
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technology

Department of Computer Science

Ali Ghasempour 194209IVCM

HTTP based Network Intrusion Detection System by Using

Machine Learning-Based Classifier

Master's Thesis

Supervisors: Risto Vaarandi, PhD

Senior Researcher

 Alejandro Guerra Manzanares, MSc

Junior Researcher

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia Teaduskond

Tarkvarateaduse Instituut

Ali Ghasempour 194209IVCM

HTTP põhine võrgu sissetungi avastamise süsteem masinõppe

põhise klassifikaatori abil

Magistritöö

Juhendajad: Risto Vaarandi, PhD

Senior Researcher

 Alejandro Guerra Manzanares, MSc

Junior Researcher

Tallinn 2021

3

I hereby certify that I am the sole author of this thesis. All the used materials, references to

the literature, and the work of others have been referred to. This thesis has not been presented

for examination anywhere else.

Author: Ali Ghasempour

14.05.2021

Author's declaration of originality

4

The constant increase of attacks on web servers poses threats to security, privacy, and service

performance. To develop an efficient intrusion detection system and identify the intrusion,

discovering the network behavior is necessary.

This thesis proposes behavioral intrusion detection systems based on machine learning

techniques to identify attacks by analyzing the HTTP traffic. The approach studied in this

works explores the HTTP header to extract the combination of meaningful features,

followed by tree-based supervised machine learning algorithms, a creative learning strategy

that highlights network intrusion from labeled data. During the learning phase, the algorithm

uses labelled data for acquiring a skill to highlight network attacks. This research is based

on the data collected from external network perimeter sensors of the Tallinn University of

Technology.

The analysis indicates that the proposed framework correctly detects roughly 90% of

intrusions. This is an indication that HTTP intrusion can successfully be dealt with using

multi-level HTTP header analysis.

This research exposed the proposed framework's suitability to help with the security

operation team's analysis procedures by automating intrusion detection.

Abstract

5

Veebiserverite vastaste rünnakute pidev kasv ohustab turvalisust, privaatsust ja teenuste

jõudlust. Tõhusa sissetungi avastamise süsteemi väljatöötamiseks ja sissetungi

tuvastamiseks on vaja tunda võrguliikluse iseloomu.

Selles lõputöös pakutakse välja masinõppe tehnikatel põhinevaid käitumuslikke sissetungi

avastamise süsteeme rünnakute tuvastamiseks HTTP liikluse analüüsimise teel. Töös

uuritud lähenemisviis analüüsib HTTP päiseid oluliste omaduste kombinatsiooni

leidmiseks, millele järgnevad puu põhised juhendatud masinõppe algoritmid - õppimise

käigus omandab algoritm sildistatud andmete põhjal oskuse võrgu sissetunge esile tuua.

Uurimistöö põhineb Tallinna Tehnikaülikooli välisvõrgu perimeetri anduritelt kogutud

andmetel.

Analüüs näitab, et välja pakutud lahendus tuvastab õigesti umbes 90% sissetungidest. Seega

saab HTTP sissetunge edukalt avastada kasutades mitmetasandilist HTTP päiste analüüsi.

Uurimistöö näitab pakutud raamistiku sobivust turvaoperatsioonide meeskonna

analüüsiprotseduuride hõlbustamiseks tänu sissetungi tuvastamise automatiseerimisele.

Annotatsioon

6

IDS Intrusion Detection System

CPU Central Processing Unit

JSON JavaScript Object Notation

HTTP Hyper Text Transfer Protocol

XGBoost Extended Gradient Boost

IP Internet protocol

TF-IDF Term Frequency – Inverse Document

Frequency

SNMP Simple Network Management Protocol

SMTP Simple Mail Transfer Protocol

List of abbreviation and terms

7

1 Introduction ... 12

1.1 Chapter overview .. 12

1.2 Introduction to network intrusion detection systems .. 12

1.3 Motivation and scope of the study .. 13

1.4 Hypothesis and contribution ... 14

1.5 Novelty .. 15

1.6 Outline of thesis .. 15

2 Related works .. 16

2.1 Chapter overview .. 16

2.2 Overview of intrusion detection systems .. 16

2.3 Literature review ... 21

3 Design and methodology ... 27

3.1 Chapter overview .. 27

3.2 Infrastructure and environment setup ... 27

3.3 Overview of dataset .. 28

3.4 System architecture ... 30

3.5 Data pre-processing and native features extraction .. 32

3.6 Advanced features extraction .. 33

3.6.1 HTTP methods feature ... 33

3.6.2 HTTP status code feature .. 34

3.6.3 HTTP content length feature ... 37

3.6.4 HTTP user agent feature .. 38

3.6.5 HTTP URL features... 40

3.7 Limit IP range and dividing the data set into sessions .. 47

Table of contents

8

3.7.1 IP selection .. 47

3.7.2 Arranging transactions into sessions ... 48

3.8 Finalizing dataset .. 49

3.9 Labeling and machine learning ... 50

3.9.1 Decision tree .. 51

3.9.2 Random forest.. 53

3.9.3 XGBoost .. 54

3.10 Prediction and validation ... 55

3.11 Summary ... 57

4 Framework implementation, results .. 58

4.1 Chapter overview .. 58

4.2 Data labeling ... 58

4.3 Results ... 59

4.3.1 Decision tree's results .. 61

4.3.2 Random forest's results .. 63

4.3.3 XGBoost's results .. 66

4.4 Discussion ... 67

5 Discussions and future works .. 68

5.1 Chapter overview .. 68

5.2 Discussion on machine learning algorithm's results ... 68

5.3 External validation .. 71

5.4 Future works ... 71

5.4.1 More extensive feature extraction ... 71

5.4.2 Unsupervised machine learning ... 72

6 Conclusion ... 73

7 References ... 75

9

Figure 1 Taxonomy of behavioral analysis approach in intrusion detection systems 18

Figure 2 Suricata architecture .. 19

Figure 3 Overview of machine learning-based intrusion detection system 21

Figure 4 Infrastructure and Environment setup ... 28

Figure 5 Proposed system architecture .. 31

Figure 6 Sample DataFrame .. 32

Figure 7 Distribution of HTTP methods. 26 < GET,POST, HEAD, DELETE, PUT < 39

 ... 33

Figure 8 Count of common methods over the dataset ... 34

Figure 9 HTTP response code distribution .. 35

Figure 10 Updated HTTP status code distribution .. 36

Figure 11 Content-length value on random records in a dataset. The index represents the

index of random records in the dataset. ... 37

Figure 12 HTTP user agent occurrence with bot keyword .. 39

Figure 13 URL length on 10K sample... 42

Figure 14 Weight distribution according to the proposed weighting scheme 45

Figure 15 Distribution of TF-IDF weight over 40K samples. ... 47

Figure 16 Sample 3500 records timestamp field ... 49

Figure 17 Sample decision tree using CART algorithm visual representation 52

Figure 18 Elbow method for finding optimal K .. 60

Figure 19 Performance metrics based on tree depth for attack data 62

Figure 20 Accuracy of method on 10 K-fold cross-validation .. 63

Figure 21 Performance metrics correlation with the number of estimators in random forest

algorithm in Attack samples .. 65

Figure 22 Performance metrics correlation with increasing of maximum depths in attack

data... 65

Figure 23 Accuracy of method on 10 K-fold cross-validations for random forest 66

List of Figures

file:///C:/Users/Ali/Documents/Taltech/Thesis/final.docx%23_Toc71890496

10

Figure 24 Comparison of machine learning algorithms' performance metrics on attack data

 ... 68

Figure 25 Comparison of machine learning algorithms' performance metrics on benign data

 ... 69

Figure 26 CPU time comparison for training phase of machine learning algorithms 69

Figure 27 CPU time comparison for decision tree and random forest algorithms in K-fold

validation ... 70

11

Table 1 Review of selected researches .. 26

Table 2 Selected attributes from dataset .. 30

Table 3 Select keywords on URL field ... 41

Table 4 Added features to initial HTTP features ... 50

Table 5 Decision tree performance metrics on default settings ... 62

Table 6 Decision tree performance metrics on non-default settings 62

Table 7 Random forest performance metrics on default settings .. 64

Table 8 XGBoost tuning hyper-parameters ... 67

Table 9 XGBoost performance metrics on non-default settings ... 67

List of Tables

12

1 Introduction

1.1 Chapter overview

This thesis is about implementing a network intrusion detection system based on a

supervised machine learning model on HTTP traffic. The current chapter will discuss the

importance of network intrusion detection for any organization. The hypothesis and

motivation of this thesis are discussed in this chapter.

1.2 Introduction to network intrusion detection systems

In the last decade, the importance of deep analysis of the network traffic in the Internet and

Intranet is growing. This need can be felt so that the Internet and being connected take all

daily human life aspects, from the digital government to smart transportation to storing

personal photos on clouds [1][2]. As a consequence of current ubiquitous digital data,

sensitive and personal information needs to be guarded against being tampered with or

damaged, and all systems need to have some degree of resistance against viruses and attacks.

The computer network is playing a pivotal role in information exchange and security.

Thanks to recent developments, strong IDS (Intrusion Detection System) technologies are

used to detect unusual activities.

Intrusion detection systems come in different shapes. It can be software installed on a

computer or physical hardware mounted to a rack. An intrusion detection system's primary

purpose is to monitor and analyze networks and hosts' activities and raise the alarm

whenever an intrusion is detected. The functionality of IDS depends on its focus area. It can

detect malicious activity over the network or find malicious processes on the operating

system. Some variety of IDS are also capable of blocking or deterring intrusion.

There are two main types of IDS: host-based IDS (HIDS) and network-based IDS (NIDS).

Network IDS is passively intercepting network traffic and inspects packets based on their

characteristics and features. On the other hand, host-based IDS is sitting on endpoint

computer systems and analyzing operating systems' internal processes. It has a wide variety

of functionality like file system integrity checks or ransomware protection. Sometimes anti-

viruses are acting as host-based IDS [3]. There is one more major type of IDS: a combination

13

of host-based and network-based intrusion detection systems. The new design is called

hybrid IDS. It has the advantages of two significant IDS types and uses a more effective

engine to detect malicious activities. However, it is rare to see two different IDS running

and cooperating as a hybrid IDS because of the complexity of such a setup [4].

Suricata and Snort are the most common network-based intrusion detection systems which

are both used commercially and non-commercially. However, there are other systems

developed by companies like IBM, Fortinet, etc. IBM has an IDS product called Intrusion

Detection and Prevention System Management [5]. Also, Fortinet has its own IPS system

[6].

Generally, intrusion detection approaches can be divided into two main categories [7]:

 Signature-based: The main goal is to detect the attack by a known signature in the

database. It is the most common way of malware and attack traffic detection and

involves matching the malicious activity with the pattern that human expert defines.

 Behavioral-based: This model uses profiling techniques to build common traffic

characteristics and detect abnormal activity.

Accuracy and performance are vital attributes of the intrusion detection system. Such a

system should run as fast as possible without losing the accuracy detection rate.

1.3 Motivation and scope of the study

The signature-based analysis is largely blind to zero-day attacks since such attacks involve

malicious network traffic that is usually not yet known to human experts who define

signatures. Nowadays, attackers are tweaking their attack payload not to match any

signatures before they initiate attacks. It gives them a competitive advantage compared to

firewall and intrusion detection systems relying on rulesets. This weakness makes behavioral

analysis an important intrusion detection technique. In the past decade, a lot of research has

been done on traffic behavior analysis; however, most previously suggested methods were

validated using public datasets available from Internet-based repositories. Many publicly

available datasets are fairly old and do not reflect the traffic patterns of modern high-speed

networks (for example, frequently used KDDCUP'99 dataset originates from the previous

century). This raises the following question: are methods developed on old datasets still

14

valid for deployment in real-time networks? To answer this question, real-time data needed

to be collected from a reliable point.

This thesis dataset is based on Tallinn University of Technology's external network

perimeter traffic. Since network sensors can collect any data, there is the question of which

protocol should be monitored. As the domain of this thesis, HTTP (HyperText Transfer

Protocol) is selected due to its widespread use.

HTTP is an application-level protocol for hypermedia transmission information systems. It

is a stateless and object-oriented protocol that can establish communication between servers

and clients based on the method. Although HTTPS is one of the fastest growing protocol in

internet however because of secure characteristics, it is not providing much information

about nature of traffic. Moreover, HTTP still has been used by many applications. However

if HTTPS traffic is considered, the proposed method can run after decryption process happen

by web server or enterprise proxy.

The protocol involves using HTTP headers with several data fields, which allows for the

definition of many features for machine learning algorithms.

1.4 Hypothesis and contribution

Intrusion detection systems are dealing with different issues such as performance lag in high-

speed networks. Also, matching traffic with signatures can lead to a high false-positive rate,

and some significant attacks may be missed. Therefore, employing behavioral analysis can

bring more precision. All of the mentioned issues demonstrate a technological gap in this

field. This thesis is trying to fill the gap by implementing a supervised machine learning

model based on the analysis of HTTP traffic. The following research objectives are listed

below:

 Study traffic behaviors for detecting unusual activities by analyzing HTTP packets.

 Develop a machine learning model to have high performance in a real-time network.

The proposed method first extracts raw HTTP header data fields and then derives features

from them for machine learning algorithms. The raw HTTP data are provided by the Suricata

IDS sensor, configured to produce a JSON record for each HTTP request and response seen

15

in the network. These raw data were captured from the external network perimeter of Tallinn

University of Technology.

1.5 Novelty

Current study is proposing novel multi-layer features’ extraction for HTTP traffic. The

proposed framework is preparing the data for having a best match with tree-based learning

algorithms. In addition, the framework provides a ledger for semi-automating data labeling.

Unlike the other studies using the labeled dataset for detecting malicious activities, this

thesis detects outliers without relying on a fully labeled dataset. This approach increases the

usability of the proposed framework in real-world scenarios. Furthermore, the current

research is analyzing the behavior of the traffic regardless of attack type. This look helps to

identify a broader range of attacks than other researches, limited to a list of attacks.

1.6 Outline of thesis

This thesis is organized into five chapters. Chapter one is an introduction to the study,

problem statements, and research objectives. Chapter two reviews related research that has

been done in the field of intrusion detection systems. Chapter three describes the

methodology of this research. The multi-level HTTP features extraction and machine

learning models are described in chapter three in a more detailed fashion. Chapter four is

discussing machine learning model results as well as demonstrating the performance

metrics. Chapter five analyzes the results and provides a discussion on model outputs. Also,

possible future work is discussed in this chapter. Chapter six concludes the thesis.

16

2 Related works

2.1 Chapter overview

Before introducing the proposed model to tackle the research problems, it is wise to review

previous methods and studies that have been done in the intrusion detection area. It is a vast

area, and researchers address issues from different angles.

2.2 Overview of intrusion detection systems

The expansion of computer software and networks is introducing new attacks to this field.

The network is the central part of communication among components. The network should

be carefully monitored to detect and deter malicious activities. Network attacks can be

categorized into two main parts: Active and passive. Active means intruders interact with

the network by sending commands, but in passive, attackers only intercept network traffic.

Some of the active attacks are [8]:

a. Spoofing: The attacker presents itself with a fake identity.

b. Modification: Any modification in the message route to cause a delay in

communication.

c. Fabrication: Change the content of the message in a way to present false information.

d. Denial of services: malicious node sending massive traffic to saturate bandwidth as

well as other node resources.

e. Sinkhole: The compromised node advertises its routing updated to other nodes to

attract their network traffic.

f. Sybil: Deploying multiple malicious nodes in the network to increase the chance of

attack.

Some of the passive attacks are:

a. Traffic analysis: The attacker measures the amount of data that are communicated

between sender and receiver.

b. Eavesdropping: The attacker intercepts network traffic to collect any user

information.

c. Monitoring: The attacker reads confidential data without modifying them.

17

There are some other types of attacks that do not fit the main categories:

a. Blackhole attack: The attacker uses routing protocols to set the best path for

interception. This fake route can help the attacker to hide and monitor traffic in most

favorite environments.

b. Rushing attack: The attacker captures the packet from sender to receiver, duplicates

the message, and keeps sending the same packet to the receiver to exhaust the

receiver's resources.

c. Reply attack: Malicious node repeats or delays the data.

d. Byzantine attack: Delay communication by setting up multiple nodes between

sender and receiver. It can be done by rerouting or sending by a non-optimal path.

As mentioned in the previous chapter, intrusion detection systems are responsible for finding

and alerting unusual activities in the respective layer. These IDS applications can work on

many modes and analyze data by different approaches. Some aforementioned types of IDS

are network-based, host-based, and hybrid models. In broad categorization, IDS can run into

two primary modes: Signature-based or behavioral-based.

A short argument about the pros and cons of the mentioned methods is that the signature-

based method generates fewer false alarms since it uses a predefined signature dataset. On

the other hand, the behavioral method is more strong against unforeseen or zero-day attacks

because of the profiling technique to detect attacks [9]. Speaking more about characteristics

of the intrusion detection system, Debar [10] is listing the following properties:

 Accuracy: The system does proper detection without false alarm.

 Performance: An adequate processing time for audit events without missing an

intrusion. Real-time processing is ideal.

 Completeness: An intrusion detection system must detect the attack. An incomplete

sequence of detections can cause the system to stay useless.

 Fault tolerance: The system itself should be resistant to attack. It is crucial because

most intrusion detection systems run above other systems.

 Timeliness: Intrusion detection systems should detect and alert about attacks as

quickly as possible to avoid possible damage to other parts of the network.

Current intrusion detection setups rely on deploying multiple network monitoring nodes and

capturing every possible packet. After the packet has matched some signature, the IDS

18

generates an alarm and sends the alarm (usually together with the packet payload) to a central

server. Because of the large number of packets that can match signatures, some designs

suggest adding Elastic Stack for organizing alarm data.

A lot of research has been conducted to find the most suitable approach for detecting

malicious activities. The IDS can run according to the behavioral model. A behavioral model

can be implemented in different ways, but in general, it can fit into three main categories:

statistical-based, knowledge-based, and machine learning-based. With the statistical

approach, statistical methods are used to define the legitimacy of traffic. It is a less efficient

method since we do not use any expert system to support our decision. The knowledge-

based approach uses all expert knowledge, such as operator feedback and protocol details,

to determine the nature of the traffic. However, it is an expensive process, and it is rarely

used. Finally machine learning model tries to find the nature of network traffic. Figure 1, is

demonstrating the general taxonomy of behavioral approaches [11].

Behavioral
analysis

Statiscial based

Univarate

Multivariat

Time series
model

Knowledge
based

Expert system

Desccription
languages

Machine
learning based

Bayesian
networks

Markov models

Neural networks

Clustering and
outlier detection

Figure 1 Taxonomy of behavioral analysis approach in intrusion detection systems

19

Also, behavior-based intrusion detection can be categorized differently. The new taxonomy

is, supervised, semi-supervised and unsupervised. The supervised means to label data and

build two distinguishable categories like normal and abnormal. Semi-supervised is building

model only on routine data. It means we determine the usual data, and any outlier that cannot

fit our model is abnormal. In the last technique, unsupervised, the data are categorized into

clusters without knowing clusters. It is a less expensive model since it does not need any

background information [12].

There are many types of systems available [13].

 Suricata: It is an open-source network intrusion detection tool based on the

predefined signature set.

 Snort: It is another open-source network intrusion detection system introduced in

1998. It can also be used as a packet sniffer like TCPDUMP.

 Zeek (bro): It is a passive intrusion detection system capable of handling high-speed

networks. It provides a scripting language that helps us to write our ruleset.

Figure 2 Suricata architecture

One of the main advantages of Suricata over Snort is, it can use advanced HTTP header

parsing. Suricata has a better performance based on the measured benchmark than Snort

while running in multi-threaded mode [14]. According to Suricata documentation, it can

detect the following properties of HTTP requests and responses [15]:

 Stateful HTTP parser and HTTP transaction logger

20

 Keyword matching on buffers:

o URI

o Headers

o Cookie

o User-agent

o Request and response body

o Method and status code

o Hostname

Tallinn University of Technology network setup includes Suricata as an intrusion detection

component.

Machine learning and neural network solutions have been most frequently suggested in IDS-

related research papers in the past decade. Accessing and producing massive data sets and

improving hardware acceleration leads researchers to focus more on the machine learning

approach [16].

Machine learning and neural network models mainly contain three main stages: data pre-

processing, training, and testing. In simple words it means, transform raw data into encoded

or pre-processed data. Divide data into training and testing portions, and then train the

machine with training data to build the model. Test data can be used to check the built model

to figure out the accuracy of the machine learning model [17]. Figure 3 demonstrates an

overview of machine learning models.

21

Figure 3 Overview of machine learning-based intrusion detection system

Deep learning is another cutting-edge method for analyzing the behavior of traffic. Deep

learning improved machine learning techniques by adding more extra layers and optimized

the features selection process. The layers are connected and use each other feedback to

improve the model. It is a more efficient technique than a machine learning model since its

layers select features. However, it needs more computational power [18]. In short, the

difference between deep learning and machine learning are:

a. Deep learning needs a more extensive dataset to analyze compared to machine

learning models.

b. Feature selection mostly happens by layers in deep learning; however, machine

learning features are introduced to the machine.

c. Deep learning techniques require high computational power and a more prolonged

training phase.

2.3 Literature review

For adequately analyzing this research, different angles need to be covered. Because

proposed framework contains different parts, and each one has different methods of

22

implementation. Firstly previous related works are discussed, and after that, the best method

for each component is discussed separately.

Recent research papers indicate that anomaly detection methods have featured high

detection rates [19]. However, it cannot be seen as a highly developed research field since

attacks and attack methods are constantly changing [20]. One of the issues that many current

studies have is that they mostly use old publicly available datasets, for example, the

KDDCUP'99 dataset [21]. This dataset was released in 1999, and since then, it has widely

been used for other network anomaly research. This dataset contains a record with labels for

"bad" and "good." One of the issues this dataset is facing is that there are multiple duplicated

rows available [22]. Due to this, machine learning training and testing datasets are similar

and produce better detection rates. Although a new version of NSL-KDD has been released,

the validity of this dataset has been questioned [23], [24], [25].

As mentioned in the previous chapter, selecting the right approach is essential. Classification

of data is one of the methods that most of the research is employing. Mustapha et al. [26]

made a simple comparison of different classification methods, namely SVM, Naïve Bayes,

decision tree, and Random forest, over KDD dataset using Apache spark. Results show that

Random forest is more accurate with the lowest prediction time; however, Naïve Bayes was

selected as the fastest training model. Also, it is crucial to notice which attack method

research is targeting. Pasumpon et al. [27] studied DDOS attacks in the network. The author

proposed a combination of neural networks and SVM as detection and classification tools.

The research flow elaborates that to label the input data, and they applied quadratic entropy

to define a regular traffic threshold. However, involving multiple neural network layers in

the model increases the detection time significantly, and accuracy is not promising.

Detecting DDOS attack which is coming from distributed sources can be challenging.

Botnets are taking a considerable share in cybersecurity threats in 2020. According to the

ENISA Botnets C&C server, it increased 71.5% compared to 2018 [28]. These statistics

have motivated researchers such as Tong et al. [29] to propose a machine learning model to

detect Botnet DDOS attacks. They improved feature selection to increase the robustness of

the model. The author picked traditional classifiers like SVM, decision tree, Naïve Bayes,

Artificial Neural Network (ANN), and unsupervised learning (USML) to discover insider

threats. Overall results based on two different datasets indicate that unsupervised learning

had more accuracy among present methods. Other researchers have suggested a semi-

23

supervised clustering method for detecting DDOS attacks. Muhammad et al. [30] proposed

two parallel clustering techniques aggregated by one voting system and feed labeled data to

supervised learning. The author proposed a voting method to check and compare different

cluster outputs. On one side, Principal Component Analysis (PCA) and K-means clustering

and another side Agglomerative clustering have been selected. Their research used simulated

data generated by OPNET, but it is questionable if it would produce the same results for

real-world traffic or not.

To study network attacks' nature, it is helpful to analyze the features of a specific application

layer protocol. This research mainly studies HTTP in the application layer. HTTP header

contains different parameters that can be used as features for measurements [31]. HTTP

flood attacks can be categorized as one of the DDOS attacks. Indraneel et al. [32] proposed

to measure each session time and page count to distinguish DDOS from normal behavior.

The author measured the absolute deviation session time frame and clustered them. As a

clustering algorithm, the BAT algorithm was selected, representing the behavior of BATs in

nature, and results indicated that results are more promising than results reported in other

research papers.

URI and request methods are exciting features to analyze [33] to better understand HTTP

header and user activity. Pattern analysis is the primary method to decode URI. Yuqi et al.

[34] proposed semantic structure detection for HTTP traffic. They assumed that malicious

traffic has repeating patterns and divided patterns into multiple states. To improve

prediction, the author used Bidirectional Long Short-Term Memory (Bi-LSTM) for profiling

the patterns. The results show false positive rate is below 1%. Ke et al. [35] introduced

MalHunter, based on malware's statistical characteristics in HTTP protocol. The author

extracted character-level features of URLs and applied separate statistical analysis for each

feature. Also, each field of the HTTP header is going through the same process.

Sornsuwit et al. [36] use different techniques such as K-NN, C4.5, MLP, SVM, and LDA to

boost data classification. The authors are trying to optimize input data as much as possible

to improve detection accuracy. The proposed method consists of several phases, and in each

phase, the data is applied to multiple classifier algorithms. Also, some researchers are

focusing on neural networks. Zhang et al. [37] employed Mind Evolution Algorithm (MEA)

and Genetic Algorithm (GA) to reduce input data features and using the classifier method in

the following steps. Adem [38] focused on URL and payload parameters as the primary

24

input for Convolutional Neural Network (CNN). HTTP payload is converted into bag-of-

words representation. The results indicate that an almost 97% recall rate can be achieved.

Besides standard classification algorithms such as Random Forest, XGBoost, and precision

and recall rates are reporting, XGBoost has better results. Yong et al. [39] mainly focused

on IoT devices which are using HTTP traffic for communication. The author proposed a

framework that divides HTTP requests into multiple parameters and uses Hidden Markov

Model (HMM) to detect attack scores. At the final stage, a voting score is implemented to

trigger an alert based on previous scores. John et al. [40] had a deep analysis of near 50,000

HTTP headers and proposed 11 new HTTP header features that are not common among

previous research. Surprisingly some header fields such as "cache-control no-cache"

demonstrate significant rank in the selection process. The reported features are rarely used

in other similar studies. Stefano et al. [41]studied the difference between human and bot

activity on different websites by classifying them using unsupervised and supervised

learning. Web server access log is the primary input data source of this research, and each

session is labeled based on different databases such as the Udger database [42], which

contains 43 legit user agent strings. It is closely related to the current research proposal;

however, the current study's main aim is to find malicious activities regardless of bot or

human. Ashley et al. [43] collected a dataset similar to this research's primary intended data

source, coming from university web server logs in 42 days. The author collects both request

header and payload and generates a key-value matrix. Labeled features are passed to

Random Forest, XGBoost, and Decision tree classification algorithms. Based on importance

rank, "accept-encoding" is the most common feature among their dataset, and result-wise,

XGBoost has more accuracy in a shorter timeframe.

Suricata and ElasticStack are core tools for this research. Suricata collects all information

across the network and stores collected data in elastic search [44][45]. In recent years some

extensions have been developed for ElasticStack as the automated detection system. Wazuh

is an extension in Kibana which can detect anomaly based on population analysis [46].

Ovidiu et al. [47] proposed another ElasticStack extension to detect anomalous activities

and present them in the Kibana dashboard. Z. Chiba et al. [48] have proposed using Suricata

as signature-based anomaly detection and use Isolation Forest Algorithm (IFA) as the second

layer of detection. The IFA algorithm is detecting anomalies by not using distance or density

25

measures. This technique is decreasing memory usage since there is no need for creating

different trees in memory.

In the following table, selected researches are organized by year and explained for ease of

reading.

26

NO Autor, Year Method Result

1 Mustapha et al. [26], 2018
SVM, Naïve Bayes, decision tree, and Random

forest on KDD dataset and Apache spark

Random forest selected the most accurate method.

Naïve Bayes was fasted training method.

2 Pasumpon et al. [27], 2019 Complex neural networks model on DDOS attacks.
The proposed method has significant detection time as well as low

accuracy.

3 Yong et al. [39], 2019
Parse HTTP header from IoT devices and use hidden

Markov model.

The author reported algorithm can detect SQLi and XSS attacks with

high accuracy.

4 Muhammad et al. [30], 2019
Cluster data by two parallel voting methods. K-means

and Agglomerative clustering.
Results can not be confirmed since it is based on OPNET

5 Indraneel et al. [32], 2019
Detect HTTP DDOS attacks by measure session time and

page count.

The author compared his BAT method to other methods, and it shows

94.8% accuracy.

6 Sornsuwit et al. [36], 2019
Heavy data pre-processing for maximum performance.

Multi-layer data classification.

The author used K-NN, C4.5, and SVM and compared them with his

method. The reported accuracy is 99.98% by their method.

7 Stefano et al. [41], 2020
The author aimed to differentiate bot activities from the

human by analyzing web server log.
The data classification has not been done precisely.

8 Tong et al. [29], 2020
SVM, decision tree, Naïve bayes, ANN and USML on

Botnet DDOS data.

Based on results, the unsupervised learning had better detection

accuracy.

9 Adem [38], 2021
Apply URL and payload to a convolutional neural

network (CNN).
Almost 97% recall rate had been achieved by method.

10 Ashley et al. [43], 2021
Analyze HTTP header and payload by Random Forest,

XGboost, and decision tree algorithms.

It is one of the most valuable researches since it is based on actual data.

XGBoost was selected as the most accurate algorithm.

Table 1 Review of selected researches

27

3 Design and methodology

3.1 Chapter overview

The following chapter is a discussion on the primary research body. In the general overview

of current chapter points, the system's model and architecture have been discussed. Besides,

technical requirements and the experiment environment are described in detail. Some more

technical improvements have been proposed to make research results more straightforward

to be implemented in the real world.

3.2 Infrastructure and environment setup

The setup can be divided into two main components: data collector node and analyzer

system.

In the role of the data collector node, we have used a Suricata IDS sensor on the external

network perimeter, which raises not only alarms about malicious traffic but also generates

records for legitimate network traffic for most common application layer protocols (for

example, HTTP, SMTP, DHCP, etc.).

As the domain of this thesis, only HTTP traffic data in JSON format is considered. All

incoming HTTP traffic from external sources to TalTech hosted services is in this research

analysis scope to be more precise.

The second component is the analyzer machine. The machine is hosted in Tallinn University

of Technology, Computer science department. It is the main computer for the rest of the

analysis, which has been done for this research. The server technical hardware configuration

is:

 CPU Intel® Xeon® CPU E5-2630L v2, 2.40GHz, 15 MiB L3 cache

o 24 CPU cores.

 64 GB (8x 8GB) DIMM DDR3 1500 MHz Kingston memory

 RAID1 – 2x Samsung SSD 860 250GB

28

 2x Intel Gigabit Network connection, 1Gbit/s

The server's chosen operating system is CentOS Linux version 8, running on kernel 4.18.0

x86_64 Linux. Python is the primary language for analysis. Python 3.6.8, in addition to extra

libraries such as Numpy, Pandas, etc., are used.

The server is configured to collect HTTP traffic from Tallinn University of Technology's

external perimeter is transferred into the server by rsyslog tool. The data are stored in a

single file per day. The information flow is started on 23 November 2020.

Figure 4, is demonstrating the desired setup.

Figure 4 Infrastructure and Environment setup

3.3 Overview of dataset

According to described architecture, the data are collected from the IDS sensor and

transferred into a server by syslog protocol. Data are stored in flat files, and each file

represents one day. The files contain JSON records; however, a timestamp is also added at

each record's beginning. Following is the sample record from 1 April.

29

Apr 1 00:00:03 extids-ict suricata @cee: {"timestamp":"2021-04-
01T00:00:03.401478+0300","flow_id":514485052991264,"in_iface":"eno4","ev
ent_type":"http","src_ip":"AA.BB.CC.DD","src_port":XXXX,"dest_ip":"AA.BB
.CC.DD","dest_port":XXXX,"proto":"TCP","tx_id":0,"http":{"hostname":"onl
ine.msi.ttu.ee","url":"\/tallinn\/graafik.php?_jpg_csimd=1&hoovus","http
_user_agent":"Mozilla\/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit\/537.36 (KHTML, like Gecko) Chrome\/89.0.4389.82
Safari\/537.36",
http_content_type":"image\/png","redirect":"http:\/\/on-
line.msi.ttu.ee\/tallinn\/","http_method":"GET","protocol":"HTTP\/1.1","
status":301,"length":4433}}

Each record contains captured HTTP transaction which the IDS sensor has detected. The

record represents HTTP requests to the server and the server response to the client. However,

if the server does not provide any response, therefore it only represents the request.

The provide JSON can contain multiple values. These values are not fixed and can be seen

based on the availability of them. In general, most records have the following attributes:

30

timestamp Transaction timestamp

flow_id Suricata bidirectional flow tracker number

in_iface Captured interface name

event_type Indicate logging protocol type

src_ip Source IP address

src_port Source port

dest_ip Destination IP address

dest_port Destination Port

proto IP protocol in the packet header

tx_id Suricata transaction ID

H
T

T
P

hostname The hostname of the HTTP event

URL Visited URL at hostname

http_user_agent User-agent software

http_content_type The datatype of the HTTP record

http_method HTTP method such as GET, POST, etc

protocol The version of the HTTP protocol

status HTTP status code

redirect HTTP redirect

length Content size of the HTTP body

Table 2 Selected attributes from dataset

During the experiment period, daily log files had the size of up to 1.3 GB per day. However,

to save disk space, older files were compressed.

3.4 System architecture

This research proposes multi-layer feature extraction, semi labeling data, and machine

learning models to detect and predict malicious activities. Figure 5 is demonstrating the

general overview of system architecture.

31

Figure 5 Proposed system architecture

32

3.5 Data pre-processing and native features extraction

The original data files need to be pruned in such a way that the additional timestamps should

be removed. This process has been implemented with UNIX tools. Also, to have a better

analysis, it is necessary to aggregate a few days' files into a single file. It would give a more

realistic view of data instead of looking at a specific timeframe. Also, mixing data from

working days (Monday – Friday) and weekends helps create a more realistic data set that

describes traffic nature for different days of the week. According to the analysis, based on

computational and storage limitations, selecting three days is optimal. A new data file has a

size of around 4GB and 5 million records.

One of the main components of this research is extracting every possible feature from the

dataset. It means that alongside provided Suricata HTTP features, other features need to be

extracted.

The process is starting with mapping JSON data to Pandas DataFrame. Panda DataFrame is

a two-dimensional data structure [49]. It contains rows as records and columns as features.

The table has heterogeneous characters and can store most of the datatype in it.

To build DataFrame from 5 million data records, it is necessary to use multi-threaded

processing to increase data mapping pace. By nature, Python is not running on multi-thread

scheduling and can utilize only one CPU simultaneously. Therefore, the dataset is divided

into chunks of multiple lines, and a Python thread is executed per each chunk to utilize

maximum CPU power. Also, this method can be used during real-time analysis to increase

the data processing speed. After mapping all Suricata data into DataFrame, it would look

like the following figure:

Figure 6 Sample DataFrame

33

3.6 Advanced features extraction

Extracting meaningful features out of currently available parameters requires more profound

analysis.

3.6.1 HTTP methods feature

To start, http_method is a favorable feature to analyze. HTTP method shows the desired

action for specific resources. According to Mozilla, there are nine most common methods.

These methods are: GET, HEAD, POST, PUT, DELETE, CONNECT, OPTIONS, TRACE,

and PATCH [50].

Mentioned methods are also most common in our dataset. Figure 7 demonstrates the

distribution of the HTTP method over the selected dataset. In this context, the selected

dataset is December 6 2020 captured data. According to the graph, most HTTP method

occurrences on the selected dataset belong to common HTTP methods introduced by

Mozilla.

There are many different HTTP methods in selected datasets; therefore, to plot them, the

encoding technique has been used. It means each HTTP method assigns to one number

Figure 7 Distribution of HTTP methods. 26 < GET,POST, HEAD, DELETE, PUT < 39

34

Also, among common methods, GET is the most common one. Figure 8 shows, GET has

the most requested method following by POST as the second one.

Figure 8 Count of common methods over the dataset

Based on measurements, odd HTTP methods can be counted as not standard methods or

containing malicious requests. By odd methods it means, it is not part of Mozilla top

methods. Therefore a new feature called "uncommon_http_method" is added to the dataset.

Further validation on the dataset revealed that most odd HTTP methods carry a malicious

payload.

3.6.2 HTTP status code feature

HTTP status code is the second feature that can be analyzed directly. The status code shows

the HTTP response to a specific request. Status codes can be categorized into five main

ranges [51].

1. Information responses (100 – 199)

2. Successful responses (200-299)

3. Redirects (300-399)

4. Client errors (400-499)

5. Server errors (500-599)

35

Each range contains several status codes which have a specific meaning. For example, status

code 301 is about the requested URL moved permanently, and 404 manifests the fact that

the requested page does not exist.

Typically, security analysts consider status codes above 400 as malicious or needing a closer

review. Most manually crafted scanning, bot scanning, and brute force attacks produce client

errors (codes 400-499) from servers. Although the 500-599 range belongs to server errors

such as application failure or web server faults, attackers might inject some arbitrary codes

into the application, which causes it to crash and return server errors [52]. Therefore in most

cases, it is a valid assumption to consider codes above 400 as unusual activity. However, the

above statement does not imply that all of the other status codes belong to the normal range.

If the attacker successfully requests or posts payload to the server, the webserver would

reply with code 200. Also, in some cases, the attacker might request an old URL or the URL

redirected elsewhere. In this situation, the server responds with 300 range. The 100 range is

most common among all connections since it belongs to a web socket connection.

Figure 9 is showing the most common status codes in are 100, 200, and 300 ranges.

Figure 9 HTTP response code distribution

After manually checking the selected dataset, the following status codes which are below

400, are most common ones:

36

 101: It is a response to the upgrade header request from the client.

 200: Means OK. However, the code has different meaning for different methods :

o GET: Request fetched successfully.

o HEAD: The header is inside the message.

o POST/PUT: Request submitted successfully.

 206: The client is requesting part of the resource.

 301: URL has been moved permanently, and new URL provided.

 302: Requested URI has been changed temporarily.

 304: It tells a client that the information is the same and can use its cache.

 307: The same action as what 302 does, however the HTTP method cannot be

changed.

After excluding mentioned status codes, the distribution of the status codes over the dataset

is looking like below:

Figure 10 Updated HTTP status code distribution

The new feature is called "odd-status-code". Every transaction which does not have

mentioned status codes (the commonly recognized status codes) has been marked.

37

3.6.3 HTTP content length feature

The third extracted feature is related to HTTP content length. Content-Length is showing

the size of the body which has been sent to the recipient. Applications are using the content-

length parameter to indicate the transfer length of the message body. This feature does not

have any meaning by itself. However, if we measure it by the time, a normal distribution

pattern appears. The Kolmogorov Smirnov test has been conducted on data to prove the

normal distribution [52]. The test shows the data is normally distributed on most of the

different timestamps. However, there are cases that the data is not normally distributed.

Figure 11 shows over random rows on dataset content length have shown the normal

distribution pattern.

Figure 11 Content-length value on random records in a dataset. The index represents the index of random

records in the dataset.

One approach calculates the mean for data and assigns the data above the mean as more

significant data. It would provide us the possibility to detect large data transfers which have

been conducted over the server. Since our domain is limited to external IPs approaching our

internal IPs, content length can be interpreted as the length of data requested by an external

host. In some cases, if an attack is successful, the length is considerably larger than average.

38

Therefore, after aggregating several days of data, the total mean can be used to find records

above the mean. The new feature is called "content-length-above-mean."

3.6.4 HTTP user agent feature

The next following exciting feature which significant in the dataset is HTTP User-Agent. It

is information from the client that reports the application, operating system, vendor, and

version of the requesting agent [53]. The provided information is varied and depends on the

client software. The User-agent field has a general pattern:

User-Agent: <product> / <product-version> <comment>

And in a common format from browsers:

User-Agent: Mozilla/5.0 (<system-information>) <platform> (<platform-

details>) <extensions>

User-agent is the pervasive field. There are many different agents (different in software,

browser, operating system, version, etc.) that are used to visit university webservers. Also,

in our dataset, we have roughly around 1 million records for each day. Therefore it would

be impossible to find meaningful information by only looking at the user-agent feature.

There are some standard user-agent that can be seen in our dataset.

Firefox user agent string:

Mozilla/5.0 (platform; rv:geckoversion) Gecko/geckotrail
Firefox/firefoxversion

 "geckoversion" is the firefox version, and "geckotrail" indicates a browser-based

Gecko.

Example of Chrome user agent string:

Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/51.0.2704.103 Safari/537.36

Example of Safari user agent string:

Mozilla/5.0 (iPhone; CPU iPhone OS 13_5_1 like Mac OS X)
AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.1.1 Mobile/15E148
Safari/604.1

39

Example of Internet Explorer user agent string:

Mozilla/5.0 (compatible; MSIE 9.0; Windows Phone OS 7.5; Trident/5.0;
IEMobile/9.0)

Example of Crawler or bot user agent string:

Mozilla/5.0 (compatible; YandexAccessibilityBot/3.0;
+http://yandex.com/bots)
Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)

Furthermore, lastly, an example of the library or net tool in a collected dataset.

Curl1/7.64.1
PostmanRuntime/7.26.5

More information about user-agent types can be found in RFC 7231 [54].

Figure 12 is showing all of the user agents which contain "bot" in the name.

Figure 12 HTTP user agent occurrence with bot keyword

After manual dataset reviewing, it turns out that, based on current features, there is a pattern

for malicious HTTP user agents. The pattern is based on newly introduced features. It is

trying to identify most of the odd behavior that has been observed. The rule for determining

if the user agent is malicious is the following:

(odd − status − code == 1 OR uncommon − HTTP − method == 1) 𝐴𝑁𝐷 (content

− length − above − mean == 1 OR dest − port ! = 80)

40

If an HTTP transaction matches the above rule, the user agent from that transaction is

regarded suspicious, and the "suspicious-user-agent" feature is set to 1 for all HTTP

transactions with the given user agent.

3.6.5 HTTP URL features

So far, most of the selected features did not need extensive and deep analysis over specific

built-in features. However, the "URL" feature can provide us much information. This feature

is combined with "hostname" to build the full requested domain and address. The URL

features contain much information to extract. It mostly reveals the nature of the request.

There have been many methods for extracting meaningful information. As the first step,

keyword scanning has been used. In addition to regular expression-based matching, most of

the current signature-based intrusion detection systems are often also relying on substring

matching for URLs. It is useful to extract the top common substrings (henceforth called

keywords) among the attacks based on previous studies. Also, keyword selection is based on

Tallinn University of Technology's Computer Emergency Response Team (CERT) database

for attacks.

Keywords are the specific command, file extension, or method that have been used in the

URLs. For example, there should not be any system or application command execution in

most legitimate requests. The following table is demonstrating all of the keywords and

respective categories which have been used as features.

41

Compressed file

.tar

PHP

.php

.gz .phtml

.xz .php3

.bz2 .php4

.7z .php5

.zip
.phps

phpmyadmin

.rar

Python

.py

Interpreters

bash .pyc

perl .pyo

ruby .pyw

exec .pyd

.rb

Connection tool

nc

.pl wget

.sh curl

.exec

JS functions

eval()

.cgi link()

Others
bot unescape()

sql search()

Table 3 Select keywords on URL field

Every mentioned keyword is added as a feature to the dataset, and it has a binary value. If

the keyword is present in the URL, the value would be 1 otherwise 0.

The second step for URL analysis is length. The URL length can be interpreted in different

ways. Firstly, the number of characters inside the URL has been considered. It does not have

any meaning by itself; however, it is adding more details to the analysis. Figure 13 shows

most URLs have lengths up to 100 characters, and only a few are longer.

42

Figure 13 URL length on 10K sample

The number of words is also another feature. It means dividing the URL into parts (words)

by considering special characters which are used in the URL as delimiters between words.

Special characters which are used as delimiters to extract words from the URL are: % & =

/ \ : // \\ ? .

For each record, a new numeric feature is created, set to the total number of words used in

the URL.

One technique to detect outliers based on URLs is to identify less frequent URLs among the

dataset. It means most common URLs are repeated over the dataset, and probably they

represent legitimate traffic; however, a specially crafted request that includes a non-generic

function to perform malicious activities can be seen rarely on the dataset. The proposed

technique is calculating the coefficient for each record to describe how rare is the URL. This

technique utilizes currently collected information such as the number of words and uses

statistical methods to calculate the weight.

The algorithm is divided into 6 steps. In steps one and two, the words and occurrence of

them in each records are counted. The steps 3 is counting all of words for each records. Then

count total number of words inside the dataset in step 4 and in the step 5 calculate the

occurrence of each word per dataset. Lastly, in step 6, if the occurrence of word is below

43

50% therefore the word counted as less common word and affect the total coefficient

number. To adjust most effective threshold, algorithm has been run multiple times. Also

since 50% is relatively high number to be threshold therefore it omits only most common

words.

Following Algorithm 1 is explaining the steps. The author has proposed the following

algorithm.

Algorithm 1: Finding uncommon URL in the dataset

Input : Dataset D

Output : Occurrence coefficient for each row in D

Step 1 : Dataset has m transaction, and each transaction has n words. Every word can

be repeated C times in a transaction.

Step 2 : //Extract words as W from each row of the dataset

𝐶1 × 𝑊1,1, 𝐶2 × 𝑊2,1, 𝐶3 × 𝑊3,1 ⋯ 𝐶𝑛 × 𝑊𝑛,𝑚

// Where 𝐶𝑛 represents the number of repeats for a word 𝑊𝑛,𝑚 . 𝑊𝑛,𝑚

Represents the word W in record m and with n position.

Step 3 : //A total number of each word in the dataset as 𝑇𝑜𝑡𝑎𝑙𝑊. The 𝑊𝑛 is the nth

word.

For all m in D do

 𝑇𝑜𝑡𝑎𝑙𝑊 = 𝑇𝑜𝑡𝑎𝑙𝑊 + 𝐶𝑛 × 𝑊𝑛

End for

Step 4 : //Total number of words in the dataset as 𝑇𝑜𝑡𝑎𝑙

𝑇𝑜𝑡𝑎𝑙 = 𝑇𝑜𝑡𝑎𝑙𝑊1 + 𝑇𝑜𝑡𝑎𝑙𝑊2 + 𝑇𝑜𝑡𝑎𝑙𝑊3 + ⋯ + 𝑇𝑜𝑡𝑎𝑙𝑊𝑛

Step 5 : //Calculate occurrence of each word 𝑇𝑜𝑡𝑎𝑙𝑊 per the dataset D

44

𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑊 =
𝑇𝑜𝑡𝑎𝑙𝑊

𝑇𝑜𝑡𝑎𝑙

Step 6 : //Adding new feature called "URL-odd-words-coefficient"

For all m in D do

 If 𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑊 < 50%, then

 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑚 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑚 + 𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑊

 End if

 If there is any 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 > 1, then

 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑚 =
𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑚−min (𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)

max(𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)− min (𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)

 End if

End for

In short, the technique is going through each row and count the occurrence of less common

words in the URL. Then normalize data to range zero to one. Therefore, every row with a

higher number would have a higher coefficient of being a unique URL. Figure 14, is

demonstrating the weight of the URL according to the proposed method for 40000 samples.

Most of the URLs are fitted into 0.2 to 0.4.

45

Figure 14 Weight distribution according to the proposed weighting scheme

The other method for detecting outlier from URL features is using textual analysis

techniques. The idea is still following the previously proposed method to underline those

URLs containing a less frequent word than others. In other words, identify URL which has

less common items compared to rest of dataset. One of the standard methods in natural

language processing (NLP) is using TF-IDF weight. TF-IDF, instance on Term Frequency,

Inverse Document Frequency. Heuristic intuition indicates that if a term occurs many times

in a document, it is not a good discriminator between normal and anomalous HTTP

transactions, and more weight should be given to words that are less frequent in the data. In

general, the TF-IDF formula is divided into two main parts: term frequency, how important

the term is in a document, and inverse document frequency is how frequent it is, word over

all of the documents [55].

𝑤 = 𝑡𝑓 × 𝑖𝑑𝑓

𝑡𝑓𝑖,𝑗 =
𝑓𝑖,𝑗

∑ 𝑓𝑡′,𝑑𝑡′𝜖𝑑

𝑖𝑑𝑓𝑖 = log (
𝑁

𝑑𝑓𝑖
)

𝑤𝑖,𝑗 = 𝑡𝑓𝑖,𝑗 × log (
𝑁

𝑑𝑓𝑖
)

46

Where 𝑤𝑖,𝑗, is the weight of term i in document j. 𝑡𝑓𝑖,𝑗, is determining how frequent is the

term i in document j. The N represents the total number of documents and 𝑑𝑓𝑖, is how many

time term i repeated all over the dataset.

In this research, Scikit-learn, Python library is the central part of the implementation. For

practical implementation of TF-IDF, the TfidfTransformer method has been used. This

method is part of the Scikit-learn library [56]. Some tuning and structural changes to the

standard textbook notation of TF-IDF have been implemented in the mentioned library. One

of the changes is adding one to the IDF equation. It means the new equation is:

IDF(t) = log [N / df(t)] + 1

If the term is repeated in all of the data, then the inverse document value would be zero.

Therefore IDF value would totally be ignored. For avoiding this issue, 1 is added to the IDF

formula.

Also, to prevent zero divisions, the constant of one is adding to the IDF fraction. It will avoid

error if the document contains all of the terms in the dataset. The final equation is,

IDF(t) = log [(1 + N) / (1 + df(t))] + 1

Moreover, the results are normalized by Cosine Normalization to be bounded into zero and

one. It means that sum of squares of vector elements is 1. The vector represents the TFIDF

value. The one interprets as data is less frequent; therefore, it has a higher value. On the

other hand, zero means the data is pervasive in dataset and transactions.

The TF-IDF score is calculating for each term in each URL for all of the datasets. To build

the single feature which is representing the TF-IDF score of URL, the average TF-IDF of

record counts as the total value of TF-IDF.

Figure 15 is showing the distribution of TF-IDF scores over 40000 samples. Most of the TF-

IDF weights are belong to the 0.3 to 0.7 range. It means that most of the terms are repeated

equally over the dataset.

47

Figure 15 Distribution of TF-IDF weight over 40K samples.

One of the issues related to TF-IDF methods is that it is computationally heavy to perform.

It means that the size of features is equal to the size of the term in documents. Therefore, if

documents contain an extensive vocabulary, it is costly to calculate each term's weight [56].

3.7 Limit IP range and dividing the data set into sessions

The current architecture is capturing both incoming and outgoing HTTP traffic to the

TalTech network. It means that information about all transmitted HTTP packets is included

in the dataset. However, interpreting this information is relatively complicated. It covers a

wide variety of HTTP transactions with different natures – HTTP transactions initiated by

clients in TalTech network and going to external web servers, and HTTP transactions from

external clients to TalTech web servers. Since the purpose of this work is not to profile the

HTTP clients in the TalTech network but rather detect attacks against TalTech web servers,

the current research is only looking at HTTP transactions that are originating from external

clients to TalTech webservers. HTTP transactions that are initiated by clients in the TalTech

network are excluded. The method is shrinking the size of data to almost half size.

3.7.1 IP selection

The process of IP selection is based on the following rules:

1. Based on the SRC_IP field, exclude all transactions for the IPs belong to TalTech

network.

48

2. Based on the DEST_IP field, exclude all transactions for IPs which are not belonging

to TalTech servers.

 After selecting desired IPs, the datasets are built again with a limited IP range.

3.7.2 Arranging transactions into sessions

The communication process between servers and clients is not limited to one transaction.

For example, when a page is requested from a web server, the page can contain many

elements with different URLs, such as JavaScript functions and pictures. Therefore server

responds to every URL we are requesting. So, looking at a single transaction between server

and client might bring this question, is it enough to narrow the scope to a single transaction

or looking at data in a more extensive timeframe. Arranging transactions into sessions helps

to find trends over data. It means that to analyze data for specific intervals to find the

correlation of observations. The traffic needs to be followed from a specific source or port

any related features to find meaningful information. It is also applied to HTTP traffic. For

example, the sender can send much traffic over a small time frame. By looking at each of

those traffics, we can not conclude any relevant information. However, when counting

several requests in a specific timeframe, it would categorize as a DDOS attack.

To arrange sessions, every HTTP session is considered as 5 minutes in the current study.

The 5 minutes assumption is the approximate length of each connection for one entire

session. It would increase our view over traffic and let to analysis connection based on time

frame. Our dataset contains the Timestamp feature, which is letting to follow up at 5 minutes

interval. According to more analysis, every 3500 records can be counted as one timeframe.

Due to the complexity of converting timestamp fields to meaningful attributes for the

programming language, chunking datasets into specific rows is faster.

Finally dataset is divided into 5 minutes (3500 records) to have better understanding of

traffic behavior.

49

Figure 16 Sample 3500 records timestamp field

3.8 Finalizing dataset

All of the new features that have been discussed are added to the dataset one by one, as

described in previous subsections. Following is the list of all new features that have been

derived from basic HTTP header features:

Feature name Description

uncommon_http_method
Set the feature value to 1 if the HTTP method

is uncommon, otherwise set to 0

odd-status-code

Set the feature value to 1 if the HTTP status

code is not belonging to common status codes

list.

content-length-above-mean

Calculate the mean of the content-length

header. Set the feature value to 1 if content-

length is greater than the mean, otherwise set

to 0

suspicious-user-agent

By using a crafted rule to detect suspicious

HTTP, user agents. Set the feature value to 1 if

the HTTP user agent is suspicious, otherwise

set to 0

HTTP URL

features

keywords

Find the list of suspicious keywords. Set the

feature value to 1 if the URL contains one (or

more) suspicious keywords

Number of characters

Count the number of characters inside the URL

as the length of the URL, and set the feature

value accordingly.

50

Number of words

Count number of words in URL based on % &
= / \ : // \\ ?

and set the feature value accordingly

URL weight score
Calculate less common URL by Algorithm 1,

and set the feature value accordingly

URL TF-IDF score
Calculate each URL TF-IDF total score, and

set the feature value accordingly

Limiting IP range
Limiting IP range to all incoming traffic to

TalTech servers.

Session arranging Chunking dataset into 5 minutes intervals.

Table 4 Added features to initial HTTP features

3.9 Labeling and machine learning

After creating the final dataset, the learning phase is stepping in. The learning stage is

conducted with machine learning models. Machine learning is an algorithm that gets trained

on a training dataset and is evaluated on a test dataset. Machine learning is being fed by

dataset as input, and algorithms learn patterns amongst data based on features and

characteristics.

The provided dataset does not have any labels. It means that none of the records are defined

as malicious or benign. So, there would be arguments on how to train our machine learning

model. According to what has been discussed in the literature review chapter, many machine

learning models can be used. Each of them represents a specific approach. Like un-

supervised learning is mainly associated with clustering machine learning algorithms or

supervised algorithms, such a decision tree requires a labeled dataset. Any of approaches

have their costs and benefits.

The K-means method has been applied to the dataset to demonstrate the clustering

algorithm's weakness in current research. This algorithm is analyzing different data points

and tries to fit similar data points into the same cluster. The "K" in K-means comes from

several used clusters, and "means" demonstrates finding the nearest mean of each data point

to the cluster center [56]. This algorithm is regarded as an unsupervised classification since

it not looking at any labels in data. As mentioned above, due to our dataset's nature, not all

51

machine learning models can handle it. In general, K-means is using the Euclidean distance

function to calculate the distance from centers. However, most of our dataset's features are

binary. The binary data is discrete and does not allow for using a traditional distance

function. The results of the K-means methods are discussed in chapter 4.

As the scope of the current thesis supervised machine learning has been selected. The reason

is based on nature of dataset. Some of un-supervised machine learning techniques such as

k-mean are not matching the binary characteristics of dataset. Also, the semi-automated

labeling process is part of proposed method, therefore it is more efficient to use supervised

learning. The other techniques, such as isolation algorithms or intrusion detection

algorithms, match current HTTP analysis; however, according to the proposed feature

selection, these algorithms are incapable of handling data. They are mostly missing to

classify the data.

The tree-based algorithms have been selected for current research. It provides high accuracy

predictive model over labeled datasets while it is easy to interpret the information and it

provides more human readable representation. It also works well for non-linear information.

The provided dataset is mainly based on categorical information, therefore the nature of

dataset is closely matching to tree-based methods.

Selected methods are decision tree, random forest, and XGBoost.

The supervised machine learning methods require a labeled dataset. Therefore manual and

automated labeling should be done on the dataset. The details around labeling are primarily

discussed in chapter 4.

3.9.1 Decision tree

The decision tree is one of the most common decision-making algorithms. It is an upside-

down tree in which the internal non-leaf nodes represent a class on the feature, and each leaf

node represents a class label.

The decision tree can be used for classification and regression problems. The classification

tree, which is primarily applicable to statistics and probability, is based on discrete

information, while the regression tree predicts real numbers. There are different types of

decision tree algorithms [57].

52

 ID3: Iterative Dichotomiser 3 is a top-down greedy model. It creates the tree, and at

each layer, select the most fitted feature.

 C4.5: is the successor to the ID3 algorithm. It can handle non-categorical data. At

each level, it selects the feature which split the samples into new enrich subsets.

 CART: Classification and Regression Tree is very similar to C4.5; however, it

supports the numerical parameters. The Scikit-learn library is using the CART

approach.

Figure 17 Sample decision tree using CART algorithm visual representation

To ensure the samples are finely selected, there are two main impurity measurements for

decision tree samples. Entropy and Gini index. Entropy determines disorder in samples [58].

Entropy is defined as below:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = ∑ 𝑝𝑖 × log2 𝑝𝑖

𝑐

𝑖=1

Where 𝑝𝑖 is frequentist probability of class i.

The Gini index measure inequality in samples. If the sample is entirely homogeneous and

all of the features are the same close class, then the Gini index is 0.

𝐺𝑖𝑛𝑖 − 𝑖𝑛𝑑𝑒𝑥 = 1 − ∑ 𝑝𝑖
2

𝑛

𝑖=1

53

Where 𝑝𝑖 is frequentist probability of class i.

The CART technique is using the Gini index as a cost function to split features selection.

3.9.2 Random forest

The random forest algorithm is another type of decision tree-based model. It builds multiple

decision trees and aggregates those trees for achieving better results. In other words, it builds

an ensemble of decision trees using the bagging method to increase prediction results. Also,

it creates trees based on selected features to maximize randomness. The random forest

algorithm is computationally efficient [58]. Following characteristics can be named for this

method:

 It supports both regression and classification data.

 Relatively faster learning and prediction phases.

 Few optimization hyper-parameters.

 Control over-fitting error.

The random forest algorithm is described below:

Algorithm 2: Random Forests

Input : Dataset D

Output : Prediction of new point

Step 1 : Let D = {(𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁)} as training dataset and 𝑥𝑖 = (𝑥𝑖,1, … , 𝑥𝑖,𝑝)𝑇

Where p is predictors.

Step 2 : Take sample S from D with size N

Step 3 : Using S as training data and fit tree using binary recursive partitioning.

Step 4 : a. Start all samples in a single node

b. Repeat for each unsplit node until:

i. Randomly select m predictors from all predictors.

ii. Find best split among all splits.

54

Step 5 : Prediction of new point x in classification:

𝑓(𝑥) = 𝑚𝑎𝑥𝑦 ∑(ℎ𝑗(𝑥) = 𝑦)

𝐽

𝑗=1

Where ℎ𝑗(𝑥) is the prediction of response variable at x using the jth tree.

The random forest can be validated with an Out Of Bag (OOB) score. Out of bag is

measuring the samples that did not belong to the bag while forming subset samples. It means

that the tree is missing some samples. Out of bag is calculating as follow:

𝐸𝑟𝑟𝑜𝑟𝑜𝑜𝑏 =
1

𝑁
∑(𝑦𝑖 ≠ 𝑓𝑜𝑜𝑏(𝑥𝑖))

𝑁

𝑖=1

Where 𝑓𝑜𝑜𝑏(𝑥𝑖) is out of bag prediction for sample i.

3.9.3 XGBoost

The XGBoost is a machine learning algorithm based on the decision tree method. The

University of Washington developed the algorithm in 2016 [58]. XGBoost is hiring effective

characteristics of other methods. It is mainly based on a gradient boosting framework which

is a gradient descent algorithm that minimizes errors. The XGBoost algorithm improved

current frameworks by system optimization. The system optimization is including the

following aspects:

1. Parallelization: The algorithm can build a sequential tree by using parallelized

implementation. This method is increasing performance.

2. Tree pruning: XGBoost uses the maximum depth hyper-parameter and down to top

pruning method for improving performance.

3. Hardware optimization: The algorithm is developed to allocate an internal buffer for

each thread for gradient calculation. Also, for improving disk utilization, out-of-

core computation using block compression and block sharding has been used.

55

The XGBoost algorithm is offering many optimization hyer-parameters. Tuning hyper-

parameters can improve results. The hyper-parameters are mainly for tree booster and linear

booster models.

3.10 Prediction and validation

The last step in the proposed methodology is prediction. After training the machine with the

provided dataset, the built model can predict the unseen situation. In the prediction phase,

the test data can be selected from the available dataset by removing the label or selecting

unseen data. The machine learning model is assessing the test data based on its model.

The machine learning techniques have their measurement parameters. These parameters

represent the correctness of the decision made by the machine learning model. There are

many different parameters available; however, four are common among most machine

learning techniques. These parameters are precision, recall, F-measure, and accuracy.

Precision is measuring ratio of true positive to the sum of true positive and false positive.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒

The recall is demonstrating ratio of true positive to the sum of true positive and false

negative.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑣𝑒 𝑅𝑎𝑡𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒

F-measure or F-score is a harmonic ratio of precision and recall. This measurement says

how accurate the classification is.

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Accuracy is the ratio of the total number of correct predictions over all of the predictions.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑣𝑒 𝑅𝑎𝑡𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

56

Validation is an essential part of machine learning techniques. Generally, validation means

the results can describe by hypothesis and original data. The proposed validation stage is

divided into two main parts. The Cross-validation and external source validation.

Hold-out is a trivial and most common technique. It divides data into two big chunks for

testing and training. Most of the time, testing is 20%, and training is 80% of the dataset. The

training dataset trains the machine, and the test is done by the test dataset. If the dataset is

not entirely distributed, the random selection might cause training and test datasets to

become very similar.

Cross-validation is splitting data once or several times to measure the performance of the

algorithm. Cross-validation is avoiding the overfitting issue [52]. There are some cross-

validation methods; however, only two of them have been used in this research. Hold-out

and K-fold techniques.

The second technique is K-Fold. This method is adding randomness to data selection and

shuffles the train and test for optimizing results [52]. The method procedure is explained

below:

1. Select random number of K. K can be maximum the length of the dataset.

2. Split dataset into K equal chunks.

3. Pick one of the chunks as training and the rest as a test dataset.

4. Repeat selecting chunks K times until all of the chunks are used as a test one time.

5. Calculate the average score of K times repeats as the final result.

K-fold is more reliable and stable than Hold-out since different parts of the dataset have

been used for training and testing. The selection of K should be in a way to not put an extra

computational cost on the system.

For adding extra value to current research, external validation is also considered. It means

that the IP addresses which are identified as belonging to attackers are compared to internet

sources for extra validation (for example, AbuseIPDB database). Furthermore, the

framework feedbacks can be used as firewall rules.

After daily records are fed into the learning model and malicious records are identified, The

IP field will be checked with external databases such as AbuseIPDB for validation. If the IP

has malicious activity reports, the system correctly identified the input dataset's record.

57

The results, performance metrics, and implementation are discussed in chapter 4.

3.11 Summary

This chapter was dedicated to the proposed structure and system. The desired system is

receiving HTTP data from Suricata sensors. The multi-layer feature extraction is proposed

to identify the most valuable features from HTTP traffic information. The framework is

looking for extraordinary characteristics in each record and identifying odd behaviors

compared to the rest of the dataset. Some of the extracted features are directly concluded

from native provided features such as HTTP status code; however, some of them, like HTTP

user agent, rely on other features. Extensive analysis on URLs provides extra value for

current research.

The native HTTP features provided by Suricata are not providing diverse characteristics to

build the efficient detection model. Building the new features which are directly extracted

from native features, the wider range of features for each transaction can be defined. It helps

to improve the learning process by deeper analysis for each transaction. Combining all native

and newly added features provides stronger dataset for learning algorithms.

After forming a new dataset based on extracted features, the decision-tree-based machine

learning techniques are hired to classify data. Each algorithm is tuned to find the most

optimal accuracy in detection. Lastly, validating methods and performance measurements

are conduct on machine learning output.

58

4 Framework implementation, results

4.1 Chapter overview

The following chapter is discussing the implementation of proposed framework and results.

The different hypotheses are measured to compare best fitting algorithm for current research.

The labeling method is discussed in detail.

4.2 Data labeling

One of the essential phases in the current study is having a structured dataset. The structured

dataset is data that adheres to the pre-defined data model. It is mostly in tabular format with

the relationship between rows and columns. The collected data are entirely unlabeled, and it

is not fit supervised learning, which requires a labeled dataset. This issue has been solved

by labeling the dataset by the author.

The labeling process is happening in two phases. The first phase is automated labeling, while

the second phase involves the review and confirming the labeling. Automated labeling is

using some predefined rules to label the dataset. After that, the labels are reviewed by a

specialist to confirm or reject the labels. The process is quite time-consuming and requires

a lot of manual work to prepare a fully labeled dataset. In most cases, automated labeling

marked the malicious transaction correctly. Without this approach analyzing every

transaction requires checking the IPs, method, and URL to conclude the transaction is legit

or malicious.

As mentioned above, automated labeling is based on predefined rules. Using predefined

rules, brings this question that is it valid to train machine by data which is labeled by another

rule? If automated labeling is enough, there is no need for an extra machine learning layer

for prediction. The answer is that by automated labeling, there will be many records that

have been mislabeled. It means that some malicious records are identified as normal and

vice versa. The rule for initial automated labeling is as described in algorithm 3:

59

Algorithm 3: Automated labeling

Input : Dataset D

Output : Labeled dataset D

Step 1 : // Labeling the dataset D with m rows.

For all m in D do

 If [(uncommon-http-method == 1) AND ((odd-status-code == 1 OR

suspicious-user-agent == 1) AND URL-keywords(Compressed file OR

Interpreters OR Connection tool OR Others))], then

 𝑙𝑎𝑏𝑒𝑙𝑚 = malicious

 else

 𝑙𝑎𝑏𝑒𝑙𝑚 = normal

 End if

End for

By applying the aforementioned rule, most malicious records are correctly labeled.

However, the label is narrow, and there would be other records with malicious activities that

are not fitting to the above rule. Therefore a specialist reviewed the dataset to check if the

data are correctly labeled or not. Both normal and malicious records are checked. The author

is specialist who confirm the labeling process. The knowledge is based on more than one

year of Tallinn University of Technology SOC team’s information collection about ongoing

attacks on university servers by 5 specialists.

This process was taking place on a specific timeframe (two working days in university) to

limit the required time and resources for labeling. It means that not all of available datasets

are labeled and only some of them contain label.

4.3 Results

In the previous chapter, different machine learning models are introduced. In this research,

supervised machine learning techniques have been selected since they fit the collected

60

dataset. The other methods, such as some of the clustering algorithms, could not provide

meaningful information for detecting malicious activities. However, it should not be

interpreted that all other learning methods are invalid for such research. The domain of the

current thesis is focusing on supervised learning methods.

A simple analysis of the K-means method has been conducted to demonstrate one of the

clustering machine learning models' incapability on the dataset.

The K-means algorithm forms K clusters and uses the Euclidean distance function to

calculate the distance from centers. For calculating the optimal number of clusters or namely

K, there are different methods. The Elbow method runs clustering for K's range of values

and computes all clusters' average scores. It uses the sum of squared distances to determine

optimal K. Figure 18 demonstrates the Elbow algorithm over our dataset. From K=7, the

diagram slope is decreasing, and 7 is the optimal selection of clusters.

Figure 18 Elbow method for finding optimal K

After selecting optimal K, data are transformed and fit into K-means algorithms. The

algorithm forms clusters centers based on input data. One of the issues of applying the K-

means algorithm on our data is that most of our dataset is binary, and K-means use the mean

function to calculate distances. Therefore it would cause the algorithm not to work correctly.

The second reason is to divide data into two main categories of malicious and benign,

requiring K values to be 2. However, as elbow calculation shows, the optimal K for the

current dataset is around 7. It means that if data are only separated into two significant

61

clusters, many data are misclassified and would not represent correct separation.

Nevertheless, it is worth mentioning that clustering algorithms do not need a labeling

process. Therefore they are very efficient if dataset characteristics match it.

Besides unsupervised machine learning models, in supervised techniques, the selected

methods were decision tree, random forest, and XGBoost. All of them are tree-based

techniques. These methods require labeled datasets as input to start building a machine

learning model.

4.3.1 Decision tree's results

The decision tree technique is forming leaves and branches to classify data. By default, the

tree can grow until every feature is classified. For the current study, the Scikit-learn version

of the decision tree has been used. This version is using the CART method. The input data

needs to be split into two training and testing chunks. The training part is using to train the

machine, and testing is using for validating the model. As mentioned before, there are two

main techniques to split data. The hold-out and K-fold. In the normal splitting, the data are

divided into random subsets. Following is settings for the "train_test_split" function in

Scikit-learn:

train_test_split(X, y, test_size=0.2, random_state=20,

shuffle=True)

Where 20% of data belongs to the test and 80% is used to train the model. The data are

randomly shuffled to maximize randomness in subset selection.

Our dataset is unbalanced. It means that the proportion of data is 12% data are attacks, and

the rest are normal. Therefore it is needed to calculate each label's performance metrics

separately to keep the importance of metrics equally. The macro average and weighted

average describe the model's effectiveness regardless of each sample's proportion in the

dataset.

Running the decision tree classifier algorithm with default settings is not optimal. By default,

the maximum depths of the tree are infinite. It means trees grow to classify every feature.

The following results are describing model performance metrics.

62

Label Precision Recall F1-score support

Macro

average

F1-score

Weighted

average

F1-score

Accuracy

Attack 0.86 0.87 0.87 25228
0.92 0.97 0.97

Normal 0.98 0.98 0.98 177306

Table 5 Decision tree performance metrics on default settings

For optimizing tree setting, the maximum depth hyper-parameter is considered. The

performance metrics are measured in different depths for finding the most optimal tree

depth. Following figure 19 is demonstrating Precision and Recall rate for attack data on

different depth.

Figure 19 Performance metrics based on tree depth for attack data

Based on Figure 19, the tree has the most optimal hyper-parameters in the depth of 30;

therefore, the tree's maximum depth is allowed to grow to 30.

The following results are describing decision tree performance metrics in the depth of 30.

Label Precision Recall F1-score support

Macro

average

F1-score

Weighted

average

F1-score

Accuracy

Attack 0.91 0.84 0.87 25228
0.93 0.97 0.97

Normal 0.98 0.99 0.98 177306

Table 6 Decision tree performance metrics on non-default settings

63

Another method is using K-fold cross-validation techniques. To briefly remind the method,

in cross-validation, the test and training data keep changing to find the optimal results and

avoid overfitting issues. The dataset is dividing into random subsets. Then decision tree

algorithm runs over each of the subsets, and the best accuracy would be selected. In this

research, the dataset is divided into ten folds. The following figure is showing the accuracy

rate per iteration.

Figure 20 Accuracy of method on 10 K-fold cross-validation

The average accuracy for the model is 96.78% percent, and it is happening at a maximum

depth of 29.

4.3.2 Random forest's results

The second algorithm is random forests. To briefly remind the method, the random forests

algorithm is based on the decision tree model. It builds an ensemble of decision trees and

computes the results for each tree. Furthermore, it uses majority voting to classify data.

Besides standard performance metrics, random forest is measured by out-of-bag score as

well. The out-of-bag score indicates the error rate of random forest. It means how many

samples are never selected in any subset, or in other words; they are out of selected bags for

classification.

The Scikit-learn implementation of the random forest has been used in this research. The

algorithm is running by default settings. In general settings, the algorithm uses the whole

dataset to train each tree. Also, 100 trees would grow in the forest. Like a decision tree, the

64

maximum depth for a tree is infinite, which means the algorithm runs until all of the leaves

are classified.

The data split into two trains and test dataset by using the same "train_test_split" function

in Scikit-learn:

train_test_split(X, y, test_size=0.2, random_state=20,

shuffle=True)

Where 20% of data belongs to the test and 80% is used to train the model. The data are

randomly shuffled to maximize randomness in subset selection.

The following table is demonstrating the random forest algorithm's results on default

settings.

Label Precision Recall
F1-

score
support

Macro

average

F1-

score

Weighted

average

F1-score

Accuracy

Out-

of-bag

score

Attack 0.88 0.84 0.86 25228
0.9 0.96 0.97 0.966

Normal 0.98 0.98 0.98 177306

Table 7 Random forest performance metrics on default settings

Multiple hyper-parameters can improve random forest algorithms. One of the tuning hyper-

parameters is the number of estimators, grows in the number of trees. Figure 21 shows by

increasing the tree numbers, and the results are similar after some level.

65

Figure 21 Performance metrics correlation with the number of estimators in random forest algorithm in

Attack samples

The other tuning hyper-parameter is the maximum allowed depths for each tree to grow.

Based on the results in Figure 21, the optimal number of estimators is around 10. Figure 22

is showing different maximum depth effects with ten estimators. According to graph 50, is

the optimal depth that a tree can grow.

Figure 22 Performance metrics correlation with increasing of maximum depths in attack data

Another method for sub-setting data is using K-fold cross-validation. The data divided into

ten subsets and run random forest algorithm ten times with different train and test sets.

Following figure 23 is showing the algorithm accuracy results based on different training

and test sets.

66

Figure 23 Accuracy of method on 10 K-fold cross-validations for random forest

4.3.3 XGBoost's results

The third machine learning method is XGBoost. To briefly remind the method, the XGBoost

is based on the ensemble of different tree-based algorithms. The algorithm is trying to cover

most over-fitting issues. The XGBoost algorithm contains many tuning hyper-parameters.

Most of the settings from tree-based and gradient boosting algorithms are exist in the

XGBoost library. For implementation, Scikit-learn API for XGBoost random forest

classifier has been used. The data split into two trains and test dataset by using the same

"train_test_split" function in Scikit-learn:

train_test_split(X, y, test_size=0.2, random_state=20,

shuffle=True)

Where 20% of data belongs to the test and 80% is used to train the model. The data are

randomly shuffled to maximize randomness in subset selection.

To run the algorithm following hyper-parameters have been selected. The list is added to the

rest of the default hyper-parameters.

67

Hyper-parameter Value Description

Colsample_bytree 0.3 Subsample ration of column for each tree.

Learning_rate 2 Boosting learning rate

Max_depth 40 Maximum tree depth for each learner

Reg_alpha 10 Regulation term on weight

N_estimators 20 Number of tree in random forest

Num_parallel_tree 100 Number of the parallel tree for boosting algorithm

Table 8 XGBoost tuning hyper-parameters

After running the XGBoost algorithm, the following table describes the performance metrics

for the algorithm.

Label Precision Recall
F1-

score
support Accuracy

Macro

average F1-

score

Weighted

average F1-

score

Attack 0.87 0.87 0.87 25228
0.97 0.92 0.97

Normal 0.98 0.98 0.98 177306

Table 9 XGBoost performance metrics on non-default settings

4.4 Discussion

In this chapter, the implementation details and results of machine learning models are

discussed. The labeling process for supervised learning has been detailed out. The decision

tree, random forest, and XGBoost are the three machine learning models that have been used

in this thesis. Each algorithm's performance metrics are measured. Also, the cross-validation

method has been used to find the most optimal results. The discussion on results is provided

in chapter 5.

68

5 Discussions and future works

5.1 Chapter overview

The following chapter is discussing results from machine learning models. The results are

compared based on different metrics. Also, external validation results and firewall rules are

discussed in this chapter. Moreover, future research for improving the framework is

described.

5.2 Discussion on machine learning algorithm's results

So far, the dataset formation, features extraction, and labeling dataset has been done. In

chapter four, the results for three selected machine learning models are demonstrated. The

question is, which model has better accuracy and less training and testing time? For

answering the question, a comparison of results is needed.

Firstly, the performance metrics are compared. Each algorithm runs on some tuning hyper-

parameters to optimize the results. The same dataset has been used for each model to have

proper grounding for comparison. Figure 24 compares the precision, recall, and F1-score

results for the decision tree, random forest, and XGBoost algorithms on the attack sample.

Figure 25 is comparing the same information on the benign dataset.

Figure 24 Comparison of machine learning algorithms' performance metrics on attack data

69

Figure 25 Comparison of machine learning algorithms' performance metrics on benign data

Among all of the methods, the decision tree has more promising results with the highest

classification of attack samples. However, both the XGBoost and random forests also have

relatively high detection rates. The significant difference in the algorithms appears in CPU

time measurements.

The second parameter for measurements is CPU time. The CPU time is showing how long

the training stage has lasted. Time is the critical factor for the measurement of the real-time

capability of the algorithm. If the learning time is extended, therefore, the model does not

apply to run live. Figure 26 is demonstrating the CPU time for each algorithm.

Figure 26 CPU time comparison for training phase of machine learning algorithms

70

As figure clearly showing the XGBoost involves significant CPU time consumption when

compared to two other algorithms. It takes 170 times longer to run XGBoost compared to

the decision tree. Also, the decision tree and random forest have close CPU time.

When using cross-validation, the training time is increasing. Figure 27 is showing the

decision tree and random forest CPU time using the K-fold cross-validation technique.

Figure 27 CPU time comparison for decision tree and random forest algorithms in K-fold validation

The CPU time determines the applicability of the method in real-time. According to the

above graphs, the decision tree consumes the least amount of CPU time. However, the

random forest consumes a moderate amount of CPU time as well. It is important to note that

the reported CPU times belong to current hardware and can be different on other servers.

Not every machine learning algorithms can predict with fully assurance. In current studies

some of the attacks are misclassified by learning model. To understand, what types of attacks

are missed from proposed framework, the results have been analyzed. Most of attacks that

are not detected, interact with server in a way that are against the expected trained behavior.

It means they contains characteristics such as common verbs in URL, legit user-agents and

200 status code. These characteristics are tricking the model by providing the features which

are classified as normal traffic before. For avoiding such problems, more extensive feature

extraction is required. It helps the model to meet more conditions before final classification

happens.

71

5.3 External validation

The current research aims to build an application to ease detecting malicious activity for the

security operation team. It means that the application should run at a specific time and report

malicious IPs to analyzers. The following proposal has not been implemented during this

research.

Due to the machine learning process's nature, there is no complete confidence that the final

reported results are entirely correct. Therefore adding extra checks to provide a list of IPs is

adding value to the result. The IPs are checked with the AbuseIP database. The AbuseIP

database is a public database for malicious identified IPs. The IPs in that database have a

confidence level. If IP is reported many times as malicious IP, then the confidence level is

high. The application can check IPs from machine learning with AbuseIP, and if the IP is

reported, it has a significant chance to be blocked as malicious IP.

The blocking procedure is varies based on company security policy and technological

architecture. However, the suggested system is based on IP pools. If IP is identified as

malicious IP, then IP is added to the suspicious pool with an expiration time of 24 hours.

The firewall is blocking suspicious list IPs for one day. If the IP is not repeating the other

days, it would automatically be removed from the list and unblocked. However, if the IP

exists more than 48 hours in the suspicious list, then IP adds to a new list called the blacklist.

The firewall is blocking the blacklist forever.

5.4 Future works

In this thesis, the proposed framework is using selective feature extraction and several

machine learning approaches. However, some topics still are missing from this research.

5.4.1 More extensive feature extraction

For this research, several features have been extracted and introduced to make the dataset

richer and add value. However, in URL and user-agent HTTP fields, more research is

required.

72

The HTTP user-agent can be very different based on the client browser, operating system,

and hardware. Therefore finding the correct pattern to extract malicious user-agent is

helpful.

The HTTP URL field contains a lot of information. In the current research, some textual and

statistical methods are implemented to find more meaningful features. The analyzing process

can extend to find unusual activity by using natural language processing techniques.

5.4.2 Unsupervised machine learning

The current research is using supervised learning as the primary technique. However, using

supervised learning needs a labeled dataset, and it is a costly task. By using unsupervised

methods such as clustering or density-based algorithms, pre-processing time can be reduced.

73

6 Conclusion

The intrusion detection systems are the main component of any network architecture these

days. These software or hardware are required to run as fast as possible to keep up with

rapidly increasing network traffic size. Also, attacks and their signature are constantly

changing. Therefore, intrusion detection systems need to update their detection system to

avoid missing the zero-days attack.

This research is proposing a behavioral network intrusion detection system on HTTP data

by using machine learning techniques. The framework is detecting malicious activity on

HTTP protocol from Suricata sensors' data. These sensors are installed on Tallinn University

of Technology network perimeters. The proposed research is running on tree-based

supervised machine learning techniques to maximize performance and accuracy.

The proposed system aims to detect malicious activities by analyzing attacks' patterns and

behavior instead of relying on attack signatures.

In this thesis, extensive HTTP feature extraction has been used. Besides, native features

collected by Suricata, multi-level feature extraction, have been used to collect new features

from different parts of the HTTP header. The new features are describing the behaviors and

characteristics of each transaction. Also, for having better tracking of the HTTP sessions,

session arranging has been used.

The supervised tree-based machine learning algorithms have been selected for the current

research's prediction phase. The decision tree, random forest, and XGBoost are selected

algorithms. Each method is optimized to have maximum performance. The cross-validation

techniques are also have been used to ensure the results are not over-fitted.

The proposed system's results are promising. With a one-day timeframe collected

information, which is almost 1 million records, the system can detect malicious activities

with almost 90% confidence depending on algorithms. Besides, the performance metrics

from each algorithm is showing that the decision tree has the best overall score compared

with other techniques with 91% precision. In addition to classic performance metrics, each

algorithm's running time shows that the decision tree is the fastest training and detection

speed.

74

On the other hand, the XGBoost is 170 times slower than the decision tree or random forest.

The CPU time is essential for running the algorithm in a live production server. The extra

validation with external databased has been proposed for increasing the assurance of

algorithm outputs.

All in all, this thesis is contributing to security operation teams by automating the attack

detection process. The proposed application can act as added incident detection and alerting.

The proposed model still needs improvements for identifying more unseen situations.

75

7 References

[1] A. Ghasempour, Z. Mohd.hanapi, M. Salehi, and Z. Vahdati, “Using traffic control scheme

in intelligent transportation system,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 8, no. 1.4 S1,

pp. 165–172, 2019.

[2] M. Park, J. Han, H. Oh, and K. Lee, “Threat Assessment for Android Environment with

Connectivity to IoT Devices from the Perspective of Situational Awareness,” Wirel.

Commun. Mob. Comput., vol. 2019, pp. 1–14, Apr. 2019.

[3] A. Patel, M. Taghavi, K. Bakhtiyari, and J. Celestino Júnior, “An intrusion detection and

prevention system in cloud computing: A systematic review,” Journal of Network and

Computer Applications, vol. 36, no. 1. pp. 25–41, Jan-2013.

[4] M. A. Aydin, A. H. Zaim, and K. G. Ceylan, “A hybrid intrusion detection system design for

computer network security,” Comput. Electr. Eng., vol. 35, no. 3, pp. 517–526, May 2009.

[5] “Intrusion Detection and Prevention System Management | IBM,” IBM. [Online]. Available:

https://www.ibm.com/security/services/intrusion-detection-and-prevention-system-

management. [Accessed: 23-Mar-2021].

[6] “FortiGate Intrusion Prevention System (IPS),” Fortinet. [Online]. Available:

https://www.fortinet.com/products/ips. [Accessed: 23-Mar-2021].

[7] S. A. R. Shah and B. Issac, “Performance comparison of intrusion detection systems and

application of machine learning to Snort system,” Futur. Gener. Comput. Syst., vol. 80, pp.

157–170, Mar. 2018.

[8] M. V. Pawar and J. Anuradha, “Network security and types of attacks in network,” in

Procedia Computer Science, 2015, vol. 48, no. C, pp. 503–506.

[9] Aaron, “Snort vs Suricata,” Tactical Flex, Inc., 2019. [Online]. Available:

https://tacticalflex.zendesk.com/hc/en-us/articles/360010678893-Snort-vs-Suricata.

[Accessed: 04-Oct-2020].

[10] H. Debar and J. Viinikka, “Intrusion Detection: Introduction to Intrusion Detection and

Security Information Management,” Springer, Berlin, Heidelberg, 2005, pp. 207–236.

[11] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and E. Vázquez, “Anomaly-based

network intrusion detection: Techniques, systems and challenges,” Comput. Secur., vol. 28,

no. 1–2, pp. 18–28, Feb. 2009.

[12] R. Samrin and D. Vasumathi, “Review on anomaly based network intrusion detection

system,” in International Conference on Electrical, Electronics, Communication Computer

Technologies and Optimization Techniques, ICEECCOT 2017, 2018, vol. 2018-January, pp.

141–147.

[13] V. Nagadevara, “Evaluation of Intrusion Detection Systems under Denial of Service Attack

in virtual Environment Venkatesh Nagadevara,” Blekinge Institute of Technology,

Karlskrona, 2017.

[14] W. Park and S. Ahn, “Performance Comparison and Detection Analysis in Snort and Suricata

Environment,” Wirel. Pers. Commun., vol. 94, no. 2, pp. 241–252, May 2017.

76

[15] “All features | Suricata,” Suricata. [Online]. Available: https://suricata-ids.org/features/all-

features/. [Accessed: 23-Mar-2021].

[16] R. Prasad and V. Rohokale, “Artificial Intelligence and Machine Learning in Cyber

Security,” Springer, Cham, 2020, pp. 231–247.

[17] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and F. Ahmad, “Network intrusion

detection system: A systematic study of machine learning and deep learning approaches,”

Trans. Emerg. Telecommun. Technol., vol. 32, no. 1, p. e4150, Jan. 2021.

[18] G. Karatas, O. Demir, and O. K. Sahingoz, “Deep Learning in Intrusion Detection Systems,”

in International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism,

IBIGDELFT 2018 - Proceedings, 2019, pp. 113–116.

[19] S. Zavrak and M. Iskefiyeli, “Anomaly-Based Intrusion Detection from Network Flow

Features Using Variational Autoencoder,” IEEE Access, vol. 8, pp. 108346–108358, 2020.

[20] G. A. Jaafar, S. M. Abdullah, and S. Ismail, “Review of Recent Detection Methods for HTTP

DDoS Attack,” Journal of Computer Networks and Communications, vol. 2019. Hindawi

Limited, 2019.

[21] “KDD Cup 1999 Data.” [Online]. Available:

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. [Accessed: 05-Nov-2020].

[22] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the KDD CUP

99 data set,” in IEEE Symposium on Computational Intelligence for Security and Defense

Applications, CISDA 2009, 2009.

[23] N. Paulauskas and J. Auskalnis, “Analysis of data pre-processing influence on intrusion

detection using NSL-KDD dataset,” in 2017 Open Conference of Electrical, Electronic and

Information Sciences, eStream 2017 - Proceedings of the Conference, 2017.

[24] G. Meena and R. R. Choudhary, “A review paper on IDS classification using KDD 99 and

NSL KDD dataset in WEKA,” in 2017 International Conference on Computer,

Communications and Electronics, COMPTELIX 2017, 2017, pp. 553–558.

[25] “NSL-KDD | Datasets | Research | Canadian Institute for Cybersecurity | UNB.” [Online].

Available: https://www.unb.ca/cic/datasets/nsl.html. [Accessed: 05-Nov-2020].

[26] M. Belouch, S. El Hadaj, and M. Idlianmiad, “Performance evaluation of intrusion detection

based on machine learning using apache spark,” in Procedia Computer Science, 2018, vol.

127, pp. 1–6.

[27] A. Pasumpon pandian and D. Smys, “DDOS ATTACK DETECTION IN

TELECOMMUNICATION NETWORK USING MACHINE LEARNING Secured Self

Organizing Network Architecture in Wireless Personal Networks View project DDOS

ATTACK DETECTION IN TELECOMMUNICATION NETWORK USING MACHINE

LEARNING,” J. Ubiquitous Comput. Commun. Technol., vol. 01, no. 01, pp. 33–44, 2019.

[28] ENISA, “ENISA Threat Landscape 2020 - Botnet — ENISA,” Oct. 2020.

[29] T. A. Tuan, H. V. Long, L. H. Son, R. Kumar, I. Priyadarshini, and N. T. K. Son,

“Performance evaluation of Botnet DDoS attack detection using machine learning,” Evol.

Intell., vol. 13, no. 2, pp. 283–294, Jun. 2020.

[30] M. Aamir and S. M. A. Zaidi, “Clustering based semi-supervised machine learning for DDoS

77

attack classification,” J. King Saud Univ. - Comput. Inf. Sci., Feb. 2019.

[31] M. Belshe, BitGo, R. Peon, I. Google, E. M. Thomson, and Mozilla, “RFC 7540 - Hypertext

Transfer Protocol Version 2 (HTTP/2),” May-2015.

[32] I. Sreeram and V. P. K. Vuppala, “HTTP flood attack detection in application layer using

machine learning metrics and bio inspired bat algorithm,” Appl. Comput. Informatics, vol.

15, no. 1, pp. 59–66, Jan. 2019.

[33] L. Masinter, T. Berners-Lee, and R. T. Fielding, “Uniform Resource Identifier (URI): Generic

Syntax,” Netw. Work. Gr. , 2005.

[34] Y. Yu, H. Yan, H. Guan, and H. Zhou, “DeepHTTP: Semantics-Structure Model with

Attention for Anomalous HTTP Traffic Detection and Pattern Mining,” Oct. 2018.

[35] K. Li, R. Chen, L. Gu, C. Liu, and J. Yin, “A method based on statistical characteristics for

detection malware requests in network traffic,” in Proceedings - 2018 IEEE 3rd International

Conference on Data Science in Cyberspace, DSC 2018, 2018, pp. 527–532.

[36] P. Sornsuwit and S. Jaiyen, “A New Hybrid Machine Learning for Cybersecurity Threat

Detection Based on Adaptive Boosting,” Appl. Artif. Intell., vol. 33, no. 5, pp. 462–482, Apr.

2019.

[37] Z. Zhang, G. Zhang, Y. Shen, and Y. Zhu, “Intrusion detection model based on GA dimension

reduction and MEA-Elman neural network,” in Advances in Intelligent Systems and

Computing, 2019, vol. 773, pp. 354–365.

[38] A. Tekerek, “A novel architecture for web-based attack detection using convolutional neural

network,” Comput. Secur., vol. 100, p. 102096, Jan. 2021.

[39] B. Yong, X. Liu, Q. Yu, L. Huang, and Q. Zhou, “Malicious Web traffic detection for Internet

of Things environments,” Comput. Electr. Eng., vol. 77, pp. 260–272, Jul. 2019.

[40] J. M. G. Iv, D. Bhansali, M. Gratian, and M. Cukier, “A comprehensive evaluation of HTTP

header features for detecting malicious websites,” in Proceedings - 2019 15th European

Dependable Computing Conference, EDCC 2019, 2019, pp. 75–82.

[41] S. Rovetta, G. Suchacka, and F. Masulli, “Bot recognition in a Web store: An approach based

on unsupervised learning,” J. Netw. Comput. Appl., vol. 157, p. 102577, May 2020.

[42] “User Agents Analysis :: udger.com.” [Online]. Available: https://udger.com/. [Accessed: 08-

Nov-2020].

[43] A. Laughter, S. Omari, P. Szczurek, and J. Perry, “Detection of Malicious HTTP Requests

Using Header and URL Features,” Springer, Cham, 2021, pp. 449–468.

[44] O. Awotipe, “Log Analysis in Cyber Threat Detection,” Creat. Components, Jan. 2020.

[45] “Suricata | Open Source IDS / IPS / NSM engine.” [Online]. Available: https://suricata-

ids.org/. [Accessed: 08-Nov-2020].

[46] Santiago Bassett and Mike Paquette, “Improve Security Analytics with the Elastic Stack,

Wazuh, and IDS | Elastic Blog,” 23-Oct-2018. [Online]. Available:

https://www.elastic.co/blog/improve-security-analytics-with-the-elastic-stack-wazuh-and-

ids. [Accessed: 08-Nov-2020].

78

[47] O. Negoita and M. Carabas, “Enhanced Security Using Elasticsearch and Machine Learning,”

in Advances in Intelligent Systems and Computing, 2020, vol. 1230 AISC, pp. 244–254.

[48] Z. Chiba, N. Abghour, K. Moussaid, A. El Omri, and M. Rida, “Newest collaborative and

hybrid network intrusion detection framework based on suricata and isolation forest

algorithm,” in ACM International Conference Proceeding Series, 2019, pp. 1–11.

[49] “pandas.DataFrame — pandas 1.2.3 documentation,” Pandas. [Online]. Available:

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html.

[Accessed: 02-Apr-2021].

[50] MDN contributors, “HTTP request methods - HTTP | MDN,” Mozilla, 04-Dec-2020.

[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods.

[Accessed: 02-Apr-2021].

[51] MDN contributors, “HTTP response status codes - HTTP | MDN,” Mozilla, 17-Mar-2021.

[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status.

[Accessed: 02-Apr-2021].

[52] C. Whitnall, E. Oswald, and L. Mather, “An exploration of the Kolmogorov-Smirnov test as

a competitor to mutual information analysis,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2011, vol. 7079 LNCS, pp. 234–251.

[53] MDN contributors, “User-Agent - HTTP | MDN,” Mozilla, 19-Feb-2021. [Online].

Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent.

[Accessed: 03-Apr-2021].

[54] E. R. Fielding and E. J. Reschke, “RFC 7231: Hypertext Transfer Protocol (HTTP/1.1):

Semantics and Content,” 2014.

[55] W. Zhang, T. Yoshida, and X. Tang, “A comparative study of TF*IDF, LSI and multi-words

for text classification,” Expert Syst. Appl., vol. 38, no. 3, pp. 2758–2765, Mar. 2011.

[56] F. Pedregosa FABIANPEDREGOSA et al., “Scikit-learn: Machine Learning in Python Gaël

Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA,

VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot,” 2011.

[57] A. Navada, A. N. Ansari, S. Patil, and B. A. Sonkamble, “Overview of use of decision tree

algorithms in machine learning,” in Proceedings - 2011 IEEE Control and System Graduate

Research Colloquium, ICSGRC 2011, 2011, pp. 37–42.

[58] Y. Wang, C. Song, and S.-T. Xia, “Unifying Decision Trees Split Criteria Using Tsallis

Entropy,” Nov. 2015.

