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Abstract 

This thesis presents a numerical study of the Boussinesq-type equation in microstructured solids 

using the finite volume method. The work begins with the classical Good Boussinesq equation, 

highlighting the interaction between nonlinearity and dispersion responsible for the formation of 

solitons. Analytical one- and two-soliton solutions are highlighted to provide benchmark 

comparisons for numerical validation. The developed finite volume scheme, based on local 

equilibrium and excess-quantity formulations, accurately captures soliton propagation, collision, 

and recovery with small L² errors. 

The Boussinesq equation is further extended by incorporating internal variables to represent 

microstructural effects. This addition modifies the effective dispersion coefficient while maintaining 

the nonlinear framework of the equation. Numerical experiments show that internal variables 

change the soliton profile and influence phase behavior, indicating enhanced dispersive localization 

due to microstructure. 

The proposed method demonstrates robustness, accuracy, and physical consistency, making it a 

reliable tool for analyzing nonlinear wave propagation in both classical and microstructured 

continua. 

Keywords: Boussinesq-type equation, finite volume method, soliton, microstructure, dispersion, 

nonlinear waves. 
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Kokkuvõte 

Käesolevas magistritöös on esitatud arvuline uurimus Boussinesq-tüüpi võrrandi kohta 

mikrostruktureeritud tahkistes, kasutades lõplike ruumimahtude meetodit. Töö algab klassikalise 

Good’i Boussinesqi võrrandi käsitlemisega, rõhutades mittelineaarsuse ja dispersiooni vastastikust 

mõju, mis põhjustab solitonide teket. Ühe- ja kahesolitonilised analüütilised lahendused on esile 

tõstetud, et kasutada neid võrdluseks arvulise valideerimise eesmärgil. Välja töötatud lõplike 

ruumimahtude skeem, mis põhineb lokaalse tasakaalu ja liigsete suuruste kontseptsioonil, kirjeldab 

täpselt solitoni levikut, kokkupõrget ja taastumist väikeste L²-vigadega. 

Boussinesqi võrrandit on laiendatud sisemiste muutujate lisamisega, et kirjeldada mikrostruktuuri 

mõju materjalis. See täiendus muudab efektiivset dispersioonitegurit, säilitades samas võrrandi 

mittelineaarse struktuuri. Arvulised katsed näitavad, et sisemised muutujad muudavad solitoni 

profiili ja mõjutavad faasikäitumist, viidates mikrostruktuurist tingitud dispersiooni lokaliseerumise 

tugevnemisele. 

Välja pakutud meetod on stabiilne, täpne ja füüsikaliselt järjekindel, pakkudes usaldusväärset 

tööriista mittelineaarsete lainete leviku uurimiseks nii klassikalistes kui ka mikrostruktureeritud 

keskkondades. 

Võtmesõnad: Boussinesq-tüüpi võrrand, lõplike ruumimahtude meetod, soliton, mikrostruktuur, 

dispersioon, mittelineaarsed lained. 
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1 Boussinesq Equation 

Wave propagation in elastic and microstructured solids is an essential topic in applied physics and 

engineering, with applications ranging from non-destructive testing to advanced materials design. 

The classical wave equation, while useful, is often insufficient to capture complex behaviours in such 

materials, particularly when both nonlinear effects and dispersive effects are significant. The 

Boussinesq-type equation, originally derived in the context of shallow water waves, has since been 

extended and adapted for use in a broad range of physical systems, including nonlinear elastic 

media, lattice structures, and microstructured solids (Whitham, 1974; Bona, Chen, & Saut, 2002; 

Drazin & Johnson, 1989). 

1.1 Historical and Physical Background 
The Boussinesq equation was first introduced in the 1870s by Joseph Boussinesq to describe long 

surface waves in shallow water. Since then, it has evolved into a family of nonlinear partial 

differential equations used to model wave propagation in dispersive media. In its classical form, the 

Boussinesq equation incorporates both a second-order time derivative (representing wave 

propagation) and higher-order spatial derivatives (accounting for dispersion). When applied to 

solids, especially those with internal structure or characteristic length scales, the Boussinesq-type 

equation serves as a refined model that includes micro-inertial and dispersive effects (Whitham, 

1974). 

In modern continuum mechanics, Boussinesq-type equations are often derived from 

homogenization or asymptotic methods applied to discrete lattice models or microstructured 

continua. They are particularly effective in modeling solitary wave propagation, or solitons, which 

are localized, nonlinear wave structures that maintain their shape during travel and interaction— a 

feature not captured by purely linear models (Drazin & Johnson, 1989; Maugin, 1999). 

1.2 General Form of the Boussinesq-Type Equation 
The normalized Good Boussinesq equation, which ensures well-posedness and stability, is given by 

(Christov et al., 1996): 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝛽(𝑢2)𝑥𝑥 + 𝛼𝑢𝑥𝑥𝑥𝑥 = 0, (1.1) 

where: 

• 𝑢(𝑥, 𝑡) represents the wave displacement.

• 𝛼 is the dispersion coefficient, responsible for high-order spatial corrections.

• 𝛽 is the nonlinearity coefficient, responsible for amplitude-dependent effects.

This form is often referred to as the Good Boussinesq equation due to the stabilizing positive 

coefficient in the highest-order derivative term. In contrast, the Bad Boussinesq equation, which 

differs only by the sign of the 𝑢𝑥𝑥𝑥𝑥 term, is known to be ill-posed and prone to numerical 

instabilities (Manoranjan et al., 1984). 



10 

1.3 Role of Dispersion and Nonlinearity 
The interplay between nonlinearity and dispersion in the Boussinesq equation is central to the 

formation of stable wave structures such as solitons: 

• The dispersive term 𝛼𝑢𝑥𝑥𝑥𝑥   causes wave packets to spread, mimicking the effects of

internal structure or microinertia in a solid (Achenbach, 1973).

• The nonlinear term 𝛽(𝑢2)𝑥𝑥 causes wave steepening, allowing localized pulses to form.

It is the balance between these two mechanisms—nonlinearity focusing the wave and dispersion 

spreading it—that enables the existence of soliton solutions, which are stable, non-decaying 

waveforms (Dutykh & Clamond, 2016). 

1.4 Applications and Soliton Relevance 
Boussinesq-type models are used across physics and engineering to describe: 

• Surface and internal waves in shallow water (Bona et al., 2002)

• Elastic wave propagation in nonlinear solids (Achenbach, 1973)

• Longitudinal waves in molecular chains and DNA strands (Bona et al., 2002)

• Optical pulse propagation in nonlinear media (Bona et al., 2002)

A particularly interesting class of solutions are solitons—localized waves that can interact 

nonlinearly and still retain their shape and velocity (Drazin, 1989; Dutykh & Clamond, 2016). 

Solitons are of great theoretical and practical importance: in physics, they model particle-like 

phenomena; in engineering, they allow for robust waveguides and signal transmission systems 

(LeVeque, 2002; Sjölander, 2021). 

In this thesis, we focus on simulating one and two-soliton solutions of the Good Boussinesq 

equation using a finite volume method in microstructured solids. The goal is to numerically capture 

soliton propagation and interaction, validate the correctness of the scheme, and compare the 

results against exact analytical solutions. 
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2 Analytical Solution of the Good Boussinesq Equation 

Soliton solutions play a central role in the study of nonlinear dispersive wave equations such as the 

Boussinesq equation (Almatrafi et al., 2020; Ablowitz & Segur, 1981). These solutions represent 

localized wave packets that maintain their shape and speed over time, even after interacting with 

other solitons. In the context of this thesis, analytical soliton solutions serve as precise reference 

benchmarks for validating the accuracy of the numerical scheme implemented for solving the 

Boussinesq-type equation in microstructured solids. 

2.1 Traveling Wave Ansatz 
To derive a soliton solution analytically, we assume a traveling wave solution of the form (Christov 

et al., 1996): 

𝑢(𝑥, 𝑡) = 𝑓(𝜉), where 𝜉 = 𝑥 − 𝑐𝑡, (2.1) 

where: 

• 𝑐 is the wave velocity.

• 𝑓(𝜉) is a function of  𝜉 that we will determine.

• This assumption reduces the partial differential equation (PDE) to an ordinary differential

equation (ODE).

Using the chain rule (Bona et al., 1985), derivatives transform as: 

𝜕𝑢

𝜕𝑡
= −𝑐

𝑑𝑓

𝑑𝜉
,

𝜕2𝑢

𝜕𝑡2
= 𝑐2

𝑑2𝑓

𝑑𝜉2
, (2.2) 

𝜕𝑢

𝜕𝑥
=

𝑑𝑓

𝑑𝜉
,

𝜕2𝑢

𝜕𝑥2
=

𝑑2𝑓

𝑑𝜉2
,

𝜕4𝑢

𝜕𝑥4
=

𝑑4𝑓

𝑑𝜉4
. (2.3) 

Substituting these derivatives into the "Good" Boussinesq equation: 

𝑐2𝑓′′ − 𝑓′′ + 𝛽(2𝑓𝑓′′) + 𝛼𝑓(4) = 0, (2.4) 

(𝑐2 − 1)𝑓′′ + 2𝛽𝑓𝑓′′ + 𝛼𝑓(4) = 0.         (2.5) 

To simplify, integrate once with respect to 𝜉 (assuming vanishing conditions at infinity): 

   (𝑐2 − 1)𝑓′ + 𝛽(𝑓2)′ + 𝛼𝑓′′′ = 0,  (2.6) 

 (𝑐2 − 1)𝑓 + 𝛽𝑓2 + 𝛼𝑓′′ = 0.  (2.7) 

This is a second-order ODE, and it admits the exact bell-shaped soliton solution (Debnath, 1997; 

Ablowitz & Segur, 1981):  

𝑓(𝜉) = 𝐴 ∙ sech2(𝜅𝜉). (2.8) 
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2.2 One-Soliton Solution 

Substituting the soliton form (Eq. 2.8) into the ordinary differential equation (Eq. 2.7) and comparing 

coefficients gives the expressions for the amplitude 𝐴 and inverse width 𝜅 (Bona et al., 1985): 

𝐴 =
3(𝑐2 − 1)

2𝛽
, 𝜅 = √

(𝑐2 − 1)

4𝛼
. (2.9) 

Thus, the full 1-soliton solution is: 

𝑢(𝑥, 𝑡) =
3(𝑐2 − 1)

2𝛽
∙ sech2 (√

(𝑐2 − 1)

4𝛼
(𝑥 − 𝑐𝑡 − 𝑥0)) . (2.10) 

This solution describes a wave centered at 𝑥 = 𝑥0 + 𝑐𝑡 with amplitude and width determined by 

the dispersion (𝛼) and nonlinearity (𝛽) coefficients. 

2.3 Two Solitons Solution 

An analytical expression for the two-soliton solution is more complex but can be derived using 

Hirota’s bilinear method (Hirota, 1971). For numerical testing purposes, a common approach is to 

construct two non-interacting solitons at 𝑡 = 0, placed far enough apart so that their interaction is 

negligible. 

We use: 

𝑢(𝑥, 0) = 𝑢1(𝑥) + 𝑢2(𝑥), (2.11) 

𝑢1(𝑥) = 𝐴 ∙ sech2 (𝜅(𝑥 − 𝑥0,1)) , 𝑢2(𝑥) = 𝐴 ∙ sech2 (𝜅(𝑥 − 𝑥0,2)) , (2.12) 

with corresponding velocities: 

𝑤(𝑥, 0) = −𝑐 ∙ 𝑢1(𝑥) + 𝑐 ∙ 𝑢2(𝑥). (2.13) 

This initial condition results in two solitons traveling in opposite directions. As shown later in the 

numerical section, the solitons interact and pass through each other —restoring their shape and 

speed after the collision, a hallmark of solitonic behaviour (Dutykh & Clamond, 2016). 

2.4 Soliton Properties 

The analytical soliton solution has several key features (Drazin, 1989; Dutykh & Clamond, 2016): 

• Shape preservation: The sech² profile remains unchanged over time.

• Amplitude-speed relation: Larger-amplitude solitons travel faster.

• Collision dynamics: After interaction, solitons recover their shape with only a phase shift.
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These properties make solitons excellent test cases for numerical solvers, especially those intended 

to simulate nonlinear wave propagation in microstructured media. 

2.5 Purpose of Analytical Solutions in This Work 

Analytical solutions serve two main purposes in this thesis: 

1. Initial Conditions: They provide well-defined wave profiles to initialize numerical

simulations.

2. Validation Reference: They allow quantitative and qualitative comparison with numerical

solutions to verify the scheme’s accuracy.

In the later sections, we will compare numerical results with the analytical one- and two-soliton 

solutions presented here. Deviations will be analyzed in terms of amplitude error, phase shift, and 

shape distortion. 
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3 Finite Volume Scheme 

3.1 Overview 

The Boussinesq-type equation models wave propagation and includes both nonlinear and dispersive 

effects. Analytical solutions, while useful, are limited to ideal cases. Therefore, numerical methods 

are essential for studying general wave interactions and soliton dynamics. 

The finite volume method (FVM) is well-suited for this task. It is based on integrating the governing 

equations over discrete control volumes and evaluating intercell fluxes. This method conserves 

quantities like momentum and energy and is particularly useful for hyperbolic systems (LeVeque, 

1992; 2002). 

In this section, we construct a finite volume scheme for the normalized Boussinesq-type equation: 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝛽(𝑢2)𝑥𝑥 + 𝛼𝑢𝑥𝑥𝑥𝑥 = 0, (3.1) 

where 𝛽 is the nonlinear coefficient and 𝛼 is the dispersive coefficient. 

Our approach follows the local equilibrium approximation and excess quantity formulation in which 

computational cells are treated as locally equilibrated subsystems, and cell interactions are 

governed by interface excess quantities derived from Riemann invariants (Berezovski, 2011). 

3.2 Reformulation as a First-Order System 

To discretize the Boussinesq equation with the finite volume method, it is convenient to rewrite it 

as a first-order system. For this purpose, we introduce an auxiliary variable 𝑤 (𝑥, 𝑡) defined by: 

𝑤𝑥 = 𝑢𝑡 , (3.2) 

Substituting this relation into the Good Boussinesq equation and integrating once with respect to 𝑥 

gives:  

𝑤𝑡 = 𝑢𝑥 − 𝛽(𝑢2)𝑥 − 𝛼𝑢𝑥𝑥𝑥, (3.3) 

Therefore, the system takes the form: 

𝑢𝑡 = 𝑤𝑥 , (3.4) 

𝑤𝑡 = 𝑢𝑥 − 𝛽(𝑢2)𝑥 − 𝛼𝑢𝑥𝑥𝑥. (3.5) 

3.3 Local Equilibrium Approximation 

Following the thermodynamic interpretation of Berezovski (2011), each computational cell is 

treated as a local equilibrium system. The field variables are decomposed as: 
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𝑢 = 𝑢̅ + 𝑈,   𝑤 = 𝑤̅ + 𝑊, (3.6) 

where: 

• 𝑢̅, 𝑤̅ are cell-averaged (local equilibrium) quantities.

• 𝑈, 𝑊 are excess (non-equilibrium) quantities representing deviations at cell interfaces.

3.4 Finite Volume Method 

We apply the finite volume method by integrating the system over a computational cell 𝐶𝑛 =

[𝑥𝑛, 𝑥𝑛+1] of width ∆𝑥. 

Integration of 𝒖𝒕 = 𝒘𝒙: 

Integrating over cell 𝑛: 

𝑑

𝑑𝑡
∫ 𝑢𝑑𝑥 = ∫ 𝑤𝑥𝑑𝑥

𝑥𝑛+1

𝑥𝑛

𝑥𝑛+1

𝑥𝑛

, (3.7) 

∆𝑥
𝜕𝑢̅𝑛

𝜕𝑡
= 𝑤

𝑛+
1
2

− 𝑤
𝑛−

1
2

. (3.8) 

The flux difference is approximated using excess quantities 𝑊𝑛
+(right boundary) and 𝑊𝑛

− (left

boundary) relative to 𝑤𝑛: 

∆𝑥
𝜕𝑢̅𝑛

𝜕𝑡
= (𝑤̅𝑛 + 𝑊𝑛

+) − (𝑤̅𝑛 + 𝑊𝑛
−) = (𝑊𝑛

+ − 𝑊𝑛
−), (3.9) 

𝜕𝑢̅𝑛

𝜕𝑡
=

1

Δ𝑥
(𝑊𝑛

+ − 𝑊𝑛
−). (3.10) 

Integration of 𝒘𝒕 = (𝒖 − 𝜷𝒖𝟐)
𝒙

− 𝜶𝒖𝒙𝒙𝒙:

Integrating over cell 𝑛: 

∆𝑥
𝜕𝑤̅𝑛

𝜕𝑡
= ∫ (𝑢 − 𝛽𝑢2)𝑥

𝑥𝑛+1

𝑥𝑛

𝑑𝑥 − 𝛼 ∫ 𝑢𝑥𝑥𝑥𝑑𝑥
𝑥𝑛+1

𝑥𝑛

, (3.11) 

∆𝑥
𝜕𝑤̅𝑛

𝜕𝑡
= [𝑢 − 𝛽𝑢2]𝑥𝑛

𝑥𝑛+1 − 𝛼[𝑢𝑥𝑥]𝑥𝑛

𝑥𝑛+1 . (3.12) 

We evaluate the contribution of each part: 

1. Non-dispersive Flux Term:

[𝑢 − 𝛽𝑢2]𝑥𝑛

𝑥𝑛+1 = 𝐹(𝑢)|
𝑛+

1
2

− 𝐹(𝑢)|
𝑛−

1
2

, (3.13) 
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where 𝐹(𝑢) = 𝑢 − 𝛽𝑢2. 

Evaluating this flux difference using the average 𝑢̅𝑛 and excess quantities 𝑈𝑛
± gives: 

𝐹(𝑢)|
𝑛+

1
2

− 𝐹(𝑢)|
𝑛−

1
2

= [(𝑢̅𝑛 + 𝑈𝑛
+) − 𝛽(𝑢̅𝑛 + 𝑈𝑛

+)2] − [(𝑢̅𝑛 + 𝑈𝑛
−) − 𝛽(𝑢̅𝑛 + 𝑈𝑛

−)2]

= 𝑈𝑛
+ − 𝑈𝑛

− − 2𝛽𝑢̅𝑛𝑈𝑛
+ + 2𝛽𝑢̅𝑛𝑈𝑛

− − 𝛽(𝑈𝑛
+)2 + 𝛽(𝑈𝑛

−)2. (3.14) 

2. Dispersive Term:

−𝛼[𝑢𝑥𝑥]𝑥𝑛

𝑥𝑛+1 = −𝛼 (𝑢𝑥𝑥|
𝑛+

1
2

− 𝑢𝑥𝑥|
𝑛−

1
2

) . (3.15) 

This arises from integrating −𝛼𝑢𝑥𝑥𝑥 = −𝛼(𝑢𝑥𝑥)𝑥. 

Following the finite volume methodology, we approximate the flux 𝐷 = −𝛼𝑢𝑥𝑥 at the cell interfaces 

using a standard second-order centered approximation: 

𝑢𝑥𝑥|
𝑛+

1
2

≈
𝑢̅𝑛+2 − 2𝑢̅𝑛+1 + 𝑢̅𝑛

(∆𝑥)2
, (3.16) 

𝑢𝑥𝑥|
𝑛−

1
2

≈
𝑢̅𝑛 − 2𝑢̅𝑛−1 + 𝑢̅𝑛−2

(∆𝑥)2
. (3.17) 

Substituting these gives the contribution to ∆𝑥
𝜕𝑤̅𝑛

𝜕𝑡
: 

−𝛼 (𝑢𝑥𝑥|
𝑛+

1
2

− 𝑢𝑥𝑥|
𝑛−

1
2

) ≈ −𝛼 (
𝑢̅𝑛+2 − 2𝑢̅𝑛+1 + 𝑢̅𝑛

(∆𝑥)2
−

𝑢̅𝑛 − 2𝑢̅𝑛−1 + 𝑢̅𝑛−2

(∆𝑥)2
) 

= − 
𝛼

(∆𝑥)2
(𝑢̅𝑛+2 − 2𝑢̅𝑛+1 + 2𝑢̅𝑛−1 − 𝑢̅𝑛−2). (3.18) 

3.5 Semi-Discrete Equations: 

Combining these results, the semi-discrete system for the cell averages is: 

𝜕𝑢̅𝑛

𝜕𝑡
=

1

Δ𝑥
(𝑊𝑛

+ − 𝑊𝑛
−), (3.19) 

𝜕𝑤̅𝑛

𝜕𝑡
=

1

∆𝑥
[
𝑈𝑛

+ − 𝑈𝑛
− − 2𝛽𝑢̅𝑛𝑈𝑛

+ + 2𝛽𝑢̅𝑛𝑈𝑛
− − 𝛽(𝑈𝑛

+)2 + 𝛽(𝑈𝑛
−)2

−
𝛼

(∆𝑥)2
(𝑢̅𝑛+2 − 2𝑢̅𝑛+1 + 2𝑢̅𝑛−1 − 𝑢̅𝑛−2)

] . (3.20) 

The equation (3.20) can be written as: 
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𝜕𝑤̅𝑛

𝜕𝑡
=

1

∆𝑥
[𝑈𝑛

+ − 𝑈𝑛
− − 2𝛽𝑢̅𝑛𝑈𝑛

+ + 2𝛽𝑢̅𝑛𝑈𝑛
− − 𝛽(𝑈𝑛

+)2 + 𝛽(𝑈𝑛
−)2]

− 
𝛼

(∆𝑥)3
(𝑢̅𝑛+2 − 2𝑢̅𝑛+1 + 2𝑢̅𝑛−1 − 𝑢̅𝑛−2). (3.21)

3.6 Time Integration 

The numerical scheme is integrated in time using the second-order Runge-Kutta (RK2) method, 

which offers improved accuracy and stability over the standard Euler method (LeVeque, 2002). At 

each time step, two intermediate evaluations of the right-hand side (RHS) are performed: one at 

the current time level and one at a midpoint estimate. The final update is computed by averaging 

these two RHS evaluations. This approach enhances the ability of the solver to capture nonlinear 

and dispersive wave interactions with better temporal resolution. 

3.6.1 Fully Discrete Scheme 

In implementation, we use a second-order Runge–Kutta scheme for improved accuracy. 

Update for 𝑢̅𝑛 

𝑢̅𝑛
𝑘+1 = 𝑢̅𝑛

𝑘 +
∆𝑡

∆𝑥
(𝑊𝑛

+ − 𝑊𝑛
−)𝑘. (3.22) 

Update for 𝑤̅𝑛 

𝑤̅𝑛
𝑘+1 = 𝑤̅𝑛

𝑘 +
∆𝑡

∆𝑥
[𝑈𝑛

+ − 𝑈𝑛
− − 2𝛽𝑢̅𝑛𝑈𝑛

+ + 2𝛽𝑢̅𝑛𝑈𝑛
− − 𝛽(𝑈𝑛

+)2 + 𝛽(𝑈𝑛
−)2]𝑘

−∆𝑡 (
𝛼

(∆𝑥)3
(𝑢̅𝑛+2 − 2𝑢̅𝑛+1 + 2𝑢̅𝑛−1 − 𝑢̅𝑛−2))

𝑘

. (3.23)

Here 𝑘 denotes the time level 𝑡𝑘 = 𝑘∆𝑡. The superscript ′k′ outside the parentheses indicates that 

all terms within those parentheses 𝑢̅𝑛, 𝑈𝑛
+, 𝑈𝑛

− are evaluated using values known at time level 𝑘.

Riemann invariants 

For the linearized system (𝛼 = 𝛽 = 0), the governing equations reduce to: 

𝑢𝑡 = 𝑤𝑥 , 𝑤𝑡 = 𝑢𝑥 . (3.24) 

The characteristic variables are the Riemann invariants 

𝑅+ = 𝑤 + 𝑢𝑥 ,    𝑅− = 𝑤 − 𝑢𝑥, (3.25)

These describe right- and left-propagating waves, respectively. Using this property, the interface 

relations become: 

𝑊𝑛
+ = 𝑈𝑛

+,   𝑊𝑛
− = −𝑈𝑛

−. (3.26) 



18 

This connection ensures that the fluxes are represented consistently in terms of the excess 

quantities. 

Excess quantities at time level k 

The excess quantities 𝑈𝑛
+ (contribution from interface 𝑛 + 1/2) and 𝑈𝑛

− (contribution from interface

𝑛 − 1/2) are calculated at time level k using the Riemann invariants based on 𝑢̅𝑘 , 𝑤̅𝑘 from adjacent 

cells: 

𝑈𝑛
+ =

1

2
(𝑢̅𝑛+1

𝑘 − 𝑢̅𝑛
𝑘 + 𝑤̅𝑛+1

𝑘 − 𝑤̅𝑛
𝑘)(Associated with right interface of cell n)

𝑈𝑛
− =

1

2
(−𝑢̅𝑛

𝑘 + 𝑢̅𝑛−1
𝑘 + 𝑤̅𝑛

𝑘 − 𝑤̅𝑛−1
𝑘 )(Associated with left interface of cell n)

3.6.2 Stability Considerations 

Although the explicit Euler method is easy to implement, its stability depends on the CFL (Courant–

Friedrichs–Lewy) condition (Courant et al., 1928), which in our case is influenced by: 

• The maximum wave speed (related to the soliton speed 𝑐).

• The nonlinear coefficient 𝛽.

• The dispersive coefficient 𝛼.

• The spatial step size Δ𝑥.

In practice, the time step Δ𝑡 is chosen small enough such that: 

∆𝑡 ≤ 𝐶 ∙
∆𝑥

max|𝑐eff|
, (3.27) 

where 𝐶 < 1 is a safety factor and 𝑐eff is an effective wave speed based on the analytical soliton. 

For simulations involving high-order dispersion and nonlinear steepening, smaller values of Δ𝑡 are 

often necessary to prevent numerical instabilities. 

3.6.3 Implementation Notes 

• Initial Conditions: Values of 𝑢̅𝑛
0  and 𝑤̅𝑛

0 are set using the analytical one- or two-soliton

solution.

• Ghost Cells: The stencil for the dispersive term requires data at 𝑛 ± 2. Thus, ghost cells

(padding cells) are used at the boundaries to ensure correct evaluations.

• Filtering (optional): In long-time simulations, applying a Savitzky–Golay filter (Savitzky &

Golay, 1964) or other smoothing filter to 𝑢̅𝑛 or 𝑤̅𝑛 can help reduce spurious oscillations

introduced by dispersive effects.
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3.6.4 Summary of Algorithm Steps 

1. Initialize:

• 𝑢̅𝑛
0 = 𝑢(𝑥𝑛 , 0)

• 𝑤̅𝑛
0 = value defined consistently with the analytical initial condition.

o For a single soliton moving to the right with velocity c: 𝑤̅𝑛
0 = −𝑐 ∙ 𝑢(𝑥𝑛, 0).

o For two solitons moving in opposite directions:

𝑤̅𝑛
0 = −𝑐 ∙ 𝑢1(𝑥𝑛, 0) + 𝑐 ∙ 𝑢2(𝑥𝑛, 0).

2. At each time step 𝑘:

• Apply boundary conditions (ghost cells)

• Compute excess quantities 𝑈𝑛
+, 𝑈𝑛

−

• Update 𝑢̅𝑛
𝑘+1  using the flux difference

• Update 𝑤̅𝑛
𝑘+1 using the full RHS (linear, nonlinear, dispersive terms)

3. Repeat until final time

3.6.5 Filtering 

To reduce numerical noise—especially from steep gradients and dispersive interactions—a Savitzky-

Golay filter (Savitzky & Golay, 1964) is applied after each time step to both 𝑢 and 𝑤. This post-

processing step preserves the overall shape of the solution while suppressing spurious oscillations 

introduced by discretization. 
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4 Initial Conditions 

To simulate solitonic wave propagation in microstructured solids, the numerical scheme must be 

initialized with suitable wave profiles that reflect the physical properties of the Boussinesq-type 

equation. This section presents the analytical soliton solution used to define initial conditions for 

both single- and two-soliton configurations. These profiles serve as a benchmark for validating the 

finite volume scheme and observing nonlinear interactions such as collision and separation. 

4.1 Single-Soliton Initial Condition 

We begin with the analytical single-soliton solution of the Good Boussinesq-type equation, which 

provides a benchmark for validating the numerical scheme (Bona et al., 2002; Drazin, 1989). The 

solitary-wave form is: 

𝑢(𝑥, 𝑡) = 𝐴 ∙ sech2(𝜅(𝑥 − 𝑐𝑡 − 𝑥0)), (4.1) 

where: 

• 𝑢(𝑥, 𝑡) is the displacement field.

• 𝐴 is the amplitude of the wave.

• 𝑘 is the inverse width parameter.

• 𝑐 is the soliton speed.

• 𝑥0 is the initial center of the pulse.

The parameters 𝐴 and 𝑘 are related to the nonlinear and dispersive coefficients 𝛽 and 𝛼 via: 

𝐴 =
3(𝑐2−1)

2𝛽
  ,

𝜅 = √
(𝑐2−1)

4𝛼
. (4.2) 

These expressions ensure that the initial profile satisfies the governing equation under steady-state 

propagation. The parameter 𝜅 directly controls the spatial width of the soliton: larger 𝜅 values 

produce narrower and taller pulses, whereas smaller values yield broader and flatter profiles. 

In our simulation, we set the initial time 𝑡 = 0, and the initial displacement is defined as: 

𝑢(𝑥, 𝑡) = 𝐴 ∙ sech2(𝜅(𝑥 − 𝑥0)), (4.3) 

where 𝑥0 is chosen to center the pulse within the computational domain to avoid interaction with 

boundaries. Typically, 𝑥0 = 𝐿/2 for a domain of length 𝐿. 

The corresponding auxiliary variable 𝑤(𝑥,𝑡), associated with momentum, can be determined by: 

𝑤(𝑥, 0) = −𝑐
𝜕𝑢

𝜕𝑥
(𝑥, 0). (4.4) 
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Evaluating this derivative yields: 

𝑤(𝑥, 0) = 2𝐴𝑐𝜅 ∙ sech2[𝜅(𝑥 − 𝑥0)] ∙ tanh[𝜅(𝑥 − 𝑥0)] . (4.5) 

This formulation ensures that the initial wave is not only shaped correctly but also travels in the 

positive 𝑥-direction due to the positive momentum imparted by 𝑤(𝑥, 0). The corresponding 

analytical profiles of 𝑢(𝑥, 0) and 𝑤(𝑥, 0) are displayed in Figure 4.1, which illustrates the initial 

soliton shape and its associated momentum distribution derived from the analytical solution of the 

Boussinesq-type equation (Bona et al., 2002; Sjölander, 2021).   

Figure 4.1: Initial displacement 𝑢(𝑥,0) and corresponding velocity field 𝑤(𝑥,0) for a single soliton centered at 𝑥0 = 5. 

The fields are computed from the analytical solution of the normalized Boussinesq-type equation 

4.2 Initial Condition with Two Solitons 

To study nonlinear wave interaction, the initial condition is extended to include two counter-

propagating solitons constructed from the analytical single-soliton profiles described in Section 4.1 

(Bona et al., 2002; Sjölander, 2021). The total displacement field is constructed by superposing two 

single solitons centered at symmetric positions: 

𝑢(𝑥, 𝑡) = 𝐴 ∙ sech2(𝜅(𝑥 − 𝑥0)) + 𝐴 ∙ sech2(𝜅(𝑥 + 𝑥0)). (4.6) 

In this setup, the first soliton is centered at +𝑥0  and propagates to the left, while the second is 

centered at −𝑥0 and propagates to the right. The symmetry of the configuration allows us to 

observe collision and separation dynamics without interference from boundaries, provided the 

domain is sufficiently large. 

The initial momentum field 𝑤(𝑥,0) is derived by taking the time derivative of the analytical solution: 

𝑤(𝑥, 0) = −𝑐 ∙
𝜕𝑢1

𝜕𝑥
(𝑥, 0) + 𝑐 ∙

𝜕𝑢2

𝜕𝑥
(𝑥, 0). (4.7) 
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Since the total displacement is a sum of two solitons, the resulting momentum becomes: 

𝑤(𝑥, 0) = −2𝐴𝑐𝜅 ∙ sech2[𝜅(𝑥 − 𝑥0)] ∙ tanh[𝜅(𝑥 − 𝑥0)]

+2𝐴𝑐𝜅 ∙ sech2[𝜅(𝑥 + 𝑥0)] ∙ tanh[𝜅(𝑥 + 𝑥0)] . (4.8)

This ensures that one soliton is initialized with positive momentum (moving left to right) and the 

other with negative momentum (moving right to left), both starting symmetrically about the origin. 

The resulting analytical profiles of 𝑢(𝑥, 0) and 𝑤(𝑥,0) are presented in Figure 4.2, which visualizes 

the symmetric two-soliton setup used throughout the numerical experiments. 

Figure 4.2: Initial displacement 𝑢(𝑥,0) and velocity field 𝑤(𝑥,0) for a two-soliton configuration. 

The profile shows two identical solitons positioned symmetrically at ±𝑥0 , propagating toward each other with opposite 
velocities based on the analytical expression. 

4.3 Effect of Soliton Width (𝜅) 

It is important to note that the soliton width is inversely related to the parameter 𝜅. For larger values 

of 𝜅, the solitons become narrower and steeper, which can cause numerical difficulties if not 

adequately resolved by the spatial grid. Conversely, smaller values of 𝜅 result in broader solitons, 

which are easier to resolve but slower-moving. 

In practice, choosing moderate values of 𝛼 and 𝑐 leads to manageable values of 𝜅 and well-resolved 

soliton shapes within a fixed grid resolution. Figure 4.3 compares analytical profiles for different 𝜅 

values, highlighting how increased dispersion (larger 𝛼) broadens the soliton, whereas stronger 

nonlinearity (larger 𝛽) sharpens it. These analytical relations guide the parameter choices for 

subsequent numerical tests. 
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Figure 4.3: Comparison of soliton profiles for different values of the inverse width parameter 𝜅. 

Increasing 𝜅 results in sharper, narrower solitons, illustrating the sensitivity of the soliton shape to dispersion and wave 
speed parameters. 

4.4 Spatial Domain and Grid Resolution 

To ensure the accurate resolution of solitonic structures and to prevent artificial reflections from 

boundary conditions, specific choices must be made regarding the spatial domain and grid 

resolution. 

The computational domain is defined over a symmetric interval 𝑥 ∈ [−𝐿, 𝐿], where 𝐿 is chosen such 

that the soliton(s) remain well-separated from the boundaries throughout the simulation time. For 

all numerical experiments in this thesis, we typically set 𝐿 = 20 or larger depending on the soliton 

width and speed. 

The spatial resolution is governed by the grid spacing ∆𝑥 =
2𝐿

𝑁
, where 𝑁 is the number of grid cells. 

To properly resolve the soliton shape, the following guideline is applied: 

 𝜅 ≫ ∆𝑥−1. 

This ensures that each soliton spans at least 20–30 spatial points, preventing numerical aliasing and 

capturing fine-scale features such as tails and dispersion effects. 

Additionally, the total simulation time is chosen such that the solitons do not reach the boundaries, 

avoiding spurious reflections. When necessary, absorbing (non-reflective) boundary conditions are 

applied or the time integration is stopped prior to any boundary interaction. 

These considerations ensure numerical stability, minimize truncation errors, and maintain physical 

accuracy in the comparison between numerical and analytical solutions. 
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5 Comparison of Numerical and Analytical Solutions 

Parameter Set: 

Table 1: Parameters used in the numerical simulations of the Boussinesq-type equation. 

Symbol Value / Description 

𝛼 1.5 

𝛽 0.5 

𝑐 1.10 

𝐴 0.63 

𝜅 0.187 (𝑤𝑖𝑑𝑡ℎ ≈  5.34) 

𝛥𝑥 0.5 

𝛥𝑡 0.0167 

𝐿 120 

𝑇 10 

𝑥₀₁ 48 

𝑥₀₂ 72 

𝑡ₘₑₑₜ ≈ 10 

For the numerical experiments, two initial configurations were considered: (i) separated solitons 

with centres 𝑥01 = 36, 𝑥02 = 84, which do not collide within 𝑇 = 10, and (ii) interacting solitons 

with centers 𝑥01 = 48, 𝑥02 = 72, resulting in a collision at approximately 𝑡 ≈ 10. These values were 

chosen to ensure a balance between nonlinearity and dispersion while restricting simulations to 

about two–three soliton widths. 

5.1 Overview 

This chapter validates the finite volume scheme introduced in Chapter 3 by comparing its 

predictions with known analytical solutions of the good Boussinesq equation. Both single- and two-

soliton problems are studied in order to test the scheme’s ability to capture propagation, 

interaction, and recovery of solitons. In addition to qualitative comparisons of numerical and 

analytical profiles, a three-dimensional representation is provided to visualize the interaction, and 

quantitative accuracy is assessed using the 𝐿2 error norm. 

5.2 Single Soliton Propagation 

As a first validation, a single right-moving soliton was simulated with the parameters listed in the 

parameter set. The analytical soliton solution has amplitude 𝐴 = 0.63 and width 𝜅 − 1 ≈ 5.34. The 
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initial condition was centered at 𝑥0  = 0.35 𝐿, with 𝑤(𝑥, 0) = −𝑐𝑢(𝑥, 0), ensuring consistency with 

the definition 𝑢𝑡 = 𝑤𝑥 . 

Figure 5.1 shows the surface plot of numerical solution 𝑢(𝑥, 𝑡) over the simulation window 𝑇 = 10. 

The soliton crest follows a clear diagonal trajectory, corresponding to the constant soliton velocity 

𝑐 = 1.10. The soliton maintains both shape and amplitude without noticeable distortion, indicating 

that the scheme successfully balances the nonlinear and dispersive Boussinesq-type equation. 

Figure 5.1: Numerical propagation of a single soliton using the finite volume scheme. 

Parameters: α=1.5, β=0.5, c=1.10, A=0.63, κ=0.187 (width ≈5.34), Δx=0.5, Δt=0.0167, L=120, T=10 The soliton crest 
follows a diagonal trajectory at constant velocity, preserving amplitude and shape without distortion. 

To further clarify the soliton motion, Figure 5.2 presents the contour map of 𝑢(𝑥, 𝑡). 

The bright ridge represents the crest of the soliton, while the dashed line indicates the analytical 

trajectory of the soliton center, derived from the argument of the analytical solution 

𝑢(𝑥, 𝑡) = 𝐴 ∙ sech2(𝜅(𝑥 − 𝑐𝑡 − 𝑥0)), (5.1) 

which implies that the peak moves at a constant speed 𝑐. 
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Figure 5.2: Contour map of the numerical single-soliton solution 𝑢(𝑥, 𝑡). 

Parameters as in Figure 5.1. 

Together, the surface and contour plots verify that the numerical implementation provides a stable 

and highly accurate representation of single-soliton dynamics. 

5.3 Two Solitons Propagation Comparison at Selected Times 

To further challenge the scheme, the head-on interaction of two solitons was studied. The initial 

positions were chosen as 𝑥01 = 36 and 𝑥02 = 84. With this configuration, the solitons approach 

one another but do not collide within the simulated time 𝑇 = 10. This test isolates the propagation 

dynamics and validates numerical stability over long distances without the complexity of 

interaction. 

Figure 5.3 presents the numerical and analytical solutions at selected times (𝑡 = 0,3,5,8). These 

time instants were chosen to illustrate the pre-interaction phase: at 𝑡 = 0 the solitons are well 

separated; at 𝑡 = 3 and 𝑡 = 5 they approach each other; and at 𝑡 = 8 they are close but have not 

yet overlapped. When the solitons are far apart (𝑡 = 0,3), the agreement is nearly exact. As the 

waves approach (𝑡 = 5, 8), minor discrepancies appear near the crests, but the solitons retain their 

speed and shape. The shaded error regions remain small, demonstrating that the scheme accurately 

tracks soliton propagation even as the waves converge. 
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Figure 5.3: Two-soliton propagation without collision (pre-collision). 

Numerical and analytical profiles compared at t=0, 3, 5, and 8. Parameters: α=1.5, β=0.5, c=1.10, A=0.63, κ=0.187, 
Δx=0.5, Δt=0.0167, L=120, T=10; centers 𝑥01=36, 𝑥02=84. 

5.4 Two Solitons Interaction (Collision) 

To evaluate the scheme under nonlinear interaction, the solitons were initialized closer, at 𝑥01 = 48 

and 𝑥02 = 72. In this configuration, the solitons approach each other and collide at approximately 

𝑡 = 10. 

Figure 5.4 shows the numerical and analytical solutions at two representative times: the initial state 

(𝑡 = 0) and during collision (𝑡 = 10). At 𝑡 = 0, the numerical and analytical profiles coincide 

almost perfectly, confirming that the initial condition is well captured. During the collision, the 

numerical scheme slightly underestimates the crest height compared to the analytical solution. 

Nevertheless, the overall timing and structure of the interaction are accurately preserved. 



28 

Figure 5.4: Two-soliton interaction with collision. 

Numerical and analytical profiles compared at 𝑡 = 0, and during collision (𝑡 = 10). Parameters as in separated case, 
except centers 𝑥01 = 48, 𝑥02 = 72. 

5.5 Surface Visualization 

To illustrate the full spatiotemporal evolution of the interaction, we render the numerical solution 

𝑢(𝑥, 𝑡)as a surface plot (Figure 5.5). Two diagonal ridges are visible: they represent the trajectories 

of the right-moving and left-moving solitons. As the waves approach, a localized, transient increase 

in amplitude is observed near the center of the domain. The surface view is useful for seeing the 

overall geometry of the interaction and the absence of spurious oscillations away from the soliton 

cores. 

Because the perspective and shading of a 3D surface can mask fine timing and trajectory details, we 

also provide a contour map of 𝑢(𝑥, 𝑡)on the (𝑥, 𝑡)-plane (Figure 5.6). In this representation the 

soliton crests appear as bright bands whose separation decreases during approach and increases 

after interaction. The contour map complements the surface plot view by making the propagation 

paths and the near-collision region clearly visible without depending on viewpoint. 
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Figure 5.5: The surface plot view of two-soliton interaction (good Boussinesq). 

Diagonal ridges represent soliton trajectories; a transient amplitude increase is observed during interaction before 
recovery. Parameters: α=1.5, β=0.5, c=1.10, A=0.63, κ=0.187, Δx=0.5, Δt=0.0167, L=120, T=10.  

Figure 5.6: Contour map of 𝑢(𝑥, 𝑡) for the two-soliton case. 

The bands corresponding to the two crests approach, overlap locally, and then separate, providing a clear 2D view of the 
interaction that complements Figure 5.5. 
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5.6 𝐋𝟐 Error Norm Analysis 

To quantify the accuracy of the numerical method, the L2 error norm between the numerical and 

analytical solutions was computed at each time step using: 

𝐿2(𝑡) = √∫(𝑢num(𝑥, 𝑡) − 𝑢ana(𝑥, 𝑡))
2

𝑑𝑥. (5.2) 

Figure 5.7 shows the error evolution over time. The error remains negligible during the early stages 

of propagation, rises during the collision, and stabilizes afterwards. This behaviour reflects the 

increased numerical challenge at the point of constructive overlap but confirms that the scheme 

maintains stability and bounded error throughout.  

Figure 5.7: 𝐿2 error vs time for two-soliton interaction. Error rises during collision but remains small overall, stabilizing 
after separation. 

5.7 Discussion 

The combined tests demonstrate that the finite volume scheme accurately reproduces soliton 

behaviour in the Boussinesq equation. The single soliton case validated the method’s ability to 

preserve amplitude and trajectory. The two-soliton propagation confirmed stability and agreement 

with analytical profiles across multiple soliton widths. The collision test showed that the scheme 

captures constructive overlap with only minor amplitude underestimation. Finally, the L2 error 

analysis provided quantitative confirmation of accuracy and robustness. 

Together, these results demonstrate that the scheme successfully balances nonlinearity and 

dispersion and can describe both soliton propagation and soliton interaction with high fidelity. 
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6 Extension of the Boussinesq Equation with Internal Variables 

6.1 Theoretical Background 

Wave propagation in solids with microstructure cannot be fully described by the classical Boussinesq 

equation, which accounts only for macroscopic strain and its gradients. To incorporate internal 

degrees of freedom associated with the microstructure, the framework of internal variables is 

adopted (Berezovski et al., 2013).  

Before introducing this generalized formulation, the classical free-energy density leading to the 

standard Boussinesq equation is briefly reviewed. 

Free energy 

Free energy per unit volume corresponding to the Boussinesq equation can be expressed as: 

𝜓 =
𝜌𝑐2

2
𝑢𝑥

2 − 𝑎(𝑢2)𝑥𝑢𝑥 − 𝐷𝑢𝑥𝑥𝑥𝑢𝑥, (6.1) 

where 

• 𝜌 is the matter density.

• 𝑐 is the sound velocity.

• 𝑎 is the coefficient of quadratic nonlinearity.

• 𝐷 is the dispersive material constant.

The first term represents linear elastic energy, the second introduces weak nonlinearity, and the 

third accounts for dispersion associated with strain gradients. 

From the balance of momentum 

𝜕

𝜕𝑡
(𝜌𝑣) =

𝜕𝜎

𝜕𝑥
, (6.2) 

together with the stress calculation 

𝜎 =
𝜕𝜓

𝜕𝑢𝑥
=  𝜌𝑐2𝑢𝑥 − 𝑎(𝑢2)𝑥 − 𝐷𝑢𝑥𝑥𝑥, (6.3) 

the governing equation becomes 

(𝜌𝑢)𝑡𝑡 − 𝜌𝑐2𝑢𝑥𝑥 + 𝑎(𝑢2)𝑥𝑥 + 𝐷𝑢𝑥𝑥𝑥𝑥 = 0. (6.4) 

Dividing by 𝜌 and normalizing leads to the classical Boussinesq-type equation 

𝑢𝑡𝑡 − 𝑐2𝑢𝑥𝑥 +
𝑎

𝜌
(𝑢2)𝑥𝑥 +

𝐷

𝜌
𝑢𝑥𝑥𝑥𝑥 = 0. (6.5) 
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This form captures the balance between nonlinearity and dispersion that supports soliton solutions. 

Extended free energy (with internal variable) 

To capture the influence of microstructure, the free energy density is extended to depend not only 

on the strain 𝑢𝑥 but also on an additional internal variable 𝜑: 

𝜓 =
𝜌𝑐2

2
𝑢𝑥

2 − 𝑎(𝑢2)𝑥𝑢𝑥 − 𝐷𝑢𝑥𝑥𝑥𝑢𝑥 + 𝐵𝜑𝑥𝑢𝑥 +
1

2
𝐶𝜑2, (6.6) 

where 

• 𝜌 is the mass density.

• 𝑐 is the linear wave speed.

• 𝑎 is the coefficient of quadratic nonlinearity.

• 𝐷 is the dispersive material constant.

• 𝐵, 𝐶 describe the coupling and stiffness of the internal variable.

Macrostress and Equation of Motion 

The corresponding macrostress is obtained from the derivative of the free energy with respect to 

the strain component 𝑢𝑥: 

𝜎 =
𝜕𝜓

𝜕𝑢𝑥
= 𝜌𝑐2𝑢𝑥 − 𝑎(𝑢2)𝑥 − 𝐷𝑢𝑥𝑥𝑥 + 𝐵𝜑𝑥. (6.7) 

The balance of linear momentum can then be written as: 

𝜌𝑢𝑡𝑡 = 𝜌𝑐2𝑢𝑥𝑥 − 𝑎(𝑢2)𝑥𝑥 − 𝐷𝑢𝑥𝑥𝑥𝑥 + 𝐵𝜑𝑥𝑥. (6.8)

For a non-dissipative microstructured solid (Berezovski, 2017), the internal variable obeys 

a simple proportionality law between the strain curvature and the microstructural response 

𝐵𝑢𝑥𝑥 − 𝐶𝜑 = 0, (6.9) 

which yields the relation 

𝜑 =
𝐵

𝑢𝑥𝑥. (6.10) 
𝐶

This relation implies that the internal variable is directly proportional to strain gradient. 

Final governing equation 

By substituting Eq. (6.10) into Eq. (6.8), one obtains a single governing equation for the displacement 

field 𝑢(𝑥, 𝑡): 
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𝜌𝑢𝑡𝑡 = 𝜌𝑐2𝑢𝑥𝑥 − 𝑎(𝑢2)𝑥𝑥 − 𝐷𝑢𝑥𝑥𝑥𝑥 +
𝐵2

𝐶
𝑢𝑥𝑥𝑥𝑥. (6.11) 

Dividing by 𝜌 gives the normalized form 

𝑢𝑡𝑡 − 𝑐2𝑢𝑥𝑥 +
𝑎

𝜌
(𝑢2)𝑥𝑥 + (

𝐷

𝜌
−

𝐵2

𝜌𝐶
) 𝑢𝑥𝑥𝑥𝑥 = 0, (6.12) 

which represents the Boussinesq-type equation with an internal variable. The last term modifies 

the effective dispersive coefficient and thereby alters the soliton shape. 

When 𝐵 =  0, the equation reduces to the classical Boussinesq form, while for finite 𝐵 and 𝐶, the 

influence of the internal variable increases the effective dispersion, slightly narrowing and 

localizing the soliton compared to the classical case. 

Connection to the classical Boussinesq form 

Comparing with the classical Boussinesq equation used in Sections 2–5, 

𝑢𝑡𝑡 − 𝑐2𝑢𝑥𝑥 +
𝑎

𝜌
(𝑢2)𝑥𝑥 + 𝛼eff𝑢𝑥𝑥𝑥𝑥 = 0, (6.13) 

we see that the presence of the internal variable modifies only the dispersive term. The effective 

dispersion coefficient (Bona et al., 2002; Berezovski & Engelbrecht, 2010) is 

𝛼eff = (
𝐷

𝜌
−

𝐵2

𝜌𝐶
) , (6.14) 

which replaces 𝛼 in the classical model. Depending on the values of 𝐵 and 𝐶, the microstructural 

effect may either increase or decrease the strength of dispersion. 

6.2 Modification to the Numerical Scheme 

The finite volume method developed in Section 3 remains applicable for the Boussinesq equation 

with internal variables. The structure of the system, consisting of nonlinear and dispersive terms, is 

preserved. The only modification is the change in the dispersion coefficient from its classical value 

𝛼 to the effective one 𝛼eff. 

Semi-discrete scheme 

For the classical case, the semi-discrete form of the governing equations was written as 

𝜕𝑢̅𝑛

𝜕𝑡
=

1

Δ𝑥
(𝑊𝑛

+ − 𝑊𝑛
−), (6.15) 

𝜕𝑤̅𝑛

𝜕𝑡
=

1

∆𝑥
[
𝑈𝑛

+ − 𝑈𝑛
− − 2𝛽𝑢̅𝑛𝑈𝑛

+ + 2𝛽𝑢̅𝑛𝑈𝑛
− − 𝛽(𝑈𝑛

+)2 + 𝛽(𝑈𝑛
−)2

−
𝛼

(∆𝑥)2
(𝑢̅𝑛+2 − 2𝑢̅𝑛+1 + 2𝑢̅𝑛−1 − 𝑢̅𝑛−2)

] . (6.16) 
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In the presence of internal variables, the scheme retains its form, but the dispersive term is modified 

by replacing 𝛼 with 𝛼eff: 

𝛼eff = (
𝐷

𝜌
−

𝐵2

𝜌𝐶
) . (6.17) 

Thus, the dispersive contribution becomes: 

𝜕𝑤̅𝑛

𝜕𝑡
=

1

∆𝑥
[
𝑈𝑛

+ − 𝑈𝑛
− − 2𝛽𝑢̅𝑛𝑈𝑛

+ + 2𝛽𝑢̅𝑛𝑈𝑛
− − 𝛽(𝑈𝑛

+)2 + 𝛽(𝑈𝑛
−)2

−
𝛼eff

(∆𝑥)2
(𝑢̅𝑛+2 − 2𝑢̅𝑛+1 + 2𝑢̅𝑛−1 − 𝑢̅𝑛−2)

] . (6.18) 

Fully discrete scheme 

In the time discretization, no changes are required. The same explicit Runge–Kutta method as 

described in Section 3.6.2 can be applied, subject to the same CFL-type stability (LeVeque, 2002). 

Implementation in the code 

From a computational point of view, incorporating microstructural effects into the finite volume 

solver requires only a minor modification in the dispersive term. The constant dispersion coefficient 

used in the classical formulation is replaced by the effective dispersive coefficient 𝛼eff, derived in 

Section 6.1. 

This modification ensures that the influence of the coupling between the internal variable and the 

strain curvature is correctly represented in the numerical model. All other components of the 

solver—such as the computation of nonlinear fluxes, the temporal integration scheme, and the 

filtering strategy (Savitzky & Golay, 1964)—remain unchanged. 

6.3 Numerical Experiments 

To demonstrate the influence of internal variables on wave propagation, unless stated otherwise, 

all tests use the same spatial and temporal discretization as in Section 5, but with the dispersive 

coefficient replaced by 

𝛼eff =
𝐷

𝜌
−

𝐵2

𝜌𝐶
. (6.19) 

The finite volume scheme and time-stepping algorithm are unchanged, ensuring that any 

differences in the results are entirely due to the microstructural contribution. Two sets of 

microstructural parameters were considered in order to illustrate the limiting effects of the coupling 

strength. 

For both cases the material density was kept constant, 𝜌 = 1.0, and the classical nonlinearity and 

soliton velocity were the same as before, 𝛽 = 0.5 and 𝑐 = 1.10. The parameters 𝐵, 𝐶 and 𝐷 were 

adjusted to obtain two representative effective dispersion coefficients: 
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Case I: 𝐷 = 1.5, 𝐵 = 1.0, 𝐶 = 3.0 ⇒  𝛼eff = 0.5, 

Case II: 𝐷 = 1.5, 𝐵 = 2.0, 𝐶 = 1.0 ⇒  𝛼eff = 3.0. 

These two configurations represent opposite microstructural responses. The smaller 𝛼eff 

corresponds to stronger internal coupling and reduced dispersion, producing a more localized 

soliton, whereas the larger 𝛼eff reflects weaker coupling and enhanced dispersion that broadens 

the wave profile. 

The soliton amplitude and inverse width for each case are determined from 

𝐴sol =
3(𝑐2 − 1)

2𝛽
, (6.20) 

and 

𝜅 = √
𝑐2 − 1

4𝛼eff
. (6.21) 

The time step satisfies a CFL restriction combining advection and dispersion (cf. Section 3.6.2), now 

with  𝛼eff in the dispersive bound. 

6.3.1 Effect of Microstructure on Soliton Propagation 

To illustrate the effect of microstructural coupling on soliton behaviour, the numerical solution of a 

single right-moving soliton was simulated for the three cases introduced above: 

(i) The classical Boussinesq equation without internal variables (𝐵 = 0, 𝛼 = 1.5). 

(ii) Case I with microstructural parameters 𝐷 = 1.5, 𝐵 = 1.0, 𝐶 = 3.0, giving 𝛼eff = 0.5. 

(iii) Case II with 𝐷 = 1.5, 𝐵 = 2.0, 𝐶 = 1.0, giving 𝛼eff = 3.0.  

All simulations used the same spatial and temporal discretization as in Section 5, ensuring that 𝛼eff 

is the only parameter that changes. 

The soliton profiles were examined at time 𝑡0 = 5, corresponding to steady propagation without 

boundary interaction. 

Figure 6.1 shows the resulting soliton shapes for the three cases. For 𝛼eff = 0.5  (Case I), the soliton 

becomes slightly narrower and more localized, indicating reduced dispersion and stronger 

confinement of wave energy. 

In contrast, for 𝛼eff = 3.0 (Case II), the soliton broadens noticeably, reflecting the dominance of 

dispersive effects due to weaker microstructural coupling. 

The classical case 𝛼 = 1.5 lies between these two extremes. 
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Despite these differences in width, the soliton amplitude and propagation velocity remain nearly 

constant for all three cases, confirming that the internal variable primarily alters the dispersive 

character of the medium while preserving the nonlinear amplitude–velocity balance. 

This demonstrates that the microstructural model provides a physically consistent mechanism for 

dispersion tuning through internal coupling strength. 

Figure 6.1: Soliton profiles with and without internal variables. 

B=0 (classical Boussinesq equation, α=1.50) and B≠0 (microstructured case, 𝛼𝑒𝑓𝑓 = 3.0 and 𝛼𝑒𝑓𝑓 = 0.5) at 𝑡0=5. 

6.3.2 Discussion 

The numerical experiments incorporating internal variables highlight the sensitivity of soliton 

dynamics to microstructural effects. The introduction of the effective dispersion coefficient 𝛼eff 

modifies the soliton width and phase behaviour while preserving the overall amplitude–velocity 

balance. These findings are consistent with earlier theoretical and numerical studies on dispersive 

wave propagation in microstructured solids (Engelbrecht et al., 2005; Engelbrecht et al., 2007; 

Engelbrecht et al., 2011). 

By systematically varying 𝛼eff, the present study demonstrates how microstructural coupling 

influences soliton localization. For 𝛼eff = 0.5 (strong coupling), the soliton becomes narrower and 

more localized due to the reduced dispersion, while for 𝛼eff = 3.0 (weak coupling), it broadens 

because of enhanced dispersive effects. The classical case (𝛼 = 1.5) represents an intermediate 

regime where nonlinearity and dispersion remain balanced. These observations align with the 

theoretical prediction that the internal coupling term (−𝐵2/𝜌𝐶) in Eq. (6.19) adjusts the dispersive 

strength of the medium without altering its nonlinear character (Berezovski et al., 2013). 
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This demonstrates that the inclusion of internal variables provides a physically meaningful 

mechanism for representing microstructure within a continuum framework, bridging the gap 

between lattice-based models and macroscopic PDE formulations. The microstructural coupling 

effectively acts as a dispersive tuning parameter, allowing the model to capture a wider range of 

physical behaviours in structured materials. 

From a computational perspective, the finite-volume scheme required only minimal modification

—specifically, replacing the classical dispersion coefficient with the effective parameter. The 

method remained stable, accurate, and energy-conserving across all simulations. This confirms that 

the implemented numerical approach is both robust and flexible, capable of being extended to 

more complex dispersive systems or higher-dimensional microstructured solids. 

6.4 Summary 

The Boussinesq-type equation extended with internal variables successfully models dispersive 

effects arising from microstructure. By replacing the classical dispersion coefficient 𝛼 with its 

effective counterpart 𝛼eff = (𝐷 𝜌⁄ ) − (𝐵2 (𝜌𝐶))⁄ , the governing system captures the localization

and phase-shift behaviour observed in structured materials. 

The comparison between the classical and modified models (Figure 6.1) clearly demonstrates that 

microstructural coupling significantly influences soliton width and localization. For smaller values of 

𝛼eff (e.g. 0.5), the soliton becomes narrower and more localized, while larger values (e.g. 3.0) 

produce broader profiles due to increased dispersion. Despite these variations, the amplitude and 

propagation speed remain stable, confirming that the modification affects only the dispersive term 

without disturbing the nonlinear structure of the equation. 

These findings provide a consistent numerical and physical foundation for analysing the interaction 

between microstructure and wave dynamics. The developed finite-volume approach proves robust 

and accurate for simulating nonlinear dispersive waves in both classical and microstructured 

continua, offering a reliable basis for future studies of wave localization and dispersion control in 

complex materials. 



38 

7 Conclusion 

This thesis has presented a numerical investigation of a Boussinesq-type equation in 

microstructured solids using the finite volume method. The study was divided into two main parts: 

the development and validation of the numerical scheme for the classical equation, and the 

extension of the model to include internal variables representing microstructural effects. 

In the first part, the classical Good Boussinesq equation was considered to establish a reliable 

computational framework. Simulations of single- and two-soliton propagation verified that the finite 

volume method accurately reproduces analytical results, maintaining the characteristic soliton 

properties of stable amplitude, velocity, and shape. The L² error analysis demonstrated smooth, 

bounded behaviour over time, confirming numerical stability and second-order accuracy of the 

discretization scheme. 

In the second part, the equation was extended by introducing an internal variable framework that 

modifies the dispersive coefficient through the effective parameter 𝛼eff. By systematically varying 

𝛼eff (0.5 and 3.0), the influence of microstructural coupling on soliton dynamics was quantified. The 

simulations revealed that smaller 𝛼eff values (strong coupling) lead to narrower, more localized 

solitons, while larger 𝛼eff values (weak coupling) result in broader soliton profiles due to enhanced 

dispersion. Despite these changes, the amplitude–velocity relation remained preserved, 

demonstrating that the internal variable modifies only the dispersive nature of the medium without 

affecting its nonlinear structure. 

The combined results confirmed that the finite volume method is a robust and accurate approach 

for solving nonlinear dispersive wave equations in both classical and microstructured continua. The 

method successfully captured the delicate balance between nonlinearity and dispersion, even 

under modified microstructural conditions. Moreover, the model provides a physically meaningful 

way to tune dispersion through internal parameters, offering insights into wave localization and 

dispersion control in structured materials. 

Overall, this work contributes to the understanding of nonlinear wave propagation in 

microstructured solids and establishes a versatile numerical framework that can be extended to 

higher-dimensional problems, more complex internal variable models, and other classes of 

nonlinear dispersive equations. 



39 

Acknowledgements 

I would like to express my sincere gratitude to my supervisor, Professor Arkadi Berezovski, for his 

continuous guidance, valuable feedback, and encouragement throughout the course of this thesis. 

His expertise and insightful comments have been essential in shaping the direction and quality of 

my work. I am truly grateful for the time he dedicated to reviewing my progress and helping me 

develop a deeper understanding of the subject. 

I would also like to thank our study officer, Maarja Märss, and the Dean’s Office at the School of 

Science for their assistance during the administrative process. Their support—especially regarding 

the procedures for defending my thesis as an external student, important deadlines, and other 

practical matters—was greatly appreciated. 

In addition, I wish to express my appreciation to the authors of the scientific articles, books, and 

previous theses that I consulted during this work. Their research and publications provided essential 

ideas, background knowledge, and methodological guidance that helped me develop and complete 

my thesis. 

Finally, I extend my gratitude to the academic staff of the Department of Cybernetics for providing 

a supportive learning environment throughout my studies. 



40 

References 

Ablowitz, M. J. and H. Segur (1981). Solitons and the Inverse Scattering Transform. Society for 

Industrial and Applied Mathematics, Philadelphia, PA. 

Achenbach, J.D. (1973). Wave Propagation in Elastic Solids. North-Holland. 

Almatrafi, M.B., Alharbi, A.R. & Tunç, C. (2020). Constructions of the soliton solutions to the good 

Boussinesq equation. Advances in Difference Equations, 2020(1), 629 

Berezovski,  A.  (2011).  Thermodynamic  interpretation  of  finite  volume  algorithms. 

Rakenteiden Mekaniikka, 44(3), 191–204. 

Berezovski,  A.  (2018). Internal  variables  associated  with  microstructures  in  solids. Mechanics 

Research Communications, 93, 30 - 34. 

Berezovski, M., Berezovski, A., & Engelbrecht, J. (2010). Waves in materials with microstructure: 

numerical simulation. Proceedings of the Estonian Academy of Sciences, 59(2), 99. 

Berezovski, A., Engelbrecht, J., Berezovski, M. (2011). Dispersive wave equations for solids with 

microstructure. In: Náprstek, J., Horáček, J., Okrouhlík, M., Marvalová, B., Verhulst, F., 

Sawicki, J. (eds). Vibration Problems ICOVP 2011: The 10th International Conference on 

Vibration Problems, pp. 699-705. Dordrecht: Springer Netherlands, 

Berezovski, A., Engelbrecht, J., Salupere, A., Tamm, K., Peets, T., & Berezovski, M. (2013). 

Dispersive waves in microstructured solids. International Journal of Solids and Structures, 

50(11–12), 1981-1990. 

Berezovski, A. & Ván, P. (2017). Internal Variables in Thermoelasticity. Springer, Berlin. 

Bona, J.L., Pritchard, W.G., & Scott, L.R. (1985). Numerical schemes for a model for nonlinear 

dispersive waves, Journal of Computational Physics, 60(2), 167-186 

Bona, J. L., Chen, M., & Saut, J.-C. (2002). Boussinesq equations and other systems for small 

amplitude long waves in nonlinear dispersive media. I: Derivation and linear theory, 

Journal of Nonlinear Sciences, 12: 283–318 

Christov, C., G. Maugin, and M. Velarde (1996). Well-posed Boussinesq paradigm with purely spatial 

higher-order derivatives. Physical Review E 54(4), 3621. 

Debnath, L. (1997). Solitons and the Inverse Scattering Transform. In: Nonlinear Partial 

Differential Equations for Scientists and Engineers. Birkhäuser, Boston, MA.  



41 

Drazin, P. G., & Johnson, R. S. (1989). Solitons: An Introduction. Cambridge: Cambridge University 

Press. 

Dutykh, D., & Clamond, D. (2016). Modified shallow water equations for significantly varying 

seabeds. Applied Mathematical Modelling, 40(23–24), 9767–9787. 

Engelbrecht, J., A. Berezovski, F. Pastrone, and M. Braun (2005). Waves in microstructured 

materials and dispersion. Philosophical Magazine 85(33-35), 4127–4141. 

Engelbrecht, J., A. Berezovski, and A. Salupere (2007). Nonlinear deformation waves in solids and 

dispersion. Wave Motion 44(6), 493–500. 

Engelbrecht, J., A. Salupere, and K. Tamm (2011). Waves in microstructured solids and the 

Boussinesq paradigm. Wave Motion 48(8), 717–726. 

Hirota, R. (1971). Exact solution of the KdV equation for multiple collisions of solitons. Phys. 

Rev. Lett. 27, 1192–1194. 

LeVeque, R. J. (1992). Numerical Methods for Conservation Laws. 2nd ed. Birkhäuser. 

LeVeque, R.J. (2002). Finite Volume Methods for Hyperbolic Problems. Cambridge: Cambridge  

University Press. 

Manoranjan, V.S., Mitchell, A.R., & Morris, J.L. (1984). Numerical solutions of the good 

Boussinesq equation. SIAM journal on scientific and statistical computing, 5(4), 946-957. 

Maugin, G.A. & Muschik, W. (1994). Thermodynamics with internal variables. Part I. General 

concepts. Journal of Non-Equilibrium Thermodynamics. 19(3), 217-249. 

Maugin, G. A. (1999). Nonlinear Waves in Elastic Crystals. Oxford University Press 

Muschik, W. (1990). Internal variables in non-equilibrium thermodynamics. Journal of Non- 

Equilibrium Thermodynamics 15(2):127-138 

Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least 

squares procedures. Analytical Chemistry, 36(8), 1627–1639. 

Sjölander, F. (2021). Numerical Solutions to the Boussinesq Equation and the Korteweg–de Vries 

Equation. KTH Degree Thesis. 

Whitham, G. B. (1974). Linear and Nonlinear Waves. New York: Wiley–Interscience. 



42 

Appendices 

Annex 
to Rector's directive No 1-8/17 of 7 April 2020 

Non-exclusive licence for reproduction and publication of a graduation thesis1 

I Mohammad Ali Afzal  

1. grant Tallinn University of Technology free licence (non-exclusive licence) for my thesis
Numerical Solution to Boussinesq-Type Equation in Microstructured Solids, 

supervised by Arkadi Berezovski, 

1.1 to be reproduced for the purposes of preservation and electronic publication of the graduation 
thesis, incl. to be entered in the digital collection of the library of Tallinn University of 
Technology until expiry of the term of copyright; 

1.2 to be published via the web of Tallinn University of Technology, incl. to be entered in the digital 
collection of the library of Tallinn University of Technology until expiry of the term of copyright. 

2. I am aware that the author also retains the rights specified in clause 1 of the non-exclusive
licence. 

3. I confirm that granting the non-exclusive licence does not infringe other persons' intellectual
property rights, the rights arising from the Personal Data Protection Act or rights arising from 
other legislation. 

21.12.2025 

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for 

restriction on access to the graduation thesis that has been signed by the school's dean, except in case of the university's 
right to reproduce the thesis for preservation purposes only. If a graduation thesis is based on the joint creative activity of 
two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her 
graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the 
non-exclusive licence, the non-exclusive license shall not be valid for the period. 




