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Abstract

This thesis presents a numerical study of the Boussinesqg-type equation in microstructured solids
using the finite volume method. The work begins with the classical Good Boussinesq equation,
highlighting the interaction between nonlinearity and dispersion responsible for the formation of
solitons. Analytical one- and two-soliton solutions are highlighted to provide benchmark
comparisons for numerical validation. The developed finite volume scheme, based on local
equilibrium and excess-quantity formulations, accurately captures soliton propagation, collision,
and recovery with small L? errors.

The Boussinesq equation is further extended by incorporating internal variables to represent
microstructural effects. This addition modifies the effective dispersion coefficient while maintaining
the nonlinear framework of the equation. Numerical experiments show that internal variables
change the soliton profile and influence phase behavior, indicating enhanced dispersive localization
due to microstructure.

The proposed method demonstrates robustness, accuracy, and physical consistency, making it a
reliable tool for analyzing nonlinear wave propagation in both classical and microstructured
continua.

Keywords: Boussinesg-type equation, finite volume method, soliton, microstructure, dispersion,
nonlinear waves.



Kokkuvote

Kdesolevas magistritdds on esitatud arvuline uurimus Boussinesg-tiilipi vorrandi kohta
mikrostruktureeritud tahkistes, kasutades I6plike ruumimahtude meetodit. T66 algab klassikalise
Good'’i Boussinesqi vorrandi kasitlemisega, réhutades mittelineaarsuse ja dispersiooni vastastikust
mdju, mis p&hjustab solitonide teket. Uhe- ja kahesolitonilised analiiiitilised lahendused on esile
tostetud, et kasutada neid vordluseks arvulise valideerimise eesmargil. Valja tootatud IGplike
ruumimahtude skeem, mis pdhineb lokaalse tasakaalu ja liigsete suuruste kontseptsioonil, kirjeldab
tapselt solitoni levikut, kokkupdrget ja taastumist viikeste L2-vigadega.

Boussinesqi vorrandit on laiendatud sisemiste muutujate lisamisega, et kirjeldada mikrostruktuuri
mdju materjalis. See taiendus muudab efektiivset dispersioonitegurit, sdilitades samas vorrandi
mittelineaarse struktuuri. Arvulised katsed naitavad, et sisemised muutujad muudavad solitoni
profiili ja m&jutavad faasikaitumist, viidates mikrostruktuurist tingitud dispersiooni lokaliseerumise
tugevnemisele.

Valja pakutud meetod on stabiilne, tapne ja flulsikaliselt jarjekindel, pakkudes usaldusvaarset
tooriista mittelineaarsete lainete leviku uurimiseks nii klassikalistes kui ka mikrostruktureeritud
keskkondades.

Vétmesodnad: Boussinesq-tiitipi vorrand, I6plike ruumimahtude meetod, soliton, mikrostruktuur,
dispersioon, mittelineaarsed lained.
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1 Boussinesq Equation

Wave propagation in elastic and microstructured solids is an essential topic in applied physics and
engineering, with applications ranging from non-destructive testing to advanced materials design.
The classical wave equation, while useful, is often insufficient to capture complex behaviours in such
materials, particularly when both nonlinear effects and dispersive effects are significant. The
Boussinesq-type equation, originally derived in the context of shallow water waves, has since been
extended and adapted for use in a broad range of physical systems, including nonlinear elastic
media, lattice structures, and microstructured solids (Whitham, 1974; Bona, Chen, & Saut, 2002;
Drazin & Johnson, 1989).

1.1 Historical and Physical Background

The Boussinesq equation was first introduced in the 1870s by Joseph Boussinesq to describe long
surface waves in shallow water. Since then, it has evolved into a family of nonlinear partial
differential equations used to model wave propagation in dispersive media. In its classical form, the
Boussinesq equation incorporates both a second-order time derivative (representing wave
propagation) and higher-order spatial derivatives (accounting for dispersion). When applied to
solids, especially those with internal structure or characteristic length scales, the Boussinesg-type
equation serves as a refined model that includes micro-inertial and dispersive effects (Whitham,
1974).

In modern continuum mechanics, Boussinesg-type equations are often derived from
homogenization or asymptotic methods applied to discrete lattice models or microstructured
continua. They are particularly effective in modeling solitary wave propagation, or solitons, which
are localized, nonlinear wave structures that maintain their shape during travel and interaction— a
feature not captured by purely linear models (Drazin & Johnson, 1989; Maugin, 1999).

1.2 General Form of the Boussinesq-Type Equation
The normalized Good Boussinesq equation, which ensures well-posedness and stability, is given by
(Christov et al., 1996):

Upr — Uy + BUP) x + Qyyerx = 0, (1.1
where:
e u(x,t) represents the wave displacement.
e ( is the dispersion coefficient, responsible for high-order spatial corrections.
e [ isthe nonlinearity coefficient, responsible for amplitude-dependent effects.

This form is often referred to as the Good Boussinesq equation due to the stabilizing positive
coefficient in the highest-order derivative term. In contrast, the Bad Boussinesq equation, which
differs only by the sign of the u,,,, term, is known to be ill-posed and prone to numerical
instabilities (Manoranjan et al., 1984).



1.3 Role of Dispersion and Nonlinearity
The interplay between nonlinearity and dispersion in the Boussinesqg equation is central to the
formation of stable wave structures such as solitons:

e The dispersive term au,,,, causes wave packets to spread, mimicking the effects of
internal structure or microinertia in a solid (Achenbach, 1973).
e The nonlinear term B(u?),, causes wave steepening, allowing localized pulses to form.

It is the balance between these two mechanisms—nonlinearity focusing the wave and dispersion
spreading it—that enables the existence of soliton solutions, which are stable, non-decaying
waveforms (Dutykh & Clamond, 2016).

1.4 Applications and Soliton Relevance

Boussinesqg-type models are used across physics and engineering to describe:

e Surface and internal waves in shallow water (Bona et al., 2002)

e Elastic wave propagation in nonlinear solids (Achenbach, 1973)

e Longitudinal waves in molecular chains and DNA strands (Bona et al., 2002)
e Optical pulse propagation in nonlinear media (Bona et al., 2002)

A particularly interesting class of solutions are solitons—localized waves that can interact
nonlinearly and still retain their shape and velocity (Drazin, 1989; Dutykh & Clamond, 2016).
Solitons are of great theoretical and practical importance: in physics, they model particle-like
phenomena; in engineering, they allow for robust waveguides and signal transmission systems
(LeVeque, 2002; Sjolander, 2021).

In this thesis, we focus on simulating one and two-soliton solutions of the Good Boussinesq
equation using a finite volume method in microstructured solids. The goal is to numerically capture
soliton propagation and interaction, validate the correctness of the scheme, and compare the
results against exact analytical solutions.
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2 Analytical Solution of the Good Boussinesq Equation

Soliton solutions play a central role in the study of nonlinear dispersive wave equations such as the
Boussinesq equation (Almatrafi et al., 2020; Ablowitz & Segur, 1981). These solutions represent
localized wave packets that maintain their shape and speed over time, even after interacting with
other solitons. In the context of this thesis, analytical soliton solutions serve as precise reference
benchmarks for validating the accuracy of the numerical scheme implemented for solving the
Boussinesg-type equation in microstructured solids.

2.1 Traveling Wave Ansatz
To derive a soliton solution analytically, we assume a traveling wave solution of the form (Christov
et al., 1996):

u(x,t) = f(&),where é = x —ct, 2.1)
where:
e s the wave velocity.
e f(&)isafunction of ¢ that we will determine.

e This assumption reduces the partial differential equation (PDE) to an ordinary differential
equation (ODE).

Using the chain rule (Bona et al., 1985), derivatives transform as:

ou_ df  *u_ L, d*f

a__cd_f’ WZC d_{’z (2.2)
ou df 0%u  d*f o*u  d*f
9x dE’  OxZ  d&r’  axt  dit (2.3)
Substituting these derivatives into the "Good" Boussinesq equation:
" = f"+ B +af® =0, (2.4)
(2 =Df" +2Bff" +af® = 0. (2.5)
To simplify, integrate once with respect to & (assuming vanishing conditions at infinity):
(> =Df +B(f?) +af" =0, (2.6)
(c2=Df+Bf2+af" =0. (2.7)

This is a second-order ODE, and it admits the exact bell-shaped soliton solution (Debnath, 1997,
Ablowitz & Segur, 1981):

f(&) = A-sech?(ké). (2.8)

11



2.2 One-Soliton Solution

Substituting the soliton form (Eq. 2.8) into the ordinary differential equation (Eq. 2.7) and comparing
coefficients gives the expressions for the amplitude A and inverse width k (Bona et al., 1985):

43D (2.9)
— T )
Thus, the full 1-soliton solution is:
3(c? -1 c2—-1
u(x,t) = % - sech? % (x —ct —xg) |- (2.10)

This solution describes a wave centered at x = x + ct with amplitude and width determined by
the dispersion (a) and nonlinearity (f) coefficients.

2.3 Two Solitons Solution

An analytical expression for the two-soliton solution is more complex but can be derived using
Hirota’s bilinear method (Hirota, 1971). For numerical testing purposes, a common approach is to
construct two non-interacting solitons at t = 0, placed far enough apart so that their interaction is

negligible.
We use:
u(x,0) = uy (x) + uy(x), (2.11)
u;(x) = A - sech? (K(x — x0,1)) , u,(x) = A - sech? (K(x — xo,z)): (2.12)
with corresponding velocities:
w(x,0) = —c-uqy(x) + ¢ - uy(x). (2.13)

This initial condition results in two solitons traveling in opposite directions. As shown later in the
numerical section, the solitons interact and pass through each other —restoring their shape and
speed after the collision, a hallmark of solitonic behaviour (Dutykh & Clamond, 2016).

2.4 Soliton Properties

The analytical soliton solution has several key features (Drazin, 1989; Dutykh & Clamond, 2016):

e Shape preservation: The sech? profile remains unchanged over time.
e Amplitude-speed relation: Larger-amplitude solitons travel faster.
e Collision dynamics: After interaction, solitons recover their shape with only a phase shift.

12



These properties make solitons excellent test cases for numerical solvers, especially those intended
to simulate nonlinear wave propagation in microstructured media.

2.5 Purpose of Analytical Solutions in This Work
Analytical solutions serve two main purposes in this thesis:

1. Initial Conditions: They provide well-defined wave profiles to initialize numerical
simulations.

2. Validation Reference: They allow quantitative and qualitative comparison with numerical
solutions to verify the scheme’s accuracy.

In the later sections, we will compare numerical results with the analytical one- and two-soliton
solutions presented here. Deviations will be analyzed in terms of amplitude error, phase shift, and
shape distortion.
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3 Finite Volume Scheme

3.1 Overview

The Boussinesg-type equation models wave propagation and includes both nonlinear and dispersive
effects. Analytical solutions, while useful, are limited to ideal cases. Therefore, numerical methods
are essential for studying general wave interactions and soliton dynamics.

The finite volume method (FVM) is well-suited for this task. It is based on integrating the governing
equations over discrete control volumes and evaluating intercell fluxes. This method conserves
guantities like momentum and energy and is particularly useful for hyperbolic systems (LeVeque,
1992; 2002).

In this section, we construct a finite volume scheme for the normalized Boussinesqg-type equation:
Upe — Uy + BU) yx + AUy = 0, 3B.1)
where £ is the nonlinear coefficient and «a is the dispersive coefficient.

Our approach follows the local equilibrium approximation and excess quantity formulation in which
computational cells are treated as locally equilibrated subsystems, and cell interactions are
governed by interface excess quantities derived from Riemann invariants (Berezovski, 2011).

3.2 Reformulation as a First-Order System

To discretize the Boussinesq equation with the finite volume method, it is convenient to rewrite it
as a first-order system. For this purpose, we introduce an auxiliary variable w (x, t) defined by:

Wy = Uy, (3.2)

Substituting this relation into the Good Boussinesq equation and integrating once with respect to x
gives:

We = Uy — ,B(uz)x — AQUyxy, (3.3)
Therefore, the system takes the form:
U = Wy, (34)

We = Uy — ﬁ(uz)x = AUyxx- (3.5)

3.3 Local Equilibrium Approximation

Following the thermodynamic interpretation of Berezovski (2011), each computational cell is
treated as a local equilibrium system. The field variables are decomposed as:
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u=u+U, w=w+W, (3.6)
where:
e U, w are cell-averaged (local equilibrium) quantities.

e U, W are excess (non-equilibrium) quantities representing deviations at cell interfaces.

3.4 Finite Volume Method

We apply the finite volume method by integrating the system over a computational cell C,, =
[, Xn41] of width Ax.

Integration of u; = w,:

Integrating over cell n:

d (*n+1 Xn+1
< f udx = f wydx, 3.7)
Xn Xn
ot
Axa—tn =W AW, L (3.8)

The flux difference is approximated using excess quantities W, (right boundary) and W, (left
boundary) relative to wy;:

oy, _ N _ _ N _
Ax ot =(Wn+Wn)_(Wn+Wn)=(Wn _Wn )' (3-9)
ou 1
a—t” = E(Wn+ —W)). (3.10)

Integration of w, = (u — Bu?) — @y,

Integrating over cell n:

dwy, Xnt1 Xn+1
Axw = f (u— fu?), dx — af U X, (3.11)
Xn Xn
aV_Vn 271%n+1 Xn+1
Axw = [u = Busli™ — alupll ™. (3.12)

We evaluate the contribution of each part:

1. Non-dispersive Flux Term:

[u—pu?ly* =F@I 1 - F@I _1, (3.13)
2 2

15



where F(u) = u — fu?.
Evaluating this flux difference using the average ui,, and excess quantities U:l—r gives:

FaOl 1= FQDI 1 = (@ + U = By + Ui )] = (@ + Ug) — Bl + U7)?]
2 2

= Up — Uy — 2P0, Uyt + 2P, Uy — B(UR)* + B(UR)2 (3.14)

2. Dispersive Term:

X
_(7f[uxx]x2+1 =—-a (uxx|n+l - uxxln_l)- (3.15)
2 2
This arises from integrating —Quy,y = —@(Uyy) x-
Following the finite volume methodology, we approximate the flux D = —au,., at the cell interfaces

using a standard second-order centered approximation:

" Unyp — 2Upyq + Uy

uxxln_'_% ~ ax)? : (3.16)
Up — 2Up—1 + Up—
~ 3.17
uxxln_% (Ax)z ( )
Substituting these gives the contribution to Ax %;
—a (u | — U | ) ~ —q (an+2 — 2Upy4q + Uy _ Up — 2Up_q + ﬁn—z)
g g (8x)? (8x)2
=T e (Unt2 — 2Un41 + 2Up—q — Up—2). (3.18)
3.5 Semi-Discrete Equations:
Combining these results, the semi-discrete system for the cell averages is:
du, 1
—=— Wt =Wy), 3.19
ow, 1 Uy — Uy = 2pu,Uy + 2B0,Uy — f(U7)? + B(UR)?
—_— = a _ _ _ . 3.20
ot  Ax _W(urwz — 2Unyq + 2Up—q — Up—2) (3.20)

The equation (3.20) can be written as:

16



_n_ ix [Un — Uy — 2B, Ust + 2B, Uy — B(UT)? + B(Uy)?]

a o o —_— —_—
- W(umz — 2Upyq + 2Up—g — un—z)- (3.21)

3.6 Time Integration

The numerical scheme is integrated in time using the second-order Runge-Kutta (RK2) method,
which offers improved accuracy and stability over the standard Euler method (LeVeque, 2002). At
each time step, two intermediate evaluations of the right-hand side (RHS) are performed: one at
the current time level and one at a midpoint estimate. The final update is computed by averaging
these two RHS evaluations. This approach enhances the ability of the solver to capture nonlinear
and dispersive wave interactions with better temporal resolution.

3.6.1 Fully Discrete Scheme
In implementation, we use a second-order Runge—Kutta scheme for improved accuracy.

Update for u,

ﬁTI’(l-'-l

S&

+ — (W — W)k (3.22)

I
8
gl

Update for w,

. _ At _ _ = 17— -
Wi = W+ (U = Uy = 2Bu,U7 + 2B0,U5 — B(UR)? + B(UR)?]
o k
—At <W (Un+2 = 2Unsq + 2Up—q — ﬁn—2)> . (3.23)

Here k denotes the time level t;, = kAt. The superscript 'k’ outside the parentheses indicates that
all terms within those parentheses i, U;}, U,, are evaluated using values known at time level k.

Riemann invariants

For the linearized system (¢ = f = 0), the governing equations reduce to:
Up = Wy, Wi = Uy. (3.24)

The characteristic variables are the Riemann invariants
Rt=w+u, R =w-—1u, (3.25)

These describe right- and left-propagating waves, respectively. Using this property, the interface
relations become:

Wit =Ur, W = —U;. (3.26)

17



This connection ensures that the fluxes are represented consistently in terms of the excess
quantities.

Excess quantities at time level k

The excess quantities U,T (contribution from interface n + 1/2) and U;; (contribution from interface
n — 1/2) are calculated at time level k using the Riemann invariants based on i*, w* from adjacent
cells:

1
Ut = > (uk,, —uk + wk,, — wk)(Associated with right interface of cell n)

Up =5 (—uk + uk_; + wk — wk_)(Associated with left interface of cell n)

3.6.2 Stability Considerations

Although the explicit Euler method is easy to implement, its stability depends on the CFL (Courant—
Friedrichs—Lewy) condition (Courant et al., 1928), which in our case is influenced by:

e The maximum wave speed (related to the soliton speed c).
e The nonlinear coefficient S.

e The dispersive coefficient a.

e The spatial step size Ax.

In practice, the time step At is chosen small enough such that:

Ax

AtCr———,
max| Cefl

(3.27)

where C < 1 is a safety factor and c.r is an effective wave speed based on the analytical soliton.

For simulations involving high-order dispersion and nonlinear steepening, smaller values of At are
often necessary to prevent numerical instabilities.

3.6.3 Implementation Notes

e Initial Conditions: Values of 9 and W, are set using the analytical one- or two-soliton
solution.

e Ghost Cells: The stencil for the dispersive term requires data at n £ 2. Thus, ghost cells
(padding cells) are used at the boundaries to ensure correct evaluations.

e Filtering (optional): In long-time simulations, applying a Savitzky—Golay filter (Savitzky &
Golay, 1964) or other smoothing filter to &,, or w,, can help reduce spurious oscillations
introduced by dispersive effects.

18



3.6.4

3.6.5

Summary of Algorithm Steps

Initialize:
b ﬂg = u(xp, 0)

e . = value defined consistently with the analytical initial condition.

o For asingle soliton moving to the right with velocity c: w, = —c - u(x,,, 0).
o For two solitons moving in opposite directions:
wQ = —c-u;(x,,0) + ¢ uy(xy, 0).

At each time step k:

e Apply boundary conditions (ghost cells)

e Compute excess quantities U,7, Uy,

e Update itk*1 using the flux difference

e Update w1 using the full RHS (linear, nonlinear, dispersive terms)
Repeat until final time

Filtering

To reduce numerical noise—especially from steep gradients and dispersive interactions—a Savitzky-
Golay filter (Savitzky & Golay, 1964) is applied after each time step to both u and w. This post-
processing step preserves the overall shape of the solution while suppressing spurious oscillations
introduced by discretization.

19



4 Initial Conditions

To simulate solitonic wave propagation in microstructured solids, the numerical scheme must be
initialized with suitable wave profiles that reflect the physical properties of the Boussinesq-type
equation. This section presents the analytical soliton solution used to define initial conditions for
both single- and two-soliton configurations. These profiles serve as a benchmark for validating the
finite volume scheme and observing nonlinear interactions such as collision and separation.

4.1 Single-Soliton Initial Condition

We begin with the analytical single-soliton solution of the Good Boussinesg-type equation, which
provides a benchmark for validating the numerical scheme (Bona et al., 2002; Drazin, 1989). The
solitary-wave form is:

u(x, t) = A-sech?(k(x — ct — xp)), (4.1)
where:

e u(x,t)isthe displacement field.

e Aisthe amplitude of the wave.

e ks the inverse width parameter.
e cisthe soliton speed.

e X, is the initial center of the pulse.

The parameters A and k are related to the nonlinear and dispersive coefficients f and a via:

_3(c*-1)
A= ~25
_ [(c?-1)
K= [ (4.2)

These expressions ensure that the initial profile satisfies the governing equation under steady-state
propagation. The parameter k directly controls the spatial width of the soliton: larger k values
produce narrower and taller pulses, whereas smaller values yield broader and flatter profiles.

In our simulation, we set the initial time t = 0, and the initial displacement is defined as:
u(x, t) = A-sech?(k(x — xq)), (4.3)

where x is chosen to center the pulse within the computational domain to avoid interaction with
boundaries. Typically, x, = L/2 for a domain of length L.

The corresponding auxiliary variable w(x,t), associated with momentum, can be determined by:

du
w(x,0) = —c—(x,0). (4.4
dx
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Evaluating this derivative yields:
w(x,0) = 2Ack - sech?[k(x — x,)] - tanh[k(x — x)]. (4.5)

This formulation ensures that the initial wave is not only shaped correctly but also travels in the
positive x-direction due to the positive momentum imparted by w(x,0). The corresponding
analytical profiles of u(x,0) and w(x, 0) are displayed in Figure 4.1, which illustrates the initial
soliton shape and its associated momentum distribution derived from the analytical solution of the
Boussinesg-type equation (Bona et al., 2002; Sjolander, 2021).
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Figure 4.1: Initial displacement 2(x;0) and corresponding velocity field w{x,0) for a single soliton centered at x, = 5.

The fields are computed from the analytical solution of the normalized Boussinesq-type equation

4.2 Initial Condition with Two Solitons

To study nonlinear wave interaction, the initial condition is extended to include two counter-
propagating solitons constructed from the analytical single-soliton profiles described in Section 4.1
(Bona et al., 2002; Sjolander, 2021). The total displacement field is constructed by superposing two
single solitons centered at symmetric positions:

u(x, t) = A-sech?(k(x — x)) + A - sech?(k(x + x,)). (4.6)

In this setup, the first soliton is centered at +x, and propagates to the left, while the second is
centered at —x and propagates to the right. The symmetry of the configuration allows us to
observe collision and separation dynamics without interference from boundaries, provided the
domain is sufficiently large.

The initial momentum field w(x,0) is derived by taking the time derivative of the analytical solution:

duy du,
w(x,0)=—c-—(x,0) + c-—(x,0). (4.7)
dx dx
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Since the total displacement is a sum of two solitons, the resulting momentum becomes:

w(x,0) = —2Ack - sech?[k(x — x)] - tanh[x(x — x4)]
+2Ack - sech?[k(x + x,)] - tanh[k(x + x4)]. (4.8)

This ensures that one soliton is initialized with positive momentum (moving left to right) and the
other with negative momentum (moving right to left), both starting symmetrically about the origin.

The resulting analytical profiles of u(x, 0) and w(x,0) are presented in Figure 4.2, which visualizes
the symmetric two-soliton setup used throughout the numerical experiments.
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Figure 4.2: Initial displacement (x,0) and velocity field w(x,0) for a two-soliton configuration.

The profile shows two identical solitons positioned symmetrically at £x, , propagating toward each other with opposite
velocities based on the analytical expression.

4.3 Effect of Soliton Width (k)

It is important to note that the soliton width is inversely related to the parameter k. For larger values
of k, the solitons become narrower and steeper, which can cause numerical difficulties if not
adequately resolved by the spatial grid. Conversely, smaller values of k result in broader solitons,
which are easier to resolve but slower-moving.

In practice, choosing moderate values of a and c leads to manageable values of k and well-resolved
soliton shapes within a fixed grid resolution. Figure 4.3 compares analytical profiles for different k
values, highlighting how increased dispersion (larger a) broadens the soliton, whereas stronger
nonlinearity (larger B) sharpens it. These analytical relations guide the parameter choices for
subsequent numerical tests.
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Figure 4.3: Comparison of soliton profiles for different values of the inverse width parameter x.

Increasing x results in sharper, narrower solitons, illustrating the sensitivity of the soliton shape to dispersion and wave
speed parameters.

4.4 Spatial Domain and Grid Resolution

To ensure the accurate resolution of solitonic structures and to prevent artificial reflections from
boundary conditions, specific choices must be made regarding the spatial domain and grid
resolution.

The computational domain is defined over a symmetric interval x € [-L, L], where L is chosen such
that the soliton(s) remain well-separated from the boundaries throughout the simulation time. For
all numerical experiments in this thesis, we typically set L = 20 or larger depending on the soliton
width and speed.

The spatial resolution is governed by the grid spacing Ax = iV—L where N is the number of grid cells.

To properly resolve the soliton shape, the following guideline is applied:
K> Ax~L,

This ensures that each soliton spans at least 20—30 spatial points, preventing numerical aliasing and
capturing fine-scale features such as tails and dispersion effects.

Additionally, the total simulation time is chosen such that the solitons do not reach the boundaries,
avoiding spurious reflections. When necessary, absorbing (non-reflective) boundary conditions are
applied or the time integration is stopped prior to any boundary interaction.

These considerations ensure numerical stability, minimize truncation errors, and maintain physical
accuracy in the comparison between numerical and analytical solutions.
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5 Comparison of Numerical and Analytical Solutions

Parameter Set:

Table 1: Parameters used in the numerical simulations of the Boussinesq-type equation.

Symbol Value / Description
a 1.5
B 0.5
c 1.10
A 0.63
K 0.187 (width =~ 5.34)
Ax 0.5
At 0.0167
L 120
T 10
Xo1 48
Xo2 72
tmeet ~ 10

For the numerical experiments, two initial configurations were considered: (i) separated solitons
with centres xg; = 36, Xy, = 84, which do not collide within T = 10, and (ii) interacting solitons
with centers xy; = 48, x¢, = 72, resulting in a collision at approximately t = 10. These values were
chosen to ensure a balance between nonlinearity and dispersion while restricting simulations to
about two—three soliton widths.

5.1 Overview

This chapter validates the finite volume scheme introduced in Chapter 3 by comparing its
predictions with known analytical solutions of the good Boussinesq equation. Both single- and two-
soliton problems are studied in order to test the scheme’s ability to capture propagation,
interaction, and recovery of solitons. In addition to qualitative comparisons of numerical and
analytical profiles, a three-dimensional representation is provided to visualize the interaction, and
quantitative accuracy is assessed using the L? error norm.

5.2 Single Soliton Propagation

As a first validation, a single right-moving soliton was simulated with the parameters listed in the
parameter set. The analytical soliton solution has amplitude 4 = 0.63 and width k ~ 1= 5.34. The
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initial condition was centered at x, =0.35 L, with w(x, 0) = —cu(x, 0), ensuring consistency with
the definition u; = w,.

Figure 5.1 shows the surface plot of numerical solution u(x, t) over the simulation window T = 10.
The soliton crest follows a clear diagonal trajectory, corresponding to the constant soliton velocity
¢ = 1.10. The soliton maintains both shape and amplitude without noticeable distortion, indicating
that the scheme successfully balances the nonlinear and dispersive Boussinesqg-type equation.

@@x)n

Figure 5.1: Numerical propagation of a single soliton using the finite volume scheme.

Parameters: a=1.5, 8=0.5, c=1.10, A=0.63, k=0.187 (width =5.34), Ax=0.5, At=0.0167, L=120, T=10 The soliton crest
follows a diagonal trajectory at constant velocity, preserving amplitude and shape without distortion.
To further clarify the soliton motion, Figure 5.2 presents the contour map of u(x, t).

The bright ridge represents the crest of the soliton, while the dashed line indicates the analytical
trajectory of the soliton center, derived from the argument of the analytical solution

u(x, t) = A-sech?(k(x — ct — xq)), (5.1)

which implies that the peak moves at a constant speed c.
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Figure 5.2: Contour map of the numerical single-soliton solution u(x, t).

Parameters as in Figure 5.1.

Together, the surface and contour plots verify that the numerical implementation provides a stable
and highly accurate representation of single-soliton dynamics.

5.3 Two Solitons Propagation Comparison at Selected Times

To further challenge the scheme, the head-on interaction of two solitons was studied. The initial
positions were chosen as x5; = 36 and xy, = 84. With this configuration, the solitons approach
one another but do not collide within the simulated time T = 10. This test isolates the propagation
dynamics and validates numerical stability over long distances without the complexity of
interaction.

Figure 5.3 presents the numerical and analytical solutions at selected times (t = 0,3,5,8). These
time instants were chosen to illustrate the pre-interaction phase: at t = 0 the solitons are well
separated; at t = 3 and t = 5 they approach each other; and at t = 8 they are close but have not
yet overlapped. When the solitons are far apart (t = 0,3), the agreement is nearly exact. As the
waves approach (t = 5, 8), minor discrepancies appear near the crests, but the solitons retain their
speed and shape. The shaded error regions remain small, demonstrating that the scheme accurately
tracks soliton propagation even as the waves converge.
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Figure 5.3: Two-soliton propagation without collision (pre-collision).

Numerical and analytical profiles compared at t=0, 3, 5, and 8. Parameters: a=1.5, 8=0.5, c=1.10, A=0.63, k=0.187,
Ax=0.5, At=0.0167, L=120, T=10; centers xy1=36, xq,=84.

5.4 Two Solitons Interaction (Collision)

To evaluate the scheme under nonlinear interaction, the solitons were initialized closer, at x5, = 48
and x4, = 72. In this configuration, the solitons approach each other and collide at approximately
t =10.

Figure 5.4 shows the numerical and analytical solutions at two representative times: the initial state
(t = 0) and during collision (t = 10). At t = 0, the numerical and analytical profiles coincide
almost perfectly, confirming that the initial condition is well captured. During the collision, the
numerical scheme slightly underestimates the crest height compared to the analytical solution.
Nevertheless, the overall timing and structure of the interaction are accurately preserved.
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Figure 5.4: Two-soliton interaction with collision.

Numerical and analytical profiles compared at t = 0, and during collision (t = 10). Parameters as in separated case,
except centers xqq1 = 48,x9, = 72.

5.5 Surface Visualization

To illustrate the full spatiotemporal evolution of the interaction, we render the numerical solution
u(x, t)as a surface plot (Figure 5.5). Two diagonal ridges are visible: they represent the trajectories
of the right-moving and left-moving solitons. As the waves approach, a localized, transient increase
in amplitude is observed near the center of the domain. The surface view is useful for seeing the
overall geometry of the interaction and the absence of spurious oscillations away from the soliton
cores.

Because the perspective and shading of a 3D surface can mask fine timing and trajectory details, we
also provide a contour map of u(x,t)on the (x,t)-plane (Figure 5.6). In this representation the
soliton crests appear as bright bands whose separation decreases during approach and increases
after interaction. The contour map complements the surface plot view by making the propagation
paths and the near-collision region clearly visible without depending on viewpoint.
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Figure 5.5: The surface plot view of two-soliton interaction (good Boussinesq).

Diagonal ridges represent soliton trajectories; a transient amplitude increase is observed during interaction before
recovery. Parameters: a=1.5, 8=0.5, c=1.10, A=0.63, k=0.187, Ax=0.5, At=0.0167, L=120, T=10.

-1.08
- 0.96
- 0.84
-0.72

- 0.60

-0.48

Amplitude u(x,t)

0.36

0.24

0.12

0.00

0 20 40 60 80 100

Figure 5.6: Contour map of u(x, t) for the two-soliton case.

The bands corresponding to the two crests approach, overlap locally, and then separate, providing a clear 2D view of the
interaction that complements Figure 5.5.
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5.6 L2 Error Norm Analysis

To quantify the accuracy of the numerical method, the L? error norm between the numerical and
analytical solutions was computed at each time step using:

I2(t) = f (tpum (%, £) — Uana (x, £))*dix. (5.2)

Figure 5.7 shows the error evolution over time. The error remains negligible during the early stages
of propagation, rises during the collision, and stabilizes afterwards. This behaviour reflects the
increased numerical challenge at the point of constructive overlap but confirms that the scheme
maintains stability and bounded error throughout.

0.4 A

0.3 A

0.2

L2 error

0.1 1

0.0 -

Figure 5.7: L? error vs time for two-soliton interaction. Error rises during collision but remains small overall, stabilizing
after separation.

5.7 Discussion

The combined tests demonstrate that the finite volume scheme accurately reproduces soliton
behaviour in the Boussinesq equation. The single soliton case validated the method’s ability to
preserve amplitude and trajectory. The two-soliton propagation confirmed stability and agreement
with analytical profiles across multiple soliton widths. The collision test showed that the scheme
captures constructive overlap with only minor amplitude underestimation. Finally, the L? error
analysis provided quantitative confirmation of accuracy and robustness.

Together, these results demonstrate that the scheme successfully balances nonlinearity and
dispersion and can describe both soliton propagation and soliton interaction with high fidelity.
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6 Extension of the Boussinesq Equation with Internal Variables

6.1 Theoretical Background

Wave propagation in solids with microstructure cannot be fully described by the classical Boussinesq
equation, which accounts only for macroscopic strain and its gradients. To incorporate internal
degrees of freedom associated with the microstructure, the framework of internal variables is
adopted (Berezovski et al., 2013).

Before introducing this generalized formulation, the classical free-energy density leading to the
standard Boussinesq equation is briefly reviewed.

Free energy

Free energy per unit volume corresponding to the Boussinesq equation can be expressed as:

pet 2
Y= Tux - a(u )xux = DUy Uy, (6-1)

where

e pisthe matter density.

e cisthe sound velocity.

e aisthe coefficient of quadratic nonlinearity.
e D isthe dispersive material constant.

The first term represents linear elastic energy, the second introduces weak nonlinearity, and the
third accounts for dispersion associated with strain gradients.

From the balance of momentum

a B do 6.2)
at PV =3¢ '
together with the stress calculation
Y
0=5."= pcPuy, — a(u?)y — Dilyyy, (6.3)
X
the governing equation becomes
(PwW)ee — pCZuxx + a(uz)xx + DUyyxx = 0. (6.4)

Dividing by p and normalizing leads to the classical Boussinesg-type equation
2 a. .z D
U — CTUyy + E(u Dxx + ;uxxxx = 0. (6.5)
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This form captures the balance between nonlinearity and dispersion that supports soliton solutions.
Extended free energy (with internal variable)

To capture the influence of microstructure, the free energy density is extended to depend not only
on the strain u,, but also on an additional internal variable ¢:

pcz 2 2 1 2
Y = Tux —a(u )xux — Duyyxly + Boyuy + ECQO ’ (6.6)

where

e pisthe mass density.

e cisthe linear wave speed.

e ais the coefficient of quadratic nonlinearity.

e D is the dispersive material constant.

e B, (C describe the coupling and stiffness of the internal variable.

Macrostress and Equation of Motion

The corresponding macrostress is obtained from the derivative of the free energy with respect to
the strain component u,:

0 =— = pc*u, — a(u?), — Duy,y + Bo,. (6.7)
ou,

The balance of linear momentum can then be written as:
PuU = pczuxx - a(uz)xx = DUyyxy + BPyy. (6-8)

For a non-dissipative microstructured solid (Berezovski, 2017), the internal variable obeys
a simple proportionality law between the strain curvature and the microstructural response

Bu,, — Co =0, (6.9)
which yields the relation
B
¢ =7l (6.10)

This relation implies that the internal variable is directly proportional to strain gradient.

Final governing equation

By substituting Eq. (6.10) into Eq. (6.8), one obtains a single governing equation for the displacement
field u(x, t):
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2
pUe = pczuxx - a(uz)xx — DUyyxx + ?uxxxx (6-11)

Dividing by p gives the normalized form

D B?

a
Ut — Czuxx + /_) (uz)xx + (; - p_C> Uyxxx = 0, (6.12)

which represents the Boussinesqg-type equation with an internal variable. The last term modifies
the effective dispersive coefficient and thereby alters the soliton shape.

When B = 0, the equation reduces to the classical Boussinesq form, while for finite B and C, the
influence of the internal variable increases the effective dispersion, slightly narrowing and
localizing the soliton compared to the classical case.

Connection to the classical Boussinesq form

Comparing with the classical Boussinesq equation used in Sections 25,

a
Ut — Czuxx + /_) (uz)xx + Aeffllyxxx = 0, (6.13)

we see that the presence of the internal variable modifies only the dispersive term. The effective
dispersion coefficient (Bona et al., 2002; Berezovski & Engelbrecht, 2010) is

= p_B° (6.14)
deff = 5 pC ) .

which replaces a in the classical model. Depending on the values of B and C, the microstructural
effect may either increase or decrease the strength of dispersion.

6.2 Modification to the Numerical Scheme

The finite volume method developed in Section 3 remains applicable for the Boussinesq equation
with internal variables. The structure of the system, consisting of nonlinear and dispersive terms, is
preserved. The only modification is the change in the dispersion coefficient from its classical value
a to the effective one aqg.

Semi-discrete scheme

For the classical case, the semi-discrete form of the governing equations was written as

om, 1 . B
Tt = g Wh — W), (6.15)

om, 1 |Un —Un = 2BTnUd + 2BT,Un — WU + B(U)?
T a = - _ _ 6.16
ot  Ax _W(urwz — 2Upyq + 2Up_g — Up_3) ( )
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In the presence of internal variables, the scheme retains its form, but the dispersive term is modified
by replacing @ with ags:

~(2 B (6.17)
Aeff = o pC) :

Thus, the dispersive contribution becomes:

1 |Un = Un = 2B Uy + 2B, Uy — B(UR)? + B(Up)?

—— = Qeff _ _ _ _
ot Ax _W(umz - 2un+1 + 2un—l - un—z)

.
Y (6.18)

Fully discrete scheme

In the time discretization, no changes are required. The same explicit Runge—Kutta method as
described in Section 3.6.2 can be applied, subject to the same CFL-type stability (LeVeque, 2002).

Implementation in the code

From a computational point of view, incorporating microstructural effects into the finite volume
solver requires only a minor modification in the dispersive term. The constant dispersion coefficient
used in the classical formulation is replaced by the effective dispersive coefficient a.¢, derived in
Section 6.1.

This modification ensures that the influence of the coupling between the internal variable and the
strain curvature is correctly represented in the numerical model. All other components of the
solver—such as the computation of nonlinear fluxes, the temporal integration scheme, and the
filtering strategy (Savitzky & Golay, 1964)—remain unchanged.

6.3 Numerical Experiments

To demonstrate the influence of internal variables on wave propagation, unless stated otherwise,
all tests use the same spatial and temporal discretization as in Section 5, but with the dispersive
coefficient replaced by

D B 6.19

eft == ¢ (6.19)

The finite volume scheme and time-stepping algorithm are unchanged, ensuring that any

differences in the results are entirely due to the microstructural contribution. Two sets of

microstructural parameters were considered in order to illustrate the limiting effects of the coupling
strength.

For both cases the material density was kept constant, p = 1.0, and the classical nonlinearity and
soliton velocity were the same as before, § = 0.5 and ¢ = 1.10. The parameters B, C and D were
adjusted to obtain two representative effective dispersion coefficients:
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Casel:D =1.5,B=1.0,C =3.0 = aqs=0.5,
Casell:D =1.5,B =2.0,C =1.0 = aq¢ = 3.0.

These two configurations represent opposite microstructural responses. The smaller ags
corresponds to stronger internal coupling and reduced dispersion, producing a more localized
soliton, whereas the larger a.¢ reflects weaker coupling and enhanced dispersion that broadens
the wave profile.

The soliton amplitude and inverse width for each case are determined from

3(c?-1)

T (6.20)

Asol =

and

(6.21)

The time step satisfies a CFL restriction combining advection and dispersion (cf. Section 3.6.2), now
with aegr in the dispersive bound.

6.3.1 Effect of Microstructure on Soliton Propagation

To illustrate the effect of microstructural coupling on soliton behaviour, the numerical solution of a
single right-moving soliton was simulated for the three cases introduced above:

(i) The classical Boussinesq equation without internal variables (B = 0, a = 1.5).
(ii) Case I with microstructural parameters D = 1.5,B = 1.0,C = 3.0, giving a¢ = 0.5.
(iii) Case llwith D = 1.5,B = 2.0, C = 1.0, giving a.¢ = 3.0.

All simulations used the same spatial and temporal discretization as in Section 5, ensuring that aq¢s
is the only parameter that changes.

The soliton profiles were examined at time t, = 5, corresponding to steady propagation without
boundary interaction.

Figure 6.1 shows the resulting soliton shapes for the three cases. For aq;r = 0.5 (Case 1), the soliton
becomes slightly narrower and more localized, indicating reduced dispersion and stronger
confinement of wave energy.

In contrast, for aesr = 3.0 (Case 1), the soliton broadens noticeably, reflecting the dominance of
dispersive effects due to weaker microstructural coupling.

The classical case @ = 1.5 lies between these two extremes.
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Despite these differences in width, the soliton amplitude and propagation velocity remain nearly
constant for all three cases, confirming that the internal variable primarily alters the dispersive
character of the medium while preserving the nonlinear amplitude—velocity balance.

This demonstrates that the microstructural model provides a physically consistent mechanism for
dispersion tuning through internal coupling strength.

—— Classical (B=0), a=1.500
0.6 1 Microstructured (aes = 3.0), @ = 3.000
2 Microstructured (aes = 0.5), @ = 0.500

=5

u(x, to) with to

Figure 6.1: Soliton profiles with and without internal variables.

B=0 (classical Boussinesq equation, a=1.50) and B#0 (microstructured case, a.rr = 3.0 and a.sr = 0.5) at t(=5.

6.3.2 Discussion

The numerical experiments incorporating internal variables highlight the sensitivity of soliton
dynamics to microstructural effects. The introduction of the effective dispersion coefficient aq¢¢
modifies the soliton width and phase behaviour while preserving the overall amplitude—velocity
balance. These findings are consistent with earlier theoretical and numerical studies on dispersive
wave propagation in microstructured solids (Engelbrecht et al., 2005; Engelbrecht et al., 2007;
Engelbrecht et al., 2011).

By systematically varying ., the present study demonstrates how microstructural coupling
influences soliton localization. For ag = 0.5 (strong coupling), the soliton becomes narrower and
more localized due to the reduced dispersion, while for a.¢ = 3.0 (weak coupling), it broadens
because of enhanced dispersive effects. The classical case (a = 1.5) represents an intermediate
regime where nonlinearity and dispersion remain balanced. These observations align with the
theoretical prediction that the internal coupling term (—B?/pC) in Eq. (6.19) adjusts the dispersive
strength of the medium without altering its nonlinear character (Berezovski et al., 2013).
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This demonstrates that the inclusion of internal variables provides a physically meaningful
mechanism for representing microstructure within a continuum framework, bridging the gap
between lattice-based models and macroscopic PDE formulations. The microstructural coupling
effectively acts as a dispersive tuning parameter, allowing the model to capture a wider range of
physical behaviours in structured materials.

From a computational perspective, the finite-volume scheme required only minimal modification
—specifically, replacing the classical dispersion coefficient with the effective parameter. The
method remained stable, accurate, and energy-conserving across all simulations. This confirms that
the implemented numerical approach is both robust and flexible, capable of being extended to
more complex dispersive systems or higher-dimensional microstructured solids.

6.4 Summary

The Boussinesg-type equation extended with internal variables successfully models dispersive
effects arising from microstructure. By replacing the classical dispersion coefficient a with its
effective counterpart ao¢ = (D/p) — (B?/(pC)), the governing system captures the localization
and phase-shift behaviour observed in structured materials.

The comparison between the classical and modified models (Figure 6.1) clearly demonstrates that
microstructural coupling significantly influences soliton width and localization. For smaller values of
Qefr (e.g. 0.5), the soliton becomes narrower and more localized, while larger values (e.g. 3.0)
produce broader profiles due to increased dispersion. Despite these variations, the amplitude and
propagation speed remain stable, confirming that the modification affects only the dispersive term
without disturbing the nonlinear structure of the equation.

These findings provide a consistent numerical and physical foundation for analysing the interaction
between microstructure and wave dynamics. The developed finite-volume approach proves robust
and accurate for simulating nonlinear dispersive waves in both classical and microstructured
continua, offering a reliable basis for future studies of wave localization and dispersion control in
complex materials.
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7 Conclusion

This thesis has presented a numerical investigation of a Boussinesg-type equation in
microstructured solids using the finite volume method. The study was divided into two main parts:
the development and validation of the numerical scheme for the classical equation, and the
extension of the model to include internal variables representing microstructural effects.

In the first part, the classical Good Boussinesq equation was considered to establish a reliable
computational framework. Simulations of single- and two-soliton propagation verified that the finite
volume method accurately reproduces analytical results, maintaining the characteristic soliton
properties of stable amplitude, velocity, and shape. The L2 error analysis demonstrated smooth,
bounded behaviour over time, confirming numerical stability and second-order accuracy of the
discretization scheme.

In the second part, the equation was extended by introducing an internal variable framework that
modifies the dispersive coefficient through the effective parameter a.¢. By systematically varying
s (0.5 and 3.0), the influence of microstructural coupling on soliton dynamics was quantified. The
simulations revealed that smaller ¢ values (strong coupling) lead to narrower, more localized
solitons, while larger aq¢ values (weak coupling) result in broader soliton profiles due to enhanced
dispersion. Despite these changes, the amplitude—velocity relation remained preserved,
demonstrating that the internal variable modifies only the dispersive nature of the medium without
affecting its nonlinear structure.

The combined results confirmed that the finite volume method is a robust and accurate approach
for solving nonlinear dispersive wave equations in both classical and microstructured continua. The
method successfully captured the delicate balance between nonlinearity and dispersion, even
under modified microstructural conditions. Moreover, the model provides a physically meaningful
way to tune dispersion through internal parameters, offering insights into wave localization and
dispersion control in structured materials.

Overall, this work contributes to the understanding of nonlinear wave propagation in
microstructured solids and establishes a versatile numerical framework that can be extended to
higher-dimensional problems, more complex internal variable models, and other classes of
nonlinear dispersive equations.
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