is needed to move things into a 'known state'. At the end of the 

routine, it will execute main function 
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Figure 14. MCU start-up sequence. 

At this point, there are at least two different software images that can be loaded and 

executed by the MCU, the boot-loader, application and possibly a back-up application 

image. For the purpose of this thesis, it was decided that the botloader will be the first C 

application that will execute. This application is mostly hardware agnostic as such things 

are taken care by the reset vector, startup code, and compiler. For portability, the 

application is statically linked to vendor provided libraries and uses hardware abstraction 

layer. As part of the boot-loader image code, a branching algorithm is included that 

handles the decision making process of loading the application image or handling device 

firmware update request. 

Assuming that the application start address is always fixed, and if there was no firmware 

update request, a primitve bootloader will simply jump to this location. But what if there 

is no application at the application start address. There are couple of reasons, that this can 

happen. 

 Bootloader exists in Flash memory, but there is no application yet and a power 

cycle was performed. 

 Application firmware was erased as part of firmware update process but before 

the new application could be programmed, some error or power cycle occured. It 

lead to a blank application area. 

In such cases, a primitive bootloader will jump to the application start address without doing 

any validation and the system might spin forever in an infinite loop, doing nothing. Therefore 

a verification that the application stack pointer exists is imperative. The check is hardware 

specific and on ARM cortex based SoC, it can be done as show in Figure 15. 
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#define APPLICATION1_ADDRESS        
(uint32_t)0x08006000 

#define SP_RANGE                    0x2FFE0000 

#define SRAM_BASE_ADDR              0x20000000 

#define IS_VALID_SP(address)        (((*(volatile 
uint32_t*)address) & SP_RANGE) == SRAM_BASE_ADDR) 

typedef  void (*pFunction)(void); 

pFunction Jump_To_Application; 

uint32_t JumpAddress; 

if (IS_VALID_SP(APPLICATION1_ADDRESS)) 

{ 

    /* Application found, Jump to user application 
*/ 

    JumpAddress = *(__IO uint32_t*) 
(APPLICATION1_ADDRESS + 4); 

    Jump_To_Application = (pFunction) JumpAddress; 

    /* Initialize user application's Stack Pointer 
*/ 

    __set_MSP(*(__IO uint32_t*) 
APPLICATION1_ADDRESS); 

    /* Jump to application */ 

    Jump_To_Application(); 

} 

Figure 15. Validate stack pointer and perform a jump to application. 

It is the most basic test and works in most of the scenario, however, there is a problem 

with this approach. The above check does not validate if the application is indeed correct. 

If the application image was corrupted from the source or while programming (as shown 

in Figure 4), then the jump to application will lead to undefined behavior. One easy 

solution is to perform a checksum validation before jumping to application. Once the 

application development is finished, its checksum is calculated and is stored at the remote 

server in plain text format. Once the new application has been programmed in memory, 

bootloader uses the same algorithm that was used before to generate the application 

checksum. It then compares the calculated checksum with the checksum value stored at 

the remote server. If the checksum do not match, it indicates, application firmware 

corruption, either at the source or during the download process. In that case, bootloader 

will not jump to a corrupted application firmware. It improves reliability of the system. 

Figure 16 shows the checksum validation routine in the bootloader. While developing the 

bootloader, mobile embedded systems, operating in lossy network with firmware upgrade 

over the air requirement, were kept in mind and hence, the two pass application validation 

was implemented. 
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int calc_checksum(void) 

{ 

    uint32_t cksum; 

    /* calculate checksum of downloaded firmware */ 

    crc_init(); 

    cksum = CRC_CalcBlockCRC((uint32_t 
*)(APPLICATION1_ADDRESS), (APPLICATION_SIZE/4)); 

    /* compare calculated checksum with the known 
checksum */ 

    if (cksum != orig_cksum) 

    { 

        /* erase the application area, so that the 

         * main routine will not jump into a 
partially 

         * programmed firmware. 

         */ 

        FLASH_If_Init(); 

        if 
(FLASH_If_EraseAppArea(APPLICATION1_ADDRESS)) 

        { 

            FLASH_Lock(); 

            return ERROR; 

        } 

        FLASH_Lock(); 

        return ERROR; 

    } 

    return SUCCESS; 

} 

Figure 16. Checksum validation before jumping to the application. 

After introducing the checksum validation, the system becomes more robust to faults, 

however this failsafe technique introduces two problems: 

 Every time the system boots, it needs to connect to the remote server over GSM 

network, download checksum value, re-calculate checksum of application in the 

Flash memory and only after validating the checksum, jump to the application. 

Imagine, the system being power cycled just ten times a day or a mobile system, 

that frequently changes it’s geographical position; The incurred latency from 

bootup to an actual functional system is unacceptable in most of the cases.  

 During the system development process, typically, one would be using  ISP 

progrmaming method such as dedicated SWD or JTAG interface to progam the 

application in the main Flash memory. On a system hard reset bootloader will find 
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correct stack pointer but the checksum validation will fail as bootloader has no 

information about the application’s checksum, which was programmed using In-

circuit programming tool. Therefore despite having a correct application in the 

application area of main flash memory, bootloader will fail to jump to application. 

Problem 1 can be solved simply by storing the known checksum in non-volatile memory, 

however it still doesn’t solve the second problem at hand. Essentially, we would like to 

achieve a one time checksum validation and also support ISP methods during the 

development process. The bootloader, developed as part of this thesis solves these 

problems by using a flag in non-volatile memory, that represents device firmware update 

in progress status. This flag is set, just before the DFU process begins (application 

download) and reset, immediately after new application firmware has been downloaded, 

programmed and its checksum has been validated. On a system reset, bootloader checks 

the status of this flag and only after it finds that the flag is not set, it proceeds further with 

the stack pointer validation, before jumping to the application. Bootloader, no longer 

needs to perform checksum validation on every reset; It’s done only once, during the DFU 

process. Also, ISP is not an issue anymore as, the only time, device-firmware update-in-

progress flag is set, is during DFU over the air process only. Another big advantage of 

this approach is that this check solves prospective problems that could occur due to power 

reset during the DFU process. This improvement is shown in Figure 17. 
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#define RSVD_FLASH_PAGE_ADDRESS 
(uint32_t)0x0800f000 

#define DFU_IN_PROGRESS         0x4B1D 

#define IS_DFU_IN_PROGRESS      ((*(uint32_t 
*)RSVD_FLASH_PAGE_ADDRESS) == DFU_IN_PROGRESS) 

if (IS_VALID_SP(APPLICATION1_ADDRESS) && 
!(IS_DFU_IN_PROGRESS)) 

{ 

    prep_jump_to_application(); 

    /* Jump to user application */ 

    JumpAddress = *(__IO uint32_t*) 
(APPLICATION1_ADDRESS + 4); 

    Jump_To_Application = (pFunction) JumpAddress; 

    /* Initialize user application's Stack Pointer 
*/ 

    __set_MSP(*(__IO uint32_t*) 
APPLICATION1_ADDRESS); 

    /* Jump to application */ 

    Jump_To_Application(); 

} 

Figure 17. Improved branching to application. 

In this Figure, prep_jump_to_application() is a small helper function, that disables all 

interrupts that were enabled before and shuts down all clock domains. It is needed for 

smooth transition from bootloader to application. Refer Appedix 4 for more information 

on bootloader entry function. 

4.4. Memory partitioning 

Application may try to overwrite the bootloader area and hence areas occupied by 

bootloader must be protected. It can be achieved in number of ways. On STM32 MCU, 

the write protection of certain areas (In this case, area occupied by bootloader) of memory 

can be achieved by memory protection feature. It is activeted by configuring the WPRx 

option bytes (shown in Figure 18) and then by reloading them by setting the OBL_Launch 

bit in the FLASH_CR register (shown in Figure 19).  

If a program or an erase operation is performed on a protected sector, the Flash memory 

returns a WRPRTERR protection error flag in the Flash memory Status Register 

(FLASH_SR). 
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Figure 18. STM32F051xx, Write protection register [4]. 

As shown in Figure 18, the reset value of this register depends on option bytes. On every 

system reset, the Option Byte Loader (OBL) [28] reads the information block and stores 

the data into the Option byte register (FLASH_OBR) [4] and the Write protection register 

(FLASH_WRPR). 

 

Figure 19. STM32F051xx, Flash control register [4]. 

RES bits in Figure 19 represent reserved bits. 

Another method is to use the one time programmable feature of MCU, However this 

method cannot be used during the system development process. In general, the bootloader 

and application area need to be kept separate. 

There are a number of factors that should be taken into consideration when selecting 

where to locate the boot-loader; these are: 

 Size of the bootloader 

 Size of the application 

 Location of the vector table 

 Write protection and erase granularity 
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Depending on the features, code optimization level in the compiler, the bootloader size 

will vary, and hence during the bootloader development, it is difficult to guess a most 

optimal bootloader size. However, the rule of thumb is to pick bootloader size in the 

multiples of sector size and once everything is working, memory map can be easily 

manipulated by Linkers. Since the erase granularity on some microprocessors (e.g. 

STM32F051 selected for this thesis) is page level, a common mistake is to select 

bootloader size in multiples of pages, however this may lead to overlapping sectors. One 

reason for such behavior is that the write protection granularity could be different than 

the erase granularity. For example, on STM32F051 SOC, selecting the memory map as 

shown in Table 3 will corrupt the bootloader or lead to a reset, arising due to incorrect 

memory access. 

Table 3: Example of incorrect memory partitioning 

MCU Componenet Start Size Size 

(in 

KB) 

Page Sector 

number 

STM32F051R8 Bootloader 0x08000000 0x4800 18 0 - 17 0 - 4 

Application 0x08004800 0x5800 22 18 - 39 4 - 9 

Backup area 0x0800A000 0x5800 22 40 - 61 10 - 15 

Reserved 

area 

0x0800F800 0x800 2 62 - 63 15 

Recall from the Table 2, that the erase granularity on STM32F051R8 is page level. So at, 

the first glance, the memory partitioning scheme used in Table 2 seem correct, however, 

the bootloader and the application have overlapping sectors (sector 4) and as the write 

protection granularity for this processor is sector level, unless the bootloader performs 

write protection manipulation (which is also not safe in this particular scenario). erase 

operation on page number 18 by the application will fail (Since this sector is occupied by 

the bootloader). It is even more complicated on processors that have hybrid sectors (for 

example, STM32F407VG). Therefore, one has to be very careful while partitioning the 

memory. The memory partitioning scheme used for this thesis is shown in Table 4. 
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Table 4: Memory partitioning scheme for three different MCU's used in this thesis 

MCU Componenet Start Size Page Sector 

number 

STM32F051R8 Bootloader 0x08000000 0x7000 0 - 27 0 - 6 

Application 0x08007000 0x4000 28 - 43 7 - 10 

Backup area 0x0800B000 0x4000 44 - 59 11 - 14 

Reserved 

area 

0x0800F000 0x1000 60 - 63 15 

STM32F072CB Bootloader 0x08000000 0x5000 0 - 9 0 – 4 

Application 0x08005000 0xD000 10 - 35 5 - 17 

Backup area 0x08012000 0xD000 36 - 61 18 - 30 

Reserved 

area 

0x0801F000 0x1000 62 - 63 31 

STM32F407VG Bootloader 0x08000000 0x8000 N/A 0 - 1 

Application 0x08008000 0x8000 N/A 2 - 3 

Backup area 0x08010000 0x10000 N/A 4 

Reserved 

area 

0x080E0000 0x20000 N/A 11 

The configurable write protection is the most primitive method to protect the bootloader 

from accidental write attempt by the application, however an intentional overwrite by the 

application (e.g. a malicious application) can still be achieved by programming the option 

bytes on STM32xx series SOCs. Therefore, many processors (e.g. STM32F4xx) provide 

OTP area for the soul purpose of storing bootloader and protecting it from unwanted 

writes. Though, one is not able to use OTP during bootloader development but once the 

bootloader works, is tested and validated the linker can be adjusted to use OTP. 

In either of these cases (write protection using option bytes or by using OTP features), 

once the flash areas have been selected, it is important to update the linker for the 

application to exclude area occupied by bootloader. 

4.5. Reset and Interrupt vector 

Reset vector is the location of memory where the first instruction of the application is 

located. During the boot-up process, processor begins program execution from the 

address stored in the reset vector. On a system with a bootloader (as on system developed 
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for this thesis), this address is the entry into the bootloader and not to application reset 

vector. Therefore: 

 The application reset vector is needed to be stored somewhere in the processor 

address space. 

 A mechanism is needed in the bootloader to relocate the reset vector of the 

application. 

 A mechanism is needed in the bootloader to perform a jump to application start 

address. 

Relocation technique of the reset vector varies from one microprocessor to another. 

Unlike ARM Cortex M4 [23] processor, on, ARM cortex M0 [22], there is no dedicated 

register to relocate the reset vector to CODE or SRAM region, and instead have a memory 

remap feature on its memory system that allow vector table accesses to be redirected to 

SRAM. The question then arise is the amount of SRAM needed for the vector relocation. 

The answer lies in the startup file and the memory map of the application image. 

Information about the reset vector is shown in Figure 20. Notice the RESET identifier in 

Figure 20. Now, look for same identifier (RESET) in the memory map generated by the 

linker. It is show in the last line in Figure 21. The assoicated size information is mentioned 

under size column as 0x000000C0. Thus the reset vector table size needed for 

STM32F051R8 is 0xC0 (48 words) 

; Vector Table Mapped to Address 0 at Reset 

AREA RESET, DATA, READONLY 

EXPORT __Vectors 

EXPORT __Vectors_End 

EXPORT __Vectors_Size 

Figure 20. ARM assembly code snip of STM32F051R8 from startup.S .  
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Figure 21. Snip from Toolchain generated memory map for STM32F051R8. 

Once the application reset vector size calculation is done, the next step is to relocate the 

application reset vector. The bootloader accomplishes this by utilizing Linker specific 

directive and memory remap feature.  

#define APPLICATION1_ADDRESS (uint32_t)0x08007000 

#if (defined ( __CC_ARM )) 

__IO uint32_t VectorTable[48] 
__attribute__((at(0x20000000))); 

#elif (defined (__ICCARM__)) 

#pragma location = 0x20000000 

__no_init __IO uint32_t VectorTable[48]; 

#elif defined ( __GNUC__ ) 

__IO uint32_t VectorTable[48] 
__attribute__((section(".RAMVectorTable"))); 

#elif defined ( __TASKING__ ) 

__IO uint32_t VectorTable[48] __at(0x20000000); 

#endif 

 

int i; 

/* Copy the vector table from the Flash (mapped at 
the base 

 * of the application load address 0x08004000) to 
the base 

 * address of the SRAM at 0x20000000. 

 */ 

for (i = 0; i < 48; i++) 

{ 

    VectorTable[i] = *(__IO 
uint32_t*)(APPLICATION1_ADDRESS + (i<<2)); 

} 

/* Enable the SYSCFG peripheral clock*/ 

RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, 
ENABLE); 

/* Remap SRAM at 0x00000000 */ 

SYSCFG_MemoryRemapConfig(SYSCFG_MemoryRemap_SRAM); 

Figure 22. Application reset vector relocation to SRAM in ARM Cortex M0 microprocessor 
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Figure 22 shows the vector relocation method on Cortex M0 based SOC (STM32F0xx). 

As shown in Figure 22, first, 48 words (0xC0 bytes) are copied from the application image 

and allocated in a particular area of SRAM by using toolchain specific Linker command. 

Recall from Figure 6, SRAM is mapped to 0x20000000 in the processor address space. 

Once the reset vector of application is copied to SRAM, it is remapped to 0x000000000. 

Note that the default start address 0x08000000 is an alias to 0x00000000, hence accessing 

0x00000000 is same as accessing the default start address. 

The final glue logic to make the application load at a physically different address is done 

by modifying the linker. It is toolchain specific and on KEIL MDK5, it is done by scatter 

loading. By using the scatter loading, one can fully control the grouping and placement 

of image components. To achieve scatter loading, armlink [24] linker uses scatter file. 

Scatter file format is shown in Figure 23, however, instead of writing scatter file from 

scratch, an easy mehtod on KEIL MDK5 [27] is to modify IROM1 and IRAM1 field and 

the toolchain automatically generates the scatter file. IROM1 values for bootloader and 

application for target MCU is selected accroding to memory partitioning scheme shown 

in Table 4, whereas, IRAM1 value is adjusted (show in Table 5) to accommodate first 42 

words starting from 0x20000000 for application reset vector and also to pass some 

parameters between bootloader and application. Note that, on STM32F407VG, reset 

vector is relocated to code area (main flash memory) instead. 

Table 5: SRAM partitioning for reset vector relocation in SRAM and passing parameters between 

bootloader and application 

MCU Componenet Start Size 

STM32F051R8 Bootloader 0x20000100 0x1F00 

Application 0x20000100 0x1F00 

STM32F072CB Bootloader 0x20000100 0x3F00 

Application 0x20000100 0x3F00 

STM32F407VG Bootloader 0x20000100 0x1FF00 

Application 0x20000100 0x1FF00 

Scatter file generated by the toolchain for bootloader and application for STM32F051R8 

MCU is shown in Figure 24 and 25 resepectively. 
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Figure 23. Components of a scatter file [20]. 

  

Figure 24. Scatter file for bootloader. 

 

Figure 25. Scatter file for application. 
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Reset vector relocation is far more easier on ARM Cortex M4 (STM32F407VG SOC) as 

it has a dedicated register, VTOR (Vector Table Offset Register), which can be used to 

relocate vector table to CODE/Flash region or to SRAM. The application code only need 

to set appropriate value in the VTOR register and update it’s load address by using scatter 

loading as mentioned before. A sample VTOR configuration during the system initialization 

process (just before the entry into the main routine) is shown in Figure 26 and 27. 

 

Figure 26. File startup_stm32f4xx.s 

#define FLASH_BASE      ((uint32_t)0x08000000) 

#define VECT_TAB_OFFSET 0x8000 /* User defined, 
must be multiple of 512 bytes */ 

 

void SystemInit(void) 

{ 

    /* Set HSION bit */ 

    RCC->CR |= (uint32_t)0x00000001; 

    /* 

     * some other initialization code here 

     */ 

    SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* 
Vector Table Relocation in Internal FLASH */ 

} 

Figure 27. File: system_stm32f4xx.c. 

4.6. Firmware file format 

Firmware which is to be received over serial interface can be in different format, 

depending on the toolchain, compiler, target hardware. Some of the most famous file 

formats are Intel hex, binary, arm executable format etc. The toolchain used for firmware 

development is KEIL’s ARM-MDK, which by default generates an object file that has 

both object code and the debug information. ISP tools such as SWD or JTAG are 
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intelligent enough to strip the debug information and and load only the object code on the 

target. Bootloader needs to achieve something similar. Parsing a hex file is straight 

forward and KEIL’S ARM-MDK toolchain can be instructed to generate a hex file. It’s 

an ASCII text file with lines of text that follow Intel HEX file format [6]. Each line in an 

Intel HEX file contains one HEX record. These records are made up of hexadecimal 

numbers that represent machine language code and/or constant data. These Intel Hex files 

are often used by EPmemory/Flash programmers to transfer program that would be stored 

in code region of main Flash memory. A snip form hex file generated by KEIL MDK5 is 

shown in Figure 28. The file is composed of any number of records, where each  

 

Figure 28. Snip from Intel Hex file. 

record is terminated with a carriage return and line-feed. For example, the record format 

of second record is shown in Figure 29 below. The Flash programmer can parse this 

record and perform Flash progrmaming and also perform validation by referring the 

 

Figure 29. Record format in Intel hex file. 

checksum field associated with each record. This is a straight formware process, however 

while receiving a hex file over serial interface, the bootloader would have to implement 

parsing logic. For simplicity reasons, the bootloader developed as part of this thesis, 

expects a plain binary file. There are two benefits of this approach: 

 The plain binary file is significantly smaller (about 60% smaller in size) than the 

hex version, hence it reduces the GSM/GPRS data traffic usage during the 

firmware download over GSM network. 
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 No need to parse the received image, thus reducing overall system downtime. 

(During the firmware upgrade process, system is not useable). 

4.7. Data communication 

Recall from the chapter on system architecture, transreceivers are selected for bi-

directional communincation with the remote firmware repository. Different 

transreceivers operate in different frequency band. For this thesis, GSM/GPRS and Wi-

Fi RF modules are used. 

4.7.1. GSM/GPRS 

One of the data communication link, chosen for this thesis is GSM/GPRS network. It is 

selected because one of the target application area of this thesis is IoT devices that are 

mobile; those which are constantly changing their physical location, such as electric 

bicycles. To download firmware over GSM/GPRS network, a GSM/GPRS module is 

used which is connected to target MCU over serial (UART) communication interface. 

The MCU sends AT+ command to interact with GSM/GPRS module. 

 

Figure 30. Abstract GSM/GPRS setup [7]. 

The abastract architecture, comprising Terminal equipment (TE) such as a computer and 

a Mobile terminal (MT) interfaced by a Terminal adapter (TA) is shown in Figure 30. 

The basic structure of a command line is shown in Figure 31. GSM/UMTS commands 

use syntax rules of extended commands. Every extended command has a test command 

(trailing =?) to test the existence of the command and to give information about the type 

of its subparameters. Parameter type commands also have a read command (trailing ?) to 

check the current values of subparameters. Action type commands do not store the values 

of any of their possible subparameters, and therefore do not have a read command. 

TE TA MT
AT cmds

responses

MT control

MT status

USER & APPLICATIONS NETWORK

network messages
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ATCMD1 CMD2=12; +CMD1; +CMD2=,,15; +CMD2?; +CMD2=?<CR>

command line prefix

basic command
(no + prefix)

subparameter

extended command
(prefixed with +)

extended commands are
delimited with semicolon

subparameters
may be omitted

command line
termination character

read command for checking
current subparameter values

test command for checking
possible subparameter values  

Figure 31. Basic structure of a command line [7]. 

If verbose responses are enabled with command V1 [7] and all commands in a command 

line has been performed successfully, result code <CR><LF>OK<CR><LF> is sent from 

the TA to the TE. If numeric responses are enabled with command V0, result code 0<CR> 

is sent instead. 

If verbose responses are enabled with command V1 and sub-parameter values of a 

command are not accepted by the TA (or command itself is invalid, or command cannot 

be performed for some reason), result code <CR><LF>ERROR<CR><LF> is sent to the 

TE and no subsequent commands in the command line are processed. If numeric 

responses are enabled with command V0, result code 4<CR> is sent instead. ERROR (or 

4) response may be replaced by +CME ERROR: <err> (refer clause 9) [7]  when 

command was not processed due to an error related to MT operation. 

The terminal adapter response for the command line of Figure 31 is shown in Figure 32.  

<CR><LF>+CMD2: 3,0,15,"GSM"<CR><LF>
<CR><LF>+CMD2: (0-3),(0,1),(0-12,15),("GSM","IRA")<CR><LF>
<CR><LF>OK<CR><LF>

information response to +CMD2?

information response to +CMD2=?

final result code

also string type subparameters possible

shows acceptable ranges of each subparameter

 

Figure 32. Response to a command line [7]. 

On a power reset, before downloading the application firmware image, the GSM/GPRS 

Terminal adapter goes through an initialization steps. During these initialization steps, 



53 

certain AT+ command are sent in a particular sequence to peform network discovery, 

operator selection and GPRS attach. The initialization process is shown in Figure 33. 

 

Figure 33. GSM/GPRS Terminal equipment initialization and network registration. 

Once the GPRS attach is completed, Software update in the form of firmware image file 

can be download over HTTP/HTTPS. Typically, the firmware image would be larger than 

the maximum stack size on target MCU, therefore it is downloaded in multiples of smaller 
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chunks. It is achieved by advancing the read pointer by the amount of data read. Figure 

34 describes the firmware download sequence. 

 

Figure 34. Firmware file download over GSM/GPRS network. 

The corresponding ’C’ routine is shown in Figure 35 below. 
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    /* Unlock the Flash Program Erase controller */ 

    FLASH_If_Init(); 

    while ((offset < len ) && timeout_ms > 0) 

    { 

        bytes_to_read = ((len - offset) > 
GSM_HTTP_DATA_SIZE) ? GSM_HTTP_DATA_SIZE : (len - 
offset); 

        ret = gsm_http_read(offset, bytes_to_read); 

        if (ret != GSM_SUCCESS) 

        { 

            FLASH_Lock(); 

            break; 

        } 

        if (line_valid) 

        { 

            /* Wait for data arrival */ 

            while 
(USART_GetITStatus(gsm_uart.USARTx, USART_IT_RXNE) 
== SET); 

            /* disable GSM UART Receive IRQ */ 

            USART_ITConfig(gsm_uart.USARTx, 
USART_IT_RXNE, DISABLE); 

            if (FLASH_If_Write(&flashaddress, 
(uint32_t *)memory_buffer, (bytes_read/4)) != 0) 

            { 

                FLASH_Lock(); 

                line_valid = 0; 

                USART_ITConfig(gsm_uart.USARTx, 
USART_IT_RXNE, ENABLE); 

                ret = ERROR; 

                break; 

            } 

            /* all consumed */ 

            line_valid = 0; 

            /* Re-enable GSM UART Receive IRQ */ 

            USART_ITConfig(gsm_uart.USARTx, 
USART_IT_RXNE, ENABLE); 

        } 

        offset += bytes_read; 

        --timeout_ms; 

    } 

/* lock the Flash Program Erase controller */ 

FLASH_Lock(); 

Figure 35. Code snip of firmware file download in chunks over GSM/GPRS network.  
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4.7.2. Wi-Fi 

Wi-Fi allows electronic devices to conenct to Wireless Local Area Network (LAN). It 

operates in 2.4 GHz band. The RF module selected for this thesis is ESP8266 [11] SoC. 

It has an in-built transreceiver that operates in the same frequency band as the Wi-Fi and 

has integrated TCP/IP protocol. The selected RF module also has pre-programmed AT+ 

command firmware, hence, interfacing this module with the MCU brings Wi-Fi capability 

to MCU and is easy to control. 

The Wi-Fi module initialization and firmware file download sequence over TCP/IP is 

shown in Figure 36. 

 

Figure 36. Wi-Fi module initialization and TCP/IP connection establishment 

4.8. Hardware abstraction layer 

Software portability and time to market are two very important factors in today’s rapidly 

changing market. While software portability is important, it should not come at the 

expense of increased time to market or with increased complexity. The target devices 

used for this project are from the STM32 family of 32-bit Flash microcontrollers, based 

on ARM Cortex M processor. There are broad set of options at different levels of software, 

such as board support package, compiler, linker, static library, assembler, debugger etc. 

Therfore a small survery on available options was conducted and following decisions were 

made for the implementation:  
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 STM’s Cube library [13] is highly portable static library, however, it is newer than 

the STD Peripheral library [14] and I had no prior experience with Cube library, 

hence it was not selected.  

 There are many Real Time Operating System (RTOS) such as FreeRTOS [15] and 

RIOT-OS [16], which have support for the selected target devices, however since 

there are no real time requirements for this project, RTOS were not used. 

 STM’s STDPeripheral library allows one to write extremely portable application 

for a particular family (e.g. STM32F0xx or STM32F4xx) of SOCs from STM. 

These libraries have been thoroughly tested by the vendor and by users. 

Code portability and reuseability was achieved by developing a semi-platform agnostic 

library, shown as one of the Component code block in Figure 37. The static library is 

compiled individually and is linked to the bootloader code at build time. The application 

uses ’C’ language’s pre-processor symbol and pre-processor directives to appropriately 

select the statically built library. 

 

Figure 37. Software abstraction. 
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Figure 38 shows a sample code for clock domain initialization for two different target 

SoC. 

#if defined (STM32F0xx) 

    #define RCC_GPIO_GSM_PERIPH         
RCC_AHBPeriph_GPIOA 

    #define RCC_CRC_PERIPH              
RCC_AHBPeriph_CRC 

#elif defined (STM32F4xx) 

    #define RCC_GPIO_GSM_PERIPH         
RCC_AHB1Periph_GPIOB 

    #define RCC_CRC_PERIPH              
RCC_AHB1Periph_CRC 

#else 

    #error "Target not supported, refer toolchain 
preprocessor symbols" 

#endif 

 

void rcc_init(void) 

{ 

#if defined (STM32F0xx) 

    RCC_AHBPeriphClockCmd(RCC_GPIO_GSM_PERIPH, 
ENABLE); 

    RCC_AHBPeriphClockCmd(RCC_CRC_PERIPH, ENABLE); 

#endif 

 

#if defined (STM32F4xx) 

    RCC_AHB1PeriphClockCmd(RCC_GPIO_GSM_PERIPH, 
ENABLE); 

    RCC_AHB1PeriphClockCmd(RCC_CRC_PERIPH, ENABLE); 

#endif 

} 

Figure 38. Clock domain initialization. 
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5. Experiments 

An abstract black box test [18] setup is shown in Figure 39. The device under test is 

supposed to change it’s state based on the input parameters and it’s current state. The state 

transition is known a priori. The system is said to exhibit correct (PASS) behavior, if the 

output matches with the expected behavior, otherwise its deeemed incorrect (FAIL). 

Verification is done by consulting the transition table. 

 

Figure 39. Abstract black box test setup. 

Similar approach is used to validate the over the air firmware upgrade implementation. 

Functional test cases were written by assuming different operational, upgrade and failure 

scenarios and accordingly tests were carried out on all the three target SoCs (refer 

Appendix 2). Test case description and actual result is shown in Table 6.  

As, the test results are used to characterize a system’s correctness, it is very important to 

judiciously identify the test cases. It is even more important when the device under test is 

in large quantity.  
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Table 6: Test description and results 

Test case Expected behavior Actual behavior 

Custom 

board 

(STM32F0

72CB) 

STM32F05

1-

Discovery 

STM32F40

7VG-

Discovery 

Flash memory 

contains bootloader 

and factory 

firmware. Power on 

the board. 

 

After Power-ON, 

Bootloader should find 

the factory firmware in 

the flash and normal 

operation of factory 

firmware should follow. 

PASS PASS PASS 

Factory firmware 

initiates f/w upgrade 

over GSM by setting 

a flag in SRAM and 

issues soft reset. 

Board goes through a soft 

reset and Bootloader 

should acknowledge the 

f/w upgrade process, by 

issuing AT+ command to 

download the firmware. 

PASS PASS PASS 

No connection while 

trying to contact 

HTTP server the 

Bootloader. 

Retry once more by 

issuing a soft reset. Once 

retries are exhausted, 

abort firmware upgrade 

process and boot from 

current factory firmware. 

PASS PASS PASS 

Remove the GSM 

antenna from the 

board. 

Retry once more by 

issuing a soft reset. Once 

retries are exhausted, 

abort firmware upgrade 

process and boot from 

current factory firmware. 

PASS PASS PASS 

Board is connected 

to GSM network and 

Firmware upgrade is 

issued (in other 

words, No network 

issue at the 

beginning of f/w 

upgrade process) 

Factory firmware is 

copied to a separate 

region in flash and the 

new firmware is 

downloaded and 

programmed into 

application region of the 

flash. This is followed by 

soft reset. After a soft 

reset, bootloader finds the 

new firmware in the flash,  

Transfers control to the 

new application and then 

normal operation of the 

board resumes. 

PASS PASS PASS 

No firmware at the 

HTTP server. 

Retry once more by 

issuing a soft reset. Once 

retries are exhausted,  

PASS PASS PASS 
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Test case Expected behavior Actual behavior 

  Custom 

board 

(STM32F0

72CB) 

STM32F05

1-

Discovery 

STM32F40

7VG-

Discovery 

 abort firmware upgrade 

process and boot from 

current factory firmware. 

PASS PASS PASS 

HTTP Server that 

stores the firmware is 

down. 

Retry once more by 

issuing a soft reset. Once 

retries are exhausted, 

abort firmware upgrade 

process and boot from 

current factory firmware. 

PASS PASS PASS 

Firmware file size 

bigger than the area 

reserved in the flash 

for the application. 

Retry once more by 

issuing a soft reset. Once 

retries are exhausted, 

abort firmware upgrade 

process and boot from 

current factory firmware. 

PASS PASS PASS 

Remove the GSM 

antenna from the 

board during the 

firmware upgrade 

process. 

Retry once more by 

issuing a soft reset. Once 

retries are exhausted, 

abort firmware upgrade 

process, copy back the 

older firmware from the 

backup area and boot 

from older firmware. 

PASS PASS PASS 

Network error before 

the firmware upgrade 

process. 

Retry once more by 

issuing a soft reset. Once 

retries are exhausted, 

abort firmware upgrade 

process and boot from 

current factory firmware. 

PASS PASS PASS 

Power cycle the 

board during the 

firmware upgrade 

process. 

Bootloader will retry 

software update until 

retries are exausted. After 

which a rollback would be 

initiated to boot from 

older application.  

PASS PASS PASS 
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6. Conclusion and future work 

The ability to perform firmware upgrade, after the system has been already shipped is 

very attractive to system manufacturers. It has become of more relevance in recent times, 

due to impressive growth of IoT domain. A cost effective and scalable solution is to ship 

bootloader along with the actual product, however this is rather a challenging task for 

following reasons: 

 In IoT world, where power consumption is of prime concern, ARM based 

products are vastly used. The licensing model of ARM and various family of 

ARM processors has allowed hardware vendors to manufacture ARM based SoC 

in variety of packaging, gate count and density. 

 Ultra-low power embedded systems have very limited resource. 

 Different deployment environments. 

For these reasons, bootloaders are also application centric, but since the generic ideas 

behind every bootloader are same, a good design pattern could be developed while 

spending engineering effort on developing bootloader. Though bootloader is not the main 

end product, but is potentially the most important part of the product and hence bootloader 

design should be considered at the very early stage of the project. 

As part of the thesis work, bootloader was developed and was successfully deployed on 

a commercial IoT product [12] to facilitate firmware update over the GSM/GPRS 

network. An in-house test bench was also developed to validate different software update 

scenario. These test cases were conducted to test the correctness and robustness of the 

system, more specifically in the event of firmware upgrade process. Various fault 

scenarios were simulated to test the fail-proof behavior of device under test (STM32 

MCU). These failure scenarios and the test results are mentioned in Table 6. 

A static ‘C’ library was developed. It drastically reduced the porting effort of bootloader 

from one MCU to another. Total lines of ‘C’ code written for portable, fail-proof 

bootloader developed as part of this thesis is about 4000. Bootloader binary size is about 

20 KB (with compiler optimization level set to O3) 

According to current Intel’s head, security is the third pillar of computing (performance 

and connectivity being the other two). An unsecured software update could open a 
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Pandora’s box. Therefore, effort must be made to make the software update as secured as 

possible. As part of the thesis work, due to time constraints, security aspects of software 

update could not be explored, therefore the author plans to enhance the current bootloader 

by incorporating security features. Author believes that a layered approach for security 

features should be investigated and secured over the air, firmware update process can be 

achieved by implementing, authentication, securing the download data stream (HTTPS 

instead of HTTP), data encryption and memory read out protection. 

Firmware upgrade over Wi-Fi network is the other planned future work. The work has 

already started to interface Wi-Fi module [11] with the target MCU and currently a library 

is being developed.  

The long term goal is to add support for ARM GNU Toolchain [17] and release the 

Bootloader code in public domain as open source project.  
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Appendix 1 – ARM architecture basics 

Since the target SOC is based on ARM architecture, hence this chapter provides brief 

information on ARM architecture and an introduction to ARM series. 

The ARM architecture is similar to a Reduced Instruction Set Computer (RISC) 

architecture, as it incorporates these typical RISC architecture features: 

 A uniform register file load/store architecture, where data processing operates 

only on register contents, not directly on memory contents. 

 Simple addressing modes with all load/store address deteremined from register 

contents and instruction field only. 

Overall, ARM has three distinct lines of ARM architectures, These are: 

 Cortex A – used in performance centric applications. 

 Cortex M – used in low power applications. 

 Cortex R – used in real time constrained applications. 

The focus of this thesis is Internet of things domain and Cortex M series is the most 

popular in electronic industry and hence only ARM Cortex M series processors will be 

discussed further. The existing Cortex-M processors are based on two architecture 

versions: 

 Cortex-M3, Cortex-M4 and Cortex-M7 are based on ARMv7-M architecture  

 Cortex M0, Cortex-M0+ and Cortex-M1 are based on ARMv6-M architecture 

The architecture specifications define the behavior of the processors from both software 

and debug points of view. For example, the instruction set, programmers’ model, 

exception model, and debug registers, which are visible to debug tools, are all defined by 

the architecture specifications. Each architecture can result in multiple processor 

implementations, which in turn can be used in multiple SoC products. As part of this 

thesis Bootloader has been developed for supporting both ARMv6-M (STM32F0 SOC) 

and ARMv7-M (STM32F4 SOC) architecture. Although the processor architecture 

specific details are abstracted by the compiler and the high level programming language, 

it is nonetheless important to know the compatibility between the processor revision, 

before hand for ease of developing portable applications. According to the ARM 
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compatiblity matrix, shown in Table below, ARMv6-M is fully compatible with ARMv7-

M. 

Table. Compatibility matrix. 

Software developed for Is compatible with these implementations 

ARM v6-M ARMv6-M with Unprivileged/Privileged  
Extension. 

ARMv6-M with Unprivileged/Privileged 

Extension and PMSAv6-M  

All ARMv7-M  

ARMv6-M with Unprivileged/Privileged  

Extension 

ARMv6-M with Unprivileged/Privileged  

Extension and PMSAv6  

All ARMv7-M  

ARMv6-M with Unprivileged/Privileged 

Extension and PMSAv6 

ARMv7-M with PMSAv7  

 

 

The following text in this appendix on ARM Cortex M0 is taken from a textbook [21] . 

Cortex-M0 processor is a 32-bit Reduced Instruction Set Computing (RISC) processor 

with a von Neumann architecture (single bus interface). It uses an instruction set called 

Thumb, which was first supported in the ARM7TDMI processor; however, several newer 

instruction from the ARMv6 architecture and a few instructions from the Thumb-2 

technology are also included. Thumb-2 technology extended the previous Thumb 

instruction set to allow all operations to be carried out in one CPU state. The instruction 

set in Thumb-2 included both 16-bit and 32-bit 24 instructions; most instructions 

generated by the C compiler use the 16-bit instructions, and the 32-bit instructions are 

used when the 16-bit version cannot carry out the required operations. This results in high 

code density and avoids the overhead of switching between two instruction sets. In total, 

the Cortex-MO processor supports only 56 base instructions, although some  instructions 

can have more than one form. 

A simplified block diagram of the Cortex-MO is shown in Figure below. 
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Figure. Simplified block diagram of Cortex M0 processor [21] 

 The processor core contains the register banks, ALU, data path, and control logic. 

It is a three stage pipeline design with fetch stage, decode stage, and execution 

stage. The register bank has sixteen 32-bit registers. A few registers have special 

usages. 

 The Nested Vectored Interrupt Controller (NVIC) accepts up to 32 interrupt 

request signals and a nonmaskable interrupt (NMI) input. It contains the 

functionality required for comparing priority between interrupt requests and the 

current priority level so that nested interrupts can be handled automatically. If an 

interrupt is accepted, it communicates with the processor so that the processor can 

execute the correct interrupt handler. 

 The Wakeup Interrupt Controller (WIC) is an optional unit. In low-power 

applications, the microcontroller can enter standby state with most of the 

processor powered down. In this  situation, the WIC can perform the function of 

interrupt masking while the NVIC and the processor core are inactive. When an 

interrupt request is detected, the WIC informs the power management to power 

up the system so that the NVIC and the processor core can then handle the rest of 

the interrupt processing. 
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 The debug subsystem contains various functional blocks to handle debug control, 

program breakpoints, and data watchpoints. When a debug event occurs, it can 

put the processor core in a halted state so that embedded developers can examine 

the status of the processor at that point. 

 The JTAG or serial wire interface units provide access to the bus system and 

debugging functionalities. The JTAG protocol is a popular five-pin 

communication protocol commonly used for testing. The serial wire protocol is a 

newer communication protocol that only requires two wires, but it can handle the 

same debug functionalities as JTAG. 

 The internal bus system, the data path in the processor core, and the AHB LITE 

bus interface are all 32 bits wide. AHB-Lite is an on-chip bus protocol used in 

many ARM processors. This bus protocol is part of the Advanced Microcontroller 

Bus Architecture (AMBA) specification, a bus architecture developed by ARM 

that is widely used in the IC design industry. 
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Appendix 2 – Development boards 

 

 

STM32F051 Discovery board [8]. 

STM32F051-Discovery board feature summary: 

 STM32F051R8T6 microcontroller featuring 64 KB Flash, 8 KB RAM in an 

LQFP64 package  

 On-board ST-LINK/V2 with selection mode switch to use the kit as a standalone 

ST-LINK/V2 (with SWD connector for programming and debugging) 

 Board power supply: through USB bus or from an external 5 V supply voltage 

 External application power supply: 3 V and 5 V 

 Four LEDs: 

- LD1 (red) for 3.3 V power on 

- LD2 (red/green) for USB communication 

- LD3 (green) for PC9 output 

- LD4 (blue) for PC8 output 

 Two push buttons (user and reset) 

 Extension header for LQFP64 I/Os for 
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 STM32F407VG Discovery board [9]. 

STM32F407VG-Discovery board feature summary: 

 STM32F407VGT6 microcontroller featuring 32-bit ARM Cortex®-M4 with FPU 

core, 1-Mbyte Flash memory, 192-Kbyte RAM in an LQFP100 package. 

 On-board ST-LINK/V2 on STM32F4DISCOVERY or ST-LINK/V2-A on 

STM32F407G-DISC1. 

 USB ST-LINK with re-enumeration capability and three different interfaces: 

- Virtual com port (with ST-LINK/V2-A only) 

- Mass storage (with ST-LINK/V2-A only) 

- Debug port 

 Board power supply: through USB bus or from. an external 5 V supply voltage. 

 External application power supply: 3 V and 5 V. 

 LIS302DL or LIS3DSH ST MEMS 3-axis accelerometer. 

 MP45DT02 ST MEMS audio sensor omni-directional digital microphone. 

 CS43L22 audio DAC with integrated class D speaker driver. 

 Eight LEDs: 

- LD1 (red/green) for USB communication 

- LD2 (red) for 3.3 V power on 

- Four user LEDs, LD3 (orange), LD4 (green), LD5 (red) and LD6 (blue) 
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- 2 USB OTG LEDs LD7 (green) VBUS and LD8 (red) over-current 

 Two push buttons (user and reset). 

 USB OTG FS with micro-AB connector 

 

 

Seeeduino GPRS IoT panel [10]. 

Seeeduino GPRS IoT panel Specification: 

 SIM Card Interface 

 Battery CR1220 

 Headset Interface :3.5mm headphones 

 Micro USB:Port used to connect the board to your PC for programming 

 Power Switch:Slide switch used to change the logic level and power output of the 

board to either 5V or 3.3V.  

 DC Jack 

 Power LED 

 Reset button :it can reset SIM800h and MCU 

 Reset indicator LED 

 MCU: The ATMEGA32U4-MUR chip 

 GPRS Model: SIM800h 
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 Breakout for SIM800h :For debugging sim800h by this interface. 

 LEDs indicator 

 

WI-FI serial transreceiver module [11]. 

Seeduino WiFi serial transreceiver module with ESP8266 Specification: 

 802.11 b/g/n 

 Wi-Fi Direct (P2P), soft-AP 

 Integrated TCP/IP protocol stack 

 Integrated TR switch, balun, LNA, power amplifier and matching network 

 Integrated PLLs, regulators, DCXO and power management units 

 +19.5dBm output power in 802.11b mode 

 Power down leakage current of <10uA 

 Integrated low power 32-bit CPU could be used as application processor 

 SDIO 1.1/2.0, SPI, UART 

 STBC, 1×1 MIMO, 2×1 MIMO 

 A-MPDU & A-MSDU aggregation & 0.4ms guard interval 

 Wake up and transmit packets in < 2ms 

 Standby power consumption of < 1.0mW (DTIM3) 
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Appendix 3 – Pinout configuration 

MCU Peripher

al 

Identifier Pin Mode/B

aud 

rate/ 

Usage 

STM32F051

R8 Discovery 

board 

GPIO GPIOA PA.2 AF_1 USART2_T

X/ COM1 Rx 

PA.3 AF_1 USART2_R

X/ COM1 Tx 

PA.9 AF_1 USART1_T

X/  GSM_Rx 

PA.10 AF_1 USART1_R

X/ GSM_Tx 

GPIOC PC.9 OUT On board 

LED 

Clock RCC_AHBPeriph_GPIOA  

 

N/A N/A Clock for 

GPIOA 

RCC_AHBPeriph_GPIOC N/A N/A Clock for 

GPIOC 

RCC_APB2Periph_USA

RT1  

 

N/A N/A Clock for 

USART1 

RCC_APB1Periph_USA

RT2  

 

N/A N/A Clock for 

USART2 

RCC_AHBPeriph_CRC N/A N/A Clock for 

CRC 

computation 

unit 

UART USART1 N/A 9600 STM32-

GSM serial 

communicati

on  

 

USART2 N/A 9600 Serial loging 

STM32F407

VG 

Disocvery 

board 

GPIO GPIOA PA.2 AF_1 USART2_T

X/ COM1 Rx 

PA.3 AF_1 USART2_R

X/ COM1 Tx 

GPIOB PA.6 AF_1 USART1_T

X/  GSM_Rx 

PA.7 AF_1 USART1_R

X/ GSM_Tx 

GPIOD PD.13 OUT On board 

LED 
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MCU Peripher

al 

Identifier Pin Mode/B

aud 

rate/ 

Usage 

 Clock RCC_AHB1Periph_GPIO

A 

N/A N/A Clock for 

GPIOA 

RCC_AHB1Periph_GPIO

D 

N/A N/A Clock for 

GPIOD 

RCC_AHB1Periph_GPIO

B 

N/A N/A Clock for 

GPIOB 

RCC_APB2Periph_USAR

T1  

N/A N/A Clock for 

USART1 

RCC_APB1Periph_USAR

T2  

N/A N/A Clock for 

USART2 

RCC_AHB1Periph_CRC N/A N/A Clock for 

CRC 

computation 

unit 

UART USART1 N/A 9600 STM32-

GSM serial 

communicati

on  

 

USART2 N/A 9600 Serial loging 

STM32F07C

B Custom 

board 

GPIO GPIOA PA.2 AF_1 USART2_T

X/ COM1 Rx 

PA.3 AF_1 USART2_R

X/ COM1 Tx 

PA.9 AF_1 USART1_T

X/  GSM_Rx 

PA.10 AF_1 USART1_R

X/ GSM_Tx 

GPIOC PC.14 OUT GSM reset 

GPIOF PF.13 OUT GSM Power 

enable 

(Active low) 

GPIOB PB.5 OUT On-board 

Green LED 

Clock RCC_AHBPeriph_GPIOA  

 

N/A N/A Clock for 

GPIOA 

RCC_AHBPeriph_GPIOB N/A N/A Clock for 

GPIOB 

RCC_AHBPeriph_GPIOF N/A N/A Clock for 

GPIOF 
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MCU Peripher

al 

Identifier Pin Mode/B

aud 

rate/ 

Usage 

 Clock RCC_AHBPeriph_GPIOC N/A N/A Clock for 

GPIOC 

RCC_APB2Periph_USAR

T1  

 

N/A N/A Clock for 

USART1 

RCC_APB1Periph_USAR

T2  

 

N/A N/A Clock for 

USART2 

RCC_AHBPeriph_CRC N/A N/A Clock for 

CRC 

computation 

unit 

  USART1 N/A 9600 STM32-

GSM serial 

communicati

on  

 

  USART2 N/A 9600 Serial loging 
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Appendix 4 – Bootloader entry point 

int main(void) 

{ 

    if (SysTick_Config(SystemCoreClock/1000)) 

    { 

        while (1); 

    } 

    int ret; 

    /* Initialize Leds mounted on discovery board */ 

    STM_EVAL_LEDInit(LED3); 

    STM_EVAL_LEDInit(LED4); 

    /* Enable clocks */ 

    rcc_init(); 

    /* set up IRQs */ 

    nvic_configuration(); 

    /* Enable General purpose port and pins */ 

    gpio_init(); 

    /* Enable UART peripherals */ 

    uart_init(); 

    /* Enable CRC calculation unit */ 

    crc_init(); 

    /* Unlock the Flash Program Erase controller */ 

    FLASH_If_Init(); 

    /* OTA flag has been set, initiate firmware download procedure */ 

    if (*(uint32_t *)IAP_FLAG_ADDRESS == IAP_FLAG) 

    { 

        ret = ota_gsm(); 

        /* Everything went well, reset the IAP flag and boot from new 
application */ 

        if (ret == SUCCESS) 

        { 

            /* Reset IAP flag */ 

            *(uint32_t *)IAP_FLAG_ADDRESS = 0x0; 

            /* Take branching decission on next reboot */ 

            reboot(); 

        } 

        /* DFU failed, retry until retries are exausted. The retry count is 
set 

         * by the application in an area reserved in SRAM. Typicall it is 1 

         */ 

        else 

        { 

            if (*(uint32_t *)IAP_RETRY_ADDRESS == 0x1) 

            { 
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                (*(uint32_t *)IAP_RETRY_ADDRESS)--; 

                NVIC_SystemReset(); 

            } 

            /* IAP flag is still set and we ran out of retries. 

             * Note that, the application need to contact the remote server 
and accordingly 

             * take action on setting or resetting the DFU flag. 

             */ 

            *(uint32_t *)IAP_FLAG_ADDRESS = 0x0; 

            NVIC_SystemReset(); 

        } 

    } /* end of OTA */ 

    /* A partially programmed firmware will lead to hardfault. DFU in 
progress 

     * flag is stored in non volatile memory to take better branching 
decission. 

     * Jump to application will happen iff 

     * 

     * a) application exists at the application load address. 

     * b) device firmware upgrade has finished. 

     */ 

    else if (IS_VALID_SP(APPLICATION1_ADDRESS) && !(IS_DFU_IN_PROGRESS)) 

    { 

        prep_jump_to_application(); 

        /* Jump to user application */ 

        JumpAddress = *(__IO uint32_t*) (APPLICATION1_ADDRESS + 4); 

        Jump_To_Application = (pFunction) JumpAddress; 

        /* Initialize user application's Stack Pointer */ 

        __set_MSP(*(__IO uint32_t*) APPLICATION1_ADDRESS); 

        /* Jump to application */ 

        Jump_To_Application(); 

    } 

    /* 

     * power reset during the device firmare update will leave the dfu in 
progress 

     * flag in set state. We will attempt DFU one last time 

     */ 

    else if (IS_DFU_IN_PROGRESS) 

    { 

        /* try once more */ 

        ret = ota_gsm(); 

        /* Everything went well, reset the IAP flag and boot from new 
application */ 

        if (ret == SUCCESS) 

        { 
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            /* the return value of SUCCESS from ota_gsm means that the dfu in 
progress 

             * flag has been cleared. system reboot would bring us to normal 
operation 

             * state. 

             */ 

            /* Reset IAP flag */ 

            *(uint32_t *)IAP_FLAG_ADDRESS = 0x0; 

            /* Take branching decission on next reboot */ 

            reboot(); 

        } 

        /* Erase the partially programmed application area, so that on 

         * next reboot, bootloader doesn't attempt to jump to it 

         */ 

        FLASH_If_Init(); 

        FLASH_If_EraseAppArea(APPLICATION1_ADDRESS); 

        FLASH_Lock(); 

        dfu_in_progress_reset(); 

        reboot(); 

    } 

    /* Neither the OTA flag is set, nor we have a valid application. Try to 
boot 

     * from older application, if a backup exists in memory, else prompt the 

     * user to program the application firmware over STM-NRF UART 
communication 

     * link. 

     */ 

    else 

    { 

        /* perform a rollback if there is a valid application in the backup 
area */ 

        if (IS_VALID_SP(APPLICATION2_ADDRESS))·· 

        { 

            if (rollback()) 

            { 

                NVIC_SystemReset(); 

            } 

            else 

            { 

                Main_Menu(); 

            } 

        } 

        Main_Menu(); 

    } 

 

} 
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/* blink LED on board with 1 second delay to represet OTA failure */ 

void Main_Menu(void) 

{ 

    while (1) 

    { 

        STM_EVAL_LEDOn(LED3); 

        delay(1000); 

        STM_EVAL_LEDOff(LED3); 

        delay(1000); 

    } 

} 


