
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Thales Santos Ribeiro 166788IVSM

ONLINE RECORDING OF A SPEECH
CORPORA

Master's thesis

Supervisor: Einar Meister
Senior researcher,

 PhD

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Thales Santos Ribeiro 166788IVSM

VEEBIPÕHINE KÕNEKORPUSTE
SALVESTUS

Magistritöö

Juhendaja: Einar Meister

 Vanemteadur, PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Thales Santos Ribeiro

07.05.2018

4

Abstract

Large corpora of variable speech material are necessary for both speech research and

speech technology development. This work aims to develop a web-based service for

speech recordings. The software utilizes a client-server system in which the server

provides both application logic and data storage, and then the client implements a

browser-based user interface.

Index Terms: speech recording, web audio API, client-server system.

The thesis is in English and contains 40 pages of text, 5 chapters, 20 figure, 8 tables.

5

Annotatsioon

Suuremahulised kõnekorpused on vajalikud nii kõneuuringuteks kui ka kõnetehnoloogia

arendamiseks. Selle töö eesmärgiks on välja töötada veebipõhine kõnesalvestuste

rakendus. Tarkvara kasutab klient-server süsteemi, milles server pakub nii rakenduste

loogikat kui ka andmete salvestamist, ja klient kasutab brauseripõhist kasutajaliidest.

Indeksitingimused: kõne salvestamine, veebiaudio API, kliendiserverisüsteem.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 40 leheküljel, 5 peatükki, 20

joonist, 8 tabelit.

6

List of abbreviations and terms

API

ASR
CMS
DTW
HTML

Application Programming Interface
Automatic Speech Recognition
Content Management System
Dynamic Time Warping
HyperText Markup Language

JSON

LXC
MTurk
MVC
MVP
RDMS

RVM
TTS
URL

JavaScript Object Notation
Linux Containers
Amazon Mechanical Turk
Model-View-Controller
Minimum Viable Product
Relational Database Management System
Ruby Version Manager
Text to Speech
Uniform Resource Locator

7

Table of contents

1 Introduction .. 11	

1.1 Problem Definition .. 11	

1.2 Aims .. 11	

1.3 Objectives ... 12	

1.4 Organization of the thesis ... 12	

2 Background .. 13	

2.1 Literature Review .. 15	

2.2 Related Work .. 16	

3 Tools .. 17	

3.1 Aeneas ... 17	

3.2 Docker ... 18	

3.3 Sidekiq .. 18	

3.4 Ruby on Rails .. 19	

4 Application ... 21	

4.1 Implemented Features ... 21	

4.1.1 Manage User .. 21	

4.1.2 Manage Project .. 22	

4.1.3 Manage Record .. 23	

4.1.4 Manage Folder ... 24	

4.2 Usage ... 24	

4.2.1 Signup .. 24	

4.2.2 Authentication .. 25	

4.2.3 Projects ... 26	

4.2.4 Add files to a folder ... 28	

4.2.5 Collect audio .. 29	

4.2.6 Records .. 31	

4.3 Installation ... 33	

4.3.1 Requirements ... 33	

4.3.2 Linux .. 34	

4.3.3 MacOS ... 34	

4.3.4 Windows .. 35	

8

4.3.5 Starting the application .. 35	

4.3.6 Aeneas .. 36	

4.4 Source-code ... 36	

4.5 Default user ... 36	

5 Summary .. 37	

5.1 Future Work .. 37	

References ... 38	

Appendix 1 – Class Diagram .. 39	

Appendix 2 – Admin application’s dashboard .. 40	

9

List of figures

Figure 1 Example of an annotation. From top to bottom - signal waveform, spectrogram

and fundamental frequency contour (blue), word-level annotation. 14	

Figure 2 Sidekiq web UI ... 19	

Figure 3 Domain Model .. 21	

Figure 4 User sign-up form part 1 ... 25	

Figure 5 User sign-up form part 2 ... 25	

Figure 6 Admin Login UI ... 26	

Figure 7 Participant Login UI ... 26	

Figure 8 Project page .. 27	

Figure 9 Project form part 1 .. 27	

Figure 10 Project form part 2 .. 28	

Figure 11 Add files to folder ... 29	

Figure 12 Files in the folder .. 29	

Figure 13 Pop-up window to insert an image file into a project description field 29	

Figure 14 Example pop-up allow microphone access .. 30	

Figure 15 Start/End recording ... 30	

Figure 16 Audio collection sequence diagram .. 31	

Figure 17 Records page .. 32	

Figure 18 Record deletion confirmation ... 32	

Figure 19 Record details ... 33	

Figure 20 Database configuration file ... 34	

10

List of tables

Table 1 HTML5 audio tag support ... 14	

Table 2 Aeneas Input .. 17	

Table 3 Default Rails directory structure .. 20	

Table 4 Users table .. 22	

Table 5 Projects table .. 23	

Table 6 Records table .. 24	

Table 7 Folder table .. 24	

Table 8 Hardware Requirements .. 33	

11

1 Introduction

As many people have noticed, we are living in the conversational era due to the

possibility to address commands to automate our lives using only our voices, and to use

devices to read out loud newspapers, books, or to speak our written words.

1.1 Problem Definition

During the last decades, the use of text to speech (TTS) and automatic speech

recognition (ASR) has been increased, this market is expected to reach 18 billion US

dollar by 2023 [1], ASR and TTS systems become more popular, and both of them

require a significant amount of speech material for their training.

Collecting and managing such high volume of data requires huge effort by many people

to capture the audio, process and annotate the speech. For example, a person needs to

commute to a recording studio to record his/her speech samples, after concluding it a

trained transcriber needs to spend hours and hours to synchronize the audio with a

transcript and annotate it.

1.2 Aims

This work aims to develop a web application which enables to collect speech corpora

online and thus making it possible to record speech in a home environment. In that way,

it is expected to make the recruitment of volunteers easier and increase the number of

subjects who want to participate in the speech recordings.

Moreover, this work aims to improve the availability of speech corpora by providing

access to speech corpora through the Internet. Thus, any person who holds the rights to

access may do it from anywhere around the globe. Next, it aims to reduce the amount of

12

time spent to annotate a speech corpus using the software Aeneas1 to automatically

synchronize the audio with a transcript and annotate it by generating automatically a

Praat2 compatible TextGrid file.

1.3 Objectives

In this thesis, a web-based content management system (CMS) for speech corpora will

be developed using HTML5 functionalities that are compatible with the most popular

web browsers in order to capture speech without any other software dependency from

the client's side. In that way, the volunteers will not need to spend time managing

installation of all required software components nor facing troubles with wrong

dependencies' version. Also, provided an automatic audio annotation will save hours of

a professionally trained transcriber. Moreover, to increase the speech database

availability to facilitate its use for training speech recognition system or phonetic

studies.

The Laboratory of Language Technology, part of the Institute of Software Science at

Tallinn University of Technology plans to use this application for speech collection in

Estonia starting in September 2018.

1.4 Organization of the thesis

Background: this section contains the background information and the literature review

Tools: this section states and briefly explains the tools used in this project to achieve the

goals.

Application: this section describes the application requirements, usage, and installation.

Summary: this section contains the thesis summary and the future work section as well.

1 https://github.com/readbeyond/aeneas

2 http://www.fon.hum.uva.nl/praat/

13

2 Background

Humans communicate with each other using speech [2] which is the ability to express

thoughts and emotions and transfer information from one person to another in the form

of a sound. Speech is a result of the articulatory movements of the mouth, lips, and

tongue and it propagates through the air as waves to the listener who receives and

decodes the message [3].

The term “speech corpus” refers to a collection of digital recordings of speech signal

together with annotations, metadata, and documentation [4]. Speech corpora are the

primary source of data for basic and applied research of spoken language

communication and for technology development, e.g. in text-to-speech synthesis (TTS),

automatic speech recognition (ASR), speaker recognition, etc. [5]. There are two main

types of speech corpora: spontaneous and read speech. In the case of spontaneous

speech, the audio captured does not follow any script, as an example, a dialog between

people, and read speech is recorded following a script, for example, while reading a

book or a set of sentences.

As mentioned above a speech corpus involves speech samples together with

annotations, and after the signal collection process, it is needed to annotate the

utterances. Nowadays, most of the annotations are automatic, yet it is still necessary to

perform also manual annotation, for example, in order to fix errors of automatic

annotation due to a low-quality signal. The Figure 1 illustrates an example of an

annotated audio.

14

The web audio API [6] replaces the flash and java applet applications that were

extensively used years ago for both to record and play audio and video files. In HTML5

[7] the tag <audio> provides a primary audio player and controls in most of the major

web browsers according to the Table 1.

Table 1 HTML5 audio tag support

Browser Supported Version

Safari >= 11

Chrome >= 49

Firefox >= 58

Edge >= 16

Figure 1 Example of an annotation. From top to bottom - signal waveform, spectrogram and fundamental
frequency contour (blue), word-level annotation.

15

2.1 Literature Review

Nowadays, web-based speech corpora systems provide many benefits. The benefits

include no requirement to commute to a specific place to record the corpus, no

geographical limitation, and an increase in the democratization of speech and language

analysis [8]. Therefore, the pitfalls of the web-based speech corpora systems involve the

limitations of internet bandwidth and ambient noise.

Moreover, the costs of implementing an automatic speech recognition (ASR) has

become cheaper. However, the biggest challenge to develop an ASR is to capture a

large size corpus with excellent audio quality. Thus, Eyra [9] project solves the audio

quality flaw providing early feedback for the field’s collector to correct it during the

capture process. Collecting a massive speech data to train the ASR may be stressful due

lack of native speakers of the desired language or lack of volunteers. An alternative to

solve this issue is to use the Amazon Mechanical Turk (MTurk)1 which is an online

workforce marketplace, so it is possible to gather speech recordings around the globe

[10]. MTurk was used to collect speech data in VoxForge2 project. Additionally, using

the power of the crowd to speed up the corpus acquisition is in vogue. Using

crowdsourcing for a speech corpus collection provides some benefits such as to harvest

a language corpus at low cost [11].

It may be tedious to adopt and use several tools to collect, annotate and visualize a

signal. To simplify it Emu web app [12] proposes all in one solution to facilitate and

make more efficient to manage speech databases. Plus, to provide some statistical data,

it interacts directly with R language.

The pronunciation differences between distinct gender, age, social-economic level, and

dialect require a high effort while annotating a corpus. For example in 2000, annotating

a spontaneous corpus in Chinese, took 60 minutes of a trained transcriber effort for

every 4 minutes of a speech [13].

1 https://www.mturk.com

2 http://www.voxforge.org

16

2.2 Related Work

Content management system (CMS) for managing a speech corpora and using the

Internet to capture signals via a web browser is in use in projects such as Wikispeech

[14] and Meyda [15].

WikiSpeech is a CMS and wiki systems developed by the Bavarian Archive for Speech

Signals in Munich, Germany. It provides translations to German, English, Romanian,

and Russian. In this system both server and client are implemented in Java using XML

for the data exchange between a server and a client.

The WikiSpeech application provides features such as annotation, session management

and speech recording. To achieve some of these functionalities the application uses

additional tools such as:

§ WebTranscribe – which is a web-based annotation tool and so it is used for

doing annotations.

§ SpeechRecorder – it is used for recording speech and it requires Java runtime

installed.

The project Meyda (which means “information” in Hebrew) is a JavaScript library built

on top of the web audio API. It was built to facilitate the capture, visualization,

processing of sounds through the web in real-time.

17

3 Tools

This section contains the description of specialized tools that are in use in this project,

without them it would not be possible to accomplish the goals.

3.1 Aeneas

Aeneas1 is an open-source library, written in Python and C programming languages,

which synchronizes text and audio using dynamic time warping (DTW) signal

processing algorithm to force the alignment. It supports 38 distinct languages including

English, Estonian, Finnish and Russian among others. Also, Aeneas provides multiple

file formats for time-aligned text output. One of these formats is TextGrid for further

analysis and research using the Praat software.

It is necessary to provide a text file as in Table 2 and audio in the WAV format and the

following parameters to synchronize audio with text, and output is a file in TextGrid

format.

python -m aeneas.tools.execute_task audio.wav input.txt
 \"task_language=est|is_text_type=plain|os_task_file_format=textgrid\"
/home/rb/text.TextGrid

Table 2 Aeneas Input

Text of the first prompt
Text of the second prompt
Text of the third prompt

Text of the fourth prompt

1 https://github.com/readbeyond/aeneas

18

3.2 Docker

Docker1 is an open-source tool that uses Linux Containers2(LXC) to create an

abstraction level of an Operational System(OS) and encapsulate application in the

different section that is called containers. In that way, Docker provides a secure

software distribution and deployment since there is no OS's dependency level, in other

words, the same container can run on top of different OS such as Linux, Windows, and

MacOS. Besides the benefits stated above, Docker also provides a simple way to build

a container using a description file called Dockerfile which contains information related

to the container's version, maintainer, and steps to build. Moreover, the docker

container’s image is easily shared through Docker hub3 that is a cloud-based repository

to store, build, and share Docker images.

Docker was used during the application development to test the application portability

to Linux environment since the application was developed in a macOS environment.

Yet, it was not used for production.

3.3 Sidekiq

Sidekiq is a simple and efficient background message processing framework for Ruby,

and it integrates with Rails with ease providing an asynchronous job processing. The

messages are persistent, and it is in JSON4 format. Also, it provides a web User

Interface (UI) similar as the one in the Figure 2, with localization for 25 different

languages, for monitoring the jobs and their errors. As an example, the task which

synchronizes the transcript with an audio file using Aeneas runs asynchronously and its

basic structure is presented below.

1 https://www.docker.com

2 https://linuxcontainers.org

3 https://hub.docker.com

4 https://www.json.org

19

class AeneasWorker
 include Sidekiq::Worker
 def perform(record_id)
 # add code here
 end
end

3.4 Ruby on Rails

Ruby is a very high level, dynamically typed, a flexible and open-source programming

language created by Yukihiro Matsumoto and it went public 1995. Its most featured use

is for web development especially along with the Rails framework. Also, Ruby is an

object-oriented language inspired by Smalltalk and provides a syntax similar to plain

English. The following code is the simple “Hello, World!” and the other is its object-

oriented version, both are meant to illustrate the Ruby syntax and simplicity.

hello_world.rb
puts “Hello, World!”

hello_world_OO.rb
class HelloWorld
 def greet
 puts “Hello, World!”
 end
end

hello_world = HelloWorld.new
hello_world.greet # prints Hello, World!

Rails [16] is a broad popular web framework that relies on model-view-controller MVC

architecture that separates the code in different layers according to their role and in

principles such as do not repeat yourself (DRY) and convention over configuration

Figure 2 Sidekiq web UI

20

because the framework components do not need any additional configuration to work

together. To create a new Rails application, it is necessary to run the following

command and it creates a directory app_name with subdirectories as show in Table 3

rails new app_name

Table 3 Default Rails directory structure

Folder Purpose

app Contains the application components

app/controllers Contains the application controller

app/models Contains the application models

app/views Contains the application layout and other interfaces.

app/assets Contains the application assets such as images,
JavaScript and cascading style sheets files.

app/config Contains the application configuration files

db/ Contains the database structure and configuration
file.

log/ Contains the application log files

By default, Rails provides three different environments to run the application according

to the desired use. These three environments are:

§ Development – this environment is used during the application development

phase.

§ Test - this environment is to execute test, as an example, unit tests.

§ Production – this environment is used to run the application’s stable version that

can be used by the final user.

21

4 Application

The Figure 3 illustrates the relation between the classes and it contains only the primary

and foreigner key as attributes, the full version of the class diagram is shown in the

appendix section. The class DataStorage has no interaction with the user because it only

interacts with another class. This class keeps a file metadata.

4.1 Implemented Features

The requirements selected to build a minimum viable product (MVP) related to a CMS

for managing speech databases. The chosen functionalities are: manage users, manage

projects, manage records and manage folder.

4.1.1 Manage User

A user refers to the registration of a person who will interact with the application in

some way. The required field to insert a new user into the database are email, encrypted

password, created at, and update at according to the table 1. Email field requires a valid

email address. In Rails, encrypted password becomes two intransient fields they are

password and password_confirmation. The password is a non-encrypted string, before

saving it to the database it is encrypted to provide more security and inserted in the field

encrypted_password. Also, it uses password_confirmation to verify and validate the

password during the creation and updating events.

A user can sign in one of the two roles: a participant or an admin. The admin is the only

type of users able to manage other users' account and to create another system

Figure 3 Domain Model

22

administrator. And the user with a participant role can only create new records. The

Table 4 describes the user fields with their types, and if mandatory to fill it out while

inserting a user in the database.

Table 4 Users table

Field Mandatory Type

age No Integer

created_at Yes Datetime

encrypted_password Yes String

education No JSON

email Yes String

first_name No String

last_name No String

native_language No JSON

foreign_languages No JSON

childhood_city No JSON

current_city No JSON

gender No JSON

updated_at Yes Datetime

Field with JSON type are persisted in the column name data and its type is JSONB.

Moreover, by default JSON fields are string.

4.1.2 Manage Project

A project refers to a speech corpus collection’s initiative, it must contain a title,

description, agreement message and active status information as shown in Table 5. The

title refers to the project name and how it is going to be publicly known. The

description's field includes the prompts that are going to work as a guide during a

recording section. There are four different kinds of prompts: text, image, audio or video.

The field category defines the type of prompt that is in use. The agreement message is

the message about the project's purpose and use of the speech corpus and the participant

must agree with the conditions before starting a recording session. Active status informs

23

whether the project is active or not because participants can only start a new recording

session for an active project.

To create a new project, it requires an authenticated user with admin role and with the

current authorization mechanism all administrators can see all existing projects.

Table 5 Projects table

Field Mandatory Type

title Yes String

description Yes String

agreement_message Yes String

active Yes Boolean

category Yes String

The parameters for audio recording are currently fixed (that means they cannot be

changed via web interface) and have the following values:

§ Number of channels: 1

§ Wav bit resolution: 16 Bit

§ Sampling rate: 44100 Hz

The only way to change these parameters is done by change the interface code which is

located at app/views/records/new.html.slim, line 165 and looks similar as the following

recorder = new Recorder({
 monitorGain: parseInt("0", 10),
 recordingGain: parseInt("1", 10),
 numberOfChannels: parseInt("1", 10),
 wavBitDepth: parseInt("16", 10),
 sampleRate: parseInt("44100", 10),
 encoderPath: "#{asset_path('waveWorker.min.js')}"
});

4.1.3 Manage Record

A record is stored when a participant contributes to an active project and captures an

audio file. Its fields are the foreign key (FK) of a user and project, user_id and

project_id, respectively. Therefore, it is mandatory the existence of a project and user.

Also, the user with participant’s role must be authenticated to join an ongoing project

and create a new record section into the database.

24

Moreover, there are two extra fields to add relevant information regarding the audio

collected. These fields are audio_duration which states the length of sound in seconds,

and original_script it is a copy of the project's description field during the recording

session. So, in case the project associated with the record is updated, it does not affect

the records transcripts.

Table 6 Records table

Field Mandatory Type

project_id Yes Bigint

user_id Yes Bigint

audio_duration No String

original_script No String

4.1.4 Manage Folder

Folder means a place that keeps files according to Table 7. It is needed and used for the

case when creating a new speech corpus collection's project, it is necessary to add media

files such as images, audios or videos from a local computer and make them available in

the project's description or agreement message fields.

Table 7 Folder table

Field Mandatory Type

file yes String

4.2 Usage

In this section it is described how to use and access the application functionalities.

4.2.1 Signup

To sign up a user needs to reach the application web domain and press the option named

“access” located at the right top corner and press the sign-up link located at the bottom

left side as displayed in Figure 7.

The user will face a sign-up form according to Figure 4 and Figure 5. All required fields

are maker with “*”. After adding information to at least the required field, the user

25

needs to press the button “Sign up” to complete the process and creates a new user.

Then, the new user is able to authenticate and join a project.

4.2.2 Authentication

Authentication is the act of confirming the user identity and accessing the application by

providing an email and password. In that way, it requires the user is present in the

system’s database. There exist two different ways to authenticate into the application as

an admin or a participant. The admin UI is located at /admin path, for example, if the

application is running the URL http://localhost:3000 the admin login UI can be reached

at http://localhost:3000/admin and it displays an interface similar to Figure 6

Figure 4 User sign-up form part 1

Figure 5 User sign-up form part 2

26

The participant authentication page is accessible by clicking the link Access present in

the home page on the top right corner, and it redirects to the authentication page, for

example, if the application is running the URL http://localhost:3000, then click in the

link Access. The page should look similar to the Figure 7.

For both cases, after providing the email and password, the user needs to press login.
So, it will authenticate the user and redirect to another page.

4.2.3 Projects

After the user passed the authentication, in the admin dashboard page the administrator

needs to press the option “Projects” located in the menu at the top. After that, the user

will get redirected to the project’s page where the administrator will see all existing

Figure 6 Admin Login UI

Figure 7 Participant Login UI

27

projects according to Figure 8. It is possible to move between active and inactive

projects, or to visualize all project by using the navigation tabs.

To add a new speech collection project, the administrator needs to press the button

“New Project” located the top right. Then, it redirects to the project’s form, according to

Figure 9 and Figure 10, and the user must fill out all required fields marked with “*”

such as title, category, description and agreement message.

Figure 8 Project page

Figure 9 Project form part 1

28

When the required fields are filled out, the user must press the button “Create Project”.

It saves the project into a database and redirects back to the projects page similar to

Figure 8.

To edit a project the administrator needs to go to projects pages and clicks the link

“edit” of a desired project which needs to be changed. The edit act occurs in the same

project form used to insert a new project. The only modification is the down left side

button which becomes “Update Project” instead of “Create Project” as seen the Figure

10.

A project only can be deleted if there is no record associated with it, otherwise it is not

possible to delete it because a record must be associated with a project.

4.2.4 Add files to a folder

To add files to a folder it is mandatory to have an authenticated user and the authorized

user must have an admin role. The interfaces s similar to Figure 11. The user needs to

press the button “choose file”, select one file from the computer and press Create folder

button. It saves a file to a folder.

Figure 10 Project form part 2

29

After adding a file, the user needs to copy the URL, which is the file’s address in the

application, as shown in the Figure 12.

And after copying the file’s address paste it in the appropriate place. As an example, if

the file is an image, it needs to be placed in the pop-up window to add an image as

illustrated in Figure 13.

4.2.5 Collect audio

An audio collection session requires an existing and active project plus an authenticated

user. Also, the user needs to receive the project URL that informs to which project

she/he is invited to contribute. The audio collection action is illustrated in the Figure 16

and an explanation of each step is described below.

After the authentication, the user must agree with the agreement message before starting

the recording session by pressing the button “Agree”.

Figure 11 Add files to folder

Figure 12 Files in the folder

Figure 13 Pop-up window to insert an image file into a project description field

30

Next step, is to allow the microphone access from the web browser as shown in Figure

14 and adjust microphone’s sensitivity.

To start a recording session the user needs to press the button located at bottom left

corner “Start recording” see Figure 15. Then the user begins to read a transcript or

explain the prompts provided, to complete the recording the user ends the recording

session.

When the user ends the recording session, the server starts to receive the audio file,

saves it in a directory, and stores the audio file path into a database. After saving it, a

process begins to align the transcript with the speech record using the AeneasWorker.

This processing only happens when a project's category is text.

Figure 14 Example pop-up allow microphone access

Figure 15 Start/End recording

31

4.2.6 Records

Records are created during the audio collection phase by a subject participating in

speech corpus collection participant. To access the records, it is required to have an

authenticated admin and from the administrator press the option “Records” located on

the menu on top.

After pressing “Records”, it redirects to the records’ page as shown in Figure 17. This is

the page where the admin user can see all existing records.

It is possible to filter the records according to the nature of the speech corpus that can be

either spontaneous or non-spontaneous.

Figure 16 Audio collection sequence diagram

32

From the records page, the administrator may want to listen to speech files, to see their

automatically generated transcripts in Praat TextGrid format or both. The transcript is

only created when the project type is set as a text.

In the record details’ page, similar to Figure 19, it is possible to download the available

files and see some other information related to the record such as the participant and the

type of the speech corpus.

To delete a record, the administrator needs to go to the records page (Figure 17) and

clicks the link “Delete” in the row of the table row of the record supposed to be

removed. A confirmation pop-up window similar to Figure 18 will appear and the

admin user has to confirm the action. This confirmation is necessary because deleting a

record accidentally are not welcome. After deleting a record, it is impossible to recover

it.

Figure 17 Records page

Figure 18 Record deletion confirmation

33

4.3 Installation

This section describes the requirements and procedures to install and execute the

application.

4.3.1 Requirements

The application requires the pre-requisites listed in Table 8 plus always keep your

browser updated1. Install a Ruby version manager (RVM) which makes easier to have a

different Ruby version on your machine and to upgrade the releases as well. Also,

obtain the project source-code mentioned in section 4.4.

Table 8 Hardware Requirements

Minimum Recommended

1 GB memory RAM 2 GB memory RAM

1 core processor 2 core processor

200 MB disk space 600 MB disk space

The application requires a relational data management system (RDMS) Postgres version

9.4 or higher. To configure the application to use a database, it is required to modify the

database.yml file located in the config directory, the database.yml is similar to the

Figure 20.

1 https://whatbrowser.org/

Figure 19 Record details

34

4.3.2 Linux

The installation of RVM in most of Linux distributions can be done by following the

steps

§ gpg --keyserver hkp://keys.gnupg.net --recv-keys

409B6B1796C275462A1703113804BB82D39DC0E37D2BAF1CF37B13E2069

D6956105BD0E739499BDB

§ curl -sSL https://get.rvm.io | bash -s stable

§ Run rvm install 2.5

§ Run gem install bundler

§ In the application’s directory run the command bundle install

§ Execute bundle exec rake db:create to create a database instance

§ Execute bundle exec rake db:migrate to create the database tables

§ Execute bundle exec rake db:seed to add the default user

4.3.3 MacOS

It is recommended to have installed the package manager for macOS homebrew1. The

steps to install the application are:

§ Install gpg by running brew install gpg

1 https://brew.sh

Figure 20 Database configuration file

35

§ curl -L https://get.rvm.io | bash -s stable

§ rvm install 2.5

§ Run gem install bundler

§ In the application’s directory run the command bundle install

§ Execute bundle exec rake db:create to create a database instance

§ Execute bundle exec rake db:migrate to create the database tables

§ Execute bundle exec rake db:seed to add the default user

4.3.4 Windows

For Windows platform, it is recommended to use a different ruby version’s manager

instead of RMV it is suggested to use Uru.

§ Install uru by downloading the executable at

https://bitbuket.org/joinforums/uru/wiki/Downloads

§ Run uru 250 which install ruby 2.5

§ Run gem install bundler

§ In the application’s directory run the command bundle install

§ Execute bundle exec rake db:create to create a database instance

§ Execute bundle exec rake db:migrate to create the database tables

§ Execute bundle exec rake db:seed to add the default user

4.3.5 Starting the application

To start the application in your machine, go to the application directory and run the

command bundle exec Rails server, and the application can be accessed at the address

http://localhost:3000

When starting the application on another computer than your machine it requires an

SSL certification because the Web Audio API is only allowed to run in a secure domain.

Besides that, there is no other restriction.

To start the application in a server it needs to provide an SSL certification and it be

achieved by executing the command, in the terminal and application’s directory, bundle

exec passenger start --ssl --ssl-certificate /your/path/cert.pem --ssl-certificate-key

/your/path/key.pem

36

To start the Sidekiq, see section 3.3, requires the key-value database Redis1 and to

execute the following command bundle exec sidekiq -C config/sidekiq.yml.

4.3.6 Aeneas

Aeneas, see section 3.1, is a tool to synchronize a text prompt with an audio, and

generate a Praat compatible file. Its requirements are listed below:

§ python3

§ pip3

§ tgt

§ numpy

§ ffmpeg

§ espeak

After installing the requirements, install Aeneas tool via pip3 executing the following

command in a terminal pip3 install aeneas.

4.4 Source-code

Application’s source-code are licensed under MIT2 open-source license and it is

available at https://github.com/thalessr/corpora

4.5 Default user

The default user has admin role and use it, after the installation process, to add a new

administrator. To access the application with the default user, the credential is the

following:

Email: admin@corpora.com

Password: password

1 https://redis.io

2 https://opensource.org/licenses/MIT

37

5 Summary

This work describes the application for collection of speech corpus without requiring

any extra software installation from the client side. So, the person who interacts with the

application does not need to install any Java nor Flash script to collect audio. Currently,

it is possible to setup a speech corpus collection project, invite volunteers to contribute

to it, download the record files for further phonetics analysis.

5.1 Future Work

Nowadays the use of mobile phones to access internet reaches 51.2%, and the use of

desktop is 48.7% [17]. As the use of smartphones surpasses the use of a personal

computer in that way, it would be interesting to use mobile phones for collecting data

and sending them through the application’s API.

Currently, during the audio collection all prompts are displayed at the same time and

speech is store in single audio file containing all utterances. It would be more practical

to display one prompt at a time and record speech related to each prompt into separate

files. In this way, it will facilitate further processing of signals and transcripts utterance

by utterance.

The current authorization is simple and broad. So, it may not authorize the access to

services and resources as needed. For solving this issue, there exists a Rails

authorization framework named Pundit1 which does authorization by resource.

1 https://github.com/varvet/pundit

38

References

[1] “Speech and Voice Recognition Market by Technology (Speech Recognition, Voice
Recognition), Vertical (Automotive, Consumer, Banking, Financial Services and
Insurance (BFSI), Retail, Education, Healthcare & Government) and Geography -
Global Forecast to 2023 : ReportsnReports.” [Online]. Available:
http://www.reportsnreports.com/reports/590849-speech-voice-recognition-market-
by-technology-speech-recognition-voice-recognition-application-ai-based-non-ai-
based-vertical-automotive-consumer-finance-retail-military-healthcare-government-
and-geography-global-forecast-to-2022.html. [Accessed: 24-Jan-2018].

[2] D. O’Shaughnessy, “Introduction,” in Speech communications: human and
machine; 2nd ed., New York, 2000, pp. 1–8.

[3] “What is Speech?” [Online]. Available: http://www.speechlanguage-
resources.com/what-is-speech.html. [Accessed: 01-Mar-2018].

[4] F. Schiel and D. Christoph, Production and validation of speech corpora. 2003.
[5] E. Meister, Promoting Estonian speech technology: from resources to prototypes.,

vol. 4. Tartu University Press, 2003.
[6] “Web Audio API.” [Online]. Available: https://webaudio.github.io/web-audio-api/.

[Accessed: 01-Feb-2018].
[7] G. Anthes, “HTML5 Leads a Web Revolution,” Commun. ACM, vol. 55, no. 7, pp.

16–17, Jul. 2012.
[8] C. Draxler, J. Harrington, and F. Schiel, “Towards the next generation of speech

tools and corpora.,” Computer Speech & Language, vol. 46, pp. 175–178, 2017.
[9] J. Guðnason and M. Pétursson, “Building ASR corpora using Eyra,” presented at

the Interspeech 2017, 2017, pp. 2173–2177.
[10] I. Lane, M. Eck, K. Rottmann, and A. Waibel, “Tools for Collecting Speech

Corpora via Mechanical-Turk,” in Proceedings of the NAACL HLT 2010 Workshop
on Creating Speech and Language Data with Amazon’s Mechanical Turk, Los
Angeles, 2010, pp. 184–187.

[11] W. Y. Wang, D. Bohus, E. Kamar, and E. Horvitz, “Crowdsourcing the
acquisition of natural language corpora: Methods and observations,” in 2012 IEEE
Spoken Language Technology Workshop (SLT), 2012, pp. 73–78.

[12] R. Winkelmann, “Managing Speech Databases with emuR and the EMU-
webApp,” presented at the Sixteenth Annual Conference of the International Speech
Communication Association, 2015.

[13] X. W. JunLan Feng and D. LiMin, “Data Collection and Processing in a Chinese
Spontaneous Speech Corpus IIS_CSS,” presented at the Sixth International
Conference on Spoken Language Processing, 2000.

[14] C. Draxler and K. Jansch, “Draxler, Christoph, and Klaus Jänsch. WikiSpeech-A
Content Management System for Speech Databases.,” presented at the Ninth
Annual Conference of the International Speech Communication Association., 2008.

[15] H. Rawlinson, S. Nevo, and J. Fiala, “Meyda: an audio feature extraction library
for the web audio api.,” presented at the The 1st Web Audio Conference (WAC),
Paris, Fr, 2015.

[16] M. Bächle and P. Kirchberg, “Ruby on Rails,” IEEE Software, vol. 24, no. 6, pp.
105–108, Nov. 2007.

[17] “Mobile internet use passes desktop for the first time, study finds,” TechCrunch,
01-Nov-2016. .

39

Appendix 1 – Class Diagram

40

Appendix 2 – Admin application’s dashboard

