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Annotatsioon

Formaalsete kontseptioonide analüüs on meetod, mille abil saab andmeid mõtestada ja
klassifitseerida. Selle abil töödeldakse andmehulkasid, mis koosnevad kindlast hulgast
objektidest ja nende objektide tunnustest.

QualityCover on ahne algoritm, edestades paljusid varasemaid algoritme oma tulemuste
kvaliteedinäitajate poolest erineva suuruse ja keerukusega andmestikel. Siiani on seda
algoritmi testitud ainult keskmise suurusega andmekogumitega ja võib arvata, et algo-
ritmi kasutamisel muutub probleemiks pikk aeg, mis kulub suuremate andmehulkade
töötlemiseks.

Selle magistritöö eesmärk on leida viise, kuidas parandada QualityCover algoritmi, et seda
saaks kasutada varasemast suurematel andmehulkadel ja kiiremini, kaotamata lõpptule-
muse kvaliteeti. Algoritmi analüüsiti ja katsetati erinevaid arvutuste vähendamise viise.
Tulemusena suudab algoritmi uus versioon töödelda suuremaid andmehulkasid ning selle
arvutuskeerukus ja andmehulkade töötlusaeg vähenesid võrreldes vana versiooniga. Algo-
ritmi lõpptulemus ja kvaliteet jäi samaks (kogu andmestikku katvate konteptioonide arv
ja sisu jäid samaks) kui eelmisel versioonil. Kontseptsioonide leidmise järjekord muutus
mõnigal määral. Nüüd saab QualityCover algoritmi abil töödelda andmehulkasid, mis
sisaldavad miljoneid andmepaare minutite kuni tundide jooksul.

Töö üks osa tööst oli suunatud Spark-klastri arvutuste proovimisele selle algoritmiga. Kuna
Spark raamistik ei võimaldanud kasutada soovitud andestruktuuri, mis võimaldaks kiireid
arvutusi, jäeti algoritmi Sparkis testimine ja parandamine pooleli.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 45 leheküljel, 6 peatükki, 1 joonist,
12 tabelit.
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Abstract

QualityCover is a greedy algorithm that outperforms many previous algorithms in quality
measures on given benchmark data sets with different size and complexity. Until now, it
has been only tested with average sized data sets and it is expected that the run time on
bigger data sets will become an issue, when considering using this algorithm.

The aim of this thesis was to find ways to run the algorithm on bigger datasets faster,
but without losing quality in the final output. For that, the algorithm was analyzed and
multiple ways to decrease computations were tested out. As a result, the new version of
the algorithm is able to run on bigger data sets and have less computational complexity,
but has the same quality (number of concepts that cover the data) as the previous version.

One part of the work was aimed to be running the calculations on a Spark cluster, but this
was omitted, since the framework did not allow the usage of desired data structure.

The thesis is in English and contains 45 pages of text, 6 chapters, 1 figures, 12 tables.
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List of abbreviations and terms

FCA Formal Concept Analysis
FC Formal Concept
QC QualityCover
PC Pseudo Concept
MC Mandatory Concept
RA Relational Algebra
BR Binary Relation
TFS Textual Features Selection
DM Discernibility Matrix
BDD Binary Decision Diagram
CR Clarification and Reduction
{i}↑ Extent
{i}↑↓ Intent
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1. Introduction

Formal concept analysis (FCA) is a method to structure and analyze data. It analyzes data
that consists of a set of objects and a set of attributes and a relationship that is connecting
the objects and attributes in a binary relationship [1].

In FCA data is represented in data type named formal contcept. A formal concept is
defined as the following: “A concept is considered to be a unit of thought constituted of
two parts: its extent and its intent.” (international standard ISO 704). It includes objects,
their attributes and the relationship between them [1]. There, the extent means objects that
belong to the one concept and intent is made up of all the attributes that belong to that
concepts (all the attributes of members of intent). So - a concept is a pair made up of an
extent, that consists of a closed set of objects, and an intent that consists of a closed set of
attributes.

FCA increases the performance of data mining algorithms and improves the visualization
of the results, creating concept hierarchies, and to do further data analysis and represent
results visually. However there remains a huge room for further use of FCA in data mining
and knowledge discovery, because for many FCA algorithms the computational complexity
doesn’t fit for large datasets even when using greedy algorithms [2].

Pertinent conceptual coverage is a set of formal concepts, extracted from the dataset, that
cover all the related couples in binary relationship with the number of formal concepts as
low as possible to cover all given data [1]. This is needed for efficiency reasons - sets of
concepts that cover all objects and attributes with a minimal number of concepts should be
found, since finding each concept is computationally costly. In addition, for finding the
concepts, the most computation efficient way possible should be used.

FCA can be used in real life for finding patterns from data. For example, it can help to
connect medical patients and all symptoms and each concept itself represents a diagnosis
the patients might have. Connect software users and their access permissions. Or it can
be used to to connect countries and the socio-economic indicators, where the indicators
have numerical values that can be binarized (for example - less than average, greater than
average).
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Decreasing computational complexity and decreasing the number of formal concepts
extracted to cover all given data is a challenge that FCA is facing when using it on real
data. At the moment, even average size datasets can produce contexts that include very
large number of formal concepts [3], making results not practical for use in real life for
finding a pertinent coverage of formal concepts. Furthermore, the algorithms tend to
have high complexity. This is holding back using FCA on big datasets [3], [2]. Better
performing algorithms that efficiently provide pertinent coverage of data while producing
lower number of formal concepts are needed if FCA is going to be used in big data.

QualityCover algorithm outperforms previous algorithms, e.g GreCond, GreEss, GenCov-
erage [2], in term of quality measures on given benchmark data sets with different size
and complexity from the UC Irvine Machine Learning Database Repository [4], [5]. It’s a
greedy algorithm that chooses concepts based on their quality measure, called Size. Each
next concept is chosen considering what maximizes the size measure.

1.1 Aim of the thesis and Methods

A previous version of QualityCover algorithms had great results regarding of the quality of
the output [2]. While it did not outperform all the other algorithms in every quality aspect,
it showed good overall results. To achieve the same good results, but with bigger data it
has to be rewritten considering computational efficiency in every step possible for finding
minimal coverage while using the same QualityCover greedy algorithm core that is based
on each couples’ quality measures. The goal is to gain as much knowledge about each
object as possible with the least computational effort.

QualityQover algorithm has not been tested on bigger data sets to this date. The aim of
the masters thesis is rewriting the QualityCover algorithm to be more efficient and less
computationally costly and compare its results to the previous version of the algorithm on
different sized data sets. The aim of the recreation of the algorithm is to achieve better
performance (shorter runtime) than the previous version of the algorithm without losing
quality of the generated contexts.

To test this, the former and the new version of the algorithm will be run on data sets
with various sizes. It is expected that the former version of the algorithm will have slow
performance on large data sets and the new one to outperform the old one by finding formal
concepts faster and managing to compute concepts on larger data sets.

The result of the thesis is expected to be new version of the algorithm and comparison of
the new and old version of the algorithm on data sets of increasing sizes.
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2. Background and related work

2.1 Basic settings and terminology

The mathematical principles for this domain were established by Birkhoff in 1960’s and
the current form of FCA framework was introduced by Wille in 1980’s [6].

[FORMAL CONTEXT]
The structure that is used in FCA as a formal concept is a triplet K = (O, I,R), where:
O represents a finite set of objects.
I is a finite set of attributes (or items).
R is a binary (incidence) relation between objects and attributes (i.e.,R ⊆ O × I).
Each couple (o, i) ∈ R expresses that the object o ∈ O possesses or is described by the
attribute i.

The formal context K can be depicted by Table 1 with O = {1, 2, 3, 4, 5, 6, 7, 8, 9} and I
= {a, b, c, d, e, f, g, h}.

Table 1. An example formal context as a matrix.

a b c d e f g h
1 × ×
2 × × ×
3 × × × × ×
4 × × × × × ×
5 × × × × ×
6 × × ×
7 × × ×
8 × × ×
9 × × × × × × × ×

A formal context is better understood if it is depicted by a cross table as shown by Table 1.
In the latter,× indicates that the corresponding object has the corresponding attribute while
a blank indicates no connection between the object and the attribute. But for knowledge
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representation the objects and their attributes can also be represented in a lattice diagram
or other type of graph.

[GALOIS OPERATORS]
Let be a formal context. For A ⊆ O and B ⊆ I, we define: For a formal context K = (O,
I,R), operators ↓ : 2O ⇒ 2I and ↑ : 2I ⇒ 2O are defined as follows:

A↓ =
{
i ∈ I | (∀o ∈ A), (o, i) ∈ R

}
(2.1)

B↑ =
{
o ∈ O | (∀i ∈ B), (o, i) ∈ R

}
(2.2)

The operators ↑ and ↓ are known as concept forming operators or derivator operators.

[FORMAL CONCEPT]
A formal concept is any pair 〈A,B〉 of sets where A ⊆ O (extent, set of objects to which
the concept applies) and B ⊆ I (intent, set of attributes characterizing the concept) such
that B is just the set of attributes shared by all objects from A, and A is the set of all
objects sharing all attributes from B. In symbols, this can be written as A↓ = B and
B↑ = A. The extent of the concept 〈A,B〉 is A while its intent is B.

Less formally, it can be said that a formal concept is a set of objects together with the
attributes. These objects and attributes are found together and it is impossible to add
an additional attribute without removing an object or add an additional object without
removing an attribute.

[PSEUDO-CONCEPT]
The pseudo-concept associated to the couple (a, b), denoted PCab, is a binary relation
computed by getting the cartesian product of the maximal set of attributes fulfilling the
object a and the maximal set of objects having the attribute b [7]. Formally,

PCab = {(o, i) | (o, i) ∈ b ↑ ×a ↓⊆ R | o ∈ b ↑ ∧i ∈ a ↓}. (2.3)

PCab is the union of all the formal concepts containing the couple (a, b). Also the size of a
given pseudo-concept PCab is defined as follows:
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Size(PCab) =
|PCab|

|a ↓ | × |b ↑ |
(2.4)

Table 2 represents all information that needs to be derived from central matrix - extent,
intent, and support of each object. This information can also be represented in a more
simple format, like in Table 3

Table 2. The formal context with extent, intent, support, given by Table1

a b c d e f g h |{o}↓|
1 × × 2
2 × × × 3
3 × × × × × 5
4 × × × × × × 6
5 × × × × × 5
6 × × × 3
7 × × × 3
8 × × × 3
9 × × × × × × × × 8
{i}↑ 245789 169 29 349 34589 345679 123456789 3459
{i}↑↓ ag bg acg defgh eg fg g efgh

Table 3. An example formal context.

i a b c d e f g h
{i}↑ 245789 169 29 349 34589 345679 123456789 3459
{i}↑↓ ag bg acg defgh eg fg g efgh

Table 4. Extent and Intent given by Ta-
ble 1

Attribute Extent Intent
a 245789 ag
b 169 bg
c 29 acg
d 349 defgh
e 34589 eg
f 345679 fg
g 123456789 g
h 3459 efgh

Table 5. List of objects and their supports
given by Table 1

Object Support
1 2
2 3
3 5
4 6
5 5
6 3
7 3
8 3
9 8

[INTRODUCER CONCEPT]
Let K = (O, I,R) be a formal context. A formal concept 〈A,B〉 is said to introduce an
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attribute i if B = {i}↑↓. It is said to introduce an object o if A = {o}↑↓.

2.2 Isolated points

[ISOLATED POINT]
Given a formal context K = (O, I,R). A couple (o, i) ∈ R is called an isolated point iif

it belongs to only one formal concept.

A formal concept is called a mandatory concept if it contains at least one isolated point.
Khcherif et al. worked on the concept of isolated point - a point or a pair of object and
attribute that can only belong to one formal concept. Because of that, to cover the data,
coverage will have to include the mandatory concept,because there is no other way to cover
the isolated point [8].

Both having the number of items in extent be equal to 1: (|i ↑| = 1) or number of items in
intent be equal to 1 (|i ↑↓| = 1) can mean that it is an isolated point. For example, in Table
6, (1, a), (1, b), (1, c) can be considered isolated points because length of extent is 1.

Table 6. An example formal context with mandatory concepts.

a b c d e
1 × × ×
2 × ×
3 × ×

Ferjani et al. proposed an approach to cover binary relation data based on isolated points
that belong to single concepts first [9]. Starting from this approach means that the points
where only single solution, for a conceptual coverage, is possible, will be first ones to be
crossed out from later computations, together with other points that belong to the same
concept. It can help reducing the number of concepts that need to be calculated early on
and help to reduce algorithm execution time and number of concepts in final pertinent
coverage.

It takes less computations to start by covering mandatory formal concepts with isolated
points, and from there on, move to using other quality attributes for finding next pair and
concept to cover [8]. In addition, Belohlavek and Trnecka have built their algorithms on
finding isolated points and mandatory concepts from a binary matrix in the beginning, and
then carrying on with finding other concepts to cover all the data that is still left uncovered
[10]. Where they instead of going through all possible concepts, considered only columns
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that maximized the value of the factor being constructed. This has helped them not to
compute each and every concept for achieving pertinent coverage and achieving greater
speed and memory efficiency.

In the GreEss algorithm, authors were trying to cover greedily as much uncovered objects
and attributes as possible with each next concept added. This provides the most informative
concepts in the early on and the last concepts considered will be the ones that possibly add
the least value or do not need to be added at all because items in them are already covered
[10].

2.3 Mandatory Formal Concepts

An isolated point belongs to a unique FC, called a mandatory concept (MC), that should
exist in any conceptual coverage. Mandatory concepts have an important role in data
mining since they allow to discover regular structures from data, based on FCA. They are
qualified as mandatory because they belong to each and every conceptual coverage of a
formal context (FCT) [11]. From Relational Algebra (RA) perspective, a MC contains at
least one isolated point as proved by Riguet [12].

As a mathematical background, FCA and RA have been combined and used to discover
regularities in data [8]. And a FC represents the atomic regular structure for decomposing
a binary relation (BR). Riguet’s difunctional relation [12], whose elements are defined
as isolated points, describes invariant regular structures that could be used for database
decomposition and Textual Features Selection (TFS) [13].

2.4 Frameworks

Many works from the past years are targeted to solve problems for better efficiency in
big data analysis algorithms, minimizing storage in big data and that compare different
algorithms by performance. For computing formal concepts using parallel algorithms
have been proposed [14] with the con that parallel algorithms require several processors
or processor cores for computations [8]. Another alternative, as for many big data tasks,
MapReduce using Hadoop can be one of the solutions [15]. Also, Apache Spark has
been proposed for FCA since Spark has more options for graph construction [5], [16].
The experimental analysis of the proposed work proves that the algorithm for concept
generation using Spark is performing better than previous distributed approaches [5], [16].
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2.5 Methods to make FCA more efficient

To solve scalability on large contexts, many have been creating more efficient algorithms
[17], [15] for very computationally costly problem, since it has been proven that calculating
optimal coverage of binary relation is a NP-hard problem [18].

The most popular methods for this purpose are nested line diagrams for zooming in and out
of the data, conceptual scaling for transforming many-valued contexts into single-valued
contexts, interestingness measures including concept stability and size of concept extent
[19]. One of recent FCA strategies to reduce the computational complexity in obtaining
concept lattices has been knowledge or attribute reduction [20], [21]. In case of high
dimensionality and high number of objects, Binary Decision Diagrams (BDD) can be
used [22]. In case of lattice reduction method, the goal of reduction is to find as small
as possible set of objects and their attributes that contain the structure and information
of original data, for example [20], or to simplify the concept lattice and keep the most
important information [23], or choose concepts, attributes or objects considering their
quality [16]. It is also has been proved how computation reduction in FCA can also be
approached as a graph optimization task of finding a minimal vertex cover and how it has
some performance advantages compared to FCA granular reduction algorithms [24]. Dias
and Vieira proposed classification for concept lattice reduction and optimization methods
mentioned above. They concluded that all methods do lead to some information loss [25].

At the same time, there is critique discerning that using only one of the methods mentioned
above, will not be enough to provide good quality output. For example, discernibility
matrix method (DM) for reduction method will not be enough and it is important to use a
CR-method (clarification and reduction) as well, since it outperforms DM-methods [21].
In original CR-method [1], each two columns are compared if they are equal, and if they
are, one of them is removed.

Kuznetsov and Obiedkov concluded that for different data with different properties, the
optimal algorithm can be different [26]. It depends on how big is dataset, density of
contexts, also depending on if there is a need to build a diagram graph or not. So, we
can expect even a good and optimal algorithm not always perform with similarly good
results and this is also in compliance with no free lunch theory where good performance
of algorithm under one type of condition will mean worse performance in some other
situation [27].

With increasing size of data and the number of attributes it has, the final concept lattice
of the data can grow exponentially. It is a big downside when using FCA on bigger
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data. One of the solutions for this problem can be not putting every concept into final
pertinent coverage, but assuming that there are more informative and important concepts
and finding those as long as all the data will be covered by at least one concept [28].
To select interesting concepts for the coverage stability measure can be used [29]. In
addition to computational cost, there is practicality to consider - extremely large number of
formal concepts in final output makes understandability of the output difficult for a human
interpreter [30].

Kuznetsov and Makhalova proposed a hierarchy for concept mining algorithms that try to
decrease the number of concepts that make up the final pertinent coverage [31]. They con-
cluded that one of the best ways would be to create concepts using background information
that we have about its attributes and objects. Furthermore, depending on the background
information, concept will be calculated if we know in advance that the concept will be
valuable. It is very similar to the approach where weight is calculated for each concept
before adding it to final result [23].

Depending on how it is done, this method can have the downside of including computations
to find the concept, computations to find the chosen quality measure about the concept,
and then one more computation for deciding if to use the concept at all. Thus, it can leave
to exponential time complexity [31].
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3. Design

3.1 Description of initial algorithm

The starting point of the thesis was existing version of the QualityCover greedy FCA
algorithm (hereinafter: old version) [2]. The goal of the work was to improve efficiency of
the algorithm, so it could be applied on bigger data sets. In addition, the algorithm would
work faster on small data, without losing quality in the conceptual coverage.

The initial idea for new improved algorithm includes the following steps (see Algorithm
1):

� Calculate mandatory concepts (Lines 4, 5);
� Calculate size for each couple not yet covered (Lines 6-10);
� Organize by size in descending manner (Line 11);
� Choose uncovered couple with highest size value (Line 13);
� Calculate the best concept for this couple by using bond value calculation (Line 15);
� Remove all couples that are covered by the newly chosen concept (Lines 17-18);
� Repeat until all the couples are covered.
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Algorithm 1: QUALITYCOVER (initial idea)
Input: Formal Context K = (O, I,R)
Output: Conceptual Coverage CK

1 begin
2 CK ← ∅;
3 COMPUTE_INTRODUCTORY_CLOSURE (K);
4 /* step 1 Computing Mandatory concepts */
5 CK ← COMPUTE_MANDATORY_CONCEPTS (K);
6 if ( IS_COVERED (K)=False ) then
7 /* step 2 Computing the size of couples */
8 forall i ∈ I do
9 forall o ∈ i↑ do

10 Size← COMPUTE_SIZE ( PCoi);

11 SORT_COUPLES (K, Size);
12 /* step 3 Covering the remaining concepts */
13 while ( IS_COVERED (K)=False ) do
14 if ( IS_EXPLORED (o,i)=False ) then

15 CALCULATE_BEST_FC: CK ← CK ∪ 〈i↑, i↑↓〉;
16 /* remove all covered couples from the concept

〈i↑, i↑↓〉 */
17 forall (x, y) ∈ 〈i↑, i↑↓〉 do
18 K ← K− (x, y);

19 return CK

3.1.1 Detecting mandatory concepts

Detecting the set of mandatory formal concepts (in case they exist) is given by COM-
PUTE_MANDATORY_CONCEPTS procedure in Algorithm 1. The descriptive pseudo-code
is given by Algorithm 2 on Page 22.

Steps of the algorithm are as follows

� Iterate over the set of attributes I.
� If the cardinality of the extent part of attribute is equal to 1, then the formal concept

it belongs to is considered as a mandatory one (Line 3), all the couples in the concept
are marked as covered.

� Otherwise, iterate over the extent part, looking for an object whose support is equal
to the cardinality of the intent part (Lines 9− 12), all the couples in the concept are
marked as covered.
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Considering Table 6 on Page 15, couple (1, a), is an isolated point, since the attribute a

has an extent with only one object in it (the length is equal to 1). Thus, the concept where
the couple (1, a) belongs to, 1abc , is a mandatory concept.

When considering the couple d2, object 2, has a support of 2 {de}, and both of its’ elements
have intent that is also equal to 2. Thus, the concept {de; 23} is a mandatory concept.

3.1.2 Size calculation

Size calculation of a pseudo-concepts include:

Size(o, i) =
∑
i1∈o′

|i ↑ ∩i1 ↑ |
|i ↑ | · supp(o)

(3.1)

Sum of lengths of intersects of extents of each member of intent and original extent of x
in the couple. Divided by the length of intent multiplied by length of extent of item (len
int*len ext).

For example, when considering data set from Table 1 on Page 12 and couple 2;b:
Intent of 1 is bg. Extent of b is 169.

1. To get denominator of size calculation, lengths of intent and extent are multiplied.
Thus, denominator is |bg| × |169| = 2× 3 = 6

2. For numerator, for every attribute of intent, the extent of that attribute is found.
Intersection of this newly-found extent and original extent of the attribute in the
couple is taken. The length of this intersection is added to the numerator.

(a) Extent of b is 169. 169 ∩ 169 = 169. |169| = 3

Thus, 3 is added to the numerator.
(b) Extent of g is 123456789. 123456789 ∩ 169 = 169. |169| = 3

Thus, 3 is added to the numerator.
Value of the numerator will be 3 + 3 = 6.

3. Value of Size(2,b) will be 6/6 = 1

3.1.3 Bond calculation

Bond Calculation is used to choose best FC, that maximises bond value, for a given couple
(Algorithm 3, Page 23).
This calculation includes the following steps
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Algorithm 2: COMPUTE_MANDATORY_CONCEPTS

Input: Formal Context K = (O, I,R)
Output: CK

1 begin
2 forall i ∈ I do
3 if ( |i↑| = 1 ) then

4 CK ← CK ∪ 〈i↑, i↑↓〉
5 /* remove all covered couples from concept 〈i↑, i↑↓〉

*/
6 forall (x, y) ∈ 〈i↑, i↑↓〉 do
7 K ← K− (x, y)

8

9 else
10 if (∃ o ∈ i↑ s.t. |o↓| = |i↑| ) then

11 CK ← CK ∪ 〈i↑, i↑↓〉
12 /* remove all covered couples from concept

〈i↑, i↑↓〉 */
13 forall (x, y) ∈ 〈i↑, i↑↓〉 do
14 K ← K− (x, y)

15

16 return CK
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� Loop over each member of intent and find the bond value and formal concept it
introduces.

� Bond calculation itself includes
– Length of extent of item divided by length of union of extents of each member

of intent.

Algorithm 3: CALCULATE_BEST_FC
Input: The couple (o, i)
Output: Best FC

1 begin
2 maxbond← 0
3 forall k ∈ o↓ s.t. k 6= i do

4 if ( k↑↓ ⊂ i↑↓ ) then
5 X ← i↑

6 FC ← 〈i↑, i↑↓〉
7 bond← |X|

max{sup(o)|o∈X}|

8 if (bond > maxBond) then
9 maxBond← bond

10 bestFC ← FC

11 return bestFC
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3.2 Starting points

Starting points for the work were:

� Emphasize finding maximum amount of isolated points in the kick-off of the algo-
rithm to reduce workload in the latter parts of the algorithm;

� Approximate size calculation to make it less computationally costly;
� Organize data points into different data structures considering their size, so there

would be less sorting;
� Find ways to make bond calculation more effective;
� Implement the algorithm in R with consideration that it could be run in Spark session

using SparklyR.
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4. Implementation

4.1 Size calculation

Original size calculation can be seen in Equation 3.1, Page 21.

To reduce it’s complexity the following methods were tested out.

4.1.1 Approximate the size calculation

In case extent of object does not include all attributes of original object in the couple,
approximate its’ size to 1.

Size(o, i) =
1

supp(o)
+
∑

i16=i∈o′

|i ↓ ∩i1 ↓ |
|i ↓ | × supp(o)

(4.1)

This approach was omitted because it did not give desired reduction in complexity and
runtime but did increase the number of formal concepts in the final coverage.

4.1.2 Calculate size and the best concept together

This version (see Algorithm 4, Page 26) included the following changes:

� Replace extent with intent in calculation, considering that intent usually consists of
a smaller number of elements.

� Size calculation also includes calculation of best concept for every couple and it
replaces previous bond and best concept calculation.

This option was not used because size calculation together with best concept calculation
increased run time. In original QC, best concept calculation was not done until the concept
was needed for final coverage for a chosen couple. So, it was done the same number of
times that there were number concepts in the coverage. Calculating size and best concept
together meant, the best concept was calculated for each and every couple in the data set.
This increased computational load considerably.

25



Algorithm 4: COMPUTE_BY_COUPLE

Input: The couple (o, i)
Output: Size= the size of the pseudo-concept induced by the couple (o, i)

1 begin
2 sizeNumerator ← |i↑|
3 X ← ∅
4 bond← maxbond
5 bestFC ← FC
6 /* BestFC is meant to be the best formal concept

containing (o, i) in terms of the Bond measure */
7 forall k ∈ o↓ s.t. k 6= i do
8 sparkingConcept← false

9 maxBond← |Ext(i)|
max{sup(o)|o∈i′}|

10 bestFC ← 〈i′, i”〉
11 /* Computing the numerator of the size */
12 if ( k↑↓ ⊂ i↑↓ ) then
13 X ← i↑

14 FC ← 〈i↑, i↑↓〉
15 sparkingConcept← true

16 else
17 if ( i↑↓ ⊂ k↑↓ ) then
18 X ← k↑

19 FC ← 〈k↑, k↑↓〉
20 else
21 X ← i↑ ∩ k↑

22 /* X↑ fetches that intent part of a formal
concept given an extent part equal to X.

*/
23 FC ← 〈X,X↑〉

24 sizeNumerator ← sizeNumerator + |X|
25 if (sparkingConcept=false) then
26 bond← |X|

max{sup(o)|o∈X}|

27 if (bond > maxBond) then
28 maxBond← bond
29 bestFC ← FC

30 Size← sizeNumerator
|o↓|×|i↑|

31 return Size, bestFC
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4.1.3 Omit most of the calculations

with only (len int*len ext) determining the size value.

Size(o, i) = |i ↑↓ | × supp(o) (4.2)

Unlike previous calculation where bigger size indicated more valuable couple, and maxi-
mum value possible was 1, the data would be sorted in an ascending value hereafter and
there is no maximal possible value. Size of the dataset is the best predictor of how big the
size value can be.

When a couple has smaller intent and extent it can belong to a smaller number of possible
concepts - so the smaller the size, the more valuable the couple is and should be considered
among the first ones. Couples that have very big intent or extent values can possibly be
covered by many different concepts and should be last to be considered when searching
for optimal conceptual coverage.

This is the version of the size calculation that was chosen for the final version of the
algorithm. It included the least calculations and proved to generate the same conceptual
coverage of the data like the original QC algorithm with minor differences in what order
couples are looped through and concepts are calculated.

4.2 Mandatory concepts

Separated calculation of mandatory concepts based on isolated points was abandoned. The
purpose of calculating mandatory concepts first was to ‘cross out’ all the data covered by
these concepts first, so the these point of data would be out of the way. While it is valid
idea to do this, calculating mandatory concepts includes multiple loops (see Algorithm
2, Page 22) and in bigger or more dense data sets with no mandatory concepts, it will
bring bigger losses in run-time than calculating the same concepts together with all other
concepts. Mandatory concepts will become covered still and most likely will be among
one of the first ones to do so, because of their characteristic structure that also affects their
size value.

For example, if there is a concept where extent includes only one object, characteristic that
makes this concept a mandatory one, size calculation will generate smaller size value, since
size is only equal to the length of intent. And this will result the couple to be considered
among one of the first ones.

27



Omitting this calculation did not increase run time in smaller data sets. On medium and
bigger sized data sets omitting it did decrease run time. Compared to the original CQ
algorithm, this change did not increase the number of concepts in the coverage, but created
minor differences in what order couples are looped through and concepts are calculated.

4.3 Bond calculation

Bond calculation was used to choose between pseudo-concepts to add to final pertinent
coverage. Bond calculation together with best concept calculation was omitted altogether.
This was done because for each couple, the best possible concept is always the extent and
intent of the attribute. In addition, as a result of previous bond calculation the same intent
and extent were always chosen in the end, thus it proved to be a pointless calculation.

Bond calculation and best pseudo-concept choice were based on what attributes were
shared between objects (Algorithm 3, Page 23). Chosen elements to the intent of concept
needed to include all the same objects in their extents that were present in the original
attributes extent. In that case, the Bond value was maximized and those attributes were
chosen to intent of the concept.

Thus, it can be derived, that extent of any couple will we the extent of the attribute in the
considered couple. And if there are other attributes whose extents include all the same
objects, those attributes will be included in the intent of that couple. In case there are no
other objects that include all the same attributes, the concept will include only original
object from the couple, and all of its attributes.

For example, when we consider couple (1, h) in Table 2, Page 14, pseudo-concepts it
generates are {349;defgh} and {3459;efgh}. The latter would be chosen as a result of
bond calculation because it maximises the extent in the concept. The same will be chosen
because this pseudo concept includes all the objects that have the attribute in the considered
couple, that introduced the concept, includes.

4.4 Data structure

Data structure considered in the beginning was a table that included all central information
(each object, its extent and intent) like in Table 4, Page 14. And structure for attributes
that support each object, like in Table 5, Page 14. This kind of setup enables running
algorithm itself relatively fast, but requires a lot of pre-calculation and multiple data tables.
Calculation of intent for each item has computational complexity of O(n×m) and this
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calculation is not needed for each and every item later in the algorithm.

In final version, only the boolean matrix that represented data was used. In case initial data
was transactional, it was still turned into this kind of matrix.

Formal context from Table 1, Page 12 turned into boolean matrix.

Table 7. An example formal context as a Boolean matrix.

1 2 3 4 5 6 7 8
1 FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE
2 TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
3 FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
4 TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
5 TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
6 FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE
7 TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
8 TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
9 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

For size calculation the matrix was transposed to a table of couples, where also size value
was added (see Table 8).

Table 8. Couples and their sizes given by Table 7

Index Object Attribute Size Index Object Attribute Size
[1, ] 1 2 6 [19, ] 4 8 24
[2, ] 2 3 6 [20, ] 5 5 25
[3, ] 6 2 9 [21, ] 5 6 25
[4, ] 3 4 12 [22, ] 2 7 27
[5, ] 8 5 15 [23, ] 6 7 27
[6, ] 6 6 15 [24, ] 7 7 27
[7, ] 7 6 15 [25, ] 8 7 27
[8, ] 9 3 16 [26, ] 5 1 30
[9, ] 3 8 16 [27, ] 4 5 30
[10, ] 2 1 18 [28, ] 4 6 30
[11, ] 7 1 18 [29, ] 9 8 32
[12, ] 8 1 18 [30, ] 4 1 36
[13, ] 4 4 18 [31, ] 3 7 36
[14, ] 1 7 18 [32, ] 9 5 40
[15, ] 3 5 20 [33, ] 9 6 40
[16, ] 5 8 20 [34, ] 5 7 45
[17, ] 9 2 24 [35, ] 9 1 48
[18, ] 9 4 24 [36, ] 4 7 54

[37, ] 9 7 72
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No intent or extent was calculated prior to size calculation, since they are easily derivable
from the central matrix. Size table was ordered in an ascending manner.

Before starting calculating concepts additional matrix is created to keep track what is
already covered of the data. The matrix has same dimensions like central data matrix, but
includes no information initially.

For each iteration, the next best uncovered couple is chosen (considering the size value).
Concept for the couple will be intent and extent of the item in the couple. After each
iteration, discovered couples are added to the coverage matrix and algorithm stops when
both matrices are identical.

Example data set introduced in Table 1, Page 12 will produce size table like Table 8, after
the table has been sorted by Size value. In first iteration, the first couple is taken (1; 2 or
1; b if attributes are represented as letters). Extent and intent of the attribute are derived as
the formal concept ( {bg; 169} or {27; 169} ). This concept is added to the output of the
algorithm and all the couples in this concept are marked as covered.

After first iteration, the next couple in the size table is considered, if the couple is not
covered, the formal concept from it is added to the output. In this example, the next couple
is (2; 3 or 2; c) and it brings a formal concept ( {acg; 29} or {137; 29} ) to the output. In
the third iteration, couple (6; 2 or 6; b) is considered. Since it is covered already, no concept
is derived from it, and iteration heads to the next couple. The concepts produced by the
algorithm are as depicted in Table 9, in the order they are derived.

Table 9. Output of the new version of the algorithm in the order concepts are derived

Index Couple Concept
1 2; 1 {27; 169}
2 3; 2 {137; 29}
3 4; 3 {4578; 349}
4 5; 8 {57; 34589}
5 6; 6 {67; 45679}
6 1; 7 {17; 245789}
7 8; 5 {578; 3459}

4.5 Framework

Chosen language for implementing the algorithm was R, developed in RStudio. For
framework, SparklyR was chosen initially because it enables to use Spark for big data
analysis in R. Downside for using it was, that SparklyR only accepts data frame data
structure, that is one of the slowest and least efficient one in R.

30



Using this data structure would mean changing central data structure the algorithm was
built on (matrix of T/F values) and using a more complex data structure where a lot of
values are pre-calculated before the start of the algorithm without knowing if they will
be used or not. This approach slowed down the algorithm considerably and the option to
parallelize the computations between clusters did not outweigh the additional complexity
and increased runtime in the used example data sets. For these reasons, the final version of
the algorithm was not created considering usability in Spark session.

4.6 Theoretical Complexity Analysis

In the old version, the size calculation required additional loops over each extent and intent.
For adding concepts to output, bond calculation included double loop over intent for each
concept. However, since this was done only once per every concept, in result this did not
prove to be costly yet, with tested medium-sized datasets, where number of concepts was
not that high.
The old version has complexity of
O((1×#Couples× |i ↑↓ | × |i ↑ |) + (1×#Coverage× |i ↑↓ |2×)).

The new version of the algorithm loops through the data twice - first time for calculating
size value for each couple (it is to be assumed one size calculation is constant). Then, the
couples are reordered and looped through second time. In case given couple is not covered
yet, FC is calculated from it, and all the newly introduced couples are marked as covered.
Thus, the new version has complexity of
O((1×#Couples) + (1×#Coverage)).
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5. Evaluation

The new solution is written in R, implemented and executed on a Core i5 PC, CPU 2.3 GHz,
with 16 GB of RAM and Windows operation system. Quality of the new and old version
of the algorithm was assessed by number of concepts and the time it took to calculate them.
Both of the versions resulted the same number of concepts and were considered to be equal
in that measure.
The previous version of the algorithm was implemented as a Python package with C++
extension, run on an Ubuntu virtual machine with 4096 MB RAM memory.

Table 10 introduces used benchmark datasets from UC Irvine Machine Learning Database
Repository and Hypergraph Dualization Repository and the number of formal concepts in
the pertinent coverage, calculated by the QualityCover algorithm.
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Table 10. Formal concepts, size of coverage with QualityCover algorithm and the dimen-
sions of the datasets

Dataset X × Y Dimensions # Couples # Coverage
shuttle-landing-control 15 X 24 105 15
adult-stretch 20 X 10 100 9
lenses 24 X 12 120 12
zoo 101 X 28 862 26
hayes-roth 132 X 18 660 17
servo 167 X 19 668 19
post-operative 90 X 25 720 22
balance-scale 625 X 23 3125 23
flare2 1066 X 32 10 660 29
car 1728 X 21 10 368 21
breast-cancer-wisconsin 699 X 110 6990 92
house-votes-84 435 X 18 3856 18
SPECT-test 187 X 23 1644 23
audiology.standardized 26 X 110 1768 36
tic-tac-toe 958 X 29 9580 29
nursery 12 960 X 31 116 640 30
mushroom 8124 X 119 18 6852 109
soybean-large 307 X 133 10 744 102
dermatology 366 X 130 12 078 128
chess 3196 X 75 118 252 72
bms2 800 3339 X 62 206 936 52
bms2 400 3339 X 237 790 911 154
ac 90k 336 X 4322 1 411 815 37
dual-matching34 34 X 131 072 2 228 224 34
ac 70k 336 X 10 968 3 576 449 48
bms2 100 3339 X 2591 8 641 922 907
bms2 50 3339 X 6946 23 164 305 1545
bms2 30 3339 X 17 315 57 732 266 2040
ac 30k 442 X 135 439 58 291 353 85

Table 11 represents results of running the two new versions of the QualityCover algorithm
and old version runtime. Runtime1 represents algorithm with central boolean matrix
algorithm, Runtime2 algorithm with central data frame that is SparklyR friendly but
requires more computations. Runtime3 is old version of the algorithm, implemented as a
Python package with C++ extension.

Datasets were tested in the order of their size in kilobytes, starting from the smallest one.
After dataset run time with an algorithm exceeded reasonable time, the algorithm was not
run with bigger datasets. This is marked as ′−′ in the Table 11.

It can be seen that the new version of the algorithm outperforms old version on most
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datasets. The old version is faster on datasets that have small number of concepts in final
coverage regardless of their size, and slower if coverage includes more concepts. Runtime
of the new version of the algorithm increased more steadily together with increase in
number of couples and was less influenced by the final coverage size.

Table 11. Formal concepts from UCI repository and runtimes of three versions of algorithm
in seconds. ’-’ means algorithm was not run on the dataset.

Dataset Runtime1(s) Runtime2(s) Runtime3(s)
shuttle-landing-control 0.086 2.1 0.060
adult-stretch 0.067 4.7 0.050
lenses 0.060 3.9 0.063
zoo 0.108 42.1 0.462
hayes-roth 0.090 19.3 0.243
servo 0.085 16.0 0.274
post-operative 0.094 37.4 0.297
balance-scale 0.148 100.3 0.861
flare2 0.334 597.2 2.187
car 0.353 439.5 1.990
breast-cancer-wisconsin 0.474 515.8 4.005
house-votes-84 0.141 227.2 0.883
SPECT-test 0.100 115.8 0.480
audiology.standardized 0.167 123.6 1.814
tic-tac-toe 0.265 600.8 2.146
nursery 7.559 6886.0 1.509
mushroom 10.880 24 297 5.757
soybean-large 0.493 2295.1 5.985
dermatology 0.539 2647.0 8.033
chess 3.914 26 865 84.861
bms2 800 14.489 - 11 116
bms2 400 88.671 - 11 268
ac 90k 46.194 - 139.592
dual-matching34 2669.6 - 16.308
ac 70k 225.572 - 913.259
bms2 100 1427.0 - 110 246
bms2 50 4767.9 - -
bms2 30 15 885 - -
ac 30k 81 596 - -

The new version of the algorithm decreased complexity of size calculation considerably.
Since this is the only calculation that has to be done for each and every couple in the data,
it granted considerable decrease in complexity. At the same time, relatively more load was
given to calculation of concepts. This was not anticipated, since computational complexity
was reduced as well. Fortunately this part of the algorithm is not run for each couple, but
only the number of times new concepts are added to the final coverage.
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Table 12, Page 36 represents results of running the new version of the QualityCover
algorithm and run times per part of the algorithm - calculation of size, calculation of final
concepts, and total run time.

In addition of size and concepts, algorithm also spends some time on preparation (reading
in the script, creating the central matrix). These were not studied separately, since they
were not altered in this work and take relatively little time compared to other operations.
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Table 12. Runtimes in seconds by stages of the new version of the algorithm.

Dataset Size(s) Concepts(s) Total Runtime(s)
shuttle-landing-control 0.030 0.008 0.086
adult-stretch 0.048 0.003 0.067
lenses 0.016 0.003 0.060
zoo 0.053 0.016 0.108
hayes-roth 0.023 0.011 0.090
servo 0.025 0.006 0.080
post-operative 0.020 0.011 0.094
balance-scale 0.044 0.028 0.148
flare2 0.139 0.098 0.334
car 0.160 0.082 0.353
breast-cancer-wisconsin 0.113 0.239 0.474
house-votes-84 0.053 0.028 0.141
SPECT-test 0.023 0.017 0.100
audiology.standardized 0.043 0.081 0.167
tic-tac-toe 0.109 0.070 0.265
nursery 5.773 0.855 7.559
mushroom 6.662 2.860 10.880
soybean-large 0.101 0.277 0.493
dermatology 0.164 0.277 0.539
chess 2.099 1.072 3.914
bms2 800 10.562 3.825 14.489
bms2 400 62.093 26.422 88.671
ac 90k 36.968 9.061 46.194
dual-matching34 2624.3 44.891 2669.6
ac 70k 191.235 33.720 225.572
bms2 100 706.172 718.675 1427.0
bms2 50 2454.2 2310.7 4767.9
bms2 30 8859.5 7018.8 15 885
ac 30k 80 628 958.895 81 596

Because the old and the new version of the algorithms were implemented on different
languages and ran on different systems, one on one comparison of each dataset run time
will not be valid. Because of this reason, only increase of run times should be compared.
The increase in run times as datasets become bigger and more dense is lowest in the new
version of QualityCover, as presented on Figure 1, Page 37.

Figure 1 represents total runtimes of the two versions of the algorithm. In the new version
of the algorithm grows with slower rate when number of couples increases when compared
to the old version. With large datasets the old version runtime increased more and the old
algorithm was not ran on the last few datasets there it exceeded reasonable runtime, so it is
not possible to compare runtimes on last few larger datasets. Even though the old version
was not able to run the bigger datasets, it can be derived from the rise angle of runtimes
graph that the old versions runtime increases more with growing data size than the new
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version. Thus it can be assumed, that the new version is better equipped to handle bigger
datasets.

Logarithmic scale was used on both axis of the plot because the results were skewed
towards a few large values.

Figure 1. Runtimes of old and new algorithm compared on a log-log scale
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6. Summary

For each algorithm, the challenge is to reduce computational complexity from exponential
to linear and to use data structures that support fast creation, filtering, and transformations,
and at the same time enable to do the calculations with low computational complexity. It
can be that some of the data structures are easy to create, but slow to transform. Fast in
computations but at the same time do not enable the type of calculations that are the most
rational. In these cases, the decision what combination of data structure and calculation
types to use has to depend on the intention and type of the algorithm, and type and size of
data.

In case of moderate sized data sets, the computation time of O(n2) complexity might
not rise so high yet, and it is possible to choose between computational complexity and
preferred data structures without having any right or wrong answers. When data sets are
bigger, it can be anticipated there will be also considerable increase in the calculation
time. In this case, using the data structure that enables the fastest computations can be a
wise choice, if the data structure will only be created once but calculations with it will be
multiple.

With rising data size, there can also be a need to distribute memory and calculations
between different nodes, and this is also case where the situation - framework chosen -
dictates what type of data structure and calculations to use, to enable parallelization and
distribution. In this thesis, the algorithm was modified to enable running it in Spark session
using SparklyR. This attempt was not a successful one, since approved data structure
(data frame) did not allow the type of calculations that enabled to have fast algorithm
computations. As a result of modifying the algorithm for this computational complexity
and run time increased considerably and this trade-of made it not reasonable to continue
with this attempt further. Thus, parallelization was omitted, because the increase in
complexity of calculations for the purpose of parallelizing them between clusters did not
prove to be beneficial.

In addition, the density and disposition of data can hugely change effectiveness of an
algorithm. In this thesis, calculation of isolated points and mandatory concepts was
omitted, because the data sets with average or high density did not provide any practical
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example of usefulness of these calculations. But it is very likely, that with low density data,
where many isolated points are present, the calculation of mandatory concepts first can be
a good solution. And as a result, the size calculation could be omitted instead with very
few concepts left after finding mandatory ones.

It became evident that the two versions of the algorithm performed differently on different
types of datasets. The old version outperformed the new one on a big dataset where final
coverage is a small number of concepts. The new version was better when final coverage
includes more concepts. So there are advantages of using the old version, if it is known
there will not be many concepts in the final coverage. Otherwise the new version, where
runtime has stable dependency on number of couples in the data, can be used.

The new version of QualityCover algorithm includes considerably simplified Size calcu-
lation and has removed Bond and best concept calculation. As a result of this, the run
time increases in linear manner together with dataset size (number of couples the data set
includes). The new version of the algorithm is able to run data sets with the size of millions
of couples in matter of minutes to hours with the same quality as the previous version.

The most complex and time consuming part of the calculation remains to be the Size
calculation. To furthermore improve the speed and complexity, it should be considered
removing the size calculation in total, and accepting some increase in number of concepts
in the final coverage, but being able to process bigger data sets.
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Appendices

Appendix 1 - Code

two new versions of the algorithm can be found:
https://github.com/kadmok/QC4
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Appendix 2 - Previous version of the algorithm

previous version of QualityCover algorithm can be found here:
https://pypi.org/project/quality-covers/
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Appendix 3 - Datasets

The data sets used in this thesis can be found in Hypergraph Dualization Repository:
http : //research.nii.ac.jp/ ∼ uno/dualization.html

and UC Irvine Machine Learning Repository:
https://archive.ics.uci.edu/ml/datasets.php
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