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Annotatsioon

Soovitussüsteemid on muutumas selliste ettevõtete jaoks väga tõhusaks vahendiks
nagu e-kaubandus. Nad suudavad õppida inimese käitumisel põhinevaid mustreid ja
soovitada kaupu, mis oleksid konkreetsele inimesele huvitavad, suurendades seetõttu
müüki.

Lõputöö eesmärk on analüüsida võimalust tutvustada soovitussüsteemi elemente
Apollo Grupi e-kaubanduse kanalites, nagu näiteks veebipõhine raamatupood ja
veebipõhine kinopileti pood.

Lõputöös kirjeldatakse andmete analüüsi protsessi ja selle vastavust nõuetele, and-
mete puhastamist vigastest kirjetest, ebatüüpilise inimkäitumise eemaldamist (näiteks
edasimüüjad), mõõdikute ja meetodite valimist, erinevate algoritmide valimist ja
võrdlemist ning tulemuste ja probleemide manuaalset valideerimist ja selgitamist.

Selle lõputöö tulemusena tehti kindlaks, et Apollo esitatud andmed on soovitussüs-
teemi kasutamiseks piisavad ja nõuetele vastavad. Testitud algoritmide põhjal leiti,
et SVD ++ annab parimaid tulemusi nii automaatse hindamise kui ka käsitsi kontrol-
limise seisukohast. Külmkäivituse probleemil ja plahvatuslikul ennustusprobleemil
on mõlemad toimivad lahendused.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 30 leheküljel, 8 peatükki, 1
joonist, 9 tabelit.
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Abstract

Recommender systems are becoming a very powerful tool for businesses such as
e-commerce. It is able to learn patterns based on human behaviour and recommend
goods that would be interesting for a specific person, subsequently increasing sales.

The aim of the thesis is to analyze the possibility of introducing recommender system
elements to Apollo Group e-commerce channels, such as online book store and online
cinema ticket store.

The thesis describes the process of data analysis and determining its compliance to the
requirements, clearing the data from faulty entries and removing non-typical human
behaviour such as resellers, choosing evaluating metrics and methods, determining
baseline algorithms, choosing and comparing advanced recommender algorithms and
manually validating and explaining the results and problems.

As the result of this thesis, it was determined that the data provided by Apollo
is sufficient and compliant to be used for the recommender system. From tested
algorithms, SVD++ was found to produce the best results, from an automatic
evaluation standpoint as well as manual inspection. The cold start problem and the
exploding prediction problem both have viable solutions.

The thesis is in English and contains 30 pages of text, 8 chapters, 1 figure, 9 tables.
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List of abbreviations and terms

Apollo collective term for Apollo Group divisions
Model set of data alongside an algorithm that is capable of making

decisions based on learned patterns
POC Proof of Concept
SVD Singular Value Decomposition
CF Collaborative Filtering
CSV Comma Separated Values
DB Database
CPU Central Processing Unit
MAE Mean Average Error
RMSE Root Mean Square Error

iv



Table of Contents

List of Figures vii

List of Tables viii

1 Introduction 1

2 Project justification 2
2.1 Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 POC scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Bigger picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Related work 7
3.1 Recommender system building steps . . . . . . . . . . . . . . . . . . . 7
3.2 Recommender system generations . . . . . . . . . . . . . . . . . . . . 7

3.2.1 1st generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 2nd generation . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.3 3rd generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.1 Amazon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.2 Spotify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.3 Ebay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.4 Youtube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Technologies 10

5 Data 11
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Anonymity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4 Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.5 Train set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Algorithms and methods 16
6.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.2.1 Memory-based user-item collaborative filtering . . . . . . . . . 17
6.2.2 SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



6.2.3 SVD++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.3.1 MAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3.2 RMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3.3 Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3.4 A/B testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7 Results 22
7.0.1 Cold start problem . . . . . . . . . . . . . . . . . . . . . . . . 23
7.0.2 Exploding prediction problem . . . . . . . . . . . . . . . . . . 24

7.1 Prediction examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.1.1 Book predictions . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.1.2 Film predictions . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 Conclusion 30

Bibliography 31

Appendices 33

Lihtlitsents 33

vi



List of Figures

1 A drawing of the service architecture. . . . . . . . . . . . . . . . . . . 4

vii



List of Tables

1 A table with data fields . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Notations used in the formulas . . . . . . . . . . . . . . . . . . . . . . 16

3 Test results for only books . . . . . . . . . . . . . . . . . . . . . . . . 22
4 Test results for only films . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 Test results for books and films . . . . . . . . . . . . . . . . . . . . . . 23
6 Only book SVD++ results for common client . . . . . . . . . . . . . . 26
7 Only book SVD++ results for 30+ books bought user . . . . . . . . . . 27
8 Only films SVD++ results for animation fan client . . . . . . . . . . 28
9 Only films SVD++ results for russian client . . . . . . . . . . . . . . 29

viii



1 Introduction

Machine learning, or more broadly Artificial Intelligence, is becoming more and more
popular in very different fields and being used for different applications. Machine
learning is a tool that could be used for simulating complex decision making without
human intervention based on patterns in data.

Recommender system is generally an algorithm that is capable of making thoughtful
recommendations to clients so that recommendations are the most likely to interest
the client. Such systems are most commonly used in e-commerce businesses, video
and music streaming platforms. Data that is used as an input for recommender
systems could include:

� purchase history
� click/search history
� birth date, sex, age
� geolocation
� and other

This thesis is based on the project from Apollo I’m doing as an employee from
executor company Icefire OÜ. The problem to solve is to improve the interest of
people in recommended goods, subsequently improving the revenue stream. This
includes such use cases as, but not limited to: advertisement banners on the Apollo
websites, an additional area with prioritised recommended goods (mainly books),
prioritised search bar results, recommendations in receipt letter, recommendations on
self-service kiosks and others. The solution is to create such a recommender systems
engine that could predict future goods that are the most likely to be bought by a
specific user.
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2 Project justification

2.1 Reasoning

The reasoning for this project is that there are no available tools and ‘as a Service’
products that would not compromise on something. That is because each model
should be supervised and tweaked differently, train data should be inspected closely
and cleared in a specific way, which is hard to generalize. General recommender
systems ’as a Service’ such as Keelabs1, Recombee2, Yuspif3 compromise on flexibility,
speed and effectiveness over handmade recommender system. More importantly, you
have more control over the handmade model. It allows to optimise and configure
it the way the clients want it not purely based on evaluation metrics. In contrast
to general solutions, we can introduce market-specific features, such as prioritising
promotional films and books, constraining search to a specific category and many
others. Furthermore, most of the general solutions only use 1st and 2nd generation
recommender algorithms (see section 3.2), while we are building service with migration
to deep neural networks in mind.

Another reason is that Apollo might create a service based on this recommender
system, combining data from different sources and tenants to achieve better results.
This service could then be proposed to other businesses across the globe ’as a Service’
solution for book stores and cinemas.

2.2 POC scope

Proof of concept goal for this project is to find such an algorithm or algorithms, that
could be able to recommend items that people are the most likely to buy in a form
of the top n most likeable items for a person.

POC limits include:

� some items might not be accessible or out of stock
1Kealabs - https://kealabs.com/recommendations-api
2Recombee - https://www.recombee.com/
3Yuspify - https://yuspify.com/blog/recommendation-as-a-service/
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� ignore time frame, old items are as important as new ones
� ignore repeatable purchases, one purchase is as important as 100 purchases of
the same item

Theory: Every person is unique, but groups of people have similar tastes. Every
item is unique, but groups of items are similar. Similar groups of items are preferred
by similar groups of people.

2.3 Bigger picture

This recommender system engine is a part of a bigger service that would be able to
automatically:

� receive assortment and sales data increments once a day
� clean the data given constraints
� enrich data for training
� train model
� import new model to working service
� support multi tenancy
� generate top n given constraints such as:

– location
– price
– availability
– category/tags

Such service might also be able to:

� make personalised discounted offers
� make personalised offers for a bonus card
� conditionally discount online cart

3



Such a service will support the potential migration of the algorithm to deep neural
networks. Deep neural networks will be able to potentially improve the quality of
the recommendations by taking into account data such as:

� language
� device type
� cookies
� search history
� online cart

Figure 1. A drawing of the service architecture.
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Figure 1 shows the architecture of the service and recommender engine role in it.
The service depends on external systems from tenants, either direct access to DB or
an interface, that will be able to provide 4 types of data.

� Purchases - main data source, consists of primarily unique client hash id and
product unique id. Additional information might include total billing amount,
bought item count, date and time of purchase, place or method of purchase.
Due to a potentially very big amount of purchase data, all purchases will be
fetched once during tenant onboarding, after that new purchases will be fetched
once a day as an increment and then joined with the previous history.

� Products - secondary data source, used to enable conditional recommendations,
for example per tag/category, price, availability, delivery time and others. This
data could later be used in deep neural network training for a better quality of
predictions. Products will be fetched once fully during onboarding and then
once per day as an increment with changes per tenant.

� Clients - secondary data source, used to make conditional and more personalised
recommendations, e.g. by constraining language or availability by location.
This data could later be used in deep neural network training for a better
quality of predictions. Clients will be fetched once fully during onboarding and
then once per day as an increment with changes per tenant.

� Miscellaneous (settings, exceptions, different lists) - optional data source that
could be used to improve the tenant experience. This data could include
handmade promotional lists that would have priority over other items, some
specific exceptions and constraints that should be taken into account during
recommendation generation (e.g. always recommend at least 1 item from the
global top 10 most popular items) and other settings. Settings will be fetched
once per day as a full copy per tenant.

The idea is to combine the data from different tenants so that the algorithm can
observe as many examples as possible. This typically results in a better quality of
recommendations. Small tenants benefit the most from such a model since they
might not have enough data to build a recommendation engine on their own to start
with. Such a system also benefits big tenants, since we can combine purchases from
all tenants, resulting in a better approximation of client tastes than from one source.

To connect a user from one source to the same user from another source, we introduce
a consistent identifier between all sources - unique client hash id. This hash id is
based on client email, which is hopefully the same for a client for different sources.
The reason for using a hash instead of email directly is legal concerns.
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After all the information was received, it will have to go through the cleaning and
consolidation process. This process includes removing erroneous entries, removing
non-typical clients (such as bots and resellers), and solving merging conflicts. After
that, every type of data will create a CSV file for easier managing and storing. The
next step is data denormalization, during which we combine all the data points to
create train data with positive examples according to the used algorithm. After that,
we augment the train set with negative examples if that is needed by the algorithm.
We then use the completed training set to train and optimise an algorithm, after
which we export the model to CSV or any other suitable format. The last step is
importing the new model into the REST service and swapping the currently working
model with the most recent model. Then, the tenant is free to use the service
by calling it with client hash id, optionally constraining recommended goods by
categories, price, availability and others.

Since creating recommendations for a client could take up to a few seconds, some
optimisations could be implemented to improve client experience. The first one is to
start calculating recommendations right after a client entered his login, not waiting
for the password and login attempt. Then, after saving all the ratings for all the items
to cache, the client can get the recommendations within 100 milliseconds. Minor
optimisation could be based on an assumption that if a client browses some specific
category, e.g. ’Medicine’, he is likely to continue doing that as the next request. If
only a certain amount of items can be displayed on a page at once, then we could
prepare recommendations for the next page, not waiting for an actual request.
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3 Related work

3.1 Recommender system building steps

Process of creation recommender system might be roughly divided into 6 steps:

� Data mining - during this stage you identify raw data that contains features
or patterns that you wish to learn. Raw data can be combined with different
data sources to enrich it.

� Data technical analysis - it should be determined whether the data has
proper format and match all the constraints. For example, every purchase
history entry for recommendations needs to contain a unique field for a distinct
buyer and a unique field for a distinct item.

� Data cleaning - during this stage data is being prepared. All erroneous entries
should be deleted. All data that is not produced by the target (such as reseller
entities, rather than human purchasing) should be removed.

� Choosing an algorithm - during this stage algorithm is chosen that would
fulfil your requirements. Requirements could include the size of input data, data
structure, training speed, prediction speed, prediction accuracy and others.

� Optimising an algorithm - after choosing an algorithm or a few that match
your requirements, you need to optimise them accordingly to get the best
results. Optimisation might include hyperparameter changes (parameters used
to control the model learning process), input data enrichment or simplification,
deep neural network model architectural changes.

� Building a service - if you intend to bring your recommender system into
live, you need to build a service. Depending on your needs you might want to
include such features as automatic model retrain, live model optimisation and
others.

3.2 Recommender system generations

Recommender systems could be divided into three generations:

7



3.2.1 1st generation

� Knowledge-based - recommendations are based on explicit information given
by the client about himself, usually in form of questionnaires on registration.
Every item in the service is also described as a direct or derivative of information
given by clients. The recommendation is defined as the best match between
user explicit preferences and item properties. An example is a used vehicle
selling platform, where cars have some properties such as mark, model, year,
price and mileage, while the client might constraint his search using the same
metrics to find the best fit. [1]

� Memory based collaborative filtering - methods include similarities be-
tween items and clients and their explicit and/or implicit feedback to give
recommendations. A common example is user-item CF: client A bought X, Y,
Z and rated them well, client B bought X, Y and rated them well, thus clients
A and B are similar and B is likely to enjoy Z too. [2]

� Hybrid - combination of previous methods and different variations.

3.2.2 2nd generation

� Matrix factorisation - idea is based on the mathematical idea of matrix
factorisation into smaller matrices so that on multiplication of resulting ma-
trices you get the best approximation of starting matrix. In this case, matrix
factorisation is usually performed on a large and sparse user-item rating matrix.

� Personality based - idea is to create a psychological profile of a person using
implicit and/or explicit information. In contrast to the knowledge-based model,
the personality model represents person trends (e.g. Five Factor Model [3])
and matches people with similar trends, like CF. [4] [5]

� Web usage mining based - main data input point is website usage, such as
click history, time spent, adding item to cart, wish list. Prediction is made
based on these observations from all users (e.g. currently using the website) [6]
[7]

3.2.3 3rd generation

� Deep neural networks - models based on neural networks. These are capable
of recognising complex underlying patterns in the data. Deep neural networks
can include a different kind of data into its decision making, rather than just
user-item pairs. [8]

8



3.3 Examples

3.3.1 Amazon

Amazon recommends items to buy on their respective online shops, videos and films
to see on Amazon Prime Video. In online shops, Amazon has ’ Frequently bought
together’ section, which is likely to be learned from user purchases and ’Customers
who viewed this item also viewed’, which is most likely web data mining technique.
For recommendations, they primarily use collaborative filtering approaches with
matrix factorization. [9]

3.3.2 Spotify

Spotify recommends songs on different occasions. It recommends a few radios with
everlasting groups of songs (e.g. by genre/style), new releases that are similar to the
user’s tastes, or songs that are similar to some particular song or group. According
to some sources, Spotify uses a combination of content-based, collaborative filtering
and neural network strategies to achieve its results. [10]

3.3.3 Ebay

Ebay, similar to Amazon, has a net of online shop platforms, that is capable of
recommending items that clients are likely to be interested in and items that are
similar to some specific item. Like Amazon, it prioritises items on the web page, as
well as having ’Similar items’ section for each item. There is little information on
how eBay recommender system is built.

3.3.4 Youtube

Youtube recommends videos and channels for its viewers to see. Youtube recom-
mender system is designed to maximize watching time and uses a complex com-
bination of encoders, decoders and deep neural networks to achieve its results. It
uses information such as user average watch time, language, time since last watch,
location and other. [11]
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4 Technologies

Development of the recommender model is done using Python 3.9[12]. Important
libraries that were used in the development are:

� sklearn[13] - core library for scikit-surprise, it provides different clustering,
classification and regression algorithms that could be used in supervised learning
and unsupervised learning models. In contrast to scikit-surprise, sklearn
methods are more general, which results in more manual configuration.

� scikit-surprise[14] - Python library for planning, building, evaluating and
analysing recommender systems that deal with explicit rating data. The
library includes built-in datasets, as well as allowing to use your custom
datasets. It also includes multiple ready-to-use prediction algorithms, such as
baseline algorithms, matrix factorization-based algorithms and many others.
For collaborative filtering algorithms, it includes various similarity measures,
such as cosine similarity and Pearson distance. For the ease of optimisation, the
library includes algorithms such as GridSearchCV and RandomizedSearchCV
for automatic optimisation.

� NumPy[15] - is a core library for scientific computing in Python. The library
provides an implementation for complex data structures like matrices, masked
arrays and implementing an assortment of fast methods to manipulate the data
such as mathematical, logical, sorting, selecting operations and many others.

� Pandas[16] - alongside NumPy provides an assortment of flexible, fast and
powerful ways of data analysis and data manipulation. It allows to easily work
runtime with common data storing formats such as CSV, JSON, Excel and
others. This includes selecting, sorting, filtering, indexing, reshaping, deleting,
augmenting, joining and many other ways to process the data.
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5 Data

5.1 Overview

This chapter will introduce the dataset that was used during development.

Data was provided by Apollo in the form of CSV and consists of purchase history
from 2014 to 2020 over all departments.

Data consists of:

� 24 million purchases, of which:
– 6 million ticket sales
– 4 million book sales

� 14 million unique client-item pairs
� 500 thousand clients
� 120 thousand unique goods
� 25 unique item groups
� Sparsity of 0.0002% (means on average a person has bought about 0.0002% of
all items)

We intentionally asked Apollo for as much data as possible with the idea that we
might need it later. You could also see that some fields only relate to cinema ticket
sales. We asked Apollo to join all sales (book shops, stationery, cinema tickets) for
ease of processing. Otherwise, joining tables without an actual indexed database is
very slow.

Table 1 shows the structure of the data provided by the Apollo.

11



Table 1. A table with data fields

Field Type
InvoiceNumber Integer
InvoiceLineNumber Integer
TheatreID Integer
TheatreName String
SalesPointID Integer
SalesPointName String
ProductCode String
ProductName String
Quantity String
NetSum String
GrossSum String
ProductRevenueGroupID Integer
ProductRevenueGroupName String
CustomerUniqueID String
BirthDay String
Gender String
ZIP String
dttmTransaction String
TicketID Integer

5.2 Anonymity

Before providing this data, Apollo anonymised all records by replacing Cus-
tomerUniqueID value with newly generated value and storing new value alongside
the initial value. This anonymises data for us and leaves an opportunity for Apollo
to match our recommendations with real people.

12



5.3 Preparation

Before we could use this data to train our models we should do some preparation.

There are two distinct types of data that we know about users

Explicit data - information that is provided intentionally and is not required for the
normal use of the service. Examples of explicit data are surveys, likes and dislikes,
birthdays.

Implicit data - information that is not provided intentionally, but behaviourally and
gathered as a result of the normal use of the service. Examples of implicit data are
search history, clicks, watch time, geographic location.

The only kind of data provided by Apollo is implicit, which is purchase history. For
our POC purposes, we do not need most of given data fields. As per scikit-surprise
library specifications, we need to provide a table that consists of 3 columns:

� Id, that is unique for a client
� Id, that is unique for an item
� Rating

Due to the export method, which is to CSV with ‘\t’ tab delimiter, rows that have
tab is their column values (which usually does not happen) are corrupted during the
import process. To solve this we find all rows that after splitting on ‘\t’ tab have
more columns than usual and remove them from the dataset. It only accounts for
1411 rows, which is 0.006% of the total dataset, which is negligible. Other problem
is that ‘ProductCode’ which is unique for one source (e.g. book store) is not unique
across other sources (e.g. tickets). Before we could represent our data to the needed
format, we fix ‘ProductCode’ by combining it with ‘ProductRevenueGroupID’, so
the new field ‘ServiceCode’ is a unique identifier across all data.

Now, we remove all fields but ‘ServiceCode’ and ‘CustomerUniqueID’. As you might
have noticed, we do not have a rating column in our data. So, we just create a new
column ‘rating’ and set its value to 1 to represent the fact that there was a purchase.
0 will represent that there was no and will be no purchase between the given pair.
Anything in between will represent how certain are we that the actual value is the
one to the closest integer. We will explain why that is required later.

We also separate the dataset into a few datasets based on ‘ProductRevenueGroupID’
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which corresponds to different item types, so that we could experiment with different
combinations and find which one has the best result.

Then, we further narrow down the book dataset by removing subgroups that do not
correspond to literature, such as maps, postcards, stationery, albums. Now, we are
left with 4 million rows for books and 6 million rows for films.

5.4 Anomalies

The rule of thumb for preparing a machine learning dataset is that it should represent
actual human behaviour. In our case, it means removing any purchase history that
was done by bots, resellers and any other organisations that do not have any pattern.
Apollo was able to provide us with ‘CustomerUniqueID’s that correspond to such
organisations and resellers. They account for 2500 rows, which is 0.01% of the total
dataset. This is negligible and we just delete it from the dataset (on average, a user
has bought 0.0002% of all items).
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5.5 Train set

Before we could use prepared data in algorithms, we still have some way to go. We
have a table with positive examples, which for us is a fact of purchase. Unfortunately,
that is not enough, because if we were to use only positive examples to train our
model, the model will be very biased towards positive results (result towards 1),
since the algorithm has never seen any negative examples (with rating 0). Adding
negative examples represents buyer behaviour since only a small amount percentage
of items will ever be bought by a specific user.

To create negative examples we randomly create user-item pairs that do not appear
in positive examples and set its rating to 0 (Algorithm 1). That is a bold assumption
that randomly chosen items will never be bought by the randomly selected user, but
it works quite well in practice.

Algorithm 1: Negative example generating algorithm
Input : Items I, users U , user-item pairs J , negative examples to add n
Output : Set of negative examples
foreach ui ∈ U do

repeat
get random ij ∈ I;
while (ui, ij) ∈ J do

get another ij ∈ I;
add (ui, ij) to negative examples;

until n;

Due to the lack of indexed DB for lookups and the amount of created negative
examples, the algorithm takes a lot of time even on modern high-frequency CPUs.
To optimize it, we split this task to take all threads (Algorithm 2).

Algorithm 2: Threaded negative example generating algorithm
Input : Items I, users U , user-item pairs J , negative examples to add n
Output : Set of negative examples
split U into (k=CPU thread count) parts
foreach Uk ∈ U do

use Algorithm 1 with Uk user set in thread
join k threads and user-item sets

15



6 Algorithms and methods

Table 2. Notations used in the formulas

Notation Explanation
Un uniform random distribution
U set of all users

u ∈ U single user
I set of all items
Iu set of items bought by user u

i ∈ I single item
rui actual rating for item i ∈ I and user u ∈ U
r̂ui predicted rating for item i ∈ I and user u ∈ U

Rtrain train set
rui ∈ Rtrain single training example rating for item i ∈ I and user u ∈ U

R̂ set of predictions
µ global rating mean average
λ regularization term
γ learning rate
bu user biases
bi item biases
qi learned item parameters
pu learned user parameters

Table 2 lists all the notations used in the mathematical formulas in this chapter.

6.1 Baselines

RandomPredictor - the prediction r̂ui is uniform random

r̂ui = Un([0, 1]) (6.1)

NormalPredictor - the prediction r̂ui is based on the normal distribution N (µ̂, σ̂2) of
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the training set. [17]
µ̂ = 1

|Rtrain|
∑

rui∈Rtrain

rui (6.2)

σ̂ =
√√√√ ∑

rui∈Rtrain

(rui − µ̂)2

|Rtrain|
(6.3)

BaselineOnly - the prediction r̂ui is a baseline estimate. [18]

r̂ui = bui = µ+ bu + bi (6.4)

6.2 Algorithms

This chapter will introduce you to the algorithms that were most investigated during
the development of the project

6.2.1 Memory-based user-item collaborative filtering

First, we decided to start with memory-based user-item collaborative filtering. The
idea behind this algorithm is to calculate the score for an item-user pair by finding
similarity between other users, multiplying similarity by corresponding user rating
and then averaging the result. This represents the idea that similar people tend to
like similar items.

For that, we have to define what does similarity between two users means. The go-to
method, in this case, is to define similarity between two users as a cosine distance
between users purchase lists.

cos(a,b) = ab
‖a‖‖b‖

=
∑n

i=1 aibi√∑n
i=1 (ai)2

√∑n
i=1 (bi)2

(6.5)

To find similarity between each user we have to create a user-item matrix first by
pivoting the user-item-rating table into the user as columns, items as rows and rating
as cell values. This will create an extremely sparse n x m matrix, where n is user
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amount and m is item amount. 

0 0 0 · · · 0
0 1 0 · · · 1
0 0 1 · · · 0
... ... ... . . . ...
1 0 0 · · · 0


(6.6)

Now, we find similarity between each user pair. Resulting matrix might look like:


1 0.4 0.23 · · · 0
0.4 1 0 · · · 1
0.23 0 1 · · · 0.15
... ... ... . . . ...
0 1 0.15 · · · 1


(6.7)

The prediction r̂ui is set as:

r̂ui = 1∑
u′∈U cos(u, u′)

∑
u′∈U

|cos(u, u′)|ru′i (6.8)

Such an algorithm has a few advantages:

� It is fast to implement
� It is easy to understand and explain to a non-tech person
� It is flexible and does not require any additional configuration

Unfortunately, it also comes with disadvantages:

� The algorithm requires to keep in memory n x m and n x n matrices, which is
not feasible for bigger numbers of users and items

� Calculation speed for similarity matrix and pivoting table is slow

Since we can not use all data even from a single group, we could not go forward with
this algorithm.

6.2.2 SVD

The second algorithm we did not implement ourselves but instead used a pre-made
library one from scikit-surprise. SVD solves the problem of enormous matrices in
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memory by learning features and saving them in separate smaller matrices. It uses
the mathematical idea of matrix factorisation. [19]

The prediction r̂ui is set as:

r̂ui = µ+ bu + bi + qT
i pu (6.9)

To estimate the unknown, we minimize the following expression:

∑
rui∈Rtrain

(rui − r̂ui)2 + λ
(
b2

i + b2
u + ||qi||2 + ||pu||2

)
(6.10)

Minimization is defined as stochastic gradient descent:

bu ← bu + γ(eui − λbu) (6.11)

bi ← bi + γ(eui − λbi) (6.12)

pu ← pu + γ(eui · qi − λpu) (6.13)

qi ← qi + γ(eui · pu − λqi) (6.14)

where eui = rui − r̂ui

6.2.3 SVD++

SVD++ is a slightly improved version of SVD, making use of implicit information.
[20]

r̂ui = µ+ bu + bi + qT
i

pu + |Iu|−
1
2
∑
j∈Iu

yj

 (6.15)

There are some advantages to using SVD based algorithms, such as:

� No limit on input data size
� Pre-made
� Scores the best

Thus, not without disadvantages:

� Train speed is slow
� Requires slow negative example preparation
� The algorithm is hard to understand and explain, making it harder to debug
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the results
� It requires hyperparameter tuning

6.3 Validation

This chapter will introduce you to the validation metrics that were used in the project

6.3.1 MAE

MAE - Mean Average Error, calculates the average error of predictions against actual
values. [21]

MAE = 1
|R̂|

∑
r̂ui∈R̂

|rui − r̂ui| (6.16)

6.3.2 RMSE

RMSE - Root Mean Square Error, punishes for bigger deviation. [22]

RMSE =
√√√√ 1
|R̂|

∑
r̂ui∈R̂

(rui − r̂ui)2. (6.17)

6.3.3 Manual

Manual - manually selecting a few users with distinct preferences (e.g. animation
films, fictional films or fairy tales for books) and evaluating their predictions.

6.3.4 A/B testing

A/B testing - we predict the top 10 for a selection of Apollo clients, put it against the
baseline algorithm and ask them to choose which one of the lists is more personalised,
without telling them which one is which.

6.4 Training

Since any change of hyperparameters leads to a generally unpredicted result, there
is no straight way to optimise your algorithm. In order to get the best result for
a given dataset, we apply an optimisation algorithm, which searches for the best
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hyperparameter combination within given constraints.

RandomizedSearchCV - implemented by sklearn, randomly chooses hyperparameter
combinations, divides the dataset into splits (to avoid overfit and bias) and then
trains such models. Then it repeats the process n times and then chooses the model
with the best results. [23]
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7 Results

Algorithms were trained on 1 positive to 4 negative example ratio.

On the dataset with only books, SVD++ shows the best MAE result of 0.135 and
the best RMSE result of 0.213. For book model it is harder to test manually, since
there are no distinct tastes. Results of all algorithms are presented in Table 3.

Table 3. Test results for only books

Algorithm MAE RMSE
Random 0.500 0.577
Normal 0.383 0.514
Baseline 0.197 0.299
SVD 0.137 0.215
SVD++ 0.135 0.213

On the dataset with only films, SVD++ shows the best MAE result of 0.195 and
RMSE of 0.311. The Baseline has the best RMSE result of 0.302, slightly better than
SVD++ and SVD. Even though the Baseline is not far behind result-wise, during
manual testing Baseline predictions seem to be very general and not personalised.
SVD++ predictions seem to have the most sense, such as animation films or Russian
films (see Table 8 and Table 9). Results of all algorithms are presented in Table 4.

Table 4. Test results for only films

Algorithm MAE RMSE
Random 0.500 0.577
Normal 0.374 0.507
Baseline 0.203 0.302
SVD 0.213 0.305
SVD++ 0.195 0.311

On the dataset with films and books, SVD++ shows the best MAE result of 0.117
and the best RMSE result of 0.204. This model seems to be very biased towards
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films, likely due to a higher volume of film ticket purchases. On average, there are
no books recommended in the top 30 and only films present. What is interesting
is that it performs better in automatic testing than books and films individually.
Manual examination showed that this model is very predictable, meaning if a person
watched a few Russian films mostly Russian films will be recommended. Results of
all algorithms are presented in Table 5.

Table 5. Test results for books and films

Algorithm MAE RMSE
Random 0.500 0.577
Normal 0.371 0.503
Baseline 0.129 0.229
SVD 0.124 0.209
SVD++ 0.117 0.204

7.0.1 Cold start problem

Matrix factorisation algorithms rely on similarities between users and items based
on purchase habits. Item cold start problem happens when the system is introduced
a completely new item, meaning it has no purchases. Because of that, that item will
never get recommended, which is bad marketing. There are a few solutions:

� Randomly include new items into recommendations for a period of time, for
example until n purchases were made

� Ask a specialist / people to choose items that are the most similar to the new
item, set its parameters as the average of similar items

� Just ignore it, unless all business channels use recommender system, it will still
get purchased, for example in a physical shop

The new client cold start problem is similar, when a new client is introduced to the
system, the client does not have any purchases. Because of that, the system is unable
to make personalised predictions. Solutions to this include:

� Recommend the most popular items overall until the person makes a purchase
� Ask a person to select items that he likes and save them as if he bought them
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7.0.2 Exploding prediction problem

As table 7 shows, if a user has a lot of different purchases, you might see that problem.
It could be explained as follows: if a person buys a lot of different items, then he
is similar to many other people, so he must like a lot of other things. Due to how
prediction is calculated for SVD and SVD++ this is a common problem for this kind
of algorithms. The problem is, if you just clip the prediction value (e.g. between
0 and 1), like most of the algorithms do, predictions that all have rating 1 will not
have accurate order. If you do not need accurate prediction numbers and just need
top n items to recommend, you can just disable rating clipping. Otherwise, you
can use normalisation techniques, e.g. dividing all user predictions by the highest
prediction value, so that rating relation stays consistent.
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7.1 Prediction examples

In section 7.1.1 and section 7.1.2 you can see predictions made by SVD++ for a few
manually selected users with distinct features. Column Place indicates the position
of a specific film for the specific person in the predictions. A lower place value means
a higher chance that the person might be interested in a given item. Name field is a
name of predicted item. Rating shows the predicted rating value for a given user-item
pair, higher rating indicates a higher chance that the person might be interested in a
given item. Bought field marks whether a given user-item pair existed in the train
set with a positive value. So, Bought field has ’Yes’ if the user has bought a given
item and ’No’ otherwise.

Table 6 shows predictions for a client with 10 bought books. It is hard to evaluate
the taste, but nothing looks too random. The algorithm correctly identified 3 bought
books in predictions.

Table 7 shows predictions for a user with 30+ bought books. As subsection 7.0.2
describes, it introduces ’Exploding prediction problem’. Predictions seem to be fairly
random for that user, 4 bought books appeared in the prediction.

Table 8 shows predictions for a user with distinct taste in animated and action films.
Predictions appear very logical, many bought films appeared in the prediction.

Table 9 shows predictions for a user with a tendency to watch Russian films. Pre-
dictions include 3 Russian films, but not too high in the list. The algorithm could
correctly identify a few watched films.
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7.1.1 Book predictions

Table 6. Only book SVD++ results for common client

Place Name Rating Bought
1 Kes see Mallukas veel on? 1 No
2 Esmalt küsi "Miks". Kuidas edukad inimesed en-

nast ja teisi tegudele inspireerivad
0.9597 Yes

3 Tobias ja teine B 0.9379 No
4 Naine. Otse ja ausalt. Marju Karin 0.9362 Yes
5 Eesti looduse kannatuste aastad 0.928 No
6 Emotsioonid. Inimkonna suurim sõltuvus 0.9006 No
7 Rikkaks saamise Õpik. Teine trükk 0.8968 No
8 Oskar ja asjad 0.8958 No
9 Homo Deus. Homse lühiajalugu (PK) 0.8862 No
10 Võtku homme mind või saatan 0.8825 No
11 Rikkaks saamise Õpik. Kolmas täiendatud trükk 0.8749 No
12 Laulud või nii 0.8725 No
13 Loomise õpetus II 0.8718 No
14 Eestlase käsiraamat. 100 asja, mida õige eestlane

teeb
0.8624 No

15 Aktsiatega rikkaks saamise õpik 0.8501 No
16 Kus laulavad langustid 0.849 No
17 Teekond iseendani 0.8464 No
18 Ratsionaalne emotsionaalsus 0.8425 Yes
19 Eesti vanaemade lood ja salatarkused 0.8395 No
20 Eesti ümberlõikaja 0.8393 No
21 Minu aktiivne beebi 0.8291 No
22 Minu esimene elu 0.8256 No
23 Kuidas armastada naist? 0.8256 No
24 Lindvistika ehk metsa see lingvistika 0.8204 No
25 Magusaga kaalust alla 0.8167 No
26 ALEMUS! Minu Kennedy 0.8136 No
27 Treeningpäevik. Sinu trenn, toit ja tervis 0.8101 No
28 JÕUL2019 Jamie Oliveri taimetoidud 0.8072 No
29 Leiutajateküla Lotte. KK 0.8053 No
30 Patsient A 0.8017 No
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Table 7. Only book SVD++ results for 30+ books bought user

Place Name Rating Bought
1 Tänavalt troonile 1 No
2 Aastaga haigustest priiks. Tervenduskalender 2018 1 No
3 XXVIII Pauksoni astroloogiline abimees 2017 B 1 No
4 Eesti vanaemade lood ja salatarkused 1 No
5 Tobias ja teine B 1 No
6 MEES Triloogia 1 Yes
7 Kus ma olen ja kuidas sina võid palju kaugemale

jõuda
1 No

8 Mihkel Raud - ISA 1 No
9 Tervis Jumala apteegist 1 No
10 Mees 3. Elu kutse 1 No
11 Nastja maagiline 2018 1 No
12 Magusaga kaalust alla 1 No
13 Eestlase käsiraamat. 100 asja, mida õige eestlane

teeb
1 No

14 Taroskoop 2020 1 No
15 Kuidas alustada investeerimisega 1 No
16 Eesti 100 torti. Meie tordimeistrite parimad tordid,

koogid
1 No

17 Hea une teejuht 1 No
18 Rusikad 1 No
19 Reketiga tüdruk. Kaia Kanepi teekond Ameerika

mägedel
1 No

20 Apollo kõige suurem ristsõnaraamat 1 No
21 Rikkaks saamise Õpik. Kolmas täiendatud trükk 1 No
22 Kuidas võita sõpru ja mõjutada inimesi 1 No
23 Kes tappis Urmas Oti? 1 Yes
24 JÕUL2019 Tüdrukune 1 No
25 Kinnisvaraga rikkaks saamise õpik 1 No
26 XXX Pauksoni astroloogiline abimees 2019 1 Yes
27 Rikkaks saamise Õpik. Teine trükk 1 No
28 Keskööpäike. Videviku saaga V raamat 1 No
29 Lõvi. Nastja tähtkujuraamat 1 Yes
30 Ilusad suured tüdrukud A 1 No
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7.1.2 Film predictions

Table 8. Only films SVD++ results for animation fan client

Place Name Rating Bought
1 Tõde ja õigus 0.93 Yes
2 Tenet 0.9124 No
3 Talve 0.9116 Yes
4 Frozen 2 0.9036 Yes
5 Eia jõulud Tondikakul 0.8658 No
6 Bohemian Rhapsody 0.8515 No
7 The Lion King 0.8474 No
8 Klassikokkutulek 2: Pulmad ja matused 0.8211 Yes
9 The Secret Life of Pets 2 0.8206 No
10 Klassikokkutulek 3: Ristiisad 0.812 Yes
11 Joker 0.8015 No
12 Incredibles 2 0.7963 No
13 Despicable Me 3 0.7942 Yes
14 Klassikokkutulek 0.7685 Yes
15 The Grinch 0.7684 Yes
16 Trolls World Tour 0.7626 No
17 The Secret Life of Pets 0.7482 No
18 Fast & Furious: Hobbs & Shaw 0.7416 No
19 Svingerid 0.7414 Yes
20 How to Train Your Dragon: The Hidden World 0.7407 No
21 Ice Age 5 0.7383 Yes
22 Sipsik 0.7377 No
23 Sonic the Hedgehog 0.7362 Yes
24 Vanamehe film 0.7355 No
25 Abominable 0.7316 No
26 Pirates of the Caribbean: Salazar’s Revenge 0.727 No
27 O2 0.715 Yes
28 The Boss Baby 0.7104 No
29 Hotel Transylvania 3 0.7087 No
30 Mamma Mia! Here We Go Again 0.7085 No
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Table 9. Only films SVD++ results for russian client

Place Name Rating Bought
1 Tõde ja õigus 1 No
2 Talve 1 No
3 Joker 1 Yes
4 Bohemian Rhapsody 1 No
5 Tenet 1 Yes
6 O2 1 No
7 Klassikokkutulek 0.9884 Yes
8 Fred Jüssi. Olemise ilu 0.9841 No
9 Frozen 2 0.9693 Yes
10 Klassikokkutulek 3: Ristiisad 0.9672 Yes
11 Klassikokkutulek 2: Pulmad ja matused 0.9146 No
12 Eia jõulud Tondikakul 0.9038 No
13 Vanamehe film 0.8961 No
14 Холоп 0.8876 No
15 Sipsik 0.8619 No
16 Seltsimees Laps 0.8582 No
17 The Lion King 0.8356 No
18 Svingerid 0.8307 No
19 Ott Tänak: The movie 0.8158 No
20 Полицейский с Рублевки. Новогодний беспредел

2
0.7947 No

21 Лед 2 0.7779 No
22 Once Upon a Time in Hollywood 0.7768 No
23 Mamma Mia! Here We Go Again 0.7653 No
24 Pilvede all. Neljas õde. 0.7613 No
25 Экипаж 0.7603 No
26 A Star is Born 0.759 No
27 Trolls World Tour 0.7569 No
28 Притяжение 2 0.7559 No
29 The Secret Life of Pets 2 0.7494 No
30 Стрельцов 0.7431 No
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8 Conclusion

The goal of this thesis was to determine the possibility of using Apollo purchase history
data to extract behavioural patterns and create recommender system. Recommender
system should be able to make meaningful predictions that would interest clients.

To achieve this goal we had to analyse the data and conclude that the data meets
the requirements. We cleared the data from erroneous entries and removed all non-
human made purchases. We tested Random, Normal and Baseline baseline algorithms,
memory-based user-item collaborative filtering , as well as matrix factorization based
algorithms SVD and SVD++. We optimised given algorithms and tested them
against baseline algorithms. We made predictions for a few people with distinct
tastes and manually examined the results.

As a result of the work we found out that SVD++ algorithm is the best fit for our
data and chosen metric, scoring 0.135 MAE for data set with books only, 0.195
MAE for data set with films only and 0.117 MAE for data set with films and books
combined. During manual examination algorithms based trained on combined films
and books data set was found to be very biased towards films and was not a valuable
addition. We encountered Cold start problem and Exploding prediction problem
and proposed a few solutions. The algorithm is decided to be good enough to start
building minimal viable product for live Apollo systems.

Even though we have created an algorithm that is capable of making meaningful
predictions that exceed baseline results, we are positive that it is possible to improve
the results by using more implicit information such as item tags/categories, language,
price, year of creation with the use of deep neural networks. Unfortunately, Apollo
did not manage to perform A/B testing in a given time frame of writing this thesis.
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Appendices

Appendix 1 - Lihtlitsents

Mina, Mihail Smirnov

1. Annan Tallinna Tehnikaülikoolile tasuta loa (lihtlitsentsi) enda loodud teose
"Recommender system engine for Apollo" , mille juhendaja on Evelin Halling
(a) reprodutseerimiseks lõputöö säilitamise ja elektroonse avaldamise eesmärgil,

sh Tallinna Tehnikaülikooli raamatukogu digikogusse lisamise eesmärgil
kuni autoriõiguse kehtivuse tähtaja lõppemiseni;

(b) üldsusele kättesaadavaks tegemiseks Tallinna Tehnikaülikooli veebikeskkonna
kaudu, sealhulgas Tallinna Tehnikaülikooli raamatukogu digikogu kaudu
kuni autoriõiguse kehtivuse tähtaja lõppemiseni.

2. Olen teadlik, et käesoleva lihtlitsentsi punktis 1 nimetatud õigused jäävad alles
ka autorile.

3. Kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi
ega isikuandmete kaitse seadusest ning muudest õigusaktidest tulenevaid õigusi.
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