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1 Introduction
Outdoor monitoring systems play a central role in the acquisition of information in severaldomains, each defined by unique operational requirements (see Figure 1). Recent advancesin sensing hardware, data processing capabilities, and computational technologies havesignificantly enhanced their adaptability, facilitating deployment in increasingly diverseand complex environments. Broadly generalized, these systems can be categorized basedon their operational environment: underwater or terrestrial.

To study species in their natural habitats contributes to understanding ecological dy-namics and assists in developing conservation strategies that address threats to biodiversityand the overall ecosystem [52]. Over the years, numerous non-invasive methods havebeen developed to advance ecological research on species that are difficult to observeor capture, such as cryptic species or those living in harsh environments. Camera trapshave been utilized for more than a century and have proven to be versatile, serving variouspurposes, including monitoring the status of the wildlife population, searching for rarespecies, estimating biodiversity, studying habitat preferences and behavior, and detectingpoachers [41, 16]. Monitoring freshwater ecosystems is equally vital, yet it presents ownunique challenges. Despite comprising only 0.01% of the water on Earth, the freshwaterecosystems (rivers, lakes, and wetland) host one-third of all vertebrate species and areexperiencing a rapid decline [20]. Destruction of the global wetlands is occurring at apace three times faster than that of forests, and the compounding impacts of climaticand anthropogenic changes are reducing freshwater vertebrate populations at more thantwice the rate of terrestrial or marine populations [84, 30]. Increasing uncertainty inimportant fisheries worldwide poses a threat to both economic and food security in manyparts of the world. Underwater camera-based fish monitoring can be used to assess andunderstand fish ecology and to manage populations appropriately, which requires accuratedata on species occurrence, abundance, body size, distribution, and behavior [62, 40].Considering freshwater fish species, a broader and more accurate representation of theirdaily migration activities and counts is required to study, understand, predict, and supportsustainable freshwater fisheries [54, 26].
In addition to natural environments, cameras have also been used successfully tomonitor human activity, especially to remediate traffic problems in urban areas. Withthe growing number of vehicles worldwide, the development and management of thecity’s transportation infrastructure has become a substantial and persistent challenge.Frequent problems include traffic congestion, environmental pollution, and noise pollution.To address these challenges, traffic monitoring systems are deployed to collect data ontraffic flow [2, 3, 27, 1, 4]. Methods and approaches for monitoring and collecting data haveseen constant changes over the past several decades. State-of-the-art solutions rely onsensors, usually camera sensors with added additional modalities (radar or LiDAR), capableof covering multiple lanes simultaneously, while requiring minimal or no maintenance[76, 9].
A camera-based outdoor monitoring system, regardless of its target domain, servesthe purpose of collecting, analyzing, and interpreting data to facilitate informed decision-making. The process can be divided into two primary procedures: object detection andobject assessment. Object detection involves two main functions: identifying the type ofobject and determining the object’s spatial coordinates within an image (see Fig. 2 (c)).

Object assessment goes beyond localization and classification. It includes evaluating anobject’s condition, behavior, characteristics, or attributes (as shown in Fig. 2 (d)). In trafficmonitoring, object assessment may involve measuring vehicle speed, assessing potentialbottlenecks, or analyzing motorist behavioral patterns.
10



Figure 1: Outdoor monitoring applications: (1) Coral reef and fish monitoring: assessing reef health
and detecting fish species using underwater imaging. (2) Traffic monitoring: identifying vehicles and
buses for real-time traffic management. (3) Wildlife monitoring: identifying and tracking animals,
such as bears and beavers, in natural habitats. The research covered in this dissertation focuses on
infrastructure-based traffic monitoring and the evaluation of fish populations and migration.

In the context of fish monitoring, assessments may include evaluating individual fish, suchas their species and size, assessing health indicators (including signs of stress or disease),and analyzing behavioral responses (like swimming speed or reactions to environmentalstimuli). To visually represent this process, Fig. 2 outlines the typical stages of a monitoringsystem.

Figure 2: A visual representation of a monitoring pipeline applied to traffic and fish ecosystem
monitoring. The workflows progress through data acquisition, preprocessing (removal of irrelevant
elements and improvement of visibility), object detection (with classification and confidence scores),
object assessment (e.g., speed or size estimation), and response (e.g., issuing fines or assessing
conservation status).

1.1 Object Detection and Object Assessment
Visualized in Fig. 3, the timeline of object detection can be divided into two distincteras: before the emergence of AlexNet in 2012 [51] (Traditional Detection Methods) andthe era of Deep Learning Methods. Before deep learning, traditional object detectionmethods relied on hand-made features and traditional machine learning algorithms suchas Viola-Jones (VJ) [87], Histogram of Oriented Gradients (HOG) [25], or Deformable Parts
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Model (DPM) [31, 32, 33]. However, these older approaches often suffered from limitedscalability and generalization to new object classes. Before transformer-based models,Convolutional Neural Network (CNN) models were divided into two groups: two-stagealgorithms (candidate-based algorithms) and single-stage algorithms (regression-basedalgorithms).Two-stage object detection algorithms operate by first extracting candidate regionsfrom the image, known as region proposals. These proposals are then processed usinga convolutional neural network to classify and localize the objects within them. Whiletwo-stage methods typically achieve higher accuracy, they tend to have slower detectionspeeds compared to one-stage approaches. Representative examples of two-stage objectdetectors include R-CNN [38], SPP-Net [43], Fast R-CNN [37], and Faster R-CNN [72].Single-stage algorithms directly generate the positioning coordinates and classificationprobability of objects in the image without the need to generate a region proposal inadvance. Because there is one less computationally intensive step, their detection speedis relatively quick compared to two-stage options, while showing similar or improvedperformance as summerized in Fig. 4. You Only Look Once (YOLO) [71] versions and SingleShot MultiBox Detector (SSD) [59] are two of the most well-known single-stage objectdetection algorithms.The development and implementation of transformer-based object detection modelshave emerged as a result of advancements in natural language processing and the suc-cessful application of transformers in various other computer vision tasks. Researchersand engineers have recognized the potential in terms of detection performance (Fig. 4)of transformers to capture long-range dependencies in image data, leading to the explo-ration and adoption of transformer architectures in numerous computer vision applications[28, 8, 77, 57].

Figure 3: Timeline of advancements in object detection models, spanning from 2001 to 2025. The
progression begins with traditional feature-based approaches, such as VJ (Viola-Jones) and HOG,
advancing through the introduction of deep learning-based models such as AlexNet and R-CNN,
and evolving toward modern architectures that are based on transformers, namely ViT (Vision
Transformer) and RT-DETR.

The distinctive attributes and features of digital camera’s unique characteristics high-light its versatility and capabilities across multiple domains and applications, capturingrich information, including color, texture, shape, and spatial context. For example, high-resolution imaging has already been integrated into stream measurement systems.
12
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Figure 4: Object Detection Accuracy on COCO 2017 Validation Set by Architecture Type (2015–2025).
Each point represents a model’s mAP score, grouped by architecture class. Highlighted markers
indicate the models tested and utilized during the research.

These systems employ segmentation algorithms and geometric calculations of points ofinterest to accurately assess water levels, aiding in environmental monitoring and informeddecision-making. Another use case is water quality monitoring, which involves detectingfloating debris and contaminants in dynamic aquatic environments [92].Compared to standard RGB color data capture, cameras equipped with multispectraland hyperspectral imaging capabilities can analyze information beyond the visible spec-trum. Detecting infrared, ultraviolet, and other spectral bands, facilitating sophisticatedenvironmental assessments - including evaluations of plant health, pollutant detection,and comprehensive water quality monitoring. Multispectral imaging has been utilizedeffectively in outdoor agricultural settings to assess the well-being of vegetation. By an-alyzing different spectral bands, these systems can compute vegetation indices such asthe Normalized Difference Vegetation Index (NDVI), allowing early detection of crop stressand improving precision of agricultural practices [53]. In underwater environments, thedeployment of hyperspectral imaging systems enables monitoring of coral health. Thesesystems utilize spectral analysis to distinguish between healthy corals and bleached orstressed corals by capturing subtle color changes and specific spectral signatures that areimperceptible to the naked eye or standard RGB cameras [64].In addition to capturing static objects, camera systems offer invaluable contextualinformation on surrounding environments. Advanced techniques, including semanticsegmentation and object classification, facilitate scene interpretation, offering insights intospatial relationships and dynamic ecological changes. For example, a camera-based systemdesigned to monitor wildlife habitats in outdoor settings utilized semantic segmentationmodels to distinguish between natural elements—such as trees, rocks, and water—and
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animal populations. This capability significantly advanced automatedmonitoring of speciesbehavior and habitat use, thus supporting conservation efforts [52, 41, 16]. Similarly, anunderwater camera system was developed to analyze coral reef ecosystems, utilizing deeplearning to classify various types of coral and identify signs of bleaching. By providing acomprehensive view of reef health, this system helped identify stress factors that impactecosystem health [62, 40, 39, 7].
1.2 Object Detection, Assessment, and Evaluation Challenges
Both object detection and assessment encounter substantial challenges in dynamic anduncontrolled environments. Fog reduces visibility by scattering light and diminishingcontrast, making it difficult to discern objects due to the lack of detail. Precipitationevents, such as rain and snow, further impair visibility, distorting the image. Low lightconditions introduce noise and blur, complicating detection efforts. In contrast, excessiveillumination—such as reflective glare or various light sources, can cause overexposure,distorting the object, thus negatively impacting detection or assessment performance[98, 97].

The underwater environment presents even more pronounced challenges. The accu-mulation of biofilm on the lens of the camera reduces the clarity, and bubbles movingthrough the water column introduce additional distortions. Turbidity, caused by suspendedparticles, increases light absorption and scattering, creating a diffuse effect that deterio-rates overall image quality. Excess sunlight in shallow waters creates glare, obscuring finerdetails, and complicating image analysis. On the other hand, limited lighting conditionsreduce the overall visibility of the scene [105].
External interference adds another layer of complexity, creating additional challenges.Poor camera positioning, lens obstructions (e.g. dirt and biofilm), and environmentalvibrations can disrupt image stability and clarity. Refraction and geometric distortionunderwater challenge depth estimation and feature extraction. Motion blur is particularlyproblematic in situations where stabilization may not be fully effective due to the system’smovement or vibrations coming from the environment, such as traffic. Depth and sizeestimation challenges are prominent with monocular cameras, which struggle to provideaccurate measurements without the use of stereo or multi-angle views. The absence ofreference objects further complicates the estimation of the size using only visual data. Oc-clusion can also introduce difficulties in detecting or assessing objects in densely populatedor vegetated settings. Dynamic and cluttered backgrounds, such as those found in urbanor aquatic settings, complicate object detection and tracking, particularly when partiallyor fully obscured objects are present.

1.3 Hardware
Edge computing has transformed outdoor monitoring systems in the past decade by pro-cessing data closer to its source. This shift has reduced latency, thereby improving real-timedecision-making capabilities, and reducing bandwidth consumption. It has been drivenby advances in computational hardware and the growing need for solutions that effec-tively address challenges related to real-time processing, infrastructure limitations (suchas power grids and communications), data security, and system reliability.

A significant factor in this transformation has been the emergence of neural networkarchitectures, which enable the precise analysis of complex visual scenes. However, thissignificant performance improvement brings with it an increased demand for computa-tional resources, especially in applications that involve segmentation, tracking, and size
14



estimation. To improve computational efficiency, tensor cores have been integrated intotraditional graphics processing units (GPUs) [65], allowing faster calculations involvingmatrices. Additionally, hardware accelerators such as Intel’s Neural Compute Stick [46]and Google’s Tensor Processing Unit (TPU) [49] have been utilized to a greater extent, thusexpanding the applications of edge computing while minimizing power consumption.Fig. 5 presents a comparative analysis of AI computing devices, measuring performancein TOPS (Tera Operations Per Second) against power consumption in watts for selected low-power embedded hardware released between 2017 and 2024. This period has witnesseda remarkable increase in AI performance, with newer devices showcasing significantlyenhanced computational power relative to their predecessors.
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Figure 5: AI performance (TOPS) vs. power consumption (W) of edge computing devices released
between 2018 and 2024. Early models, such as the Jetson Nano (2019) and Coral USB (2019), offer
limited performance at moderate power consumption. Newer devices, such as the Orin NX 16GB
(2023) and Orin Nano Super (2024), show significant improvements, with the latter reaching 67 TOPS
at 25 W. The devices featured in the graph were used at various stages throughout the research
discussed in the dissertation. Although numerous devices are available from various manufacturers,
as described in the publications, the selection criteria were primarily influenced by factors such as
capabilities, availability, cost, and documentation [80, 79].

1.4 Hardware Challenges
The deployment of models dedicated to object detection or assessment on constrainedhardware presents numerous challenges, including, but not limited to, computationalresource restrictions (size, memory limitations, and access to specialized hardware) andlimited access to infrastructure. Each of these factors may impose specific constraints onprocessing capabilities, resulting in scenarios that are either inadequately slow, unableto fit within available memory, or reliant on power availability for processing. A crucial
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consideration is the overall feasibility from both practical and economic perspectives,which often renders specific solutions unsustainable despite their inherent advantages overcurrent state-of-the-art options. Initiatives have been launched to increase the adoptionrates of precision agriculture technologies; from 2017 to 2021, the U.S. Department ofAgriculture (USDA) and the National Science Foundation (NSF) allocated approximately$200 million for research and development in this field [5]. However, despite thesesubstantial investments, only 27% of agricultural entities have implemented precisionagriculture technologies, mainly due to the high costs associated with their acquisition.
1.5 Research Gaps, Questions and Contributions
These challenges underscore limitations in current outdoor and underwater camera-basedmonitoring solutions, particularly in adverse and varying weather and other environmentalconditions. Based on the challenges and needs identified in Sections 1.2 and 1.4, threeresearch gaps (RG) were identified:

RG 1: In underwater environments and during adverse weather conditions on land, theability to detect, assess, and evaluate objects is greatly hindered.
RG 2: Object detection and assessment require significant computational resources,which presents major challenges when these tasks are executed on hardware with limitedresources in outdoor settings.
RG 3: Scarcity of outdoor datasets available to the public that are specifically createdfor the development and evaluation of object detection and assessment. In particular,there is a need for datasets that include challenging environmental or weather conditions.
The associated research questions driving the current dissertation focus on developingpractical and applicable solutions to address these three research gaps. Grounded inapplied research, this work primarily aligns with Edison’s quadrant (see Fig. 6), emphasizingimmediate utility over theoretical considerations. By integrating fundamental researchwithproblem-solving objectives, this study seeks to contribute to the development of effectivemethodologies and solutions for real-world deployment. Addressing these research gaps,the following research questions are formulated. Each question is designed to explore aspecific aspect of the identified challenges, with corresponding contributions detailed inrelevant publications.
RQ 1: What are the potential benefits of including an environmental condition classi-

fication model for object detection and assessment in harsh and adverse environments?
Publication IContributions: The main contribution of Publication I was the development of anenvironmental classification model capable of distinguishing six distinct environmentalconditions: clear, low lighting, air bubbles, biofilm growth, turbidity and overexposure,along with their respective severities. This model facilitated the selection of appropriatepreprocessing techniques tailored to each environmental condition, thus enhancing theaccuracy of fish detection. The trained model demonstrated a high level of accuracy whilemaintaining computational efficiency, making it highly suitable for real-time applications.This outcome highlights the model’s considerable potential for broader applicability,suggesting its utility in other domains that face similar challenges in object detectionunder varying environmental or weather conditions.
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Figure 6: Pasteur’s Quadrant: Relationship between fundamental understanding and practical use
[15]. The diagrammaps research efforts based on their pursuit of fundamental understanding (vertical
axis) and considerations of practical use (horizontal axis). As highlighted, the conducted research
focuses on practical applications without necessarily seeking deep theoretical insight—characteristic
of pure applied research.

RQ 2: How effective is a multi-modal system in improving object detection and
assessment performance under adverse and dynamic weather or environmental
conditions? Publication II and IIIContributions: In Publication II, the integration of a camera with millimeter wave(mmWave) radar substantially improved object classification, particularly in conditionswhere the camera alone was rendered ineffective. These challenging conditions includedrain, sleet, and nighttime scenarios, where visibility was severely compromised. Byleveraging only the point cloud data generated by the mmWave radar, without relying oncamera input, the system accurately distinguished between various vehicle classes.

In Publication III, a binocular vision system using color and infrared cameras wasemployed to estimate the size of fish using non-invasive methods. This approach enablesbiologists to collect quantitative data on aquatic ecosystems more efficiently and cost-effectively. By facilitating the analysis of critical ecological phenomena, such as the effectsof hydropeaking, this system minimizes resource demands, including personnel time andeffort, while simultaneously enhancing the scale and accuracy of biological assessments.
RQ 3: In what ways can the combination of machine learning and data-driven meth-

ods address challenges related to efficiency in embedded hardware with low-power
restrictions? Publication II and IIIContributions: In Publication II, an approach was presented that integrated a machinelearning-based object detection model with a point cloud-based classification model basedon k-nearest neighbors (KNN). This hybrid methodology demonstrated a high degree ofaccuracy in situ, while maintaining a computationally efficient design. The solution wassuccessfully deployed on low-power, resource-constrained embedded hardware, achievingnear real-time operation. This outcome highlights the effectiveness of integrating machinelearning algorithms with data-driven methods in addressing performance and efficiency
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challenges within the context of low-power embedded systems. The developed frame-work not only advances the state-of-the-art in lightweight computational models but alsohighlights the practical feasibility of deploying sophisticated algorithms in constrainedenvironments.In Publication III, an approach was presented that integrated a machine learning-basedobject detection model with data-driven binocular vision techniques to estimate the dis-tance from the camera and the size of the fish. Such a hybrid methodology demonstrateda high degree of accuracy in situ while maintaining a computationally efficient design.The solution was successfully deployed on low-power, resource-constrained embeddedhardware, achieving near real-time operation. This outcome highlights the effectivenessof integrating machine learning algorithms with data-driven methods in addressing perfor-mance and efficiency challenges within the context of low-power embedded systems. Thedeveloped framework not only advances the state-of-the-art in lightweight computationalmodels but also highlights the practical feasibility of deploying sophisticated algorithms inconstrained environments.Themain focus of this dissertation are novel computationally lightweight and adaptive
computer vision pipelines, dedicated to supporting and improving object detection
and assessment performance and efficiency in adverse weather and environmental
conditions, on land and underwater. The research encompasses a range of fields, includingsensors, machine learning, and hardware as depicted in Fig. 7. Moreover, it is intentionallycrafted to be highly adaptable for deployment across various applications and domains,while maintaining feasibility from both practical and economic perspectives. As previouslyhinted in Fig. 1, the effectiveness of the pipeline will be rigorously tested and validated intwo distinct domains: infrastructure-based traffic monitoring and freshwater ecosystemmonitoring. These diverse use cases underscore the interdisciplinary nature of outdoormonitoring systems, where successful implementation relies on the integration of corecomponents, including sensors, machine learning, and specialized hardware. The Venndiagram illustrated in Fig. 7 shows the interplay among these components, outlining thefoundational pillars that support this research.

Sensors Hardware

MachineLearning

Proposed
Pipeline

Figure 7: The research presented integrates Machine Learning, Sensors, and Hardware, highlighting
their intersection and comprehensive scope.
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1.6 Thesis Organization
The remainder of the dissertation is organized into four chapters, addressing the identifiedresearch gaps and the formulated research questions:

Chapter 2 presents a novel environmental classificationmodel that enables the pipelineto adapt effectively to mitigate and alleviate the influence of environmental factors, thusimproving object detection performance in challenging and complex environments.
Chapter 3 investigates how a multi-modal solution, composed of mmWave radar and ahigh-resolution camera, can improve object detection and classification performance intraffic monitoring during adverse weather conditions. The presented work also addressesthe limited number of publicly available datasets for infrastructure-based trafficmonitoringby introducing a novel dataset that encompasses a variety of vehicle classes, adverseweather conditions, and traffic configurations.
Chapter 4 presents an innovative solution that uses stereo color and infrared camerasto evaluate the impacts of hydropeaking on freshwater ecosystems. This system integratesmachine learning-based object detection with data-driven techniques for depth and sizeestimation, allowing for accuratemeasurement of fish size in their natural habitats. Notablecontributions include the development of a novel data set that encompasses multi-modalimagery.
Chapter 5 concludes the dissertation offering a comprehensive summary of the researchquestions, objectives, and solutions developed. It also addresses the challenges andlimitations encountered during the research, while exploring potential avenues for futureresearch and development.
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2 Environmental Classification Model
2.1 Background and Motivation
All monitoring systemsmust fulfill a primary purpose: collecting, analyzing, and interpretingdata to facilitate informed decision-making. In the case of fish monitoring, it meanscollecting information about fish presence / absence, species size, and migration direction.However, the underwater environment is inherently dynamic and unpredictable, shapedby constantly shifting currents, variable light penetration, and other factors. Temperature,salinity, and flow changes contribute to a complex ecosystemwhere visibility and conditionscan fluctuate rapidly. Even in seemingly stable conditions, subtle disturbances can alter thebehavior of the freshwater biota and the physical properties of the water column withinmoments, potentially influencing the performance of the monitoring system.

State-of-the-art solutions [55, 44, 36, 23] and commercially available fish monitoringsystems such as the River Watcher (Vaki, Iceland) [61], Bravo G3 (Biotactic, Canada) [12],and the Yanmar Marine System (Yanmar, Japan) [99] have several deficiencies (high cost,infrastructure requirements) and poor performance, especially in harsh and unpredictableenvironments. Freshwater ecosystems are among themost biodiverse yet most threatenedhabitats worldwide. While supporting approximately one-third of all vertebrate species,but are undergoing decline due to accelerated wetland destruction, climate change, andanthropogenic pressure [20, 84, 30]. Although prior efforts havemade substantial progressin fish detection, they often lack adaptability to dynamic environmental conditions, limitingtheir performance and scalability. These reasons guide the research and development of
novel computationally lightweight and adaptive computer vision pipelines dedicated to
supporting and improving object detection and assessment performance and efficiency
in adverse weather and environmental conditions, using freshwater fish monitoring asone of its target applications. The work covered in Publication I focuses solely on thepreprocessing stage, which uses environmentally adaptive machine learning methods,considerably different from those of previous publications [55, 44, 36, 23]. This workdirectly addresses RG1: The effectiveness of object detection, assessment, and evaluation
is significantly impeded in underwater environments and adverse weather conditions andtries to answer RQ 1: What are the potential benefits of employing an environmental
condition classification model for object detection and assessment in adverse and harsh
environments? This will be the first, yet crucial, step in the proposed pipeline, which isdedicated to supporting monitoring capabilities, both detection and assessment, underchallenging environmental conditions.
2.2 Environmental Conditions
Underwater environments present a unique set of conditions that influence visibility andperception. This work will focus on six distinct environmental conditions: clear visibility,low lighting, air bubbles, periphytic biofilm growth, turbidity, overexposure, and variouscombinations. Fig. 8 provides a visual representation of these environmental conditions toenhance understanding [81].

• Periphytic Biofilm: A condition characterized by the accumulation of organic andinorganicmatter on the glass surface, forming a static layer thatmay obscure visibility.
• Bubbles: The persistent entrainment of air within the water column, resulting in thetransportation of air pockets across the imaging field and potentially affecting visualclarity.
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• Low Light: A scenario in which inadequate illumination adversely affects image qual-ity by reducing visibility within the observation counter, typically due to insufficientexternal or internal lighting.
• Overexposure: A condition arising from excessive illumination leading to imagesaturation. This issue is commonly induced by internal lighting sources within thecounter or by direct sunlight entering the water from a low angle.
• Turbidity: Attenuation of light transmission caused by suspended fine sedimentparticles and biological organisms that absorb and scatter illumination, producing adiffuse and hazy imaging environment.
• Clear: The optimal environmental condition, characterized by minimal interferencewith light transmission through the water column and the glass surface, ensuresmaximal imaging clarity.

(a) Clear (b) Low-light

(c) Bubbles (d) Periphytic biofilm

(e) Turbidity (f) Overexposure

Figure 8: Examples of the six different environmental conditions. In themajority of situations, multiple
conditions co-occur, with the exception of the clear condition. For example, the environmental
condition overexposure (f) also encompasses biofilm growth (d) and turbidity (e) [81].
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2.3 Environmental Condition Classification
The initial environmental condition classification model (ECCM) was based on a modifiedVisual Geometry Group 16-layer CNN (VGG-16) architecture [78], taking inspiration fromresearch on weather conditions from single images [22, 45, 94]. The initial version of ECCM(ECCMv1) was designed to classify six environmental conditions, providing predicted classlabels and associated probabilities. The architecture developed for this model is illustratedin Fig. 9 (a). However, several limitations of ECCMv1 were recognized, particularly concern-ing generalization performance and sensitivity to specific visual features. Consequently,the second version (ECCMv2) balanced computational efficiency and predictive perfor-mance, thus facilitating deployment on low-power, resource-constrained hardware wereinvestigated further. The architecture of ECCMv2 is shown in Fig. 9 (b). Both versions(ECCMv1 and ECCMv2) were trained and validated in an identical process, visualized in Fig.10.

(a) ECCMv1 architecture

(b) ECCMv2 architecture

Figure 9: (a) ECCMv1 (VGG16-based architecture): A deep convolutional neural network featuring
multiple convolutional and max-pooling layers followed by fully connected dense layers, processing
an input of size 256× 256× 3. The model increases feature depth progressively and concludes with
three dense layers, outputting six classes. (b) ECCMv2 architecture: A custom convolutional neural
network optimized for compactness and performance, taking an input of size 224 × 224 × 3. It
includes fewer convolutional and pooling layers, a dropout for regularization, and a simplified fully
connected structure ending in a five-class output.

22



1

3

2

Dataset

Training and 
Testing Dataset

Validation Dataset

Trained model 1

Validation dataset

Best model

Performance

Training and
Testing Dataset

CNN 
Architecture

Trained model 1

Trained model 2

Trained model 3

Trained model 4

Trained model 5

Repeated 
random 

sub-sampling

Trained model 2

Validation dataset Performance

Trained model 5

Validation dataset Performance

Set 5

Training 
Dataset

Testing 
Dataset

Set 1

Training 
Dataset

Testing 
Dataset

Set 2

Training 
Dataset

Testing 
Dataset

Set 3

Training 
Dataset

Testing 
Dataset

Set 4

Training 
Dataset

Testing 
Dataset

Figure 10: Illustration of the hold-out procedure used for training, testing, and validation of the
environmental condition classification model. Separation of the dataset into training and hold-out
validation datasets (1). Repeated random sub-sampling was applied for testing and training, and
resulted in five CNN models with identical model architecture (2). The best-performing CNN model
in terms of accuracy was used in the fish or no-fish video classification method. The top three
environmental conditions, ranked by their probabilities, used to evaluate the model accuracy (3).
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2.4 Results and Discussion
Table 1 depicts a preliminary overview of the environmental classification models, coveringthe model parameters and performance evaluation criteria. The first version (ECCMv1)demonstrated high accuracy, achieving a 99.2% accuracy on average rate across all envi-ronmental conditions, excluding clear. The second version shows similar performance,reaching 98.7% on average, being 0.5% less accurate. However, as depicted in Table 1, thesecond version was tested and evaluated on an enhanced dataset that featured a fourtimes higher number of samples. Another difference is the input image size, which wasslightly decreased, dropping down from 256× 256 to 224× 224.
Table 1: Comparison of both environmental condition classification models, ECCMv1 and ECCMv2,
across various evaluation metrics. As depicted in Fig. 11, both behave similarly when trying to classify
various environmental conditions. However, ECCMv2 is efficient, on average taking only 12 ms instead
of 19 ms. Inference time measurements were taken using the Nvidia Jetson Orin Developer Kit.

Metric ECCMv1 ECCMv2

Model size (MB) 36.7 75.6Parameter count (M) 3.2 6.44Size (pixels) 256× 256 224× 224Inference time (ms) 19 12Number of samples 3000 12000
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Figure 11: Classification accuracy (%) of two environmental classificationmodels (ECCMv1 and ECCMv2)
under various underwater image degradation conditions: biofilm, bubbles, low light, overexposure,
and turbidity. Both ECCMv1 and ECCMv2 exhibit high and stable accuracy across all environmental
conditions, with ECCMv1 based achieving the highest performance overall by a tiny margin, however
as described in Table 1, ECCMv2 has a faster inference time.
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Publication I (ECCMv1) and the accompanying unpublished research (ECCMv2) ad-dressed two key gaps related to object detection and assessment in challenging environ-ments. Specifically, they respond to the reduced effectiveness of detection in underwaterand adverse weather conditions (RG1) by introducing an environmental condition clas-sification model that enhances adaptability and accuracy. In addition, they address thechallenge of high computational demands on resource-constrained hardware (RG2) bydeveloping a model that remains lightweight while maintaining strong performance. Inanswering the research question (RQ1), the findings demonstrate that incorporating envi-ronmental condition awareness into the detection process offers clear benefits, achievinghigh accuracy alongside computational efficiency.These results highlight that it is both feasible and effective to enhance object detectionsystems with context-awareness without exceeding practical hardware limits, providing apath toward real-world deployment in field conditions where both environmental variabil-ity and limited processing power are significant constraints. As the first stage in a broaderoutdoor monitoring pipeline, this work establishes a solid and scalable foundation for sub-sequent stages, ensuring reliable performance in diverse environments and contributing tothe development of intelligent, efficient monitoring systems. This work advances the stateof the art in object detection under challenging environmental conditions by introducingcontext-aware environmental condition classification models that are both highly accurateand computationally efficient, making them suitable for resource-constrained hardware.In response to RQ1: "What are the potential benefits of employing an environmentalcondition classification model for object detection and assessment in adverse and harshenvironments?", the findings demonstrate that integrating environmental conditions intothe detection pipeline significantly improves both adaptability and reliability. The modelsare shown to enhance object detection performance under variable conditions whilemaintaining computational efficiency, thus enabling practical deployment in real-worldfield scenarios. In conclusion, the key contributions are the following:
• Environmental classification context-awareness is integrated into the monitoringworkflow, improving object detection robustness in dynamic and visually degradedenvironments, thus answering RQ1 and addressing RG1, as well as supporting andimproving real-world monitoring in harsh and dynamic environments.
• Prediction accuracy greater than 97% in five challenging environmental conditions,while maintaining computational efficiency, with lightweight classification models,enabling deployment on hardware with limited processing power.
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3 Traffic Monitoring
3.1 Background and Motivation
Terrestrial environments may initially seem less challenging compared to underwaterenvironments; however, they present substantial complexities due to environmental andweather variability that can hinder object detection or assessment performance. Conditionssuch as dense fog, heavy rain, or sleet limit the visual range and clarity, compromising theeffectiveness of camera-based monitoring.Camera-based traffic monitoring systems are widely adopted for their high spatialresolution, detailed feature extraction capabilities, flexibility in installation, and relativelylow maintenance requirements. However, as already mentioned, their performance signifi-cantly degrades under adverse weather conditions. Alternative options, such as in-roadway(inductive loop detectors (ILD) [50, 63, 66, 93], magnetic [95, 21]) or non-intrusive, side-and over-roadway traffic monitoring systems, are typically comprised of acoustic sensors,light detection and range (LiDAR), or radio detection and range (radar) also have theirunique advantages as well as disadvantages. Therefore, most state-of-the-art solutionsemploy sensor fusion-based approaches, typically involving a camera, which leverages com-plementary data from other modalities to enhance system reliability. Despite its potential,it also introduces new challenges and obstacles.The objectives of this work were two-fold: first, to continue developing the pipeline,improve the performance of the outdoor monitoring systems in harsh and complex condi-tions, and deploy it on low-power, constrained embedded hardware. Another obstacle indeveloping, testing, and validating multi-sensor-based traffic monitoring systems is thelimited number of openly available datasets for infrastructure-based traffic monitoring.The work complements existing open datasets by providing novel camera and mmWaveradar data, covering multiple weather conditions, locations, and vehicle classes commonlyfound in urban traffic monitoring locations.The work conducted and discussed in the following subsections aims to address allidentified research gaps. To be more concrete, two research questions were devisedto guide the work presented in Publication II. RQ2: How effective is a multi-modality
system in improving object detection and assessment performance under adverse and
dynamic weather or environmental conditions? RQ3: How can machine learning and
data-driven methods address efficiency challenges in low-power, resource-constrained
embedded hardware?

3.2 Dataset
The novel dataset, titled Critical InfrastructureMonitoring (CIM), comprises 8,393manuallyannotated frames, each synchronized with point cloud data obtained from mmWave radar.The recordings cover a variety of traffic scenarios, including intersections, merging zones,highways, and residential streets, captured during the late winter and early spring seasons.This temporal range reflects a broad range of weather and environmental conditions typicalof temperate and humid continental climate regions. The dataset includes five primaryweather categories: clear, cloudy, rainy, partially cloudy, and night (see Fig. 12), as well asmixed conditions. In addition to the diverse environmental conditions, the dataset includesvehicle annotations organized into four distinct classes: passenger cars, vans, busses, andtrucks.Openly available datasets are crucial to advance the research of computer vision andsensor fusion. Notable datasets such as DAIR-V2X-I [101], A9 [24], LUMPI [17], and Rope3D[100] have contributed significantly to the field; however, they are predominantly based
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(a) Clear - Järvevana tee (b) Cloudy - Akadeemia tee (Raja junction)

(c) Rain - Järvevana tee (d) Partially cloudy - (Fujitsu sign)

(e) Night - Kristiine (Intersection)

Figure 12: Examples from recording locations with different weather conditions. (a) Clear, ideal
conditions of the roadway and vehicles. (b) Cloudy conditions, where some regions of the roadway
have poor illumination at a distance. (c) Rain and other non-ideal conditions in which the camera
lens may have water droplets, and where sections of the roadway may have blurred imagery. (d)
Partially cloudy, dynamic changes in near and far-field illumination occur on the roadway due to
variations in cloud cover. (e) Night, considerable variability in the roadway illumination levels due to
static street lighting in conjunction with automobile head and tail lights.

on LiDAR-camera configurations. Although effective in many scenarios, LiDAR-based sys-tems face limitations in adverse weather conditions, such as mist and fog, where sensorperformance can degrade. In contrast, radar systems exhibit robust performance in suchchallenging environments [103]. Despite the advantage, publicly available datasets thatincorporate radar-camera sensor fusion remain scarce. Datasets such as TJRD TS, Radar
LAB, andUTIMR lack open access or provide limited scope, thus hindering broader researchand development in this area. Table 2 presents a comparative overview of the datasetsdiscussed. The proposed dataset offers several distinctive features:

• Multi-modal data: Synchronized point cloud and high-resolution images.
• Diverse environmental conditions: Collected across diverse weather and traffic
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scenarios to support robust model evaluation.
• Multiple vehicle classes: Four distinct vehicle categories – passenger car, bus, truck,and van.
• Open access: Publicly available for academic and research use, promoting repro-ducibility and community-driven advancements.

Table 2: Comparison of open multi-modal infrastructure-based datasets for vehicle detection and
classification. CIM provides the most extensive open dataset for camera and mmWave radar to date.

Dataset Frames Resolution Conditions Vehicle classes Modality Access

DAIR-V2X-I [101] 10084 1920x1080
SunnyCloudyNighttimeRain

Passenger carTruckBusVanMotorcycle
CameraLiDAR Open

A9 [24] 1098 1920x1200
CloudySnowFogSunny

Passenger carTruckVanBusMotorcycleTrailer

CameraLiDAR Open

LUMPI [17] 200k 1640x12321920x1080
SunnyCloudyNightRain

Passenger carTruckVanBusMotorcycleTrailer

CameraLiDAR Open

Rope3D [100] 50k 1920x1080
ClearRainNightDawn/Dusk

Passenger carMotorcycleVanBusTruckBicycleTricycleBarrow

CameraLiDAR Open

IPS300+ [90] 14198 1920x1080 -
Passenger carBicycleTricycleBusTruckEngineer Car

CameraLiDAR Open

RainSnow [10] 2200 640x480
SnowRainNightBlizzard

Passenger carBusTruckVan
CameraThermal Camera Open

TJRD TS [91] - - -
Passenger carBusTruckVan

CamerammWave Radar On request

Radar LAB [47] 8035 - ClearPartially-cloudy Passenger car CameraRadar Not available
UTIMR [96] - - - Small car1Medium car1Large car1

CameraRadar Not available

CIM [80] 8393 1920x1080
SunnyPartially cloudyRain/SleetCloudyNight

Passenger carVanTruckBus
CamerammWave Radar Open

1 Vehicles are classified by length: small car (L < 4.3 m), medium-sized car (4.3 m < L < 7 m), and large bus (L > 8 m).

28



3.3 Monitoring System Hardware
The components of the monitoring system were selected based on criteria such as compu-tational performance, energy efficiency, availability, and suitability for machine learningtasks. At the core of the system is the Nvidia Jetson Orin Nano 4GB, chosen for its compactsize and excellent computational performance-to-power consumption ratio. Featuringa hexacore ARM Cortex-A78AE CPU and a 512-core Ampere GPU with 16 Tensor Cores,enabling the deployment of machine learning-based models on the edge while consumingless than 15 W.The monitoring system utilizes the AWR1843BOOST mmWave radar from Texas Instru-ments, which operates in the 77 GHz frequency band. The radar offers medium-rangesensing capabilities that generate real-time point clouds. Its narrow beamwidth and theability to configure parameters on the fly make it particularly suitable for dense urbanenvironments, where fine-tuning might be necessary.To complement the radar data with visual context, the system employs a Sony IMX-219-120 wide-angle camera. The camera delivers high-resolution imagery with a 120-degreediagonal field of view, enabling comprehensive coverage of the environment. A summaryof the hardware components used in the final implementation is provided in Table 3.
Table 3: Overview of the hardware components used in the designed traffic monitoring system.

Component Model/Platform Key Specifications

Single board computer (SBC) Nvidia Jetson Orin Nano 4GB Hexa-core ARM Cortex-A78AE @ 1.7 GHz512-core Ampere GPU with 16 Tensor Cores4 GB LPDDR5 RAMMicroSD / NVMe Storage SupportSupports MIPI CSI-2 CamerasPower consumption: <15 W
Radar TI AWR1843BOOST mmWave 77 GHz mmWave automotive radarRange resolution: 0.586 mVelocity resolution: 1.33 km/hMax unambiguous range: 30 m (tested up to 100 m)Max velocity: 82.98 km/hFrame rate: 15 Hz; Azimuth: 15◦Clutter removal enabledOnboard signal processing for point cloud generation
Camera Sony IMX-219-120 Resolution: 3280 x 2464 pixelsAperture: f/2.2; Focal length: 1.79 mmDiagonal Field of View: 120◦Low distortion: < 13.6%

Key Features of the Monitoring System HardwareThe selected hardware configuration for the monitoring system emphasizes deployability,performance, and robustness in real-world operational conditions. This system incor-porates several key features that collectively facilitate efficient and reliable edge-basedsensing and inference:
• Edge AI Computing: Utilizing the Nvidia Jetson Orin Nano, the platform providesreal-time inference capabilities with minimal power consumption. This approacheliminates dependence on cloud-based processing, thereby enhancing latency per-formance and ensuring operational independence.
• All-Weather Object Detection: The integration of mmWave radar guarantees consis-tent detection performance, even in low-visibility and adverse weather conditions,
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thus maintaining reliability in challenging scenarios.
• Enhanced Visual Context: The system features wide-angle high-resolution imaging,which allows for accurate object classification across multiple traffic lanes.
• Compact and Scalable Design: The compact form factor and lowpower requirementssupport scalable implementation within distributed roadside infrastructures.

3.4 Vehicle Detection and Classification
The secondary contribution of Publication II is introducing a sensor fusion detection classi-fication system that combines machine learning-based object detection with a data-drivenpoint cloud classification. The core novelty lies in integrating two complementary sensingmodalities to enhance robustness, particularly under adverse environmental and weatherconditions. An object detection model based on the YOLOv7 architecture was trained onthe complementary datasets discussed in Section 3.2, using a similar training process tothat used in Publications I and III, shown in Fig. 10. The architecture was chosen basedon the balance between Average precision (AP) and inference time. The trained modelachieved amean Average Precision (mAP@0.5...0.95) of 0.681, with F1 scores across vehiclecategories ranging from 0.891 for buses and 0.819 for trucks.By transforming radar data into the camera coordinate system through precise extrin-sic and intrinsic calibration, a semantically labeled radar dataset was constructed. Theproposed model demonstrated robust classification performance, achieving F1 scores of0.85 for the "car" category and 0.83 for the combined "bus/truck" class. These resultsconfirm the system’s effectiveness in maintaining high classification accuracy, even underconditions where visual input may be degraded or unreliable.These preliminary results support the research addressing RG1 and conclusively answerRQ1, which investigates the effectiveness of a multi-modality system in enhancing objectdetection under dynamic and adverse conditions. The demonstrated fusion approachprovides perceptual redundancy and enables fallback operation, ensuring continued per-formance when one sensor becomes degraded.
3.5 Results and Discussion
The system demonstrates strong detection and classification performance that aligns withthe defined requirements. However, computational efficiency remains a critical consid-eration, particularly given the challenges of deploying complex monitoring solutions onresource-constrained hardware, as emphasized in RG2. To evaluate this aspect, camera andradar subsystems were tested on the Nvidia Jetson Orin Nano — an embedded platformrepresentative of edge-computing scenarios. The YOLOv7 model sustained 20 frames persecond (FPS), around 20 ms, with a power draw of approximately 8.9 W, resulting in aperformance-per-watt (PPW) of 2.25. The radar classifier, benefiting from its lower compu-tational complexity, achieved an inference time of only 3.3 ms and a PPW of 52.24. Theseresults reinforce the proposition in RQ3 that combining deep learning with lightweightdata-drivenmethods can produce an efficient architecture suitable for low-power real-timedeployment. Table 4 summarizes the performance of the system on the Jetson Orin Nano.The camera model provides high semantic accuracy, while the radar classifier offers excel-lent throughput and energy efficiency. Together, these components confirm the system’sability to operate a fairly complex monitoring system effectively on constrained embeddedhardware in real-time.Arguments could be made that, if the trained model using only point cloud information
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Table 4: Summary of performance metrics across the vehicle perception pipeline. The table presents
key detection and classification results for both subsystems of the sensor fusion architecture. The
camera module (YOLOv7) was evaluated for multiclass vehicle detection accuracy, localization ro-
bustness (mAP), and embedded inference speed and power consumption. The radar classification
module (KNN) was evaluated for binary classification accuracy across car and bus/truck classes, and
benchmarked for high-speed, energy-efficient performance on embedded hardware (Jetson Orin
Nano). Metrics are reported using the best-performing configurations selected during validation.

Component Metric Result Summary

Camera Detection (YOLOv7) Precision (All classes) 0.805 Reliable and balanced multiclass detection with accuratelocalization across four vehicle types.Recall (All classes) 0.798F1 Score (All classes) 0.801mAP@0.5 / mAP@0.5...0.95 0.850 / 0.681Inference Time 20 FPS / 50 ms Achieves real-time inference on embedded hardware.Power Usage 8.9 W Efficient power consumption suitable for edge deploy-ment.
Radar Classification (KNN) Precision (Car / Bus+Truck) 0.79 / 0.90 Accurate binary classification using sparse radar input,with strong recall for cars and high precision for largervehicles.Recall (Car / Bus+Truck) 0.92 / 0.76F1 Score (Car / Bus+Truck) 0.85 / 0.83Inference Time 303 FPS / 3.3 ms Extremely fast and lightweight inference suitable for high-throughput processing.Power Consumption 5.8 W Highly energy-efficient for continuous embedded opera-tion.

could already accurately distinguish multiple vehicle classes in harsh weather [103], whatis the point of the camera? As mentioned earlier, detection and classification are onlya small part of the monitoring system. Unlike other sensing modalities, camera sensorscapture features, such as color, shape, and luminance, which provide a unique advantagefor evaluating objects or surrounding environments. In situations where the camera isrendered unusable, mmWave can be used as a backup to collect traffic data.Together, the system demonstrates how sensor fusion can overcome limitations ofsingle-modality approaches, maintain classification accuracy in varied conditions, andrun efficiently on embedded platforms. It provides a reproducible, modular frameworkwith practical utility for intelligent transportation systems, roadside infrastructure, andautonomous platforms. Beyond model performance, the work also addresses RG3, whichhighlights the lack of publicly available datasets featuring radar data labeled under chal-lenging environmental conditions. Although creating a public dataset was not withinscope, a novel method was developed to annotate radar point clouds using aligned cameradetections. This semi-automated labeling process resulted in a custom radar dataset of423 samples, providing a scalable approach for future dataset development efforts inmultimodal perception. Key contributions and novelty of this work include:
• Open access dataset, featuring annotated and synchronized radar point cloud infor-mation with high-resolution imagery.
• A sensor fusion architecture combining YOLOv7-based camera detection and KNN-based radar classification for robust, real-time vehicle classification.
• Demonstrated resilience of the system under adverse environmental conditionsusing complementary sensing modalities.
• Development and validation of an energy-efficient perception pipeline that can bedeployed on low-power embedded hardware (Nvidia Jetson Orin Nano 4GB).
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4 Object Assessment

4.1 Background and Motivation

Object detection and classification represent only a portion of a comprehensive monitoringsystem. Object assessment is crucial for evaluating the condition, behavior, characteristics,and attributes of objects, allowing informed decision-making. The accuracy with which asystem can estimate and assess these parameters directly influences its decision-makingcapabilities, which can have significant repercussions within a domain and its adjacentfields. As previously highlighted, detection in underwater environments poses considerablechallenges. Introducing assessment adds further complexity, often resulting in trade-offsbetween performance and efficiency. Nevertheless, insights derived from Publication IIillustrate that a machine learning-based approach to object detection, combined with adata-driven methodology, can achieve precision and efficiency, even when implementedon low-power, resource-constrained hardware. The findings of this previous research haveprofoundly shaped and influenced the work presented in Publication III.
The primary motivation behind Publication III stems from the ability to analyze andevaluate the effects of hydropeaking in freshwater ecosystems. Hydropeaking resultsfrom rapid and frequent flow fluctuations caused by intermittent water releases throughturbines to meet peak energy demand. These fluctuations alter flow patterns, affect watertemperature, affect sediment transport, and change dissolved gas levels within ecosystemsdownstream of hydropower operations. These alterations affect various aspects of aquaticecosystems, including fish growth, behavior, reproductive success, habitat, and migrationpatterns, among others [13, 42]. Considering fish communities, these fluctuations havebeen reported to cause lateral and longitudinal displacements, leading to habitat shifts,reducing the survival rates due to stranding, and disrupting key life-cycle events such asgrowth, reproductive migration, and spawning. Furthermore, hydropeaking can also leadto habitat fragmentation, erosion, and loss of riparian vegetation, impacting terrestrialecosystems that depend on the aquatic environment [11]. However, there is limited under-standing of the long-term ecological consequences of hydropeaking and its cumulativeeffects on aquatic ecosystems [13, 75].
Fortunately, fish length can reveal much about population structure, including growthrates, age distribution, juvenile-to-adult ratio, and overall weight [70, 35]. Thesemetrics canprovide significant information about the ecosystem, allowing a complete understandingof its dynamics and overall well-being. However, performing automated size estimationin situ remains challenging for several reasons. A common cause of poor size estimationaccuracy is the motion and orientation of the body of a swimming fish. The presenceof foreign objects or other fish can cause partial occlusion, making it difficult to obtainaccurate size estimates. The findings of these previous studies highlight the need for anon-invasive, in-situ camera-based monitoring system capable of estimating fish size.
The objectives of this work were two-fold: first, to continue developing the pipelineand introduce the ability to assess objects, and second, to demonstrate the capabilities bystudying the effects of hydropeaking. As stated before, a significant obstacle in developing,testing, and validating outdoor monitoring systems is the limited number of publiclyavailable datasets. The work complements existing open datasets by providing novel in situmulti-modal data, comprised of RGB and IR imagery, originating from two freshwater riverslocated in Portugal. Conducted work discussed in the following subsections addresses allidentified research gaps - (RG1, RG2, and RG3) and research questions RQ2 and RQ3, whichdrove the research.
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4.2 Dataset
The footage utilized in the PTFish dataset was acquired through the research initiativeEcoPeak4Fish [14]. The recordings were collected during spring and late summer periodsfrom two separate sites: Bragado (Fig. 13 (a)), located in the Avelames River, and Covas DoBarroso in the Couto River (Fig. 13 (b)), both tributaries of the Tamega River (Douro Riverbasin), Portugal. The curated dataset contains 18,523 manually annotated frames from IRand RGB cameras.Existing open-access datasets, such as DeepFish [74], Fish4Knowledge [34], and AffiNe[86], exhibit several notable limitations, as summarized in Table 5. Upon evaluation, it isevident that the majority of these datasets are dedicated to marine species, renderingthem unsuitable for the development of methods applicable to freshwater environments.In addition, many data sets are based on samples collected in laboratory settings (in
vitro) [6]. In contrast, others consist of ex vivo data derived from deceased specimens[69, 86], thus limiting their applicability to ecological monitoring in situ. A significantdistinction among these datasets is that the PTFish dataset provides stereo imagery, which isparticularly advantageous for depth perception and three-dimensional understanding—keycomponents for tasks such as size estimation (SzE). In summary, the proposed data setdifferentiates itself from others by offering the following features:

• Stereo Imaging: Multi-modal image data incorporating both RGB and IR, facilitatingdepth perception and enhancing accuracy in size estimation tasks.
• High Resolution: A resolution of 2560× 960 is provided, supporting detailed visualanalysis.
• Freshwater Focus: Among the very few datasets containing freshwater data, it is theonly one with in situ (natural habitat) freshwater capture.
• In Situ Capture: Unlike ex vivo or in vitro datasets, this dataset features imagesdirectly captured in natural environments, preserving real-world behaviors andcontext.
A detailed comparison highlighting the key differences between PTFish and otherpublicly available datasets is presented in Table 5. As illustrated, PTFish uniquely combinesmulti-modal data, ecological authenticity, and a freshwater focus—characteristics thatare rarely found together in existing datasets. This dataset offers significant novelty bycapturing fish in natural settings, thereby integrating real-world environmental challengessuch as water turbidity and fluctuating lighting conditions. These elements are vital forboth the creation and assessment of computer vision techniques designed for ecologicalpurposes, especially in complex aquatic settings. One of the primary contributions ofthis work is the introduction of the PTFish dataset, an openly accessible multi-modalresource featuring both infrared (IR) and RGB imagery. This dataset addresses a significantgap in the availability of resources specifically designed for freshwater fish monitoringand size estimation tasks. By enabling the development of more adaptable and accurateobject detection methods, it supports broader scientific objectives and fosters enhancedcollaboration within the research community.
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(a) Bragado during the day and at night. Left images are taken from the infrared camera, right images are from the color camera.

(b) Covas Do Barroso during the day and at night.

Figure 13: Examples of recording locations situated in tributaries of the Tamega River (Douro River
basin), Portugal: (a) Bragado, located in the Avelames River. (b) Covas Do Barroso, located in Couto
River [79].
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Table 5: Comparison of open access fish datasets for computer vision tasks. In situ: on site, in vitro: in
lab, ex vivo: on dead specimens. ObD: object detection, FiC: classification (fish/ no fish), SpC: species
classification, SzE: size estimation, Seg: segmentation. The number of frames corresponds to the
number of available images before augmentation [79].

Dataset Environment Task Number of Frames Resolution Mono/Stereo

DeepFish in situ/marine ObDSeg 39766 1920× 1080 Mono
Rockfish in situ/marine ObD 4307 1280× 720 Mono
Fish4Knowledge in situ/marine ObD 27370 352× 240 Mono
QUT in vitroex vivo/marine SpC 3960 480× 360 Mono
Brakish in situ/marine ObDSzE 14518 1920× 1080 Mono
AFFiNe ex vivo/freshwater ObDSpCSzE 7000 710× 852 Mono
PTFish in situ/freshwater ObDSzE 18523 2560× 960 Stereo

4.3 System Hardware Overview
The embedded vision system developed combines a compact, low-power compute mod-ule with a dual-camera sensor setup. The hardware configuration, presented in Table6, was chosen to prioritize deployability, performance, and robustness under real-worldconditions. At the core of the system is the Nvidia Jetson Orin Nano Developer Kit, se-lected for its optimal balance between AI processing capability and energy efficiency. Thismodule features integrated Hexacore ARM microprocessor, complemented by an Amperearchitecture-based GPU with dedicated Tensor Cores, facilitating real-time inference andvision-driven workloads.The vision component is based on a stereo binocular camera system that consists of asingle RGB sensor and an infrared (IR) sensor. Both sensors exhibit identical characteristics,thereby enabling synchronousmulti-modal imaging during day and night. This configurationis particularly advantageous for applications that require depth perception, environmentalawareness, or enhanced visibility under varying lighting conditions. Key features include:

• Edge AI computing: The Nvidia Jetson Orin Nano provides real-time on-deviceinference with minimal power consumption, thereby negating the necessity forcloud-based processing.
• Rich visual context: The Mobotix camera sensors provide high-resolution RGB andinfrared imagery with an extensive field of view, supporting reliable classificationacross diverse lighting environments.
• Compact and scalable: All components are designed for embedded deployment,characterized by low power consumption and a small form factor that is ideal forhard-to-reach and remote locations.
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Table 6: Overview of the hardware components used in the designed embedded vision system.

Component Model/Platform Key Specifications

Embedded Processing Unit Nvidia Jetson Orin Nano 8GB Hexa-core ARM Cortex-A78AE @ 1.5 GHz1024-core Ampere GPU with 32 Tensor Cores8 GB LPDDR5 RAMMicroSD / NVMe Storage SupportPower Consumption: < 15W
Camera Sensor (RGB & IR) Mobotix Mx-O-SMA-S-6N016 Resolution: 1280× 960Aperture: f/1.8;Focal Length: 4.1 mmField of View: 90◦ (H), 67◦ (V)

4.4 Detection and Size Estimation
Size estimation is a multi-stage process that utilizes machine learning models, combinedwith data-driven methods, to remain computationally inexpensive. As presented in Fig. 14(a), the pipeline detects fish within a multi-modal frame by integrating IR and RGB imagerythrough an object detection model based on the YOLOv8s architecture. Subsequently, asillustrated in Fig. 14 (b), the algorithm evaluates the quality of the bounding box pairs byanalyzing their geometric and spatial attributes. The disparity between these boundingboxes is computed and subsequently utilized to estimate depth, with the focal lengthand baseline serving as critical scene parameters. To enhance the robustness of depthmeasurements, the median value (e.g. 32 in this specific instance) is extracted from aneighborhood of depth estimates at each pixel, thus mitigating the influence of potentialoutliers, as shown in Fig. 14 (c).After retrieving the depth, themethod calculates the coordinates x, y and z by transform-ing the depth data into three-dimensional space, as shown in Fig. 14 (d). The coordinatesof the two corners of each bounding box are taken to compute the Euclidean distancesassociated with each bounding box. Finally, a size threshold is established to classify thefish as juvenile or adult, with all fish less than 10 cm categorized as juvenile.
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(a) (b)

(c) (d)

Figure 14: a) Binocular vision system setup consisting of an IR and an RGB camera. First, the proposed
solution detects and locates fish from a single frame, using both the IR and RGB cameras. b) After
detecting fish on both images, the algorithm determines the quality of the bounding box pairs by
analyzing their geometric and spatial properties. c) The disparity is first computed and subsequently
utilized to estimate depth, leveraging the focal length and baseline as scene parameters. Following
the depth estimation for each point, the median value (e.g., 32 in this example) is selected from a
neighborhood of depth estimates at each pixel to mitigate the influence of outliers and ensure robust
depth measurement. d) The fish size is determined by calculating the Euclidean distance utilizing the
coordinates of the bottom left and top right corners (x and y) for both bounding boxes, which are
then averaged to estimate the fish’s size (total body length).

4.5 Results and Discussion
The dissertation presents a lightweight and adaptive multimodal system for real-time fishdetection and size estimation in dynamic and resource-constrained aquatic environments.The system integrates IR and RGB imaging, state-of-the-art object detection models, andclassical stereo vision to address the dual challenges of degraded visibility and limitedcomputational resources. It was specifically designed for deployment in real-world environ-ments using low-power embedded hardware. Table 7 provides a concise overview of themain experimental results of the object detection, depth/size estimation, and embeddedperformance evaluations. The proposed system successfully combines modern machinelearning techniques with efficient computational methods to meet real-world constraints.It enables accurate detection and estimation of fish size in challenging conditions and
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Table 7: Summary of performance metrics across the pipeline.

Component Metric Best Result Summary

Object Detection F1 Score 0.85 The selected object detection model showedgood overall performance, but in terms of ac-curacy across 3,705-frame hold-out dataset.mAP@0.5 0.88
Depth Estimation Mean Absolute Error 0.83 cm (10×10), 0.63 cm (5×5) Sub-centimeter accuracy confirmed withArUco marker validation in 3 test scenes.Relative Error 2.74% / 1.54% Consistent results regardless of marker sizeand position.
Size Estimation Width Error 0.12 cm / 2.33% (5×5) Most precise estimation observed in smallermarkers.Height Error 0.27 cm / 5.47% (5×5) Accurate body-length measurement using Eu-clidean distance from depth data.
Efficiency Frames per second 10 Real-time frame rate achieved with high-resolution inputs (2560×960).Power Consumption 10.7 W Supports deployment in battery-powered andremote environments.

on constrained hardware, fulfilling the stated research objectives. The solution lays astrong foundation for future extensions such as behavioral tracking, species recognition,or integration into broader ecological monitoring systems. Key contributions and noveltyof this work include:
• Multi-modal integration: Combining synchronized IR and RGB camera streams toenhance object detection robustness under adverse environmental conditions suchas turbidity or low lighting.
• Lightweight depth and size estimation: Implementing a computationally efficientstereo vision method using disparity, achieving sub-centimeter accuracy for objectsize estimation.
• Real-time embedded deployment: Validating the full pipeline on the Nvidia Jet-son Orin Nano platform, achieving 10 frames per second with under 11W powerconsumption.
• Field validation under hydropeaking conditions: Applying the pipeline in real-worldmonitoring scenarios and discovering behavioral insights in fish activity not evidentthrough visual review alone.
• Open access data set: Dataset for academic and research use, featuring in-situsynchronized IR and RGB camera footage, collected from two freshwater sites (CovasDo Barroso and Bragado). Open access promotes reproducibility and community-driven advancements.
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5 Conclusion
The dissertation effectively accomplished its primary objective: to create a computationallyefficient and adaptable system that improves the performance and efficiency of objectdetection and assessment in harsh and challenging weather and environmental conditions.Research questions guiding the work, discussed in Section 1.5, were formulated basedon the initial literature review and the identified gaps. Each publication was centered onaddressing one or more of these questions, each targeting specific deficiencies in the area.

As described in the initial literature review, RG1 identifies a significant flaw: the ef-fectiveness of object detection, assessment, and evaluation is considerably hindered inunderwater settings and challenging weather conditions. Current advanced outdoor moni-toring systems are based on deep learning models that are computationally intensive, thusrestricting their practicality due to the high demand for computational resources. In Publi-
cation I, the proposed framework addressed this issue by introducing an innovative modelfor classifying environmental conditions. This model can differentiate between six specificenvironmental conditions—clear, low lighting, air bubbles, biofilm growth, turbidity, andoverexposure—and evaluate their intensity. The results directly address the RQ1 (What
are the potential benefits of including an environmental condition classification model
for object detection and assessment in harsh and adverse environments?). The integra-tion of this capability enables the system to dynamically adjust preprocessing parameters.This adaptability significantly enhances object detection performance in challenging andfluctuating underwater conditions. Although the proposed methodology was specificallydemonstrated and validated in an underwater setting for fish monitoring and assessmentpurposes, its applicability extends to various other fields and applications.

In Publication II, the focus of the deployment environment moved from underwaterapplications to those on land, specifically targeting infrastructure-mounted traffic moni-toring using cameras and mm-wave radar. This transition introduced new challenges andobstacles (RG1) that affected the system’s overall effectiveness. An initial literature reviewrevealed that existing solutions predominantly rely on sensor fusion, with the combinationof LiDAR and camera technologies being the most common. Nevertheless, research con-ducted by Nagoya University pointed out significant limitations of LiDAR under challengingconditions such as mist and fog. In contrast, radar performance is minimally affected byadverse weather [103]. By integrating machine learning models with data-driven tech-niques, such as KNN-based point cloud classification combined with camera-based objectdetection, a robust solution was developed. This system accurately distinguishes vehicletypes, even in severe weather conditions, such as low light, sleet, and rain, and whenthe camera functionality is impaired. These findings provide an adequate response to
RQ2 (How effective is a multi-modal system in improving object detection and assessment
performance under adverse and dynamic weather or environmental conditions?). Notonly that, but the findings also address the problem of poor performance and efficiencyon a resource-constrained hardware, resulting in trade-offs between one and another(RG2). The results provide an explicit answer to RQ3 (In what ways can the combination
of machine learning and data-driven methods address challenges related to efficiency in
embedded hardware with low-power restrictions), by showing that the approach has beensuccessfully deployed on low-power, resource-limited embedded hardware platforms,achieving near real-time performance while maintaining detection accuracy and keepingpower consumption under 15 W.

Publication III introduces a stereo vision system designed for non-invasive, on-siteestimation of fish size to study the ecological effects of hydropeaking. This system utilizesa stereo camera setup that incorporates both RGB and infrared imaging. Unlike previous
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research, this study shows significant progress by validating the effectiveness of the sys-tem in a field environment. The innovative solution was tested at two field locations in Portugal—Bragado and Covas do Barroso. By integrating a camera-based object detection model with a computationally efficient, data-driven method for depth and size estimation, the system achieves accuracy within sub-centimeter levels in natural aquatic settings. This outcome directly addresses the aforementioned RQ2, emphasizing the challenges in ob-ject detection, assessment, and evaluation in underwater environments and challenging weather conditions. Moreover, the system has been effectively deployed on low-power, resource-limited embedded hardware platforms, achieving near real-time performance without sacrificing accuracy. These findings contribute to answering RQ3, focusing on the critical computational challenges associated with object detection and assessment methods on hardware with restricted processing power. The system’s low energy require-ments and minimal infrastructure demands further enhance its viability for use in remote or logistically challenging locations.Moreover, Publication II and Publication III specifically tackle RG3 (the lack of publicly 
available datasets specifically crafted for the development and evaluation of object de-
tection and assessment techniques in harsh and challenging environmental or weather 
conditions.) A key component of this work is the creation of publicly accessible datasets designed to bridge this critical gap. These datasets are pivotal for advancing scientific research as they support reproducibility, facilitate benchmarking, and encourage collabora-tion. By providing standard and varied data, these resources enable researchers to validate algorithms, compare methodologies, and promote innovation within the field.This dissertation presents a computationally efficient and adaptive pipeline for object detection and assessment in both outdoor and underwater environments. The goal is to enhance performance and efficiency in challenging weather and environmental conditions. This pipeline incorporates environmental condition classification, multimodal sensing, hybrid machine learning, and data-driven methodologies to enable adaptive processing based on the identified environmental state. By balancing detection accuracy with com-putational efficiency, the pipeline is optimized for use on resource-limited embedded systems, making it practically applicable for monitoring in both underwater and terrestrial environments. Its adaptive nature allows it to dynamically modify processing strategies in response to changing environmental conditions, thus optimizing performance while keeping computational demands low.

5.1 Limitations
Although the research employs an innovative methodology and has demonstrated advan-tages, it is not free of shortcomings. The datasets used in this study have several limitations. In particular, the dataset described in Publication III has limited species diversity and an uneven sample distribution between the Bragado and Covas do Barroso areas. Likewise, the CIM dataset from Publication II contains relatively sparse point cloud data, mostly consisting of a few vehicle classes, mainly cars, with a significantly smaller number of larger vehicle samples, such as busses and trucks. These limitations highlight the challenges inherent in collecting field data. In addition, the research on the environmental classifi-cation model is still underexplored by the community at large. Although the model has been successfully applied in underwater environments, it has yet to be tested or used for terrestrial monitoring applications, leaving its effectiveness on land unverified.
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5.2 Future Work
Future research stemming from this dissertation is underway and is focused on severalareas. The techniques outlined in Publication III are being applied in Portugal and will soonbe used in Uzbekistan to monitor the health of freshwater ecosystems and track the fishmigration of understudied native species. As previously mentioned, there is an effort toexpand existing datasets by adding new recording locations, enhancing the diversity ofspecies and vehicles, and balancing class distributions. For example, collecting data atbusy intersections or in industrial areas could significantly improve the representation ofdifferent vehicle types and increase the generalizability of the models.In addition, the author proposes developing a set of unified benchmarking tools de-signed specifically for outdoor monitoring systems. This toolkit would aim to standardizethe evaluation of system performance in various environmental conditions, such as changesin weather, lighting, and terrain. The framework will enable objective validation of sensoraccuracy, data transmission reliability, and overall system responsiveness by simulatingrealistic scenarios and providing consistent performance metrics. This strategy will sup-port the development of more robust, scalable and interoperable outdoor monitoringsolutions.
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Abstract
Reliable object recognition and assessment in adverse weather
and environmental conditions
This doctoral thesis aims to design and develop an adaptive processing pipeline to enhanceobject detection and assessment performance under adverse weather and environmentalconditions. An initial systematic literature review identified three main research gaps,which guided the direction of subsequent publications. The primary contributions of thisthesis involve integrating machine learning models with data-driven methods. The devel-oped solution is computationally lightweight, making it suitable for low-power, resource-constrained embedded hardware.The work also emphasizes the importance of open datasets, as their absence or limitedavailability hinders the development, testing, and validation of new solutions. During thisresearch, two datasets were created: one focused on detecting and assessing freshwaterfish, and the other aimed at identifying and classifying various types of vehicles in urbanenvironments.Compared to existingmethods, this doctoral thesis offers a universal solution applicableto terrestrial and underwater environments. The results offer a deeper understanding ofhow weather and various environmental conditions impact system performance, pavingthe way for innovative and novel approaches in future scientific research.
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Kokkuvõte
Usaldusväärne objektide tuvastamine ja hindamine ebasoodsa-
tes ilmastiku- ja keskkonnatingimustes
Käesoleva doktoritöö eesmärgiks on disainida ja luua adaptiivne töötlusahel, et parandadaobjektituvastuse ja objektide hindamise sooritusvõimet ebasoodsates ilmastiku- ja kesk-konnatingimustes. Esialgse süstemaatilise kirjanduse ülevaate tagajärjel tuvastati kolmpeamist uurimislünka, mille põhjal tuletatud küsimused juhtisid avaldatud publikatsioonidesuunda. Peamised doktoritöö panused hõlmavad masinõppemudelite sidumist andmepõ-histe meetoditega. Loodud lahendus on arvutuslikult kerge, sobides madala voolutarbegapiiratud sardriistvarale.Töö rõhutab ka avatud andmestike olulisust,mille puudumine või kättesaadavus takistabuute lahenduste loomist, testimist ja valideerimist. Antud uurimustöö käigus loodi kaksandmekogu, millest üks oli suunatud mageveekalade tuvastamiseks ja hindamiseks. Teineandmestik oli suunatud erinevate sõidukitüüpide tuvastamiseks.Võrreldes olemasolevate meetoditega, pakub käesolev doktoritöö universaalset lahen-dust, mida saab rakendada nii maismaal kui ka veealustes keskkondades. Töö tulemused ai-tavad põhjalikumalt aru saada, kuidas ilmastik ja erinevad keskkonnatingimused mõjutavadsüsteemi sooritusvõimet, sillutades teed uutele meetoditele tulevastes teadusuuringutes.
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A B S T R A C T

Automated fish counters featuring robust, real-time computer vision capabilities can provide a cost-effective 
means to count migrating freshwater fish. In this work, we propose a four-stage process for automatically 
sorting videos with and without fish. Underwater fish counter videos provide a challenging range of environ
mental conditions including clear water, biofilm growth, bubbles, turbidity, low light and overexposure. To 
address this, our method also includes the automated classification of these six environmental conditions. The 
proposed methods are computationally efficient and can be implemented on servers, high-performance desktop 
computers and low-cost, energy-efficient embedded hardware. The models were trained, tested, and validated 
using a collection of 3000 videos taken from underwater fish counter installations in several alpine and lowland 
European rivers provided by commercial and governmental collaborators. This work demonstrates a fast, ac
curate, and robust computer vision workflow for large-scale automated freshwater fish counting systems.   

1. Introduction 

Freshwater ecosystems host one-third of all vertebrate species and 
are experiencing a rapid decline (Ceballos et al., 2017). Global wetland 
destruction is occurring at a pace three times faster than that of forests, 
and the compounding impacts of climatic and anthropogenic changes 
are reducing freshwater vertebrate populations at more than twice the 
rate of terrestrial or marine populations (Feio et al., 2021; Tickner et al., 
2020). The increase of automated digital monitoring technologies, 
environmental genomics and citizen science can assist in establishing 
robust and widespread concepts for freshwater biodiversity monitoring 
(Dwivedi, 2021). 

Where suitable physical conditions prevail, underwater camera- 
based fish counters can be used to assess fish migration through fish 
passage structures, both up and downstream (Haas et al., 2018; Mallet 
and Pelletier, 2014). Considering freshwater fish species, a wider and 
more accurate representation of their daily migration activities and 
counts are required to study, understand, predict, and support sustain
able freshwater fisheries (Deinet et al., 2020; Lennox et al., 2019). Fish 
counters can also provide key data to fulfill reporting requirements by 
the European Union's Habitat and Water Framework Directives. As 
hardware costs decrease and the quality of contemporary low-light 

infrared (IR) and color imaging (RGB) systems increases, the use of 
underwater camera-based fish counters is expected to grow substantially 
(Fjeldstad et al., 2018). Commensurate with the growth in the number of 
these systems, computer vision algorithms and hardware now allow for 
near real-time fish detection and species classification (Fabic et al., 
2013; Sharma et al., 2016). Despite these promising advances, under
water video quality varies considerably, largely due to changes in 
environmental conditions caused by biofouling, irregular lightning, 
turbidity and debris. The site-specific conditions of each installed cam
era can vary widely, posing a persistent challenge for human evaluators 
to consistently and efficiently sort videos with and without fish. 

Commercially available systems include, but are not limited to, the 
River Watcher (Vaki, Iceland), Bravo G3 (Biotactic, Canada) and the 
Yanmar Marine System (Yanmar, Japan). These systems can be inter
grated with water quality, flow and water level sensors to create smart 
fishways (Fuentes-Pérez et al., 2021). In addition, there is a growing 
potential in the application of temporary, low-power camera fish 
counters which use embedded hardware and less complex algorithms 
than their PC or server-based counterparts (Hu et al., 2021; Li et al., 
2020). 

In contrast to previous works, our proposed method provides an 
environmentally-adaptive multi-stage computer vision pipeline. It is 
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environmentally-adaptive because in the first processing stage, six 
commonly occurring environmental conditions are classified. The main 
novelty of this work is the application of the six environmental classes to 
automatically adjust the fish or no-fish binary classification model 
hyperparameters for each video. This is significant advancement 
because it opens up new opportunities to use simpler, adaptive and more 
generalized methods for the binary classification step. Specifically, our 
proposed method separates the environmental conditions from the fish 
and no-fish binary classification task. This separation reduces the 
complexity of testing and implementation, and allows for more 
explainable machine learning outcomes, because the environmental 
conditions and their severity can be included as physically interpretable 
hyperparameters for fish or no-fish binary classification models. Once 
videos are classified based on the presence or absence of fish, they can be 
processed in a final step by computer vision methods for the automated 
classification of fish species (Mader et al., 2020). 

1.1. Previous work 

Underwater camera-based fish counting systems must accomplish 
two main tasks. The main objective of this work is to address the first 
task:  

• Binary classification of videos with or without fish under changing 
environmental conditions.  

• Individual fish classification, where taxonomic labels are assigned to 
the detected fish, corresponding to their family, genus or species. 

The pioneering work of Strachan (1993) used computer vision to 
classify 23 marine fish species, based on their color and geometric de
scriptors from two separate video sources. Harvey and Shortis (1995) 
proposed a method in which the fish passed through a controlled illu
mination chamber equipped with stereo cameras. While the method 
performed quite well in an artificial environment, it exhibited a signif
icant reduction in performance when applied to unconstrained envi
ronments (Zhao et al., 2021). Primary challenges in fish passage 
facilities are adapting computer vision methods to naturally occurring 
and constantly changing environmental conditions, and the correct 
discrimination of fish from non-fish objects, most frequently leaves, 
debris and bubbles. Promising, recent advancements in machine 
learning have shown that image-based fish detection accuracy in un
constrained environments can exceed 98.0% (Zhang et al., 2020b). 
However, due to computational requirements, most computer vision 
processing and analysis is performed on a server or high performance 
desktop (HPD) hardware. The underlying computational complexity of 
the machine learning (ML) methods used in automated fish counters 
therefore hinders their ubiquitous, real-time application. Solutions using 
low-cost and low-powered embedded hardware remain sparse among 
the research community largely due to the technical difficulties of their 
implementation in the field (Hernández-Ontiveros et al., 2018; Zhang 
et al., 2020a). A major drawback of using embedded hardware for 
computer vision applications is the limited computational power avail
able when compared to high-performance desktops or servers. 

1.2. Objectives 

The primary objective of this work was to create a computationally 
and energy efficient computer vision pipeline to robustly and automat
ically classify videos with and without fish. In addition, we also evalu
ated the suitability of the proposed approach as an edge computer vision 
system using three commercially-available low-cost embedded hard
ware devices. The main contributions of this work are three-fold:  

• Classification of six commonly occurring environmental conditions 
(clear, low light, air bubbles, turbidity, periphytic biofilm, and light 

overexposure) occurring at freshwater underwater camera 
installations.  

• Development of lightweight computer vision algorithms suitable for 
embedded hardware to classify videos with and without fish.  

• Comparison of the proposed approaches on high-performance 
desktops and low-cost embedded hardware considering the frame 
rate, hardware costs, and power consumption. 

2. Materials and methods 

2.1. Embedded hardware 

Due to the limited availability of embedded hardware, we restricted 
our choices to a subset of three feasible systems. It is important that the 
data processing pipeline was run on the CPU only. This was a necessary 
step in evaluating the feasibility of running the environmentally- 
adaptive video classification system on embedded hardware to estab
lish their benchmark performance. The first choice was the Raspberry Pi 
4. The board features a Quad-core Cortex-A72 and Broadcom VideoCore 
VI based dedicated GPU. The board used in testing was the 4 GB version. 
With support from a large international user community, the Raspberry 
Pi has the additional benefits of extensive documentation and trouble
shooting to assist during development and deployment. 

The next choice was the Nvidia Jetson Nano, which features a Quad- 
core Cortex-A57 microprocessor and Maxwell architecture-based GPU. 
Compared with the Raspberry Pi 4, the microprocessor uses an older 
architecture with slightly lower core clocks. Similar to the Raspberry Pi 
4, the board does not have built-in FLASH memory, but is supported by 
comprehensive development documentation. 

The final choice was the MediaTek Pumpkin i500, which includes an 
octa-core microprocessor, which is the combination of A73 and A53- 
based microprocessors with core clocks up to 2.0 GHz. In addition, the 
board features a Mali-G72 MP3 GPU and Dual-core Tensilica Vision P6 
DSP/AI accelerator. The board also features 16 GB of built-in FLASH 
memory compared to previous selections. Full hardware specifications 
of the embedded hardware tested in this work, including preliminary 
performance metrics are provided in Section 3.3. 

2.2. Balanced video selection and annotation 

The 3000 videos used in this work have been collected from seven 
European River Watcher monitoring sites, primarily from lowland, 
midland and alpine rivers. Table 1 describes the river types, fish species 
and range of sizes. The testing and validation approach used in this work 
was inspired by the Fish4Knowledge project, which collected bench
mark imagery for the marine environment (Boom et al., 2014; Salman 
et al., 2019). Specific features of the videos used in this work are:  

• A balanced dataset including six different environmental conditions: 
clear, low lighting, air bubbles, biofilm growth, turbidity and 
overexposure.  

• Changing lighting conditions including natural and artificial lighting 
and darkness, throughout the year. The majority of videos were 
recorded in color. However, videos also include grayscale low-light 
imagery.  

• The videos include 17 different fish species. This is key for the testing 
and validation of motion detection, as each species has semi-unique 
morphological and behavioural characteristics while migrating 
through the fishway. 

For each environmental condition the dataset contained 250 videos 
with fish and 250 videos without fish; giving a total of 3000 videos (= 6 
environmental conditions * {250 fish videos +250 no-fish videos})). 
Fig. 1 illustrates representative environmental conditions for each of the 
six classes. A summary of the properties of the videos used in this work 
are elucidated in Table 2. 
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2.3. Four-stage video classification pipeline 

To classify videos based on the presence or absence of fish, we pro
pose an underwater video classification pipeline which relies on two 
different approaches. The pipeline aims to be adaptive against different 
environments and computationally lightweight while remaining 
portable. In this work, portability is defined as the ability to deploy the 
pipeline with minimal changes to the code on high-performance desktop 
hardware or low-powered edge computing hardware. Each method will 
be discussed separately and compared regarding classification accuracy, 
computational efficiency, and portability. The four stages of the video 
classification pipeline are depicted in Fig. 2:  

• Environmental classification - The workflow begins by importing the 
videos from collected River Watcher monitoring sites and identifying 
environmental conditions. The output file from this stage contains 
three possible environmental condition labels for each video with 
their respective probabilities. Classification is used to determine the 
method and settings for image enhancement in the preprocessing 
phase.  

• Preprocessing - The extracted frame is enhanced according to the 
detected environmental conditions. Enhancement is necessary to 
improve the fish / no-fish detection accuracy, especially in low light 
and turbid conditions.  

• Processing - Each frame is classified using both frame differencing 
and scanlines.  

• Binary classification - The frame-wise classifications are aggregated 
and the final classification outcome for the video is determined. 

2.4. Environmental conditions 

The first step of the proposed fish / no-fish video processing pipeline 
is environmental condition classification. It enables the system to select 
the appropriate image enhancement technique to be applied in the 
preprocessing stage, detailed further in Section 2.5. The step is critical as 
when capturing underwater images, dissolved substances, and particu
late matter affect light attenuation (Schettini and Corchs, 2010). This in 
turn can cause scattering, non-uniform lighting, and create shadows (Lu 
et al., 2017), making it difficult to detect fish in underwater videos. 

To classify freshwater videos based on environmental conditions, we 
designed a custom Convolutional Neural Network (CNN). The proposed 
CNN model is trained to detect six environmental conditions, namely, 
biofilm, bubbles, clear, low lighting, overexposure, and turbidity. The 
CNN analyzes random frames from input videos and returns probabili
ties for each of the corresponding environmental conditions. The labels 
and probabilities of the three (most) prominent environmental condi
tions are used in the preprocessing stage of the system pipeline. We 
selected this approach, drawing influence from available literature on 
weather information estimation from single images (Chu et al., 2017; 
Ibrahim et al., 2019; Xie et al., 2021), and underwater image classifi
cation (Aridoss et al., 2020). The proposed CNN-based machine learning 
model is illustrated in Fig. 3. The model architecture stems from the 
VGG16 (also referred to as the OxfordNet) (Simonyan and Zisserman, 
2014) CNN architecture and was selected primarily due to its perfor
mance on the ImageNet (Deng et al., 2009) dataset. 

. 

2.4.1. Training the environmental condition model 
The CNN model for environmental condition classification was 

developed using a two-step process. First, five separate models based on 
the proposed CNN architecture illustrated in Fig. 3 were trained and 
tested. Then, the five models were validated, using a hold-out validation 
dataset, and the model with the highest accuracy was selected. To train, 
test and validate the models, the collection of 3000 videos was split into 
two balanced datasets containing an equal number of fish and no-fish 
videos from each environmental condition. This resulted in a collec
tion of 1500 videos for the training and testing as well as the validation 
dataset, indicated in Fig. 4 (1). This unconventional split was required 
due to the co-occurance of many environmental conditions, where a 
more typical hold-out strategy using 10 or 20% of all videos for the 
validation dataset would have resulted in poor coverage of many com
binations of environmental conditions. For the training and testing 
phases, eight random frames from each of the training and testing videos 
were extracted irrespective of the video lengths. The frame selection 
process was carried out using a Python script which randomly selected 
the frames using a uniform distribution. This implied that there could be 
instances where frames from fish videos did not contain any fish. 
However, given that the frames were only used for training the 

Table 1 
Overview of Vaki River Watcher sites including the identifier, river type, fish species (17) and range of total body lengths (min 0.05 m, max 1.0 m) observed in the 3000 
videos used for training, testing and validation. Commercial sites (RW_03 to RW_07) are anonymous locations. Fish smaller than 0.05 m were not clearly identifiable, 
and represent the lower size limit considered in the range of body lengths present in the seven sites evaluated. Latin names are included for each fish species after their 
first listing in the table, afterwards only the English name is used.  

Site ID River 
Type 

Fish Species Observed at this Site Range of Sizes of 
Fish Total Body 
Length (m) 

Comments 

Mosel, Koblenz, 
Germany 

Lowland Asp (Aspius aspius), Barbel (Barbus barbus), Common bream 
(Abramis brama), Brown trout (Salmo trutta), Chub (Squalius 
cephalus), Common bleak (Alburnus alburnus), European carp 
(Cyprinus carpio), European eel (Anguilla anguilla), European 
grayling (Thymallus thymallus), Gudgeon (Gobio gobio), Nase 
(Chondrostoma nasus), European perch (Perca fluviatilis), 
Rainbow trout (Oncorhynchus mykiss), Roach (Rutilus rutilus), 
White-eyed bream (Ballerus sapa) 

0.05 to 1.0 Many videos included groups of 5 or more fish, 
mixed species. High biofilm common, wide range of 
environmental conditions present at this site. 

Müritz-Elde- 
Wasserstrasse, 
Malliß, Germany 

Lowland Barbel, Brown trout, Chub, Goby (family Gobiidae), Grayling, 
Nase, Perch, Roach 

0.05 to 0.80 Some videos included groups of 5 or more fish, 
typically small cyprinids. Broad mixture of 
environmental conditions. 

RW_03 Lowland Barbel, Brown trout, Chub, Grayling, Nase, Perch and Atlantic 
salmon (Salmo salar) 

0.05 to 0.65 Mostly videos of individual fish. Biofilm, bubbles 
and turbidity commonly found. 

RW_04 Midland Barbel, Brown trout, Chub, Nase and Perch 0.05 to 0.55 Mostly videos of individual fish. Biofilm and 
bubbles present in some videos. 

RW_05 Alpine Atlantic salmon, Brown trout, Rainbow trout 0.25 to 1.0 Mostly videos of individual fish. High turbidity and 
bubbles commonly found. 

RW_06 Alpine Atlantic salmon, Brown trout, Rainbow trout 0.35 to 1.0 Mostly videos of individual fish. High turbidity and 
bubbles commonly found. 

RW_07 Glacial 
Alpine 

Brown trout, Burbot (Lota lota), Grayling 0.20 to 0.65 No groups of fish. Low light and high turbidity 
common.  
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environment condition classification models, the potential influence of 
fish being in the extracted frames was considered negligible. 

The 12,000 frames (8 frames * 1500 videos) extracted from the 
training and testing dataset were then used to generate five different 
data sets using repeated random sub-sampling (see Fig. 4 (2)). Each of 
the sets was further split into a training/testing split of 80/20, con
taining 9600 frames for training and 2400 for testing. Five CNN models 

using the same model architecture were then trained and tested. All 
models were trained over 100 epochs and returned an average loss value 
of 0.0126 with an average accuracy of 99.3% during training and 
testing. Figures for the individual models are provided in the supple
mentary material. 

To select the best performing model, the five CNN models were 
validated in a final step using the 1500 videos of the validation dataset. 
It should be noted that the validation videos were held-out from training 
and thus contained videos that the models had not encountered before. 
To validate the models, 1 random frame was extracted from each vali
dation dataset video. After extracting 1500 random frames (1 frame * 
1500 videos) all five CNN models were used to classify the videos into 
the six environmental condition classes. The results of the validation 
phase are detailed in Section 3.1. 

2.5. Preprocessing 

After completing the environmental classification phase, the system 
extracts a frame. Image filtering/enhancement is applied then to 

Fig. 1. Typical examples of the six different environmental conditions. In the majority of situations, different conditions co-occur, with the exception of the clear 
condition. As an example, the environmental condition overexposure (f) also includes biofilm growth (d) and turbidity (e). 

Table 2 
Overview of the videos used in training, testing and validation.  

Metric Value/Description 

Video length 5 s up to 5 min 
Video format AVI, MPEG4 
Video bit-rate 120 to 3000 kbps 
Video frame-rate 5 to 30 fps 
Video resolution 320 × 240 to 800 × 600 px 
Video file size 0.074 to 102 MB 
Camera type Color and grayscale  
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improve accuracy based on the corresponding environmental condition. 
Depending on the environmental conditions, two different image 
enhancement techniques are applied: Gaussian Blur or CLAHE. The 
parameters values used for each environment condition are provided in 
Table 3. Gaussian Blur is a commonly used method to smooth the image 
(Gedraite and Hadad, 2011). The method smooths the pixel intensities 
using a two-dimensional Gaussian kernel. This reduces unwanted noise, 
but can also results in the reduction of image features including edges 

and textures. The filter was applied in this work primarily to reduce false 
detections caused by bubbles, leaves and other small debris (Marcos 
et al., 2005; Rathi et al., 2017). The visibility of fish counter videos is 
often limited by biofilm and turbidity, making it difficult for vision- 
based methods to clearly differentiate objects from the background. 
To partially mitigate this issue, we apply Contrast Limited Adaptive 
Histogram Equalization (CLAHE) to selected video frames (Konovalov 
et al., 2019; Pengying et al., 2019). The idea behind CLAHE is to 

Classify 
environmental

conditions

Environmental
classification Binary classificationProcessing

Binary classifier

Frame 
differencing

Scanlines

Preprocessing 

Gaussian Blur

CLAHE

Condition 1:Biofilm (98.4%)
Condition 2:Turbidity (1.5%)
Condition 3:Bubbles (0.1%)

No FishFish

Fish

No Fish

Fig. 2. Overview of the proposed four-stage underwater video classification pipeline. First, the top three environmental conditions are classified. Next, depending on 
the environmental class, Gaussian blur or Contrast Limited Adaptive Histogram Equalization (CLAHE) is applied to enhance the frames. In the frame classification 
phase, two competing methods, frame differencing and scanlines are run, producing binary frame data for “fish” (1) or “no fish” (0) for each frame of the video. 
Finally, the frame-wise classifications are applied to assess whether the video contains fish or not. 

254 x 254 x 16256 x 256 x 3

Max Pooling

Flatten
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Convolutional + ReLU

Dense + Softmax

125 x 125 x 32

58 x 58 x 64

1 x 1 x 61 x 1 x 512

25 x 25 x 128
6 x 6 x 256

3 x 3 x 256

1 x 1 x 2304

Fig. 3. Structure of the custom CNN model for environmental condition classification.  
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distribute an image's pixel intensities evenly across the entire image. In 
contrast to standard histogram equalization, which applies the same 
equalization across the entire image, CLAHE divides the image into tiles 
and performs equalization separately in each. This also comes with some 
drawbacks. The first drawback is noise amplification, which is most 
pronounced with small tile sizes. To address this, contrast limiting is 
applied, meaning that if any histogram bin is above the set limit, the 
pixel is clipped and uniformly distributed to other nearby containers. An 
additional drawback is that the method is considered computationally 
expensive due to the calculation of different neighborhood histograms 
and the need to apply a transformation function for each pixel. 

2.6. Main processing 

2.6.1. Frame differencing 
The frame differencing method performs a background estimation by 

subtracting the current frame pixel intensities from those of the previous 
frame (Algethami and Redfern, 2018; Ellenfeld et al., 2021). In the 
second stage, the absolute value of the pixel-wise differences are taken 
and filtered based on a single threshold value over the entire image. 
During the development, multiple values were tested. The high 
threshold value removed too many moving details, resulting in 
decreased performance across numerous environmental conditions. 
Lowering the threshold resulted in an increased number of a false pos
itive detection. 

Fig. 4. 1) Illustration of the hold-out procedure used for training, testing, and validation of the environmental condition classification model. 2) Repeated random 
sub-sampling was applied for testing and training and resulted in five CNN models with identical model architecture. 3) The best-performing CNN model in terms of 
accuracy was used in the proposed fish or no-fish video classification method. The top three environmental conditions, ranked by their probabilities were used to 
evaluate the model accuracy. Adapted from (Raschka, 2018) 

Table 3 
Frame differencing and scanline parameters. Kernel size and sigma values are associated only with Gaussian blur, and grid size and the clipping limit apply only to 
CLAHE.  

Frame Differencing 

Environmental condition Preprocess Kernel size/Grid size Sigma/Clipping limit Min. object area Size ratio threshold Threshold 

Clear condition Gaussian blur 15 0 500 0.5 20 
Low Light condition CLAHE 8 1 
Air bubbles Gaussian blur 15 0 
Turbidity CLAHE 8 1 
Periphytic biofilm Gaussian blur 15 0 
Light overexposure Gaussian blur 15 0  

Scanlines 
Environmental condition Preprocessing Kernel Size/ Grid Size Sigma/ Clipping limit Variance threshold Min. detected scanlines Scanline step value 
Clear condition Gaussian Blur 15 0 750 3 25 
Low Light condition CLAHE 8 1 50 
Air bubbles Gaussian Blur 15 0 1000 
Turbidity CLAHE 8 1 20 
Periphytic biofilm Gaussian Blur 15 0 400 
Light overexposure Gaussian Blur 15 0 400  

Compute absolute
difference

Perform
thresholding Dilate

Find, filter
contours and draw

bounding boxes

Previous frame Current frame

Fig. 5. Frame difference processing: After extracting a frame, the absolute difference between the pixel intensities of the current and previous frame is computed. 
Thresholds are then applied, creating a binary image. Dilation is used to fill small gaps and enhance the contours. Contours are filtered based on their dimensions to 
remove small objects. 
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These operations are expressed mathematically as: 

B(x, y, t) = I(x, y, t − 1) (1)  

∣I(x, y, t) − I(x, y, t − 1)∣ > Th (2)  

where B is the background image, x and y are the pixel coordinates, t is 
time, I is the previous frame background and Th is the threshold. Fig. 5 
illustrates the processing pipeline using frame differencing methods. 
Dilation is applied to the thresholded binary image to fill small holes. We 
applied a simple chain approximation was used to determine the con
tours. Finally, contours were filtered by their x, y coordinates, width, 
and height. Contours that did not meet the set minimum size and area 
threshold were excluded from further processing, as described in 
Table 3. 

2.6.2. Scanlines 
A classic and robust method for motion detection are scanlines, 

which can be applied (Lin et al., 2003) in both vertical and horizontal 
directions (Zhang and Jin, 2019). The simple method relies on moni
toring and detecting changes the pixel variance over multiple frames, 
which changes over time and space, providing an adaptive motion 
detection method. As illustrated in Fig. 6, scanlines are by default 
computationally lightweight and require sparse calculations on selected 
pixel columns instead of processing the entire frame. After extracting the 
pixel columns, RGB intensities are separated into three channels. The 
variance is computed for each scanline, and compared to a user-defined 
threshold. Compared to frame differencing, scanlines have the following 
advantages:  

• Adaptive variance: Scanlines dynamically change as the imagery 
intensities vary over time and space.  

• Dynamic regions of interest: Sensitivity can be adjusted along both 
the x and y-axes. This feature is especially helpful considering the six 
different environmental conditions, where regions with bubbles can 
be masked out to reduce false positives. 

2.7. Binary classification 

The final phase of the video classification pipeline is running the 
binary classifier to determine if the selected video is labeled as “fish” or 
“no fish”. The binary classifier exploited temporal patterns found in the 
frame-wise binary classification. Positive frame-wise classification most 
frequently occurred when fish, bubbles or floating debris and leaves 
were present. In most cases, it was observed that if a fish appears in the 
video unaffected by the environmental condition, the number of 
sequential positive frames was consistently larger than the number of 
negative frames. In addition, based on the detected environmental 
conditions, the number of positive and negative frames over a threshold 
count were evaluated. The threshold values for each environmental 
condition were retrieved using Design of Experiments (DOE). The 
principle of DOE is finding out factors that influence the outcome by 
manipulating input values simultaneously to identify critical in
teractions. The method also mitigates the possibility of missing input's 
influence when testing one at a time. 

The process is initiated by searching for a positively marked frame, 
and the counter increases by one each time a new positive frame is 
found. If the frame is negative, the counter increases the sum of negative 
frames. The evaluation stops and assigns “no fish” if the negative frame 
threshold is reached. If a positive frame threshold is reached, the scan
ning stops and the video was classified as “fish”. If the end of the video 
frames are processed without exceeding the positive or negative frame 
count threshold for a given video, then it was labeled as “no fish”. From 
time complexity standpoint the algorithm is regarded as linear i.e., O(n).  
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2.8. Evaluation metrics 

The performance of the fish / no-fish binary classification methods 
was evaluated using accuracy, precision, recall sensitivity, recall speci
ficity, and the F1 Score. Videos classified as “fish” or “no fish” were 
compared to human labels which served as the ground truth. If a video 
was automatically classified as “fish” and the ground truth was also 
“fish”, this was considered as a True Positive (TP). If the classified video 
and ground truth were both classified as “no fish,” the automated clas
sification represented a True Negative (TN). If a video was classified as 
“fish” while the ground truth was “no fish,” this was counted as a False 
Positive (FP). Finally, automated classifications of “no fish” which 
should have been classified as “fish”, were assigned as False Negatives 
(FN). 

2.8.1. Accuracy 
The evaluation process includes the accuracy, which returns the 

percentage of correct predictions with respect to the total number of 
videos. 

Accuracy(%) =
True positives + True negatives

Total samples

*

100 (3) 

While the accuracy metric estimates the classification performance, 
we also calculated the precision, recall specificity, recall sensitivity, and 
the F1 score. A combination of these metrics thus provides a thorough 
overview of the classification performance. The precision evaluates how 
many videos were true positives from all videos with positive 
predictions. 

Precision(%) =
True Positives

True Positives + False Positives

*

100 (4) 

Recall calculates the amount of correctly predicted out of all possible 
positives. The opposite of this measure is called the “recall specificity”, 
which provides the number of false predictions from all possible nega
tives. The recall is calculated as: 

Recall(%) =
True Positives

True Positives + False Negatives

*

100 (5) 

Our final evaluation parameter is the F1 score, which provides a 
measure between precision and recall, calculated as the harmonic mean 
of the two metrics. The F1 score was evaluated as: 

F1score(%) = 2* Precision*Recall
Precision + Recall

*

100 (6)  

2.8.2. Efficiency 
In addition to measuring and evaluating the classification accuracy, 

this work aimed to provide a thorough overview of the proposed clas
sification pipeline's efficiency and feasibility. The efficiency was evalu
ated by calculating the number of frames the system is able to process 
per second, which is described with the following equation: 

Frames processedper second (FPPS) =
Number of frames

Processing time
(7) 

The proposed approach processed multiple videos simultaneously. 
Therefore, calculating only the number of processed frames per second 
provides a rough estimation of processing efficiency. Each of the tested 
hardware platforms differs in terms of available computational re
sources and architecture. We therefore computed the frames processed 
per second per thread/core, to provide a more normalized measure of 
the processing rate efficiency. 

2.8.3. Feasibility 
The feasibility of the entire system is evaluated based on the cost and 

energy consumption. The unit cost must be considered, especially for 
large-scale deployments. Considering the HDP hardware, only the CPU 

Table 4 
Performance metrics of the five CNN models over the validation dataset.  

Metric Model 1 Model 2 Model 3 Model 4 * Model 5 

Accuracy 99.1% 99.1% 98.8% 99.2% 98.9% 
Precision 97.3% 97.4% 96.5% 97.5% 96.8% 
Recall 

Sensitivity 
97.3% 97.4% 96.5% 97.5% 96.8% 

Recall 
Specificity 

99.5% 99.5% 99.3% 99.5% 99.4% 

F1 Score 97.3% 97.4% 96.5% 97.5% 96.8% 
Avg. True 

Positives 
243.2 
(16.2%) 

243.5 
(16.2%) 

241.3 
(16.0%) 

243.7 
(16.2%) 

242 
(16.2%) 

Avg. False 
Positives 

6.8 
(0.5%) 

6.5 
(0.4%) 

8.7 
(0.6%) 

6.3 
(0.4%) 

8 (0.5%) 

Avg. True 
Negatives 

1243.2 
(82.8%) 

1243.5 
(83.0%) 

1241.3 
(82.8%) 

1243.7 
(83.0%) 

1242 
(82.8%) 

Avg. False 
Negatives 

6.8 
(0.5%) 

6.5 
(0.4%) 

8.7 
(0.6%) 

6.3 
(0.4%) 

8 (0.5%)  

* Best CNN model based on Accuracy. 

Algorithm 1. Binary classifier algorithm
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price at the Manufacturer's Suggested Retail Price (MSRP) was consid
ered, as the total system cost can vary significantly due to the selection 
of other components. The system's power consumption was measured 
during video processing. It plays a crucial role when deploying a battery- 
powered embedded system if access to a continuous power source is 
unavailable. The feasibility was described as the ratio of the processing 
efficiency and the power consumption: 

Frames processedperWatt (FPPW) =
Frames processedper second

Watts
(8) 

Power consumption measurements were performed using software- 
based monitoring, when the system supported it. Only MediaTek 
Pumpkin i500 power consumption was measured using a high-precision 
external power meter. 

Biofilm Bubbles Clear Low Light Overexposure Turbidity

Biofilm 235 5.2 3.2 1 3 2.8

Bubbles 1.2 242 1 0 1.8 4

Clear 2.6 0.4 244.2 1 0.8 1

Low Light 2 0.2 0.6 246.2 0 1

Overexposure 2.6 0.4 1.8 0 243.8 1.4

Turbidity 0.4 2.8 0.4 0.4 0.8 245.2

Predicted Labels

Tr
ue

 L
ab

el
s

Biofilm Bubbles Clear Low Light Overexposure Turbidity

Biofilm 237 3 5 0 3 2

Bubbles 2 240 0 0 2 6

Clear 3 0 244 1 1 1

Low Light 3 0 1 246 0 0

Overexposure 0 0 0 0 250 0

Turbidity 0 2 1 0 2 245

Predicted Labels

Tr
ue

 L
ab

el
s

(a)

(b)

Fig. 7. Confusion matrices generated during the cross-validation phase of the designed CNN models. (a) The average of confusion matrices of the five CNN models. 
(b) Confusion matrix of the best CNN model that was subsequently used in the next phase of the proposed pipeline. 
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3. Results 

3.1. Environmental conditions 

To ensure a robust evaluation of the CNN model for environment 
condition classification, the five CNN models presented in Section 2.4 
were cross-validated using the hold-out validation dataset containing 
1500 videos. As described in Section 2.4.1, one random frame was 
extracted from each video in the dataset, giving us a total of 1500 frames 
for validation. These frames were then processed through the five CNN 
models, and performance metrics for each model were generated. 
Table 4 summarizes the acccuracy, precision, recall sensitivity, recall 
specificity and the F1 scores of the five models from the validation 
phase. Fig. 7 (a) provides an overview of the averaged confusion 
matrices from all five CNN models. CNN Model 4 had the best overall 
performance with an accuracy of 99.2% and an F1 score of 97.5%., and 
thus only CNN Model 4 was used in the subsequent fish or no-fish 
classification pipeline. The validation performance of CNN Model 4 
with respect to each of the six environmental conditions is shown in the 
confusion matrix of Fig. 7 (b). 

3.2. Fish and no-fish video classification 

Overall, frame differencing and scanline-based methods classified 
videos with high accuracy. (Table 5), where the “clear condition” 
environmental condition using frame differencing achieved an average 

classification of 91.9%, and an F1 score of 91.1%. Scanlines performed 
3.1% worse, with a score of 88.8% and an F1 score of 87.2%. Both 
methods showed similar accuracy in the “low light condition” envi
ronment; both retained an accuracy and F1 score over 91.0%. The 
environmental condition “air bubbles”, exhibited a decrease in accu
racy, where frame differencing had 84.7%, whereas scanlines dropped 
to 77.2%. Similar results were achieved in “turbidity”, where frame 
differencing performed ca. 5% better compared to scanlines. Scanlines 
performed even lower under “periphytic biofilm” conditions, where the 
accuracy dropped to 72.4%, whereas frame differencing performed the 
best, with an accuracy of 91.6%. Videos classified as having “light 
overexposure” achieved results of 80.4% and 70.8% respectively. Final 
testing was performed with the randomized mixed dataset, where the 
results were averaged across five iterations (Table 6). The average ac
curacy for frame differencing was 88.5%. Scanlines performed around 
6% percent worse than frame differencing, achieving an accuracy of 
82.1%. 

3.3. Hardware comparison 

Based on the results shown in Table 7, we compared the two High- 
Performance Desktop (HPD) machines. Both systems achieved a mini
mum speed of 60 frames per second, using all available CPU cores/ 
threads. The Intel i7 12700K with frame differencing had a mean speed 
of 150 frames per second (fps). Scanlines performed worse, achieving an 
average frame rate of 103 fps. The Ryzen 5900× performed the best, 
achieving 200 fps with frame differencing and 160 fps with scanlines. 
Identical tests were also conducted on three different embedded hard
ware. Both Jetson Nano and MediaTek Pumpkin i500 achieved frame 
rates of greater than 40 fps, with both frame differencing and scanlines. 
The Raspberry Pi 4 was not able to exceed 30 frames per second. 
Detailed tables comparing the hardware are provided in the in Table 7. 

4. Discussion 

Estimates of the environmental conditions can be used to automati
cally and adaptively adjust the fish / no-fish classification model 
hyperparameters, which in turn improves the classification accuracy. In 
addition to being accurate, the proposed classification process is 
computationally efficient, as it relies only on a few extracted frames 
from each video, achieving an F1 score of up to 98%. These results are 

Table 5 
Results of individual conditions tested with frame difference and scanlines.  

Metric Condition: Clear condition Condition: Low Light condition Condition: Air bubbles 

Frame Difference Scanlines Frame Difference Scanlines Frame Difference Scanlines 

Accuracy 91.9% 88.8% 94.8% 91.2% 84.7% 77.2% 
Precision 99.0% 100% 90.6% 88.7% 78.2% 75.4% 
Recall Sensitivity 84.4% 77.6% 97.9% 94.4% 94.9% 80.8% 
Recall Specificity 99.2% 100% 91.4% 88.0% 75.2% 73.6% 
F1 Score 91.1% 87.4% 95.1% 91.5% 85.7% 78.0% 
True Positives 103 (41.7%) 97 (38.8%) 125 (50.0%) 118 (47.2%) 111 (45.9%) 101 (40.4%) 
False Positives 1 (0.4%) 0 (0.0%) 13 (5.2%) 15 (6.0%) 31 (12.8%) 33 (13.2%) 
True Negatives 124 (50.2%) 125 (50.0%) 112 (44.8%) 110 (44.0%) 94 (38.8%) 92 (36.8%) 
False Negatives 19 (7.69% 28 (11.2%) 0 (0.0%) 7 (2.8%) 6 (2.5%) 24 (9.6%)  

Metric Condition: Periphytic biofilm Condition: Turbidity Condition: Light overexposure 
Frame Difference Scanlines Frame Difference Scanlines Frame Difference Scanlines 

Accuracy 87.6% 82.8% 91.6% 72.4% 80.4% 70.8% 
Precision 89.2% 77.3% 88.1% 70.3% 72.9% 64.9% 
Recall Sensitivity 85.6% 92.8% 96.0% 77.6% 96.8% 90.4% 
Recall Specificity 89.6% 72.8% 87.2% 67.2% 64.0% 51.2% 
F1 Score 87.4% 84.3% 91.9% 73.8% 83.2% 75.6% 
True Positives 107 (42.8%) 116 (46.4%) 119 (47.8%) 97 (38.8%) 121 (48.4%) 113 (45.2%) 
False Positives 13 (5.2%) 34 (13.6%) 16 (6.4%) 41 (16.4%) 45 (18.0%) 61 (24.4%) 
True Negatives 112 (44.8%) 91 (36.4%) 109 (43.8%) 84 (33.6%) 80 (32.0%) 64 (25.6%) 
False Negatives 18 (7.2%) 9 (3.6%) 5 (2.0%) 28 (11.2%) 4 (1.6%) 12 (4.8%)  

Table 6 
Averaged fish / no-fish classification results after five iterations of the balanced 
dataset using 1500 videos using frame differencing and scanlines. During each 
iteration, 500 videos were randomly selected across six environmental 
conditions.  

Metric Frame Difference Scanlines 

Accuracy 88.7% 81.2% 
Precision 85.6% 78.3% 
Recall sensitivity 92.9% 86.2% 
Recall specificity 84.6% 76.1% 
F1 Score 89.1% 82.1% 
True Positives 228.4 (46.0%) 215.6 (43.1%) 
False Positives 38.4 (7.7%) 59.8 (11.9%) 
True Negatives 211.6 (42.7%) 190.2 (38.0%) 
False Negatives 17.4 (3.5%) 34.4 (6.8%)  
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comparable to the underwater deep learning-based and unsupervised 
object detector systems tested by Coro and Bjerregaard Walsh (2021). 

However, it was found that frame image enhancement can also lead 
to incorrect environmental condition classification. As an example, the 
Gaussian Blur filter can smooth out colors or textures used by the CNN 
classifier. Environmental conditions such as biofilm or overexposure 
frequently occurred in different image regions. This can result in a non- 
isotropic, patchy distortion of the pixel intensities, making it difficult for 
many deep learning models to detect environmental conditions as ob
jects. However, as demonstrated by Ibrahim et al. (Ibrahim et al., 2019), 
and others (Xia et al., 2020; Xiao et al., 2021; Xie et al., 2021), the VGG 
(Simonyan and Zisserman, 2014) and ResNet (He et al., 2016) archi
tecture models are able to detect non-object features for weather con
ditions (e.g. fog, glare) in terrestrial images. Therefore, the proposed 
model was designed based on the VGG architecture. Unlike conventional 
VGG16 or VGG19 models (the numeric value corresponds to the number 
of layers), our CNN model contained only 12 layers (see Fig. 3). 

Lowering the number of layers reduces the model size, improving the 
system's computational performance. Standard VGG and ResNet models 
use an input image of size 224 × 224 pixels, whereas our custom model 
used images of 256 × 256 pixels. The choice of input image size was 
based on our experimentation, where it was found that overall classifi
cation performance could be improved with a minor increase in the 
image resolution. 

In addition to problems caused by incorrect image enhancement, 
videos with low frame rates or resolutions can also have an impact on 
fish detection accuracy. Methods such as frame differencing depend on 
high frame rates. Otherwise, the technique has difficulties separating 
moving objects from the background. In addition, with low resolution, 
the system also has problems separating small fish from random floating 
debris. 

The main focus of this work is on the correct classification of videos 
with and without fish in them. Thus our work serves as a precursor to 
automated fish counters which must also classify the fish species and 
count the number of individuals. Similar to our objective, (Konovalov 
et al., 2019) developed a highly accurate (FP = 0.17%, FN = 0.6%) wild, 
marine fish and no-fish video classification method. Underwater video 
obtained in rivers presents its own sets of challenges, such as detritus (e. 
g. leaves, small branches, garbage), turbidity, air bubbles, reflections, 
and biofilm growth. For example, biofilm and turbidity both result in 
hazed and blurred imagery, making it difficult to robustly detect fish 
moving in front of the camera. Detritus and air bubbles may lead to false- 
positives as fish identification algorithms may confuse these artifacts 
with moving fish. At sites where these problems are addressed, it may be 
possible to estimate fish biomass directly from estimates of fish size (Li 
et al., 2021). Our proposed method could also be combined with cloud- 

based hourly fish counts by combining acoustic fish tracking with un
derwater video fish counter data to follow individual fish through hy
dropower plants as they migrate up and downstream (Tuhtan et al., 
2020; Yang et al., 2022). 

Comparing the two fish detection methods proposed in this work, 
frame differencing performed the best overall, achieving a mean accu
racy of 88.4%, while scanlines achieved a mean accuracy of 82.1%. 
These results are encouraging, but there remains room for improvement 
as (Hernández-Ontiveros et al. (2018) showed that an embedded fish 
counter running on a Raspberry Pi with controlled illumination and 
monotone background could achieve an individual fish counting accu
racy of up to 98%. However, it is also important to note that in wild, 
unstructured environments, the F1-score can drop below 50% (Labao 
and Naval, 2019). Frame differencing implements a filter to exclude 
objects which can cause false positives based on the object dimensions 
and shape. The method was also found to create false negatives if the 
fish's head only briefly enters the video and for fast-moving, small fish. 
In order to reduce the number of false negatives using frame differ
encing, we recommend that the lowest video frame rate is set at a 
minimum of 15 fps. 

Considering the video processing speed, both HPDs tested in this 
work processed videos at more than 150 fps, whereas the embedded 
hardware ran at speeds of 18 to 46 fps. Based on our recommendation of 
a minimum of 15 fps, all tested hardware were deemed to be adequate. 
At sites where power consumption is a limiting factor, HPDs are poor 
candidates due to their high energy consumption of more than 180 W, 
whereas the Raspberry Pi 4, which was the slowest tested embedded 
hardware, consumed only 4.2 W. In cases where the power consumption 
is critical, the MediaTek i500 and Jetson Nano were found to be similar, 
having a power consumption of 3.75 and 3.8 W, respectively. Although 
power consumption is often the main limitation, autonomous under
water cameras may run out of memory long before batteries are 
depleted, as discussed in Mouy et al. (2020). 

5. Conclusions 

We propose an environmentally adaptable and computationally 
lightweight solution for classifying underwater videos based on the 
presence or absence of fish. The results indicate that the proposed 
method can provide accurate binary video classification (fish = 1, no- 
fish = 0) under six different environmental conditions commonly 
occurring at underwater cameras installed in rivers. This was accom
plished using a bespoke multi-stage video processing pipeline which 
included a CNN-based environmental classifier in conjunction with 
frame differencing, scanlines, and a binary classifier. 

The model was trained, tested, and validated on 3000 balanced (i.e., 

Table 7 
High Performance Desktop (HPD) hardware configurations, MediaTek Pumpkin i500, Raspberry Pi 4, Nvidia Jetson Nano Technical specifications and performance 
metrics. Frames processed per second (FPPS) is reported per core/thread.  

Parameters HPD 1 HPD 2 Nvidia Jetson Nano Raspberry Pi 4 MediaTek Pumpkin i500 

CPU/Microprocessor AMD Ryzen 95,900× Intel Core i7-12700K Cortex-A57 Cortex-A72 Cortex-A73 Cortex-A53 
Cores/Threads 12/24 12/20 4/4 4/4 8/8 
Core Clock (GHz) 3.7 3.8 1.43 1.5 2.0 
Memory 64 GB DDR4 32 GB DDR5 4 GB DDR4 4 GB DDR4 2 GB DDR4 
Storage 1 TB 1 TB 32 GB 32 GB 16 GB 
Operating System Ubuntu 20.04 Ubuntu 20.04 Ubuntu 20.04 Raspberry Pi OS Yocto Linux 
Power consumption (W) 183 221 3.75 4.2 3.8 
Cost () 549 419 110 60 199  

Performance metrics HPD 1 HPD 2 Nvidia Jetson Nano Raspberry Pi 4 MediaTek Pumpkin i500 
Geekbench 5 Single-Core 1668 2075 228 231 299 
Geekbench 5 Multi-Core 15,404 15,617 819 674 969 
FPPS (Frame Diff.) 153 160 46 18 44 
FPPS (Scanlines) 220 153 43 24 45 
FPPW (Frame Diff.) 0.3 0.2 12.1 4.3 7.4 
FPPW (Scanlines) 0.8 0.6 11.5 5.7 12.0  
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uniformly distributed six environmental conditions) videos with fish 
(1500) and without fish (1500). Training and testing of the CNN-based 
environmental conditions classifier were performed using repeated 
random sub-sampling of 12,000 frames extracted from 1500 videos, 
while validation was carried out on the remaining 1500 videos, which 
were withheld for validation and not used for training or testing. The 
best performing CNN model for environmental conditions classification 
was then chosen to be used for the automated fish / no-fish sorting using 
frame differencing and scanlines. 

The underwater video processing pipeline was also shown to be 
suitable for low-cost embedded hardware, which may allow for real- 
time fish counters. In addition, the proposed methods are largely 
platform-independent. This allows for their deployment in edge com
puter vision systems, high-performance PCs, or as a cloud-based 
solution. 

Future research will explore improving the computational perfor
mance of the proposed pipeline using GPUs, including their optimization 
on low-cost embedded hardware. We are optimistic that the inclusion of 
optimized GPUs may allow for further improvements in the computa
tional performance and classification accuracy when compared with the 
CPU-based methods presented in this work. In addition, we will explore 
the use of the proposed environmentally-adaptive outdoor video moni
toring system for biodiversity monitoring to automatically sort contin
uously recorded videos including terrestrial animals and birds. 
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ABSTRACT Traffic monitoring systems featuring robust, multi-sensor fusion capabilities are rapidly
growing in demand to observe traffic flow, reduce congestion and to detect and report traffic accidents.
However, monitoring outdoor environments using cameras remains challenging due to complex weather
conditions, including fog, rain, snow and variable lighting conditions. The presence of these weather
conditions can significantly reduce vehicle detection and classification performance using machine learning
methods. Unfortunately, openly available datasets for multi-sensor traffic monitoring development and
testing remain limited, especially those featuring infrastructure-based cameras and millimeter wave
(mmWave) radar. To address these challenges, we evaluate open camera and mmWave radar data using
vehicle classification models for cars, trucks, vans and buses on embedded hardware. We also provide an
open multi-sensor traffic monitoring dataset with more than 8,000 manually annotated frames as well as
mmWave radar point clouds recorded in an urban environment under sunny, partially cloudy, cloudy, rainy
and night conditions.

INDEX TERMS Object detection, edge computing, machine learning, camera, millimeter wave radar, traffic
video.

I. INTRODUCTION
In 2020, the International Council on Clean Transportation
(ICCT) reported 11.7 million new vehicle registrations in the
27 member states of the European Union and the United
Kingdom. [1]. According to the report published by the
European Automobile Manufacturers Association (ACEA),
China alone had more than 25.5 million newly registered
vehicles in 2022. From 2021 to 2022, the number of newly
registered vehicles in India increased by 24.1% [2]. The
Bureau of Transportation Statistics (BTS) 2021 survey shows
that the USA currently has 275.9 million registered light-duty
vehicles, motorcycles, trucks, and buses [3]. Analysts expect
that the number of newly registered vehicles will continue
to grow for the foreseeable future, reaching 2.21 billion
worldwide by 2050 [4], [5]. With the growing number
of vehicles around the world, developing and managing a
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city’s transportation infrastructure has become a substantial
and persistent challenge. Frequent problems include traffic
jams, congestion, and environmental and noise pollution.
To address these challenges, traffic monitoring systems are
deployed to collect data about the traffic flow, including
velocity, volume, Peak Hour Factor (PHF), density, headway,
spacing, gap, and clearance [8]. This data is essential to
improve the planning and development of transportation
infrastructure. However, collecting the required information
in outdoor environments still poses a major technology
challenge, especially in the presence of fog, rain, snow, and
during the night.

II. RELATED WORK
Sensors used for traffic monitoring applications are divided
into three subcategories: in-roadway, side-roadway, and over-
roadway [9]. The earliest traffic monitoring systems used
in-roadway sensors and were primarily adapted for vehicle
counting applications. Inductive loop detectors (ILD)monitor
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passing vehicles by detecting changes in inductance. ILD
sensors have excellent detection accuracy, ranging from 92%
[10], [11], [12], [13] up to 99% accuracy with magnetic
sensors [14], [15]. However, in-road sensor systems have
several drawbacks: high installation and maintenance costs,
pavement damage during installation, and limited lane
coverage. Furthermore, installation and maintenance can
cause traffic disruptions and congestion, since the road
section must be closed during these activities [9].
Non-intrusive, side- and over-roadway traffic monitoring

systems are typically comprised of acoustic sensors, light
detection and range (LiDAR), or radio detection and range
(radar). A key advantage over in-roadway sensing is their
ability to monitor multiple lanes simultaneously [16], [17],
[18]. In addition, the sensor can be installed over the
road or on the side of the road without damaging the
pavement or requiring closing any traffic lanes during
installation and maintenance. Furthermore, these sensors are
less dependent on the intensity and variability of illumination.
However, reflective surfaces can cause large local changes in
illumination intensity, reducing the detection accuracy, and
in some cases, false detections. Nonideal weather conditions
including fog, rain, or snow can also scatter or absorb
radio waves, reducing both the operating range and the
accuracy [19].
The first attempts at camera-based vehicle counting date

back to 1978 by the Jet Propulsion Laboratory [21]. Cameras
have since become the most widely used type of sensor
for traffic monitoring, mainly because they offer several
advantages: they can cover multiple lanes simultaneously,
have flexible mounting options and require minimal main-
tenance [9]. The ability to survey the surroundings in
high spatial and temporal detail provides cameras with a
significant advantage over in-roadway sensors and they can
detect and classify vehicles with over 95% accuracy [22],
[23], [24]. Camera observations can also be applied for
additional traffic monitoring use cases, such as assessing
road conditions, detecting collisions and assisting rescue
services. Despite their numerous advantages, camera-based
vehicle detection accuracy remains highly dependent on
weather and local illumination conditions. Fog can reduce
visibility by scattering light and reducing contrast, making
objects appear hazy and lacking details. Rain and snow can
cause droplets to accumulate on the lens or sensor, adversely
impacting the image quality. Low light conditions may
produce unwanted levels of noise and blurring. Conversely,
cameras may provide overexposed imagery during localized
bright lighting conditions caused by reflection glare and
headlights [9], [19]. Table 1 provides a comparative overview
of the influence of weather conditions by sensor type.
Recently, multi-sensor-based traffic monitoring systems have
begun to gain more traction [28], [29], [33], [34], [35].
The primary motivation behind this trend is to improve
detection accuracy and mitigate the shortcomings in com-
plex, changing environments and weather conditions [30],
[31], [32]. One major obstacle in developing, testing, and

TABLE 1. Impacts of different weather conditions on cameras, radar and
LiDAR sensors used for traffic monitoring. A score for each of the weather
conditions and its impact on the traffic monitoring sensor type ranges
from 0: negligible effect, to 5: severe impact, and was adopted for each
combination in the table based on the method used in [19].

validating multi-sensor-based traffic monitoring systems is
the limited number of openly available traffic monitoring
datasets.

A. OVERVIEW OF MULTI-SENSOR
INFRASTRUCTURE-BASED TRAFFIC
MONITORING DATASETS
DAIR-V2X-I contains over 10000 annotated frames col-
lected using a high-resolution camera and LiDAR. The
dataset features ten classes, focusing on diverse weather and
lighting variations [36].
A9 dataset consists of footage using a high-resolution

camera and LiDAR, covering a variety of traffic situations.
The anonymized and precision-timestamped footage was
recorded at the three km-long Providentia++ testfield near
Munich, Germany. The dataset features a total of four weather
conditions and six vehicle classes [37].
LUMPI features over 200k frames, collected over several

days during different weather and light conditions at a large
junction in Hanover, Germany. The dataset includes 2D
image information (videos) and 3D point clouds with labels
of the traffic participants in the scene [38].
AAU RainSnow dataset was collected using conventional

RGB and thermal infrared cameras. It features scenes with
rain and snowfall, captured from 22 five-minute videos from
seven different traffic intersections. The illumination of the
scenes varies from broad daylight to twilight and night.
Scenes show glare from car headlights, reflections from
puddles, and raindrop blur to the camera lens. In total, the
data contains 2200 annotated frames [43].
Radar LAB created an automatic radar-camera dataset

generation toolkit for sensor-fusion applications to minimize
labor costs for recording and processing camera and radar
data simultaneously. However, the dataset is not openly
available [45].
UTIMR applies an urban traffic imaging using millimeter-

wave radar system. Information about the features of the
dataset is very limited and is not openly available [46].
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TJRS TS focuses on trajectory tracking using millimeter-
wave radar sensors. The verification data was captured with
cameras attached to UAV [44]. The weather conditions and
amount of data collected are not specified. The dataset is not
open access, but is available upon request.
CIM (this work) complements existing open datasets by

providing novel camera and mmWave radar data, covering
multiple weather conditions, locations, and vehicle classes
common to urban traffic monitoring locations. The specifics
of the dataset are discussed in more detail in Section IV-A.
A comparison of the CIM dataset with current openly
available infrastructure-based multi-sensor traffic monitoring
datasets is summarized in Table 2.

B. OBJECTIVES
The objectives of this work are two-fold: First, we provide a
camera and radar-based vehicle detection and classification
pipeline and evaluate its performance using embedded hard-
ware. Second, we provide a new open infrastructure-based
multi-sensor traffic dataset featuring nearly 8400 manually
annotated frames, including five weather conditions and
four vehicle classes. This article is organized as follows: In
Section III, we provide a detailed overview of the selected
embedded hardware options, camera sensor, and mmWave
radar. The methods applied for camera and mmWave
radar vehicle detection and classification are provided in
Section IV. The results are provided in Section V. Finally,
in Sections VI and VII, the advantages, limitations, and
future research directions are discussed.

III. HARDWARE
A. EMBEDDED HARDWARE
Two embedded hardware configurations were chosen to
evaluate the proposed vehicle detection and classification
pipeline, and a summary of the hardware specifications is
provided in Table 3. The author’s first choice was the Nvidia
Jetson Nano, which represents a typical platform for AI and
machine learning applications. The Jetson Nano hardware
features a Quad-core Cortex-A57microprocessor control unit
(MCU), 128-core Maxwell architecture-based graphics pro-
cessing unit (GPU), 4GB of LPDDR4 and can support MIPI
CSI-2 cameras. Although the board lacks built-in FLASH
memory, the hardware supports flash storage devices. The
second choice was the Nvidia Jetson Orin Nano 4GB version,
emulated using the Jetson AGX Orin Developer Kit, chosen
as it is the successor to the Nvidia Xavier platform. The
board features a Hexa-core MCU based on Cortex-A78AE
architecture running at 1.5 GHz. In addition, the Orin Nano
board has a 512-core GPU based on the Ampere architecture
with 16 dedicated Tensor Cores. Both systems support
software-based power consumption monitoring, which was
used in this work to evaluate their efficiency. The selection
of the Jetson platform by the authors can be attributed to two
primary factors. First, the Nvidia Jetson platform is a widely
recognized and extensively documented commercial device

that has gained widespread adoption in both academic and
commercial research communities. Secondly, the worldwide
chip shortage has put alternative platforms, such as Raspberry
Pi, in short supply for many users, making the Jetson platform
the most viable option for the authors during the time this
work was carried out.

B. RADAR
Unlike optical sensors, such as cameras or LiDAR, radar
sensors use radio waves to detect objects. By measuring
the differences between arrival times and the phase shift of
the radio wave signals reflected from an object’s surfaces,
radar sensors estimate the distance and speed of the
target. Automotive millimeter-wave (mmWave) radars do
not produce a high-resolution three-dimensional scan of
the environment like LiDAR. Instead, they have a more
limited output of some 200 measurement points. In this
work, the Texas Instruments AWR1843BOOST mmWave
radar development board [53] was implemented. The kits
are based on the Texas Instruments AWR1843 automotive
77GHz radar sensor. The development board also includes a
signal processor to translate the analog radar data into digital
radar point clouds.

1) RADAR CONFIGURATION
The radar used in this work can be configured using multiple
parameters to meet the needs of the selected application.
Finding the best combination of these parameters depends
highly on the application, and the parameters used in this
work are provided in Table 4. These parameters in Table 4
were optimized fromfield data testing as part of theAdvanced
Traffic Sensor Pilot project conducted by the Embedded
AI Research Lab at Tallinn University of Technology in
cooperation with Thinnect OÜ in 2021 and 2022. The
configured range resolution of the radar is 0.59 m, and the
velocity resolution is 1.3 km/h, with a maximum measurable
velocity of 83 km/h. This resolution was achieved for
objects at a maximal distance of 30 m. However, the pilot
project experiments indicated that the radar can feasibly
recognize objects at distances up to 100 m. The radar
uses a relatively narrow beam azimuth of 15◦, transmitting
measurement points 15 times per second. Measurements
from stationary objects were filtered to reduce clutter and
simplify processing. The filter subtracts the mean value of the
input samples after applying a two-dimensional Fast Fourier
Transform [20].

C. CAMERA
Compared to radar and LiDAR, camera sensors are able
to record multiple features such as color, shape, and
luminance, which is advantageous for object detection and
classification applications. However, camera performance
can be negatively impacted by commonly-occurring weather
and environmental conditions such as rain, fog, snow and low
lighting at night [19]. In this work, a Sony IMX-219-120
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TABLE 2. Comparison of open multi-sensor infrastructure-based datasets for vehicle detection and classification. CIM (this work) provides the largest
open dataset for camera and mmWave radar to-date.
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FIGURE 1. Examples from recording locations with different weather conditions. (a) Clear, ideal conditions of the roadway and vehicles. (b) Cloudy
conditions, where some regions of the roadway have poor illumination at a distance. (c) Rain and other non-ideal conditions in which the camera lens
may have water droplets and where sections of the roadway may have blurred imagery. (d) Partially cloudy, dynamic changes in near and far-field
illumination occur on the roadway due to variations in cloud cover. (e) Night, considerable variability in the roadway illumination levels due to static
street lighting in conjunction with automobile head and tail lights. Computer vision approaches for detection and classification remain challenging
because at some locations different illumination and weather conditions may co-occur and vary substantially between frames.

FIGURE 2. General overview of the CIM dataset curation workflow: First, the curator selects and undistorts the camera imagery. The point cloud data is
then converted from 3D to the camera’s 2D reference frame, as discussed in Section IV-C. Afterwards, the camera footage and radar data were
synchronized. Next, the videos are sorted and balanced based on the weather and local illumination conditions following the National Oceanic and
Atmospheric Administration (NOAA) guidelines [49]. After sorting, cleaning, and adjusting the recorded footage, the curator randomly selects and extracts
a 100-frame sequence from each video. The sequence is then manually annotated for each vehicle within a frame using rectangular bounding boxes.

camera [52] was chosen primarily due to its compatibility
with existing embedded hardware platforms and its wide
angle of view. Table 5 provides an overview of the camera
sensor specifications.

IV. MATERIALS AND METHODS
A. DATASET
Critical Infrastructure Monitoring (CIM, this work) is a new
dataset collected in the Tallinn urban environment during

the late winter and early spring, covering most weather and
environmental conditions common to temperate and sub-
polar regions. Fig. 1 provides an overview and examples of
the weather conditions and recording locations. The original
recordings feature over 41 hours of footage at a resolution
of 3264 × 2464 px at 15 fps, which was fixed due to radar
data acquisition limitations. The footage was undistorted and
cropped to a resolution to 1920 × 1080 px. The CIM data
curation workflow is depicted in Fig. 2. The final curated
dataset contains 8393 manually annotated frames, including
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TABLE 3. Overview of the Jetson Orin Nano and Jetson Nano hardware
specifications.

TABLE 4. Summary of the AWR1843BOOST mWave radar hardware
configuration used in this work, including brief descriptions of each
parameter.

TABLE 5. Summary of the Sony IMX-219-120 camera sensor
specifications.

TABLE 6. Label counts per vehicle class in each recording location. The
largest number of samples belong to Fujitsy sign, featuring 14294 samples
for passenger car, 382 for bus, 685 for van, and 289 for truck class.

radar point cloud data (Table 2). The distribution of sample
count across all the vehicle classes and the number of samples
for each vehicle class captured at each location is shown in
Table 6. Each frame in the CIM dataset is represented using
XML and JSON files. The XML file contains information
about the vehicle class, followed by bounding box data,
using (Xmin,Ymin,Xmax ,Ymax) formatting. The contents of the
JSON and the fields in each measurement point object are

TABLE 7. Description of the JSON fields for radar point objects included
in the open CIM dataset.

documented in Table 7. CIM is a openly available under Cre-
ative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License [48]. The dataset is hosted via
Zenodo: 10.5281/zenodo.8301276

B. CAMERA-BASED VEHICLE DETECTION
In order to detect and classify vehicles using the camera
system, we trained an object detection model based on
YOLOv7 architecture [55]. Several CNN architectures were
considered, such as SSDLite [25] and ResNet [26]. Ulti-
mately, the YOLOv7 architecture was chosen based on the
Average precision (AP) and inference time ratio. The model
was trained to recognize four vehicle classes: passenger car,
bus, truck, and van. The vehicle classification model was
developed using a two-step process. As illustrated in Fig. 3,
five randomly subsampled models were trained, tested and
validated. The CIM dataset contains a total of 8393 frames,
andwas split into separate datasets for training and validation.
The training dataset used for training and testing included
7218 labeled frames, leaving 1175 labeled frames for the
validation dataset. The 7218 frames were further divided
into five datasets for training and testing using random sub-
sampling (see Fig. 3 (2)). Each of the five datasets contained
6714 frames for training and 504 for testing. All five models
were then trained over a total of 50 epochs. In order to
select the best-performing model, the five trained models
were validated using the same hold-out data in the final stage
(see Fig. 3 (3)). The results of the validation phase are further
discussed in Section V-A.

C. RADAR-BASED VEHICLE CLASSIFICATION
A radar-based vehicle classifications model was developed
using the mmWave radar point cloud coordinates converted
from the sensor frame of reference using the extrinsic and
intrinsic parameters of the camera. The extrinsic parameters
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FIGURE 3. 1) Illustration of the hold-out procedure for training, testing, and validating the vehicle detection model. 2) Usage of repeated
sub-sampling was applied for testing and training and was used to train models with identical CNN architecture. 3) Finding the
best-performing model using the validation dataset, adapted from [27].
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FIGURE 4. Workflow used to calibrate and align the camera pixel
locations with the mmWave radar point cloud.

allow conversion between the camera and the world coor-
dinate system. Extrinsic parameters are used to rotate and
translate the radar point cloud coordinates to match the
camera coordinate system. Intrinsic parameters represent
the internal properties of the camera sensor including lens
distortion. An overview of the coordinate conversion process
is provided in Fig. 4, and can be broken down into the
following four processing steps:

1) Calibration is carried out to retrieve the camera’s
intrinsic and extrinsic parameters using tools from the
robot operating system (ROS 2).

2) Coordinate conversion from the radar point cloud
reference frame to the camera as the reference system
by rotating and translating the radar point cloud into the
camera’s coordinate system.

3) Lens distortion effects are reduced using the intrinsic
parameters obtained during the camera calibration
stage.

4) The radar point cloud is projected from the 3D space
into the camera’s 2D image plane. This results in a
common reference frame for both the camera pixel
coordinates and the radar point cloud data.

Before the mmWave radar vehicle classification model could
be trained, we first generated a labeled point-cloud dataset.
As described in Table 7, the raw radar point cloud information
includes a bounding box ID, which was used to match the
points in each box to a corresponding vehicle label taken from
the camera system. This was donemanually for each frame by
extracting the vehicle class and the bounding box coordinates
(xmin,ymin,xmax ,ymax). Afterwards, we stored the number of
points for each radar bounding box with the corresponding
vehicle label. The outcome of the point cloud annotation
process resulted in a dataset featuring 423 unique vehicle
bounding box samples, summarized in Table 8. Due to the
low number of truck and bus samples obtained by the radar,
the truck and bus classes were merged into a single class

TABLE 8. Example datasets used for the mmWave radar based
classification. Each sample contains the number of radar points, the
coordinates, the point velocity and the corresponding vehicle class label.

corresponding to large non-car vehicles. The radar dataset
was divided into training and validation datasets using a ratio
of 80:20, leaving 338 samples for training and 85 samples
for validation. The validation dataset was checked to feature
equal amount of samples labeled as car and truck/bus. Three
distinct approaches were examined and assessed in an effort
to classify vehicle types, relying only on the radar point cloud
information: Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), and Feedforward Neural Network (FNN).
SVM is one of the most commonly used supervised

machine learning algorithms for classifying, regressing,
or detecting outliers. The algorithm works by finding a
hyperplane, separating the data points of one class from
the other. Maximizing the distance between classes in a
multidimensional space. These characteristics have enabled
researchers to accurately distinguish vehicles, pedestrians,
and other objects from point cloud information obtained
using mmWave radar [17], [58].
The proposed SVM model utilizes a radial basis function

(RBF) kernel. The RBF kernel measures the similarity
between two data points in infinite dimensions. The kernel
function is defined as:

K (x1, x2) = exp(−γ ·∥x1 − x2∥2) (1)

where γ controls the ‘spread’ of the kernel. The closer
the kernel function is to zero, the larger the Euclidean
distance between two points ∥x1 − x2∥2. The larger the
distance between the two points, the more likely they are
dissimilar [61].
Neural networks are a category of machine learning

algorithms renowned for their capacity to discern intricate
patterns and relationships within data, solidifying their
position as one of the most widely employed methods
for addressing classification and regression tasks. These
networks have been effectively deployed to perform object
classification using exclusively point cloud data, enabling
more streamlined and precise object categorization without
reliance on conventional image-based information [59], [60].
The designed FNN model incorporates two hidden layers.

The first hidden layer contains eight units, while the second
only features four. Using dense layers, each individual neuron
is connected to every neuron in the subsequent layer, creating
a densely connected network structure. With the exception
of the output layer, which employs a softmax activation
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FIGURE 5. Confusion matrix of best performing camera classification
model (Model 3).

function, all layers utilize the ReLu activation function.
Additionally, dropout regularization was implemented to
avoid overfitting the network.
KNN is a simple yet highly effective algorithm, which

operating on the principle that similar data points are in
close proximity to each other in the feature space. It looks
at the K closest data points and assigns the new point the
majority class (for classification). To find the optimal K
value, we utilized the elbow method [56], [57]. The elbow
method involves plotting the error rate of the KNN model as
a function of different K values.
The results of the radar-based vehicle classification models

are further discussed in Section V-A.

V. RESULTS
A. VEHICLE DETECTION AND CLASSIFICATION
USING CAMERA
To ensure a robust evaluation of the CNN model for
camera-based vehicle classification, a hold-out validation
dataset containing 1175 frames was used. As described in
Section IV-B and visualized in Fig 3, the curated dataset
was split using a ratio of 70:30. The first portion of the
split dataset was used to train and test the model, using a
randomizer to generate a new training and testing data for
each run. The remaining portion of the camera dataset was
set aside to validate the performance and to determine the
best performing model. Table 9 summarizes the CNN model
performance across all vehicle classes, using the evaluation
parameters described in the previous section. Of the five
trained models, Model 3 performed best, albeit by a small
margin, achieving the highest mAP@0.5. . . 0.95 score of
0.681 across all vehicle classes. The confusion matrix of
Model 3 is depicted in Fig. 5.

B. VEHICLE DETECTION AND CLASSIFICATION
USING RADAR
Three separate approaches were tested to classify vehicle
types using only information collected by the mmWave
radar. The results were validated using a hold-out dataset

TABLE 9. Performance summary after validation for each of the five
trained models for all vehicle classes, and for all classes combined.
Model 3 was chosen as the overall best model based on the
mAP@0.5. . . 0.95 evaluation parameter.

FIGURE 6. The optimal K value was determined using Elbow method. A K
value of 5 resulted in the lowest error rate of 0.16.

featuring 50 samples, of which 25 belong to passenger cars
and 25 to bus/truck class, to validate the performance of the
radar-based classification model. The evaluation outcomes
are summarized in Table 10.
The Feedforward Neural Network (FNN) exhibited the

highest F1 Score for the Car category at 0.86. However, the
method struggled to classify the Bus/Truck class, yielding an
F1 score of 0.67. In contrast, the Support Vector Machine
(SVM) demonstrated respectable performance, achieving F1
scores of 0.75 for Car and 0.7 for Bus/Truck. The K-Nearest
Neighbors (KNN) performed the best of the three tested
approaches. As described in Section IV-C, we used the elbow
method to determine the optimal K value. As depicted in
Fig. 6, the lowest error rate of 0.16 was achieved using a
K value of 5. The KNN succeeded in attaining an F1 score
exceeding 0.8 for both classes. The performance of the KNN
model is visually depicted in the confusion matrix in Fig. 7.
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TABLE 10. Classification result of the mmWave radar various methods.
Out of the four tested method, KNN performed best, achieving an F1
score of 0.85 classifying cars and 0.83 for the bus/truck class.

FIGURE 7. Radar point cloud classification model confusion matrix using
the KNN. Out of 50 samples, 23 where correctly classified as Car and
19 as Bus/Truck, only 8 samples were incorrectly classified.

TABLE 11. Embedded hardware performance comparison when running
the camera-based (YOLOv7) and mmWave radar (KNN) vehicle
classification models.

C. HARDWARE COMPARISON—EFFICIENCY
As described in Section III-A, we evaluated the vehicle
classification pipeline using two embedded hardware devices,
the Jetson Nano and Jetson Orin Nano. A comparison of
the results is provided in Table 11), where it was found
that the Orin Nano performed the best overall, reaching up
to 20 fps, while the Nano performed only 2 fps. Although
the Nano (4.9 W) consumed around 4 watts less power
than the Orin Nano (8.9 W), the Orin Nano (2.25 PPW)
provided the highest overall performance-per-watt ratio
relative to the Nano (0.41 PPW).

VI. DISCUSSION
The major contribution of this work is CIM, the open
infrastructure-based multi-sensor traffic monitoring dataset.

The primary motivation behind creating CIM was the limited
availability of open annotated datasets featuring mmWave
radar and camera imagery. Most open datasets, such as
DAIR-V2X-I [36], A9 [37], LUMPI [38] and Rope3D [39]
(summarized in Table 2) are based on LiDAR and camera
systems. CIM, the dataset provided in this work exhibits
several important features for real-world testing including
multiple weather conditions and vehicle classes and features
high image resolution and annotated, synchronized mmWave
point clouds and corresponding vehicle labels. Datasets
such as TJRD TS, Radar LAB, and UTIMR have limited
availability, which CIM specifically addresses. As with all
field datasets, CIM does have some shortcomings. The point
cloud sample sizes are relatively sparse and are limited to cars
and a limited number of buses and trucks due to the vehicle
types passing during our field data collection campaign.
To mitigate this issue to the greatest extent, future studies

using mmWave radar and infrastructure-mounted cameras
could collect footage from a busy intersection during rush
hour, allowing for the capture of more vehicle types within
a single frame. Furthermore, a larger diversification of
recording locations can help balance the sample count for
each vehicle class. For example, the inclusion of industrial
regions to collect more van and truck samples.
The second contribution of this work was to train and

evaluate the performance of camera-based and mmWave
radar classification in complex environments and weather
conditions on embedded hardware. Weather conditions
provided in the CIM dataset include overexposure from the
headlights in a low-luminosity environment with low-contrast
regions, which may lead to false negatives. Fog can reduce
visibility by scattering light and reducing contrast, making
objects appear hazy and lacking details. Rain and snow can
cause droplets (see Fig. 1 (c)) to accumulate on the lens or
sensor, affecting image clarity or suffering from clipping,
and reducing detail in overexposed situations, increasing the
amount of incorrect classifications, as well as the number of
false negatives. Previous works have shown that combining
multiple sensors can be effective [28], [29], [30], [31].
A recent work published by researchers at Guilin University
of Electronic Technology [32] showed promising results.
Using a camera and a mmWave radar, they achieved an
average accuracy of 95.3% for vehicle detection. Expanding
on this finding, we were able to show that our mmWave radar
classification model with a few point cloud samples using
KNN resulted in a minimum F1 score of 0.83 for two vehicle
classes. Furthermore, the KNN managed to outperform both
the SVM and FNN based classification models. However, the
camera-based system was able to detect and classify cars,
buses, trucks and vans with similar performance, with the best
performing model obtaining an F1 score 0.805 for all classes
combined.
Considering processing efficiency, one of the chosen

embedded hardware options was able to process the camera
data at a minimum rate of 20 fps, which far exceeded
the recommended minimum of 15 fps. In situations and at
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locations where restricted access to a reliable power supply
is a limiting factor, we also show that embedded hardware
can provide viable real-world solutions for vehicle detection
under non-ideal weather conditions. Future work based on
the open CIM dataset can be conducted by developing,
testing and validating novel vehicle classification pipelines
fusing themmWave radar and infrastructure-mounted camera
systems.

VII. CONCLUSION
We show how synchronized camera and mmWave radar
traffic monitoring sensors can be applied for complimentary
vehicle detection and classification on embedded hardware.
In addition, we provide CIM, an open infrastructure-
based camera and mmWave radar traffic monitoring dataset
featuring several weather conditions and vehicle classes. The
results show promise for future work related to multi-sensor
classification systems using stationary camera and mmWave
radar for traffic monitoring. Both models were found to be
suitable for low-cost embedded hardware running in real-
time. Future work will focus on expanding the open CIM
dataset by investigating the use of a cascaded mmWave
radar system to improve data collection in urban settings
with multiple weather and environmental conditions. Further
research is needed when combining camera and mmWave
radar traffic monitoring systems, considering that computa-
tional performance and vehicle classification accuracy may
be increased by including an additional dedicated computing
accelerator to the edge hardware used in this work.
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A B S T R A C T

The need for efficient approaches to track and assess fish behavior in rivers impacted by hydropeaking is
increasing. Nonetheless, employing an automated camera system for underwater monitoring requires that
the algorithms function under highly variable environmental conditions, which affect the ability to detect
and assess fish size. Additionally, there is a lack of openly accessible freshwater fish classification and size
estimation datasets. To address these limitations, we propose a binocular underwater fish monitoring system
capable of real-time fish detection and size estimation. The system was deployed and tested over one week in
two Portuguese rivers affected by hydropeaking. The week-long analysis also provided new insights regarding
wild fish behavior in rivers affected by hydropeaking. Results indicate that hydropeaking strongly influences
how fish may use instream flow refuges during hydropeaking. Fish were less frequently detected in the flow
refuge during peak flow events, suggesting that the flow conditions created habitat instability and difficulty
accessing the flow refuge. In contrast, fish in the non-hydropeaking river consistently used refuge areas,
reinforcing their importance as shelter during natural flow variations. This study demonstrates the potential
of a computer vision-based pipeline for real-time, fully automated fish monitoring of hydropeaking’s impacts
on riverine fish. Additionally, we provide PTFish, an open dataset with 18,523 manually annotated frames
featuring infrared and color video frames. These findings emphasize that automated, camera-based solutions
for hydropeaking monitoring can be used to develop evidence-based mitigation strategies to sustain fish
populations in rivers impacted by hydropeaking.

1. Introduction

The majority of global energy production is sourced from fossil
fuels. However, renewable energy sources such as hydropower, solar,
and wind provide an increasing share of the global energy mix, con-
tributing to a gradual reduction in fossil fuel dependence. According
to the International Energy Agency (IEA) report, by 2025, renewable
energy is projected to surpass coal, becoming the largest source of
electricity generation (IEA, 2024b). Despite the rapid expansion of solar
and wind power, hydropower remains one of the largest renewable
energy sources (IEA, 2024a; IHA, 2024). Hydroelectric power plants
with reservoirs provide exceptional operational flexibility, enabling
immediate responses to fluctuations in the electricity demand. Their
inherent flexibility and storage capacity enhance efficiency and cost-
effectiveness in supporting intermittent energy sources. Notably, many

∗ Corresponding author at: Embedded AI Research Lab, Tallinn University of Technology, Akadeemia tee 15A, Tallinn, 12618, Harjumaa, Estonia.
E-mail address: jurgen.soom@taltech.ee (J. Soom).

1 Jeffrey Tuhtan and Gert Toming’s contributions were funded by the Estonian Research Council Grant PRG 2198.

hydropower facilities can rapidly transition from zero output to max-
imum generation within minutes, offering vital backup power during
significant electricity outages or disruptions (U.S. Geological Survey,
2025; U.S. Department of Energy, 2025).

Despite its numerous advantages, it is also essential to acknowledge
the inherent limitations of hydropower. Hydropeaking results from
rapid and frequent flow fluctuations caused by intermittent water
releases through turbines to meet peak energy demand. These fluctu-
ations alter flow patterns, affect the water temperature, impact sedi-
ment transport, and change the dissolved gas levels within ecosystems
downstream of hydropower operations. These alterations affect various
aspects of aquatic ecosystems, including fish growth, behavior, repro-
ductive success, habitat, and migration patterns, among others (Bipa
et al., 2024; He et al., 2024). Considering fish communities, these
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fluctuations have been reported to cause both lateral and longitudinal
displacements, leading to habitat shifts; reducing the survival rates
due to stranding; and are known to disrupt key life-cycle events such
as growth, reproductive migration and spawning. Furthermore, hy-
dropeaking can also lead to habitat fragmentation, erosion, and loss
of riparian vegetation, impacting terrestrial ecosystems that depend
on the aquatic environment (Bejarano et al., 2018). However, there
is limited understanding of the long-term ecological consequences of
hydropeaking and its cumulative effects on aquatic ecosystems (Bipa
et al., 2024; Schmutz and Sendzimir, 2018).

Fish size is an important parameter used to assess and analyze the
impacts of hydropeaking. Size estimation can give an in-depth overview
of population structure, including growth rates, age distribution, the
juvenile-to-adult ratio, and overall weight (Pope et al., 2010; Froese
et al., 2014). These metrics can provide significant insights into the
ecosystem, offering a comprehensive understanding of its dynamics and
overall well-being.

1.1. Previous work

Electrofishing requires direct fish handling and provides biomet-
ric data needed to estimate community composition and distribution.
Moreover, the handling is known to cause stress and potentially injury
to fish, which can have long-term effects on their health and well-
being (Snyder, 2003). Additionally, fish size estimation using manual
handling methods can be prone to inconsistencies and bias due to hu-
man error and expertise dependency (Bravata et al., 2020). To address
these issues, fish size estimation using images and video can provide
more consistent and reliable data (Bravata et al., 2020). Another key
consideration is that smaller fish, particularly juveniles, are more dif-
ficult to catch and sample in the wild, and are more susceptible to the
adverse impacts of hydropeaking. The rapid changes in water depth
and velocity subject juvenile fish to an elevated risk of downstream
displacement and stranding (Naudascher et al., 2024; Boavida et al.,
2023), since they are less capable to cope with rapid changes in
hydrodynamic conditions (Enders et al., 2017).

Performing automated size estimation in situ, and in real-time re-
mains highly challenging for several reasons. A common cause of poor
size estimation accuracy is the motion and orientation of a swimming
fish’s body. The presence of foreign objects or other fish can cause
partial occlusion, making it difficult to obtain accurate size estimates.
Environmental factors, such as low luminosity with low-contrast re-
gions, air bubbles, turbidity, periphytic biofilm, and light overexposure,
further exacerbate the issue (Soom et al., 2022). Consequently, the
size estimation process becomes more challenging in the presence of
ever-changing environmental conditions, leading to larger uncertainty.

Unfortunately, due to the difficulty of conducting research on fish
in the wild, size estimation techniques are most commonly carried out
in highly controlled environments, allowing for more precise measure-
ments and systematic observations. However, the results of laboratory-
based methods are unlikely to be matched in more complex natural
habitats, where factors such as water quality, behavior, and species
interactions can also significantly influence size assessments (Yu et al.,
2024; Shi et al., 2022; Wang et al., 2024b; Gao et al., 2024; Muñoz-
Benavent et al., 2018). Joint research conducted by the Institut Mediter-
rani d’Estudis Avançats (IMEDEA) and the Universitat de les Illes
Balears in Spain focused on estimating body size based on head di-
mensions, addressing some of the challenges previously highlighted.
Their proposed methodology yielded promising results, with a maxi-
mum deviation of only 4.0 cm between the estimated and measured
mean body lengths. Notably, these experiments were performed on ex
vivo specimens under controlled conditions (Álvarez-Ellacuría et al.,
2019). A similar outcome was reported by research teams from the
University of Girona in Spain and the Institute of Marine Research in
Norway, who estimated specimen lengths using stereo cues. While their
observations demonstrated a high degree of accuracy, the experiments

were conducted in highly controlled environments, eliminating external
factors and resulting in static conditions (Garcia et al., 2019). Although
statistical methods can approximate and compensate results in con-
trolled environments, their predictive accuracy diminishes significantly
in uncontrolled settings, where external factors exert greater influence.
This limitation reduces their reliability and applicability under adverse
conditions (Álvarez-Ellacuría et al., 2019; Garcia et al., 2019; Tseng
et al., 2020; Monkman et al., 2019).

The findings of these previous studies highlight the need for a non-
invasive, in-situ camera-based monitoring system capable of estimating
fish sizes. Such a method would enable a more comprehensive analysis
of size-class specific responses to hydropeaking, and provide new and
additional insights into habitat preferences and potential vulnerabilities
which are lacking (Karlsson, 2024; Kevin M. Boswell and Jr., 2008).

1.1.1. Overview of fish datasets for computer vision applications
An examination of the available fish datasets for computer vision

applications, as summarized in Table  1, highlights a critical research
gap; namely, the limited availability of datasets which can be used to
develop, test and validate fish size estimation methods. This limitation
needs to be addressed by introducing open datasets. To this end, we
propose PTFish, a dataset comprising multi-modal frames tailored for
size estimation. The specifics of the dataset are further discussed in
Section 2.2.
DeepFish — Collection of in situ samples from 20 different tropical ma-
rine habitats (Australia). Featuring approximately 40k high-resolution
(1920 × 1080) images of tropical marine fish, out of which 3.2k frames
have been annotated for object detection purposes (Saleh et al., 2020).
AFFiNe — Featuring 7k samples, covering 30 common freshwater fish
species, collected ex vivo (Netherlands). The data contains photos taken
by anglers of fish out of water and are organized by fish species,
bounding box information and fish size measurements (Jorrit Venema,
2021).

Fish4Knowledge — The dataset was collected in situ (Taiwan). It has
the most extensive collection of reef species detected and identified
automatically, with some detections manually reviewed. Fisher et al.
(2016)

QUT — Dataset containing 3960 images collected in Australia, contain-
ing 468 marine species, taken in different conditions (in situ, ex vivo,
in vitro) (Anantharajah et al., 2014)
Brakish — collected in situ in brackish water (Denmark). The images
were collected using artificial illumination, and include some non-fish
objects. It is the largest dataset for brackish European fish species,
containing around 14.5k annotated images for object detection and
classification. The annotated images cover six classes fish species, as
well as marine fauna including starfish or crabs. Pedersen et al. (2019).
RockFish — Collection of thirteen species of rockfish (Sebastes spp.).
The dataset was collected in southern California, USA, using a remotely
operated vehicle. In total, the dataset contains 4307 samples (Cutter
et al., 2015).

1.2. Objectives

The primary objective of this work was to design and develop a
computer vision processing pipeline for riverine fish monitoring. The
pipeline integrates fish detection with depth and size estimation to
facilitate the monitoring and analysis of hydropeaking impacts in fresh-
water rivers. A significant contribution of this work was also a novel
open-access dataset aimed at addressing the lack of suitable datasets
for fish size estimation. Additionally, the work focuses on deploying
and evaluating the complete processing pipeline on cost-effective and
low-power embedded hardware. The main contributions of this work
are three-fold:
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Table 1
Comparison of open access fish datasets for computer vision tasks. In situ: on site, in vitro: in lab, ex vivo: on dead specimens. ObD: 
object detection, FiC: classification (fish/ no fish), SpC: species classification, SzE: size estimation, Seg: segmentation. The number of 
frames corresponds to the number of available images before augmentation.
Dataset Environment Task Number of frames Species Resolution Mono/Stereo

DeepFish in situ/marine ObD
Seg 39766 20 1920 × 1080 Mono

Rockfish in situ/marine ObD 4307 13 1280 × 720 Mono

Fish4Knowledge in situ/marine ObD 27370 23 352 × 240 Mono

QUT in vitro
ex vivo/marine

SpC 3960 468 480 × 360 Mono

Brakish in situ/marine ObD
SzE 14518 6 1920 × 1080 Mono

AFFiNe ex vivo/freshwater
ObD
SpC
SzE

7000 30 710 × 852 Mono

PTF (Our work) in situ/freshwater ObD
SzE 18523 3 2560 × 960 Stereo

Table 2
Summary of the Jetson Orin Nano hardware specifications.
 Component/Feature Nvidia Jetson Orin Nano (Nvidia, 2024)  
 CPU Hexa-core ARM A78AE @ 1.5 GHz  
 GPU 1024-core Ampere with 32 dedicated Tensor Cores 
 Memory 8 GB LPDDR5  
 Storage MicroSD/NVMe PCIe 3.0 x4  
 Camera 2x MIPI CSI-2 connectors  
 Network Wi-Fi (802.11ac), GbE  

• Design a computationally lightweight size estimation pipeline, 
running on low-power, commercially available embedded hard-
ware.

• Test the pipeline’s ability to detect fish and classify them as either 
adult or juvenile, and in doing so, provide a preliminary analysis 
of hydropeaking at a high temporal resolution in two Portuguese 
rivers.

• Provide an open dataset dedicated to and supporting the devel-
opment of fish detection and size estimation applications.

The rest of the article is structured as follows: Section 2.1 provides a 
comprehensive overview of the used hardware. Next, the open dataset 
and methods for object detection, depth, size estimation, and the evalu-
ation methods are provided in Section 2. The findings are subsequently 
detailed in Section 3. Section 4 provides the primary outcomes and 
limitations of this work. Finally, Section 5 explores potential directions 
for future research.

2. Materials and methods

2.1. Hardware

2.1.1. Embedded hardware
The chosen embedded hardware was the Nvidia Jetson Orin Nano. 

The board features a Hexa-core on Cortex-A78AE architecture running 
at 1.5 GHz with 8 GB of dedicated system memory. Additionally, the 
selected hardware includes a 1024-core GPU based on NVIDIA Ampere 
architecture with 32 dedicated Tensor Cores. Table  2 summarizes the 
hardware specifications.

2.1.2. Camera sensor
The binocular camera system incorporates two identical camera 

sensors: infrared (IR) and RGB. Both sensors share common character-
istics, featuring a resolution of up to 3072 × 2048 pixels. The lens has 
an aperture of f/1.8 and a focal length of 4.1 mm. In addition, both 
sensors have 90◦ angle of view horizontally and 67◦ vertically. Table  3 
summarizes the camera sensor specifications.

Table 3
Overview of the camera sensor specifications used in this work.
 Feature Mobotix Mx-O-SMA-S-6N016 (Mobotix, 2023) 
 Resolution 1280 × 960  
 Aperture (F) f/1.8  
 Focal length (mm) 4.1  
 Angle of view (Horizontal) 92◦  
 Angle of view (Vertical) 67◦  

Table 4
Technical specifications for different system configurations, including power consump-
tion, recommended installed solar panel power, and necessary battery capacity.
 Feature Standalone Equipped with 

NAS
Equipped with 
Jetson Orin 
Nano

 

 Power consumption (W) 14 25 30  
 Installed power (W) 400–500 >800 >800  
 Necessary battery 
capacity (Ah)

240 480 600  

2.1.3. Power
The system implemented in the Portugal installation is designed to 

operate with a consistent power source; however, it is also tailored for 
deployment in regions where infrastructure may be limited or insuffi-
cient. This system is capable of functioning independently using either 
battery power or solar panel energy. An overview of the operational 
requirements for the device when powered by battery or solar energy 
is presented in Table  4.

The standalone camera system has a power consumption of 14 W, 
which necessitates the use of solar panels rated at 400–500 W and 
a 240 Ah battery. When integrated with a Network Attached Storage 
(NAS), the power consumption increases to 25 W. This configuration 
requires the installation of more than 800 W of solar panels as well as 
a 480 Ah battery. When equipped with the Jetson module, the power 
consumption increases further to 30 W. This configuration can use 
the same 800 W solar panels, however the battery capacity must be 
increased to 600 Ah to maintain continuous operation.

2.2. Dataset

The data used in the PTFish dataset was obtained as part of the 
research project EcoPeak4Fish (Boavida et al., 2022). The main goal 
was of the project was to contribute to sustainable fish populations 
downstream of hydropower plants by using an integrated approach. 
Accordingly, this approach included studying fish microhabitat use at 
hydropeaking-affected and undisturbed sites, and the selection, and 
implementation of the most effective flow-refuge designs downstream 
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Fig. 1. The dataset creation workflow is comprised of two separate phases. (a) The videos are converted from propriety .mxg format to .mp4 during the initial curation phase. 
Any corrupted or broken frames are then eliminated. Subsequently, the frames are selected at specific intervals to avoid having similar samples. (b) In the annotation phase, the 
selected frames undergo the annotation process. The annotations are then transformed and exported into suitable formats, such as YOLO. Finally, verification and visualization are 
carried out to validate the annotations.

Table 5
Summary of annotation statistics for the PTFish dataset, detailing key annotation 
metrics for the Bragado and Covas Do Barroso sites, including total annotated frames, 
frame counts segmented by time of day (morning, afternoon, evening, and night), total 
number of fish bounding boxes, and average fish instances per frame. It also includes 
statistics on bounding box sizes, reporting the minimum, maximum, mean, and standard 
deviation in pixel dimensions. The Bragado site contains a significantly larger volume 
of annotated data, both in terms of frames and bounding boxes, and exhibits greater 
variability in object size. In contrast, the Covas Do Barroso site has a more limited 
data volume with larger average bounding boxes and fewer fish per frame.
 Metric Bragado Covas Do Barroso 
 Annotated frames 18,292 231  
 Frame count (Morning, 06:00–12:00) 3076 24  
 Frame count (Afternoon, 12:00–18:00) 11 594 78  
 Frame count (Evening, 18:00–21:00) 2878 38  
 Frame count (Night, 21:00–06:00) 744 91  
 Total bounding boxes (fish samples) 126,299 580  
 Average fish per frame 6.90 2.51  
 Min bbox size (pixels) 16 × 16 5 × 1  
 Max bbox size (pixels) 679 × 659 734 × 599  
 Mean bbox size (pixels) 127 × 81 176 × 129  
 Std. dev. bbox size 81 × 49 110 × 74  

of hydropower plants (Leite et al., 2024). The fish refuge usage was 
monitored using the binocular camera system. The recordings were col-
lected during spring and late summer periods from two separate sites: 
Bragado (Fig.  2(a)), located in Avelames River, and Covas Do Barroso 
in Couto River (Fig.  2(b)), both tributaries of the Tamega River (Douro 
River basin), Portugal. The recordings feature three species: the North-
ern Iberian chub (Squalius carolitertii), the Northern straight-mouth 
nase (Pseudochondrostoma duriense), and the brown trout (Salmo trutta). 
An overview of the curation and annotation workflow is provided in
Fig.  1.

The curated dataset contains 18,523 manually annotated frames 
from infrared and color cameras. From 18,523 frames, 18,292 originate 
from Bragado and only 231 were taken from Covas Do Barroso. The 
annotations were conducted by a team of two experienced annotators, 
both possessing prior expertise in the field. Notably, one of the an-
notators has substantial expertise in projects pertaining to freshwater 
ecosystems, fish migration, and the ecological flow regimes related to 
hydroelectric plants. The annotations were primarily performed using 
the MATLAB VideoLabeler, a specialized tool designed for both manual 
and semi-automated annotation processes. Additionally, custom Python 
scripts were utilized during the initial curation and review phases to 
facilitate data filtering, ensure annotation validation, and maintain 
consistency throughout the dataset. An overview of the conditions and 
a link to the dataset is provided in Section 8. Table  5 summarizes the 
annotation statistics for the PTFish dataset, including frame counts, 
fish detection metrics, bounding box size distributions, and temporal 
sampling across both recording sites.

2.3. Fish detection model architecture

The object detection model architecture choice depends on three 
critical criteria: performance, computational efficiency, and the target 
hardware (Lazarevich et al., 2023). As described in Section 2.1.1, the 
model will be deployed and evaluated on the Nvidia Orin Nano, which 

must be capable of running the proposed approach, which includes 
object detection, depth, and size estimation at least 5 frames per second 
(fps) minimum, at 2560 × 960 resolution. The object detection model 
must achieve an F1 score of at least 0.80 with the hold-out validation 
dataset. The specified requirements considerably narrowed the pool 
of potential candidates. Based on the outcomes of the preliminary 
analysis, two potential candidates were selected for further evaluation:
YOLOv8 — The YOLO (You Only Look Once) is the state-of-the-art 
(SOTA) model designed to be computationally lightweight, making it 
suitable for deploying on low-power hardware. YOLOv8 is a direct 
successor to YOLOv5 (Jocher et al., 2022), and includes significant 
changes to the core architecture. A new anchor-free detection system 
directly predicts the center of an object instead of the offset from a 
known anchor box. It reduces the number of box predictions and im-
proves Non-Maximum Suppression (NMS), a complex post-processing 
step that sifts through candidate detections after inference. Another 
significant change has been implemented to the training routine. Mo-
saic augmentation involves stitching together four images, forcing the 
model to learn objects in new locations, in partial occlusion, and against 
different surrounding pixels. However, this augmentation is empirically 
shown to degrade performance if performed through the whole training 
routine, and mosaic augmentation was disabled during the last ten 
epochs. For the preliminary analysis, YOLOv8n and YOLOv8s models 
were selected for further evaluation (Jocher et al., 2023).
YOLOv10 — Compared to YOLOv8, the most significant change to the 
architecture is the elimination of NMS. Instead, the architecture utilizes 
consistent dual assignments, reducing the inference latency. Additional 
improvements are achieved in both the model’s accuracy and efficiency 
by using a holistic model design, featuring lightweight classification 
heads, spatial-channel decoupled downsampling and rank-guided block 
design. Lastly, the architecture incorporates large-kernel convolutions 
and partial self-attention modules, further improving the performance 
at minimal or no computational cost (Wang et al., 2024a). Two models 
were selected to evaluate the performance and efficiency: YOLOv10-N, 
the smallest of the models designed for resource-constrained hardware, 
and YOLOv10-S, which balances speed and accuracy.
RT-DETR — This YOLO series is widely recognized as the preferred 
option for applications requiring real-time object detection. The pri-
mary limitation of YOLO lies in its use of Non-Maximum Suppression 
(NMS), which can decrease the speed and the accuracy. In contrast, 
end-to-end transformer-based detectors, such as DETR, present a viable 
alternative by eliminating the NMS. Unfortunately, their high compu-
tational demands restrict their applicability across multiple domains. 
The RT-DETR model seeks to address this challenge by utilizing an 
efficient hybrid encoder that processes multi-scale features with greater 
speed through the decoupling of intra-scale interactions and cross-scale 
fusion. It employs uncertainty-minimal query selection to generate 
high-quality initial queries for the decoder, thereby enhancing accu-
racy. For preliminary testing, we selected the RT-DETR-l model (Zhao 
et al., 2024).
DEYO — DEYO (DETR with YOLO) represents advancements in the 
realm of object detection by integrating the strengths of DEtection 
TRansformers (DETR) and You Only Look Once (YOLO) architectures. 
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Fig. 2. Examples of recording locations situated in tributaries of the Tamega River (Douro River basin), Portugal: (a) Bragado, located in Avelames River. (b) Covas Do Barroso
located in Couto River.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The hybrid model is designed to improve both the speed and the
accuracy by employing a systematic two-stage training methodology. In
the first stage, the model utilizes a classic detector with a one-to-many
matching strategy to pre-train the backbone and neck of the model,
subsequently freezing these pre-trained components in the second stage
to train the decoder from scratch. By synthesizing YOLO’s efficient
feature extraction techniques with DETR’s comprehensive end-to-end
detection capabilities, DEYO achieves remarkable improvements in
both speed and accuracy when compared to existing real-time object
detectors, notably excelling without the need for additional training
data. To evaluate the DEYO capabilities in this work, we chose the
DEYO-N model (Ouyang, 2024).

A small, manually annotated dataset consisting of 800 images was
initially used to train the candidate models. The results were then
evaluated using a hold-out dataset of 200 images while deployed on
the target hardware to find the best-performing candidate model. Table

6 describes the selected architecture parameters and characteristics as
well as the initial evaluation outcomes.

2.3.1. Training and validation
The object detection model used in the approach was trained using

a three-step process. As illustrated in Fig.  3, five models using k-fold
cross-validation (scikit-learn developers, 2024) were trained, tested,
and validated. The dataset was split into separate datasets for training
and validation using a ratio of 80:20. As a result, the training dataset
used for training and testing comprises 14,818 frames, leaving 3705
images for validation. Using random sub-sampling, the training dataset
was further split into five datasets (see Fig.  3 (2)). All five models were
then trained with 20 epochs. In the final stage (see Fig.  3 (3)), the best-
performing model was found by evaluating the trained models using
the hold-out dataset. The results of the validation phase are further
discussed in Section 3.1.
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Table 6
Comparison and summary of the six selected object detection models. All models were trained using 20 epochs and later
evaluated on the Nvidia Jetson Orin Developer Kit. Based on the initial outcomes, YOLOv8s was the best-performing option,
with YOLOv10s close behind. Both models showed nearly identical performance; however, YOLOv8s was chosen due its 0.9ms
quicker inference time. RT-DETR showed comparable performance against other YOLO models, but had the highest inference
time of 40.3 ms. An outlier was DEYO-N, which performed significantly worse compared all other models.
Metric YOLOv8n YOLOv8s YOLOv10n YOLOv10s RT-DETR DEYO-N
Parameter count (M) 3.2 11.2 2.3 7.2 32 6.0
FLOPs (G) 8.7 28.6 6.7 21.6 110 8.9
Size (pixels) 640 640 640 640 640 640
Inference time (ms) 0.9 2.0 1.3 2.9 40.3 4.5
Precision 0.85 0.82 0.82 0.82 0.79 0.67
Recall 0.77 0.83 0.77 0.80 0.80 0.59
F1 Score 0.81 0.82 0.79 0.81 0.79 0.63
mAP@.5 0.84 0.85 0.82 0.84 0.84 0.61
mAP@.5...0.95 0.47 0.48 0.45 0.48 0.46 0.28

Fig. 3. (1) Illustration of the hold-out procedure for training, testing, and validating the fish detection model. (2) Usage of repeated sub-sampling was applied for testing and
training and was used to train five models with best performing architecture, found in Section 2.3. (3) The best-performing model is found using the hold-out validation dataset
of 3705 samples.
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Fig. 4. Binocular vision system setup consisting of IR and RGB camera. First, the
proposed solution detects and locates fish from a single frame, using both the IR and
RGB cameras.

Fig. 5. After detecting fish on both images, the algorithm determines the quality of
the bounding box pairs by analyzing their geometric and spatial properties.

2.4. Size estimation

To perform non-invasive fish size estimation in situ, we propose a
solution combining both machine learning and classical stereo vision
methods in order to remain computationally lightweight, enabling it to
be deployed on low-power embedded hardware (see Section 2.1.1). As
described in Fig.  4, at first detect fish from the multi-modal frame using
an object detection model, described in Section 2.3.1.

Next, as illustrated in Fig.  5, we try to match pairs of detected
objects between the IR and RGB frames. The process evaluates the
bounding boxes properties: dimensions, width-to-height ratio, and the
overall spatial positioning via the epipolar line. Before the pipeline
can estimate the object size, it must determine the depth between the
object and the camera. Disparity, which refers to the horizontal shift of
pixels between images, arises from the parallax effect. The differences
between corresponding pixels in two or more images capturing the
same scene from distinct viewpoints. As depth is inversely proportional
to disparity, and by knowing the baseline and the focal length, it is
possible to calculate the depth using the following equation (Hamzah
and Ibrahim, 2016):

Distance (z) = Focal length × Baseline
Disparity (1)

This method is commonly referred to as triangulation. As shown in
Fig.  6, the process looks at the center pixel and the surrounding ones
to calculate the depth. To avoid inaccuracies and extreme values, the
median value is then calculated. Once the depth is determined, the
process estimates the three-dimensional coordinates by transforming
the depth data into 3D space, as illustrated in Fig.  7. The methodol-
ogy then utilizes the coordinates of the two bounding box corners to
compute the Euclidean distances corresponding to each bounding box.
These distances are subsequently averaged to estimate the size of the
fish:

Euclidean distance (d) =
√

(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (2)

Fig. 6. The disparity is first computed and subsequently utilized to estimate depth,
leveraging the focal length and baseline as scene parameters. Following the depth
estimation for each point, the median value (e.g. 32 in this example) is selected from
a neighborhood of depth estimates at each pixel is extracted to mitigate the influence
of outliers and ensure robust depth measurement.

Fig. 7. The fish size is determined by calculating the Euclidean distance utilizing the
coordinates of the bottom left and top right corners (x and y) for both bounding boxes,
which are then averaged to estimate the fish’s size (total body length).

and the mean value of the IR and RGB distance is calculated. Finally,
a size threshold is applied to classify if the fish is juvenile or an adult.
All fish under 10 cm are considered juvenile.

To validate the proposed depth and size estimation approach in
the field, experiments were conducted using three distinct scenes, each
featuring two ArUco markers of different sizes: a 10 × 10 cm marker
(large) and a 5 × 5 cm marker (small). The arrangement and distances
of the markers relative to the camera were varied across the scenes, as
detailed in Table  7. In Scene 1, both ArUco markers were positioned
parallel to each other at a uniform distance of 32.1 cm from the
camera. In Scene 2, the smaller marker was placed closer to the camera
at 25.2 cm, while the larger marker was positioned further away at
40.3 cm. In Scene 3, the larger marker was placed closer to the camera
at 30.0 cm, and the smaller marker was situated farther away at
46.2 cm. All three scenes are also depicted in Fig.  8. The outcome of
depth and size evaluation is discussed further in Section 3.2.

2.5. Hydropeaking

The analysis of hydropeaking effects was conducted in Covas do
Barroso and Bragado to assess and validate the effectiveness of the
designed pipeline. The footage used in the analysis was recorded over
the period from April 26 to May 3 in 2023. Three one-hour periods
were selected from each day, at specific times of the day: morning
(08:00 to 09:00), afternoon (13:00 to 14:00), and evening (18:00 to
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Fig. 8. Comparison of three distinct scenes featuring ArUco markers of different sizes (10 × 10 cm and 5 × 5 cm) positioned at varying distances from the camera.

Table 7
Overview of evaluation scenes and ArUco marker distances from the camera (cm).
 Scene Marker Distance (cm) 
 Scene 1 10 × 10 cm 31.2  
 5 × 5 cm 31.2  
 Scene 2 10 × 10 cm 25.2  
 5 × 5 cm 40.3  
 Scene 3 10 × 10 cm 30.0  
 5 × 5 cm 46.2  

19:00). To reduce the processing of videos with no fish in them, all 
videos were captured with the motion detection feature turned on. Figs. 
9 and 10 depict amount of footage that was extracted during each day, 
classified into morning (08:00–09:00), afternoon (12:00–13:00) and 

evening (18:00–19:00) periods. In Bragado, the majority of the footage 
is derived from the afternoon and evening periods, with the least 
amount of footage was extracted during the morning hours. A similar 
outcome was observed at Covas do Barroso, where afternoons yielded 
the most footage and mornings the least. Overall Bragado encompasses 
substantially more footage than Covas do Barroso by a considerable 
margin.

The evaluation of the fish population involved analyzing the size 
of each individual fish in every frame of the video. Fish sizes were 
first estimated and subsequently processed using a thresholding filter to 
classify them as either adult or juvenile. Fish measuring less than 10 cm 
in length were categorized as juveniles. Following this classification, 
the number of juvenile and adult fish was counted and averaged per 
second of the video. The outcomes of the hydropeaking analysis are 
presented and discussed in Section 3.4.
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Fig. 9. Daily duration of Morning, Afternoon, and Evening sessions at Bragado site, illustrating the fluctuation of activity times across each day from April 26 to May 3. Afternoon
sessions generally show higher durations compared to Morning and Evening sessions.

Fig. 10. Comparison of time spent in Morning, Afternoon, and Evening sessions at Covas do Barroso site over eight days from April 26 to May 3. Afternoon sessions tend to be
longer, while both Morning and Evening times show variability, particularly with a notable increase in Evening activity on May 2 and May 3.

2.6. Evaluation metrics

2.6.1. Object detection
The Intersection over Union (IoU), or Jaccard index quantifies the

percent overlap between the target mask and the prediction output. The
IoU in this work represents the number of overlapping pixels between
the target and prediction masks divided by the total number of pixels
across both masks and is computed as:

IoU = 𝑡𝑎𝑟𝑔𝑒𝑡 ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
𝑡𝑎𝑟𝑔𝑒𝑡 ∪ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

(3)

The intersection (𝑡𝑎𝑟𝑔𝑒𝑡∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) consists of all pixels in the predic-
tion and ground truth masks. In contrast, the union (𝑡𝑎𝑟𝑔𝑒𝑡∪𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) 
includes all pixels in the prediction or target mask. The global mean
IoU score is calculated for each class individually. The result is then
averaged over all classes. Standard methods to evaluate object detec-
tion model accuracy also include the precision and recall, which are

calculated based on the comparison of the following three possible
outcomes:

• True positive (TP) — Correct detection, where the predicted
bounding box matches with the ground truth

• False positive (FP) — Incorrect detection, where the predicted
bounding box does not match with the ground truth

• False negative (FN) — The bounding box was not detected

The precision describes the relationship between the number of TP
against the sum of the TP and the FP. It is used to describe the ability
of a model to identify only the relevant objects. The precision was
calculated as:
Precision = TP

TP + FP (4)

Recall describes the relation between the number of TP and the sum
of TP and FN, which is the model’s ability to find all the ground
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Table 8
Performance summary after validation for each of the five trained models.
Metric Model 1 Model 2 Model 3 Model 4 Model 5
Precision 0.83 0.86 0.85 0.86 0.84
Recall 0.82 0.84 0.79 0.81 0.84
F1 Score 0.82 0.85 0.82 0.83 0.84
mAP@.5 0.85 0.88 0.83 0.85 0.87
mAP@.5...0.95 0.48 0.50 0.47 0.48 0.49

truth bounding boxes. It is the ratio of true positives from all ground 
truth bounding boxes. The following equation was used to compute the 
recall: 

Recall = TP
TP + FN (5)

The F1 score is a measure of a classification model’s accuracy, calcu-
lated as the harmonic mean of precision and recall: 

F1 Score = 2 ∗ Precision ∗ Recall
Precision + Recall (6)

Precision and recall are useful parameters for assessing class imbal-
anced datasets, which are especially common when evaluating field 
applications in computer vision. The precision provides a measure of 
result relevancy, whereas the recall reports how many relevant results 
are returned. This can be visualized using a precision–recall curve 
which shows the trade-off between the two over a range of threshold 
values. A high area under the curve represents both high recall and high 
precision, where high precision relates to a low false positive rate, and 
high recall relates to a low false negative rate. High scores for both 
show that the classifier returns accurate results (high precision) for 
the majority of all positive results (high recall). The average precision 
(AP) further summarizes the precision–recall curve into a single value 
calculated as: 

AP =
∑
𝑛
(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛 (7)

where 𝑅𝑛 and 𝑃𝑛 are the precision and recall at the 𝑛th threshold. 
The AP is calculated for each class individually across all of the IoU 
thresholds. The mean average precision (mAP) is a parameter used 
to summarize the performance across all vehicle classes using the 
following equation: 

mAP = 1
𝐍

𝑁∑
𝑖=1

𝐴𝑃𝑖 (8)

where N is the number of all classes and APi is the average precision of 
a given class, i. The mAP metric is usually reported as mAP@0.5:0.95, 
which corresponds to an IoU threshold ranging from 0.5 to 0.95 with 
0.05 as the increment size.

3. Results

3.1. Fish detection

The evaluation of the object detection model for fish detection 
was performed using a hold-out validation dataset composed of 3705 
frames. As described in Fig.  3(b), the curated dataset was split using a 
ratio of 80:20. The first portion of the split dataset was used to train 
and test the model, using a randomizer to generate a new training and 
testing data for each run. The remaining portion of the dataset was set 
aside to validate the performance and to determine the best-performing 
model (see Fig.  3(c)). Table  8 summarizes the performance metrics of 
five trained models based on validation results. Among these, Model 2 
demonstrated the highest performance, achieving an F1 score of 0.85 
and an mAP@0.5 of 0.88.

3.2. Depth and size estimation

As shown in Tables  9 and 10, the results demonstrate accurate depth 
estimation across all scenes. The findings indicate that the estimation 
error is generally low. Notably, the 5 × 5 cm marker achieves a lower 
relative error in certain scenarios (e.g., Scene 1 and Scene 3), whereas 
the 10 × 10 cm marker exhibits higher relative accuracy in other 
cases (e.g., Scene 2). Overall, the 10 × 10 cm marker achieves a mean 
absolute error of 0.83 cm with a relative error of 2.74%. In comparison, 
the 5 × 5 cm marker offers slightly better performance, achieving a 
mean absolute error of 0.63 cm and a relative error of 1.54%.

Table  11 provides a comprehensive comparison of the estimated 
width and height of large and small ArUco markers across three distinct 
scenes, highlighting the corresponding absolute and relative errors. In 
Scene 1, the 10 × 10 cm marker demonstrates a notable absolute error 
in width estimation (0.97 cm, 9.70% relative error) while achieving 
higher accuracy in height estimation (0.08 cm, 0.80%). In contrast, the 
5 × 5 cm marker exhibits lower errors for width (0.10 cm, 2.00%) and 
slightly elevated errors for height (0.29 cm, 5.80%). Across all scenes, 
the 5 × 5 cm markers consistently achieve superior performance with 
reduced relative errors compared to the 10 × 10 cm markers. Notably, 
in Scene 3, the 5 × 5 cm marker achieves the lowest relative errors for 
width and height, at 3.00% and 2.20%, respectively.

The 10 × 10 cm marker exhibits greater inaccuracies in width 
estimation, with a mean absolute error of 0.78 cm and a relative 
error of 7.10%, compared to height estimation, which achieves a mean 
absolute error of 0.31 cm and a relative error of 2.40%. In contrast, the 
5 × 5 cm marker demonstrates superior precision in width estimation, 
with a mean absolute error of 0.12 cm and a relative error of 2.33%, 
while height estimation records a slightly higher mean absolute error 
of 0.27 cm and a relative error of 5.47%.

3.3. Hardware evaluation

As outlined in Section 2.1.1, we implemented and assessed the 
automated non-invasive fish detection and size estimation approach 
on low-power embedded hardware. The results presented in Table  13 
demonstrate that the chosen hardware can process the information at 
a rate of 10 fps.

3.4. Hydropeaking analysis

The analysis of hydropeaking effects on fish populations yielded 
significant insights. Initially the absence of fish in Covas raised concerns 
about the impact of hydropeaking in that area. In contrast, analyzed 
footage from Bragado displayed a notable presence of fish as depicted 
in Fig.  11, indicating the utility of the refuge system into which the 
camera was installed. According to the initial study conducted from 
EcoPeak4Fish (Boavida et al., 2022), the authors expected the opposite 
result. Upon further examination of the Covas footage, it became appar-
ent that the fish were present, but were frequently not located within 
the refuge. This finding emphasizes the importance of considering fish 
behavior and environmental context when assessing the impacts of 
hydropeaking on aquatic life.
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Fig. 11. Hydropeaking analysis in Bragado on 30th of April. The figure illustrates the distribution of juvenile and adult fish activity during morning (08:00–09:00), afternoon
(12:00–13:00), and evening (18:00–19:00) period. Increased activity, particularly of juvenile fish, is predominantly observed during afternoon and evening.

Table 9
Comparison of real distances, estimated distances, and associated errors for two marker sizes (10 × 10 cm and 5 × 5 cm) across three different
scenes.
Scene Marker Real distance (cm) Estimated distance (cm) Absolute error (cm) Relative error (%)
Scene 1 10 × 10 cm 31.2 32.0 0.8 2.56

5 × 5 cm 31.2 31.3 0.1 0.32

Scene 2 10 × 10 cm 25.2 25.2 0.0 0.00
5 × 5 cm 40.3 39.0 1.3 3.22

Scene 3 10 × 10 cm 30.0 28.3 1.7 5.67
5 × 5 cm 46.2 45.7 0.5 1.08

Table 10
Summary of mean absolute and relative errors for ArUco markers.
Marker Mean absolute error (cm) Mean relative error (%)
10 × 10 cm 0.83 2.74
5 × 5 cm 0.63 1.54

4. Discussion

The primary contribution of this work is a real-time, non-invasive
fish detection and size estimation computer vision pipeline running
on low-power embedded hardware. The system was implemented and
evaluated to study the effects of hydropeaking at two sites: Bragado,
located in Avelames River, and Covas Do Barroso in Couto River, both
tributaries of the Tamega River (Douro River basin), Portugal. Previous
works (Silva et al., 2024; da Silva Vale et al., 2020; Shi et al., 2020;
Ubina et al., 2022; Li et al., 2024) have shown that performing size
estimation with a stereo camera configuration can produce accurate
results, but did not consider the complexities of real-time analysis in
a river undergoing rapid changes in flow conditions. A recent work
published by researchers at National Taiwan Ocean University (Ubina
et al., 2022) showed how stereo cameras can accurately estimate the
fish size, with the maximum error being only 5.52%. These results
are comparable with our findings. In an uncontrolled environment,
across three different scenes, our approach for size estimation had a
mean absolute error below 1 cm (see Table  12). It should be noted
that in most situations, having a sub cm accuracy is not necessary.
For freshwater species, the size class in 5 cm increments is typically
used (Tuhtan et al., 2022). In this work, we also illustrate that the
majority of published research regarding fish size estimation is carried
out in controlled environments, which can restrict the applicability of
the findings to more dynamic natural settings (Yu et al., 2024; Shi et al.,
2022; Wang et al., 2024b; Gao et al., 2024; Muñoz-Benavent et al.,
2018), where our proposed work focused solely on real-time, in-situ
applications.

The proposed pipeline was shown to be accurate as well as com-
putationally lightweight by combining machine learning methods with
data-driven methods, allowing it to be deployed on low-power embed-
ded hardware. While more sophisticated modeling approaches exist for
creating a disparity map, a significant downside is their computational
complexity, which stems from the need to carry out a pixel-by-pixel

comparison (Tosi et al., 2024; Ming et al., 2021). This makes them
nonviable for systems with limited computational capabilities. Our
proposed approach was able to process video at a frame rate of 10 fps,
which is substantially faster than a trained biologist (Boavida et al.,
2023). As detailed in Section 2.1.3, the system can be deployed in
environments with limited access to infrastructure (connectivity and
power supply), as the system can be powered via battery or solar power,
extending the deployments to remote locations.

The developed system was utilized to investigate the effects of
hydropeaking. As previously pointed out, fluctuations caused by hy-
dropeaking can significantly alter flow patterns, water temperature,
sediment transport, and dissolved gas levels within downstream ecosys-
tems (Bipa et al., 2024; He et al., 2024). In fish communities, it can
have a range of negative effects on fish populations. These include
displacement (Alexandre et al., 2016; Rocaspana et al., 2019; Auer
et al., 2023), restricted access to low-flow refuges (Moreira et al.,
2019), and increased energetic costs that in the longer term may
impair growth and reproductive fitness (Bipa et al., 2024; Kelly et al.,
2017). Thus reducing survival rates due to stranding and disrupt crit-
ical life-cycle events such as growth, reproductive migrations, and
spawning. Furthermore, hydropeaking contributes to habitat homog-
enization (Boavida et al., 2015; Jelovica et al., 2023), reducing the
availability of microhabitats. Indirectly, it can alter trophic dynam-
ics by reducing benthic invertebrate abundance (Bruno et al., 2016;
Sabo et al., 2018), thus affecting fish foraging behavior. In our study,
these hydropeaking-related dynamics likely contributed to lower de-
tection rates during high-flow periods, highlighting the importance
of interpreting monitoring outcomes in the context of altered flow
regimes.

The week-long analysis conducted in Covas Do Barrosso and Bra-
gado revealed that hydropeaking is likely to affect the utilization of
flow refuges by fish. During peak flow events, fish were less frequently
detected in these refuges, indicating that the resulting flow conditions
created habitat instability and hindered access to these essential ar-
eas. However, it should be noted that a week long review might be
insufficient to make definitive conclusions.

Juvenile fish appeared particularly vulnerable, as evidenced by
reduced detection rates, suggesting potential risks to their recruitment
and survival. In contrast, fish residing in the non-hydropeaking river
consistently utilized refuge areas, underscoring their potential signif-
icance as shelter during natural flow variations. This outcome study
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Table 11
Comparison of estimated width and height for ArUco markers with errors.
Scene Marker Width Height

Estimated (cm) Abs. Error (cm) Rel. Error (%) Estimated (cm) Abs. Error (cm) Rel. Error (%)
Scene 1 10 × 10 cm 9.03 0.97 9.70 9.92 0.08 0.80

5 × 5 cm 4.90 0.10 2.00 4.71 0.29 5.80
Scene 2 10 × 10 cm 9.71 0.29 2.90 9.91 0.09 0.90

5 × 5 cm 4.90 0.10 2.00 4.58 0.42 8.40
Scene 3 10 × 10 cm 8.93 1.07 10.70 9.25 0.75 7.50

5 × 5 cm 5.15 0.15 3.00 4.89 0.11 2.20

Table 12
Summary of mean absolute and relative errors for ArUco markers.
Marker Dimension Mean absolute error (cm) Mean relative error (%)
10 × 10 cm Width 0.78 7.10

Height 0.31 2.40
5 × 5 cm Width 0.12 2.33

Height 0.27 5.47

Table 13
Overview of performance and efficiency on selected low-power embedded hardware.
Metric Nvidia Jetson Orin Nano
Frames per second 10
Power consumption (W) 10.7
Performance per Watt 0.93

highlights the value of automated size assessment systems for fish
monitoring while providing new ecological insights into the impacts of
hydropeaking (Boavida et al., 2023). This is because without automated
methods, it is not feasible for human raters to process the videos at high
temporal resolution, which can be as fine-grained as fish counts per
minute. Nonetheless, it is also important to acknowledge that foreign
objects or the presence of other fish can obstruct the view, caus-
ing partial occlusion and complicating precise length measurements.
Environmental factors such as low luminosity, low-contrast regions,
air bubbles, turbidity, periphytic biofilm, and light overexposure may
further exacerbate these challenges.

Although further gains in precision are always preferable, the
achieved performance was sufficient to meet the ecological objectives
of the study. Specifically, the detection and size estimation results
allowed us to interpret patterns of fish use of flow refuges during
hydropeaking. In this context, the observed precision and low size
estimation error support ecological insights, such as whether smaller in-
dividuals are more vulnerable or more likely to occupy refuge habitats.
Nevertheless, we acknowledge that improving detection robustness
would enhance the system’s transferability to other river types and
fish species. However, the model comparison already points to fu-
ture developments to expand the scope and reliability of automated
fish monitoring under highly fluctuating flow regimes. The system
presented in this study also offers the advantage of unbiased sam-
pling, capturing natural fish behavior. While this may result in lower
performance, the observed detections could be closely linked to flow
variability associated with hydropeaking. To address this, deploying
multiple devices could help compensate for the low fish densities and
improve data robustness.

The second contribution of this work is the PTFish dataset, an
openly accessible multi-modal resource featuring both infrared (IR)
and RGB imagery. The primary motivation for developing the PTFish
dataset stems from the evident scarcity of multi-modal datasets specif-
ically designed for size estimation tasks. Existing open-access datasets
such as DeepFish (Saleh et al., 2020), Fish4Knowledge (Fisher et al.,
2016), and AffiNe (Jorrit Venema, 2021) (as summarized in Table  1)
exhibit notable limitations, particularly regarding their lack of infrared
and color imagery, a gap that PTFish aims to partially address. Fur-
thermore, many datasets focus solely on marine species, rendering them

unsuitable for freshwater environments. Some datasets include samples
collected in laboratory settings (in vitro) (Anantharajah et al., 2014),
while others comprise ex vivo samples from deceased species (Pedersen
et al., 2019; Jorrit Venema, 2021).

Despite its novelty and advantages over existing datasets, PTFish
does have certain drawbacks. The most prominent limitations include a
restricted number of species and an imbalance in the samples collected
from the Bragado and Covas Do Barroso regions as shown in Table
5. Nevertheless, the dataset holds significant value and it is planned
to increase it over time as additional sites are incorporated, thereby
increasing both the overall sample count and the diversity of the
represented species.

5. Conclusion

The results of this study demonstrate how an underwater stereo
camera system can be successfully applied as a non-invasive method
to fish detection and size estimation in complex hydrodynamic condi-
tions characteristic of hydropeaking rivers. These systems can provide
new insights into potential size-specific vulnerabilities and habitat
preferences in these highly variable river ecosystems.

Another important contribution of this study is the public availabil-
ity of the PTFish dataset, which contains 18,523 manually annotated
frames, supporting the development of fish detection, identification,
and size estimation methods.

Future research will focus on testing the binocular cameras in a
broader range of river sites, extending the openly available datasets to
foster research into methods for fish species identification, habitat use,
and even swimming patterns, improving monitoring efficiency.
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