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The constant increase of attacks on web servers poses threats to security, privacy, and service 

performance. To develop an efficient intrusion detection system and identify the intrusion, 

discovering the network behavior is necessary.  

This thesis proposes behavioral intrusion detection systems based on machine learning 

techniques to identify attacks by analyzing the HTTP traffic. The approach studied in this 

works explores the HTTP header to extract the combination of meaningful features, 

followed by tree-based supervised machine learning algorithms, a creative learning strategy 

that highlights network intrusion from labeled data. During the learning phase, the algorithm 

uses labelled data for acquiring a skill to highlight network attacks. This research is based 

on the data collected from external network perimeter sensors of the Tallinn University of 

Technology. 

The analysis indicates that the proposed framework correctly detects roughly 90% of 

intrusions. This is an indication that HTTP intrusion can successfully be dealt with using 

multi-level HTTP header analysis. 

This research exposed the proposed framework's suitability to help with the security 

operation team's analysis procedures by automating intrusion detection. 

  

Abstract 



5 

 

Veebiserverite vastaste rünnakute pidev kasv ohustab turvalisust, privaatsust ja teenuste 

jõudlust. Tõhusa sissetungi avastamise süsteemi väljatöötamiseks ja sissetungi 

tuvastamiseks on vaja tunda võrguliikluse iseloomu. 

Selles lõputöös pakutakse välja masinõppe tehnikatel põhinevaid käitumuslikke sissetungi 

avastamise süsteeme rünnakute tuvastamiseks HTTP liikluse analüüsimise teel. Töös 

uuritud lähenemisviis analüüsib HTTP päiseid oluliste omaduste kombinatsiooni 

leidmiseks, millele järgnevad puu põhised juhendatud masinõppe algoritmid - õppimise 

käigus omandab algoritm sildistatud andmete põhjal oskuse võrgu sissetunge esile tuua. 

Uurimistöö põhineb Tallinna Tehnikaülikooli välisvõrgu perimeetri anduritelt kogutud 

andmetel.  

Analüüs näitab, et välja pakutud lahendus tuvastab õigesti umbes 90% sissetungidest. Seega 

saab HTTP sissetunge edukalt avastada kasutades mitmetasandilist HTTP päiste analüüsi.  

Uurimistöö näitab pakutud raamistiku sobivust turvaoperatsioonide meeskonna 

analüüsiprotseduuride hõlbustamiseks tänu sissetungi tuvastamise automatiseerimisele. 

Annotatsioon 



6 

 

 

IDS Intrusion Detection System 

CPU Central Processing Unit 

JSON JavaScript Object Notation 

HTTP Hyper Text Transfer Protocol 

XGBoost Extended Gradient Boost 

IP Internet protocol 

TF-IDF Term Frequency – Inverse Document 

Frequency 

SNMP Simple Network Management Protocol 

SMTP Simple Mail Transfer Protocol 

 

List of abbreviation and terms 



7 

 

1 Introduction ................................................................................................................. 12 

1.1 Chapter overview .................................................................................................. 12 

1.2 Introduction to network intrusion detection systems ............................................ 12 

1.3 Motivation and scope of the study ........................................................................ 13 

1.4 Hypothesis and contribution ................................................................................. 14 

1.5 Novelty .................................................................................................................. 15 

1.6 Outline of thesis .................................................................................................... 15 

2 Related works .............................................................................................................. 16 

2.1 Chapter overview .................................................................................................. 16 

2.2 Overview of intrusion detection systems .............................................................. 16 

2.3 Literature review ................................................................................................... 21 

3 Design and methodology ............................................................................................. 27 

3.1 Chapter overview .................................................................................................. 27 

3.2 Infrastructure and environment setup ................................................................... 27 

3.3 Overview of dataset .............................................................................................. 28 

3.4 System architecture ............................................................................................... 30 

3.5 Data pre-processing and native features extraction .............................................. 32 

3.6 Advanced features extraction ................................................................................ 33 

3.6.1 HTTP methods feature ................................................................................... 33 

3.6.2 HTTP status code feature .............................................................................. 34 

3.6.3 HTTP content length feature ......................................................................... 37 

3.6.4 HTTP user agent feature ................................................................................ 38 

3.6.5 HTTP URL features....................................................................................... 40 

3.7 Limit IP range and dividing the data set into sessions .......................................... 47 

Table of contents 



8 

 

3.7.1 IP selection .................................................................................................... 47 

3.7.2 Arranging transactions into sessions ............................................................. 48 

3.8 Finalizing dataset .................................................................................................. 49 

3.9 Labeling and machine learning ............................................................................. 50 

3.9.1 Decision tree .................................................................................................. 51 

3.9.2 Random forest................................................................................................ 53 

3.9.3 XGBoost ........................................................................................................ 54 

3.10 Prediction and validation ................................................................................... 55 

3.11 Summary ........................................................................................................... 57 

4 Framework implementation, results ............................................................................ 58 

4.1 Chapter overview .................................................................................................. 58 

4.2 Data labeling ......................................................................................................... 58 

4.3 Results ................................................................................................................... 59 

4.3.1 Decision tree's results .................................................................................... 61 

4.3.2 Random forest's results .................................................................................. 63 

4.3.3 XGBoost's results .......................................................................................... 66 

4.4 Discussion ............................................................................................................. 67 

5 Discussions and future works ...................................................................................... 68 

5.1 Chapter overview .................................................................................................. 68 

5.2 Discussion on machine learning algorithm's results ............................................. 68 

5.3 External validation ................................................................................................ 71 

5.4 Future works ......................................................................................................... 71 

5.4.1 More extensive feature extraction ................................................................. 71 

5.4.2 Unsupervised machine learning ..................................................................... 72 

6 Conclusion ................................................................................................................... 73 

7 References ................................................................................................................... 75 

 



9 

 

 

Figure 1 Taxonomy of behavioral analysis approach in intrusion detection systems ......... 18 

Figure 2 Suricata architecture .............................................................................................. 19 

Figure 3 Overview of machine learning-based intrusion detection system ......................... 21 

Figure 4 Infrastructure and Environment setup ................................................................... 28 

Figure 5 Proposed system architecture ................................................................................ 31 

Figure 6 Sample DataFrame ................................................................................................ 32 

Figure 7 Distribution of HTTP methods.  26 <  GET,POST, HEAD, DELETE, PUT < 39

 ............................................................................................................................................. 33 

Figure 8 Count of common methods over the dataset ......................................................... 34 

Figure 9 HTTP response code distribution .......................................................................... 35 

Figure 10 Updated HTTP status code distribution .............................................................. 36 

Figure 11 Content-length value on random records in a dataset. The index represents the 

index of random records in the dataset. ............................................................................... 37 

Figure 12 HTTP user agent occurrence with bot keyword .................................................. 39 

Figure 13 URL length on 10K sample................................................................................. 42 

Figure 14 Weight distribution according to the proposed weighting scheme ..................... 45 

Figure 15 Distribution of TF-IDF weight over 40K samples. ............................................. 47 

Figure 16 Sample 3500 records timestamp field ................................................................. 49 

Figure 17 Sample decision tree using CART algorithm visual representation ................... 52 

Figure 18 Elbow method for finding optimal K .................................................................. 60 

Figure 19 Performance metrics based on tree depth for attack data .................................... 62 

Figure 20 Accuracy of method on 10 K-fold cross-validation ............................................ 63 

Figure 21 Performance metrics correlation with the number of estimators in random forest 

algorithm in Attack samples ................................................................................................ 65 

Figure 22 Performance metrics correlation with increasing of maximum depths in attack 

data....................................................................................................................................... 65 

Figure 23 Accuracy of method on 10 K-fold cross-validations for random forest ............. 66 

List of Figures 

file:///C:/Users/Ali/Documents/Taltech/Thesis/final.docx%23_Toc71890496


10 

 

Figure 24 Comparison of machine learning algorithms' performance metrics on attack data

 ............................................................................................................................................. 68 

Figure 25 Comparison of machine learning algorithms' performance metrics on benign data

 ............................................................................................................................................. 69 

Figure 26 CPU time comparison for training phase of machine learning algorithms ......... 69 

Figure 27 CPU time comparison for decision tree and random forest algorithms in K-fold 

validation ............................................................................................................................. 70 

 



11 

 

Table 1 Review of selected researches ................................................................................ 26 

Table 2 Selected attributes from dataset .............................................................................. 30 

Table 3 Select keywords on URL field ............................................................................... 41 

Table 4 Added features to initial HTTP features ................................................................. 50 

Table 5 Decision tree performance metrics on default settings ........................................... 62 

Table 6 Decision tree performance metrics on non-default settings ................................... 62 

Table 7 Random forest performance metrics on default settings ........................................ 64 

Table 8 XGBoost tuning hyper-parameters ......................................................................... 67 

Table 9 XGBoost performance metrics on non-default settings ......................................... 67 

 

List of Tables 



12 

 

1 Introduction 

1.1 Chapter overview 

This thesis is about implementing a network intrusion detection system based on a 

supervised machine learning model on HTTP traffic. The current chapter will discuss the 

importance of network intrusion detection for any organization. The hypothesis and 

motivation of this thesis are discussed in this chapter. 

1.2 Introduction to network intrusion detection systems 

In the last decade, the importance of deep analysis of the network traffic in the Internet and 

Intranet is growing. This need can be felt so that the Internet and being connected take all 

daily human life aspects, from the digital government to smart transportation to storing 

personal photos on clouds [1][2]. As a consequence of current ubiquitous digital data, 

sensitive and personal information needs to be guarded against being tampered with or 

damaged, and all systems need to have some degree of resistance against viruses and attacks. 

The computer network is playing a pivotal role in information exchange and security. 

Thanks to recent developments, strong IDS (Intrusion Detection System) technologies are 

used to detect unusual activities. 

Intrusion detection systems come in different shapes. It can be software installed on a 

computer or physical hardware mounted to a rack. An intrusion detection system's primary 

purpose is to monitor and analyze networks and hosts' activities and raise the alarm 

whenever an intrusion is detected. The functionality of IDS depends on its focus area. It can 

detect malicious activity over the network or find malicious processes on the operating 

system. Some variety of IDS are also capable of blocking or deterring intrusion. 

There are two main types of IDS: host-based IDS (HIDS) and network-based IDS (NIDS). 

Network IDS is passively intercepting network traffic and inspects packets based on their 

characteristics and features. On the other hand, host-based IDS is sitting on endpoint 

computer systems and analyzing operating systems' internal processes. It has a wide variety 

of functionality like file system integrity checks or ransomware protection. Sometimes anti-

viruses are acting as host-based IDS [3]. There is one more major type of IDS: a combination 
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of host-based and network-based intrusion detection systems. The new design is called 

hybrid IDS. It has the advantages of two significant IDS types and uses a more effective 

engine to detect malicious activities. However, it is rare to see two different IDS running 

and cooperating as a hybrid IDS because of the complexity of such a setup [4]. 

Suricata and Snort are the most common network-based intrusion detection systems which 

are both used commercially and non-commercially. However, there are other systems 

developed by companies like IBM, Fortinet, etc. IBM has an IDS product called Intrusion 

Detection and Prevention System Management [5].  Also, Fortinet has its own IPS system 

[6]. 

Generally, intrusion detection approaches can be divided into two main categories [7]: 

 Signature-based: The main goal is to detect the attack by a known signature in the 

database. It is the most common way of malware and attack traffic detection and 

involves matching the malicious activity with the pattern that human expert defines. 

 Behavioral-based: This model uses profiling techniques to build common traffic 

characteristics and detect abnormal activity. 

Accuracy and performance are vital attributes of the intrusion detection system. Such a 

system should run as fast as possible without losing the accuracy detection rate.  

1.3 Motivation and scope of the study 

The signature-based analysis is largely blind to zero-day attacks since such attacks involve 

malicious network traffic that is usually not yet known to human experts who define 

signatures. Nowadays, attackers are tweaking their attack payload not to match any 

signatures before they initiate attacks. It gives them a competitive advantage compared to 

firewall and intrusion detection systems relying on rulesets. This weakness makes behavioral 

analysis an important intrusion detection technique.  In the past decade, a lot of research has 

been done on traffic behavior analysis; however, most previously suggested methods were 

validated using public datasets available from Internet-based repositories. Many publicly 

available datasets are fairly old and do not reflect the traffic patterns of modern high-speed 

networks (for example, frequently used KDDCUP'99 dataset originates from the previous 

century). This raises the following question: are methods developed on old datasets still 
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valid for deployment in real-time networks? To answer this question, real-time data needed 

to be collected from a reliable point. 

This thesis dataset is based on Tallinn University of Technology's external network 

perimeter traffic. Since network sensors can collect any data, there is the question of which 

protocol should be monitored.  As the domain of this thesis, HTTP (HyperText Transfer 

Protocol) is selected due to its widespread use. 

HTTP is an application-level protocol for hypermedia transmission information systems. It 

is a stateless and object-oriented protocol that can establish communication between servers 

and clients based on the method. Although HTTPS is one of the fastest growing protocol in 

internet however because of secure characteristics, it is not providing much information 

about nature of traffic. Moreover, HTTP still has been used by many applications. However 

if HTTPS traffic is considered, the proposed method can run after decryption process happen 

by web server or enterprise proxy.   

The protocol involves using HTTP headers with several data fields, which allows for the 

definition of many features for machine learning algorithms.  

1.4 Hypothesis and contribution 

Intrusion detection systems are dealing with different issues such as performance lag in high-

speed networks. Also, matching traffic with signatures can lead to a high false-positive rate, 

and some significant attacks may be missed. Therefore, employing behavioral analysis can 

bring more precision. All of the mentioned issues demonstrate a technological gap in this 

field. This thesis is trying to fill the gap by implementing a supervised machine learning 

model based on the analysis of HTTP traffic. The following research objectives are listed 

below: 

 Study traffic behaviors for detecting unusual activities by analyzing HTTP packets. 

 Develop a machine learning model to have high performance in a real-time network. 

The proposed method first extracts raw HTTP header data fields and then derives features 

from them for machine learning algorithms. The raw HTTP data are provided by the Suricata 

IDS sensor, configured to produce a JSON record for each HTTP request and response seen 
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in the network. These raw data were captured from the external network perimeter of Tallinn 

University of Technology.  

1.5 Novelty 

Current study is proposing novel multi-layer features’ extraction for HTTP traffic. The 

proposed framework is preparing the data for having a best match with tree-based learning 

algorithms. In addition, the framework provides a ledger for semi-automating data labeling. 

Unlike the other studies using the labeled dataset for detecting malicious activities, this 

thesis detects outliers without relying on a fully labeled dataset. This approach increases the 

usability of the proposed framework in real-world scenarios. Furthermore, the current 

research is analyzing the behavior of the traffic regardless of attack type. This look helps to 

identify a broader range of attacks than other researches, limited to a list of attacks. 

1.6 Outline of thesis 

This thesis is organized into five chapters. Chapter one is an introduction to the study, 

problem statements, and research objectives. Chapter two reviews related research that has 

been done in the field of intrusion detection systems. Chapter three describes the 

methodology of this research. The multi-level HTTP features extraction and machine 

learning models are described in chapter three in a more detailed fashion. Chapter four is 

discussing machine learning model results as well as demonstrating the performance 

metrics. Chapter five analyzes the results and provides a discussion on model outputs. Also, 

possible future work is discussed in this chapter. Chapter six concludes the thesis. 
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2 Related works 

2.1 Chapter overview 

Before introducing the proposed model to tackle the research problems, it is wise to review 

previous methods and studies that have been done in the intrusion detection area. It is a vast 

area, and researchers address issues from different angles.   

2.2 Overview of intrusion detection systems 

The expansion of computer software and networks is introducing new attacks to this field. 

The network is the central part of communication among components. The network should 

be carefully monitored to detect and deter malicious activities. Network attacks can be 

categorized into two main parts: Active and passive. Active means intruders interact with 

the network by sending commands, but in passive, attackers only intercept network traffic. 

Some of the active attacks are [8]: 

a. Spoofing: The attacker presents itself with a fake identity. 

b. Modification: Any modification in the message route to cause a delay in 

communication. 

c. Fabrication: Change the content of the message in a way to present false information. 

d. Denial of services: malicious node sending massive traffic to saturate bandwidth as 

well as other node resources. 

e. Sinkhole: The compromised node advertises its routing updated to other nodes to 

attract their network traffic. 

f. Sybil: Deploying multiple malicious nodes in the network to increase the chance of 

attack. 

Some of the passive attacks are: 

a. Traffic analysis: The attacker measures the amount of data that are communicated 

between sender and receiver.  

b. Eavesdropping: The attacker intercepts network traffic to collect any user 

information. 

c. Monitoring: The attacker reads confidential data without modifying them. 
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There are some other types of attacks that do not fit the main categories: 

a. Blackhole attack: The attacker uses routing protocols to set the best path for 

interception. This fake route can help the attacker to hide and monitor traffic in most 

favorite environments. 

b. Rushing attack: The attacker captures the packet from sender to receiver, duplicates 

the message, and keeps sending the same packet to the receiver to exhaust the 

receiver's resources. 

c. Reply attack: Malicious node repeats or delays the data. 

d. Byzantine attack: Delay communication by setting up multiple nodes between 

sender and receiver. It can be done by rerouting or sending by a non-optimal path. 

As mentioned in the previous chapter, intrusion detection systems are responsible for finding 

and alerting unusual activities in the respective layer. These IDS applications can work on 

many modes and analyze data by different approaches. Some aforementioned types of IDS 

are network-based, host-based, and hybrid models. In broad categorization, IDS can run into 

two primary modes: Signature-based or behavioral-based.  

A short argument about the pros and cons of the mentioned methods is that the signature-

based method generates fewer false alarms since it uses a predefined signature dataset. On 

the other hand, the behavioral method is more strong against unforeseen or zero-day attacks 

because of the profiling technique to detect attacks [9]. Speaking more about characteristics 

of the intrusion detection system, Debar [10] is listing the following properties: 

 Accuracy: The system does proper detection without false alarm. 

 Performance: An adequate processing time for audit events without missing an 

intrusion. Real-time processing is ideal. 

 Completeness: An intrusion detection system must detect the attack. An incomplete 

sequence of detections can cause the system to stay useless. 

 Fault tolerance: The system itself should be resistant to attack. It is crucial because 

most intrusion detection systems run above other systems. 

 Timeliness: Intrusion detection systems should detect and alert about attacks as 

quickly as possible to avoid possible damage to other parts of the network. 

Current intrusion detection setups rely on deploying multiple network monitoring nodes and 

capturing every possible packet. After the packet has matched some signature, the IDS 
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generates an alarm and sends the alarm (usually together with the packet payload) to a central 

server. Because of the large number of packets that can match signatures, some designs 

suggest adding Elastic Stack for organizing alarm data.  

A lot of research has been conducted to find the most suitable approach for detecting 

malicious activities. The IDS can run according to the behavioral model. A behavioral model 

can be implemented in different ways, but in general, it can fit into three main categories: 

statistical-based, knowledge-based, and machine learning-based.  With the statistical 

approach, statistical methods are used to define the legitimacy of traffic. It is a less efficient 

method since we do not use any expert system to support our decision. The knowledge-

based approach uses all expert knowledge, such as operator feedback and protocol details, 

to determine the nature of the traffic. However, it is an expensive process, and it is rarely 

used. Finally machine learning model tries to find the nature of network traffic. Figure 1, is 

demonstrating the general taxonomy of behavioral approaches [11]. 

 

Behavioral 
analysis

Statiscial based

Univarate

Multivariat

Time series 
model

Knowledge 
based

Expert system

Desccription 
languages

Machine 
learning based

Bayesian 
networks

Markov models

Neural networks

Clustering and 
outlier detection

Figure 1 Taxonomy of behavioral analysis approach in intrusion detection systems 
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Also, behavior-based intrusion detection can be categorized differently. The new taxonomy 

is, supervised, semi-supervised and unsupervised. The supervised means to label data and 

build two distinguishable categories like normal and abnormal. Semi-supervised is building 

model only on routine data. It means we determine the usual data, and any outlier that cannot 

fit our model is abnormal. In the last technique, unsupervised, the data are categorized into 

clusters without knowing clusters. It is a less expensive model since it does not need any 

background information [12]. 

There are many types of systems available [13]. 

 Suricata: It is an open-source network intrusion detection tool based on the 

predefined signature set. 

 Snort:  It is another open-source network intrusion detection system introduced in 

1998. It can also be used as a packet sniffer like TCPDUMP. 

 Zeek (bro): It is a passive intrusion detection system capable of handling high-speed 

networks. It provides a scripting language that helps us to write our ruleset. 

 

Figure 2 Suricata architecture 

One of the main advantages of Suricata over Snort is, it can use advanced HTTP header 

parsing. Suricata has a better performance based on the measured benchmark than Snort 

while running in multi-threaded mode [14]. According to Suricata documentation, it can 

detect the following properties of HTTP requests and responses [15]: 

 Stateful HTTP parser and HTTP transaction logger 
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 Keyword matching on buffers: 

o URI 

o Headers 

o Cookie 

o User-agent 

o Request and response body 

o Method and status code 

o Hostname 

Tallinn University of Technology network setup includes Suricata as an intrusion detection 

component.  

Machine learning and neural network solutions have been most frequently suggested in IDS-

related research papers in the past decade. Accessing and producing massive data sets and 

improving hardware acceleration leads researchers to focus more on the machine learning 

approach [16]. 

Machine learning and neural network models mainly contain three main stages: data pre-

processing, training, and testing. In simple words it means, transform raw data into encoded 

or pre-processed data. Divide data into training and testing portions, and then train the 

machine with training data to build the model. Test data can be used to check the built model 

to figure out the accuracy of the machine learning model [17]. Figure 3 demonstrates an 

overview of machine learning models. 
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Figure 3 Overview of machine learning-based intrusion detection system 

 

Deep learning is another cutting-edge method for analyzing the behavior of traffic. Deep 

learning improved machine learning techniques by adding more extra layers and optimized 

the features selection process. The layers are connected and use each other feedback to 

improve the model. It is a more efficient technique than a machine learning model since its 

layers select features. However, it needs more computational power [18]. In short, the 

difference between deep learning and machine learning are: 

a. Deep learning needs a more extensive dataset to analyze compared to machine 

learning models. 

b. Feature selection mostly happens by layers in deep learning; however, machine 

learning features are introduced to the machine. 

c. Deep learning techniques require high computational power and a more prolonged 

training phase. 

2.3 Literature review 

For adequately analyzing this research, different angles need to be covered. Because 

proposed framework contains different parts, and each one has different methods of 
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implementation. Firstly previous related works are discussed, and after that, the best method 

for each component is discussed separately.  

Recent research papers indicate that anomaly detection methods have featured high 

detection rates [19]. However, it cannot be seen as a highly developed research field since 

attacks and attack methods are constantly changing [20]. One of the issues that many current 

studies have is that they mostly use old publicly available datasets, for example, the 

KDDCUP'99 dataset [21]. This dataset was released in 1999, and since then, it has widely 

been used for other network anomaly research. This dataset contains a record with labels for 

"bad" and "good." One of the issues this dataset is facing is that there are multiple duplicated 

rows available [22]. Due to this, machine learning training and testing datasets are similar 

and produce better detection rates. Although a new version of NSL-KDD has been released, 

the validity of this dataset has been questioned [23], [24], [25]. 

As mentioned in the previous chapter, selecting the right approach is essential. Classification 

of data is one of the methods that most of the research is employing. Mustapha et al. [26] 

made a simple comparison of different classification methods, namely SVM, Naïve Bayes, 

decision tree, and Random forest, over KDD dataset using Apache spark. Results show that 

Random forest is more accurate with the lowest prediction time; however, Naïve Bayes was 

selected as the fastest training model. Also, it is crucial to notice which attack method 

research is targeting. Pasumpon et al. [27] studied DDOS attacks in the network. The author 

proposed a combination of neural networks and SVM as detection and classification tools. 

The research flow elaborates that to label the input data, and they applied quadratic entropy 

to define a regular traffic threshold. However, involving multiple neural network layers in 

the model increases the detection time significantly, and accuracy is not promising. 

Detecting DDOS attack which is coming from distributed sources can be challenging. 

Botnets are taking a considerable share in cybersecurity threats in 2020. According to the 

ENISA Botnets C&C server, it increased 71.5% compared to 2018 [28]. These statistics 

have motivated researchers such as Tong et al. [29] to propose a machine learning model to 

detect Botnet DDOS attacks. They improved feature selection to increase the robustness of 

the model. The author picked traditional classifiers like SVM, decision tree, Naïve Bayes, 

Artificial Neural Network (ANN), and unsupervised learning (USML) to discover insider 

threats. Overall results based on two different datasets indicate that unsupervised learning 

had more accuracy among present methods. Other researchers have suggested a semi-
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supervised clustering method for detecting DDOS attacks. Muhammad et al. [30] proposed 

two parallel clustering techniques aggregated by one voting system and feed labeled data to 

supervised learning. The author proposed a voting method to check and compare different 

cluster outputs. On one side, Principal Component Analysis (PCA) and K-means clustering 

and another side Agglomerative clustering have been selected. Their research used simulated 

data generated by OPNET, but it is questionable if it would produce the same results for 

real-world traffic or not.  

To study network attacks' nature, it is helpful to analyze the features of a specific application 

layer protocol. This research mainly studies HTTP in the application layer. HTTP header 

contains different parameters that can be used as features for measurements [31]. HTTP 

flood attacks can be categorized as one of the DDOS attacks. Indraneel et al. [32] proposed 

to measure each session time and page count to distinguish DDOS from normal behavior. 

The author measured the absolute deviation session time frame and clustered them. As a 

clustering algorithm, the BAT algorithm was selected, representing the behavior of BATs in 

nature, and results indicated that results are more promising than results reported in other 

research papers.  

URI and request methods are exciting features to analyze [33] to better understand HTTP 

header and user activity. Pattern analysis is the primary method to decode URI. Yuqi et al. 

[34] proposed semantic structure detection for HTTP traffic. They assumed that malicious 

traffic has repeating patterns and divided patterns into multiple states. To improve 

prediction, the author used Bidirectional Long Short-Term Memory (Bi-LSTM) for profiling 

the patterns. The results show false positive rate is below 1%. Ke et al. [35] introduced 

MalHunter, based on malware's statistical characteristics in HTTP protocol. The author 

extracted character-level features of URLs and applied separate statistical analysis for each 

feature. Also, each field of the HTTP header is going through the same process. 

Sornsuwit et al. [36] use different techniques such as K-NN, C4.5, MLP, SVM, and LDA to 

boost data classification. The authors are trying to optimize input data as much as possible 

to improve detection accuracy. The proposed method consists of several phases, and in each 

phase, the data is applied to multiple classifier algorithms. Also, some researchers are 

focusing on neural networks. Zhang et al. [37] employed Mind Evolution Algorithm (MEA) 

and Genetic Algorithm (GA) to reduce input data features and using the classifier method in 

the following steps. Adem [38] focused on URL and payload parameters as the primary 
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input for Convolutional Neural Network (CNN). HTTP payload is converted into bag-of-

words representation. The results indicate that an almost 97% recall rate can be achieved.  

Besides standard classification algorithms such as Random Forest, XGBoost, and precision 

and recall rates are reporting, XGBoost has better results. Yong et al. [39] mainly focused 

on IoT devices which are using HTTP traffic for communication. The author proposed a 

framework that divides HTTP requests into multiple parameters and uses Hidden Markov 

Model (HMM) to detect attack scores. At the final stage, a voting score is implemented to 

trigger an alert based on previous scores. John et al. [40] had a deep analysis of near 50,000 

HTTP headers and proposed 11 new HTTP header features that are not common among 

previous research. Surprisingly some header fields such as "cache-control no-cache" 

demonstrate significant rank in the selection process. The reported features are rarely used 

in other similar studies. Stefano et al. [41]studied the difference between human and bot 

activity on different websites by classifying them using unsupervised and supervised 

learning. Web server access log is the primary input data source of this research, and each 

session is labeled based on different databases such as the Udger database [42], which 

contains 43 legit user agent strings. It is closely related to the current research proposal; 

however, the current study's main aim is to find malicious activities regardless of bot or 

human. Ashley et al. [43] collected a dataset similar to this research's primary intended data 

source, coming from university web server logs in 42 days. The author collects both request 

header and payload and generates a key-value matrix. Labeled features are passed to 

Random Forest, XGBoost, and Decision tree classification algorithms. Based on importance 

rank, "accept-encoding" is the most common feature among their dataset, and result-wise, 

XGBoost has more accuracy in a shorter timeframe.   

Suricata and ElasticStack are core tools for this research. Suricata collects all information 

across the network and stores collected data in elastic search [44][45]. In recent years some 

extensions have been developed for ElasticStack as the automated detection system. Wazuh 

is an extension in Kibana which can detect anomaly based on population analysis [46]. 

Ovidiu et al. [47] proposed another ElasticStack extension to detect anomalous activities 

and present them in the Kibana dashboard. Z. Chiba et al. [48] have proposed using Suricata 

as signature-based anomaly detection and use Isolation Forest Algorithm (IFA) as the second 

layer of detection. The IFA algorithm is detecting anomalies by not using distance or density 
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measures. This technique is decreasing memory usage since there is no need for creating 

different trees in memory.  

In the following table, selected researches are organized by year and explained for ease of 

reading.
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NO Autor, Year Method Result 

1 Mustapha et al. [26], 2018 
SVM, Naïve Bayes, decision tree, and Random 

forest on KDD dataset and Apache spark 

Random forest selected the most accurate method. 

Naïve Bayes was fasted training method. 

2 Pasumpon et al. [27], 2019 Complex neural networks model on DDOS attacks. 
The proposed method has significant detection time as well as low 

accuracy. 

3 Yong et al. [39], 2019 
Parse HTTP header from IoT devices and use hidden 

Markov model. 

The author reported algorithm can detect SQLi and XSS attacks with 

high accuracy. 

4 Muhammad et al. [30], 2019 
Cluster data by two parallel voting methods. K-means 

and Agglomerative clustering. 
Results can not be confirmed since it is based on OPNET 

5 Indraneel et al. [32], 2019 
Detect HTTP DDOS attacks by measure session time and 

page count. 

The author compared his BAT method to other methods, and it shows 

94.8% accuracy. 

6 Sornsuwit et al. [36], 2019 
Heavy data pre-processing for maximum performance. 

Multi-layer data classification. 

The author used K-NN, C4.5, and SVM and compared them with his 

method. The reported accuracy is 99.98% by their method. 

7 Stefano et al. [41], 2020 
The author aimed to differentiate bot activities from the 

human by analyzing web server log. 
The data classification has not been done precisely. 

8 Tong et al. [29], 2020 
SVM, decision tree, Naïve bayes, ANN and USML on 

Botnet DDOS data. 

Based on results, the unsupervised learning had better detection 

accuracy. 

9 Adem [38], 2021 
Apply URL and payload to a convolutional neural 

network (CNN). 
Almost 97% recall rate had been achieved by method. 

10 Ashley et al. [43], 2021 
Analyze HTTP header and payload by Random Forest, 

XGboost, and decision tree algorithms. 

It is one of the most valuable researches since it is based on actual data.  

XGBoost was selected as the most accurate algorithm. 

Table 1 Review of selected researches 
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3 Design and methodology 

3.1 Chapter overview 

The following chapter is a discussion on the primary research body. In the general overview 

of current chapter points, the system's model and architecture have been discussed. Besides, 

technical requirements and the experiment environment are described in detail. Some more 

technical improvements have been proposed to make research results more straightforward 

to be implemented in the real world. 

3.2 Infrastructure and environment setup 

The setup can be divided into two main components: data collector node and analyzer 

system. 

In the role of the data collector node, we have used a Suricata IDS sensor on the external 

network perimeter, which raises not only alarms about malicious traffic but also generates 

records for legitimate network traffic for most common application layer protocols (for 

example, HTTP, SMTP, DHCP, etc.). 

As the domain of this thesis, only HTTP traffic data in JSON format is considered. All 

incoming HTTP traffic from external sources to TalTech hosted services is in this research 

analysis scope to be more precise. 

The second component is the analyzer machine. The machine is hosted in Tallinn University 

of Technology, Computer science department. It is the main computer for the rest of the 

analysis, which has been done for this research. The server technical hardware configuration 

is: 

 CPU Intel® Xeon® CPU E5-2630L v2, 2.40GHz, 15 MiB L3 cache 

o 24 CPU cores. 

 64 GB (8x 8GB) DIMM DDR3 1500 MHz Kingston memory 

 RAID1 – 2x Samsung SSD 860 250GB 
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 2x Intel Gigabit Network connection, 1Gbit/s 

The server's chosen operating system is CentOS Linux version 8, running on kernel 4.18.0 

x86_64 Linux. Python is the primary language for analysis. Python 3.6.8, in addition to extra 

libraries such as Numpy, Pandas, etc., are used. 

The server is configured to collect HTTP traffic from Tallinn University of Technology's 

external perimeter is transferred into the server by rsyslog tool. The data are stored in a 

single file per day. The information flow is started on 23 November 2020.  

Figure 4, is demonstrating the desired setup. 

 

Figure 4 Infrastructure and Environment setup 

3.3 Overview of dataset 

According to described architecture, the data are collected from the IDS sensor and 

transferred into a server by syslog protocol. Data are stored in flat files, and each file 

represents one day. The files contain JSON records; however, a timestamp is also added at 

each record's beginning. Following is the sample record from 1 April. 
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Apr  1 00:00:03 extids-ict suricata @cee: {"timestamp":"2021-04-
01T00:00:03.401478+0300","flow_id":514485052991264,"in_iface":"eno4","ev
ent_type":"http","src_ip":"AA.BB.CC.DD","src_port":XXXX,"dest_ip":"AA.BB
.CC.DD","dest_port":XXXX,"proto":"TCP","tx_id":0,"http":{"hostname":"onl
ine.msi.ttu.ee","url":"\/tallinn\/graafik.php?_jpg_csimd=1&hoovus","http
_user_agent":"Mozilla\/5.0 (Windows NT 10.0; Win64; x64) 
AppleWebKit\/537.36 (KHTML, like Gecko) Chrome\/89.0.4389.82 
Safari\/537.36", 
http_content_type":"image\/png","redirect":"http:\/\/on-
line.msi.ttu.ee\/tallinn\/","http_method":"GET","protocol":"HTTP\/1.1","
status":301,"length":4433}} 
 
Each record contains captured HTTP transaction which the IDS sensor has detected. The 

record represents HTTP requests to the server and the server response to the client. However, 

if the server does not provide any response, therefore it only represents the request. 

The provide JSON can contain multiple values. These values are not fixed and can be seen 

based on the availability of them. In general, most records have the following attributes: 
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timestamp Transaction timestamp 

flow_id Suricata bidirectional flow tracker number 

in_iface Captured interface name 

event_type Indicate logging protocol type 

src_ip Source IP address 

src_port Source port 

dest_ip Destination IP address 

dest_port Destination Port 

proto IP protocol in the packet header 

tx_id Suricata transaction ID 

H
T

T
P

 

hostname The hostname of the HTTP event 

URL Visited URL at hostname 

http_user_agent User-agent software 

http_content_type The datatype of the HTTP record 

http_method HTTP method such as GET, POST, etc 

protocol The version of the HTTP protocol 

status HTTP status code 

redirect HTTP redirect 

length Content size of the HTTP body 

Table 2 Selected attributes from dataset 

During the experiment period, daily log files had the size of up to 1.3 GB per day. However, 

to save disk space, older files were compressed. 

3.4 System architecture 

This research proposes multi-layer feature extraction, semi labeling data, and machine 

learning models to detect and predict malicious activities. Figure 5 is demonstrating the 

general overview of system architecture. 
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Figure 5 Proposed system architecture 



32 

 

3.5 Data pre-processing and native features extraction 

The original data files need to be pruned in such a way that the additional timestamps should 

be removed. This process has been implemented with UNIX tools. Also, to have a better 

analysis, it is necessary to aggregate a few days' files into a single file. It would give a more 

realistic view of data instead of looking at a specific timeframe. Also, mixing data from 

working days (Monday – Friday) and weekends helps create a more realistic data set that 

describes traffic nature for different days of the week.  According to the analysis, based on 

computational and storage limitations, selecting three days is optimal. A new data file has a 

size of around 4GB and 5 million records. 

One of the main components of this research is extracting every possible feature from the 

dataset. It means that alongside provided Suricata HTTP features, other features need to be 

extracted.  

The process is starting with mapping JSON data to Pandas DataFrame. Panda DataFrame is 

a two-dimensional data structure [49]. It contains rows as records and columns as features. 

The table has heterogeneous characters and can store most of the datatype in it. 

To build DataFrame from 5 million data records, it is necessary to use multi-threaded 

processing to increase data mapping pace. By nature, Python is not running on multi-thread 

scheduling and can utilize only one CPU simultaneously. Therefore, the dataset is divided 

into chunks of multiple lines, and a Python thread is executed per each chunk to utilize 

maximum CPU power. Also, this method can be used during real-time analysis to increase 

the data processing speed. After mapping all Suricata data into DataFrame, it would look 

like the following figure: 

 

Figure 6 Sample DataFrame 



33 

 

3.6 Advanced features extraction 

Extracting meaningful features out of currently available parameters requires more profound 

analysis. 

3.6.1 HTTP methods feature 

To start, http_method is a favorable feature to analyze. HTTP method shows the desired 

action for specific resources. According to Mozilla, there are nine most common methods. 

These methods are: GET, HEAD, POST, PUT, DELETE, CONNECT, OPTIONS, TRACE, 

and PATCH [50].  

Mentioned methods are also most common in our dataset. Figure 7 demonstrates the 

distribution of the HTTP method over the selected dataset. In this context, the selected 

dataset is December 6 2020 captured data. According to the graph, most HTTP method 

occurrences on the selected dataset belong to common HTTP methods introduced by 

Mozilla.  

There are many different HTTP methods in selected datasets; therefore, to plot them, the 

encoding technique has been used. It means each HTTP method assigns to one number 

 

Figure 7 Distribution of HTTP methods.  26 <  GET,POST, HEAD, DELETE, PUT < 39 
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Also, among common methods, GET is the most common one. Figure 8 shows, GET has 

the most requested method following by POST as the second one. 

 

Figure 8 Count of common methods over the dataset 

Based on measurements, odd HTTP methods can be counted as not standard methods or 

containing malicious requests. By odd methods it means, it is not part of Mozilla top 

methods. Therefore a new feature called "uncommon_http_method" is added to the dataset. 

Further validation on the dataset revealed that most odd HTTP methods carry a malicious 

payload. 

3.6.2 HTTP status code feature 

HTTP status code is the second feature that can be analyzed directly. The status code shows 

the HTTP response to a specific request. Status codes can be categorized into five main 

ranges [51]. 

1. Information responses (100 – 199) 

2. Successful responses (200-299) 

3. Redirects (300-399) 

4. Client errors (400-499) 

5. Server errors (500-599) 
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Each range contains several status codes which have a specific meaning. For example, status 

code 301 is about the requested URL moved permanently, and 404 manifests the fact that 

the requested page does not exist.  

Typically, security analysts consider status codes above 400 as malicious or needing a closer 

review. Most manually crafted scanning, bot scanning, and brute force attacks produce client 

errors (codes 400-499) from servers. Although the 500-599 range belongs to server errors 

such as application failure or web server faults, attackers might inject some arbitrary codes 

into the application, which causes it to crash and return server errors [52]. Therefore in most 

cases, it is a valid assumption to consider codes above 400 as unusual activity. However, the 

above statement does not imply that all of the other status codes belong to the normal range. 

If the attacker successfully requests or posts payload to the server, the webserver would 

reply with code 200. Also, in some cases, the attacker might request an old URL or the URL 

redirected elsewhere. In this situation, the server responds with 300 range. The 100 range is 

most common among all connections since it belongs to a web socket connection. 

Figure 9 is showing the most common status codes in are 100, 200, and 300 ranges.  

 

Figure 9 HTTP response code distribution 

After manually checking the selected dataset, the following status codes which are below 

400, are most common ones: 
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 101: It is a response to the upgrade header request from the client. 

 200: Means OK. However, the code has different meaning for different methods : 

o GET: Request fetched successfully. 

o HEAD: The header is inside the message. 

o POST/PUT: Request submitted successfully. 

 206: The client is requesting part of the resource. 

 301: URL has been moved permanently, and new URL provided. 

 302: Requested URI has been changed temporarily. 

 304: It tells a client that the information is the same and can use its cache. 

 307: The same action as what 302 does, however the HTTP method cannot be 

changed. 

After excluding mentioned status codes, the distribution of the status codes over the dataset 

is looking like below: 

 

Figure 10 Updated HTTP status code distribution 

The new feature is called "odd-status-code". Every transaction which does not have 

mentioned status codes (the commonly recognized status codes) has been marked. 
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3.6.3 HTTP content length feature 

The third extracted feature is related to HTTP content length. Content-Length is showing 

the size of the body which has been sent to the recipient. Applications are using the content-

length parameter to indicate the transfer length of the message body. This feature does not 

have any meaning by itself. However, if we measure it by the time, a normal distribution 

pattern appears. The Kolmogorov Smirnov test has been conducted on data to prove the 

normal distribution [52]. The test shows the data is normally distributed on most of the 

different timestamps. However, there are cases that the data is not normally distributed. 

Figure 11 shows over random rows on dataset content length have shown the normal 

distribution pattern. 

 

Figure 11 Content-length value on random records in a dataset. The index represents the index of random 

records in the dataset. 

One approach calculates the mean for data and assigns the data above the mean as more 

significant data. It would provide us the possibility to detect large data transfers which have 

been conducted over the server. Since our domain is limited to external IPs approaching our 

internal IPs, content length can be interpreted as the length of data requested by an external 

host. In some cases, if an attack is successful, the length is considerably larger than average. 
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Therefore, after aggregating several days of data, the total mean can be used to find records 

above the mean. The new feature is called "content-length-above-mean." 

3.6.4 HTTP user agent feature 

The next following exciting feature which significant in the dataset is HTTP User-Agent. It 

is information from the client that reports the application, operating system, vendor, and 

version of the requesting agent [53]. The provided information is varied and depends on the 

client software. The User-agent field has a general pattern: 

User-Agent: <product> / <product-version> <comment> 

And in a common format from browsers: 

User-Agent: Mozilla/5.0 (<system-information>) <platform> (<platform-

details>) <extensions> 

User-agent is the pervasive field. There are many different agents (different in software, 

browser, operating system, version, etc.) that are used to visit university webservers. Also, 

in our dataset, we have roughly around 1 million records for each day. Therefore it would 

be impossible to find meaningful information by only looking at the user-agent feature. 

There are some standard user-agent that can be seen in our dataset. 

Firefox user agent string: 

Mozilla/5.0 (platform; rv:geckoversion) Gecko/geckotrail 
Firefox/firefoxversion 
 

 "geckoversion" is the firefox version, and "geckotrail" indicates a browser-based 

Gecko. 

Example of Chrome user agent string: 

Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/51.0.2704.103 Safari/537.36 
 
Example of Safari user agent string: 

Mozilla/5.0 (iPhone; CPU iPhone OS 13_5_1 like Mac OS X) 
AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.1.1 Mobile/15E148 
Safari/604.1 
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Example of Internet Explorer user agent string: 

Mozilla/5.0 (compatible; MSIE 9.0; Windows Phone OS 7.5; Trident/5.0; 
IEMobile/9.0) 
 

Example of Crawler or bot user agent string: 

Mozilla/5.0 (compatible; YandexAccessibilityBot/3.0; 
+http://yandex.com/bots) 
Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html) 
 
Furthermore, lastly, an example of the library or net tool in a collected dataset. 

Curl1/7.64.1 
PostmanRuntime/7.26.5 
 
More information about user-agent types can be found in RFC 7231 [54]. 

Figure 12 is showing all of the user agents which contain "bot" in the name. 

 

Figure 12 HTTP user agent occurrence with bot keyword 

After manual dataset reviewing, it turns out that, based on current features, there is a pattern 

for malicious HTTP user agents. The pattern is based on newly introduced features. It is 

trying to identify most of the odd behavior that has been observed. The rule for determining 

if the user agent is malicious is the following: 

(odd − status − code == 1 OR uncommon − HTTP − method == 1 ) 𝐴𝑁𝐷 ( content

− length − above − mean == 1 OR dest − port ! = 80) 
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If an HTTP transaction matches the above rule, the user agent from that transaction is 

regarded suspicious, and the "suspicious-user-agent" feature is set to 1 for all HTTP 

transactions with the given user agent. 

3.6.5 HTTP URL features 

So far, most of the selected features did not need extensive and deep analysis over specific 

built-in features. However, the "URL" feature can provide us much information. This feature 

is combined with "hostname" to build the full requested domain and address. The URL 

features contain much information to extract. It mostly reveals the nature of the request. 

There have been many methods for extracting meaningful information. As the first step, 

keyword scanning has been used. In addition to regular expression-based matching, most of 

the current signature-based intrusion detection systems are often also relying on substring 

matching for URLs. It is useful to extract the top common substrings (henceforth called 

keywords) among the attacks based on previous studies. Also, keyword selection is based on 

Tallinn University of Technology's Computer Emergency Response Team (CERT) database 

for attacks.   

Keywords are the specific command, file extension, or method that have been used in the 

URLs. For example, there should not be any system or application command execution in 

most legitimate requests. The following table is demonstrating all of the keywords and 

respective categories which have been used as features. 
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Compressed file 

.tar 

PHP 

.php 

.gz .phtml 

.xz .php3 

.bz2 .php4 

.7z .php5 

.zip 
.phps 

phpmyadmin 

.rar 

Python 

.py 

Interpreters 

bash .pyc 

perl .pyo 

ruby .pyw 

exec .pyd 

.rb 

Connection tool 

nc 

.pl wget 

.sh curl 

.exec 

JS functions 

eval() 

.cgi link() 

Others 
bot unescape() 

sql search() 

Table 3 Select keywords on URL field 

Every mentioned keyword is added as a feature to the dataset, and it has a binary value. If 

the keyword is present in the URL, the value would be 1 otherwise 0. 

The second step for URL analysis is length. The URL length can be interpreted in different 

ways. Firstly, the number of characters inside the URL has been considered. It does not have 

any meaning by itself; however, it is adding more details to the analysis. Figure 13 shows 

most URLs have lengths up to 100 characters, and only a few are longer. 
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Figure 13 URL length on 10K sample 

The number of words is also another feature. It means dividing the URL into parts (words) 

by considering special characters which are used in the URL as delimiters between words. 

Special characters which are used as delimiters to extract words from the URL are: % & = 

/ \ : // \\ ? . 

For each record, a new numeric feature is created, set to the total number of words used in 

the URL. 

One technique to detect outliers based on URLs is to identify less frequent URLs among the 

dataset. It means most common URLs are repeated over the dataset, and probably they 

represent legitimate traffic; however, a specially crafted request that includes a non-generic 

function to perform malicious activities can be seen rarely on the dataset. The proposed 

technique is calculating the coefficient for each record to describe how rare is the URL. This 

technique utilizes currently collected information such as the number of words and uses 

statistical methods to calculate the weight.  

The algorithm is divided into 6 steps. In steps one and two, the words and occurrence of 

them in each records are counted. The steps 3 is counting all of words for each records. Then 

count total number of words inside the dataset in step 4 and in the step 5 calculate the 

occurrence of each word per dataset. Lastly, in step 6, if the occurrence of word is below 
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50% therefore the word counted as less common word and affect the total coefficient 

number. To adjust most effective threshold, algorithm has been run multiple times. Also 

since 50% is relatively high number to be threshold therefore it omits only most common 

words.  

Following Algorithm 1 is explaining the steps. The author has proposed the following 

algorithm. 

Algorithm 1: Finding uncommon URL in the dataset 

Input : Dataset D 

Output : Occurrence coefficient for each row in D 

Step 1 : Dataset has m transaction, and each transaction has n words. Every word can 

be repeated C times in a transaction. 

Step 2 : //Extract words as W from each row of the dataset 

𝐶1 × 𝑊1,1, 𝐶2 × 𝑊2,1, 𝐶3 × 𝑊3,1 ⋯ 𝐶𝑛 × 𝑊𝑛,𝑚  

// Where 𝐶𝑛  represents the number of repeats for a word 𝑊𝑛,𝑚 . 𝑊𝑛,𝑚 

Represents the word W in record m and with n position. 

Step 3 : //A total number of each word in the dataset as 𝑇𝑜𝑡𝑎𝑙𝑊. The 𝑊𝑛 is the nth 

word. 

For all m in D do 

     𝑇𝑜𝑡𝑎𝑙𝑊 = 𝑇𝑜𝑡𝑎𝑙𝑊 + 𝐶𝑛 × 𝑊𝑛 

End for 

Step 4 : //Total number of words in the dataset as  𝑇𝑜𝑡𝑎𝑙 

𝑇𝑜𝑡𝑎𝑙 =  𝑇𝑜𝑡𝑎𝑙𝑊1 + 𝑇𝑜𝑡𝑎𝑙𝑊2 +  𝑇𝑜𝑡𝑎𝑙𝑊3 + ⋯ +  𝑇𝑜𝑡𝑎𝑙𝑊𝑛 

Step 5 : //Calculate occurrence of each word 𝑇𝑜𝑡𝑎𝑙𝑊 per the dataset D 
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𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑊 =  
𝑇𝑜𝑡𝑎𝑙𝑊

𝑇𝑜𝑡𝑎𝑙
 

Step 6 : //Adding new feature called "URL-odd-words-coefficient" 

For all m in D do 

      If 𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑊 < 50%, then 

          𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑚 =  𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑚 +  𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑊  

      End if 

      If there is any 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 > 1, then 

           𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑚 =  
𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑚−min (𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)

max(𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)− min (𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)
 

      End if  

End for 

 

In short, the technique is going through each row and count the occurrence of less common 

words in the URL. Then normalize data to range zero to one. Therefore, every row with a 

higher number would have a higher coefficient of being a unique URL. Figure 14, is 

demonstrating the weight of the URL according to the proposed method for 40000 samples. 

Most of the URLs are fitted into 0.2 to 0.4.  



45 

 

 

Figure 14 Weight distribution according to the proposed weighting scheme 

The other method for detecting outlier from URL features is using textual analysis 

techniques. The idea is still following the previously proposed method to underline those 

URLs containing a less frequent word than others. In other words, identify URL which has 

less common items compared to rest of dataset. One of the standard methods in natural 

language processing (NLP) is using TF-IDF weight. TF-IDF, instance on Term Frequency, 

Inverse Document Frequency. Heuristic intuition indicates that if a term occurs many times 

in a document, it is not a good discriminator between normal and anomalous HTTP 

transactions, and more weight should be given to words that are less frequent in the data. In 

general, the TF-IDF formula is divided into two main parts: term frequency, how important 

the term is in a document, and inverse document frequency is how frequent it is, word over 

all of the documents [55]. 

𝑤 =  𝑡𝑓 × 𝑖𝑑𝑓 

𝑡𝑓𝑖,𝑗 =  
𝑓𝑖,𝑗

∑ 𝑓𝑡′,𝑑𝑡′𝜖𝑑
 

𝑖𝑑𝑓𝑖 = log (
𝑁

𝑑𝑓𝑖
) 

𝑤𝑖,𝑗 =  𝑡𝑓𝑖,𝑗  × log (
𝑁

𝑑𝑓𝑖
) 
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Where 𝑤𝑖,𝑗, is the weight of term i in document j. 𝑡𝑓𝑖,𝑗, is determining how frequent is the 

term i in document j. The N represents the total number of documents and 𝑑𝑓𝑖, is how many 

time term i repeated all over the dataset. 

In this research, Scikit-learn, Python library is the central part of the implementation. For 

practical implementation of TF-IDF, the TfidfTransformer method has been used. This 

method is part of the Scikit-learn library [56]. Some tuning and structural changes to the 

standard textbook notation of TF-IDF have been implemented in the mentioned library. One 

of the changes is adding one to the IDF equation. It means the new equation is: 

IDF(t)  =  log [ N / df(t) ]  +  1 

If the term is repeated in all of the data, then the inverse document value would be zero. 

Therefore IDF value would totally be ignored. For avoiding this issue, 1 is added to the IDF 

formula. 

Also, to prevent zero divisions, the constant of one is adding to the IDF fraction. It will avoid 

error if the document contains all of the terms in the dataset. The final equation is, 

IDF(t)  =  log [ (1 +  N) / (1 +  df(t)) ]  +  1 

Moreover, the results are normalized by Cosine Normalization to be bounded into zero and 

one. It means that sum of squares of vector elements is 1. The vector represents the TFIDF 

value. The one interprets as data is less frequent; therefore, it has a higher value. On the 

other hand, zero means the data is pervasive in dataset and transactions.  

The TF-IDF score is calculating for each term in each URL for all of the datasets. To build 

the single feature which is representing the TF-IDF score of URL, the average TF-IDF of 

record counts as the total value of TF-IDF. 

Figure 15 is showing the distribution of TF-IDF scores over 40000 samples. Most of the TF-

IDF weights are belong to the 0.3 to 0.7 range. It means that most of the terms are repeated 

equally over the dataset. 
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Figure 15 Distribution of TF-IDF weight over 40K samples. 

One of the issues related to TF-IDF methods is that it is computationally heavy to perform. 

It means that the size of features is equal to the size of the term in documents. Therefore, if 

documents contain an extensive vocabulary, it is costly to calculate each term's weight [56]. 

3.7 Limit IP range and dividing the data set into sessions 

The current architecture is capturing both incoming and outgoing HTTP traffic to the 

TalTech network. It means that information about all transmitted HTTP packets is included 

in the dataset. However, interpreting this information is relatively complicated. It covers a 

wide variety of HTTP transactions with different natures – HTTP transactions initiated by 

clients in TalTech network and going to external web servers, and HTTP transactions from 

external clients to TalTech web servers. Since the purpose of this work is not to profile the 

HTTP clients in the TalTech network but rather detect attacks against TalTech web servers, 

the current research is only looking at HTTP transactions that are originating from external 

clients to TalTech webservers. HTTP transactions that are initiated by clients in the TalTech 

network are excluded.  The method is shrinking the size of data to almost half size.  

3.7.1 IP selection 

The process of IP selection is based on the following rules: 

1. Based on the SRC_IP field, exclude all transactions for the IPs belong to TalTech 

network. 
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2. Based on the DEST_IP field, exclude all transactions for IPs which are not belonging 

to TalTech servers. 

 After selecting desired IPs, the datasets are built again with a limited IP range. 

3.7.2 Arranging transactions into sessions 

The communication process between servers and clients is not limited to one transaction. 

For example, when a page is requested from a web server, the page can contain many 

elements with different URLs, such as JavaScript functions and pictures. Therefore server 

responds to every URL we are requesting. So, looking at a single transaction between server 

and client might bring this question, is it enough to narrow the scope to a single transaction 

or looking at data in a more extensive timeframe. Arranging transactions into sessions helps 

to find trends over data. It means that to analyze data for specific intervals to find the 

correlation of observations. The traffic needs to be followed from a specific source or port 

any related features to find meaningful information. It is also applied to HTTP traffic. For 

example, the sender can send much traffic over a small time frame. By looking at each of 

those traffics, we can not conclude any relevant information. However, when counting 

several requests in a specific timeframe, it would categorize as a DDOS attack. 

To arrange sessions, every HTTP session is considered as 5 minutes in the current study. 

The 5 minutes assumption is the approximate length of each connection for one entire 

session. It would increase our view over traffic and let to analysis connection based on time 

frame. Our dataset contains the Timestamp feature, which is letting to follow up at 5 minutes 

interval. According to more analysis, every 3500 records can be counted as one timeframe. 

Due to the complexity of converting timestamp fields to meaningful attributes for the 

programming language, chunking datasets into specific rows is faster. 

Finally dataset is divided into 5 minutes (3500 records) to have better understanding of 

traffic behavior. 
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Figure 16 Sample 3500 records timestamp field 

3.8 Finalizing dataset 

All of the new features that have been discussed are added to the dataset one by one, as 

described in previous subsections. Following is the list of all new features that have been 

derived from basic HTTP header features: 

Feature name Description 

uncommon_http_method 
Set the feature value to 1 if the HTTP method 

is uncommon, otherwise set to 0 

odd-status-code 

Set the feature value to 1 if the HTTP status 

code is not belonging to common status codes 

list. 

content-length-above-mean 

Calculate the mean of the content-length 

header. Set the feature value to 1 if content-

length is greater than the mean, otherwise set 

to 0 

suspicious-user-agent 

By using a crafted rule to detect suspicious 

HTTP, user agents. Set the feature value to 1 if 

the HTTP user agent is suspicious, otherwise 

set to 0 

HTTP URL 

features 

keywords 

Find the list of suspicious keywords.  Set the 

feature value to 1 if the URL contains one (or 

more) suspicious keywords 

Number of characters 

Count the number of characters inside the URL 

as the length of the URL, and set the feature 

value accordingly. 
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Number of words 

Count number of words in URL based on % & 
= / \ : // \\ ?  

and set the feature value accordingly 

URL weight score 
Calculate less common URL by Algorithm 1, 

and set the feature value accordingly 

URL TF-IDF score 
Calculate each URL TF-IDF total score, and 

set the feature value accordingly 

Limiting IP range 
Limiting IP range to all incoming traffic to 

TalTech servers. 

Session arranging Chunking dataset into 5 minutes intervals. 

Table 4 Added features to initial HTTP features 

3.9 Labeling and machine learning 

After creating the final dataset, the learning phase is stepping in. The learning stage is 

conducted with machine learning models. Machine learning is an algorithm that gets trained 

on a training dataset and is evaluated on a test dataset. Machine learning is being fed by 

dataset as input, and algorithms learn patterns amongst data based on features and 

characteristics. 

The provided dataset does not have any labels. It means that none of the records are defined 

as malicious or benign. So, there would be arguments on how to train our machine learning 

model. According to what has been discussed in the literature review chapter, many machine 

learning models can be used. Each of them represents a specific approach. Like un-

supervised learning is mainly associated with clustering machine learning algorithms or 

supervised algorithms, such a decision tree requires a labeled dataset. Any of approaches 

have their costs and benefits. 

The K-means method has been applied to the dataset to demonstrate the clustering 

algorithm's weakness in current research. This algorithm is analyzing different data points 

and tries to fit similar data points into the same cluster. The "K" in K-means comes from 

several used clusters, and "means" demonstrates finding the nearest mean of each data point 

to the cluster center [56]. This algorithm is regarded as an unsupervised classification since 

it not looking at any labels in data. As mentioned above, due to our dataset's nature, not all 
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machine learning models can handle it. In general, K-means is using the Euclidean distance 

function to calculate the distance from centers. However, most of our dataset's features are 

binary. The binary data is discrete and does not allow for using a traditional distance 

function. The results of the K-means methods are discussed in chapter 4. 

As the scope of the current thesis supervised machine learning has been selected. The reason 

is based on nature of dataset. Some of un-supervised machine learning techniques such as 

k-mean are not matching the binary characteristics of dataset. Also, the semi-automated 

labeling process is part of proposed method, therefore it is more efficient to use supervised 

learning. The other techniques, such as isolation algorithms or intrusion detection 

algorithms, match current HTTP analysis; however, according to the proposed feature 

selection, these algorithms are incapable of handling data. They are mostly missing to 

classify the data. 

The tree-based algorithms have been selected for current research. It provides high accuracy 

predictive model over labeled datasets while it is easy to interpret the information and it 

provides more human readable representation. It also works well for non-linear information. 

The provided dataset is mainly based on categorical information, therefore the nature of 

dataset is closely matching to tree-based methods.  

Selected methods are decision tree, random forest, and XGBoost. 

The supervised machine learning methods require a labeled dataset. Therefore manual and 

automated labeling should be done on the dataset. The details around labeling are primarily 

discussed in chapter 4. 

3.9.1 Decision tree 

The decision tree is one of the most common decision-making algorithms. It is an upside-

down tree in which the internal non-leaf nodes represent a class on the feature, and each leaf 

node represents a class label.  

The decision tree can be used for classification and regression problems. The classification 

tree, which is primarily applicable to statistics and probability, is based on discrete 

information, while the regression tree predicts real numbers. There are different types of 

decision tree algorithms [57]. 
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 ID3: Iterative Dichotomiser 3 is a top-down greedy model. It creates the tree, and at 

each layer, select the most fitted feature. 

 C4.5: is the successor to the ID3 algorithm. It can handle non-categorical data. At 

each level, it selects the feature which split the samples into new enrich subsets. 

 CART: Classification and Regression Tree is very similar to C4.5; however, it 

supports the numerical parameters. The Scikit-learn library is using the CART 

approach. 

 

Figure 17 Sample decision tree using CART algorithm visual representation 

 

To ensure the samples are finely selected, there are two main impurity measurements for 

decision tree samples. Entropy and Gini index. Entropy determines disorder in samples [58]. 

Entropy is defined as below: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) =  ∑  𝑝𝑖 × log2 𝑝𝑖

𝑐

𝑖=1

 

Where 𝑝𝑖 is frequentist probability of class i.  

The Gini index measure inequality in samples. If the sample is entirely homogeneous and 

all of the features are the same close class, then the Gini index is 0. 

𝐺𝑖𝑛𝑖 − 𝑖𝑛𝑑𝑒𝑥 = 1 −  ∑ 𝑝𝑖
2

𝑛

𝑖=1
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Where 𝑝𝑖 is frequentist probability of class i.  

The CART technique is using the Gini index as a cost function to split features selection. 

3.9.2 Random forest 

The random forest algorithm is another type of decision tree-based model. It builds multiple 

decision trees and aggregates those trees for achieving better results. In other words, it builds 

an ensemble of decision trees using the bagging method to increase prediction results. Also, 

it creates trees based on selected features to maximize randomness. The random forest 

algorithm is computationally efficient [58]. Following characteristics can be named for this 

method: 

 It supports both regression and classification data. 

 Relatively faster learning and prediction phases. 

 Few optimization hyper-parameters. 

 Control over-fitting error. 

The random forest algorithm is described below: 

Algorithm 2: Random Forests 

Input : Dataset D 

Output : Prediction of new point 

Step 1 : Let D = {( 𝑥1, 𝑦1), … , ( 𝑥𝑁 , 𝑦𝑁)} as training dataset and 𝑥𝑖 =  (𝑥𝑖,1, … , 𝑥𝑖,𝑝)𝑇 

Where p is predictors. 

Step 2 : Take sample S from D with size N  

Step 3 : Using S as training data and fit tree using binary recursive partitioning. 

Step 4 : a. Start all samples in a single node 

b. Repeat for each unsplit node until: 

i. Randomly select m predictors from all predictors. 

ii. Find best split among all splits. 
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Step 5 : Prediction of new point x in classification: 

𝑓(𝑥) = 𝑚𝑎𝑥𝑦 ∑(ℎ𝑗(𝑥) = 𝑦)

𝐽

𝑗=1

 

Where ℎ𝑗(𝑥) is the prediction of response variable at x using the jth tree. 

 

The random forest can be validated with an Out Of Bag (OOB) score. Out of bag is 

measuring the samples that did not belong to the bag while forming subset samples. It means 

that the tree is missing some samples. Out of bag is calculating as follow: 

𝐸𝑟𝑟𝑜𝑟𝑜𝑜𝑏 =  
1

𝑁
∑( 𝑦𝑖  ≠ 𝑓𝑜𝑜𝑏(𝑥𝑖))

𝑁

𝑖=1

 

Where 𝑓𝑜𝑜𝑏(𝑥𝑖) is out of bag prediction for sample i. 

3.9.3 XGBoost 

The XGBoost is a machine learning algorithm based on the decision tree method. The 

University of Washington developed the algorithm in 2016 [58]. XGBoost is hiring effective 

characteristics of other methods. It is mainly based on a gradient boosting framework which 

is a gradient descent algorithm that minimizes errors. The XGBoost algorithm improved 

current frameworks by system optimization. The system optimization is including the 

following aspects: 

1. Parallelization: The algorithm can build a sequential tree by using parallelized 

implementation. This method is increasing performance. 

2. Tree pruning: XGBoost uses the maximum depth hyper-parameter and down to top 

pruning method for improving performance. 

3. Hardware optimization: The algorithm is developed to allocate an internal buffer for 

each thread for gradient calculation. Also, for improving disk utilization, out-of-

core computation using block compression and block sharding has been used. 
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The XGBoost algorithm is offering many optimization hyer-parameters. Tuning hyper-

parameters can improve results. The hyper-parameters are mainly for tree booster and linear 

booster models. 

3.10 Prediction and validation 

The last step in the proposed methodology is prediction. After training the machine with the 

provided dataset, the built model can predict the unseen situation. In the prediction phase, 

the test data can be selected from the available dataset by removing the label or selecting 

unseen data. The machine learning model is assessing the test data based on its model. 

The machine learning techniques have their measurement parameters. These parameters 

represent the correctness of the decision made by the machine learning model. There are 

many different parameters available; however, four are common among most machine 

learning techniques. These parameters are precision, recall, F-measure, and accuracy. 

Precision is measuring ratio of true positive to the sum of true positive and false positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒
 

 

The recall is demonstrating ratio of true positive to the sum of true positive and false 

negative. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑣𝑒 𝑅𝑎𝑡𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒
 

 

F-measure or F-score is a harmonic ratio of precision and recall. This measurement says 

how accurate the classification is. 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Accuracy is the ratio of the total number of correct predictions over all of the predictions.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑣𝑒 𝑅𝑎𝑡𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
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Validation is an essential part of machine learning techniques. Generally, validation means 

the results can describe by hypothesis and original data. The proposed validation stage is 

divided into two main parts. The Cross-validation and external source validation.  

Hold-out is a trivial and most common technique. It divides data into two big chunks for 

testing and training. Most of the time, testing is 20%, and training is 80% of the dataset. The 

training dataset trains the machine, and the test is done by the test dataset. If the dataset is 

not entirely distributed, the random selection might cause training and test datasets to 

become very similar. 

Cross-validation is splitting data once or several times to measure the performance of the 

algorithm. Cross-validation is avoiding the overfitting issue [52]. There are some cross-

validation methods; however, only two of them have been used in this research. Hold-out 

and K-fold techniques. 

The second technique is K-Fold. This method is adding randomness to data selection and 

shuffles the train and test for optimizing results [52]. The method procedure is explained 

below: 

1. Select random number of K. K can be maximum the length of the dataset. 

2. Split dataset into K equal chunks. 

3. Pick one of the chunks as training and the rest as a test dataset. 

4. Repeat selecting chunks K times until all of the chunks are used as a test one time. 

5. Calculate the average score of K times repeats as the final result. 

K-fold is more reliable and stable than Hold-out since different parts of the dataset have 

been used for training and testing. The selection of K should be in a way to not put an extra 

computational cost on the system. 

For adding extra value to current research, external validation is also considered. It means 

that the IP addresses which are identified as belonging to attackers are compared to internet 

sources for extra validation (for example, AbuseIPDB database). Furthermore, the 

framework feedbacks can be used as firewall rules. 

After daily records are fed into the learning model and malicious records are identified, The 

IP field will be checked with external databases such as AbuseIPDB for validation. If the IP 

has malicious activity reports, the system correctly identified the input dataset's record. 
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The results, performance metrics, and implementation are discussed in chapter 4. 

3.11 Summary 

This chapter was dedicated to the proposed structure and system. The desired system is 

receiving HTTP data from Suricata sensors. The multi-layer feature extraction is proposed 

to identify the most valuable features from HTTP traffic information. The framework is 

looking for extraordinary characteristics in each record and identifying odd behaviors 

compared to the rest of the dataset. Some of the extracted features are directly concluded 

from native provided features such as HTTP status code; however, some of them, like HTTP 

user agent, rely on other features. Extensive analysis on URLs provides extra value for 

current research.  

The native HTTP features provided by Suricata are not providing diverse characteristics to 

build the efficient detection model. Building the new features which are directly extracted 

from native features, the wider range of features for each transaction can be defined. It helps 

to improve the learning process by deeper analysis for each transaction. Combining all native 

and newly added features provides stronger dataset for learning algorithms. 

After forming a new dataset based on extracted features, the decision-tree-based machine 

learning techniques are hired to classify data. Each algorithm is tuned to find the most 

optimal accuracy in detection. Lastly, validating methods and performance measurements 

are conduct on machine learning output.  
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4 Framework implementation, results 

4.1 Chapter overview 

The following chapter is discussing the implementation of proposed framework and results. 

The different hypotheses are measured to compare best fitting algorithm for current research. 

The labeling method is discussed in detail.  

4.2 Data labeling 

One of the essential phases in the current study is having a structured dataset. The structured 

dataset is data that adheres to the pre-defined data model. It is mostly in tabular format with 

the relationship between rows and columns. The collected data are entirely unlabeled, and it 

is not fit supervised learning, which requires a labeled dataset. This issue has been solved 

by labeling the dataset by the author. 

The labeling process is happening in two phases. The first phase is automated labeling, while 

the second phase involves the review and confirming the labeling. Automated labeling is 

using some predefined rules to label the dataset. After that, the labels are reviewed by a 

specialist to confirm or reject the labels. The process is quite time-consuming and requires 

a lot of manual work to prepare a fully labeled dataset. In most cases, automated labeling 

marked the malicious transaction correctly. Without this approach analyzing every 

transaction requires checking the IPs, method, and URL to conclude the transaction is legit 

or malicious. 

As mentioned above, automated labeling is based on predefined rules. Using predefined 

rules, brings this question that is it valid to train machine by data which is labeled by another 

rule? If automated labeling is enough, there is no need for an extra machine learning layer 

for prediction. The answer is that by automated labeling, there will be many records that 

have been mislabeled. It means that some malicious records are identified as normal and 

vice versa. The rule for initial automated labeling is as described in algorithm 3: 
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Algorithm 3: Automated labeling 

Input : Dataset D 

Output : Labeled dataset D 

Step 1 : // Labeling the dataset D with m rows. 

For all m in D do 

      If [ (uncommon-http-method == 1) AND ((odd-status-code == 1 OR       

suspicious-user-agent == 1) AND URL-keywords(Compressed file OR 

Interpreters OR Connection tool OR Others)) ], then 

            𝑙𝑎𝑏𝑒𝑙𝑚 = malicious 

      else   

            𝑙𝑎𝑏𝑒𝑙𝑚 = normal 

      End if 

End for 

 

By applying the aforementioned rule, most malicious records are correctly labeled. 

However, the label is narrow, and there would be other records with malicious activities that 

are not fitting to the above rule. Therefore a specialist reviewed the dataset to check if the 

data are correctly labeled or not. Both normal and malicious records are checked. The author 

is specialist who confirm the labeling process. The knowledge is based on more than one 

year of Tallinn University of Technology SOC team’s information collection about ongoing 

attacks on university servers by 5 specialists.  

This process was taking place on a specific timeframe (two working days in university) to 

limit the required time and resources for labeling. It means that not all of available datasets 

are labeled and only some of them contain label. 

4.3 Results 

In the previous chapter, different machine learning models are introduced. In this research, 

supervised machine learning techniques have been selected since they fit the collected 
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dataset. The other methods, such as some of the clustering algorithms, could not provide 

meaningful information for detecting malicious activities. However, it should not be 

interpreted that all other learning methods are invalid for such research. The domain of the 

current thesis is focusing on supervised learning methods. 

A simple analysis of the K-means method has been conducted to demonstrate one of the 

clustering machine learning models' incapability on the dataset. 

The K-means algorithm forms K clusters and uses the Euclidean distance function to 

calculate the distance from centers. For calculating the optimal number of clusters or namely 

K, there are different methods. The Elbow method runs clustering for K's range of values 

and computes all clusters' average scores. It uses the sum of squared distances to determine 

optimal K. Figure 18 demonstrates the Elbow algorithm over our dataset. From K=7, the 

diagram slope is decreasing, and 7 is the optimal selection of clusters.  

 

Figure 18 Elbow method for finding optimal K 

After selecting optimal K, data are transformed and fit into K-means algorithms. The 

algorithm forms clusters centers based on input data. One of the issues of applying the K-

means algorithm on our data is that most of our dataset is binary, and K-means use the mean 

function to calculate distances. Therefore it would cause the algorithm not to work correctly. 

The second reason is to divide data into two main categories of malicious and benign, 

requiring K values to be 2. However, as elbow calculation shows, the optimal K for the 

current dataset is around 7. It means that if data are only separated into two significant 
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clusters, many data are misclassified and would not represent correct separation. 

Nevertheless, it is worth mentioning that clustering algorithms do not need a labeling 

process. Therefore they are very efficient if dataset characteristics match it. 

Besides unsupervised machine learning models, in supervised techniques, the selected 

methods were decision tree, random forest, and XGBoost. All of them are tree-based 

techniques. These methods require labeled datasets as input to start building a machine 

learning model. 

4.3.1 Decision tree's results  

The decision tree technique is forming leaves and branches to classify data. By default, the 

tree can grow until every feature is classified. For the current study, the Scikit-learn version 

of the decision tree has been used. This version is using the CART method. The input data 

needs to be split into two training and testing chunks. The training part is using to train the 

machine, and testing is using for validating the model. As mentioned before, there are two 

main techniques to split data. The hold-out and K-fold. In the normal splitting, the data are 

divided into random subsets. Following is settings for the "train_test_split" function in 

Scikit-learn: 

train_test_split(X, y, test_size=0.2, random_state=20, 

shuffle=True) 

Where 20% of data belongs to the test and 80% is used to train the model. The data are 

randomly shuffled to maximize randomness in subset selection. 

Our dataset is unbalanced. It means that the proportion of data is 12% data are attacks, and 

the rest are normal. Therefore it is needed to calculate each label's performance metrics 

separately to keep the importance of metrics equally. The macro average and weighted 

average describe the model's effectiveness regardless of each sample's proportion in the 

dataset. 

Running the decision tree classifier algorithm with default settings is not optimal. By default, 

the maximum depths of the tree are infinite. It means trees grow to classify every feature. 

The following results are describing model performance metrics. 
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Label Precision Recall F1-score support 

Macro 

average 

F1-score 

Weighted 

average 

F1-score 

Accuracy 

Attack 0.86 0.87 0.87 25228 
0.92 0.97 0.97 

Normal 0.98 0.98 0.98 177306 

Table 5 Decision tree performance metrics on default settings 

For optimizing tree setting, the maximum depth hyper-parameter is considered. The 

performance metrics are measured in different depths for finding the most optimal tree 

depth. Following figure 19 is demonstrating Precision and Recall rate for attack data on 

different depth. 

 

Figure 19 Performance metrics based on tree depth for attack data 

Based on Figure 19, the tree has the most optimal hyper-parameters in the depth of 30; 

therefore, the tree's maximum depth is allowed to grow to 30. 

The following results are describing decision tree performance metrics in the depth of 30. 

Label Precision Recall F1-score support 

Macro 

average 

F1-score 

Weighted 

average 

F1-score 

Accuracy 

Attack 0.91 0.84 0.87 25228 
0.93 0.97 0.97 

Normal 0.98 0.99 0.98 177306 

Table 6 Decision tree performance metrics on non-default settings 
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Another method is using K-fold cross-validation techniques. To briefly remind the method, 

in cross-validation, the test and training data keep changing to find the optimal results and 

avoid overfitting issues. The dataset is dividing into random subsets. Then decision tree 

algorithm runs over each of the subsets, and the best accuracy would be selected. In this 

research, the dataset is divided into ten folds. The following figure is showing the accuracy 

rate per iteration. 

 

Figure 20 Accuracy of method on 10 K-fold cross-validation 

The average accuracy for the model is 96.78% percent, and it is happening at a maximum 

depth of 29. 

4.3.2 Random forest's results 

The second algorithm is random forests. To briefly remind the method, the random forests 

algorithm is based on the decision tree model. It builds an ensemble of decision trees and 

computes the results for each tree. Furthermore, it uses majority voting to classify data. 

Besides standard performance metrics, random forest is measured by out-of-bag score as 

well. The out-of-bag score indicates the error rate of random forest. It means how many 

samples are never selected in any subset, or in other words; they are out of selected bags for 

classification.  

The Scikit-learn implementation of the random forest has been used in this research. The 

algorithm is running by default settings. In general settings, the algorithm uses the whole 

dataset to train each tree. Also, 100 trees would grow in the forest. Like a decision tree, the 
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maximum depth for a tree is infinite, which means the algorithm runs until all of the leaves 

are classified.  

The data split into two trains and test dataset by using the same "train_test_split" function 

in Scikit-learn: 

train_test_split(X, y, test_size=0.2, random_state=20, 

shuffle=True) 

Where 20% of data belongs to the test and 80% is used to train the model. The data are 

randomly shuffled to maximize randomness in subset selection. 

The following table is demonstrating the random forest algorithm's results on default 

settings. 

Label Precision Recall 
F1-

score 
support 

Macro 

average 

F1-

score 

Weighted 

average 

F1-score 

Accuracy 

Out-

of-bag 

score 

Attack 0.88 0.84 0.86 25228 
0.9 0.96 0.97 0.966 

Normal 0.98 0.98 0.98 177306 

Table 7 Random forest performance metrics on default settings 

Multiple hyper-parameters can improve random forest algorithms. One of the tuning hyper-

parameters is the number of estimators, grows in the number of trees. Figure 21 shows by 

increasing the tree numbers, and the results are similar after some level. 
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Figure 21 Performance metrics correlation with the number of estimators in random forest algorithm in 

Attack samples 

The other tuning hyper-parameter is the maximum allowed depths for each tree to grow. 

Based on the results in Figure 21, the optimal number of estimators is around 10. Figure 22 

is showing different maximum depth effects with ten estimators. According to graph 50, is 

the optimal depth that a tree can grow. 

 

Figure 22 Performance metrics correlation with increasing of maximum depths in attack data 

Another method for sub-setting data is using K-fold cross-validation. The data divided into 

ten subsets and run random forest algorithm ten times with different train and test sets. 

Following figure 23 is showing the algorithm accuracy results based on different training 

and test sets. 
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Figure 23 Accuracy of method on 10 K-fold cross-validations for random forest 

4.3.3 XGBoost's results 

The third machine learning method is XGBoost. To briefly remind the method, the XGBoost 

is based on the ensemble of different tree-based algorithms. The algorithm is trying to cover 

most over-fitting issues. The XGBoost algorithm contains many tuning hyper-parameters. 

Most of the settings from tree-based and gradient boosting algorithms are exist in the 

XGBoost library. For implementation, Scikit-learn API for XGBoost random forest 

classifier has been used. The data split into two trains and test dataset by using the same 

"train_test_split" function in Scikit-learn: 

train_test_split(X, y, test_size=0.2, random_state=20, 

shuffle=True) 

Where 20% of data belongs to the test and 80% is used to train the model. The data are 

randomly shuffled to maximize randomness in subset selection. 

To run the algorithm following hyper-parameters have been selected. The list is added to the 

rest of the default hyper-parameters. 
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Hyper-parameter Value Description 

Colsample_bytree 0.3 Subsample ration of column for each tree. 

Learning_rate 2 Boosting learning rate 

Max_depth 40 Maximum tree depth for each learner 

Reg_alpha 10 Regulation term on weight 

N_estimators 20 Number of tree in random forest 

Num_parallel_tree 100 Number of the parallel tree for boosting algorithm 

Table 8 XGBoost tuning hyper-parameters 

After running the XGBoost algorithm, the following table describes the performance metrics 

for the algorithm. 

Label Precision Recall 
F1-

score 
support Accuracy 

Macro 

average F1-

score 

Weighted 

average F1-

score 

Attack 0.87 0.87 0.87 25228 
0.97 0.92 0.97 

Normal 0.98 0.98 0.98 177306 

Table 9 XGBoost performance metrics on non-default settings 

4.4 Discussion 

In this chapter, the implementation details and results of machine learning models are 

discussed. The labeling process for supervised learning has been detailed out. The decision 

tree, random forest, and XGBoost are the three machine learning models that have been used 

in this thesis. Each algorithm's performance metrics are measured. Also, the cross-validation 

method has been used to find the most optimal results. The discussion on results is provided 

in chapter 5. 
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5 Discussions and future works 

5.1 Chapter overview 

The following chapter is discussing results from machine learning models. The results are 

compared based on different metrics. Also, external validation results and firewall rules are 

discussed in this chapter. Moreover, future research for improving the framework is 

described. 

5.2  Discussion on machine learning algorithm's results 

So far, the dataset formation, features extraction, and labeling dataset has been done. In 

chapter four, the results for three selected machine learning models are demonstrated. The 

question is, which model has better accuracy and less training and testing time? For 

answering the question, a comparison of results is needed.  

Firstly, the performance metrics are compared. Each algorithm runs on some tuning hyper-

parameters to optimize the results. The same dataset has been used for each model to have 

proper grounding for comparison. Figure 24 compares the precision, recall, and F1-score 

results for the decision tree, random forest, and XGBoost algorithms on the attack sample. 

Figure 25 is comparing the same information on the benign dataset. 

 

Figure 24 Comparison of machine learning algorithms' performance metrics on attack data 
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Figure 25 Comparison of machine learning algorithms' performance metrics on benign data 

Among all of the methods, the decision tree has more promising results with the highest 

classification of attack samples. However, both the XGBoost and random forests also have 

relatively high detection rates. The significant difference in the algorithms appears in CPU 

time measurements. 

The second parameter for measurements is CPU time. The CPU time is showing how long 

the training stage has lasted. Time is the critical factor for the measurement of the real-time 

capability of the algorithm. If the learning time is extended, therefore, the model does not 

apply to run live. Figure 26 is demonstrating the CPU time for each algorithm. 

 

Figure 26 CPU time comparison for training phase of machine learning algorithms 
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As figure clearly showing the XGBoost involves significant CPU time consumption when 

compared to two other algorithms. It takes 170 times longer to run XGBoost compared to 

the decision tree. Also, the decision tree and random forest have close CPU time. 

When using cross-validation, the training time is increasing. Figure 27 is showing the 

decision tree and random forest CPU time using the K-fold cross-validation technique. 

 

Figure 27 CPU time comparison for decision tree and random forest algorithms in K-fold validation 

The CPU time determines the applicability of the method in real-time. According to the 

above graphs, the decision tree consumes the least amount of CPU time. However, the 

random forest consumes a moderate amount of CPU time as well. It is important to note that 

the reported CPU times belong to current hardware and can be different on other servers. 

Not every machine learning algorithms can predict with fully assurance. In current studies 

some of the attacks are misclassified by learning model. To understand, what types of attacks 

are missed from proposed framework, the results have been analyzed. Most of attacks that 

are not detected, interact with server in a way that are against the expected trained behavior. 

It means they contains characteristics such as common verbs in URL, legit user-agents and 

200 status code. These characteristics are tricking the model by providing the features which 

are classified as normal traffic before. For avoiding such problems, more extensive feature 

extraction is required. It helps the model to meet more conditions before final classification 

happens. 
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5.3  External validation 

The current research aims to build an application to ease detecting malicious activity for the 

security operation team. It means that the application should run at a specific time and report 

malicious IPs to analyzers. The following proposal has not been implemented during this 

research. 

Due to the machine learning process's nature, there is no complete confidence that the final 

reported results are entirely correct. Therefore adding extra checks to provide a list of IPs is 

adding value to the result. The IPs are checked with the AbuseIP database. The AbuseIP 

database is a public database for malicious identified IPs. The IPs in that database have a 

confidence level. If IP is reported many times as malicious IP, then the confidence level is 

high. The application can check IPs from machine learning with AbuseIP, and if the IP is 

reported, it has a significant chance to be blocked as malicious IP.  

The blocking procedure is varies based on company security policy and technological 

architecture. However, the suggested system is based on IP pools. If IP is identified as 

malicious IP, then IP is added to the suspicious pool with an expiration time of 24 hours. 

The firewall is blocking suspicious list IPs for one day. If the IP is not repeating the other 

days, it would automatically be removed from the list and unblocked. However, if the IP 

exists more than 48 hours in the suspicious list, then IP adds to a new list called the blacklist. 

The firewall is blocking the blacklist forever. 

5.4 Future works 

In this thesis, the proposed framework is using selective feature extraction and several 

machine learning approaches. However, some topics still are missing from this research. 

5.4.1 More extensive feature extraction 

For this research, several features have been extracted and introduced to make the dataset 

richer and add value. However, in URL and user-agent HTTP fields, more research is 

required.  
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The HTTP user-agent can be very different based on the client browser, operating system, 

and hardware. Therefore finding the correct pattern to extract malicious user-agent is 

helpful. 

The HTTP URL field contains a lot of information. In the current research, some textual and 

statistical methods are implemented to find more meaningful features. The analyzing process 

can extend to find unusual activity by using natural language processing techniques. 

5.4.2 Unsupervised machine learning 

The current research is using supervised learning as the primary technique. However, using 

supervised learning needs a labeled dataset, and it is a costly task. By using unsupervised 

methods such as clustering or density-based algorithms, pre-processing time can be reduced. 
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6 Conclusion 

The intrusion detection systems are the main component of any network architecture these 

days. These software or hardware are required to run as fast as possible to keep up with 

rapidly increasing network traffic size. Also, attacks and their signature are constantly 

changing. Therefore, intrusion detection systems need to update their detection system to 

avoid missing the zero-days attack. 

This research is proposing a behavioral network intrusion detection system on HTTP data 

by using machine learning techniques. The framework is detecting malicious activity on 

HTTP protocol from Suricata sensors' data. These sensors are installed on Tallinn University 

of Technology network perimeters. The proposed research is running on tree-based 

supervised machine learning techniques to maximize performance and accuracy.  

The proposed system aims to detect malicious activities by analyzing attacks' patterns and 

behavior instead of relying on attack signatures. 

In this thesis, extensive HTTP feature extraction has been used. Besides, native features 

collected by Suricata, multi-level feature extraction, have been used to collect new features 

from different parts of the HTTP header. The new features are describing the behaviors and 

characteristics of each transaction. Also, for having better tracking of the HTTP sessions, 

session arranging has been used. 

The supervised tree-based machine learning algorithms have been selected for the current 

research's prediction phase. The decision tree, random forest, and XGBoost are selected 

algorithms. Each method is optimized to have maximum performance. The cross-validation 

techniques are also have been used to ensure the results are not over-fitted.  

The proposed system's results are promising. With a one-day timeframe collected 

information, which is almost 1 million records, the system can detect malicious activities 

with almost 90% confidence depending on algorithms. Besides, the performance metrics 

from each algorithm is showing that the decision tree has the best overall score compared 

with other techniques with 91% precision. In addition to classic performance metrics, each 

algorithm's running time shows that the decision tree is the fastest training and detection 

speed. 
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On the other hand, the XGBoost is 170 times slower than the decision tree or random forest. 

The CPU time is essential for running the algorithm in a live production server. The extra 

validation with external databased has been proposed for increasing the assurance of 

algorithm outputs. 

All in all, this thesis is contributing to security operation teams by automating the attack 

detection process. The proposed application can act as added incident detection and alerting. 

The proposed model still needs improvements for identifying more unseen situations. 
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